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Introduction

The adventure of exploring a new world is always thrilling and exciting. From an early age, I liked
to take on difficult problems and challenges in areas such as mathematics, quizzes, and board games;
the more complicated the problem, the more exciting I found it. This is because of the sense I had
that the approach to and the process of solving the problem was just such an uncharted adventure of
exploration. The physics of light is one of the greatest fields of adventure in my environment. If you
ever have the opportunity to study light, you will find out about the physics of light and its many
different characteristic actions that play a hidden role in our daily life, such as scattering, absorption,
and refraction, which are based on the interaction between light and materials. For example, we can
see objects through light because of the absorption of light by the photoreceptor cells of our retinae,
and we can enjoy a rainbow due to the refraction of sunlight by water droplets in the atmosphere. In
particular, the interaction of light with materials induces interesting phenomena in the nano-scale
world, where things happen that are difficult even to imagine. I wanted to explore such phenomena
for myself and to discover the core of the physics that causes them. That is how I began my study of
the unresolved phenomena mediated by light in the nano-scale world.

My first research topic after I joined the Kawata laboratory in 2006 was an investigation of
carbon nanotubes using Raman microscopy. At first, I was overwhelmed by the abundance of spec-
troscopic information provided by photons interacting with the electronic or vibronic structures of
molecules. As I grew familiar with research into physical analysis based on the interaction between
light and materials, I became interested in the visualization of the consequences of physical interac-
tions in the nano-scale world using Raman microscopy. I was stimulated by the clear fact that I was
the first person to watch and elucidate these visualized images in my research, so that I felt like the
explorer of a new world. I thus became involved in observing and analyzing materials at the
nano-scale level using light.

How small an object can we identify with light? I would like to answer this problem by tracing

the history of human exploration of miniature worlds. About three hundred and fifty years ago, a
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certain book invited scientists into the micro-world. The book was Micrographia, published by
Robert Hooke in 1665. As the name of the book suggests, it presented graphics of insects, minerals,
plants, and animals in micro-scale. The sketch pictures were so amazing and beautiful that many
scientists were attracted and inspired by the miniature world, and the book became the world’s first
scientific bestseller. Why was the book so alluring for scientists at the time? Because it gave an ac-
curate representation of an unknown world that human beings had never been to in a way that sur-
passed contemporary human capabilities. The observations on which the book was based were made
using optical microscopy. The innovation of sample observation through optical microscopes had
been creating new branches of science and technology in research fields such as physics, chemistry,
and biology, and had drawn the interest and passion of scientists toward ever smaller world. In the
nineteenth century, the performance of optical microscopes was significantly improved by new lens
manufacturing techniques, and microscopes became more widely utilized in biological and medical
investigation. Against the trend, a limitation of optical microscopes was discovered in 1873 by Ernst
Abbe, who found that light traveling through a lens makes a spot due to its wave nature. Abbe con-
cluded that light could not be focused to less than approximately half its wavelength, which was
called the diffraction limit of light.

Can we observe the nano-scale world with light? The answer is ‘Yes’. Toward the goal of
nano-observation using light, a wide variety of optical microscopic technologies were invented
through the efforts of pioneers in the late twentieth century. These innovations were achieved by
taking the quantized photon as the essential element of light. In this way, a number of optical micro-
scopic techniques were established which achieve super-resolution beyond the diffraction limit of
light, for example, near-field scanning optical microscopy (NSOM),'” stimulated emission depletion
(STED) microscopy,4 photoactivated localization microscopy (PALM),” stochastic optical recon-
struction microscopy (STORM),’ and saturated excitation (SAX) microscopy.” These techniques can
capture spectral information from sample materials at nano-scale spatial resolution, which is one of
the biggest differences from other high-resolution microscopic techniques such as scanning electron
microscopy (SEM), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). In
addition, since a photon inherently has a small energy and propagates through air and water, su-
per-resolution optical microscopy simultaneously allows both observation and analysis of objects in
situ without any invasive processes.

Among the various options in super-resolution optical microscopy, I decided in my doctoral
course to explore tip-enhanced near-field optical microscopy, which is a type of NSOM, because

this form of microscopy had the potential to make the most effective use of photons as conveyor of
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information from materials. Tip-enhanced NSOM was first proposed by Satoshi Kawata and
co-workers in 1992 as the subject of a Japanese patent. The mechanism is based upon the excitation
of localized surface plasmon polaritons at a nanometric metallic probe apex, which generates a
strongly enhanced electric field of light adjacent to the probe apex. The locally enhanced field is uti-

lized as a nanometric spot of light. The nano light source can be used for a variety of spectroscopic

13,14 15,16

interactions such as scattering,”'* fluorescence, and absorption. In particular, tip-enhanced
Raman scattering (TERS) microscopy is a promising method for molecular analysis providing a
wealth of Raman spectral information. The first demonstration of TERS spectroscopy on Rhoda-
mine 6G molecules, reported by Kawata group in 1999, provided an experimental indication of the
utility of TERS spectroscopy.® In 2002, three years later to the first demonstration, TERS images of
two mixed dyes were produced,"” which represented the first attainment of Raman images beyond
the diffraction limit of light. In the following year, TERS images of single-walled carbon nanotubes
(SWNTs) were achieved by Novotny’s group, and the spatial resolution of TERS microscopy
reached up to 23 nm." Since then, TERS spectroscopy has taken the full advantage of photons in the
structural nano-analysis of materials, and resulting investigation at nano-scale resolution has made
possible, for instance, tip-enhanced coherent anti-Stokes Raman analysis of DNA bases,' visualiza-
tion of localized strain on a silicon substrate,” diameter-selective imaging of single-walled carbon
nanotubes,”' and investigation of crystalline defects in graphene layers. **

People who read this introduction up to here may think that TERS microscopy is ready for
practical realization. With the spread of nanotechnology research, TERS microscopy is indeed ex-
pected to become an indispensable technique for analytical evaluation systems. However, the range
of materials and molecular vibrations observable with TERS microscopy is still very restricted due
to the originally quite small cross-section of Raman scattering, which is the most important issue in
its practical application. As part of research to improve sensitivity, it has been suggested that a
specific plasmonic coupling between closely spaced metallic nanostructures is largely responsible
for the Raman enhancement observed in the molecules most readily adsorbed in the nanoscopic

2425

junctions.”” Based on this hypothesis, TERS using the nanoscopic metallic gap between a metallic

tip and a metallic substrate, which is called gap-mode TERS, has been proposed as a form of sin-

gle-molecule TERS spectroscopy. Although the samples used were admittedly dye molecules with a

26-28

large Raman cross-section owing to the resonance Raman effect, it is nevertheless a fact that

gap-mode TERS microscopy is a technique with a high level of sensitivity that has been investigated

under many different optical configurations. These investigations have examined the dependence of

29-31

the gap-mode plasmonic interaction on the distance between the tip and the substrate, and on the
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polarization direction of the incident light.”* However, there has not been adequate study of the
gap-mode plasmonic effect on the geometry of the metallic substrates and metallic tips, which is
important because the plasmonic coupling effect may be significantly associated with unique plas-
monic interactions dependent on structures such as nanoparticle-film,” nanoparticle-nanowire,** and
core-shell systems.”’

The aim of the present dissertation is to investigate gap-mode TERS microscopy within the aim
of improving its sensitivity. The idea is premised on plasmonic hybridization at the nanometric gap

between localized surface plasmons at a metallic tip and continuum surface plasmons on the surface

of a metallic thin film. A detailed description of the investigations is presented in the dissertation.
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Introduction

Organization of this dissertation

In this dissertation, I discuss plasmon hybridization between a metallic tip and a metallic film, and
tip-enhanced Raman scattering spectroscopy utilizing the plasmon hybridization effects at the gap of a
tip-film system. For the discussion, this dissertation is organized as follows.

In Chapter 1, I give fundamental concepts of Raman spectroscopy and microscopy. Chapter 2 ex-
plains that the enhancement of Raman scattering by metallic nanostructures, in which necessary ideas in
the discussion on surface plasmon polaritons and tip-enhanced Raman scattering (TERS) are provided.
Then, I discuss TERS spectroscopy and microscopy through nanoscale Raman analysis of graphene and
single-walled carbon nanotubes in Chapter 3 and 4, where the current situation and challenges in TERS
spectroscopy are argued. For solving the challenges, I show the idea of plasmon hybridization between a
metallic tip and a metallic film in Chapter 5. I aim to make readers comprehend physics in the plasmon
hybridization by presenting the theory, numerical calculation and experimental results. Finally, I show
results of TERS measurements utilizing the phenomenon of the plasmon hybridization in Chapter 6. I

discuss what is improved and what is expected with the usage of plasmon hybridization effects.



Chapter 1.
Raman spectroscopy and microscopy

This chapter presents the reason why Raman spectroscopy has been utilized for studying the molec-
ular structure determination in condensed matter physics, materials physics, bioscience, and other
related science fields. The answer is that a Raman spectrum of materials has rich information of mo-
lecular vibrations of the materials. In Chapter 3 and 4, I will actually demonstrate the Raman analy-
sis of carbon-based nanomaterials. To gain a clear understanding of Raman scattering process, |
focus on the optical processes under the broad heading of light-matter interaction phenomena. In the
first of this chapter, the principle of Raman scattering is briefly explained from the classical and
quantum point of view, and the root of Raman spectrum known as “molecular fingerprint” is ex-
pounded. After the basic introduction, I represent optical system for Raman spectroscopy and mi-

croscopy to analyze Raman scattering from a sample.

1.1

Fundamentals of Raman scattering

Light scattering provides quite useful information to study fundamental interactions between light
and materials, because light can be scattered inelastically so that the incident photons and scattered
photons have different energy. The difference of the energy corresponds to energy of molecular vi-
brations associated with atomic arrangement of the materials, therefore the inelastic scattering light
reflects on structural information of the materials. The inelastic scattering of light is called Raman
scattering, discovered by C. V. Raman in 1928." In the primary method of Raman scattering meas-
urement, he irradiated samples with sunlight focused by means of a telescope through a filter, and
directly observed the secondary scattered light from the samples. After the first discovery of Raman

scattering, the number of research groups who have studied Raman scattering runs into hundreds of
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thousands. In the current era, Raman scattering has found huge applications not only in physics, but
also in bioscience, electrical engineering, mechanical engineering, and other fields.

Raman scattering can be interpreted by the classical theory and quantum theory. The former
helps us to understand basic concepts of Raman scattering intuitively, and the latter is necessary to
discuss about two-photon process of Raman scattering. First, I explain the classical theory to catch
fundamental phenomena in Raman scattering, and then move to the quantum theory in which transi-
tion probability of molecular vibrational states is contextualized. Finally, Raman selection rules that

are a condition for generating Raman scattering are briefly discussed.

Classical theory

In Raman process, incident light reaches a molecule and is inelastically scattered. The inelastic scat-
tering is attributed to an interaction in which electromagnetic field of the incident light shakes elec-
trons in the molecule. The oscillation of the electrons is perturbed by molecular vibrations within
displacements of atoms at the different positions in the molecule. The ability to oscillate the elec-
trons is defined as polarizability, and the polarizability of molecules depends on chemical and struc-
tural properties of the molecules. Since every material has a unique set of the molecular structure,
the inelastic scattering light also represents a distinct spectral pattern depending on the each material.
Hence, Raman scattering light can be utilized to characterize materials properties in the molecular
level.

In the description of Raman scattering, polarizability of materials is needed to describe. Given a
polarizability tensor a of an atom in a material, a polarization P of the atom in an electric field E is

written as

P=a-E (1.1)
where the electric field is oscillating at an optical frequency w;, then the electric field is given as

E = E,sin w;t (1.2)

Since the polarizability of the atom is oscillating according to the lattice vibration in the material, the

polarizability is modulated by

a=a,+ a;sinw,t (1.3)



1.1 Fundamentals of Raman scattering

where wq is an optical phonon mode frequency of the material that couples to optical field of the

incident light. As a result, the polarization induced by the applied electric field is described as
P = Eo(ao + a;sinw, t) sin wqyt
=E, [ao sin(w;t) + %al cos(a)i - wq)t - %al cos(wi + wq)t] (1.4)

Thus, the incident photon is scattered with a couple of frequencies according to the polarizability of
the atom. The first term in Eq. (1.4) is defined as Rayleigh scattering, and the second and third terms
are Raman scattering classified as Stokes and anti-Stokes scattering, respectively. Figure 1.1 is a
schematic image of a typical Raman spectrum from a material. Raman spectra are described by en-
ergy shift of the Raman scattered photon from the incident photon. The strong peak in the center is
associated with the Rayleigh scattering, and the other peaks are due to the Raman scattering. Since a
material has the several molecular vibration modes such as longitudinal optical (LO) and transverse
optical (TO) phonons, multiple Raman peaks are usually observed. Since every material has a
unique set of the molecular vibration modes, Raman scattering is often called "molecular finger-
print". With the practical analysis of Raman peaks, we can identify the nature of the materials. The
lineshape of Raman peaks usually shows a Lorentzian curve because the molecular vibrations can be

represented as a damped harmonic oscillator with the phonon frequency. Considering the damping

Rayleigh scattering
w
qO
)
‘@
5
S Stokes Raman scatteirng
S
§ w
[ ) .
14 Anti-Stokes Raman scattering 92
-
4,
-1000 -500 0 500 1000

Raman shift [cm™]

Figure 1.1 Schematic image of a typical Raman spectrum.



Chapter 1. Raman spectroscopy and microscopy

energy given by 7,4, a Lorentzian curve is described as

(@) = 2 ! 15
@ _nrq(a)—a)q)2+‘r§ (1.5)
The full width at half maximum (FWHM) intensity is given by 27,. The damping energy 7, indi-
cates the inverse of the lifetime for a phonon,” therefore Raman spectra also provide information on

the phonon lifetimes. When several peaks are overlapped each other, those peaks can be separated

and analyzed using the multi peak fitting of Lorentzian curves.

Quantum theory

In a quantum description of Raman scattering, state transition of molecular vibrations from an initial
state to a final state has to be discussed considering an intermediate state. Raman scattering process
takes place by an intermediary of incident photon and scattering photon, and the transition of the
vibrational states can occur through both creation and annihilation of the photons. Figure 1.2 is an
excitation process diagram of Raman scattering, where an initial state, an intermediate state, and a
final state of a molecule are described by |m), |e), |n), respectively. Furthermore, I define vibra-
tional states of a molecule as |m) for the ground state and |n) for the excited state, and also the
electric ground states as |g] having the energy hw,. According to Born-Oppenheimer approxima-
tion, I can describe electron motion and atomic motion in the system independently, thus I indicate

an initial state |m) and a final state |n) of molecular state as
Im) = 1g]lm)
In) = |glin)
In a same way, an intermediate state |e) of the molecular vibrations is depicted as
le) = lellv)

where |e] indicates any excited electric states having the energy hw, except the ground state, and
|v) is the intermediate vibrational state. In Raman process, a vibrational ground state is excited to a
vibrational excited state in the same electronic level through an intermediate state, in which an inci-
dent photon is annihilated and a scattering photon is created, as illustrated in Fig. 1.2. The interme-

diate state does not need to be a real state and can exist just at a given instant as a transient response,

10
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S ---le) =1e]lv)

hw

AVAVAV R EAVAVAV:

2

> |n) =1g]ln)
S Im) =|g]lm)

q

Figure 1.2 Excitation process diagram of Raman scattering. Aw; and hw, are

energies of the incident photon and scattering photon, respectively.

and therefore it is usually called virtual state and drawn with a dashed line. Since the creation and
annihilation of photons must be simultaneously done, Raman scattering process is considered as
two-photon scattering process. That’s why cross section of Raman scattering is extremely small
(~10™° cm®) comparing with other one-photon optical processes such as fluorescence (~10™'® cm?).

I express the Raman scattering intensity using above premise. In quantum theory, intensity of
light is defined by photon flux which is the number of photons passing through a unit area for a unit
time. Given scattering photon flux Fy . having the wavenumber ks and the coordinate es is gener-
ated by incident photon flux Fy ., interacted with a material, then the scattering photon flux from

the material at a distance R is described as

do
FeeR” = (35)  Fe (1.6)
dQ/ mn

where (do/dQ),,_n is differential cross section of the Raman scattering from | m) state transited

to | n) state at a molecular position o. Here, the cross section is described as

2

do 16m*wdw;
(@) == 2@ e en, (1.7)
p,0

where wsand w; are frequency of the scattering light and the incident light, respectively. And, o and

p are unit vectors with the direction of x, y, or z. @, is Raman tensor indicating the po components.
As you can simply understand, the cross section raises up with the use of photon having higher en-

ergy. To solve the Raman tensor a,,, the second order time-dependent perturbation theory is intro-

duced under a condition that the population at the final state | n) is supposed to zero at the initial

11
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condition. Moreover, I assume that Raman excitation energy fw; is much smaller than any electron
transitions of a molecule and the electronic ground state is not degenerated (Placzek approximation').

Finally, the Raman tensor a,, is described as

0 = Z {[ngale] le|D,|g] . [g|D,|e] [eIDalg]} 18)

poyd h(a)e — Wy — a)i) h(we —wg + wi)

where Dsand D, are o and p components of dipole moments D of materials, respectively. In Placzek
approximation, the Raman tensor is expressed by the sum of a symmetric operation of an eigenstate
of the electronic state from the initial state | m) and the final state | n), where contribution of vibra-
tional states is negligible. Namely, Raman tensor of the molecule is approximated to be the polariza-
bility tensor. In summary of the quantum theory, Raman scattering is described as a sum of the
transition probability between eigenstates of electronic states of a molecule due to an interaction

between photon and the molecule.

Selection rules of Raman scattering

In Raman scattering, any molecular vibration modes in a molecule are not always excited by photon
irradiation. This is because the molecular vibrations need to be associated with change of the polar-
izability. For discussion of the relationship between molecular vibrations and the polarizability,
group theory is useful for the description. Here, I leave the detail discussion of group theory on
textbooks,” but I give some of the fundamentals. According to group theory, a molecular vibration
mode can be expressed as basis of an irreducible representation of symmetric operation corre-
sponding to a point group of the molecules. It decides if vibrational modes of molecules are active or
inactive on the Raman scattering, thus giving Raman selection rules. In fact, molecular vibrations
with symmetry perturbing polarizability of the molecule at an equilibrium position of nucleus, which
is often described as totally symmetric modes, indicate Raman active. For assignments of Raman
scattering peaks observed from molecules to particular molecular vibration modes, Raman selection
rules and group theory play an important role. In the practical way to describe symmetry of a mole-
cule, a character table based on the molecular structure is utilized.” Furthermore, frequency of each
molecular vibration is also able to be estimated by using the character table and some of the molec-

ular information such as the lattice constant and the molecular mass.

12
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1.2

Optical system for Raman spectroscopy/microscopy

I provide an overview of Raman spectroscopy/microscopy following the basic concepts of Raman
scattering discussed above. As I have discussed, materials can be identified by analysis of the vibra-
tional modes observed in Raman spectra from the materials. Since the vibrational modes are ob-
tained from the Raman peaks, dispersion of photon energy of Raman scattering light should be
narrow enough to resolve the each Raman peak. In this sense, laser light having narrow energy dis-
persion is usually utilized for Raman spectroscopy/microscopy.

Figure 1.3 shows an optical setup for Raman spectroscopy/microscopy which I use in this thesis.
First, laser beam is collimated with a beam expander, and polarization of the laser light is adjusted
by a half wave plate and a polarizer. Then, the laser light is introduced into an inverted objective lens
as Raman excitation light. A sample is illuminated by the light focused by the objective lens with the
numerical aperture (NA) equal to 1.4 and the magnification factor of 60 (Nikon, Plan Apo). The
sample is set on a piezoelectric transducer (PZT) stage, and position of the sample is precisely con-
trolled by the PZT stage. Raman scattering light from the sample is collected by the same objective
lens, and passes through an edge filter suitable for the excitation laser, in which light having shorter
wavelength than excitation light is selectively cut. The extracted Raman scattering light is lead to a
spectrometer by an achromatic lens through a slit. Note that size of the slit decides the spectral reso-
lution. The Raman scattering is dispersed by a grating equipped in the spectrometer, and focused on

a liquid nitrogen cooled CCD camera (Roper, 1340 x 400 channel, -100 C°). The grating has blaze

Sample

PZT Liquid nitrogen
Objective cooled CCD camera
lens |
Spectrometer

EF A Slit Grating
BS (

BE

0>@: Jesen
v

\

A

HWP  Po

Figure 1.3 Optical system for Raman spectroscopy/microscopy. BE is a beam expander, HWP is

a half wave plate, Po is a polarizer, BS is a beam splitter, and EF is an edge filter.
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wavelength of 600 and 1200 lines/mm that is chosen according to the necessary spectral resolution.
For the Raman microscopy, Raman scattering from the sample is detected point by point with Raster
scanning over the sample, and the Raman image is analytically constructed.

Since Raman microscopy is based upon optical microscopy, the spatial resolution is limited due to
wave nature of light. Light traveling through a lens makes a spot whose size is decided in association with

wavelength A of the light and numerical aperture (NA) of the lens. The spatial resolution is provided as

A
=0.61— 1.9
x=0.61 NA (1.9)
As one can understand, the resolution directly depends on the wavelength and the numerical aperture.
Considering the range of visible light is from 400 nm to 800 nm and capability of numerical aperture is
up to about 1.5, the highest resolution is restricted to ~ 160 nm. This limitation of spatial resolution of

optical microscopy is so-called diffraction limit.

Summary

I have given a broad perspective on how Raman spectroscopy provided an especially sensitive char-
acterization tool for the analysis of materials. I have explained fundamental physics of Raman scat-
tering through a perspective of the classical and quantum theory, where the relationship between
Raman scattering and molecular vibrations was expounded. I also briefly introduced Raman selec-
tion rules for understanding a fundamental concept to assign Raman peaks to particular molecular
vibrational modes of the materials. After the basic introduction, I represented optical system for Ra-

man spectroscopy and microscopy to analyze Raman scattering from a sample.
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Chapter 2.
Enhancement of Raman scattering by a metallic
nanostructure

Since cross section of spontaneous Raman scattering is extremely low, the lowest detectable number
of molecules is limited even though the detector performance has been well developed. The scatter-
ing efficiency from a material can be dramatically enhanced in the close vicinity of metal
nanostructures up to single-molecule detection level, which is called surface enhanced Raman scat-
tering (SERS) effect. In this chapter, I start by explaining an electromagnetic field generated on sur-
faces of metal nanostructures under light illumination and what happens in Raman scattering when a
molecule is placed in the field. Then, I present fundamental concepts of tip-enhanced Raman scat-
tering (TERS) induced at a nanometric metallic tip apex as localized SERS. Furthermore, chemical
effect in SERS between a metal and a molecule is described according to the experimental results.
Finally, field enhancement in a nano gap between metallic nanostructures is shown, and the ad-

vantages of the gap for SERS measurement are discussed.

