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General Introduction 

 

An Overview of Photosynthesis 

 

Two types of photosynthesis 

Photosynthesis is one of the most important biological processes largely responsible 

for primary production on the earth.  It converts solar energy to chemical free energy and 

generates physiological reducing power required for many metabolic processes including 

inorganic carbon assimilation.  Although there are so many kinds of photosynthetic 

organisms, their photosynthetic reaction systems can be classified into two classical groups in 

terms of the oxygen-evolving ability: oxygenic and anoxygenic photosynthesis.  The most 

flourishing and widely distributed photosynthetic organisms on the present earth are oxygenic 

phototrophs, such as plants, algae, and cyanobacteria, which utilize water as an electron source 

for their growth and evolve oxygen as a byproduct of water cleavage reaction.  It is 

considered that oxygenic phototrophs had emerged in the ancient ocean ca. 3.5 billion years 

ago [1], and oxygen released from water cleavage gradually changed the anaerobic 

atmosphere into the present aerobic one.   

On the other hand, all of prokaryotic phototrophs other than cyanobacteria, such as 

purple bacteria, green sulfur bacteria, heliobacteria, and filamentous anoxygenic 

photosynthetic bacteria (FAPs), are anoxygenic ones, which are most commonly called 

‘photosynthetic bacteria’[1-4].  A classification of photosynthetic organisms by means of the 

oxygen evolving ability and the types of reaction center complexes (as mentioned below) is 

summarized in Table G-1.  In contrast to oxygenic phototroph, anoxygenic ones do not 
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evolve oxygen because they utilize organic and/or inorganic reduced compounds as 

photosynthetic electron sources.  Architectures of their photosynthetic system are much 

simpler than those of oxygenic ones and are supposed to remain many primitive properties.  

Therefore, a research on anoxygenic photosynthetic mechanisms would provide important 

clues for the fundamental principle and evolutionary scenario of the light energy conversion 

system.   

Table. G-1: Two types of photosynthesis and two types of RC complexes. 

Type I RC Type II RC 

Oxygenic photosynthesis 

Chloroplast (Plants, Algae) 

Cyanobacteria 

(Photosystem I) (Photosystem II) 

Anoxygenic photosynthesis 
Green sulfur bacteria 

Heliobacteria 

Purple bacteria 

Filamentous anoxygenic bacteria

 

Primary process of photosynthesis 

The primary process of photosynthesis is a light-driven electron transfer (ET) reaction, 

so-called ‘light reaction’ or ‘photosynthetic electron transport’.  The overview of this process 

is well known as follows.  The initial step of photosynthesis occurs within a photosynthetic 

reaction center (RC) complex in the membrane.  Light energy is captured as a excited state of 

a light harvesting pigment and transferred to a primary electron donor (P), which is a special 

dimer of (bacterio)chlorophyll ((B)Chl), through excitation energy transfer reactions between 

pigment molecules.  The photoexcited P (P*) induces an initial charge separation with a 

primary electron acceptor (A0) and starts subsequent ET reactions at both acceptor and donor 

sides.  On the acceptor side, the energized and unpaired electron on the A0
- anion radical 

migrates on a series of ET cofactors (An) in the RC complex, and finally reduces NADP+ to 

generate physiological reducing power, NADPH, which is required for various biosynthetic 
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reactions including carbon assimilation and nitrogen fixation.  A schematic representation of 

the initial process and ETs on the acceptor side is shown below. 

 

PA  →  P*A0  →  P+A0
-  →  P+A0A1

-  → ･･････ → 

 

On the donor side, the photooxidized P+ cation radical draws an electron from a 

secondary electron donor (D1) due to its high electrochemical potential, and induces 

subsequent positive hole transfer reactions that are a series of rereduction processes with 

electron donors (Dn).  The positive hole from P+ is finally filled with an electron obtained by 

oxidizing an environmental electron donor.  Some electron donors are protonated and 

deprotonated concomitantly with their reduction and oxidation, which cause unidirectional 

membrane proton translocation and/or location-specific proton release and consumption and 

form the difference in proton concentration across the membrane.  The proton concentration 

difference generates a transmembrane electrochemical potential gradient, known as 

transmembrane proton motive force.  It drives the membrane ATP synthase, FoF1-ATPase, to 

produce large amounts of free energies required for various life activities.  Thus, the 

sequential photosynthetic ET reactions are generally coupled to ATP synthesis, which is called 

‘photo-phosphorylation’.  A schematic representation of the donor side ETs and coupled ATP 

synthesis is shown below. 

 

P+D1  →  PD1
+  →  PD1D2

+  → ･･････ → D+ + e- ← 

 

 

 

Since photosynthetic ET reactions on both sides are driven by a pair of the strong 

oxidant and reductant, P+ and A0
-, only the initial charge separation within the RC complex is 

NADP+ 

NADPH 

e- hν 

ADP ATP

H+ motive force 

X (electron source) 

X+ 
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light-dependent in absolute terms.  Thus, the RC complex is a central system for 

light-to-energy conversion and serves as an engine of photosynthesis. 

 

Photosynthetic Reaction Centers 

 

Two types of RC complexes and electron transport pathways 

RC complexes can be classified into two types in terms of their terminal electron 

acceptors: type I and II RCs.  Type I RC is alternatively called ‘iron-sulfur (Fe-S) type’ RC 

because it contains three low potential Fe-S clusters as terminal electron acceptors.  The type 

I RC can generate a highly energized electron to reduce ferredoxin (Fd), which is a soluble 

electron carrier and used as the electron donor for NADP+ reduction by ferredoxin-NADP+ 

oxidoreductase (FNR).  On the other hand, the type II RC has two pheophytin a and two 

quinone molecules as primary and terminal electron acceptors, respectively; thus, it is 

alternatively called ‘pheophytin-quinone type’ RC.  Type II RC is incapable of reducing Fd, 

but carries out a double reduction of the terminal quinone acceptor, QB. The resultant quinol 

molecule serves as a lipophilic electron carrier and is subsequently oxidized in a 

membrane-bound quinol oxidoreductase such as cytochrome (cyt) bc1 and b6f complexes.  

Through quinol oxidation in this complex, the proton gradient is formed across membranes 

with the Q-cycle mechanism. 

These two types of RCs have obviously different biochemical and physiological 

functions, which are closely related to overall photosynthetic transport pathways in 

photosynthetic organisms [3-5], as summarized in Figure G-1.  Oxygenic phototrophs 

possess both types of RC complexes: photosystems (PSs) I and II.  PS I is a type I RC which 

reduce Fd and oxidize soluble metal-containing carriers, cyt c6 and/or plastocyanin; PS II is a 

type II RC which reduce plastoquinone molecules and oxidize water molecules.  They are 

linked with plasoquinol-cyt c6 and/or plasoquinol-plastocyanin oxidoreductase, cyt b6f 
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complex, through a series of ET reactions.  The plastoquinone serves as a mediator between 

PS II and cyt b6f complex, while cyt c6 and plastocyanin do between cyt b6f complex and PS I.  

