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Abstract

The production process, N+N > N+N+nm , is investigated on
the basis of the covariant field theory. Production amplitude as
well as elastic one is calculated under the special assumption
about production mechanism. The eikonal approximation for nucleon
trajectories is introduced, so these amplitudes are expressed in an
impact parameter representation. They satisfy the s-channel
unitarity for the elastic process.

The Feynman scaling behavior for the pion inclusive spectra
is reduced as an automatic consequence of the present model.
Furthermore, the difference between the transverse and longitudinal
distribution of pion momenta can be explained. The imaginary part
of the phase shift in an elastic channel is reduced as a reflection
of the production process, and it reproduces diffractive properties
for the elastic differential cross section.

Comparisons with p-p scattering data are made for various
physical observables, namely, inclusive spectra for pions, average
multiplicity, elastic and production cross sections,and elastic

differential cross section. Agreements are fairly satisfactory.



8§81 Introduction

Experimental data on high energy elastic scattering of hadrons
exhibit diffractive properties. For example, there is a steep
forward peak, and the eiastic scattering amplitude is predominantly
imaginary. Furthermore, the energy dependence of the total cross
section is nearly constant, or at most (ln s)2 as shown by recent
I.S.R. datal), where s is center of mass energy squared. These
features are reflected in phase shifts, which are demanded to
be mainly imaginary and to have a weak energy dependence.

As a consequence of unitarity, the imaginary part of the phase
shift should be interpreted as the absorption of the incident wave
into many open inelastic channels. In the range of energy which
we shall consider, particle production is the main part of
inelastic processes. And so, the production mechanism should be
taken into consideration in order to interpret the diffractive
features. ~

On the other hand, as characteristic features of produced
particles, it is observed experimentally that their transverse
momenta k,; are very small in comparison with longitudinal momenta
ky . In addition, Feynmanz) has conjectured that the so-called

inclusive spectra of produced particles show a scaling behavior

at sufficiently high energies;

ko - Pk, s) =, $C, 1),

(1.1)

where



X = \?///le,mwx o T?—k# , (1.2)

and k0 stands for the energy of the produced particle. Experiments
seem to support this conjécture fairly well.

The aim of this article is to iﬁvestigate wWhether or not
these experimental features can be reproduced consistently for both
elastic scattering and production processes.

First, it is necessary to derive the relation between elastic
scéttering and production processes. This problem has been

3)

investigated by Calucci, Jengo and Rebbi~’, by Aviv, Sugar and

4), and by Freids). In the present article, the

Blankenbecler
production amplitude as well as elastic one will be calculated on

the basis of covariant field theory by assuming a production
mechanism. Especially, it will be discussed in detail how the
imaginary part of the phase shift in the elastic channel is

related to our production mechanism.

The inclusive spectra for emitted pions will be expressed by
our production amplitude. Then, it will be inves£igated whether or
not we can reduce the Feynman scaling behavior and explain the
characteristic difference between k; and k, spectra.

Finally, we would like to examine to what extent our field
theoretical calculations based on the production mechanism can
explain consistently varioué experimentally observed quantities;
namely, the inclusive spectra kodO/dk . the average pion multiplicity
<n>, the cross section for n pion production on,the elastic

differential cross section do/dt, and the total cross section Orp e



The production model in this paper is as follows. High
energy incident nucleons go almost straightforward, and interact
each other by the so—called chain, which is assumed to be vector
meson in this paper. Here a postulate is introduced that pion
fields %(x) couple only with vector mesons, no£ directly with the
nucleons. Then, possible diagrams for the pion production from
one chain are shown in Fig.l. Let us consider, however, a production
mechanism such that a number of pions are emitted as a consequence
of a superposition of only the first diagram, Fig.l(a); that is,
our production’diagrams are s-channel crossed ladders, as shown in
Fig.2. Thus, the pion fields % (x) are:either emitted as external
particles, or contracted each other as virtual particles connecting
two chains. Our model for the production mechanism does not include
diagrams corresponding to the emission of more than one pion from
one chain, Fig.l(b) and so on. Therefore, our model is different
from multi-peripheral modelss), in which all produced pions are
emitted from one chain.

The selection of the production mechanism that only one pion
is emitted from one chain is due to the following reasons. This
produced pion is connected directly with each of nucleons through
one virtual vector meson. While, the meson cloud around the
nucleon is deformed by the Lorentz factor, y, and this deformation
is maintained duringrthe high energy scattering process, because
both nucleons are not deflected strongly. Therefore, momenta of
our pions receive the direct influences from both nucleon clouds.