21

Surface enhanced Raman scattering

Surface enhanced Raman scattering from a material can be caused when the material is irradiated by
light near a metal surface. The enhancement of Raman scattering is attributed to an enhanced elec-
tromagnetic field of light generated on a metal surface through a resonant electron oscillation on the
metal surface. At the beginning of the interpretation of the field enhancement, I discuss an interac-
tion between photons and electrons near a metal surface. As long free electron model in metals, that

is Drude model, the electrons collectively oscillate like a plasma of an electron gas. The elementary
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Chapter 2. Enhancement of Raman scattering by a metallic nanostructure

excitation associated with such a collective oscillation of a plasma wave is quantized as ‘plasmon’.
Plasmon in bulk materials does not interact with photon because plasmon is based on longitudinal
wave that never couple to transversal wave of photon. However, plasmon on an interface between a
metal and a dielectric medium can couple with photon under a satisfied boundary condition depend-
ing on dielectric functions of the metal and medium. Such plasmons coupling with photon on metal
surfaces are called surface plasmon polaritons (SPPs), and resonant excitation of SPPs induces field
enhancement of light on the metal surface. The physical properties of SPPs are discussed in the case

of a metallic substrate and a metallic nanoparticle, respectively. In calculation, SI units are utilized.

Surface plasmon polaritons on a metal substrate

Fundamental behavior of SPPs is understood by a dispersion relationship at an interface between a
dielectric and a metal. Figure 2.1 shows a schematic illustration of surface electromagnetic wave
existing at an interface of a dielectric and a metal with the dielectric function of & (w) and &,(w),
respectively. Electric fields of the surface wave along x and z directions in the two media are de-
scribed by Ei,, E;, and E,,, E,,, respectively. k,, and k,, stand for the wavenumber of the
surface wave along z direction, and the wavenumber along x direction is described by k, under
phase matching condition between the two media. The solution of the surface wave that fulfills the
boundary conditions for the tangential components of the electric field and the normal component of

the electronic displacement exhibits the following forms as
Ei, = E,, (2.1)
gl(w)Elz =—& ((U)EZZ (22)

With Maxwell equations, Eq. (2.1) and Eq. (2.2) can be converted into

klz kZZ =0 (2.3)
e1(w) & (w)

I generalize a dispersion relationship of the surface wave by wavenumber of light. Assuming wave-

numbers of light in vacuum is k, wavenumbers of the surface wave are conserved at the interface as

kZ + ki, = & (w)k? (2.4)

K2 + k2, = &,(w)k? (2.5)
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2.1 Surface enhanced Raman scattering

&,(w) T—»x

Figure 2.1 Schematic illustration of surface electromagnetic wave at an

interface of two media &, (w) and &,(w).

Thus, the following dispersion relation reads

,  &lwelw)

R e @6

Here, I suppose that medium 1 has the dielectric constant which hardly change in visible range of
light as &; (w) = &,,, and medium 2 is a metal substrate with the dielectric function following Drude
model neglecting the damping loss of electrons as &,(w) =1 — a),% /w?, where wy, 1s plasma fre-
quency of the metal. The dispersion relation of the surface plasmons is solved and expressed as
shown in Fig. 2.2. The dispersion curve of the surface plasmons has two asymptotic lines. The one
asymptotic line given at w — 0 is obtained as k, = (w/ c)\/a, and this dispersion curve corre-
sponds to dispersion relation of light. The other asymptotic line is given when w — w,/ m
The latter line means that wavenumber of the surface plasmons diverges to infinity as the frequency
approaches the asymptotic energy while keeping the energy. In other words, the wavelength of the
surface plasmons goes to infinitely small value at the asymptotic line.

Next, I discuss the way to excite surface plasmons by light irradiation. Propagation light cannot
directly excite surface plasmons with any excitation wavelength due to phase mismatch between
them. It is clear that dispersion relation of surface plasmons does not have any common points with
that of light as shown in Fig. 2.2. To excite surface plasmons with the use of light, we can utilize
evanescent waves that have higher wavenumber components than propagating light wave. Evanes-
cent waves can be generated on a medium boundary under total reflection condition, and intensity of
the evanescent waves exhibits exponential decay with a distance from the boundary. I explain the

method to excite surface plasmons by evanescent waves.
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Chapter 2. Enhancement of Raman scattering by a metallic nanostructure

“1+Sm /// k

Figure 2.2 Dispersion relation of surface plasmons and light. The black dotted lines
indicate asymptotic lines for the dispersion relation. The equation k, = (w/c)./&p

corresponds to dispersion relation of light.

I consider a configuration that consists of three layers of air &5, metal &(w) and glass &x as
shown in Fig. 2.3(a). TM-polarized light is irradiated to the metal substrate from the glass side with
the incident angle of 6. In this configuration, evanescent waves can be generated on the medium
boundary under total internal reflection condition, and intensity of the evanescent waves exhibits
exponential decay with a distance from the boundary. Referring to Eq. (2.6), dispersion relation of
surface plasmons at the interface of metal-air and metal-glass can be expressed as shown in Fig.
2.3(b). Light lines of the incident light propagating in air and glass are also shown. Now, I focus on
an area between the two light lines in air and glass as shown in the gray-filled area in Fig. 2.3(b). In
that area, propagation light in the glass is totally reflected at the metal-glass interface, and evanescent
waves are generated at the interface. The evanescent waves penetrate into the metal substrate, and
can interact with surface plasmons at the metal-air interface. When phase of the evanescent waves
matches with that of surface plasmons under kg, = (%) \/a sin 8, the surface plasmons couple with
the evanescent waves and SPPs are created on the air-metal surface. The SPPs propagate along the
interface with decaying the intensity, and electromagnetic fields generated by the SPPs are located
near the surface. The propagation length is usually a few micrometer, and it depends on damping
constant of the electron scattering in the metal and disorganized roughness on the metal surface. The

configuration based on this total internal reflection for exciting SPPs as shown in Fig. 2.3(a) is sug-

gested in 1968, and called as Kretschmann configuration. '
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2.1 Surface enhanced Raman scattering
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Figure 2.3 (a) Schematic illustration of ATR based on Kretschmann configuration. (b) Dispersion relations

of surface plasmons at the boundaries of (red) metal-air and (blue) metal-glass.

Here, I contemplate electromagnetic fields generated by SPPs with the basis of the velocity.
Given that velocity of energy propagation of light is described as the group velocity, velocity v, of

SPPs is written by

_dcu

= (2.7)

Ve
Comparing the group velocity of SPPs with that of propagation light in Fig. 2.3(b), the velocity of
SPPs is slower than that of the light. In this sense, SPPs are often called ‘slow light’.> What does the
slow velocity of SPPs actually indicate? This phenomenon means that the electromagnetic energy of
SPPs is condensed in the propagating direction according to the wavelength getting short. Or from a
quantum point of view, slow light can be understood as an increase of the number of photon in a unit
volume. As a result, field intensity of light is enhanced on a metal surface when the light properly
excites SPPs. The enhancement factor is defined by the intensity ratio of the enhanced field to the
incident light field. For instance, supposing a metal substrate in Fig. 2.3(a) is gold with the thickness
of 50 nm and the excitation wavelength is 633 nm, the enhancement factor is estimated to be ~ 26. If
Raman scattering is excited adjacent to the metal substrate under the condition, field of the scattering
light is dramatically increased by the field enhancement. The field enhancement effect associated

with SPPs is the root of electromagnetic effect in SERS spectroscopy.
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Chapter 2. Enhancement of Raman scattering by a metallic nanostructure

Localized surface plasmon of a metallic nanostructure

I now turn to plasmonic excitations in a metal nanostructure. When a metallic nanoparticle is irradi-
ated with light, electromagnetic field of the light easily penetrates over the metallic nanoparticle and
induces an oscillation of electrons in the nanoparticle. The result is that the electrons are displaced
with respect to the positively charged ions that form the metallic nanoparticle (See Fig. 2.4). The
resulting electric dipole on the nanoparticle represents a restoring force and hence the nanoparticle
can be considered as a harmonic oscillator, driven by a light wave and damped by some losses such
as ohmic losses and radiative losses. The surface plasmons can be localized adjacent to surface of
the metallic nanoparticle, and such surface plasmons are called as localized surface plasmons. Un-
like surface plasmons on a metal surface, localized surface plasmons on a metallic nanoparticle can
couple with an electromagnetic field of propagating light.

The behavior of localized surface plasmons is dealt with as an electrostatic problem, assuming
diameter of a metallic nanoparticle is much smaller than wavelength of the excitation light. In an
electromagnetic field of light, a metallic nanoparticle takes a charge distribution associated with the
external field and forms depolarization field E1 in itself that behaves to negate the electric field in the
nanoparticle as shown in Fig. 2.4. Here, an electrostatic problem is appropriable to discussion of the
depolarization field on the nanoparticle when the external electric field is presumed to be constant
without time retardation of the electron motion over the nanoparticle having the diameter much

smaller than wavelength of the light. The polarization P inside the nanoparticle is described as
P =xE (2.8)

where x and E denote electric susceptibility and internal electric field in the nanoparticle, respective-
ly. The internal electric field of the nanoparticle is obtained from the sum of the depolarization field

and the external field, and given by
E=Ey+E =E;,— NP (2.9)

where N is a depolarization coefficient that depends on geometry of the nanostructure. After substi-

tution of Eq. (2.8), the depolarization field is written as

P= E, (2.10)
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2.1 Surface enhanced Raman scattering

Figure 2.4 Schematic images of (a) depolarization field induced inside a metallic nanoparticle,

and (b) field enhancement formed in the vicinity of a metallic nanoparticle.

If the metallic nanoparticle is set in a medium that has a dielectric function &,,, dielectric function
e(w) of the nanoparticle is affected by the electric susceptibility and is satisfied with the following
equation &(w) = &, (1 + 4mx). Moreover, the depolarization coefficient N for a nanoparticle is
given by % ) On 27 cos? 0sin 0 d = 4m/3. As a result, dipole moment p of the metallic nanoparti-

cle with the diameter of a is derived as

B e(w) — e, 5

=py=—2-—_"
p e(w) + 2¢,,

E, (2.11)
From Eq. (2.11), it is clear that amplitude of dipole moment of the nanoparticle depends on a fre-
quency of the external electric field. In particular, the dipole moment goes to infinity when the de-
nominator is close to zero. That is, an extremely strong electric field can be resonantly induced
around the surroundings of the nanoparticle under the condition of e(w) = —2¢,,. The electric field
induced around the metallic nanoparticle forms a confined electromagnetic field in the close vicinity
of the metallic nanoparticle as shown in Fig. 2.4(b). The resonant condition relies on a dielectric
function of the metal, therefore silver,3 gold,4 and aluminum’ nanoparticles have been utilized ac-
cording to the desirable resonance wavelength. For the detail discussion of resonance energy of the
localized SPPs, Drude model can be not suitable for the description of the dielectric function of met-
al, because Drude model cannot perfectly represent behavior of the electrons associated with elec-
tron transition in metal. To estimate the resonance energy, it is preferred to use a dielectric function
obtained from the experimental observation such as Johnson and Christy parameters.® Note that Eq.
(2.11) is applicable only to the lowest order dipole mode in a nanoparticle, not applicable to quad-

rupole, or octupole. Those multipole modes are caused by the retardation of the electron oscillation
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Chapter 2. Enhancement of Raman scattering by a metallic nanostructure

to the external field.” The lowest mode is called Frohlich mode,8 and Frohlich mode is more domi-
nant when a nanoparticle is getting small.

Field enhancement around a metallic nanoparticle is estimated from Eq. (2.11) and an electric
field resulting from a dipole radiation. The electric field intensity from a dipole radiation of a metal-

lic nanoparticle in an electrostatic field is written as

E = pE, [2 cosf (%3)] (2.12)

where ris a distance from the dipole. The maximum field intensity from the dipole on surface of the

nanoparticle is given at & = 0 and r = a therefore, the maximum field intensity is described as

e(w) — gy

=2 e fo (2.13)

Here, assuming dielectric function of the metal is written as e(w) = €’ + ie”, an intensity ratio of
the enhanced field to the incident field under the resonance condition &’ + 2¢, = 0 is simply ex-
pressed by

gl

2.14
= (2.14)

E
Nmax = |E_0| =3

The thing is that the field enhancement takes the larger value as the absolute value of the real part is
larger and the absolute value of the imaginary part is smaller. If I qualitatively explain the physical
meaning, it indicates that the slower light on a surface of the nanoparticle and a smaller damping
constant of the electron oscillation in the nanoparticle give the stronger field enhancement. The
Nmax 18 commonly utilized as an enhancement factor for describing the degree of the enhancement.
In Raman scattering excited near a metallic nanoparticle, the field enhancement effect acts on
the both incident light and scattering light. First, an electromagnetic field of the incident light is en-
hanced by a metallic nanoparticle, and the enhanced field excites SERS from a molecule adjacent to
the nanoparticle. The SERS interacts with the metallic nanoparticle, and the SERS is enhanced as
well. Therefore, enhancement factor of the Raman scattering occurred near a metallic nanoparticle is

described by

2
= n*(w) n*(ws) (2.15)

Raman =

_ |n(w)E]* In(wy)E,
Ei Es
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2.1 Surface enhanced Raman scattering

where E; w; and Eg wg stand for electric field and frequency of the incident and Raman scatter-
ing light, respectively. n(w) represents the field enhancement factor of light at a certain frequency
. Given the difference between frequency of the incident light and that of Raman scattering light is

as small as a tithe part of their frequency, Eq. (2.15) can be simplified as

NRaman — 774(("1') (2.16)

Thus, Raman enhancement factor of SERS by a metallic nanoparticle is depicted by the fourth
power of the field enhancement. Raman enhancement factor is estimated by comparing intensity of
spontaneous Raman scattering with that of SERS in a unit volume. The field enhancement factor can
be estimated from the forth root of the Raman enhancement factor according to Eq. (2.16).

The resonance wavelength of localized SPPs in metallic nanostructures is essentially dependent
on the geometry and the material because allowed electron distribution inside them is decided by
their physical properties. Therefore, when the metallic nanostructure has complicated geometries,
analytical calculation for the localized SPPs is not applicable. Instead, numerical analysis is a pow-
erful tool to approximate resonance wavelength of localized SPPs of intricate nanostructures. Some
of the numerical approaches have been proposed as finite-difference time-domain (FDTD) method,’
discrete dipole approximation (DDA),"”"" and finite element method (FEM)." Among them, FDTD
method is commonly utilized because it is facile to build the simulation algorithm and applicable to
complicated geometries. In FDTD method, electromagnetic fields in an arbitrary 3D (or 2D) space
divided into a unit grid (so-called Yee grid) are consecutively calculated in time domain according to
the discretized Maxwell equations. The electric field vector components in a unit volume are solved
at a given point in time, and then the magnetic field components in the same unit volume are solved
at the next point in time. The calculation is continuously repeated until the electromagnetic field
takes the stable equilibrium condition. By introducing materials with the arbitrary geometry in the
arbitrary space and incident electromagnetic waves given as an initial condition, a response of the
electromagnetic field to the materials is obtained. These sequences of the calculation have been cur-
rently performed by a computing machinery. Since resolution of the space is dependent on the grid
size, calculation errors caused by an artificial boundary condition on the grid are reduced by using
the small grid. On the other hand, the number of the grid simply affects the computation time.
Therefore, the size and the number of the grid have to be optimized according to performance of the
computing machinery. A required relation between the time step and the grid size for the stable cal-

culation is provided by Courant condition."
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Chapter 2. Enhancement of Raman scattering by a metallic nanostructure

I show an example of FDTD calculation for solving resonant wavelength and electromagnetic
field of localized SPPs for a metallic nanostructure. Figure 2.5(a) shows 3D FDTD analysis of a
scattering spectrum from an Au nanoparticle with the diameter of 50 nm set in vacuum. The grid
size was set to 1 x 1 x 1 nm’, the time step was 10 fs, and polarized white light was irradiated as the
incident light. As shown in Fig. 2.5(a), a scattering peak was observed around 526 nm and the inten-
sity was rising up toward the range of ultraviolet. The peak is associated with localized SPP reso-
nance of the Au nanoparticle, and the increase of the scattering intensity in the ultraviolet region is
caused by plasma reflection due to a plasma oscillation inside the Au nanoparticle. Figure 2.5(b)
indicates distribution of the electric field around the Au nanoparticle excited by 526 nm wavelength.
The intensity of the electric field distribution is normalized by electric field intensity of the incident
light, so that the electric field intensity is equivalent to the field enhancement factor. As you can see,
strong fields were localized at the top and bottom of the nanoparticle, in which the vertical axis was
parallel to the polarization direction of the incident light. The field distribution is based on the Froh-
lich mode, and it is clear that size of the localized field along the horizontal axis roughly corresponds
to a diameter of the nanoparticle. Note that distribution of the field enhancement on the boundary of
the nanoparticle is not smooth but it shows several shots. This is due to artificial sharp corners
around the nanoparticle produced by square grids adjacent to the spherical boundary, where elec-
tromagnetic fields are extremely concentrated at the corners. Although the area of the error can be
reduced using a small grid, the error is not completely removed. Therefore, evaluation of the field
enhancement should be considered by an average of a few points around the maximum value. Given
the maximum field enhancement is about 10, the Raman enhancement factor adjacent to the nano-

particle is estimated to ~ 10* according to Eq. (2.16).
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Figure 2.5 FDTD analysis of (a) scattering spectrum of an Au nanoparticle with the diameter of 50 nm,

and (b) electric field distribution around the Au nanoparticle excited at 526 nm wavelength.
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2.2 Tip-enhanced Raman scattering

For the experimental measurement of resonance condition of localized SPPs of a metallic
nanostructure, absorption and scattering spectroscopy have been utilized. When white light is illu-
minated to a metallic nanostructure, an electromagnetic field of the white light excites localized
SPPs on it. The energy of the excited localized SPPs is released through ohmic losses and radiative
losses. Hence, the absorption spectrum reflects on an energy decay caused by the thermal relaxation,
and the scattering spectrum indicates a radiative light coupling to the localized SPPs. Since wave-
length components of the scattering light is overlapped with that of the excitation light, the scattering
light is usually measured by dark-field optical microscopy.® The spectroscopic observation is quite
useful for not only a nanosphere, but also the various shapes of metallic nanostructures.” Recently,
nano-scale mapping of energy distribution of localized SPPs on metallic nanostructures has been
carried out by the usage of electron energy-loss spectroscopy (EELS),'* and near-field optical mi-
croscopy.'~'® As for experimental measurement of the enhancement factor, SERS spectroscopy from
molecules adjacent to metallic nanostructures is useful. Raman enhancement factor is estimated by
comparing intensity of spontaneous Raman scattering and that of SERS from molecules, then the

electric field enhancement factor can be obtained from the forth root of the Raman enhancement

factor according to Eq. (2.16).

2.2

Tip-enhanced Raman scattering

The enhanced field associated with localized SPPs of a metallic nanoparticle is confined to surface
of the metallic nanoparticle as I explained in previous section. Herein, scanning a metallic nanopar-
ticle on a sample surface with observing SERS from the sample, we can observe the SERS at an in-
terval of the nanoparticle size beyond the diffraction limit of light. How can we manipulate a
metallic nanoparticle on a material at the nano-scale accuracy? The good candidate for the purpose is
a metallic sharp tip installed in scanning probe microscopy, because the tip apex can be employed as
a metallic nanoparticle and precisely controlled in 3-dimention at the nano-scale resolution. Raman
spectroscopy based upon localized SPPs excited at a metallic tip apex is “tip-enhanced Raman scat-
tering (TERS) spectroscopy”."”

A fundamental concept of TERS spectroscopy is explained. When a metallic tip apex with a

nanometric diameter is irradiated with an optical field, localized SPPs are excited at the tip apex as

well as the case of a metallic nanoparticle. The localized SPPs generate a localized electric field,

25



Chapter 2. Enhancement of Raman scattering by a metallic nanostructure

resulting in photon energy confined in the local vicinity of the tip apex. The field distribution con-
fined at a metallic tip apex can be easily understood using the FDTD calculation. Figure 2.6(a) indi-
cates the calculated field distribution for a silicon tip coated with Au having the apex diameter of 30
nm. The tip was put in air above a glass substrate with a distance of 2 nm. The excitation laser
wavelength was 777 nm that was chosen according to the plasmon resonance wavelength at the tip
apex, and the laser was irradiated from the left side with the vertical polarization. This calculation
was done in 3D, and the mesh size was setto 1 x 1 x 1 nm’. As you can see, the electric field is
strongly enhanced and localized into a tiny volume around the tip apex. Figure 2.6(b) represents a
line profile of the enhanced electric field along the horizontal axis between the tip and the glass sub-
strate. Although the center of the line profile has four small spikes caused by the calculation error,
the field distribution is well confined under the tip apex. Executing Gaussian fitting on the line pro-
file, the FWHM is estimated to be ~ 30 nm, corresponding to the tip apex size. The localized light is
interacted with a sample under the tip apex, which gives SERS from the sample. The SERS is again
interacted with the tip apex, and propagated to the far-field. The propagated signals are finally de-
tected by spectroscope. Since localized SPPs excited at a metallic tip apex work as a nano light

source, we can obtain high-resolution Raman images by scanning the tip on a sample.
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Figure 2.6 (a) Calculated local field distribution for an Au-coated Si tip with the apex diameter of 30 nm,
put in air above a glass substrate with the distance of 2 nm. The intensity represents the electric field enhance-
ment. The excitation laser wavelength is 777 nm, and the laser is irradiated from the left side with the vertical
polarization (white arrow). The white dotted lines are interfaces between different materials. (b) Line profile of
the enhanced electric field along the horizontal axis between the tip and the grass substrate in Fig. 2.6(a). The

black line shows the low data, and the red line shows the Gaussian-fitted data.
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2.2 Tip-enhanced Raman scattering

Optical system of TERS spectroscopy/microscopy is based on Raman microscopy and AFM.
Figure 2.7 represents the optical configuration of TERS spectroscopy/microscopy that I use. First of
all, the laser beam is collimated with a beam expander, and polarization of the laser is properly ad-
justed by a half wave plate, a polarizer, and a z-polarizer, where the polarization is formed into radial
polarization. Then, it is introduced into an inverted objective lens through a mask that rejects the low
NA components (NA < 1). A surface of the substrate is focused by the evanescent light with the ob-
jective lens with the high NA equal to 1.4 (Nikon, Plan Apo). A metallic tip is approached and
moved at the focused position, where a distance between the tip and the substrate is precisely con-
trolled by feedback system using a quadrant detector. After the tip adjustment, a sample is displaced
to the focused area. The tip and sample are independently controlled by the PZT. Raman scattering
light from the sample is collected by the same objective lens, and lead to a spectrometer through an
edge filter suitable for the excitation laser and a slit with the width of 100 pm. The Raman scattering
is dispersed by a grating, and focused on a liquid nitrogen cooled CCD camera (Roper, 1340 x 400
channel, -100 C°). The grating has blaze wavelength of 600 and 1200 lines/mm that is chosen ac-
cording to the necessary spectral resolution. Raman scattering from the sample is detected point by
point with raster scanning of the sample stage, fixing the position of the tip at the focus spot under a
contact-mode AFM.