Therefore, the well-known linear ET pathway in oxygenic photosynthesis, depicted as 

‘z-scheme’, occurs in the following sequence: water, PS II, plastquinone, cyt b6f complex, cyt 

c6 and/or plastocyanin, PS I, ferredoxin, FNR, and NADP+ (Figure G-1).  However, when 

large amounts of ATPs are required and/or excess amounts of NADPHs are accumulated in the 

cell, oxygenic photosysnthesis shifts to operate a cyclic ET, which occurs only between cyt b6f 

complex and PS I [6-8].   

In contrast to oxygenic ones, anoxygenic phototrophs have only one type of RC 

complexes (Table G-1): type I RCs in green sulfur bacteria and heliobacteria (RC I), and type 

II RCs in purple bacteria and FAPs (RC II) [3-5].  In purple bacteria, unlike PS II, RC II does 

not oxidize water, but instead of the oxygenic linear one, it operates a cyclic ET through 

quinol-cyt c2 oxidoreductase, cyt bc1 complex.  Similarly to oxygenic photosynthesis, a 

quinone molecule shuttles between RC II and cyt bc1 complex.  The small soluble c-type cyt, 

cyt c2, serves as an electron carrier from cyt bc1 complex to RC II [9].  Therefore, the cyclic 

ET in purple bacteria occurs in following sequence: RC II, quinone, cyt bc1 complex, and cyt 

c2 (Figure G-1).  It is also well known that the membrane-anchored cyt cy can substitute for 

the function of cyt c2 in some species of purple bacteria [10].  In the case of FAPs, a cyclic 

ET is thought to occur in similar manner to the purple bacterial one, but there are some 

significant difference in their ET components; for example, a molybdopterin oxidoreductase 

homologue, cyt Cp complex, would function as a quinol oxidoreductase instead of a cyt bc1 

complex, and the membrane-bound blue-copper protein, auracyanin, might transfer the 

electron from that complex [11,12].  The RCs of green sulfur bacteria and heliobacteria 

essentially function in almost the same way as PS I.  Quinone molecules convey electrons 

derived from oxidation of environmental electron sources to a quinol oxidoreductase.  As in 

the case of cyt c6 in oxygenic phototrophs and cyt c2 and cy in purple bacteria, small c-type 
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cyts also serve as electron carriers from a quinol oxidoreductase to the RCs I in both green 

sulfur bacteria and heliobacteria [13-16].  The reduced Fd and/or NADPH, which is a final 

product on the acceptor side of the RCs I, is consumed by various biosynthetic reactions in the 

cell. This electron transfer pathway from quinone to Fd is recognized as a linear one (Figure 

G-1).  Contrary to this, a cyclic ET pathway around the RC I might also be operated; quinols 

formed on the acceptor side diffuse in membranes to be oxidized in bc complex. 

 

Symmetric and asymmetric properties of RC complexes 

In all RC complexes so far investigated, the RC core protein is a dimer of 

transmembrane core polypeptides.  It serves as a scaffold of ET cofactors including P and A0.  

PS I, PS II, and RC II consist of two core polypeptides which are almost identical but partially 

different and are considered to have been diverged from the same polypeptide.  These RCs 

are thus referred to as ‘heterodimeric’ ones.  The crystal structure of heterodimeric RCs was 

first determined on the RC II from purple bacterium Blastochloris viridis (formerly 

Rhodopseudomonas viridis) [17]; this was also the crystal structure of a membrane protein that 

was first reported.  Afterward, many three-dimensional structures have been determined in all 

kinds of heterodimeric RCs; for example, PS I from the cyanobacterium 

Thermosynechococcus elongatus [18] and the higher plant Arabidopsis thaliana [19,20], PS II 

from T. elongates [21,22], and RC II from the purple bacterium Rhodobacter sphaeroides 

[23-26].  These structures of heterodimeric RCs have revealed some noteworthy structural 

relationships between RC complexes; regardless of highly diverse amino acid sequences, the 

RC core polypeptides fold in almost the same configurations and ET cofactors are arranged to 

form two quasi-C2 symmetrical ET pathways (Figure G-2).  Thus, all present RCs are 

supposed to have been developed from the same ‘homodimeric’ ancestor molecule whose two 

core polypeptides are identical and two ET pathways are perfectly C2-symmetrical [2,3,5].   

In contrast to symmetric properties of the structures, spectroscopic studies so far have 
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shown that the electron migrates on only or mainly one pathway; therefore, the two ET 

pathways are obviously asymmetrical in terms of the function [5,27-29] (Figure G-2).  This 

discrepancy would arise from the difference in local physicochemical environments around 

two pathway provided by the heterodimeric core protein.  There has been, however, no direct 

experimental evidence to prove this idea because it is difficult to specify amino acid residues 

responsible for the asymmetric nature of ET pathways in the present highly diverse 

heterodimeric core proteins.   

On the other hand, RC I of green sulfur bacteria and heliobacteria is the homodimeric 

RC whose core protein is made up of two identical polypeptides [14,15,30].  There would be 

a set of entirely C2-symmetrical ET pathways in the RC I; therefore, those two ET pathways 

would show the completely same physicochemical properties.  Indeed, fourier-transform 

infrared (FTIR) and ESR spectroscopic studies showed that the positive charge of P+ in RC I is 

symmetrically distributed on the special dimer of BChl [31].  The axially-symmetrical spin 

distribution on the inter-polypeptide [4Fe-4S] cluster, FX, has also been suggested in 

heliobacterial RC complex (unpublished data).  Since the ancestral RC complex is thought to 

have been a homodimeric core protein and had symmetric ET pathways, RC I is expected to 

remain to have many ancestral features in its structure and function.  Thus, RC I is a key to 

understand physiological meanings of heterodimerization in RCs and to explore the 

evolutionary process toward complicated heterodimeric RCs.   

 

Green Sulfur Bacteria 

 

Physiological characters of green sulfur bacteria 

Green sulfur bacteria are obligatory anaerobic photoautotrophic bacteria, and 

classified into the phylogenetically and physiologically distinct group, Chlorobi [32-34].  