Thus, it is expected that the transverse momentum k; of our pion



is small in comparison with its longitudinal momentum k, and that
the relation between them is roughly k; =~ k,/y. These circumstances
will be mathematically expressed in §83. On fhe other hand, in the
case where two of more pions are emitted from one chain, the

strong limitation due to the nucleon clouds on the pion momentum
cannot be expected, because there exist vector mesons which do

not interact directly with nucleons in the field theoretical point
of view.

Next, we shall consider thé type of interaction among nucleon,
vector meson and pion. The simﬁlest model is that two different
vector mesons (Vﬁ's) couple with one pion (%), as shown in Fig.3(a).
Since the interaction Lagrangian for this (V—VJ—-?) coupling includes
the derivative about the pion field. The S-~-matrix element based
on this model is proportional to the pion momentum, strictly
speaking, square of transverse momentum, kf . This disagrees with
the experimental fact. We shall not consider this model, although
we can not yet definitely conclude whether or not the contribution
from this model can be small for the non-zero coupling constant
of the (V-V'-¢®) vertex.

As the second realistic model which includes no derivative of
the pion field, it is interested to consider the type of vertex
among vector meson (Vu), ésedovector meson (AU), and psedoscalar
meson (¥), as shown in Fig.3(b).

Since spin effect is not important at sufficiently high energy,
it ié convenient to treat the nucleon as a scalar particle. Then,

as another simple model, scalar nucleon couples with vector mesons,
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and then scalar meson is emitted from these vector mesons, as shown
in Fig.3(c). It is clear from the characters of these vertices

that the second (Fig.3(b)) and the tHird (Fig.3(c)) model give
effectively the same momentum and energy dependence of the S-matrix
element in the sufficiently high enérgy regions. Therefore, in

this paper we shall investigate various features of the physical
observables by using the third model. Hereafter, the scalar meson
kwill be called as pion, and all vector mesons will be simply treated
aé the same.

In 82, calculations of the S-matrix elements corresponding to
aiagram in Fig.2 are performed with the aid of functional derivative
methods7) and by introducing an eikonal approximation about the
nucleons). It is shown that not only production amplitudes but
also elastic one can be expressed in an impact parameter represen-
tation. The imaginary part of the phase shift in an elastic
channel is derivedc and its relation to the production processes
is stated. 1In 83 is shown the appearance of the Lorentz factor,
representing the Lorentz contraction of the meson clouds. Some
of physical observables are expressed in terms of the phase shift.
Furthermore, it is proved that our amplitudes satisfy the s-channel
unitarity relation for the elasric process. In §4 is shown reali-
zation of the Feynman scaling behavior, which plays an essential
role in our model in order to explain the difference between kj
and k, spectra. Our numerical results for physical observables
are compared with proton-proton collision data; especially relations
between elastic and production channels are investigated. Conclusions

and discussions apear in §5.



§2 Model calculation

Production amplitudes together with elastic one are determined
on the basis of the speéial production mechanism and of the covariant
field theory. We shall consider the case where two fast incident
particles, nucleons, collide and eventually emit arbitrary number
of pions. In order to obtain a closed form for scattering ampli-
tude, eikonal approximations for nucleons will be introduced.

Let us consider two spinless nucleons, a and b, interacting
via the exchange of vector mesons. Momenta of incident and final .
nucleons are denoted by pj and p; (j=a‘and b), and those of emitted
n pions by kj (j=1,2,**",n). Then the S-matrix element, which
corresponds to the produétion diagram mentioned'in §1, can be

expressed as follows ;

<BLPC R, kel STR, B = <FIS D

= <H T enp Llax Sy S L, %) + L2 cupapen]li)
(2.1)
The nucleon currents Ja(x), j=a and b, are given by the
equations,

J:;m =i $ fa% [\\;(z).al_ Y@ - 2y @ v @ Fle-x)

] 2,1 Bzﬂ b] 3 X2.2)

where wj(x) stands fér the nucleon field and fj is the coupling
constant between the j-nucleon and the vector meson. In order to
keep generality, we include the nucleon form factor F(z-x). The

*
appearance of T , not T ordered product, is originated from the



derivative coupling. The interaction term Z;p(x,y), which
corresponds to the chain shown in Fig.l(a), is

L0 %) = -ig 4% DT (-, 9@ T, -).