This system is designed to ensure the reproducibility and stability. A mirror (M*) inserted be-
fore the edge filter is installed for adjusting the tip position at the center of the focus spot, in which
total reflection light from the substrate surface is detected during raster scanning of the tip around the
focus spot. The intensity of the total reflection light is slightly decreased when the tip is at the focus
spot because a part of the evanescent light formed on the substrate surface is scattered by the tip
apex. By analyzing the intensity change of the reflection light, a scattering image from the tip is con-
structed. The tip apex is adjusted to the center of the focus spot by the PZT at the nanometric accu-
racy. Figure 2.8 shows a SEM image of an Ag-coated silicon tip with the thickness of 65 nm,
prepared by a vacuum vapor deposition method. The vacuum vapor deposition method usually
makes a rough surface on a silicon tip as shown in Fig. 2.8. One can see a nanoparticle at the tip
apex whose diameter is ~ 50 nm, where the nanoparticle is arguably Ag. Whether a metallic nano-
particle is attached on the tip apex or not is one of the most important points to get strong TERS
signals from samples. Therefore, it’s deemed desirable to check SEM images of metal-coated tips
although an ultratrace amount of chemicals could attach to the tips during the SEM observation. Al-
so, to avoid a friction damage at a metallic tip apex during the scanning process, silicon tips having a

small elastic coefficient like ~ 0.01- 0.1 N/m are usually utilized.
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Figure 2.7 Optical configuration of TERS microscopy. BE is a beam expander, HWP is a half
wave plate, Po is a polarizer, Zpol is a z-polarizer, BS is a beam splitter, and EF is an edge filter. M*

is a flick mirror which is installed for the photo detector and removed for the spectroscope.

Figure 2.8 SEM image of an Ag-coated silicon tip with the thickness of 65 nm.
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2.2 Tip-enhanced Raman scattering

Since TERS counts on the intensity and size of localized SPPs excited at a metallic tip apex, the
key point is the efficient excitation of the localized surface plasmons. For this purpose, many efforts

have been focused on the optimization. Here, I introduce several kinds of researches for it.

Optimization of polarization components in the incident light field

Confinement of a light field at a metallic tip apex is strongly induced when electrons in the tip are
oscillated parallel to the tip axis due to lightning rod effect."® Therefore, polarization of the incident
light should be adjusted to have as much vertical components as possible onto a surface of the sub-
strate. Using an objective lens for focusing incident light, radially polarized light can dominantly

create the vertical polarization components at the focus spot. "'

The radially polarized light is gen-
erated with a z-polarizer that is composed of several half-wave plates. In addition, annular illumina-
tion cutting the low NA components (NA < 1) with a mask is commonly utilized for TERS
spectroscopy combined with an inverted optical microscope.”> The low NA components (NA < 1)
are transparent light and can be scattered by elsewhere than a tip apex, thus they can give a back-
ground noise. On the other hand, the high NA components (NA > 1) are totally reflected on a sur-
face of the substrate. As a result, the annular illumination can reduce the background noise. Figure
2.9 represents spatial distribution of scattering light from a metallic tip apex on a glass substrate,
illuminated by focused laser light using an objective lens (NA = 1.4) with a mask under (a) radial
polarization and (b) linear polarization. Since a metallic tip strongly scatters vertically polarized light
onto the substrate due to the lightning rod effect, Fig. 2.9 shows field distribution of the vertical po-
larization components produced onto the surface of the substrate observed from the underneath. The
yellow spot indicates a position causing a strong interaction between incident light and the metallic
tip, which is efficient excitation of the localized SPPs. As you can see, radial polarization light gives
a single spot while linear polarization light gives two spots at the center of their images. The reason
why linear polarization light gives the two spots is that the linear polarization light is interfered with
the components having a phase shift of © at the focus spot, resulting in a creation of the two spots
having the vertically polarized components along the linear polarization direction. These scattering
images indicate that radial polarization light effectively produces z polarization components than

linear polarization light does.
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Figure 2.9 Field distribution of scattering light interacted with a metallic tip apex, illuminated by
focused laser light using objective lens (NA = 1.4) with a mask under (a) radial polarization and (b)

linear polarization along the horizontal x axis.

Optimization of geometry and material for metallic tips

Geometry and material of metallic tips are quite important to obtain enormous field enhancement at
the tip apex because plasmonic behavior of metallic nanostructures sensitively depends on them. In
general, Au or Ag tips are utilized for TERS experiment because the localized surface plasmon res-
onance wavelength of their tips is located in a visible range. Several methods for preparing metallic
tips have been proposed, for instance, a metallic tip could be coated with a thin metal film on a sili-
con cantilever,” a metallic nanoparticle could be attached to the end of the tip,”* or a metal wire
could be electrochemically etched after milling with a focus ion beam.” Also, as a method for tuning
the localized surface plasmon resonance at a metallic tip apex, several materials such as SiO,, AlF;,

SiO,, W for a base cantilever have been proposed.”*>"

The plasmon resonance wavelength is greatly
altered according to a refractive index of the materials, which can be interpreted from Eq. (2.12). For
example, since a refractive index of Si and SiO, is ~ 1.5 and ~ 4.3 at the wavelength of 488 nm, the
plasmon resonance wavelength of a Ag-coated silicon tip is dramatically blue shifted with a re-
placement from Si to Si0,.%* Numerical analysis is accessible to roughly estimate the plasmon reso-

nance wavelengths for various kinds of tips.”"™

In addition, material coating on metallic tips has
been suggested for improving the stability of plasmonic structures of the tip.** The tip geometry
giving the strong field enhancement constantly has not been well-established, hence there still re-

mains room for the optimization of the tip geome‘tr’y.35'37
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2.3

Chemical enhancement in SERS

SERS from a molecule adsorbed on a metal surface is enhanced through not only the field enhance-

ment effect but also the chemical effect. *>*

The chemical effect can enhance Raman scattering effi-
ciency of molecules in addition to the field enhancement effect. In this section, I explain the basic
mechanism of chemical effect in SERS. After the explanation, I propose some methods for distin-
guishing electromagnetic effect and chemical effect in SERS. I suggest some ideas for selectively
inducing SERS through the electromagnetic effect or through the chemical effect. Then, I show you
wavelength dependence of SERS spectra from a sample. Moreover, I also mention to chemical-

ly-enhanced Raman modes from a sample sandwiched between metal nanostructures. I will explain

the fundamental physics behind the ideas and elucidate the results in detail.

2.3.1

Mechanism of chemical enhancement in SERS

Chemical enhancement in SERS involves changes to the adsorbate electronic states due to an inter-
action of the analyte with a metal. When molecules are adjacent to metal atoms in the order of A
scale, electronic orbital of the molecules can interact with that of the metal atoms. The interaction
creates complex vibronic states in the molecule-metal system involving electronic states of the mol-
ecules and Fermi level of the metal atoms. Here, I consider such a molecule-metal system as follows.
Fermi level of the metal lies between the highest occupied molecular orbital (HOMO) level and the
lowest unoccupied molecular orbital (LUMO) level of the molecule. Figure 2.10 depicts an energy
level scheme for the molecule-metal system. The continuous metal levels of the conduction band of
the metal are shown in the left, and the discrete molecular electronic levels are in the right. Accord-
ing to Born-Oppenheimer approximation, I describe electron motion and atomic motion in the sys-
tem independently, and indicate the discrete molecular electronic levels by |K] for the LUMO state
and |I] for the HOMO state, and group of the molecular vibration modes by Y.|v). hwyg is an
energy bandgap representing the charge-transfer from the metal to the molecule, and H;y, is a cou-
pling matrix element that means the degree to which a particular vibration can mix the Fermi level
state |[M] with the HOMO state |I]. When Raman scattering of the molecule is excited by a photon

that has the energy hAw corresponding to hwgy, charge-transfer transition from the metal to the
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Figure 2.10 Energy level scheme for a molecule-metal system for

metal-to-molecule charge-transfer transitions.

molecule is stimulated by the incident photon. The Raman scattering process can be described by the
quantum theory. When I utilize an initial state |I]|m), a final state |I]|n), and a virtual vibronic

state |K]|e) of molecular vibrational state, the Raman tensor element C is depicted as >

€= =@/ ) > M0, KILK|D, |11 + [M|D, | KIIKID, 1]

K#I M>1

(wgwgy + ©?) hyy (m|Q|n)

(‘4’12(1 - wz)(WI%M - w?)

(2.17)

where hwyy represents an energy gap between electronic state X and state Y. Although the equation
looks very complicated, the thing is that the Raman tensor element can resonantly diverge under a
resonant condition wgy = w. Since this resonance condition is exactly associated with the
charge-transfer in this metal-molecule system, chemical effect in SERS needs chemical bonds be-
tween the molecule and the metal. Due to the necessity of the chemical bonds, chemical effect in
SERS picks up a dominant Raman spectrum of only molecules bonding with metal surface. This is
the reason why the chemical effect is often called “first-layer’ enhancement effect.”’ Raman en-
hancement factor accompanied with the chemical effect has been estimated ~ 10 to 10”.*"* The
wide distribution of the enhancement factor implies that the chemical effect is quite sensitive to the
adsorption site of the molecules on metal surfaces. The chemically enhanced modes can be en-
hanced by the electromagnetic effect, and therefore those Raman modes are expected to be more

enhanced than the electromagnetically enhanced Raman modes.
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2.3 Chemical enhancement in SERS

The chemical effect can induce nontotally symmetric vibration modes of molecules because a
polarizability of the molecules is altered by the vibronic interaction between the molecules and the
metal atoms. Since nontotally symmetric vibration modes are observed by SERS only through the
chemical effect, contribution of the chemical effect can be analyzed by monitoring such nontotally
symmetric vibration modes. For example, resonance condition of the chemical effect was well com-
prehended by Osawa et al.* He monitored an intensity change of SERS at a nontotally symmetric
vibration mode of 4-aminothiophenol (4-ATP) molecules attached on an Ag electrode with tuning
Fermi level of the Ag electrode under an electrochemical environment. In the electrochemical envi-
ronment, the energy gap between Fermi level of the Ag and LUMO state of the 4-ATP molecules is
adjustable by changing the applied potential to the Ag electrode with a reference electrode. Figure
2.11 is potential dependence of 1440 cm” band Raman intensity of the 4-ATP molecules for (a)
632.8 nm, (b) 514.5 nm, and (c) 488.0 nm excitations. The Raman band at the 1440 cm™ is associ-
ated with the nontotally symmetric vibration mode. As shown in Fig. 2.11, the Raman intensity is
resonantly increased at a certain potential. It is confirmed that the resonance condition is dependent
on the excitation wavelength, which proves the charge-transfer mechanism of the chemical effect in
SERS. Hence, charge-transfer mechanism in SERS can be understood by monitoring behavior of

nontotally symmetric vibration modes in molecules.
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Figure 2.11 Potential dependence of the 1440 cm™ band Raman intensity of
4-aminothiophenol molecules for (a) 632.8 nm, (b) 514.5 nm, and (c) 488.0 nm exci-
tations. The intensities are normalized with the maximum values for each excitation

(referred from ref. 44, Fig. 4).
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Selective enhancement through electromagnetic effect

For evaluating electric fields generated on a metallic nanostructure from the SERS measurement,
electromagnetic effect and chemical effect in the SERS have to be distinguished. In this section, I
suggest a method to selectively induce electromagnetic effect in SERS. As explained in section 2.1,
field enhancement due to localized SPPs on a metallic surface extends to several tens of nanometer
over a metal surface, while chemical effect in SERS occurs in a few angstrom regions adjacent to the
metal surface. Therefore, molecules kept above a metal surface by a few nanometer can be sensitive
only to the electromagnetic effect. For the purpose of selectively inducing the electromagnetic effect,
I introduced a nanometric-thin spacer layer between a metal surface and sample molecules to pre-
vent the molecules from the direct attachment to the metal surface.

I first prepared an Au film with the thickness of 8 nm which was produced on a glass substrate
by a vacuum vapor deposition method under 2.0 x 107 Torr. In order to form a spacer layer on the
Au film, I immersed the Au film into a 1 % ethanol solution of polyvinylpyridine (PVP) for § hours.
The average thickness of the spacer layer could be controlled by the solution concentration and im-
mersion time, and could be measured by ellipsometry. In the present case, the average spacer thick-
ness was around 4 nm. Also, I found through the AFM imaging that the PVP layer contained some
holes, however, with reasonably low density. The average distance between such holes was several
micrometers; hence, it was always possible to select a surface area avoiding the holes. After the
deposition, I removed the excess PVP molecules deposited on the Au film from the surface by
washing the Au film with pure ethanol. As a probe of the electromagnetic effect on the Au film, I
utilized 4-aminothiophenol (4-ATP) molecules. I prepared a 1 mM ethanol solution of 4-ATP mol-
ecules, and immersed the PVP-coated Au film into the 4-ATP solution for 12 hours. Finally, I took it
out from the solution, and dried it. To verify the effect of the spacer layer, I also prepared an Au film
on which 4-ATP molecules were adsorbed without a PVP spacer layer. It is well known that 4-ATP
molecules form a densely packed, well-ordered self-assembled monolayer (SAM) on Au surfaces,
therefore 4-ATP molecules could be easily adsorbed onto Au surface without a spacer layer.

Figure 2.12(a) is schematic illustrations of a PVP-coated Au film covered with 4-ATP mole-
cules and a non-coated one. Raman measurement of the samples were performed using optical sys-
tem shown in Fig. 1.3, where the excitation light was illuminated from the glass side of the samples.
Figure 2.12(b) shows SERS spectra of 4-ATP molecules on the Au films with and without the PVP

spacer layer, and a normal Raman spectrum of 4-ATP bulk molecules. The three spectra were
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Figure 2.12 (a) Schematic illustrations of (i) PVP-coated Au film covered with 4-ATP molecules, and (ii)
non-coated one. (b) SERS spectra of 4-ATP molecules (i) with and (ii) without a PVP spacer, respectively. The
spectra are normalized at 1078 cm™ for the facile comparison. (iii) Normal Raman spectrum of 4-ATP mole-

cules. The excitation laser is 632.8 nm.

Table 2.1 Peak frequencies and assignments for 4-ATP solid and 4-ATP SAMs on Au films.

4-ATP solid 4-ATP on Au Assignments *
1585 1581 v CC, 8a (a)
1571 v CC, 8a (by)
1484 1483 vCC+ 0 CH, 19a (a))
1438 v CC + 6 CH, 195 (by)
1390 §CH +vCC,3 (b
1327 v CC + 6 CH, 14 (by)
1168 1177 6 CH, 9a (a1)
1141 0 CH, 9b (b,)
1080 1078 v CS, 7a (a1)

* Approximate description of the Raman modes (v: stretch, and 6: bend) from ref. 44, 45, and 46.

Frequencies (cm™) are followed by the Raman spectra in Fig. 2.11.

35



Chapter 2. Enhancement of Raman scattering by a metallic nanostructure

measured with 632.8 nm excitation wavelength. In order to compensate the slight difference in the
enhancement, the two SERS spectra are normalized at 1078 cm™. The bottom spectrum is a normal
Raman spectrum of 4-ATP bulk molecules. Comparing the two Raman spectra with and without
introduction of the PVP spacer layer, the peaks at 1078 and 1581 cm™ remain unchanged, while the
peaks at 1141, 1390, 1438 and 1571 cm™ are drastically decreased with the PVP layer. This result
indicates that the peaks strongly observed with the PVP layer can be attributed to the electromagnet-
ic effect in SERS, while the decreased peaks can be due to the chemical effect. Note that PVP mol-
ecules don’t have any observable Raman modes in the spectral region of 1000 — 1600 cm™.

To understand the reason why the enhancement depends on the vibrational modes, I refer to the
peak assignments for 4-ATP molecules as shown in Table 2.1. The band assignment of 4-ATP mol-
ecules is based on vibrations characteristic of p-disubstituted benzenes given by notations of the
corresponding vibrations of benzenes, and the symmetric group is characterized as Cy, symmetry.*’
The benzene ring vibrations are classified as a;, a,, b1, and b, species. With respect to the molecular
plane, the a, and b, species are in-plane vibration modes, and a, and b, modes are out-of-plane vi-
bration modes. Note that a; vibrations are polarized along the molecular C, axis and totally sym-
metry modes, whereas b, and b, vibrations are polarized perpendicular to the C, axis and non-totally
symmetry modes. Although all of the vibrations are Raman active, the normal Raman spectrum is
dominated by the a, vibrations due to the totally symmetric vibrations as shown in Table 2.1.** Here,
you can notice that the active peaks at 1078 and 1581 cm™ with the PVP layer are based on the a;
vibrations. Since the electromagnetic effect in SERS simply enhances light fields over the samples,
vibration modes observed in the normal Raman spectrum are purely enhanced. In contrast, the deac-
tivated peaks at 1141, 1390, 1438 and 1571 cm™ with the PVP layer are associated with the b, vibra-
tions. Since 4-ATP molecules form the SAM on the Au film without the PVP layer, it is clear that
their activation of the b, vibrations needs chemical bonds between the metal and the molecule. That
is, it is confirmed that the enhancement of the b, vibrations is associated with chemical effect in
SERS. This nature of the b, vibrations has been already pointed out in previous researches devoted

to understand the mechanism of the SERS by the Raman intensity dependence on excitation wave-

50-52 53,54

length,™ pH,*** potential on electrodes,” metal geometry, and direction of charge transfer,
although there are some reports that claim the b, vibrations of 4-ATP molecules can be caused by
molecular transformation from 4-ATP to 4,4’-dimercaptoazobenzene.”**> One can notice that the b,
vibrations are still observed in the black spectrum, albeit with weak intensities. This is because, even

though the prominent mechanism for the enhancement for these modes is the chemical effect, they

also have slight contribution through the electromagnetic effect.
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Selective enhancement through chemical effect

The introduction of a nanometric spacer layer between a metal and a sample provided a practical
way to distinguish the SERS vibrational modes that are dominantly enhanced by either electromag-
netic or chemical mechanism. Another evidence of the chemical effect can be found by an introduc-
tion of halide ions into sample molecules. It is believed that halide ions clean metal surfaces by
removing residual compounds and make “active sites” on the metal surfaces, which increases the

number of chemical bondings between the metal atoms and the sample molecules. ***

I argue that
the additional enhancement with the introduction of halide ions is due to the enhancement through
the chemical effect.

I prepared a mixed ethanol solution of 1 mM 4-aminothiophenol molecules and 1 mM sodium
bromide (NaBr). In the solution, NaBr is ionized into Na" and Br', and Br™ works as halide ions. I
immersed an Au-coated substrate into the mixed solution for 12 hours, and rinsed it with pure etha-
nol, where a 4-ATP SAM was formed on the surface of the Au-coated substrate. Figure 2.13(a)
shows SERS spectra of the 4-ATP molecules on Au-coated substrates prepared with and without Br~
ion, respectively. The excitation wavelength was 632.8 nm. It is observed that intensities of the all b,
vibrations at 1141, 1390, 1438 and 1571 cm’ increase with the introduction of NaBr solution, while
intensities of the a; vibrations remain immutable. Since only the b, vibrations are selectively en-
hanced, the enhancement induced by the halide ions is associated with the chemical effect. Here, I
contemplate the reason why halide ions selectively cause the chemical effect in SERS. From the as-
pect that electron affinity of 4-ATP molecules is 2.58 eV and that of Br ion is 2.96 eV, Br™ ions are
more strongly adsorbed on Au atoms than 4-ATP molecules. Br ions skin Au atoms from the Au
substrate surface, and then AuBr is formed into a dimer combination in ethanol solution. The reac-
tion process creates active sites on which 4-ATP molecules can attach to the flesh Au surface, in-
ducing the increase of the number of 4-ATP molecules adsorbed on the Au surface. Indeed, selective
Raman enhancement through the chemical effect by halide ions has been often explained in terms of
the increase of the number of the adsorbed mole:cule:s,57'59 but the selective enhancement is not
simply explained by the reason. This is because if the enhancement is due to the increase of the ad-
sorbed molecules, the electromagnetic effect must be enhanced as well as the chemical effect. In my
opinion, the selective enhancement is due to an increase of the packing density of the 4-ATP mole-
cules on the Au surface. There are several articles claiming that the b, vibrations stem from a chem-

ical transformation from 4-ATP to 4,4’-dimercaptoazobenzene, in which the two 4-ATP molecules
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Figure 2.13 (a) SERS spectra of 4-ATP molecules prepared (red) with and (black) without Br™ ion,

respectively. The excitation wavelength is 632.8 nm. (b) Schematic image of chemical transformation

from 4-ATP to 4,4’-dimercaptoazobenzene.

are oxidized by photo irradiation and form a double-bond between the two nitrogen atoms as shown
in Fig. 2.13(b).”** In order to undergo this reaction, 4-ATP molecules have to exist each other in
subnano-scale proximity (the length of a 4-ATP molecule is ~ 7 A). Hence, the increase of the
packing density of the 4-ATP molecules can facilitate the chemical transformation, resulting in in-
creasing Raman intensities of the b, vibrations. Actually, the mechanism of chemical effect in SERS
is still controversial because the interaction between metal atoms and molecules is occurred at the
atomic level, which is not observable in conventional optical microscopy. Toward the detail under-

standing, we need to utilize nano-resolved spectroscopic techniques such as TERS spectroscopy.

234

Excitation wavelength dependence on SERS

In this section, I elucidate a resonance condition on the chemical effect in SERS of 4-ATP molecules.
As I explained in section 2.3.1, the chemical enhancement is due to charge-transfer between a metal
atom and a molecule The resonance condition can be found by monitoring the Raman intensity of b,
vibrations of the 4-ATP molecules under several excitation wavelengths. To elucidate the resonance
condition, I measured SERS of a 4-ATP SAM on Au and Ag substrates coated on a cover slip using

several excitation wavelengths, where the both metal films had a thickness of 8§ nm.
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Figure 2.14 (a) SERS spectra of 4-ATP molecules adsorbed on Au substrate, normalized at 1078 cm™. The
excitation wavelengths for the spectra (i) through (v) are 785, 658, 642, 633 and 532 nm, respectively. (b)
SERS spectra of 4-ATP adsorbed on Ag substrate, normalized at 1078 cm™ . The excitation wavelengths for the
spectra (i) through (iv) are 785, 642, 514.5 and 458 nm, respectively. (c) Absorption curves for Au and Ag
substrates used in the present study, in which the peak wavelengths represent the surface plasmon resonance.
(d) Resonances curves plotted from the intensity of the mode at 1141 cm™ in Fig. 2.14(a) and (b). The blue line

is for the Ag substrates, and the red line is for the Au substrates.

Figure 2.14(a) shows a series of SERS spectra measured from 4-ATP molecules on an Au sub-
strate, excited with the indicated wavelengths. These spectra are normalized for the mode at 1078
cm’, so that one can focus attention on the modes that are enhanced through the chemical effect.
The increased intensities of the b, modes in spectrum (iv) indicate the chemical resonance in SERS.
Similar results are also obtained for an Ag substrate as shown in Fig. 2.14(b), where the b, modes
drastically increase in spectra (iii) and (iv). In fact, in the case of the Ag substrate, the b, modes be-
come even stronger than the a; modes at the resonance. A careful observation of Fig. 2.14(a) reveals
that the b, modes are once again slightly enhanced in spectrum (i). This is because the excitation
wavelength in this spectrum is 785 nm, which is close to the surface plasmon resonance of the Au
substrate with the thickness of 8 nm, as illustrated in Fig. 2.14(c). Therefore, the electromagnetic
effect is greatly enhanced at this wavelength. As mentioned eatlier, the enhancement of the b, modes
also has slight contribution from the electromagnetic effect. Thus, after passing through the reso-
nance in chemical effect, the b, modes are once again slightly enhanced near the surface plasmon

resonance. It should be noted that the absorption spectra were measured for bare metal substrates
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without 4-ATP molecules. However, it was confirmed that the presence of 4-ATP SAM did not
change the absorption curves significantly.