They are gram-negative eubacteria and have no developed membrane structure as thylakoids 
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in chloroplasts and cyanobacteria or chromatophore in purple bacteria; therefore, a series of 

photosynthetic light reactions occurs in inner cellular membranes.  They are usually found in 

anoxic and sulfide-rich freshwater, either in the bottom sediment or deep layers of the water 

column, or within microbial mats.  Recent studies revealed that they have also been found in 

some extreme environment such as the anoxic layer 100 meters below the surface of the Black 

Sea [35], deep-sea hydrothermal vents in the Pacific Ocean [36], and the microbial mats of 

Octopus and Mushroom Springs in Yellow Stone National Park [37].  To adapt to such 

dim-light environments, all green sulfur bacteria so far characterized have developed unique 

light harvesting organelles attached to the membrane, called ‘chlorosome’ [38](Figure G-3A).  

Chlorosome is the vesicle that is made of a monolayer of lipid and contains self-aggregates of 

BChl c, d, or e depending on species [39,40].  It can capture the light energy and transfer the 

excited energy to the RC with high efficiency; it allows these organisms to grow at remarkably 

low light intensities (Figure G-3B).  All well characterized strains fix carbon dioxides by the 

reductive (also called ‘reverse’) tricarboxylic acid (TCA) cycle instead of the common calvin 

cycle [41-43].  Most of strains utilize the electron derived from oxidation of inorganic sulfur 

compounds such as sulfide, thiosulfate, and/or elemental sulfur, and also hydrogen for their 

photosynthesis, while a few species can use ferrous iron [44,45].   

To provide greater understandings of physiology and evolution of green sulfur 

bacteria especially about their photosynthesis and carbon and sulfur metabolism at the 

molecular level, genome sequencing projects have been performed in twelve 

well-characterized strains (available on the websites of Integrated Microbial Genomes 

resource (IMG, http://img.jgi.doe.gov) and National Center for Biotechnology Information 

(NCBI, http://www.ncbi.nlm.nih.gov)).  Although these projects are currently at various 

stages, these genome analyses have provided much comprehensive information for their 

biodiversities.  They have remarkably small 2-3 Mb genomes encoding only 1700-2800 

genes, and 1400-1500 of them are common in all strains.  In addition to this, the lack of the 
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two-component signaling system for the response to the environmental change and few 

transcription factors indicate that they are well adapted to a narrow-range environmental 

condition where light energy and nutrients are limited [4].   

The one notable exception of green sulfur bacteria is Chlorobium ferrooxidans, which 

is classified into the genus Chlorobium based on its 16S-rRNA and fmoA gene sequences 

[33,44,45].  Unlike all other green sulfur bacteria, this strain is incapable of utilizing any 

reduced sulfur compounds, but uses ferrous iron (Fe2+) as the sole electron source for its 

growth [45].  Consistent with this phenotype, many genes related to oxidation of sulfur 

compounds are absent in its genome [44].  However, any candidate genes responsible for 

oxidation of ferrous iron have not been identified yet; thus, the ferrous iron-oxidizing enzyme 

system and the electron transport pathway from ferrous iron to the RC have remained 

unknown. 

 

Green sulfur bacterial RC complexes 

The green sulfur bacterial RC complex consists of only five subunits, PscA-D and 

Fenna-Mathews-Olson (FMO) protein [30] (Figure G-4A).  Therefore, it has a simpler 

architecture compared to the heterodimeric PS I of oxygenic photorophs, which are composed 

of twelve subunits.  Functions of the subunits of the green sulfur bacterial RC complex have 

been well characterized by biochemical and spectroscopic studies.  PscA is the core 

polypeptide, two of which forms the homodimeric core protein.  It is partially homologous to 

PsaA and PsaB, core polypeptides of PS I.  PscB is the functional homologue of PsaC in PS I, 

which contains two [4Fe-4S] clusters, FA and FB, as terminal electron acceptors.  PscC is the 

membrane-bound c-type cyt, which is also called ‘cytochrome cz’ [46,47].  It is unique 

subunit for the green sulfur bacterial RC complex serving as the physiological secondary 

electron donor.  PscD is the small dispensable subunit responsible for the effective energy 

transfer from the chlorosome to the RC [48].  Its amino acid sequence shows a significant 
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similarity to PsaD in PS I; but, it is not a functional homologue.  FMO protein is the 

water-soluble light harvesting complex attached to the RC complex.  Its crystal structure was 

determined as the first case of pigment-containing proteins [49-51].  It forms a trimeric 

structure binding seven or eight BChls a in each monomer, and mediates energy transfer from 

chlorosome to the RC.  Although the crystal structure of the green sulfur bacterial RC 

complex is still lacking, subunit organization of the green sulfur bacterial RC complex (Figure 

G-4A) has been constructed from the three-dimensional image of the purified RC complex by 

the single particle analysis using STEM (Scanning Transmission Electron Microscopy) [52] 

(Figure G-4B).   

Most of ET cofactors in the green sulfur bacterial RC are also identified [30] (Figure 

G-4A).  The primary electron donor is a special dimer of BChl a (or its epimer) with an 

absorption peak at 830 nm, but historically called ‘P840’.  The primary electron acceptor, A0, 

is Chl aPD, which is a close derivative of Chl a in oxygenic phototrophs and shows almost the 

same spectroscopic character as Chl a.  The [4Fe-4S] cluster, FX, is the electron acceptor 

which are formed by chelating with cysteine residues from two identical PscAs and the 

terminal electron acceptors, FA/FB, are hold in the PscB.   

Meanwhile, the existence of a secondary acceptor, A1, is still controversial in RC I.  

Regardless of whether type I or II RCs, all heterodimeric RCs contain two quinone molecules 

serving as the A1 acceptor [5].  In PS I, two phylloquinone molecules are tightly bound to the 

PsaA/PsaB core protein through π-π interactions with indol rings of tryptophan residues.  

These tryptophan residues are conserved among all PsaA and PsaB core polypeptides of PS I, 

but not among those of RC I [14,15,30,53].  In homology models of RCs I, the estimated 

quinone-binding site seems to be rather hydrophilic than hydrophobic, suggesting that quinone 

molecules are loosely bound to the RC as in the case of the terminal acceptor, QB, in type II 

RC.   

Spectroscopic observations concerning A1 acceptor in RC I could not been 
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understood straightforward [14,15,30].  The transient spectroscopic analyses revealed that the 

reoxidation of A0
- occured with the time constant t1/e = 600 ps in RC I, which was supposed 

that the ET proceeds from A0 directly to FX without A1.  However, this rate constant is too 

fast judged from the ET theory, assuming that the structure of RC I is almost the same as PS I.  