(2.3)
Heré, the pion field 9(z) means the creation and annihilation of
one pion, and g is the coupling constant between pion and vector
mesons, The DZv(x—y)'denotes the Feynman propagator of vector meson

with mass m.

The second interaction term‘tﬁp(x,y)

0
(X = - DY (-
is added, which means that the vector meson connects with two

nucleons without emitting any pions. This term has been used to

get the generalized crossed ladder diagrams in the previous papers).

After Abarbanel and Itzykson7)

, we introduce here external
C-number fields, Ai(x) and Ag(y), that can interact with nucleon
currents. Then, with the aid of the functional derivatives, Eq.(2.1)
may be rewritten in the form :
. rd
S = L <ouu kal C 1D <RS2 100 <P S | P

»
Ao
A*~>o

(2.5)

where

<k’\.“',‘2m,\ Cm\0>
=<k, ka\ T exp [-fd*x oYy Si“(v [,,CN,(X»%) +¢C‘°“, CWN
}l

3 (2.6)
" 8A§,’(“3)“0>

and



GVBIP> = <P 1T exp[ifa J,0 A0 1P
(2.7)
The physical meaning of these terms is clears). Especially,
<p\fB|p> in Eq. (2.7) represents the scattering of the nucleon in
the external field Au(x) with non-local interaction.

At this stage, we introduce the eikonal approximation with
respect to nucleon trajectories. This approximation corresponds to
the straight going assumption of the nucleon in the course of
scattering and reaction processes. This assumption might be
thought as a good approximation at sufficiently high energies.
This is because the experimental results for final momentum
distribution of incident particle show a peak near the initial
momenta, which is known as an inéidént‘particle effect.

The eikonal approximation used here consists of équating the
momentum of the intermediate nucleon with the average value of

7)

initial and final momenta p = (p+p')/2 In this approximation,

the phase accumulation of incident wave occurs under the influence
of the external field Au(x). The explicit form of the eikonalized

)

M *
S-matrix is given as follows, cf. Eg.(2.21) in the reference (8) ’

*) Here is a trivial difference from Eqg. (2.21) in the previous

8)

paper ‘', because non-local interaction is included in this paper.
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KB - 11D
__\__ —d;,,—fd‘x é;(?‘P)X 9‘\3 (‘LSETYQH;?T;?)])
(2.8)
where
1 - Jzﬁ@mﬁ ,‘ﬂ%J2ﬁKmf (2.9)
and
VOt 7) = 2§ far LTt T-2) A/‘(x'/)' (2.10)

Substituting Eq. (2.8) into Eq. (2.5) and performing the
functional derivatives, we obtain the following S-matrix element.
{ LR~ P)L R~y
1Sty - fi ity e e

'ﬂ"ﬂl ﬂ%T& >0 d %ﬂ
p>o

K| To Ll B T £, Geofim i)

* G°£:?(1+2?QT, Y127, T)) -\;"_f’] \O>’
(2.11)

where

¢ = £2£Pg/m and c® = 3¢ (2.12)

The expectation value of the T-ordered product contained in
Eqg. (2.11) can be exactly evaluated, and is given by the following

relations :
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\ l
e~ Li) = Tram T ()%

2 » (Pa~ a L Po- Ty

Y39
{TTu(ka,i ysa.pi- exp [ TG4 0,8) + Ty 0 )]
I~!

(2.13)

where

{ -1k 2
u(k;X,‘a;u,ﬁ)=W5d“2€k W, XY o, ),

| (2.14)

TO-% u,8)= %—Sd‘m’ §aty’ W(X"} X Y5 B) D; X'~y
x WK Y50, ), (2.15)
T &Y a,8) = 4 q_iid'c_gq‘ ?‘1}* ‘f:g (Xt28,7T, Y +27,0) ﬂf)
(2.16)

and

£, s,y FR,,
(2.17)

WAL Y e p)= "gg‘_gg't ‘N—Y“F\Zg (@)

Propagator D;

contraction of the pion field 9%2), and corresponds to an internal

(x'-y') in Eq.(2.15) has been reduced from the

meson line in Fig.2. Physically, U(x;,y ; o,B) represents a type
of potential, which consists of two chains and one pion propagator
connecting them as shown in Fig.2(b). The nucleon propagator

does not appear explicitly in this expression, because it is
replaced by a simple §-function denoting the nucleon propagation

in consequence of the eikonal approximation, cf. Eg.(2.8). On the
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other hand, the term u(kj ;X,y :0,B8), Eq.(2.14), contains one chain
and one external pion line with momentum kj.