In order to have a comparison between the electromagnetic and chemical resonances in SERS,
the resonance curves obtained from the intensity of the mode at 1141 cm” in Fig. 2.14(a) and (b) are
plotted in Fig. 2.14(d). The experimental data shows a reasonably good fitting with Gaussian curves.
The fitting indicates that the resonance for the chemical effect in SERS is obtained at around 596
and 530 nm, respectively, for Au and Ag films. As one can notice, the resonance in SERS related to
the electromagnetic and chemical effects are distinctly different. Also, as an evident from different
resonance peak positions for Au and Ag substrates in Fig. 2.14(c), the potential for charge-transfer
for the two metals is not the same. This is caused by the difference of the Fermi levels of the two
metals. In fact, the LUMO level n* of 4-ATP is at ~ 3.03 eV and the Fermi level for Auis ~ 5.1 eV
below the vacuum leve1,60 so that the resonance condition is estimated to ~ 600 nm, which is well
corresponding to the experimental result in Fig. 2.14(c). Note that the Fermi level slightly depends

on crystal faces of the metal surfaces due to differences in the surface dipole.®'

2.3.5

Multiple Raman modes of chemical enhancement in sandwiched molecules

In this section, I show some interesting observations of chemically enhanced Raman modes of
4-ATP molecules sandwiched between two metallic nanostructures. Chemical enhancement in
SERS involves a chemical interaction between molecules and metal atoms, and if molecules are
sandwiched between two metal structures, the chemical interaction becomes more significantly. It
might change vibronic states in the molecules and generate extraordinary enhancements of several
Raman peaks. For understanding the contribution of the chemical enhancement for molecules sand-
wiched between two metal structures, I measured SERS spectra of 4-ATP molecules sandwiched
between a metallic tip and a metal substrate.

For this experiment, an Au-coated tip was prepared by evaporating Au on a commercially
available AFM cantilever tip. The diameter of the tip apex was about 30 nm after the Au evaporation.
This Au-coated tip was brought in contact with the 4-ATP samples adsorbed on an Au substrate, and
Raman scattering was then excited with 642 nm laser line. A schematic of the sample arrangement is
shown in the Fig. 2.15(a). In Fig. 2.15(b), (i) and (ii) represent Raman spectra of the sandwiched
4-ATP molecules and not-sandwiched 4-ATP molecules (that is, a SAM of 4-ATP). The spectrum

40



2.3 Chemical enhancement in SERS

1571
(a)
oH Z
! ‘B
Au tip oc é
ON =
Os £
R - 9]
5 2% B 0
Au substrate . . - T T T T
1000 1200 1400 1600

Raman shift [cm™]

Figure 2.15 (a) Schematic illustration of 4-ATP molecules sandwiched between Au substrate and Au tip.
(b) Raman spectra of (i) the sandwiched 4-ATP molecules and (ii) not-sandwiched 4-ATP molecules. In order
to remove the background signal from those 4-ATP molecules which are not under the tip apex, the spectrum

here is presented after subtracting SERS signal obtained in the absence of the tip.

(i) was obtained by subtracting the SERS spectrum (ii) from the spectrum obtained under the com-
bination of the Au substrate and the Au-coated tip. The subtraction essentially removes the back-
ground signal coming from those 4-ATP molecules that are not under the tip apex, resulting in the
subtracted spectrum for only those modes that are enhanced from the molecules under the Au-coated
tip.

Comparing the SERS spectrum (i) with (i), Raman modes at 1141, 1251, 1306, 1360, and 1571
cm’ were selectively enhanced with the contact of an Au-coated tip. The selective enhancement
could be interpreted in terms of a metal-molecule-metal charge-transfer theory due to the chemical
bonding between Au atoms on the tip and 4-ATP molecules. When an Au-coated tip was brought
close to a SAM of 4-ATP prepared on an Au substrate, the Au atoms on the tip made chemical
bondings with positively charged nitrogen atoms of the 4-ATP molecules. The chemical bonding
between the Au-coated tip and the 4-ATP molecules gave rise to the additional chemical enhance-
ment, due to the increase of the vibronic interaction between the electronic and vibrational motions.
According to assignment of vibrational modes in 4-ATP molecules in Table 2.1, 1141 and 1571 cm’
are associated with the b, modes, whereas the other three modes at 1251, 1306, and 1360 cm’
modes are missing in the assignment list. The latter three extraordinary Raman modes can be caused
by a slightly different chemical structure in 4-ATP molecules, compared with 4-ATP molecules on
the Au substrate. It is reported that chemical bondings between Au atoms and 4-ATP molecules

through the nitrogen atom induce extraordinary Raman modes of 4-ATP molecules.”**® The ad-
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sorption interaction of the molecular bindings changes the electronic properties of the molecules,
leading to the increase of the polarizability derivatives of some specific vibrations.** The other pos-
sible reason could be a local structural deformation of the sample molecules under the tip,” because
such a tip often applies a small amount of local pressure on the sample. The deformation allows a
single or a few 4-ATP molecules to lie flat on the Au film and undergo charge-transfer. Herein,
benzene ring n-orbitals better couple to the Au substrate, dramatically increasing vibronic mixing for
selected benzene modes. These results imply that nano-scale molecular deformation could be cap-

tured with the usage of a nanometric metallic tip.

24

Gap-mode enhancement

I have explained enhancement of Raman scattering near a metallic nanostructure in terms of the
electromagnetic effect and chemical effect. Since the enhancement is directly linked to the sensitiv-
ity in Raman spectroscopy, the way to improve the enhancement has been extensively investigated.
The most successful results for dramatically increasing the Raman enhancement effect are attained
with a nanometric gap in two metallic nanostructures. When SPPs are induced in two adjacent me-
tallic nanostructures, the electromagnetic fields of the two SPPs are strongly interacted each other. If
the distance between the two metallic nanostructures is reduced to a nanometric size, the electro-
magnetic field is confined to a nanometric volume in the gap. The field confinement provides huge
field enhancement in the nano gap. There are some reports that SERS detected from a nanometric
junction between metallic nanoparticles shows the Raman enhancement factor from 10" to 10" or-

656 indicating the cross section of the SERS reaches to 10™* comparable with that of fluores-

der,
cence. Owing to the gigantic enhancement factor, the literatures have also mentioned the potential
for single molecule detection with SERS spectroscopy, where the single molecule detection was
confirmed by SERS intensity following Poisson distribution and sudden spectral change and fluctua-

tion of the Raman modes.®>%

Based on the idea of field enhancement effect in nano gaps, Raman
enhancement in TERS can be greatly improved with an introduction of metallic nano-gap structures.
Here, I explain concepts of field enhancement effect at nano gaps between a metallic tip and a me-
tallic substrate using a schematic illustration and numerical analysis.

When a positively charged metal nanostructure approaches to a negatively charged metallic

nanostructure, Coulomb interaction between them takes place and it is inversely proportional to

42



2.4 Gap-mode enhancement

square of the gap distance in the absence of tunneling current. If the two nanostructures are adjacent
each other with keeping their electric potential, one can simply guess the electric field at the gap is
enormously increased. Now, I consider a system that a metallic tip is adjacent to a metallic substrate
as illustrated in Fig. 2.16(a). When light is irradiated to the system with the polarization direction
parallel to the tip axis, an electric field of the light couples to localized surface plasmons of the me-
tallic tip and a dipole moment is excited at the tip apex. The dipole moment then generates a local
electric field, which induces charge distribution on a surface of the metallic substrate. The charges
induced on the surface are opposite to those of the tip apex, resulting in electric field confinement at
the nano gap due to the strong Coulomb interaction. It should be noted that the localized SPPs ex-
cited in a tip-substrate system must be considered as a single system, because a dipole moment in a
metallic tip apex is always interacted with an electric field induced on a surface of the substrate.

To understand an electric field distribution in a tip-substrate system, I calculated electric fields
for the system using FDTD method. Figure 2.16(b) is the FDTD result of field enhancement of an
Au tip-substrate system, where a diameter of the tip apex is 30 nm, a corner angle of the tip apex is
set to 30° and the gap distance is kept to be 2 nm. The field distribution is plotted under the reso-
nance condition of 609 nm obtained from a scattering spectrum from the tip-substrate gap. As one
can see, the field enhancement is dominantly occurred at the gap, and the maximum value displays ~
36. Comparing the field enhancement at the metallic tip apex with and without the metallic substrate
(See in Fig. 2.6(b)), the field enhancement factor with the substrate is ~ 2 times higher than the other.
If Raman enhancement factor in the gap is counted, the Raman enhancement factor can be calculat-
ed to be 36" ~ 1.7 x 10”. Thus Raman scattering detected in a tip-substrate gap is definitely quite
sensitive to molecules existing at the gap.

How much is the electric field confined at the nano gap, then? The confined volume can be de-
fined by FWHM of the field distribution at the nano gap. Figure 2.16(c) is a line profile of the en-
hanced field along the horizontal axis including the gap. The red line is the raw data, and the black
dotted line is the Gaussian fitted line. From the dispersion of the Gaussian fitting, FWHM of the en-
hanced field is estimated to be ~ 15 nm, which corresponds to a half size of the spatial resolution of
TERS without a metallic substrate (See Fig. 2.6(b)). In summary, TERS microscopy having a nano
gap between a metallic tip and a metallic substrate can dramatically improve both the sensitivity and
the spatial resolution.

TERS with a nano gap between a metallic tip and a metallic substrate is often called “gap-mode
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TERS”, and it has been utilized for improving the sensitivity. In fact, the first observation of

TERS images was achieved using gap-mode TERS system, where rhodamine 6G and crystal violet
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Figure 2.16 (a) Schematic image of charge distribution condensed at a gap between a metallic
tip and a metallic substrate, (b) FDTD result of field enhancement of an Au tip and an Au sub-
strate system excited at 609 nm, diameter of the tip apex is 30 nm, corner angle of the tip apex is
30°, and the gap is adjusted to 2 nm. (c) Line profile of the enhanced field along to the horizontal
axis between the tip and the substrate. The red line shows the raw data, and the black dotted line is

the Gaussian fitted line. FWHM of the peak is estimated to ~ 15 nm.

molecules randomly deposited on a silver substrate were visualized by using a silver-coated cantile-
ver tip.®® After the first demonstration of gap-mode TERS microscopy, single molecule detection

with the usage of gap-mode TERS has been carried out strenuously.””?

For example, Raschke
group claimed that Raman enhancement factor at a nano gap between an Au tip and an Au substrate
was up to ~ 5 x 10°, where TERS signals of triarylmethane dye malachite green was detected at the
single molecular level.” In addition, Zenobi group attained single molecule sensitivity of gap-mode
TERS using an Ag tip and an Au substrate.”’ Thus gap-mode TERS spectroscopy is one of the

promising approaches that enable us to image molecules at the nano scale resolution at the single

molecular sensitivity.
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2.4 Gap-mode enhancement

Summary

I have introduced fundamental principles of SERS, which utilizes strongly enhanced electromag-
netic fields in the close vicinity of metal nanostructures. I first explained a dispersion relationship of
light existing at an interface between a metal and a medium to describe physical properties of sur-
face plasmons on a metal surface. I elucidated excitation condition and enhancement mechanism in
surface plasmons using the derived dispersion relationship. I then moved to explain localized surface
plasmons in a metal nanoparticle, and the unique plasmonic properties were discussed using FDTD
calculation. I then gave a concept of TERS that was based on SERS locally induced at a metallic tip
apex. Using FDTD calculation, I showed that a light field was confined at the metallic tip apex with
the size comparable to the apex diameter. Optical setup of TERS spectroscopy/microcopy was also
described. I also explained chemical effect in SERS, in which the chemical effect was understood by
charge-transfer mechanism between a molecule and a metal atom. For distinguishing electromag-
netic effect and chemical effect in SERS, I provided a couple of the practical methods. One method
was to introduce a thin spacer layer of PVP between a metal substrate and a sample, which pre-
vented any possible chemical bonding between the metal atoms and the sample molecules. Hence,
the electromagnetic effect was selectively induced. Another way was to include halide ions in SERS
samples, which selectively increased the intensity of those Raman modes that were enhanced
through the chemical effect. In addition, I also demonstrated that, apart from the surface plasmon
resonance, SERS went through another resonance that was based on the chemical effect, which ena-
bled us to identify the resonance condition of the system due to the charge-transfer. Further, I
showed the appearance of some extraordinary enhanced Raman modes when the sample molecules
were sandwiched between an Au film and an Au-coated tip. Finally, I introduced gap-mode en-
hancement of Raman scattering in a nano gap between a metallic tip and a metallic substrate, which
indicated much stronger field enhancement at the tip apex comparing to that without the metallic

substrate.
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Chapter 3.
Nanoscale Raman analysis of multilayer graphene

This chapter presents tip-enhanced Raman analysis of multilayer graphene. It is natural that Raman
spectroscopy is useful to determine molecular structures, and especially it makes a significant con-
tribution to characterize carbon-based materials. For example, Raman spectra of multilayer graphene
can give information about the crystal disorder, the number of layer, edge structure, interlayer inter-
action, and other physical properties. There are some key vibrational modes in multilayer graphene
for allowing a determination of the physical properties. The nature of the each vibrational mode of
multilayer graphene is briefly introduced. I then show some of the Raman analysis of multilayer
graphene samples using Raman microscopy and TERS microscopy, and present great capabilities of

their microscopy.

3.1 Raman scattering of graphene

Graphene is composed of sp*-bonded carbon atoms located at the vertices of a planar honeycomb
crystal lattice. I briefly introduce the outstanding properties of graphene. For instance, the breaking
strength of graphene is ~ 40 N/m (more than 200 greater than steel), the Young’s modulus is ~ 1.0
TPa (Fe is ~ 0.2 TPa), and the room temperature thermal conductivity is ~ 5000 Wm™'K™." Further-
more, the unique band structure of graphene leads massless Dirac electrons in it, which allows the
state-of-the-art mobility reaching 2 x 10° cm*/Vs.” Because of the above reasons together with the
Novel Prize for physics in 2010, the investigation of graphene has the enormous attention all over
the world. For developing the application of graphene-based devices, evaluation of physical proper-
ties in graphene is indispensable. Those properties can be elucidated by Raman spectra of the gra-
phene. Figure 3.1(a) shows Raman spectra from multilayer graphene. I explain some of the

important vibrational modes as follows.
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Figure 3.1 (a) Raman spectrum of multilayer graphene, and (b) Raman spectra of multilayer graphene with

the layer of single, double, triple and multiple.

G-band

The G-band centered at ~ 1581 cm™ is associated with the in-plane vibrational modes of sp2 hybrid-
ization of carbon bonding. It is related to the in-plane C-C bond stretching mode, which gives rise to
both the TO phonon and the LO phonon branches. The two optical phonon modes are degenerate
due to the two-dimensional full rotation symmetry in the graphene hexagonal lattice. The G-band is
the fundamental mode for carbon-based materials (where the notation G comes from graphite), thus

it is indicative for evaluating an amount of the graphene and confirming the existence.

D-band

The D-band centered at ~ 1350 cm™ is involved with the vibrational modes of perturbed sp” hybrid-
ization of carbon bonding, and represents crystal disorder in multilayer graphene. The origin of the
notation D is generally based on disorder, defect, or diamond. An introduction of the crystal disorder
breaks the crystal symmetry of graphene, and activates D-band that would otherwise be inactive.
Since disarray of the crystal symmetry is caused by borders of the crystallite areas, the Raman activ-
ity of the D-band can indicate the amount of the crystallite boundary in the sample. Therefore, Ra-
man intensity of the D-band becomes strong at the edges of multilayer graphene.* I note that the

D-band intensity also depends upon the crystallite of the boundary.>®
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G’-band

The G’-band (also called 2D-band) around 2500 — 2700 cm is also attributed to sp” hybridization of
carbon bonding. It is associated with an intervalley double-resonance Raman process in which the
phonon vector connects two energy bands at the K and K* symmetry points of the Brillouin zone in
graphene.”® Since the G’-band is related to resonance Raman effect, the frequency of the G’-band
depends on the laser excitation energy. The G’-band is quite useful to decide the number of gra-
phene layers.” Figure 3.1(b) shows Raman spectra of multilayer graphene with the single, double,
triple, and multi layers. Single-layer graphene exhibits a single Lorentzian peak in the G’-band, and
the intensity of the G’-band is about 2 times larger than that of the G-band. In contrast, double-layer
graphene is generally composed of several Lorentzian peaks in the G’-band, and the intensity of the
G’-band is reduced to be comparable with that of G-band. As the increase of the number of layer,
ratio of the intensity of the G’-band to that of the G-band is gradually decreased. The intensity ratio
for more than 6-layered graphene hardly changes with the increase of the layer. The G’-band is also
utilized for charactering the graphene interlayer structures. As shown in Fig. 3.1(b), G’-band of the
single-layer graphene is split from a one peak into two peaks with the increase of the number of lay-
er. The origin of the two peaks of the G’-band is related to the stacking order occurring along the ¢
axis of graphene. There are two types of stacking structures in multilayer graphene. One type has
carbon atoms aligning in the direction perpendicular to the graphene layer, while the other type has
the alignment in every other layer (so called Bernal stacking order). The change of the G’-band
lineshape is resulted from the special electronic structure due to a stacking interaction between the
layers of graphene.'”"" Thus, the G’-band is utilized to assign the number of layer and the stacking
structures of interlayers in the multilayer graphene. Note that the Raman shift and the intensity ratio
between the G-band and G’-band depend on a substrate on which graphene samples are pre-

12,13
pared.

3.2
Raman imaging of multilayer graphene
In this section, I show you some of the Raman analysis of graphene samples by means of Raman

microscopy. I prepared multilayer graphene deposited on a cover slip from a highly oriented pyro-

lytic graphite (HOPG) crystal. The deposition of the graphene was done by mechanical cleavage
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Figure 3.2 AFM and Raman images of multi-layered graphene deposited on a cover slip. (a) AFM image,
(b) Raman image at G-band, (c) Raman image at G’-band, and (d) Raman image constructed by the ratio of

G’-band intensity to G-band intensity. Raman excitation wavelength is 532 nm.

method using a scotch tape.' Figure 3.2(a) shows an AFM image of multilayer graphene deposited
on a coverslip. As you can see, the multilayer graphene was composed of a layered structure where
the each layer had a certain area. Next, I measured Raman spectra of the multilayer graphene using
Raman microscopy that was introduced in Chapter 1. I utilized 532 nm wavelength laser for the
Raman excitation. Figure 3.2(b,c) indicate G-band and G’-band Raman images of the multilayer
graphene in the same area as Fig. 3.2(a), respectively. The Raman images were constructed by an
area integral of Raman intensities of the nine points around a center of the each Raman peak. After-
ward, Raman images were constructed by the area integral of a Raman peak if not otherwise speci-
fied. As you can see, the spatial distribution of the multilayer graphene was different according to
the Raman mode. For example, the center of the multilayer graphene imaged at the G’-band in Fig.
3.2(c) shows stronger intensity than the other area, while the G-band image doesn’t show any local-

ized distribution around the center. This result implies that amount of carbon atoms around the cen-
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3.2 Raman imaging of multilayer graphene

ter of the multilayer graphene is not changed much in terms of the stationary G-band intensity, but
the stacking interaction between the graphene layers is different around the center. Since the surface
of the multilayer graphene doesn’t represent notable changes in structure judging from the AFM
image, the variation of the stacking interaction observed in Fig. 3.2(c) may occur in interlayers of the
multilayer graphene. For the further analysis, I show a Raman image constructed by the ratio of the
G’-band to the G-band intensity as shown in Fig. 3.2(d). The important thing is that the distribution
of the G’/G-band ratio reflects the number of layers in the multilayer graphene. Referring to Fig.
3.1(b), it can be expected that the ratio ~ 2 indicates single-layered graphene, ratio ~ 1.2 is for a dou-
ble layer of graphene, and ratio ~ 0.7 is for a triple layer of graphene, and ratio ~ 0.5 is for more than
four layers of graphene. As you can notice, single-layered graphene exists in the red area of Fig.
3.2(d), although it is not clearly observable in Fig. 3.2(a-c).

The crystalline orientations of multilayer graphene at the edges can be also investigated by the
Raman microscopy.”® I measured Raman spectra of multilayer graphene near the edges and ana-
lyzed the crystalline orientations. Figure 3.3(a) is an AFM image of multilayer graphene with a sharp
corner of ~ 30° at the top. Figure 3.3(b,c) are the corresponding Raman images taken at the G-band
and the D-band, respectively. The Raman images were taken with the linear-polarized laser parallel
to the vertical axis of the Raman images. As you can see, the G-band image indicates a similar dis-
tribution to the AFM image, and the intensity of the G-band is uniform over the sample. On the other
hand, the D-band image shows a quite different distribution, and in particular the right side of the
edge indicates strong Raman intensities comparing with the left side. The uneven distribution of the
D-band near the edges is understood from the aspect of the possible crystalline orientations of the
multilayer graphene. To tell the conclusion first, a perfect zigzag edge cannot show D-band mode of
graphene, and a perfect armchair edge can show the D-band mode. This is due to the forbidden tran-
sition of intervalley double-resonance Raman process associated with the defect for a zigzag

15,16

edge. " From the point of view about the corner angle of 30°, the possible crystalline orientations at
the top-vertex of the multilayer graphene are concluded as shown in Fig. 3.3(d). The multilayer gra-
phene crystalline on the left side forms a zigzag orientation, and it on the right side has an armchair
orientation. For the additional information, Raman scattering intensity of the D-band for an armchair
orientation depends on polarization direction of the excitation laser, and the intensity takes the
maximum value when the polarization direction is parallel to the armchair orientation."® It should be
emphasized that Raman spectroscopy provides one easy method for distinguishing between arm-

chair and zigzag edges, and the point of Raman microscopy is the comprehensive understanding of

the atomic structure of graphene through the spectral imaging.
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Figure 3.3 AFM and Raman images of multilayer graphene. (a) AFM image. (b) Raman image
at G-band, and (c) Raman image at D-band are taken with the linear-polarized laser parallel to the
vertical axis. (d) Schematic illustration of atomic structure at the top-vertex of the multilayer gra-

phene, where the left and right sides form the zigzag and armchair orientations, respectively.

3.3
TERS imaging of multilayer graphene

I have demonstrated Raman imaging of multilayer graphene. It is very useful to characterize the
atomic structures, however the accessible resolution is limited to submicron scale, which doesn’t
allow us to probe nano-scale distributions based on the layer numbers, defects, and other physical
properties. I here show tip-enhanced Raman analysis of multilayer graphene using TERS microsco-
py, which enables the nano-scale analysis. I first prepared multilayer graphene on a glass substrate
following to a procedure explained in Section 3.2. Then, I looked for pieces of graphene flakes on
the glass substrate through optical microscopy, and took AFM and TERS images around some of the
graphene flakes. After the TERS measurement, the far-field images were also measured. In the Ra-
man measurement, the excitation wavelength was 532 nm, the laser intensity was set to 100 pW, the

exposure time was 0.5 sec/spectrum, and the single pixel size was 20 x 20 nm’. The laser power
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Figure 3.4 (ab) TERS images of multilayer graphene at the G’-band and G-band, respectively. (c) (red)
TERS and (black) spontaneous spectra of the multilayer graphene, obtained from the point A in Fig. 3.4(a).
The inset shows cross section of TERS image along the white dotted line a in Fig. 3.4(a). (d) TERS image con-
structed of the G’/G ratio, indicating distribution of the number of layers. The black area represents that multi-
layer graphene doesn’t exist. (¢) AFM image of the graphene layers. (f) TERS image of the multilayer

graphene at the D-band. The pixel size of the each image is 20 x 20 nm’.

was optimized for avoiding damages at a metallic tip apex by laser heating, and the exposure time
was as reduced as possible with keeping the Raman signals enough to be separated from background
noise.