Stable ESR measurements at cryogenic temperature showed that semiquinone-like radicals are 

accumulated by cooling RC I under the light in the presence of strong reductants, indicating 

that there is a photoreducible quinone-like acceptor in RC I.  Consistent with this observation, 

HPLC analyses of various RC I preparations have detected approximately one menaquinone 

molecule in the RC complex, but the absence or the specific extraction of the menaquinone 

molecule did not cause any effect on the ET reaction to FX.  Recently, the transient ESR 

signal of a quinoine-like A1 acceptor was observed in the heliobacterial RC complex [57], but 

not in any green sulfur bacterial RC complex.  The three-dimensional structure of RC I can 

provide some important clues to solve these discrepancy; however, any RC I has never been a 

successful target for the crystal structural study due to their extreme sensitivities to oxygen 

causing the difficulties in biochemical manipulations.   

 

Donor-side electron transport pathways 

In green sulfur bacteria, the donor side electron transport occurs in the periplasmic 

space and starts with the immediate electron donation from cyt cz, PscC subunit of the RC 

complex, to the photooxidized P840 [46,58].  The cyt cz is the membrane-bound mono-heme 

c-type cyt with an α-absorption peak at 551-553 nm; this wavelength is slightly different in 

various preparations [46,59-62].  The cyt cz can be divided into two distinct domains: one 

consists of the three membrane-spanning α-helices in the N-terminal half portion, and another 

comprises the hydrophilic C-terminal half with a single-heme attachment site [58].  Recently, 

the C-terminal hydrophilic heme-containing moiety has been overexpressed in Escherichia 

coli and its crystal structure has been deterimed [61,63].  It revealed that the C-terminal 
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heme-binding portion is structurally related to well-known soluble electron carriers like 

mitochondrial cyt c.  The ET rate from cyt cz to P840 shows the remarkable dependence on 

viscosity of the reaction mixture [59], implying that the C-teminal domain of cyt cz fluctuates 

on the surface of the RC complex by anchoring to membranes through its N-terminal 

hydrophobic domain while searching for its reaction partners around the P840.   

The two different electron donors for the oxidized cyt cz are identified by two 

different experiments (Figure G-1).  One is a small water soluble mono-heme c-type cyt 

named cyt c-554 or cyt c-555, and described here as cyt c-554/555.  Its α-absorption band is 

asymmetric and peaked at 554 or 555 nm depending on species [13,64-66].  It serves as a 

soluble electron carrier for periplasmic sulfur-oxidizing enzymes as mentioned below.  The 

direct electron donation from cyt c-554/555 to the oxidized cyt cz is clearly demonstrated by 

the in vitro reconstitution experiment of the purified RC complex and the cyt c-554 isolated 

from Chlorobaculum tepidum [66].  The other direct donor for the cyt cz is a 

membrane-bound c-type cyt, named cyt c-556, which was discovered by chemically 

reduced-minus-oxidized difference absorption spectrum of the purified membrane [47].  The 

flash-excitation analysis using the membrane demonstrates that cyt c-556 serves as a direct 

electron donor for the oxidized cyt cz and a shuttle-like carrier between the quinole 

oxidoreductse and the RC complex.   

Since these two electron transport pathways were investigated independently, it 

remains unclear whether cyt c-554/555 shuttles between quinole oxidoreductse and the RC 

complex in parallel with cyt c-556 as in the case of cyt c2 and cy of purple bacteria.  The 

recent mutagenetic study revealed the dispensability of cyt c-554 for the photosynthetic 

growth of Chlorobaculum tepidum by constructing the mutant lacking cyt c-554 [67].  

However, no disruption mutant of cyt c-556 has been obtained yet, because its amino acid 

sequence information is still lacking.  Thus, more information concerning ET reactions, 

especially when all these electron carriers coexist as in vivo, would be required for 
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understanding the physiological electron transport pathways in green sulfur bacteria. 

In addition to the linear ET pathways, two cyclic ET pathways have been predicted in 

green sulfur bacteria.  One is derived from the structural property of the quinone acceptor in 

RC I as mentioned above.  The loosely bound quinone molecule in RC I might serve as a 

lipophilic mobile carrier and shuttle between the RC complex and the quinol oxidoreductase 

as the QB quinone in type II RC.  Another is the NADH dehydrogenase-mediated pathway.  

Since a set of genes coding NADH dehydrogenase subunits (nuo genes) is present in green 

sulfur bacterial genomes [68], the complex might mediate the ET from NADH and/or NADPH 

to a quinone molecule.  However, these cyclic ETs have never been observed so far even in 

biochemical or physiological ways.  It remains uncertain whether these cyclic ET really 

operate in green sulfur bacteria or not.   

 

Inorganic sulfur oxidation pathways 

Green sulfur bacteria oxidize inorganic reduced sulfur compounds for their 

photoautotrophic growth.  Almost all of them can oxidize sulfide (S2-) and elemental sulfur 

(S0) to sulfate (SO4
2-).  They highly prefer to use sulfide even if any other sulfur compounds 

are available [42,69].  At the initial stage in batch culture, they oxidize sulfide incompletely 

to elemental sulfur, and secrete it extracellularly as insoluble sulfur globules.  Elemental 

sulfur of these sulfur globules are incorporated again into the cell and oxidized completely to 

sulfate when sulfide is depleted in the medium.  Several strains of green sulfur bacteria are 

also capable of oxidizing thiosulfate (S2O3
2-) to sulfate [33,44].  Oxidation of tetrathionate 

(S4O6
2-) has been also reported in two thiosulfate-oxidizing strains [42], whereas no strain has 

been reported to utilize sulfite (SO3
2-).   

The oxidation pathways of these reduced sulfur compounds have not been completely 

elucidated, while many potential enzymes involved in oxidations of these sulfur compounds 

have been identified by biochemical and recent comparative genomic analyses [44,68].  
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There are two kind of enzymes responsible for sulfide oxidation in green sulfur bacteria: 

sulfide:quinone reductase (SQR) and flavocytochrome c.  The SQR is a membrane-bound 

flavoprotein and catalyzes oxidation of sulfide to elemental sulfur with quinone as the electron 

acceptor.  There are three sqr gene homologues in the Chlorobaculum tepidum genome; two 

of them are thought to contribute the sulfide-dependent growth [70].  The sqr gene 

homologue is also found in genomes of all other green sulfur bacteria.  Flavocytochrome c, 

FCC, is a soluble periplasmic enzyme serving as a sulfide:cyt c oxidoreductase [69,71,72].  It 

consists of two subunits: a small c-type cyt subunit, FccA, and a large flavoprotein subunit, 

FccB.  FccA and FccB are encoded in the fccAB gene cluster, which are also widely 

distributed among green sulfur bacteria.   

Thiosulfate oxidation is thought to be catalyzed by Sox multienzyme system [73-75].  