The dependence of U and U0 on the coordinates x and y of two
nucleons is only their difference (x-y), because it is obvious from
the translational invariance. This fact can be seen explicitly by
expressing these terms in the momentum representations. Therefore
by introducing relative coordinates Z;(x—y) and barycentric ones
(x+y)/2 of the nucleons, we can perform the integration about
(x+y)/2, which gives the energy-momentum conservation. Thus, an

invariant amplitude can be written as follows;

<HTWD = ,)ﬁ gum acvd,B SdZ, {ﬁuo(k;,z o p)}

J=1
pavo

X eXP Y_U(Z;d;ﬁ) +U°(Z;d,ﬂ>],

(2.18)
where

, (2.19)
= (R-® -R+ ¥®)/2,
and the pion emitting term uo(kj ;X-y ;0,B) is reduced from
u(kj iX,y i a,B) in Eqg.(2.14) by taking out the (x+y) dependent
term, which shares the pion part of the energy-momentum conser-

vation. Then this term u, depends only on the relative nucleon

0
coordinates Z=(x-y). This invariant amplitude can be simplified
by introducing new variables (bx, by’ £,2), which are related
with Z by a relation Z= b+2§a£—2§bc. The direction of z-axis

is chosen to be pararell to (?é—@b), and the two dimensional

coordinates b are perpendicular to it. The Jacobian due to this
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transformation is denoted by J,

J = 4\?;0?@ “T’w?&z\.

(2.20)
By the aid of this transformation, we arrive at the final form

of the invariant amplitude.
<Paj; P\:; k\,““,\?q\,\Te\Pa., ‘)b>
v m '. i)((b)
Jgda“} elA K{l\’\ §(“),ka)§ e - B'M-&‘

(2.21)

- A
(m1)2

This form for the production amplitude is the same obtained

3)4)

previously by others In our case, production factor ¢ (b; k)

and eikonal phase shift X (b) can be reduced formally form Egs. (2.14)
to (2.17) by equating o and B with positive infinity and by

replacing (x-y) with b:

Bbik) =Ry b ow=eo, g=00) (2.22)

and

X(b) —L[U(\bd 0o, B= 00 ) +T%b; o= 00,/8~oo)-_\
(2.23)

In the momentum space, these can be expressed as follows.

)

?‘§(\b;\e)=—im(z =lf7e 51T (2- 1)) 5[5 @+ 3R]

) B +(2-1k), (2- 2k) Jm?
(2-3k)*

Sve + (2+2k), (@+3k)
PR /o TR T,
(Q.*'_j_"k) + ’W\f— (2.24)

X?QP,-F((E'— ;. k
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and

b b;-

2 (ew)? R+ po-ie

X (b) = -

+—€—‘—'—15a“z 3(P2) 5R 1)
(@)

- o D . q > o = b
X Tap F(2 f‘i‘;*fmj/“” F@ T € L.

The mass dependent term in the numerator of vector meson propagator
vanishes exactly because of §-funhctions. Furthermore, it is easily
proven from Eq. (2.24) that (b ; k) has the following property.
- ¥y —k) = b -k)
Hbsk) =-B(bi-k) = b, :
(2.26)
By the aid of the last relation, the real and imaginary parts

of the eikonal phase shift defined by

X = %, () + i x; (b (2.27)

are given as follows :
AR 3@
X; (b) ) SZko ()’ \ \ (2.28)

and

| l atk EX(H
x,\,(b) = 2 Pg \2“)4' ka- + M‘J.

G 4%b 98 ! 2y b
S M1 P o Fu e

@m)* 1

(2.29)
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where 2. stands for the two dimensional vector lying in the b-plane.

In general, from unitarity requirement, the eikonal phase
shift must have its positive imaginary part, which is reduced
from an absorptién of incident wave into many open inelastic
channels. 1In the present case, the imaginary eikonal phase shift
has been explicitly derived, not phenomenologically, by specifying
the mechanism of production process. Moreover, functional form
of the phase shift is determined on the bases of the covariant
field theory.