Figure 3.4(a,b) represent TERS images of multilayer graphene deposited on a glass substrate,
where the images are constructed of the G’-band signals and the G-band signals, respectively. The
far-field signals are already subtracted from the TERS signals, which indicates the pure near-field
signals are selectively extracted. As you can see, the graphene structures are clearly observed at the
G’-band, while the G-band image is a little bit vague. This is simply because scattering intensity
from the G’-band is stronger than that from the G-band. Interestingly, the G’-band image includes
some localized areas indicating the strong Raman intensity at intervals while the G-band image
shows a certain intensity over the sample. This result is understood by dependence of the Raman

enhancement for the G-band and the G’-band on the number of layer. It was reported that the en-
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hancement factors decreased with an increase in the number of graphene layers: single-layer > dou-
ble-layer > triple-layer, and the change is approximately inversely-proportional to the number of
layers in the case of the three kinds of layers.** Therefore, the G-band intensity balances by the de-
crease of the enhancement factor and the increase of graphene layers, while the G’-band intensity
can be distinguished by its layer number. In addition to the difference of their distributions, only the
G-band image shows strong signals at the top of the image (the yellow part). This stems from Ra-
man signals from carbon contaminations attached on a metallic tip, which is often observed in TERS

or SERS experiments.'”"’

Figure 3.4(c) shows TERS and spontaneous Raman spectra of the multi-
layer graphene in the G’-band region, obtained from the point A in Fig. 3.4(a). The red line indicates
the TERS spectrum, and the black line indicates the spontaneous Raman spectrum. As you can see,
the Raman intensity is dramatically enhanced with the approach of a metallic tip. I estimated the
Raman enhancement factor to be ~ 313, regarding the Raman signals in a unit volume. The inset
shows a line profile of the TERS image in Fig. 3.4(a) along the white dotted line a. The FWHM was
estimated to ~ 36 nm by a Gaussian fitting performed on an edge indicated by the black dotted lines.
Judging from the Raman enhancement and the spatial resolution, I confirm that the G’-band and
G-band images certainly represent near-field Raman images of the multilayer graphene. Note that
the spatial resolution of the TERS images could be improved when size of the each pixel in these
TERS images is reduced.

Next, I analyzed a spatial distribution relevant to the number of layers in the multilayer gra-
phene. As I already discussed in previous sections, the number of graphene layers can be estimated
from an intensity ratio of the G’-band to the G-band (which is described as G’/G ratio). Figure 3.4(d)
expresses a Raman image based on the G’/G ratio. In the case of TERS measurement, the G’/G ratio
can be modified by the contact of metal on graphene because the metal contacts induce electron (or
hole) doping in the graphene and characteristic electronic structure of the graphene is altered.” The
doping decreases the G’/G ratio comparing to non-doping graphene.” Now, looking at the G’/G ra-
tio with (Fig. 3.4(d)) and without an Ag tip (in Fig. 3.2(d)), the G’/G ratio is increased with the con-
tact of an Ag tip. This result can be comprehended by the hole doping by atmospheric oxygen
binding on graphene.” The used graphene samples were kept in atmosphere for more than 1 week,
so that oxygen molecules could attach onto the graphene surface, and holes were doped to the sam-
ples. Indeed, the G-band in the TERS spectra is observed at 1588 cm™, which is blue-shifted by 4
cm’' to pristine graphene and the frequency shift corresponds to the perturbation produced by ox-
ygen bondings.” On the other hand, the Ag tip contact works for the electron doping,** which com-

pensates holes in the graphene. Thus, the concentration of free carriers in the graphene is reduced by
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the Ag tip contact, resulting in the increase of the G’/G ratio. Since the precise determination of the
G’/G ratio corresponding to the number of layer is difficult, I assumed the G’/G ratio was increased
by a certain proportion with the contact of an Ag tip and roughly estimated the number of layers.
The proportion was calculated by taking the maximum values of the G’/G ratio in Fig. 3.2(d) and
Fig. 3.4(d), and was estimated to ~ 1.1. Considering the relationship between the G’/G ratio and the
number of layers, the color balance was coordinated to roughly describe the number of graphene
layers, where the red, yellow, green, and light blue colors indicated the single, double, triple, and
more than four layers, respectively. Note that the G’/G ratio depends on impurities attached on sur-
face of multilayer graphene and is altered by ~ 15 % due to modification of the charge-career density
inside the graphene,” therefore the each color range in Fig. 3.4(d) includes a certain distribution.
The black area means there are no graphene layers. As you can see, a wide variety of layers are dis-
tributed in the graphene sheet with a narrow width of ~ 400 nm, and the number of layers changes
vertiginously at an interval of several tens of nanometer. Figure 3.4(e) is the AFM image simultane-
ously obtained with Fig. 3.4(a,b). The AFM image is too obscure to confirm the geometry of the
multilayer graphene because of the bumpy surface having a roughness of ~ 0.36 nm in a thin region
of 400 x 400 nm” in the center of Fig. 3.4(e). Since a pure graphene has a very flat surface at the
atomic level, this roughness implies that some molecules are adsorbed on the multilayer graphene
surface. One possible reason for the roughness could be water or oxygen molecules attached on the
graphene from the ambient atmosphere in addition to a roughness of a glass substrate.***' The ad-
sorbed molecules on the multilayer graphene can be identified when sensitivity in the TERS meas-
urement is improved.

The crystalline defects were also investigated by the TERS imaging at the D-band signals as
shown in Fig. 3.4(f). Although particular points showed a certain level of the signals, a distribution
of the defects was not observed owing to the essentially weak intensity of the D-band signals. It is
difficult to conclude that either the multilayer graphene doesn’t contain any defects or the signal in-
tensity to noise is not enough to identify the defects existing in the graphene. Also, the D-band can
be induced by the contact of metal on graphene,”® therefore tip-enhanced Raman analysis of crystal-
line defects in graphene should be performed using TERS based on non-contact mode AFM. Alt-
hough TERS analysis of multilayer graphene revealed the physical properties at the nano-scale
resolution, these results pointed to the critical need for the sensitivity improvement in TERS spec-

troscopy.
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Summary

I have provided Raman analysis of multilayer graphene. I first explained characteristics of Raman
modes of multilayer graphene such as G-band, D-band, and G’-band with the basis of the molecular
vibrations. Then, I demonstrated Raman imaging of multilayer graphene, where the distribution of
the multilayer graphene was visualized by G-band, G’-band, and the number of layer. I also showed
distribution of the crystalline defects, and elucidated the crystal orientation on edges of the multi-
layer graphene. Nano-scale analysis of multilayer graphene was also presented with the usage of
TERS microscopy, where the spatial resolution of ~ 36 nm was achieved. It was also confirmed that
TERS microscopy was quite useful for analyzing multilayer graphene deposited on a rough surface
like a grass substrate in an atmosphere condition because Raman microscopy could selectively visu-

alize the graphene with the basis of the physical properties.
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Chapter 4.
Nanoscale Raman analysis of single-walled carbon
nanotubes

The interest in the fundamental properties of single-walled carbon nanotubes (SWNTs) and in their
exploitation through a wide range of applications is due to their unique structural, optical, mechani-
cal, electronic, and chemical properties. After two decades of intense researches in SWNTs, more
and more attentions are now focusing on the practical applications. For the applications, Raman
analysis of SWNTs is quite important for the investigation because the Raman spectrum reflects on
the physical properties such as nanotube diameter, defect, electric conductivity, applied strains, chi-
ral coordinate, and energy band gap. In this chapter, I explain fundamental physics of SWNTs about
the geometry and the electric properties depending upon the nanotube diameter. I then discuss the
important Raman modes and the resonance Raman scattering. Also, I shortly explain the polarization
dependence of cross section of the Raman intensity. After discussion of the basic physics, I show
Raman analysis of isolated SWNTs through the resonance Raman scattering. Furthermore, na-
noscale Raman analysis of strained SWNTs is discussed using relationship between strain in SWN-

Ts and the molecular vibrational modes.

4.1

Resonance Raman scattering of single-walled carbon nanotubes

At the beginning of discussion of Raman scattering from SWNTs, I give some of the physical prop-
erties of SWNTs. A SWNT is constructed from a graphene layer by rolling it up into a seamless
cylinder. The geometry of a SWNT is defined by the coordinate indicating the orientation direction
and it is uniquely determined by the chiral vector C; = na, + ma,, where n and m are integers and

where the vectors a; and a, are unit vectors of the graphene layer, as shown in Fig. 4.1(a). In the
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shortened (n, m) form, the chiral vector is written as a pair of integers, and the same notation is gen-
erally used to characterize the geometry of (n, m) chirality. The diameter d of the nanotube can also
be characterized by the chirality, and it is expressed in terms of the indices » and m by the relation
d = |Cyl/m = avn? + m? + nm/m, where a = |a;| = |a,| = V3a._. = 0.246 nm is the lattice
constant for the graphene layer and a_. is the nearest neighbor C-C distance." As an example, the
chiral vector €, shown in Fig. 4.1(a) is given by C, = 3a; + a,, and thus the corresponding
nanotube can be identified by the integer pair (3, 1). Due to the six-fold symmetry of one graphene
layer, all nonequivalent nanotubes can be characterized by the (n, m) chirality. The dispersion of the
chirality relies on the production process such as chemical vapor deposition (CVD), high-pressure
CO conversion (HiPCO),? cobalt-molybdenum catalysts (CoMoCAT)," arc discharge methods,” and
SO on.

The distinguishing structure of a SWNT also indicates a unique electronic property. Since
SWNTs are one-dimensional (1D) systems, the electronic density of states (DOS) is characterized
by their van Hove singularities as shown in Fig. 4.1(b). The population of the electronic states is lo-
calized at their van Hove singularities, resulting in the DOS having an energy band gap between the
valence and conduction bands. The structure of the DOS changes according to the geometry, hence
the energy band gap also depends on the geometry. The DOS can be categorized as two different
cases; n —m = 3l and n —m # 3l, where [ is an integer. The former SWNTs show the metallic
behavior, and the latter ones show the semiconducting behavior. As shown in Fig, 4.1(b), the DOS
of (10, 10) SWNTs has a certain population of the electronic states between the van Hobe singulari-
ties across the energy zero, while the DOS of (22, 0) SWNTs cannot allow the electronic states
around the energy zero. SWNTs have the several energy band gaps allowing the electron transition
(e.g. E;M, E;° and E»,° in Fig. 4.1(b)). The energy band gaps can be depicted as a function of the
nanotube diameter as shown in Fig. 4.1(c). This figure is well known as a Kataura plot,6 and it is
often utilized for estimating the energy band gaps of SWNTs. These specific electronic properties
are caused by discretization of wavenumber vector in the wave function of electrons along the
nanotube circumference. That’s why the band gap energy depends on the nanotube diameter. The
more detail description is found in textbook.”

I next introduce several important Raman modes of SWNTs. Raman spectra of SWNTs repre-
sent unique vibrational modes owing to the nanotube structure in addition to Raman modes of gra-
phene. Remarkably, the Raman spectrum can give information of the geometry at the angstrom level.
Figure 4.2(a) shows a Raman spectrum of a bundled SWNT in which the important peaks are
pointed as G-band, D-band, and radial breathing mode (RBM).
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Figure 4.1 (a) An unrolled nanotube projected on the graphene layer. When the nanotube is rolled up, the
chiral vector C, turns into the circumference of the cylinder, and the translation vector T is aligned along the
cylinder axis. (b) Density of electronic states for the upper (10, 10) SWNT, and the lower (22, 0) SWNT cal-
culated with tight-biding model. (c) Energy band gap as a function of diameter for SWNTs (Kataura plot). The

red points are for metallic SWNTSs, and the black points are for semiconducting SWNTs. [ref. 6, Fig. 7]

G-band

The root of the G-band around 1500 — 1600 cm™ is same as that of graphene, and it is associated
with the tangential vibrational modes of SWNTs. The G-band of SWNTs contains six fundamental
modes (A1g+, Ay, E1g+, Eiy, E2g+, E,, ) that are based on atomic vibrations along the nanotube axis
or along the nanotube circumference. The two atomic vibrations are categorized as G* mode (A,
Eig, Eaq , base on the LO phonon) and G” mode (A, Ei4, Esq , based on the TO phonon), respec-
tively, although the totally symmetric A, mode usually dominate the spectra. The G* mode fre-
quency is expected to be independent of diameter, since the atomic vibrations are along the tube axis.
In contrast, the G mode has atomic vibrations along the tube circumference, and increasing the cur-
vature increases the our-of-plane components, thus decreasing the spring constant with a 1/d? de-
pendence.” The G" mode has higher Raman frequency than the G mode as shown in the inset in
Fig. 4.2(a). The G band provides information on electronic properties of the SWNTs. The lineshape
of the G mode is broader and asymmetry for a metallic SWNT, and this feature follows a
Breit-Wigner-Fano line shapes.8 This is due to electron-phonon interaction in which the lattice vi-
bration couples to electrons. Therefore, semiconducting SWNTs and metallic SWNTs can be
roughly identified by the lineshape of the G mode. Note that in dealing with metallic SWNTs, the

fitting functions for the Raman spectrum should be carefully treated.®
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Figure 4.2 (a) Raman spectrum of a SWNT bundle. The inset figure is a zoomed view of the G-band. (b)
Schematic pictures of (left) the G-band atomic vibrations along the nanotube circumference and along the

nanotube axis, and (right) the radial breathing mode (RBM) vibrations.

D-band

The D-band describes the disorder structure in SWNTSs, as is the case with graphene. Comparing the
G-band intensity to the D-band intensity, the degree of purity of the SWNTSs can be quantified as the
G/D ratio. The frequency of the D-band is slightly dependent upon the nanotube diameter.’

Radial breathing mode (RBM)

The radial breathing mode (RBM) between 100 — 300 cm’ is associated with the carbon atom vibra-
tion oscillating in the radial direction with the same phase as if the nanotube is breathing (see Fig.
4.2(b)). The atomic motion does not break the tube symmetry, that is, the RBM is a totally symmet-
ric A; mode. RBM is very useful for characterizing the nanotube diameter through a relation
wgrgMm = A/d + B, where d is the diameter and 4 and B are coefficients depending on the aggrega-
tion state of SWNTs. For instance, in dealing with SWNT bundles in micelles suspended in water, 4
=223.5cm™ and B =12.5 cm™ are suitable,” and for an isolated SWNT on an oxidized Si substrate,
A =248 cm™ and B = 0 have been found.'"” The difference is owing to van der Waals attractions be-
tween SWNTs in the bundle. Note that the values for 4 and B vary from one research group to an-
other due to environmental effect from the surrounding medium such as molecules adsorbed from

11-16

the air. "~ From the estimated diameter, the possible chirality of the nanotube can be determined.
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In discussion of Raman scattering from SWNTs, the energy band gaps have to be also consid-
ered. When Raman excitation energy of light is getting equal to an allowed electron transition ener-
gy E of a molecule, efficiency of the Raman scattering from the molecule is significantly intensified.
Hence, the Raman spectrum shows dominant information of the molecules resonant with the excita-
tion energy. The effect is called resonance Raman effect, and it gives around 10*° times larger Ra-
man scattering efficiency than the spontaneous Raman scattering under the resonance condition.'”
Therefore, Raman spectra of bundled SWNTs are dominated by particular SWNTs resonant with the
excitation laser unless the every SWNT is resonant with the excitation laser.

Here, I briefly explain the mechanism of resonance Raman scattering. I can refer to equation Eq.
(1.8) for the discussion. Supposing that the excitation energy corresponds to an electronic energy
band gap between a ground state and a excited state in a molecule, that is (w, — w, — w; =
0,0r w, — w, + w; = 0), the polarizability tensor of the Raman scattering is resonantly enhanced.
Note that Placzek approximation is not applicable for describing resonance Raman effect in a precise
sense. Figure 4.3 shows an excitation process diagram of the resonance Raman scattering, where an
initial and a final vibrational states are assumed to exist in an electronic ground state |g], and a vir-
tual state is assumed to exist in a certain electronic state |e] in a molecule. Under the resonance
Raman scattering condition, the multiple virtual states ), | v) of the molecule can be instantaneous-
ly compatible with practically existing molecular vibrational states in the original electronic state.
Since the transition probability of Raman scattering allowed through the virtual states is increased, as
a result, scattering cross section of the Raman scattering is enhanced. As is discussed above, reso-
nance Raman scattering is associated with energy band gaps of molecules. In this sense, resonance
Raman spectroscopy is a powerful tool for high sensitive and selective observation of particular

molecules.
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Figure 4.3 Excitation process diagram of resonance Raman scattering.
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4.2

Raman imaging of isolated SWNTs through resonance Raman effect

In this section, I demonstrate Raman imaging of isolated SWNTs through the resonance Raman ef-
fect, and discuss what can be elucidated from the Raman images. Before the discussion of Raman
analysis of SWNTs, I explain a sample preparation method of SWNTs for separating individually
isolated SWNTs from bundled SWNTs for the Raman analysis. Since SWNTs are usually aggre-
gated due to the van der Waals attractions, they have to be dispersed in a solution containing a sur-
factant for making them isolated. Among the various kinds of surfactants for the dispersion,'® I
utilized 2,2,3,3-tetrafluoro-1-propernol (TFP), because TFP is volatile and doesn’t stay adherent
around SWNTs in air. SWNTs of 0.4 mg were first put in TFP of 20 ml in a test tube with the capac-
ity of 50 ml, and the mixed solution was sonicated with an ultrasonic homogenizer with the power of
40 W for 30 minute. After leaving it for 30 minutes after the sonication, the supernatant solution was
gently pulled out, and dropped by 30 pul on a clean cover slip set on a spin coater. After 1 minute, the
cover slip was rotated by 500 rpm for 5 second, and 2000 rpm for 60 second in a row. I finally
checked spatial distribution of the SWNTs deposited on the cover slip by the AFM measurements,
and I confirmed that the SWNTs were well isolated.

I show you some of the Raman analysis of SWNTs by means of Raman microscopy that I in-
troduced in Chapter 1. Figure 4.4 shows Raman images and an AFM image of SWNTs deposited on
a cover slip. Here, CVD-based SWNTs were used as the sample. Figure 4.4(a,b) are the G-band im-
ages measured by 532 nm and 442 nm excitation laser, respectively. The excitation lasers were po-
larized parallel to the vertical axis. As you can see, they represent basically similar distributions of
the SWNTs, but some of them are observed only in either of the two images. Considering resonance
Raman effect in SWNTs, this result indicates that the CVD-based SWNTs contain both SWNTs
resonant with 532 nm and those resonant with 442 nm at least. And, some of the deposited SWNTs
are isolated or composed of a few SWNTs that are resonant with either 532 nm or 442 nm. Figure
4.4(c) shows Raman spectra of the bundled CVD-based SWNTs. Considering the lineshape of the
G mode in Fig. 4.4(c), I can conclude that 532 nm excitation laser is resonant with semiconducting
SWNTs, while 442 nm excitation laser is relatively resonant with metallic SWNTs. That is, Raman
images in Fig. 4.4(a,b) distinguish the deposited SWNTs in respect to the electric properties. The in
situ discrimination of the electric properties is the advantage of the Raman microscopy because the

AFM image shown in Fig. 4.4(e) is not useful for the purpose.
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Figure 4.4 Raman images and the corresponding AFM image of SWNTs deposited on a cover slip. (a)
G-band image measured by 532 nm excitation laser, and (b) G-band image measured by 442 nm excitation.
Raman image (a) and (b) are taken with the polarization direction parallel to the vertical axis. The white arrows
indicate polarization direction of the excitation laser. (c) Raman spectra of the SWNTSs measured by 532 nm
and 442 nm excitation wavelength. (d) Raman image taken by 532 nm laser with the polarization direction
parallel to the horizontal axis. (¢) AFM image of the deposited SWNTs, and (f) line profile along the white

dashed line A in Raman image (a). The size of these images is 10 x 10 pm”.

I also discuss polarization dependence of Raman scattering cross section of SWNTs. Owing to
the 1-dimensional tube structure of a SWNT, SWNTs have an optical anisotropic nature. According
to the selection rule of the optical absorption, which directly affects resonance Raman effect, the
Raman scattering cross section / can be described as I « cos? 8, where 0 is an angle difference be-
tween the nanotube orientation and polarization of the incident light."” Figure 4.4(d) is the Raman
image measured by 532 nm excitation laser with the polarization direction parallel to the horizontal
axis. Comparing Fig. 4.4(a) with Fig. 4.4(d), SWNTs oriented approximately parallel to the incident
polarization are selectively observed. This Raman investigation of the nanotube orientations can be
quite useful for an evaluation of the alignment of SWNTs embedded in a polymer film and of verti-

cally aligned carbon nanotubes arrays on a substrate.””*'
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Finally, I mention spatial resolution of the Raman microscopy. Figure 4.4(f) is a line profile
plotted along the white dashed line A in Fig. 4.4(a). The spatial resolution can be given by the
FWHM, and it was estimated to be ~ 240 nm. The theoretical resolution of the optical microscopy is

wavelength

calculated as 0.61x , and it is estimated to be ~ 230 nm, which indicates that my Raman

microscopy shows the best performance.

4.3

Relationship between strain in SWNTs and the vibrational modes

As the other application of Raman spectroscopy for analyzing SWNTs, I demonstrate to investigate
strain induced in SWNTs using the Raman spectroscopy. When SWNTs are deformed by some sort
of forces, bond lengths and angles between carbon atoms in the lattice of the SWNTs are per-

turbed.?>*

The deformation of the bonding conformation changes the bonding forces between the
carbon atoms. When the atomic distance is enlarged, the bonding force becomes weak, and vise
versa according to the tight-binding model.** Given a molecular vibration is represented by a har-
monic oscillation model, the natural oscillation of the vibrational modes in SWNTs is shifted to
lower frequency as the atomic distance is increased. Since the amount of the frequency shift under a
certain strain is proportional to natural oscillation of the each Raman mode, the G-band is much
shifted than the RBM.” Also, the perturbation of the atomic distance varies slightly on position of
carbon atoms in the lattice, thus Raman spectrum of deformed SWNTs is broadened. Since the fre-
quency shift of the Raman mode depends on the change of the atomic distance, the induced strain
can be analyzed from the Raman spectrum.