The constituent proteins of the Sox system are encoded by the sox gene cluster, which is 

present in all thiosulfte-oxidizing strains of green sulfur bacteria.  The functions of Sox 

proteins are well characterized using lithoautotrophic sulfur-oxidizing bacterium Paracoccus 

pantotrophus [74,76] and purple non-sulfur bacterium Rhodovulum sulfidophilum [75]; the 

current reaction models for the thiosulfate oxidation pathway to sulfate has been proposed as 

shown in Figure G-5.  According to this scheme, the SoxCD complex is required for 

complete oxidation of thiosulfate and recycling of the scaffold complex, SoxYZ; however, 

recent genomic analyses revealed that the soxCD genes are lacking in sox gene clusters of 

green sulfur bacteria [44,73].  Thus, other reaction mechanisms should be involved in 

complete oxidation of thiosulfate.   

Since reduced sulfur compounds are used as electron sources for the photosynthesis, 

all these sulfur oxidation pathways are necessary to be linked to the donor-side electron 

transport pathways.  The SQR-mediated sulfide oxidation can reduce quinone serving as a 

membrane electron carrier; therefore, SQR would form the membrane electron transport 

pathway with the quinol oxidoreductase.  On the other hand, it has been considered that cyt 
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c-554/555 could function as the electron acceptor for both FCC and Sox system by in vitro 

reconstitution experiments studied more than 30 years ago [77-79].  A recent study also 

confirmed that the cyt c-554 enhances thiosulfate oxidation activity of the Sox system 

reconstituted in vitro [80].  However, these pathways were investigated only in biochemical 

ways and have never been verified in vivo; thus, the physiological electron carrier for each 

sulfur oxidation pathway has been inconclusive and the overall elecstron transport pathway 

from sulfur compounds to the RC complex in green sulfur bacteria has also remained 

unsolved. 

 

Chlorobaculum tepidum as the model organism 

Chlorobaculum tepidum (formerly Chlorobium tepidum), one of the best 

characterized strains, is commonly used as the model species of green sulfur bacteria 

[68,81,82].  Its complete genome sequence has been available in green sulfur bacteria in 

2002 by TIGR (The Institute for Genome Research, USA) [83].  This organism is a 

moderately thermophilic phototroph with the optimal growth temperature at 45-48°C [81]; 

therefore, this is suitable for biochemical manipulations such as the preparation in anaerobic 

chamber, which is available only at room temperature.  For this beneficial property, many 

successful biochemical and spectroscopic studies have been performed using its 

photosynthetic membrane and RC complex.  Meanwhile, any molecular genetic study had 

never been conducted in homodimeric RC I of green sulfur bacteria as well as heliobacteria, as 

contrasted to huge numbers of mutagenic studies on heterodimeric RCs.  However, in 2001, 

Frigaad and Bryant reported a natural transformation of Chlorobaculum tepidum by 

homologous recombination, and established the general gene inactivation method [84].  

Since then, many mutants have been constructed by disrupting genes concerning BChl and 

carotenoid biosynthesis (for review, see [68]), but few were concerning the RC complex [48], 

electron carrier protein [67], and inorganic sulfur oxidation [70].  This situation is 
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presumably caused by the obligatory photoautotrophic feature of green sulfur bacteria; thus, 

another method such as gene expression and/or transformation system is required for further 

mutagenic studies targeting essential genes for photosynthesis. 

 

Outline of the Thesis 

 

Numerous informative data on the green sulfur bacterial photosynthetic system have 

been provided with many biochemical and spectroscopic studies so far.  However, few new 

achievements have been made by such traditional methods especially concerning 

physiological electron transport system and the function and structure of green sulfur bacterial 

RC complex.  The purpose of this thesis is to reveal that the molecular biological approach 

using Chlorobaculum tepidum is the most effective method and the potential breakthrough for 

further investigations of the green sulfur bacterial photosynthesis especially at physiological 

levels and also for solving long-time unsettled issues of the homodimeric RC I.   

In this thesis, the author describes the results on two studies using traditional 

gene-inactivation mutants of Chlorobaculum tepidum and the new methodology for 

site-directed mutagenic analyses of the Chlorobaculum tepidum RC.  Chapter I is the study 

concerning photosynthetic electron transport pathway in green sulfur bacteria using 

Chlorobaculum tepidum mutant lacking cyt c-554.  This is the successful example of 

application of the molecular biological method to the classical biochemical and spectroscopic 

analysis.  The results clearly demonstrate that two direct electron donors to cyt cz, that is, cyt 

c-554 and membrane-bound cyt c-556, serve as the electron carriers on different electron 

transport pathways and form bifurcated electron donation pathways to the RC complex in vivo.  

In chapter II, the direct linking between electron transport and sulfur oxidation pathways of 

Chlorobaculum tepidum are investigated using the traditional gene-inactivation method.  This 

is the first report on the study concerning in vivo electron transport pathways from sulfur 
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compounds to the RC complex.  The meaning of the bifurcated electron transport pathways 

revealed in chapter I is discussed from the physiological and evolutionary aspects.  In chapter 

III, the author proposed a new mutagenesis method, “duplication of the pscA gene”, which 

enables us to carry out any site-directed mutations in the RC core protein of Chlorobaculum 

tepidum.  A small epitope tag was also found to be a useful tool for one-step preparation of 

the highly photoactive Chlorobaculum tepidum RC complex.  This would prosecute some 

biochemical and spectroscopic studies which require large amounts of preparation, such as an 

X-ray crystallographic study.  Furthermore, this novel method would make it possible to 

construct artificial heterodimeric RC complexes of Chlorobaculum tepidum with intentional 

amino acid substitutions.  The author expects all these achievements in this thesis to advance 

much more active molecular biological researches on the photosynthesis of green sulfur 

bacteria for the future. 
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Figures 

 

 
Figure G-1: Diagrammatic representation of photosynthetic electron transport pathways in 

anoxygenic and oxygenic phototrophs.  Arrows indicate the direction of electron flows.  

RC, PSI, PSII, bc (bc1), b/R, Cp, b6f, c2, cy, cz, c-554/555, c-556, c-553, c6, PC, and Q represent 

reaction center, PS I, PS II, cyt bc (bc1) complex, cyt b/Rieske protein, cyt Cp complex, cyt b6f 

complex, cyt c2, cyt cy, cyt cz, cyt c-554/555, cyt c-556, cyt c-553, cyt c6, plastocyanin, and 

quinone pool, respectively. 
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Figure G-2: Schematic drawing of electron transfer chains and protein structures of the 

four kinds of RC complexes.  Edges, protein structures of RC II (PDB: 1PCR), PS II (PDB: 

2AXT), and PS I (PDB: 1JB0).  The crystal structure of RC I that is still unknown (left-lower 

edge).  Centers, the arrangements of electron transfer cofactors in four kinds of RC 

complexes.  Each drawn cofactor arrangements is corresponding to the protein structure 

drawn nearby it.  Two core polypeptides in the heterodimeric RC were shown as rod-like 

shapes stained in different colors each other, white or gray.  Arrows and their thicknesses 

indicate the direction and dominancy of the electron transfers, respectively.  The cofactor 

arrangement and electron transfer pathways of RC I are shown as a possible estimation. 