The relation between xi(b) and ¢(b ; k) was firstly discovered
by Calucci, Jengo and Rebbi3). However, their treatment is
non-covariant, and their functional forms of ¢&(b ; k), and hence
of Xi(b), are left undetermined. Thus far, no approximations are
performed other than the eikonal approximation applied on the high
energy nucleons. As seen from Eq.(2.21), our invariant amplitude is
written as the integration over the two dimensional vector b. It is
considered as a generalization of the impact parameter expansion to

the production process.
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§3 Expressions for observable quantities

In this section, by introducing some kinematical approximations,
various quantities obtained in the prévious section will be rewritten
into more compactvforms. In addition, physically observed quantities
will be expressed by ¢ (b;k) and x(b). It is also shown that the
present theory satisfies the s-channel unitarity.

In order to see the physical features explicitly, it will be
assumed that produced pions have not large enerqgy, and are emitted
nearly symmetrically in forward and backward directions; namely we
shall neglect the terms of order ko//E and (Ik)/Ys in comparison
with the leading terms.

First, features of ¢ (b;k) will be considered. The momentum q,
and the energy d of the virtual vector meson are limited to the
definite values through two §-functions in Eq.(2.24). Within our

approximations stated above, they are

UL = -21/3 Ro  and Q=-3 kz’ (3.1)
where
B = Taz ~ oz (3.2)
Fao + T’\,o .

Therefore, integrations over g_ and g, can be done and the following
z 0

expressions for ¢(b;k) is obtained

B k) = im — (42 P

m ey
Fa-+k)") Fa+ $k))

@-3k) + m @Q@++R)*+m2

(3.3)



17

In the last expression, because of Eqg.(3.1), we have

1

(23RO = (Lrdh) +o5 (ke 34k, (3.4
with

y =1/ /1-8% (3.5)

An appearance of y-factor represents physically the Lorentz
contraction of each cloud of nucleons in the center of mass system.

It has a strong relation to the Feynman scaling for the inclusive
spectra of emitted pions, as will be shown later.

It might be worthy of notice that this Lorentz factor has been
reduced out as a natural consequence of model calculations based on
the covariant field theory, without inputting it as an extra condition.

As is easily checked from Eq. (3.3), ¢(b;k) has following pro-

perties besides one given by Eq. (2.26).

B bk k) = B -k, k) (3-6)
and

Bk, k) =- Db k, —ke) (3.7)
The real and imaginary parts of the eikonal phase shift are ultimately
determined through the combinations of ¢(b;k) with Egs. (2.28) and
(2.29).

Since invariant amplitude has been obtained in a closed form.
physically observed quantities can be calculated at least in principle
by using Eg. (2.21). In the present model, some of them take fairly
simple expressions. We should like to list up a few examples without

proof:
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Inclusive spectra for the emitted pions:

Y 2 1y 1®
ko_aﬁk:- - —272-;(_)3 So\\b \ Db \U\_ (3.8)

Total cross section:

. =X;(b)
=2 0B T1- e s xm] (3.9

Elastic total cross section:

2 —2X%;(b) =X (b)
G o= Jdb I+ e g e ( cos X (D)} (320

Cross section for the production of n pions:

| 5 m -2 X;:(b) (
Qx— - — . 3.11)
LIS Sd b [2X&(b)—.\ e
Average multiplicity for emitted pions normalized to the

inelastic total cross section Oip =Op~0gt

2 2
<N = (4

M,
Elastic differential cross section:

0o - 2
S = b g o[- e e

where t=—(pa-pé)%

Since b-integrations in Eqg. (3.8) can be easily performed as
clear from ¢(b;k) in Eg.(3.3), inclusive spectra take specially
simple expressions, see Eq.(4.5). In our model, production cross
section on is expressed as a superposition of the Poisson distribu-
tion.

As far as an invariant amplitude is expressed in the form given
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by Eq.(2.21) with an arbitrary function for the production factor
®(b;k), the s-channl unitarity requires three conditions on the

functional property of ¢(b;k). Two of them are Egs. (2.26) and (3.6),

and the other is'

B b k)= HEH: k) (3.14)

Our ¢(b;k) in Eg.(3.3) does not satisfy the last condition. However,
we would like to point out that our invariant amplitude is consistent

with the s-channel unitarity for the elastic case.

2= <R T - T R, B

mn

-t Y, SRR+ z\ea ~ P )
'Y
X <

R\ TR R, s R SR T K R | Te VT B
(3.15)

In this case, the necessary condition on ¢(b;k) is only Eg.(3.6).
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§4 Comparison with experiments

Our theoretical results will be compared with the proton-
proton collision data. We proceed as follows. Though our model
ignores completely isospin variables, experimental data on the
inclusive spectra of positive pions are used to fix the nucleon
form factor and two undetermined parameters, namely, coupling
constant G and virtual vector meson mass m. With these parameters,
it will be investigated to what extent our theoretical predictions
reproduce other experimental results, especially elastic scattering
data. These procedures may be the measure of the importance of
the production mechanism assumed here.