The strain can be categorized as tensile (also called uniaxial) strain and torsional strain as
shown in Fig. 4.5(a). The tensile strain always makes the length of C-C bonds longer, while the tor-
sional strain shortens and elongates the bond length depending on the position of the C-C bonds in
the SWNT.” The perturbation of the bond length causes the frequency shift in the Raman modes.
Here, I focus on the G-band shift because the RBM is not sensitive to the perturbation because of its
primitively low frequency. The frequency shift under the tensile and torsional strain can be estimated

with the usage of density function theory (DFT) or tight biding model >

Figure 4.5(b) expresses the
calculated shifts in the G mode and G~ mode of a SWNT possessing (10, 0) chirality under tensile
and torsional strain. The horizontal axis for the tensile is described by the relative increase in length

OL/L, where L is the initial length and OL is the stretched length, and the horizontal axis for torsional
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Figure 4.5 (a) Schematic illustrations of a SWNT deformed by tensile strain and torsional strain. (b) Calcu-
lated shifts in the G" mode and G mode of a SWNT possessing (10, 0) chirality under (upper) tensile and
(lower) torsional strain. The each horizontal axis for the tensile and torsional strain is described by the relative

increase in length 0L / L and the angle of twist caused by rolling of a SWNT, respectively.

strain is depicted by the angle of twist caused by rolling of a SWNT. The G mode shifts in the low-
er frequency direction for the tensile strain, while it shifts in the higher frequency direction for the
torsional strain. And, the G" mode shifts in the lower frequency direction under either strain. In con-
clusion, the two types of strain induced in SWNTs can be identified from the frequency shift of the
G" mode and G” mode. Note that the amount of the frequency shift depends on chirality of the

SWNTs although the tendency of the frequency shift is same in any types of SWNTs.*

44

Raman analysis of strained SWNTs

With the relationship between strain in SWNTs and the vibrational modes in place discussed in pre-
vious section, we are now ready to start analyzing Raman spectra of strained SWNTs. I first pre-
pared strain-induced SWNTs. Since SWNTs deposited on a glass coverslip following the procedure

introduced in Section 4.2 seldom included strain spontaneously, I utilized an AFM manipulation
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method for applying strain on SWNTs. In the AFM manipulation method, a part of SWNTs on
a substrate was dragged by a cantilever apex with maintaining the tip-applied vertical force constant
at 20 nN. Since SWNTs were physically adhered on the substrate due to the van der Waals force,
surroundings of the manipulated point was partially distorted in the direction of the tip scanning. The
distortion resulted in local rolling, stretching, and shifting of the SWNTs. Meijo Nano SWNTs
(which was prepared by the arc discharge method) were used as the sample. The diameter distribu-
tion of Meijo Nano SWNTs was ~ 1.4 nm and the resonance condition could be estimated to ~ 2.5
eV from the Kataura plot, so that 488 nm excitation wavelength was utilized for the Raman meas-
urement.

Figure 4.6(a) is an AFM image of partially manipulated SWNTs, where there are two bundled
SWNTs. The center of the both SWNTs was dragged by an AFM probe along a predefined path
perpendicular to orientation direction of the each bundle. By the manipulation, there would be a
simultaneous rolling and sliding movement of the SWNTSs, giving rise to strain in the SWNTs. Fig-
ure 4.6(b) shows the Raman spectra measured at the point A, B, and C in Fig. 4.6(a). The point B
corresponds to the manipulated point. As you can see, the Raman spectrum from the point B in the
G-band region shows a broader Raman spectrum comparing with those from the other two points.
As it is already explained that peak position and intensity of the G-band are sensitive to the strain
induced in the SWNTs,”" this result indicates that some sort of strain can be applied only around
the point B. On the other hand, the three Raman spectra in the RBM region represent the different
peak positions each other as shown in the inset. Since the frequency of the RBM is not sensitive to
the strain,”*" the slight change of the each RBM peak at the point A, B, and C can be due to differ-
ent types of SWNTs in the bundle. To verify physical properties and distribution of the strain, I per-
formed Raman shift imaging of the bundled SWNTSs with peak positions of the G* mode and the G
mode as shown in Fig. 4.6(c) and (d), respectively. The area where SWNTs didn’t exist enough to
provide the detectable Raman scattering was filled in the black color. Note that the peak positions of
them were obtained by executing double Lorentzian curve fitting on the Raman spectra. As shown in
Fig. 4.6(c), you can see two localized blue spots corresponding to the manipulated points in the
SWNTs while the other area basically shows white color, indicating the blueshift of the G mode at
the manipulated points by ~ 5 cm™ compared with the entire area. On the contrary, the G mode
shows the redshift by ~ 4 cm™ at the manipulated points as shown in Fig. 4.6(d). Since the spectral
accuracy of used spectroscope is less than 1.7 cm™, the shifts surely represent the change of the Ra-
man modes. Here, I discuss what types of strain is induced in the manipulated points. At the manip-

ulated point B in Fig. 4.6(a), the peak position of the G mode shows blue-shifted while that of the
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Figure 4.6 (a) AFM image of partially manipulated SWNTs. The white arrows indicate the manipulated
points and directions. (b) Raman spectra measured at the point A, B, and C in Fig 4.6(a). The red, blue solid
lines are from the point A and B, respectively and the red dotted line is from the point C. The inset figure
shows RBM region of the Raman spectra. (c,d) Raman shift image of the SWNTs constructed with the Raman

intensity at the G" mode and the G" mode, respectively.

G~ mode represents red-shifted. Thus, I can conclude that the strain induced at the point B in Fig.
4.6(a) is mainly associated with the torsional strain, referring to Fig. 4.5. As for the point D in Fig.
4.6(a), the strain is also owing to the torsional strain because of the blueshift of the G" mode, alt-
hough the G- mode didn’t indicate apparent Raman shift. This is probably due to the difference of
the pressure applied by the strain at the point B and D. Note that both the tensile and torsional strains
could be simultaneously applied to the SWNTs by the AFM manipulation, and there would be an
interference effect between two kinds of strains on the frequency shift and intensity change, which
are not equal to a simple sum over those induced separately by tensile and torsional strains.>> Here I
would also like to mention that I found no noticeable change in the D-band mode, which indicated

that the SWNTs didn’t develop any recognizable defects during the AFM manipulation.
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TERS imaging of strain distribution within a SWNT

I have demonstrated Raman mapping of strain induced in SWNTs. Although the Raman analysis
revealed physical properties of the strain, the analysis was still limited to sub-micro level due to dif-
fraction limit of light. Since SWNTs have nanometric dimensions, the physical properties of the
strain might be more complicated when we could see the nanometric scale. Toward the nanometric
investigation, I use TERS microscopy for analyzing a strain distribution in structured SWNTs at the
nano-scale resolution.

I first prepared structured SWNTs on a cover slip, in which SWNTs were dragged from the
several positions by an AFM manipulation technique step-by-step. In the TERS measurement, the
excitation wavelength was 488 nm, the laser intensity was set to 75 pW at the focus spot, and the
exposure time was 0.85 sec/spectrum. The images were taken in a region of 800 x 800 nm”, and 64
x 64 pixels. A silicon dioxide tip on which Ag was coated with the thickness of 65 nm was utilized
for TERS measurements.

Figure 4.7(a) shows an AFM image of structured SWNTs. As you can see, SWNTs were finely
structured as “CNT”, where the structure was formed from a long SWNT bundle by an AFM ma-
nipulation technique and therefore complicated strains could be induced inside the SWNT bundle.
Figure 4.7(b) is a TERS image of the structured SWNTs constructed with the G-band signals at
1587 cm™, in which the far-field signals are subtracted from the TERS signals. Although the TERS
image quality was not the best, similar distribution of the SWNTs to the AFM image was clearly
observed. The spatial resolution of the TERS image was clarified by a cross section profile along the
white dashed line a in Fig. 4.7(b), and it was estimated to ~ 47 £ 5 nm that was calculated by a
Gaussian fitting performed on the peak as shown in Fig. 4.7(c). Since the spatial resolution was
much smaller than the diffraction limit, I confirmed that the TERS image was sure to represent the
near-field Raman image.

I investigated Raman mode shifts caused by strain induced in the SWNTs. As I have already
discussed in Section 4.3, the strain mainly perturbs the G-band phonon eigenvectors of SWNTs. I
selected three points A, B, and C from Fig. 4.7(b) and examined the TERS spectra in the G-band
region. Figure 4.7(d) represents the TERS spectra measured from the point A, B, and C, respectively.
The each black dotted line indicates the fitted curve that is composed of double Lorentzian function.
The two blue lines show the each Lorentzian curve associated with the G* mode and G” mode. The

black solid line described vertically at 1587 cm™ is a reference line to see a difference of the Raman
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Figure 4.7 (a) AFM image and (b) TERS image of structured SWNTs. The TERS image is constructed
with the G-band signals at 1587 cm™. (c) Cross section profile of the TERS image along the white dashed line
a in Fig. 4.7(b). The FWHM is estimated to ~ 47 nm. (d) TERS spectra of the SWNTs measured from the point
A, B, and C in Fig. 4.7(b), respectively. The each black dotted line represents the fitted curve that is composed
of a double Lorentzian function. The two blue lines show the each Lorentzian curve associated with the G
mode and G" mode. The black solid line described vertically at 1587 cm™ is a reference line to see a difference
of the Raman shift among the three spectra. In terms of the G" mode, the spectrum B is blue shifted and the
spectrum C is red shifted comparing with the spectrum A. (e) Raman shift image of the G" mode in Fig. 4.7(b).
The color balance of the white area is set to 1586.7 + 0.5 cm™, which is an average Raman shift of unmanipu-
lated Meijo Nano SWNTs obtained from Fig. 4.6. The blue region is for the blue-shifted G" mode, and the red
region is the red-shifted one. These images are taken in a region of 800 x 800 nm? and 64 x 64 pixels. The
excitation wavelength was 488 nm, the exposure time was 0.85 sec/spectrum, and the laser power was kept to

75 uW at the focus spot.
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shift among the three spectra. In terms of the G* mode, the peak position in the spectrum B is blue
shifted by 5 cm™, whereas that in the spectrum C is red shifted by 2 cm™ comparing with that in the
spectrum A. Since a blueshift of the G™ mode indicates torsional strain in SWNTSs, I conclude that
the SWNT bundle at the point B can be twisted, and torsional strain is applied by an AFM manipu-
lation. On the other hand, a redshift of the G" mode at the point C represents the tensile strain.

For the detail analysis of strain distribution in the SWNT bundle, I constructed Raman shift
image of the G mode as shown in Fig. 4.7(e), where a peak position of the fitted G* mode was plot-
ted. The color balance of the white area was set to ~ 1586.7 + 0.5 cm™, which was an average Ra-
man shift of unmanipulated Meijo Nano SWNTs obtained from Fig. 4.6. Note that the kind of the
strain could be estimated from the G” mode shift as shown in Fig. 4.5(b), therefore I focused on only
the G mode. The blue region describes the blue-shifted G" mode, and the red region shows the
red-shifted G* mode. The blue and red regions namely indicate torsional strain and tensile strain,
respectively. As you can see in Fig. 4.7(e), the blue and red color distributions are intricately local-
ized in a particular area at the nano scale level.

I would like to consider the strain distribution one by one referring to AFM images of a series
of the manipulation performed in the SWNTs as shown in Fig. 4.8. The yellow arrows indicate the
each process of an AFM manipulation for the SWNTs. In the procedure (a) to (¢), “N” character was
structured. When the top-left corner of the “N” was structured from bottom up by the AFM manipu-
lation, the left (A) and write (B) edges around a pushing point 2 in Fig. 4.8(b) could be drastically
deformed. The edges would be gradually twisted during the manipulation owing to a friction force
caused by van der Waals forces between SWNTs and a glass substrate, resulting in the torsional
strain of the SWNTs. At the same time, the SWNTSs between the corners of “N” should have been
elongated, resulting in the tensile strain. After the top-left corner of the “N” was created, the SWNTs
tried to release the induced strain at the corner. However, due to the van der Waals forces, the strain
remained. Then, torsional strain could be induced at the top-left corner of the “N”. Eventually, the
bottom-left edge and the two corners of “N” depict torsional strain, and the line between the two
corners indicates the tensile strain as shown in Fig. 4.7(e). In the procedure (d) to (g), “T” character
was structured. When the top line of the “T” was created in Fig. 4.8(d), the line was strongly elon-
gated, and the tensile strain should have been generated. The next process from Fig. 4.8(e) to (g) has
a possibility to give both tensile and torsional strain in the SWNTs. On the other hand, the “T” char-
acter is basically composed of red color as shown in Fig. 4.7(e), which indicates the tensile strain
was dominantly induced. This result can be understood by the change of the friction forces between

a glass surface and SWNTs. The “T” character was manipulated by four times in which a part of
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Figure 4.8 AFM images showing a series of manipulation performed in SWNTs
measured in Fig. 4.7(a). These manipulations were performed along the yellow arrows

in the each process.

SWNTs may have been slightly removed from the glass surface. When the suspended SWNTs were
manipulated, it caused only tensile strain because there were no friction forces between the glass
surface and the SWNTs. Thus the “T” character dominantly indicates the tensile strain. The torsional
strain in the bottom of the “T” could be induced by the rolling in the step (e) and (f). In the proce-
dure of (b) first and (h), “C” character was structured. The “C” was created by three manipulation
processes, which may have also made a part of the SWNTs suspended. As a result, the torsional
strain could loosen while the tensile strain was induced. Considering stronger tensile strain could be
applied on the exterior SWNTs than the inner ones, it is understood that the tensile strain was selec-
tively induced on the exterior area as shown in Fig. 4.7(e).

Figure 4.9 shows the TERS image of the structured SWNTs in Fig. 4.7(e) integrated with the
AFM image in Fig. 4.7(a). The topographic and strain distribution of the SWNTs are clearly visual-
ized simultaneously. The high-resolution characterization technique provides an insight of extremely

localized variations of structural properties in nanomaterials in a convenient form of color images.
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Figure 4.9 TERS image of structured SWNTs integrated with the AFM image.

Although Raman signals of the RBM and D-band were not observed in this experiment because of
the weak Raman intensities, further physical information such as the diameter and crystalline defect
could be visualized at the nano-scale resolution when the sensitivity of TERS microscopy is im-

proved.

Summary

I have provided Raman analysis of SWNTs for investigating the physical properties. I first explained
geometry of SWNTs, where the geometry was defined by chirality (n, m). I then introduced an out-
standing electronic structure of SWNTs based on the van Hove singularity caused from the
one-dimensional system. And, I showed important Raman modes defined as G-band, D-band, and
RBM for characterizing the fundamental geometries of SWNTs. In the discussion of Raman scatter-
ing from SWNTs, resonance Raman effect was also described. After reviewing the basic physics in
SWNTs, I demonstrated Raman imaging of SWNTs deposited on a cover slip, where I elucidated
selective imaging of SWNTs with the basis of the resonance condition and the orientation directions.
Furthermore, I showed an application of Raman microscopy for investigating strain distribution in
SWNTs. The relationship between strain and vibrational modes in SWNTS was discussed, and it

was confirmed that the G-band phonon eigenvectors depended on the tensile and torsional strain.
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According to the relationship, distribution of the strain induced in SWNTs was visualized by Raman
microscopy. Toward the nanometric analysis of the strain in SWNTs, I performed tip-enhanced Ra-
man analysis of structured SWNTSs. As the result of investigation of the G* mode shift, localized
variations of strain properties in the SWNTs were provided at the nano-scale resolution. I was not
able to investigate Raman signals of the RBM and D-band in structured SWNTs because of the
weak Raman intensities, but further physical information such as the diameter and crystalline defect
could be visualized at the nano-scale resolution when the sensitivity of TERS microscopy is im-

proved.
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Chapter 5.
Hybridization of plasmons in gap-mode
of tip-film system

I have demonstrated TERS spectroscopy for analyzing nanomaterials at the nano scale resolution.
Although the tip-enhanced Raman analysis has enabled us to visualize distribution of nanomaterials
with the basis of their physical properties, the sensitivity of TERS spectroscopy has not been enough
to detect weak Raman vibrational modes that have the low scattering efficiency such as D-band in
multilayer graphene and SWNTs. Toward the improvement of the efficiency in TERS, a resonant
excitation of plasmon at a metallic tip is crucial. In this chapter, I discuss tunable plasmon reso-
nances in a nano gap between a metallic tip and a metallic nanofilm in TERS spectroscopy, where a
nanofilm is defined as a film having a nanometric thickness. When a metallic tip is close to a metal-
lic nanofilm, the plasmon hybridization takes place between localized surface plasmons at the tip
and delocalized surface plasmons on two individual surfaces of the nanofilm. The hybridization in-
vokes two plasmon resonance modes that express interesting tunable dependence of the plasmon
resonance on the thickness of the nanofilm. The hybridized plasmon modes are varied in the visible
to near-infrared spectral regions, which allows obtaining the highest enhancement in TERS through
resonant excitation of the localized surface plasmons at the tip apex for any desired excitation suita-
ble for a given sample. In this chapter, I present a theoretical and experimental investigation to un-
derstand how the thickness of the nanofilm influences the resonance energy of the hybridized
tip-film plasmon modes. I first explain a concept of the plasmon hybridization in tip-film system,
and show numerical analysis for understanding physical properties of the plasmon modes depending
on the thickness of the nanofilm. Next, I show a fabrication method for obtaining subnano-scale flat
metallic nanofilms, and uniformly-coated metallic tips. I then present an optical setup to experimen-

tally elucidate plasmon resonance of the plasmon modes, and discuss the experiment results.
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5.1

Plasmon modes and their hybridization in tip-film system

The optical properties of a metallic nanostructure are determined by its plasmon resonances, which
are strongly dependent on the geometry. The tunability of plasmon resonances via the structure has
been one of the reasons for the interest in a rapidly expanding array of metal nanostructure geome-
tries, such as nanorods,l’2 nanorings,3 nanocubes,“’5 and nanoshells.® The resonant excitation of
plasmons can lead to large local enhancements of the incident electromagnetic field at the
nanostructure surface, resulting in dramatically large enhancement of the cross section for optical
spectroscopies such as surface-enhanced Raman scattering, as discussed in Chapter 2. The plasmon
resonance can be modified across the visible to the near-infrared spectral regions by tailoring plas-
monic hybridization of metallic nanostructures.

A metallic tip-film system, composed of a metallic tip apex adjacent to a metallic nanofilm with
a nanometric gap, supports plasmon resonances whose energies are determined sensitively by the tip
and film geometry. In the tip-film geometry, localized SPPs at a metallic tip apex interact with delo-
calized SPPs on a metallic substrate at a nano gap, which generates specific hybridized plasmon
modes. Since plasmonic properties of metal nanostructures strongly depend on their size and geom-
etries, the plasmon hybridization in a tip-film system can be modified by geometries of the film "*
and gap distance.”'" For example, it was reported that localized surface plasmon modes upon an Au
tip apex above an Au substrate could be tuned from 650 to 680 nm with changing the gap distance.”
Although the plasmon resonance has been investigated with various kinds of structures, the tunable
range of the plasmon resonance is limited to such a narrow resonance window. In this section, I
present an idea for greatly expanding the tunable range of the plasmon resonance energies from vis-
ible to near-infrared spectral region. I first give a concept of plasmon hybridization for a nano gap in
a metallic tip-film system.

To facilitate the discussion, I assume that a metallic tip apex works as a metallic nanosphere
and consider plasmon hybridization in a metallic nanosphere-film system to simplify a metallic
tip-film system. A plasmon hybridization at the gap of a metallic nanosphere-film system is a con-
sequence of a plasmon interaction between localized surface plasmons of the nanosphere and delo-
calized surface plasmons propagating on surface of the film. The interaction depends on the relative
size of the nanosphere and the thickness of the film. For a metallic film with large thickness, the in-
teraction is image-like, resulting in a redshift of the plasmon resonances with decreasing the nano-

12,13

sphere-film separation. "~ However, for a metallic nanofilm, the image of the nanosphere does not
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Figure 5.1 (a) Dispersion relations of surface plasmons on a metallic nanofilm in vacuum. The parameters
in the figure indicate a thickness of the nanofilm, which is normalized by wavelength A,, of resonance plasma
oscillation in a bulk of the metal. The vertical and horizontal axes are also normalized by frequency w,, and
wavenumber kp of the plasma oscillation, where kp = w, /c=2m/ /'lp is satisfied. (b) Plasmon density of

states in Au nanofilms with the thickness of 4, 8, 12, 16, and 20 nm.

fit inside the nanofilm, and therefore the plasmonic response is fundamentally different. Surface
plasmon modes of a metallic nanofilm, in particular, are notably changed as the thickness of a metal-
lic nanofilm decreases. This is because surface charges on the upper surface of a metallic nanofilm
start to interact with surface charges on the opposite surface, and the two surface plasmons propa-
gating on the surfaces are no more independent and form two types of coupled plasmon modes; one
is bonding film plasmons with symmetric charge alignment on the two surfaces of the nanofilm, and
the other is anti-bonding film plasmons with anti-symmetric charge alignment on them.'* The proper

equations of dispersion relations for the bonding and anti-bonding modes are written by
glkZZ + gzkzl COth(kzzt/Zl) =0 (51)
glkZZ + gzkzl tanh(kzzt/zl) =0 (52)

where, definitions of &4, €5, k,q, k,, are same as those used in Section 2.1, and t is the thickness of
a nanofilm. The upper and lower equations are for the bonding and anti-bonding modes, respectively,
and the dispersion relations can be described as shown in Fig. 5.1. The red lines are for the bonding
mode, and the black lines are for the anti-bonding mode. The parameters in the figure indicate a
thickness of the nanofilm, which is normalized by wavelength 4, of resonance plasma oscillation
in a bulk of the metal. For instance, the 4, of an Au nanofilm can be estimated to ~ 270 nm.” As

you can see, the dispersion relations of the bonding and anti-bonding modes are considerably
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Figure 5.2 (a) Calculated energetics of the interaction regime for a plasmonic Au nanosphere and the sur-
face plasmons of an Au nanofilm. The plasmonic density of states and the effective continuum of the nanofilm
are illustrated in light blue and dark blue, respectively. The red bars indicate discrete localized plasmon states
of the nanosphere, and the resulting hybridized plasmons are shown in black. (b) The corresponding spectra for
nanofilms of the thickness of 12 (red-solid), 8 (blue-dashed), and 4 nm (black-solid). In this calculation, diam-
eter of the Au particle was 50 nm, and the polarization direction of the excitation light was perpendicular to the

Au nanofilm. [ref. 7, Fig. 2]

separated with the decrease of the nanofilm thickness. Especially, the bonding film plasmons
strongly interact with localized plasmons in a metallic nanosphere and contribute most of the inter-
action because the energies of the bonding film plasmon modes are closer to the energy of the lo-
calized nanosphere plasmon modes (e.g. w/w, =~ 0.5 for localized plasmons of an Au
nanosphere). To facilitate this discussion in a metallic nanosphere-film system, I focus on the con-
tribution from the bonding film plasmons, although the higher energy anti-bonding film plasmons
also play a role. The physical states of surface plasmons in a nanofilm can be intuitively understood
by the density of states. Figure 5.1(b) is calculated plasmon density of states in Au nanofilms with
the thickness of 4, 8, 12, 16, and 20 nm, respectively. The energy of the plasmons increases as the
nanofilm becomes thick, and the density of states takes a stationary state when the thickness is close
to 20 nm. This is because the interaction of surface plasmons between upper film surface and lower
film surface gets low with increasing the film thickness. Thus, the plasmons in a metallic nano-
sphere-film system strongly depend on the nanofilm thickness. The hybridized plasmons in a metal-

> and I would like to

lic nanosphere-film system were well discussed by Nordlander’s group,”
explain the plasmonic properties referring to his theory.’