  



-Gerenal Introduction- 
 

- 20 - 

 

 

Figure G-3: The intracellular structure of green sulfur bacteria Chlorobaculum tepidum.  

(A) The transmission electron microscopic image of ultra-thin section of Chlorobaculum 

tepidum.  The scale bar represents 100 nm.  Unstained white ellipses attached to the inner 

membrane are chlorosomes.  Reproduced from Frigaard et al. (2002: [38]).  (B) The model 

of photosynthetic apparatus of Chlorobium tepidum.  Red and blue arrows represent electron 

transfer and excitation energy transfer, respectively.  Reproduced from Frigaard et al. (2003: 

[68]).   
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Figure G-4: The subunit organization of greens sulfur bacterial RC complex.  (A) The 

model of subunit organization of the green sulfur bacterial RC complex.  Electron acceptors 

identified spectroscopic studies are also shown at expected binding positions.  BChl a, Chl a, 

and c-type hemes are shown as cyan, green, and red squares, respectively.  Three Fe-S 

clusters are shown as orange cubes.  The purple row of two hexagons represents 

naphtoquinone molecules, but its function as A1 is still controversial.  (B) Three-dimensional 

reconstruction of the Chlorobaculum tepidum PscA/PscB/PscC/PscD/FMO complex viewed 

from the side.  Three main domains are clearly visible, labeled 1, 2 and 3.  Region 1 is the 

membrane associated part of the complex, the homodimeric core composed of two PscA 

proteins together with the PscC subunit.  Region 2 is the FMO trimer.  The two densities 

distinguishable within region 3 are considered to be the PscB protein (closest to region 1) and 

the PscD protein (closest to region 2).  The asterisk marks the possible energy transfer area.  

Small features, such as the apparent 1–1.5 nm cavity close to region 3, are below the 

resolution (about 2 nm) and arise from the threshold-based surface representation method 

employed.  As illustrated by the outlined superposition an additional FMO trimer could be 

accommodated within the structure. The scale bar represents 5 nm.  Reproduced from 

Rémingy et al (1999: [52]).   
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Figure G-5: Model of the sequence of 

thiosulfate oxidation reactions by Sox 

system in Paracoccus pantotrophus.  Open 

and filled circles represent oxygen and 

sulfur atoms, repectively.  Three 

components are related to the complete 

oxidation of thiosulfate in the Sox system.  

SoxYZ complex serves as a scaffold for the 

sequence of reactions.  SoxAX complex 

initiates the thiosulfate oxidation to covalently conjugate thiosulfate to the thiol group of the 

concerved cysteine residue in the SoxY, forming SoxY-thiocysteine-S-sulfate.  SoxB can 

hydrolyze sulfate from thiocysteine-S-sulfate and thiocysteine-sulfate.  SoxCD complex 

completely oxidize the outer sulfur atom of SoxY-thiocysteine-S form the disulfide bond  

thiocysteine-S-sulfate.  Reproduced from Friedrich et al (2001: [74]). 
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CHAPTER I 

 

Parallel Electron Donation Pathways to Cytochrome cz in the 

Photosynthetic Reaction Center Complex of Chlorobaculum tepidum 
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Summary 

 

In this chapter, the author studied the regulation mechanism of electron donations 

from menaquinol:cytochrome c oxidoreductase and cytochrome c-554 to the type I 

homodimeric photosynthetic reaction center (RC) complex of the green sulfur bacterium 

Chlorobaculum tepidum.  Flash-induced absorption changes of multiple cytochromes were 

measured in the membranes prepared from a mutant devoid of cytochrome c-554 or in the 

reconstituted membranes by exogenously adding cytochrome c-555 purified from other 

Chlorobaculum parvum.  The results indicated that the photo-oxidized cytochrome cz bound 

to the RC complex was rereduced rapidly by cytochrome c-555 as well as by the 

menaquinol:cytochrome c oxidoreductase and that cytochrome c-555 did not function as a 

shuttle-like electron carrier between the menaquinol:cytochrome c oxidoreductase and 

cytochrome cz.  It was also shown that the rereduction rate of cytochrome cz by cytochrome 

c-555 was as high as that by the menaquinol:cytochrome c oxidoreductase.  The two electron 

transfer pathways linked to sulfur metabolisms seem to function independently to donate 

electrons to the RC complex. 
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Introduction 

 

Green sulfur bacteria are strictly anaerobic photoautotrophs that have homodimeric 

type I reaction center (RC) complex, as do heliobacteria [1,2], and utilize inorganic sulfur 

compounds (sulfide, thiosulfate, and/or sulfur) as the electron sources for photosynthetic CO2 

fixation [3].  The primary electron donor P840, a special pair of bacteriochlorophyll a, in the 

RC complex initiates the light-driven electron-transfer reaction as the first step in the 

conversion of light energy into chemical free energy.  It is important for the photo-oxidized 

P840+ to be rereduced rapidly to achieve highly efficient solar energy conversion. 

In a thermophilic green sulfur bacterium, Chlorobaculum (Cba.) tepidum, P840+ is 

rereduced by one of RC subunits, a PscC subunit, which is also called as cytochrome (cyt) cz 

[4,5].  It has been demonstrated that two molecules of cyt cz are contained in the RC complex 

[6].  Cyt cz has three membrane-spanning α-helices in its N-terminus and a heme-containing 

moiety in its C-terminus [5,7].  The C-terminal domain protrudes into the periplasmic space 

and carries electrons directly from menaquinol:cyt c oxidoreductase to P840 [4].  It is 

supposed to be fluctuated as evidenced by the extraordinary dependence of its reaction rates 

on solvent viscosity [7].  This unique feature of cyt cz appears to be similar to that of cyt cy 

which serves as a shuttle to mediate electron transfer between cytochrome bc1 complex and the 

type II RC in Rhodobacter species of purple non-sulfur bacteria [8]. 