First, as the functional form of F(kz), which.represents the
non-local interaction of nucleon with the vector meson, we assume

the following form,
2 .
o = (=Y 8.1

R+ md

Furthermore, the mass in F(k2) will be identified, not necessarily
at all, with our vector meson mass, because the use of two
different masses merely causes an increace of the number of
parameters.

Now, the production factor (% ;k) and the eikonal phase

shift x(b) have following expressions.

§-(ka) - L __G’__ %4V+| deiL e&ﬁ;\b

(2T )*

r \ ]v-nr \ - V4|

X L= 1R) + e Lg+tk)*+ o J)(4.2)
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{ I’k . 2
X, (b) = = |3 (b; k)|
i 2 3 ,
2k, (FT0) (2.3)
and

| B b k)\®
(2%) K+ W

X (b = PS

g’ ! - m b\2V
2% (,zv)s-( KewMb), 44y

where sz(z) is the 2v-th modified Bessel function of the second
kind.
The analytic form for the inclusive pion spectra is derived

from Eq. (3.8), that is,

4
ko dk F(k_l., z )

_ G ot d \ Tw—z
2enyr ™ ] *{m TR+ d, @rtey+d (4.5)

where

dy = (ks —/_1; ko)l T ot

4y2

By introducing a Feynman parameter to combine two denominators,

(4.6)

the momentum integral can be performed, and the inclusive spectra
become

F(\Q_L, \?z, S )-; ;_[_G__. mofv“]“ [(4v+ 2))

2 () @v+a)n It

2V+1

XSd (= y*)

‘-‘ [D+\3 ;ka _'\a '_4-;_]4-\)1-3 (4.7)
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where

| 2 2
D= 4.2 (kg + “}Zko) +“:—_\§_ + o (4.8)

These expressions show that the pion inclusive spectra
has a scaling behavior. The integrand of Eqg.(4.7) has a sharp
peak around y=0. Thus, it can be expected that the features of
F(kl,kz,s) is mainly determined by the first term in the
denominator,D. Consequently, when the incident energy becomes
sufficiently large, we have little contribution from terms which

depend on s explicitly, and the inclusive spectra is

Fll,ky,5) — §Ck, x= 55 () .o

Thus .the Feynman scaling behavior is established, as expected from
our assumption on the production mechanism. M is the nucleon mass.
Comparison with experimental data on the inclusive spectra
at Plab™ 19.2 [GeV/c] by Allaby et al. are shown in Fig.4.
Parameters are chosen to be m2=0.47[(GeV/02)2], G/(2ﬂ)2=28.4,
and v=2. This selection v=2 corresponds to the case where the
experimentally observed electromagnetic form factor is adopted
for the nucleon cloud. (If v is set equal to zero, namely
F(k2)=l, mass of the vector meson must be chosen very small so as
to reproduce the inclusive spectra.)
The qualitative features of the inclusive spectra are
reproduced fairly well; namely, the k; and k, spectra have
maximums at %k =0, respectively, and the k, distribution is flatter

than the k, one. The latter features are due to the existence of
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the y-factor combined with k,.

Next, let us consider the eikonal phase shift x(b). The real
part xr(b) is necessary to determine the ratio of the real to
imaginary part of the eiastic amplitude at t=0. But experimental
data show that the ratio is small. Actually, Xr(b) given by
Eg. (4.4) contains another undetermined parameter Go, and we could
make Xr(b) negligibly small by choosing it appropriately.
Therefore, the real part xr(b) is neglected hereafter. Then our
scattering amplitude becomes pure imaginary. The numerical value of
the imaginary part of eikonal phase shift, xi(b), is uniquely predicted
by using the values of m2 and G determined from the inclusive
spectra. As we have to perform multiple integrals to get this
prediction, we used the Monte-Carlo method. We believe that our
error for computational results is within 5% at the largest.

The resulfs are shown by the solid lines in Fig.5 for Xi(b) and
the function T (b)= l-exp[—xi(b)]. The b-dependence of our eikonal
phase shift is so similar to the Gaussian distribution, exp(—bz/boz).