Nordlander described the plasmon hybridization in a metallic nanosphere-film system using the
spinless Anderson impurity model, in which plasmons are described as incompressible fluid of the

conduction electron gas of the particle."'® Figure 5.2(a) shows calculated energetic regimes between
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(@) Virtual state (b) Localized state

Figure 5.3 Schematic models of charge distributions for (a) virtual state and (b) localized state in
a metallic nanosphere-film system. In the virtual state, localized surface plasmons at the nanosphere
efficiently couple to longer wavelength nanofilm plasmons, while in the localized state the localized
surface plasmons interact only with short wavelength nanofilm plasmons. Note that the size of the

nanofilm is infinite to the in-plane direction.

the discrete plasmon level of an Au nanosphere and the continuum of bonding film plasmon states of
an Au nanofilm. The plasmonic density of states for a nanofilm is illustrated in the light blue. As
shown in Fig. 5.1, the plasmonic density of state for an infinite film is localized at wsp = w,/ V2
of a single metal-vacuum interface, however it is broadened with decreasing the film thickness and
has a continuum state that continuously varies with the wavenumber of the surface plasmons. The
nanofilm plasmons at the continuum state can be effectively hybridized with the localized surface
plasmons of the nanosphere. The effectively-coupled continuum state is defined as an effective con-
tinuum of the nanofilm, which is illustrated in the dark blue in Fig. 5.2(a). The resulting hybridized
plasmons are shown in the black in the figure and form two resonance modes; one is a “virtual state”
and the other is a “localized state”. Figure 5.2(b) shows plasmon resonance energies of their states
with the nanofilm thickness of 4, §, and 12 nm. As you can see, the plasmon resonance energies are
clearly varied by the nanofilm thickness, and in particular, it is expected that the plasmon resonance
at the virtual state can be widely tuned from visible to near-infrared region.

The physical roots of the virtual and localized states can be described using schematic models
of their hybridized plasmons as shown in Fig. 5.3. In the virtual state, the resonance state exists at
energies lower than resonance energy of the localized surface plasmons of the nanosphere, where the
instantaneous charge polarization of the nanosphere follows the incident field adiabatically. This
state is not an eigenstate of the system and can be best described as a superposition of the nanofilm
plasmons of wavelengths larger than twice diameter of the nanosphere, as illustrated in Fig. 5.3(a).

In general, such nanofilm modes would not be excited for a plane wave excitation, but are here ex-
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Chapter B. Hybridization of plasmons in gap-mode of tip-film system

cited because the near-field from the polarized SPPs at the nanosphere couples directly to the surface
charges of sufficiently long wavelength film plasmons through their Coulomb interaction. The larg-
est coupling occurs for nanofilm plasmons with energies equal to the energy of the incident light,
where the nanosphere plays a role of antenna for the nanofilm plasmons. Since the energies of the
bonding surface plasmons w_ of the nanofilm depend strongly on the nanofilm thickness 7 ac-
cording to w_ = wspm as shown in Fig. 5.1, the energy of the virtual state is highly tuned
and decreases with reduced nanofilm thickness. In contrast, the localized state exists above the con-
tinuum state of the nanofilm and is essentially premised on screened localized surface plasmons at
the nanosphere, where the film plasmons align their surface charges with respect to the surface
charges of the nanosphere as shown in Fig. 5.3(b). In this state, due to the energy mismatch between
the localized surface plasmons at the nanosphere and the nanofilm plasmons of wavelengths longer
than the twice of the nanosphere diameter, the interaction is relatively weak and the screening is
predominantly mediated by higher energy short wavelength film plasmons, as shown in Fig. 5.3(b).
Since such film plasmons are only weakly dependent on the nanofilm thickness, the localized state

does not depend strongly on the nanofilm thickness.

5.2

Numerical analysis of film-thickness-dependence on plasmon resonance

In order to understand physical properties on the hybridized plasmon modes in tip-film system, I
first analyzed optical properties of the hybridized plasmons numerically with the usage of FDTD
method. As base materials for the metallic nanofilms and tips, I selected Au because it has been re-
ported that plasmon resonance of Au nanostructures could be widely tuned from the visible to

. : 15,17-24
near-infrared region. ™

In the FDTD calculation for the tip-film system, the geometric structure
of the tip apex was approximated as an Au nanoshpere,” because a metal-coated tip fabricated by
vacuum vapor deposition method forms a nanosphere structure at the tip apex. The Au nanoparticle
was set on an infinitely large Au nanofilm deposited on a glass substrate. The diameter of the Au
nanoparticle was set at 30 nm, and thickness of the nanofilm was varied from 4 to 20 nm. I note that
decay length of electric fields attributed to SPPs on an Au nanofilm into the Au nanofilm can be es-
timated to ~ 30 nm order in visible to near-infrared region, so that the two SPPs on the both surfaces

can efficiently couple to each other under the above condition. The gap distance between the nano-

sphere and the nanofilm was maintained at 2 nm. The gap was then irradiated with a plane light
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Figure 5.4 (a) Schematic illustration of nanosphere and nanofilm system for the FDTD calculation. (b)
Calculated scattering spectra at a nano gap between an Au nanosphere and an Au nanofilm. The diameter of
the Au nanosphere was fixed at 30 nm, and the spectra were calculated for the nanofilm thickness of 4, 8, 12,
16, and 20 nm. (c) Plasmon resonance energy of the nanosphere-nanofilm system as a function of the nanofilm
thickness obtained from Fig. 5.4(b). The black squares and red circles represent the plasmon modes in the lo-
calized state and the virtual state, respectively. The dashed and dotted lines are the best fits obtained by square
exponential curves. (d,e) Electric field distributions of the scattered light for the plasmon resonance at the exci-
tation of 561 nm and 685 nm, respectively, simulated for a combination of 30 nm nanosphere and 8 nm film.
The white dotted lines represent boundaries between different materials. (f) Line profiles for Fig. 5.4(d) and (e)
along a horizontal axis including the center of the nanofilm. The black and the red curves correspond to the

plasmon modes at the excitation of 561 nm and 685 nm, respectively.

wave, which was linearly polarized perpendicular to the surface of the nanofilm (p-polarization) and
most efficiently generated localized surface plasmons at the tip apex. Figure 5.4(a) describes a
schematic illustration of the calculation model. In the above condition, electric and magnetic field
vectors were calculated across a defined region in the nano gap by utilizing the discretized Maxwell
equations in 3D space. Regions of the interest near the gap were divided into unit cells of 1 X 1 x 1

nm’, which was small enough to avoid an artificial field enhancement at corners of the structures.
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Chapter B. Hybridization of plasmons in gap-mode of tip-film system

The dielectric constant of Au was taken from Johnson and Christy parameters.®

Figure 5.4(b) shows calculated scattering spectra from a nano gap of the tip-film system for
nanofilm thickness ranging from 4 to 20 nm, with a nanosphere of diameter 30 nm. As expected, one
can see two resonance peaks that stem from the interaction of continuum SPPs on the nanofilm and
localized SPPs of the nanosphere. Both peak positions, which represent the plasmon resonance
wavelengths, are clearly dependent on the nanofilm thickness and they blueshift with increasing
values of the nanofilm thickness. From the theoretical prediction in Section 5.1, the high-energy
mode is associated with hybridized plasmons at the localized state, and the low-energy mode is
based on hybridized plasmons at the virtual state. The low-energy mode also represents a broad line
shape, thus it is expected that the low-energy mode be attributed to the bonding surface plasmon
modes in the virtual state. I summarized the plasmon resonance energy as a function of the nanofilm
thickness as shown in Fig. 5.4(c). The black squares and red circles represent the plasmon modes in
the localized state and the virtual state, respectively. The dashed and dotted lines are the best fits ob-
tained by square exponential curves. It is clear that the high-energy plasmon mode shifts from 2.0 to
2.3 eV and the low-energy plasmon mode shifts from 1.5 to 2.0 eV, respectively, as the nanofilm
thickness increases. This wide range tunable resonance of the plasmon modes, controllable through
the nanofilm thickness, suggests a potential of precise control of the plasmon resonance energy in
the tip-film system. Figure 5.4(d,e) show cross-section of the electric field distributions around the
gap for the plasmon resonance at the excitation of 561 nm (localized state) and 685 nm (virtual state),
respectively, simulated for a combination of 30 nm nanosphere and 8 nm nanofilm. The white dotted
lines represent boundaries of different materials. The field enhancement is dominantly caused at the
gap in the both cases, which implies that the scattering spectrum essentially represents the plasmonic
property at the gap. Figure 5.4(f) represents line profiles for Fig. 5.4(d) and (e) along a horizontal
axis inside the nanofilm, where the black and red curves correspond to the plasmon modes at the
excitation of 561 and 685 nm, respectively. The line profiles reflect charge distributions in the me-
tallic nanofilm. When a standing wave of charges is generated in the nanofilm, the electrons are
concentrated at nodes of the standing wave, and the electric fields take a maximum value at the cen-
ter between the nodes and have a minimum value at the nodes. In the case of the excitation of 561
nm, three nodes are found with a symmetric distribution at the center of the line profile and the full
width at zero maximum of peaks correspond approximately to the diameter of the nanosphere. Thus,
the charge distribution in the nanofilm will be like the schematic illustration shown in Fig. 5.3(b).
On the other hand, in the case of the excitation of 685 nm, the electric fields are very broad and don’t

have particular nodes and peaks. This means that the charge distribution in the nanofilm will be
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composed of superposition of the standing waves, as shown in Fig. 5.3(a). These results support my
theoretical expectation explained in the previous section.

Here, I should point out the fact that two hybridized plasmon modes are definitely excited in the
nanosphere-film system even though the nanofilm is placed between air and a glass substrate. It is
known that when refractive indices of the surroundings on the upper and lower surfaces of the nano-
film are different, the bonding surface plasmon modes on the nanofilm are not excited due to
wave-vector mismatching between the surface plasmons on the upper and the lower surfaces of the
nanofilm. The FDTD results in Fig. 5.4 imply that bonding plasmon modes in tip-film system can be
locally excited in the close vicinity of the nano gap and generate the virtual state and localized state.
The plasmon hybridization at a nano gap between an Au nanosphere and an Au nanofilm has been

7,15

well investigated by Peter Nordlander in 2005,”” and my calculated results denote the similar ten-

dency to his works.

5.3

Fabrication of metallic nanofilms and metallic tips

For practical experiments to investigate physical properties of the hybridized plasmon modes in a
gap of the tip-film system, I fabricated Au nanofilms and Au tips. Of the wide array of techniques
available for the production of metallic nanofilms, I utilized vacuum vapor deposition that was quite
well suited for producing metallic nanofilms with the precisely controlled thickness at A level. Au
nanofilms were fabricated by vacuum vapor deposition of 99.9999 % pure Au shots from a resis-
tively heated tungsten boat in a turbomolecular-pumped chamber in which high vacuum was pro-
vided down to ~ 107 Torr. Cover slips were used for the evaporation substrates. Prior to the
evaporation, the cover slips were cleaned by sequential sonication process to remove impurities on
them. Evaporation speed and thickness of evaporated metals were monitored, and the evaporation
speed was fixed to 0.2 A/sec. The evaporation was performed under room temperature.

Au nanofilms for the experiments have to be formed with the surface roughness comparable to
subnano scale, because the rough surface of Au nanofilms may generate enhanced fields on the sur-
face asperity.”’ I also would like to avoid radiative decay of non-radiative surface plasmon modes
coupling with propagation light due to diffraction grating effects caused by the surface roughness.”
In order to examine an optimized condition for obtaining a smooth surface of Au nanofilms, I fo-

cused on the degree of vacuum during the metal evaporation. Figure 5.5(a,b) show AFM images of
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Figure 5.5 (ab) AFM images of Au nanofilm with the thickness of 4 nm evaporated under 2.0 x 107 and 3.0 x
10 Torr, respectively. The evaporation speed was fixed to 0.2 A/sec, and the evaporation was performed under
room temperature. The measured area is 1 x 1 umz. (c,d) Line profiles of AFM images in Fig. 5.3(a) and (b), re-

spectively. The SDEV represents standard deviation of their surface topography.

Figure 5.6 SEM image of an Au-coated silicon tip with the Au thickness of 30 nm.
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Au nanofilms with the thickness of 4 nm produced under 2.0 x 107 and 3.0 x 10° Torr, respectively.
Comparing the two AFM images, Au nanofilms produced under higher vacuum condition give the
much smoother surface. For the quantitative verification of their roughness, I plotted line profiles of
the surface for their AFM images as shown in Fig. 5.5(c,d). I also introduced standard deviation
(SDEV) of the height distribution as the characteristic roughness parameter. As you can see, rough-
ness of Au nanofilms under 2.0 x 107 Torr is twice as small as that under 3.0 x 10 Torr. In the high
vacuum condition, the number of impurity atoms in vacuum chamber is reduced, and the possibility
of collision of the impurity atoms onto an evaporated metal surface is decreased during the evapora-
tion. Therefore, it is concluded that higher vacuum condition is suitable for obtaining the smoother
nanofilms. I adopted the 2.0 x 107 Torr condition for fabrication of Au nanofilms with the any
thickness.

For fabrication of Au tips, I coated Au on a silicon cantilever tip by vacuum vapor deposition
method. The vacuum degree was kept around 2.0 x 107 as well as the case of Au nanofilms. Figure
5.6 represents a SEM image of the Au-coated silicon tip with the Au thickness of 30 nm. In this
SEM measurement, I applied an accelerating potential of 15 kV to electrons in order to see interfaces
between the coated Au and the silicon tip, where a part of the electrons could pass through the Au
layers. As you can see, Au layers coated on a cantilever tip are clearly observed, and thickness of
the Au layer is uniform around the tip apex. It is also confirmed that the diameter of the Au
nanostructure at the tip apex is ~ 30 nm that corresponds to the thickness of the evaporated Au layers.
Hence, it is concluded that the thickness of the Au layer on a cantilever tip is precisely controlled by

the vacuum vapor deposition method.

54

Construction of optical setup for scattering measurement

In this section, I explain an experimental setup for analyzing plasmon resonance energy in a nano
gap of the tip-film system. Plasmon resonance energies in a nano gap between a metallic tip and a
metallic nanofilm can be investigated by scattering spectra from the gap. For the scattering meas-
urement, | constructed an optical setup that was based on dark-field optical microscopy as shown in
Fig. 5.7.

First of all, Xenon lamp passing through a pinhole of 50 um, which was utilized as a white light

source, was collimated with an achromatic lens. It was introduced into an inverted objective lens
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Figure 5.7 Optical system for scattering measurement from a gap between a metallic tip and a

metallic nanofilm. BS is a beam splitter.

through two achromatic lenses (fi, f;) and a mask that rejected the low NA components (NA < 1).
The mask was located at the conjugated plane of the pupil of the objective lens, as illustrated in Fig.
5.7. The white light was illuminated on a surface of the metallic nanofilm with the objective lens
having the high NA equal to 1.4 (Nikon, Plan Apo), where the white light generated an evanescent
field. Then, a metallic tip was approached and moved at the focused position, where a distance be-
tween the tip and the substrate was precisely controlled by a feedback system using a quadrant de-
tector. When a metallic nanofilm was set as the substrate, the gap-mode configuration was
completed. After the tip adjustment, scattering light from the gap between the tip and the nanofilm
was collected by a long working distance objective lens having the NA of 0.28 (Mitsutoyo, Plan
Apo), and lead to a spectrometer through an optical fiber. A part of the scattering light was also
guided to a CCD camera for adjusting position of the long working distance objective lens. The
scattering light was dispersed by a grating, and focused on a liquid nitrogen cooled CCD camera
(Roper, 1340 x 400 channel, -100 C°). The grating had blaze wavelength of 600 and 1200 lines/mm

that was chosen according to the necessary spectral resolution.
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5.5

Experimental results

I here show scattering spectra in a nano gap of the Au tip-film system, and discuss the plasmon res-
onance modes. Figure 5.8(a) represents scattering spectra from a nano gap in the Au tip-film system
measured with the nanofilm thickness of 4, 8, 12, 16, 20 nm, and without a nanofilm, respectively.
The diameter of the Au tip was 30 nm for the all spectra. In the scattering measurements, the Au tip
apex was contacted on the Au nanofilm, in which a gap distance between the tip and the nanofilm
was estimated to less than 1 nm. This is because the Au nanofilms have a roughness of ~ 0.3 nm and
the tip apex of 30 nm cannot contact to bottom of surfaces of the nanofilms. These spectra were cor-
rected for background signals by the subtracting spectra obtained without the tip from corresponding
spectra obtained with the tip. The each background-subtracted spectrum was divided by a spectrum
of the incident light for the normalization. Finally, the spectra were offset on intensity scale for their
facile visualization. The procedure for the normalization can be easily understood by using equations.
The intensity of the scattering and incident light must be described as a function of wavelength, and I
put them as Scat(1) and Inci(A), respectively. The filed enhancement in a nano gap should also
depend on the wavelength, and it can be depicted as E(1). The background scattering light can be

written as Back (4). Using these assumptions, the scattering light is described by

Scat(1) = EQQ1) x Inci(1) + Back(1) (5.3)
This equation can be solved for the field enhancement, and it is finally written as

EQ) = (Scat(d) — Back(1))/Inci(d) (5.4)

Therefore, the procedure for the normalization of the scattering spectra exactly follows Eq. (5.4). 1
here note that the background scattering light should not be observed without a metallic tip because
the incident light excites non-radiative surface plasmons or is totally reflected on the glass substrate.
Actually, however, the background scattering light was always detected in my experiments, which
was probably owing to radiative decay of surface plasmons on metallic nanofilms by the sub-
nano-scale surface roughness.”

As shown in Fig. 5.8(a), two plasmon resonance modes are observed in the all spectra, which
are associated with the bonding surface plasmon modes at the localized state and the virtual state.
For the 12 nm nanofilm, two Lorentzian curves were performed to estimate the peak positions. The

both modes appear in the visible to the near infrared region, and their peak positions change signify-
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Figure 5.8 (a) Scattering spectra of Au tip-film system measured with film thickness of 4, 8, 12, 16, 20 nm,
and without a nanofilm, respectively. The diameter of the Au-coated tip was 30 nm for all spectra. The two
dotted lines for 12 nm nanofilm represent Lorentzian fittings. The arrows indicate the plasmon resonance peaks
that shift with the nanofilm thickness. (b) Plasmon resonance energy of the tip-film system as a function of the
nanofilm thickness obtained from Fig. 5.8(a). The squares and the circles in (i) and (ii) represent the higher and
the lower energy modes, respectively. The dashed and dotted lines are the best fits obtained by using square

exponential curves to guide the eyes.

cantly with the nanofilm thickness. This behavior of experimentally observed spectra is akin to my
FDTD calculation in Fig. 5.4. Note that polarization of the incident white light in this experiment
includes not only the p-polarization components but also the s-polarization components, however the
plasmon interaction between the tip and the nanofilm should dominantly occur by the p-polarization.

The plasmon resonance energy as a function of the nanofilm thickness was plotted in Fig.
5.8(b) for a better visualization of the plasmon modes observed in Fig. 5.8(a). Since the plasmon
resonance energy is expected to change continuously with the nanofilm thickness, the experimental
results were fitted by two least square exponential curves, which guides the eyes. They are predicted
to be associated with the lower and the higher energy modes, respectively, although the higher en-
ergy mode is observed only for the nanofilms with thickness 4, 8, and 12 nm. The lower plasmon
energy is noticeably blueshift from the near-infrared to visible region with increasing the nanofilm
thickness. One the other hand, the higher energy mode shows much weaker dependence on the

thickness. These results are well corresponding to my prediction in Section 5.1. Interestingly, the
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resonance energy of the lower plasmon modes also goes close to the plasmon energy of the Au tip
without a nanofilm by an increase of the nanofilm thickness. Although the plasmon energy of the Au
tip is slightly red-shifted with the nanofilm, it is clear that the modification of the plasmon energy is
small. In terms of the intensities, the relative intensity of the lower mode versus the higher modes
becomes stronger with increasing the nanofilm thickness as shown in Fig. 5.8(a). Both the shift and
relative intensities of the two resonances follow a similar pattern to what was observed in the earlier
study of plasmon resonances of a solid Au nanosphere on Au nanofilms.” Furthermore, the lower
plasmon resonance energy gradually approaches the higher plasmon resonance energy for thicker
nanofilms. This is because the lower and higher plasmon modes are expected to finally end up to the
same energy for significantly thick nanofilms, owing to the weak coupling of the surface plasmons
between the two surfaces of the thick films. Indeed, Notingher et al. reported that plasmon resonance
energy in a nano gap between an Au tip with the apex diameter of 20 nm and a thick Au substrate
was estimated to ~ 530 nm,'" which nearly corresponds to the plasmon resonance energy of ~ 550
nm observed in my tip-film system for the 20 nm nanofilm. These results emphasize that the lower
plasmon resonance energy in the tip-film system can be precisely manipulated by selecting the nan-
ofilm thickness.

To further expand tunable range of the plasmon resonance energy in the tip-film system, I
changed size of the tip apex diameter. It has been reported that plasmon resonance energies in nano-
sphere-nanofilm system depend on an intrinsic plasmon energy of the nanosphere, and the plasmon
resonance energy in nanosphere-nanofilm system is dramatically altered by a diameter of the nano-

72223
sphere.”™

The plasmonic interaction between a metallic nanosphere and a metallic nanofilm be-
comes weak with decreasing a diameter of the nanosphere when the gap distance is kept constant,
and therefore the plasmon resonance energy is blueshift. Hence, the plasmon resonance energy in
the tip-film system is also expected to depend on the size of the tip apex diameter.

I prepared an Au-coated tip with the apex diameter of 15 nm, and measured scattering spectra
in a nano gap of the tip-film system using the 15 nm Au tip under the same optical configuration as
before. Figure 5.9(a) represents scattering spectra from the tip-film gap measured with the nanofilm
thickness of 4, 8, 12, 16, and 20 nm, respectively. The black arrows indicate plasmon resonance
peaks of the scattering spectra. These spectra were treated according to Eq. (5.4) for the normaliza-
tion. Although two plasmon resonance modes are observed only for the nanofilm with the thickness
of 4 nm, the plasmon mode at the virtual state clearly shows the blueshift from 700 to 520 nm with
increasing the nanofilm thickness. As shown in Fig. 5.9(b), I plotted the tunable range of the plas-

mon resonance energy at the virtual state in the tip-film system with Au tips having the diameter of
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Figure 5.9 (a) Scattering spectra of Au tip-film system measured with film thickness of 4, 8, 12, 16, and 20
nm, respectively. The diameter of the Au-coated tip was 15 nm for all spectra. The arrows indicate the plasmon
resonance peaks. (b) Plasmon resonance energy of the bonding modes in the tip-film system with Au tips hav-
ing the apex diameter of (i) 15 and (ii) 30 nm, as a function of the nanofilm thickness obtained from Fig. 5.8(a)
and Fig. 5.9(a), respectively. The blue circles in (i) and (ii) represent the higher energy plasmon modes in the

tip-film system. The dotted lines are the best fits obtained by using square exponential curves to guide the eyes.