The oxidized cyt cz
+ then accepts electrons from cyt c-554 as well as menaquinol:cyt c 

oxidoreductas [4,9].  Cyt c-554 is a soluble mono-heme cytochrome with a molecular mass 

of approximately 10 kDa [10,11], which is named cyt c-555 after its α-absorption peak shift in 

the case of Cba. parvum [12].  Cyt c-554 has been shown to function as an immediate 

electron donor to cyt cz
+ by an in vitro reconstitution study using the purified RC complex 

from Cba. tepidum [9].  On the other hand, a study using membranes free from soluble cyt 

c-554, as confirmed by heme-staining analysis on SDS-PAGE, demonstrated a direct electron 
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donation from the menaquinol oxidoreductase to cyt cz [4]. 

An ascorbate-reduced absorption spectrum of another cyt, which exhibited an 

α-absorption peak at 556 nm, was also detected in the membrane preparation [4].  

Flash-induced absorption changes indeed revealed the presence of a shoulder at around 556 

nm in the different spectrum of cyt cz, which became more prominent by the addition of 

stigmatellin.  Since the activity of the menaquinol:cyt c oxidoreductase was inhibited by 

antimycin A, It is suggested that cyt c-556 played a role similar to that of a cyt c1 subunit in 

the cyt bc1 complex [4].  The menaquinol:cyt c oxidoreductase in Cba. tepidum could thus be 

classified to the bc-type one although the gene encoding probable cyt c1 has yet been 

unidentified in the genome of green sulfur bacteria 

Tsukatani et al. have recently demonstrated that the electron transfer from 

menaquinol:cyt c oxidoreductase to cyt cz occurred directly in the crude membrane extract 

prepared from a cyt c-554-deleted mutant of Cba. tepidum [13].  However, it still remains 

uncertain whether soluble cyt c-554 can mediate electron transfer reaction in vivo between 

menaquinol:cyt c oxidoreductase and cyt cz as in the case of purple non-sulfur bacteria, where 

cyt c2 shuttles electrons between the bc1-type ubiquinol oxidoreductase and the type II RC 

complex [14].  To address this issue, in the present study, the author carried out the in vitro 

reconstitution experiments using membranes prepared from the cyt c-554-deleted mutant by 

exogenously adding cytochrome c-555 purified from Cba. parvum.  The results indicated that 

cyt cz accepted electrons from both menaquinol:cyt c oxidoreductase and cyt c-554/555 

independently.  Cyt c-554/555 never serves as a shuttle-like mediator between 

menaquinol:cyt c oxidoreductase and cyt cz but seems to be connected to thiosulfate oxidation 

pathway. 
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Materials and methods  

 

Isolation of photosynthetic membranes from the mutant cells lacking cyt c-554 

A deletion mutant of cyt c-554 of Cba. tepidum (ΔcycA) was constructed in the 

previous study [13], and the photosynthetic membranes of the mutant were prepared according 

to the procedure described previously [4] in an anaerobic chamber (Coy Laboratory Products, 

Ann Arbor, MI, USA). 

 

Purification of cyt c-554/555 

Soluble cyt c-554/555 was purified from the wild-type strain of Cba. tepidum and Cba. 

parvum basically according to the previous reports [4,9] with a few modifications described 

below.  Harvested cells were disrupted by three-time passages through a French pressure cell 

at 20,000 psi (138 MPa).  Cell debris was removed by centrifugation at 10,000 g for 15 min, 

and the supernatant was again centrifuged at 110,000 g for 1h.  The resultant supernatant was 

fractionated by ammonium sulfate (40-80% saturation).  The precipitated fraction by 80% 

ammonium sulfate was suspended in a 20 mM Tris-HCl buffer (pH 8.0), dialyzed against the 

same buffer, and applied on an anion-exchange column (DEAE-Toyopearl 650M) equilibrated 

with the same buffer.  The flow-through fraction was then subjected to CM-cellulose column 

chromatography.  After washing the column with a 20 mM Tris-HCl buffer (pH 8.0), the cyt 

c molecules were eluted with a linear gradient of 0-500 mM NaCl in the same buffer.  Elution 

enriched with cytochromes was concentrated by ultrafiltration (Viva-spin, VIVA Science, 5000 

MW cut-off) and applied on a gel-permeation column (Sephacryl S-100 HR 26/60, Amersham 

Pharmacia) equilibrated with a 50 mM Tris-HCl buffer (pH 8.0) containing 100 mM NaCl.  

The cyt c-554/555 fraction was concentrated by ultrafiltration (YM-3, Amicon), and its 

resultant concentration was estimated by assuming an absorption coefficient at the α-peak to 

be 23.8 mM-1cm-1 [9].  SDS-PAGE analysis of the purified protein followed by heme staining 
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showed no band except that of the 10-kDa cyt c-554/555.  

 

Flash-induced absorption changes 

Flash-induced absorption changes were measured with a split beam 

spectrophotometer at 295 K as described previously [15].  Membrane preparations were 

suspended in 50 mM Tris-HCl (pH 8.0) supplemented with 1 mM EDTA, 2 mM dithiothreitol, 

and 10 mM sodium ascorbate.  The concentration of the membranes was adjusted to give an 

absorbance of 1.5 at 810 nm (equivalent to a 0.3 μM P840 concentration) by assuming the 

antenna size in the RC complex (BChl a/P840 ratio) to be 50 [16,17] and the extinction 

coefficient (ε810) for BChl a at 810 nm to be 100 mM-1cm-1 [18].  For the reconstitution 

experiments, the purified cyt c-554/555 was added to the membrane suspension to give a final 

concentration of 1 μM or 10 μM.  
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Results 

 

Flash-induced absorption changes of cytochromes in membranes 

The absorption changes of multiple heme components were measured in the cyt 

c-554/555-reconstituted system using membranes from the ΔcycA mutant of Cba. tepidum.  

Soluble cyt c-555 purified from the closely related species Cba. parvum, which showed its 

α-absorption peak at 555 nm, was used for the reconstitution instead of cyt c-554 of Cba. 

tepidum, which has its peak at 554 nm.  This is because the former is suitable for the present 

reconstitution experiments in order to distinguish its spectral changes from the overlapping 

absorption changes of cyt cz with the α-absorption peak at 552-553 nm [4,7].  Control 

experiments using the latter gave similar results, although it was rather difficult to distinguish 

the kinetics of each c-type cytochrome accurately (not shown).  

In order to quantitatively analyze the reactions of cyt cz, added cyt c-555, and cyts 

c-556 and b in the menaquinol:cyt c oxidoreductase, which gave specific peaks at 552, 555, 

556, and 563 nm, respectively, in their α-absorption regions, the author measured the 

flash-induced absorption changes at 552 nm (for all the c-type cytochromes in Figure I-1), 547 

nm (for cyt cz in Figure I-2A), 558 nm (for cyts c-555 and c-556 in Figure I-2B), and 563 nm 

(for cyt b in Figure I-3) as the difference with respect to those at 540 nm (also see Figure I-4).  