For comparison, in Fig.5 are shown the b-dependence of the
10) *)

eikonal phase shift given by Durand and Lipes , hamely ‘,

X; () = A (%)3 K, (b)), (4.10)

*) We choose}fﬁo.98[(GeV/c2)2] and A=1.82 to give the same
total cross section and the same slope parameter as in our
calculation. These selection seem to reproduce a nice fit to the

experimental do/dt.
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This form for xi(b) is proposed by them to reproduce the experi-
mental results on the p-p elastic collision, according to the
Chou and Yang conjecture}l)
Since the numerical values of our xi(b) are obtéined, let us

return to compare our theoretical predictions with experimental

data. The total cross section, Orp in Eq.(3.9), is estimated to be

Op = 39.1[(mb], (4.11)

which is in nice agreement with experiment.

The calculated do/dt is plotted in Fig.6, together with some
experimental points by Allaby et al}z). Agreements with the data
are fairly well in the small |t| regions. For example, the slope
parameter b is 9.50 [(GeV/c)_Z], which is estimated between
Itl = 0 and 0.05. The gloval slope up to t = -0.7 is, however,
slightly steeper than the experimental one, and sc the first dip
appears at t = -0.95, though experimentally at t = —1.3**). Though
the theoretical do/dt seems to have more structure than the experi-
mentally observed, this difference might be partially due to the
neglection of the real part of the eikonal phase shift in our
numerical calculations.

The elastic total cross section 99 is 8.05 [mb}] in our case.

Then, its ratio to the total cross section is

oo/oT = 0,21 at Piap = 19.2 [GeV/c]: (4.12)

15)

**) Although recent I.S.R. data exhibit a.steeper slope than

ours, a dip appears at t = -1.4.
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which seems to be fairly well.
The theoretical results on o, are tabulated in Table.l,
and the maximum appears at n = 1. The average multiplicity <n>

is estimated to be
<n> = 1,71, ' (4.13)

Since we do not take the isotopic spin into account, we can not
say definitely about the charged stateé of pions. It may, however,
be allowed to assume that the number of charged pions in our |
calculation should be multiplied by 2, though there must be the
positive pion excCess for p-p collisions. For comparison, the

experimental cross sectionsl3)'l4)

on(ch) for both positive and
negative charged pions at Piap = 18.9 [GeV/c] are also shown in
Table.l. The average multiplicity is <n(Ch)> = 3.7i0.5. We may

say that agreements are fairly well. It remains unsolved how to

include the isospin in the treatment of the eikonal approximation.
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§5 Conclusions and Discussions

Some successful resulﬁs have been obtained by assuming the
special production mechanism.

As one of them, the Feynman scaling behavior for inclusive
spectra of the emitted pions is automatically derived in our
model, as mentioned in §4. The essential points are the use of
the covariant field theory, the choice-of vector meson as an
exchange particle, the eikonal approximation about nucleon
trajectories, and the special assumption for the production
mechanism. Especially, it is crucial toahave assumed one pion
production from one chain in Fig.l(a). As a result of this assump-
tion, the information that each of nucleons is going straight-
forward, is sent to this produced pion directly from these nucleons.
Mathematically, this is expressed in such a way that the momentum
of one emitted pion appears commonly in the arguments of two
§-functions in the production factor ¢®(b; k), Eg.(2.24). On the
other hand, if two or more pions are emitted from one chain like
in Fig.l(b) and (c), these circumstances do not occur; therefore
we cannot expect the Feynman scaling to be derived without any
additional assumptions.

Concerning the inclusive spectra itself, general tendencies
found in experiments are well reproduced in the pionization regions.
There seems, however, to be disagreement in the sﬁall k, domains.
That is, it can be seen not only from the flattened peak of the
distribution near k; =0 in Fig.4(b), but also from lower theoretical

values of the k, distribution for the fixed k, =0.2 in Fig.4(a).
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These defects may be remedied by modifying our production mechanism,
in which the emission of two or more pions from one chain, Fig.l(c)
and so on, is not considered. Furtherﬁore, there are -apparent
discrepancy in the large k, domain. This may be because the production
process due to fhe direct pion emission from nucleons, the so-called
fragmentation, are not taken into account. The estimation of the
contribution from these additional production mechanism should be
done in futurezo)
The imaginary part of the eikonal phase shift reproduces well
the diffractive properties in elastic differential cross sections,
in spite of assuming the simple production mechanism and neglecting
the fragmentation process. Our imaginary part is a reflection of
the s-channel unitarity, in contrast with the Regge pole ﬁheory
which asserts that the t-channel unitarity governs the high energy
behavior in the s-channel. Quantitatively, slightly steeper a slope
for diffraction peak and a dip at rather small |t| value are obtained.
The similar shape has been gained by the Regge eikonal modelG), where
the Gaussian b-dependence of Xi(b) is adopted. Its origin can be
understood in terms of the features of Xi(b). Since the better fit
with experimental results for the diffraction peak has been obtained
from Xi(b) shown by dashed line in Fig.5, it seems to be preferable
that Xi(b) has larger value at b=0 and shorter range in its
b-distribution. Such desirable features for Xi(b) may be reduced
from production processes in which more than one pion are emitﬁed

from one chain.