(1) 15 nm and (ii) 30 nm. The dotted lines are the best fits obtained by using square exponential cur-
ves to guide the eyes. As one can notice from Fig. 5.9(b), the plasmon resonance energies obtained
with the tip diameter of 15 nm are entirely blue-shifted with respect to those obtained with the tip of
30 nm for every value of the nanofilm thickness. The blueshift of the plasmon resonance energy is
associated with the change of the localized surface plasmon energy at the tip apex for the two tips. It
is well known that the plasmon resonance energy of a metallic nanoparticle is blue-shifted with the
decrease of the diameter due to quantum size effect of the surface plasmons, therefore the plasmon
resonance at the tip apex is expected to be blue-shifted by using the 15 nm diameter tip comparing
with the 30 nm diameter tip. Since the plasmon resonance energy in the tip-film system results from
the plasmon hybridization between the localized surface plasmons in the tip and the delocalized sur-
face plasmons on the nanofilms, the hybridized plasmon mode is blue-shifted according to the
blueshift of the localized surface plasmons at the tip. The quantitative understanding of the energy
shift is yet to be fully examined, but it could be addressed with the FDTD calculations. This result

indicates that tunable range of the plasmon resonance energy in the tip-film system can be further

94



5.5 Experimental results

—
O
-~

N N W
o o1 O
Scattering intensity
777
> )
3 3

o
pleY 3

5(|)0 6(|)0 7(|)0 8(|)0 9(|)0 1OIOO
Wavelength [nm]
Figure 5.10 (a) FDTD calculation of field distribution near a nano gap between an Au-coated silicon tip and
an Au nanofilm. The apex diameter of the tip is 30 nm, the thickness of the nanofilm is 8 nm, and the gap dis-
tance is kept to 2 nm. Since a length of the tip should have a few hundreds of micrometer, the opposite side of
the tip apex is located in a perfect matching layer. The field distribution is described at the excitation of 595 nm.
(b) Calculated scattering spectra at a nano gap in Fig. 5.8(a). The spectra were calculated for the film thickness

of 4,8, 12, 16, and 20 nm.

extended by the apex size of the metallic tip. I also note that the signal to noise (S/N) ratio of the
scattering spectra from the gap is decreased when the size of the tip apex is reduced from 30 to 15
nm, comparing Fig. 5.8(a) with Fig. 5.9(a). This is because scattering efficiency (/) from a metallic
nanosphere depends on the diameter (d) following to I o d® by Rayleigh scattering theory,™ and
therefore scattering intensities from the gap between the Au tip and the Au nanofilms are also de-
creased using the small diameter tips. Furthermore, the S/N ratio is decreasing as the increase of the
nanofilm thickness. This is because the amount of white excitation light transmitted to the tip apex
through the nanofilms is decreased as the nanofilm thickness becomes thicker.

These experimental results imply an important fact that a metallic tip apex works as if it is a
metallic nanosphere. I show FDTD calculation for an Au tip-film system as shown in Fig. 5.10. In
the calculation, I calculated field distribution near a nano gap between an Au-coated silicon tip and
an Au nanofilm. The apex diameter of the tip was 30 nm, the thickness of the nanofilm was 8 nm,
and the gap distance was kept to 2 nm. Since a length of the Au-coated silicon tip should have a few
hundreds of micrometer, the opposite side of the tip apex was located in a perfectly matched layer

that strongly absorbed outgoing plasmon waves along the tip surfaces without reflecting them back
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Chapter 5. Hybridization of plasmons in gap-mode of tip-film system

into the interior. The vertically polarized white light was input from the left side for the plasmon ex-
citation. As you can see, strong field enhancement is observed at the nano gap as well as the case of
nanosphere-film system in Fig. 5.4(d) and (e). However, the calculated scattering spectra from the
gap in the tip-film system are quite different from the calculated spectra for nanosphere-film system,
as shown in Fig. 5.10(b). The plasmon resonance energy doesn’t show any particular resonance en-
ergy for the 12, 16, and 20 nm thicknesses, and the line shape is widely broadened from the visible
to the near infrared region. This is due to the tip length having the micro-scale size in this calculation.
The surface plasmons excited at the tip apex can propagate along surfaces of the tip and cannot be
localized, so that the surface plasmons don’t indicate the particular plasmon resonance energy. Thus
the scattering spectra in the gap of the tip-film system represent the broad lineshape shown in Fig.
5.10(b). In my experiment obtained in Fig. 5.8 and Fig. 5.9, scattering spectra from a nano gap be-
tween an Au tip and an Au nanofilm evidently showed the plasmon resonance peaks, indicating an
excitation of localized SPPs at the tip apex. Thus, it is concluded that an apex of the fabricated me-
tallic tips works as a metallic nanoparticle. This discussion gives an important idea that geometry of
a metallic tip apex for the FDTD analysis of the field enhancement has to be carefully considered,
because the real geometry of the fabricated tips is usually composed of nanometric metal grains on

the surfaces as shown in Fig. 2.8.

Summary

I have explained hybridization of plasmons in gap-mode of tip-film system. I described a concept of
the plasmon hybridization between localized surface plasmons at the tip apex and delocalized sur-
face plasmons on surfaces of the nanofilm, where the two resonance modes at the virtual state and
the localized state existed. In particular, the plasmon resonance energies at the virtual state were
dramatically varied by a thickness of the nanofilm, due to film-thickness-dependence of a coupling
of the surface plasmons on the both surfaces of the nanofilm. To prove the hybridized plasmon
modes, I calculated scattering spectra from a nano gap in an Au tip-film system using FDTD method.
The calculated scattering spectra represented two plasmon modes that shifted in the visible to the
near-infrared region according to thickness of the nanofilm. For the experimental investigation, I
fabricated Au nanofilms and Au tips by vacuum vapor deposition method, where it was confirmed
that the Au nanofilms had a subnano-scale roughness and the tips were uniformly coated by Au lay-

ers. I then presented an optical setup, which was based on dark-field optical microscopy, to experi-
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mentally elucidate the plasmon resonance modes in the Au tip-film system. I measured scattering
spectra from the nano gap with Au nanofilms of 4, 8, 12, 16, and 20 nm thicknesses, and with an Au
tip having the apex diameter of 30 nm. As a result, two plasmon resonance modes were observed in
the spectra, in which the both resonance peaks appeared from 870 to 520 nm and their peak posi-
tions changed significantly with the nanofilm thickness. This behavior of the experimentally ob-
served spectra was akin to the FDTD calculation. I also utilized an Au tip having the diameter of 15
nm, and confirmed that the plasmon resonance energies were entirely blue-shifted with respect to
those obtained using the Au tip having the diameter of 30 nm for every value of the nanofilm thick-
ness. The blueshift of the plasmon resonance energy was associated with the energy shift of the lo-
calized surface plasmons at the tip apex for the two tips. Finally, I discussed geometry of an Au tip
apex and gave an important idea that the Au tip apex could work as if it was an Au nanosphere in the

tip-film system.
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Chapter 6.
TERS measurement of gap-mode of tip-film system

I have presented plasmon hybridization in gap-mode of a metallic tip-film system, in which the res-
onance plasmon energy was varied by the thickness of the nanofilm. The tunable plasmon resonance
in the tip-film system can be expedient for obtaining the highest value of field enhancement in TERS
when it is required to use a particular excitation wavelength suitable for a given sample. In this last
chapter, I intend to evaluate the enhancement in Raman signals at a nano gap in the metallic tip-film
system. To elucidate the enhancement, I measure TERS of a sample at the nano gap by varying the
thickness of the nanofilms. Then, I estimate enhancement factor of the Raman signals in the tip-film

system, and discuss superiority of the gap-mode TERS using a metallic nanofilm.

6.1
TERS spectra in gap-mode of tip-film system

For Raman measurements in gap-mode TERS spectroscopy, I utilized a self-assembled monolayer
of 4-ATP molecules adsorbed on Au nanofilms. This is because the molecular height of 4-ATP is ~
0.7 nm and the geometry of the SAM is uniform over surface of the Au nanofilms. I prepared a
SAM of 4-ATP molecules on Au nanofilms of different thicknesses ranging from 4 to 16 nm by
following to the preparation method introduced in Section 2.3.2. For the Raman measurements, I
used an optical system of TERS microscopy introduced in Section 2.2. For the excitation, sin-
gle-mode diode laser (A = 642 nm) was used, where resonance Raman effect can be negligible due to
weak absorption of 642 nm light by 4-ATP molecules. An Au-coated tip with an apex diameter of
30 nm was utilized, and the tip was brought in contact with the sample. In this configuration, the tip

and the nanofilm were kept with a nano gap corresponding to length of the 4-ATP molecules.
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Figure 6.1 TERS spectra from a monolayer of 4-ATP molecules sand-
wiched between an Au-coated tip with the apex diameter of 30 nm and Au

nanofilms with the individual thicknesses.

Figure 6.1 shows examples of TERS spectra taken from the monolayer of 4-ATP molecules
sandwiched between the tip and the nanofilms with the thickness of 4, 8, 12, and 16 nm, respectively.
These spectra represent the normalized pure near-field Raman signals (that is, the far-field Raman
signals are subtracted). The intensities of the TERS spectra slightly depended on the position of the
sample surface because the Au nanofilms didn’t have the atomic-scale flatness. Therefore, I meas-
ured the TERS spectra from different 25 points, and calculated the average intensities. TERS spectra
shown in Fig. 6.1 were chosen from a spectrum nearest to the average. In addition, since TERS from
the samples was detected by transmitting through Au nanofilms, I considered absorption of the
TERS by the Au nanofilms in order to normalize intensities of the TERS spectra. As shown in Fig.
6.1, several Raman modes were observed at 1078, 1141, and 1179 cm'l, which could be assigned to
various vibrational modes of 4-ATP molecules. Since these spectra are purely enhanced spectra, all
these modes represents enhancement in the Raman signals at the gap between the tip and the nano-
film. Interestingly, the each Raman spectrum shows slightly different shapes. For example, the Ra-
man spectrum for the 12 nm nanofilm shows the maximum intensity at 1078 cm™, while the Raman
spectrum for the 8 nm nanofilm indicates the maximum intensity at 1179 cm™. This phenomenon is
due to the chemically enhanced modes of 4-ATP molecules at a nano gap in tip-film system. As I
explained in Section 2.3.5, chemically enhanced modes of 4-ATP molecules can be dramatically
excited in such metallic junctions, and the vibrational energy can be perturbed depending on the ad-

sorption angle or adsorption site. Judging from assignment of the 4-ATP vibrational modes in Table
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2.1, the both modes at 1078 and 1179 cm™" are based on the a; modes (due to electromagnetic effect).
It appears not to be related to the chemical effect in SERS, however the Raman mode at 1179 cm
can be disturbed by the Raman mode at 1141 cm” that is associated with the b, modes (due to the
chemical effect). Indeed, the Raman peak at 1179 cm’ for the 8 nm nanofilm in Fig. 6.1 is over-
lapped with a peak at the left shoulder. Therefore, the Raman intensities at 1179 cm™ may undergo
some changes. For this reason, I adopted the Raman mode at 1078 cm™ to evaluate the field en-

hancement in gap-mode of this tip-film system.

6.2

Film-thickness-dependence of Raman enhancement

As shown in Fig. 6.1, the Raman spectrum measured for the 12 nm nanofilm showed distinctly larg-
er enhancement at the 1078 cm™ in comparison with the spectra measured with both thinner and
thicker nanofilms. Thus I can conclude that the Raman enhancement indicates a clear dependence on
the nanofilm thickness, and that the enhancement selectively increases for a particular value of the
nanofilm thickness. In order to quantitatively evaluate the enhancement, I calculate enhancement
factors at the gap as a function of the nanofilm thickness.

The enhancement factor for Raman scattering is defined as an intensity ratio of the enhanced
Raman spectra to the spontaneous Raman spectra from molecules in a unit volume under same ex-
perimental condition."” The enhancement factor (EF) can be described by

lyap/Ngap

EF =

— (6.1)
Ipuik/ Npuik

where Iyq, represents an enhanced intensity of a Raman mode in the TERS spectrum observed in
the nano gap, and I, is an intensity of the same Raman mode in the spontaneous Raman spec-
trum. Ng,, expresses the number of 4-ATP molecules within a volume of the enhanced field at the
nano gap, and Ny, is the number of 4-ATP molecules in a solid sample within the focal volume.
For the estimation of the enhancement factor, I utilized Raman intensity at 1078 cm’, which is
mainly attributed to electromagnetically enhancement in the TERS as discussed in previous section.
Nyqp 1s estimated by an area of the enhanced field at the nano gap and a packing density of the
4-ATP molecules on Au nanofilms. The lateral size of the enhanced field can be roughly estimated

by the FDTD results in Fig. 6.2(a), and it is estimated to 17 nm from a line profile of the field
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Figure 6.2 (a) Calculated field distribution around the tip-film gap for 12 nm nanofilm, excited at 624 nm
wavelength (the lower resonance mode). The tip diameter was set to 30 nm. (b) Line profile of field distribu-
tion along the horizontal axis including the highest value in Fig. 6.2(a). (c,d) TERS and spontaneous Raman

spectra of 4-ATP molecules excited at 642 nm wavelength, respectively.

distribution along the horizontal axis including the gap as shown in Fig. 6.2(b). The each 4-ATP
molecule occupies ~ 0.20 nm” on full coverage of an Au nanofilm.” As a result, Ngqp 1s eventually
estimated to 1.1 x 10°. Npe can be estimated by a volume of the laser focus in the far-field Raman
measurement and the density of solid 4-ATP (1.18 g/cm”®). The volume of the laser focus is consid-
ered as an ellipsoidal body with the long axis of the focal depth and the short axis of lateral size of
the focus. Following the consideration of the density, the focal volume, and Avogadro constant,
Ny is estimated to 5.5 x 10'. For obtaining Raman intensities of Iy, and Iy, [ measured the
TERS and spontaneous spectra of 4-ATP molecules as shown in Fig. 6.2(c) and (d), respectively.
The both spectra were taken under the same exposure time and same laser intensity. Finally, I as-
signed these estimated values to Eq. (6.1), I calculated the Raman enhancement factor in this Au
tip-film system.

Figure 6.3(a) shows the calculated enhancement factor as a function of the nanofilm thickness,
which is varied from 4 to 16 nm. In order to obtain high reliability in the results, the enhancement
factor was averaged from 25 measurements. The maximum extents of their experimental errors are

represented by the error bars, which probably come from a possible variation in the sample packing
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Figure 6.3 (a) Enhancement factor in TERS measurement as a function of the nanofilm thickness. The error
bars represent the maximum extent of the experimental error in 25 identical measurements. (b) Plasmon reso-
nance energy in this tip-film system from Fig. 5.6(b) to compare the resonance condition in this tip-film system
with the energies of the incident light at A = 642 nm and the scattering light at L = 689 nm that corresponds to

Raman scattering from 4-ATP molecules at 1078 cm™.

density on the nanofilm and from temporal fluctuation of apparatus in the optical system. As shown
in Fig. 6.3(a), the enhancement factor indicates a clear increase only for the nanofilm thickness of 12
nm, which was also seen from the spectra shown in Fig. 6.1. This result can be explained by the fact
that the hybridized plasmon resonance is tuned well for the excitation wavelength. I referred the
plasmon resonance energy in a gap of this tip-film system, which was discussed earlier for the Au tip
with the apex of 30 nm in Fig. 5.6(b), and also described the energies of the incident light at A = 642
nm and the scattering light at A = 689 nm that corresponds to Raman scattering from 4-ATP mole-
cules at 1078 cm™ as shown in Fig. 6.3(b). As you can see, the incident and scattering light should be
strongly resonant with the hybridized plasmons at the nanofilm thickness of 8 nm, rather than 12 nm.
This confliction is understood by the effect of the 4-ATP molecules adsorbed on Au nanofilms. The
refraction index of 4-ATP molecules is ~ 1.5," so that the plasmon resonance energies in the tip-film
system can be modified by the presence of the 4-ATP molecules. Since the scattering measurement
for investigating the plasmon resonance energies was performed in air without 4-ATP molecules, its
energies can be slightly red-shifted. Namely, the resonance curves in Fig. 6.3(b) can be entirely
down-shifted by the existence of the 4-ATP molecules. Thus, the thickness of 12 nm could give the
maximum Raman enhancement in the TERS measurement. To confirm the energy shift of the plas-
mon resonance by the adsorption of 4-ATP molecules on a nanofilm, I measured extinction spectra

of 4-nm Au nanofilms with and without 4-ATP molecules as shown in Fig. 6.4. As you can see,
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Figure 6.4 Extinction spectra of 4-nm Au nanofilms (red) with and (black) without 4-ATP mole-

cules. The peak position of the resonances is red-shifted from 654 to 674 nm with 4-ATP molecules.

the peak position of the resonances is red-shifted from 654 to 674 nm with 4-ATP molecules. If a
comparable energy shift of the resonance is adopted to the Au tip-film system, the resonance condi-
tion of the Au tip-film system at the 12-nm nanofilm goes into resonance window between the inci-
dent and excitation energies, while that at the 8-nm nanofilm deviates from the resonance window.
The precise amount of the energy shift can be estimated by the FDTD calculation. One also notices
that the field enhancement for the 4 nm nanofilm is not the minimum among the four different nano-
film thicknesses examined here, though the plasmon resonance is expected to be the farthest from
energy of the excitation laser for this nanofilm thickness. I believe that this is due to the general ob-
servation that thin films provide larger electric field enhancements than thick films due to the sym-
metrically aligned surface charges, as illustrated in Fig. 5.1(a).” For a nanofilm, the surface charges
on the bottom surface of the nanofilm contributes significantly to the field enhancement in the junc-
tion because of their proximity. These results indicate that nanofilm thickness has a crucial role for
the field enhancement at a nano gap between a metallic tip and a metallic nanofilm, and a proper
selection of the nanofilm thickness can result in huge enhancement through plasmon hybridization
between the tip and the nanofilm.

I also discuss the enhancement factor in gap-mode of this tip-film system. The enhancement
factor was estimated to 0.5 — 1.2 x 10’ order with the any nanofilms as shown in Fig. 6.3. Given that
Raman enhancement factor at a metallic tip apex without metallic nanofilms was estimated to be ~
313 as discussed in Section 3.3, the enhancement factor was greatly improved with the use of the
nanofilms. Comparing with other researcher’s results, the enhancement factor in my gap-mode

TERS was comparable with that reported by Raschke (Au tip and Au substrate, ~ 5 x 10%),* Zenobi
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(Ag tip and Au substrate, ~ 9 x 10°),” and Pettinger groups (Au tip and Au substrate, 1.6 x 10°).° The
optical configuration and samples used in these articles are different each other including my ex-
perimental condition, therefore the enhancement factor indicates a certain level of dispersion.

The enhancement factor of my gap-mode system could be further improved with the usage of
an atomically flat Au surface. Au nanofilms that I used have subnano-scale roughness on the surface
as shown in Fig. 5.3, which gives background SERS of sample molecules at junctions of the asperi-
ties on the nanofilms. As a result, Raman signals from a gap between a metallic tip and a nanofilm
are buried in the background noise. Hence the enhancement factor is estimated to as a small value as
it should be. The roughness on Au nanofilms can be reduced using an adhesion layer such as chro-
mium, but vacuum vapor deposition method is not essentially suitable for the fabrication of the
atomically flat surface due to the surface tension of Au atoms. Although citrate reduction of HAuCly
was suggested for the synthesis of ultraflat Au nanoplates, subnano-scale roughness (~ 0.2 nm) was

formed on the nanoplates.” The decrease of roughness on metallic nanofilms remains to be solved.

Summary

I have studied field enhancement at a nano gap between an Au tip and an Au nanofilm by measuring
TERS spectra of 4-ATP molecules at the gap. It was found that the TERS intensity at the gap de-
pended on the nanofilm thickness. I calculated Raman enhancement factor at the gap by intensities
of an electromagnetically enhanced Raman mode of the 4-ATP molecule, and confirmed that the Au
tip-film system gave the largest enhancement factor of ~ 1.2 x 10" under the plasmon resonance
condition with the excitation laser, where the effect of 4-ATP samples was considered. This ap-
proach of tuning the plasmon resonance energy by changing the nanofilm thickness could provide
significant improvement of the filed enhancement. The enhancement factor could be further im-
proved with the usage of atomically flat nanofilms, because junctions of asperities on the nanofilms
would give background SERS of the sample molecules. The decrease of roughness on metallic nan-
ofilms remains to be solved for further improvement of the sensitivity of gap-mode TERS using

metallic nanofilms.
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Conclusion

In this dissertation, I have addressed plasmon hybridization in the gap between a metallic tip and a
metallic nanofilm for tip-enhanced Raman analysis of nanomaterials. I pointed out the necessity of
improving sensitivity of TERS microscopy through the demonstration of TERS imaging of car-
bon-based nanomaterials. I then suggested a tunable plasmon hybridization system in which the
plasmon resonance energies at the tip-film gap could be adjusted for the resonant excitation of plas-
mons by a thickness of the nanofilm, and I confirmed that the tunable plasmon resonance was useful
to enhance the sensitivity in tip-enhanced Raman analysis.

The substance of this dissertation is to improve the sensitivity of TERS microscopy, and the
metallic nanofilm is certainly the key geometry for it. On the other hand, such a metallic nanofilm
has a subnano-scale roughness on the surface, which dramatically increases the background noise in
the gap-mode TERS system as discussed in Chapter 5 and 6. Therefore, fabrication of atomically flat
nanofilms is one of the most important issues. Single-crystalline Au nanoplates with a uniform face
orientation or a template-stripping Au substrate * might be a good candidate as the nanofilms.

The required measurement time for taking one TERS image is directly dependent on the sensi-
tivity of TERS microscopy, and that is, on the enhancement in Raman signals at a metallic tip apex.
The enhancement factor at a metallic tip apex is extremely improved with the usage of a metallic
nanofilm. In fact, a metallic tip approached on a metallic nanofilm gave more than 3.8 x 10* times
higher enhancement in the TERS than the metallic tip without the metallic nanofilm, as discussed in
Chapter 6. Therefore, the measurement time for TERS imaging in the gap-mode system should be
reduced down to less than one second ideally, although the measurement time is limited by tracking
speed of a metallic tip apex on a sample surface. If the gap-mode TERS system can be operated with
high-speed AFM system’, video-rate TERS imaging of molecular dynamics might be realized. The
investigation of the measurement time in gap-mode TERS is the important issue remaining in this
research.

Evaluation of spatial resolution of the gap-mode TERS microscopy using metallic nanofilms is
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also a challenging topic in the future. As I introduced in Section 2.4, the spatial resolution in
gap-mode TERS microscopy is generally much better than that in TERS microscopy without metal-
lic nanofilms. In addition, the hybridized plasmons in the gap invoke two resonance modes, and the
two resonance modes have a different field distribution around the gap. Therefore, the spatial resolu-
tion in the gap-mode TERS microscopy would depend on the plasmon modes. It is also possible that
the spatial resolution depends on a thickness of the nanofilm.

New physics would be identified when we could observe the nano-scale world with light. The
importance of tip-enhanced Raman microscopy would be rising along with the development of nano

science in the future. I hope this dissertation will be conducive to such the nano-scale investigation.
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