So as to see the essential features of our model, let us
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assume a rough approximation that xi(b) is effectively replaced

by a 6-function, (A/2)6(b0—b), under the condition

o]

_2_Ab0 = fodb x'i(b) . (5.1)

Then observable quantities are expressed as follows.

2

& = 2wt (1= e V21, (5-2)

2

% = b [1- e C(5.3)

n
-A
Th = r“3\32o _,,AU € - (5.4)

and
~A
&> = Ali-e " 1
(5.5)
It must be noted that our expression for the production amplitude
makes it possible to relate different observables through only two

parameters, A and b

0"
According to the experiments, the ratio oo/oT is about 0.24
at Plab=19°2 [GeV/c]. From this ratio and Egs. (5.2) and (5.3), the

values of A is about 1.3, and then the average multiplicity becomes
<n> =~ 1.8. It is interested to note that this vaue of <n> happens
to be almost equal to our previous result, Eq.(4.13), while our
numerical result for oo/oT, Eg.(4.12), was also consistent with the
experimental data.

By judging from the comparisons of the present theory with

experiments so far seen, our assumed production mechanism in the
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pionization regions seems to reflect the part of the essential
nature of high energy nucleon-nucleon collisions. However, it
should be investigated what the energy'dependences of <n> and O
are, and whether the inclusive spectra for the final protons are
able to be reproduced or not. These problems will be discussed
elsewhere.

Concerning more than one pion production from one chain,
Koyamal7) has proposed general procedure to treat the production
diagrams, in which all diagrams in Fig.l and their s—channei
repetition are included. On the oﬁher hand, Auerbach, Aviv, Sugar

18), and Sugarlg) have widely investigated the

and Blankenbelcer
j-plane nature of the scattering amplitude, which is obtained
from the repetition of the multi-peripheral chains. 1In addition,
it is an open question how to take into consideration of the

20),21)

resonance production and the fragmentation process in the

framework of the eikonal formalism.
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Figure captions

Fig.l

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Possible production diagrams from one éhain. —— for
nucleon, A(Vm¢~for vector meson, and =—=--- for‘pion.

Examples of crossed ladder diégrams for the production mecha-
nism assumed in this paper. Only the case of two pion emission
is shown. All possible interchénges of the legs of chains
along each nucleon lines should be taken.

Various interaction types corresponding tb the diagrams in
Fig.l(a). 1In these figures, Vu and A, stand for the vector
and pseudovector fields, respectively, and S is the spin of
the nucleon. Pion field is psedoscalar in Figs. (a) and (b).
In Fiﬁ.(c), both pion and nucleon are taken to be scalar.
Inclusive spectra for positive pions,at‘plab=19.2 [GeV/c].
The experimental data are due to Allaby et al.g).

The b-dependence of the imaginary part of the eikonal phase
shift, xi(b), and of the function, F(b)=l—exp[—xi(b)].

Solid lines represent our numerical results. For comparison,

0) are also plotted by dashed lines.

those by Durand and Lipesl
Elastic differential cross section, d40/dt. The theoretical

result by the use of our xi(b) is drawn by the solid line. The
experimental data at plab=19.2 [GeV/c] by Allaby et al.lz)

are cited.
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Table caption

Table 1

Theoretical results for the cross section ¢, as a function
of pion multiplicity n. The. experimental data on charged
pions are taken from the reference (13). Experimental

elastic total cross section o, at Piab™ 19.0 [GeV/c] is

0
gquoted from the reference (14).
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Table. 1
n 0 1 2 .3 4 5 6
on[mb] 8.05 18.45 7.09 3.22 1.42 0.58 0.21
n(ch) 0 2 4 6 - 8 . 10 12
8.7 16.3 11.5 4.3 1.9 0.5 0.5
on(Ch)[mb]
+0.5 +8.4 }+46.0 +2.5 +1.3 +0.5 +0.5