The reaction ascribable to the externally added cyt c-555 was assumed mainly from the 

dependency on its concentration. 

 

Flash-induced absorption changes of c-type cytochromes 

Figure I-1 shows the flash-induced absorption changes (mainly of cyt cz) in 

membranes monitored at 552 -(minus) 540 nm over 80 ms.  The present measurement with a 

time resolution of 1 ms did not reveal the precise time course of the immediate oxidation of 

cyt cz by P840+ and its rereduction by cyt c-556 in menaquinol:cyt c oxidoreductase (t1/e = 150 
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μs), as demonstrated previously [4].  However, the kinetics could still exhibit rapid 

oxidations of c-type hemes and their subsequent rereductions, as mentioned below. 

The decay kinetics of trace a in Figure I-1A represents the case without added cyt 

c-555.  Its kinetics was fitted by two exponential decay components with half times (t1/2) of 

1.5 and 15 ms with the estimated contributions of 60 and 40%, respectively.  The 1.5 ms 

component, which was fully removed in the presence of stigmatellin, as shown in trace b, 

could be assigned to represent the electron donation from the Rieske Fe-S center in the 

menaquinol:cyt c oxidoreductase because stigmatellin was known to inhibit the rereduction of 

cyt c by the Rieske Fe-S center.  The result was consistent with the previous study, which 

estimated the equilibration time of electrons between the Rieske Fe-S center and heme c-556 

in the menaquinol:cyt c oxidoreductase to be around 560 μs [4].  The slow 15-ms component 

would represent the electron transfer rate to Rieske Fe-S center by menaquinol oxidation in the 

Qo site, which was suggested to proceed with a t1/2 of approx. 20 ms (see below and [4]).  In 

fact, the contribution of this component to the total amplitude of absorption changes decreased 

in the presence of stigmatellin (Figure I-1A, trace b.)  

The decay kinetics in the presence of stigmatellin was fitted by two exponential 

components with t1/2 of 15 and 200 ms with relative contributions of 16 and 84%, respectively 

(Figure I-1A, trace b).  The lack of the 1.5 ms phase as well as the significant suppression of 

the 15 ms phase indicated almost complete inhibition of the electron donation from the 

menaquinol:cyt c oxidoreductase, as mentioned above.  The 200 ms component seemed to be 

ascribable to the rereductions of hemes c by ascorbate added in the reaction medium and/or by 

the back-reaction from photo-reduced terminal Fe-S centers (FA/FB) in the RC complex [19]. 

When the membranes were reconstituted with cyt c-555 (Figure I-1B), the amplitudes 

of the absorption changes immediately after the flash excitation were slightly larger, and no 

fast recovery phases were observed both in the absence and presence of stigmatellin (Figure 

I-1B, traces a and b).  These kinetic profiles could be interpreted as that the added cyt c-555 
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rereduced the photo-oxidized cyt cz
+ concomitantly with cyt c-555 oxidation and its 

subsequent slow rereduction (t1/2 > 100 ms) probably by ascorbate. 

 

Effects of cyt c-555 addition on the flash-induced absorption changes of cyts c 

Flash-induced absorption changes of cyt cz and cyt c-555 were measured at 547 - 540 

nm  and at 558 - 540 nm, respectively, in the presence of different concentrations of cyt c-555 

(Figure I-2).  At 547 - 540 nm, the absorption bleach and subsequent recovery were observed 

in the absence of cyt c-555 after the flash excitation, indicating the rapid oxidation and 

rereduction of cyt cz (Figure I-2A, trace a).  The addition of cyt c-555 somewhat slowed 

down the rereduction process, especially at 10 μM of cyt c-555 (Figure I-2A, traces b and c) 

(see below for its interpretation). 

The absorption changes monitored at 558 - 540 nm, where cyt cz had a small 

contribution, were different from those at 547 - 540 nm (Figure I-2B).  Without cyt c-555, a 

small transient negative change, probably due to the photo-oxidized P840+ and its subsequent 

rereduction by cyt cz, was detected immediately after the flash excitation, followed by a subtle 

absorption increase (Figure I-2B, trace a).  This absorption increase seemed to be due to the 

overlap of the reduced cyt b in the menaquinol:cyt c oxidoreductase along with the recovery of 

P840.  In the presence of 10 μM cyt c-555 (Figure I-2B, trace c), a slow absorption decrease 

with t1/2 = 3 ms was detected after the flash excitation, whose half-time appeared to be almost 

the same as the one for the decay kinetics of the oxidized cyt cz
+ (see Figure I-2A, trace c) and 

represented the increase of the oxidized cyt c-555+.  However, the absorption decrease at 558 

- 540 nm never completely recovered within 100 ms, suggesting that the oxidized state of cyt 

c-555+ remained for a relatively long time without its prompt rereduction process.  In the 

presence of 1 μM of cyt c-555, an intermediate kinetic profile was observed, as shown in trace 

b of Figure I-2B.  All of the above results thus imply that electrons can be donated to the RC 

from both cyt c-555 and menaquinol:cyt c oxidoreductase. 
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Effects of cyt c-555 addition on the flash-induced absorption changes of cyt b 

Flash-induced absorption changes of cyt b were monitored at 563 - 540 nm (Figure 

I-3).  In the absence of cyt c-555 (Figure I-3A, trace a), the flash excitation induced an 

absorption increase with t1/2 = approx. 1 ms, followed by the recovery with t1/2 = 9 ms, 

suggesting the transient reduction of cyt b due to a turnover of menaquinol:cyt c 

oxidoreductase.  In the presence of antimycin A, which is an inhibitor for the Qi site of cyt 

bc1-type complex, cyt b was fully reduced due to the inhibition of the reoxidation of reduced 

cyt b.  The kinetics was fitted with two exponential components with t1/2 = 2 and 26 ms in 

relative contributions of 25 and 75%, respectively (Figure I-3A, trace b).  The phenomenon 

of the oxidant-induced reduction of cyt b presented here confirmed that the oxidized cyt cz
+ 

could be rereduced by the menaquinol:cyt c oxidoreductase without cyt c-555, as previously 

demonstrated [4].  The amplitude of cyt b reduction in the presence of antimycin A was 

almost comparable with that of the flash-oxidized cyt cz
+ (data not shown).  This indicates the 

tight coupling between the menaquinol:cyt c oxidoreductase and the RC complex. 

In the presence of cyt c-555 (Figure I-3B, trace a), a transient but smaller absorption 

increase was still observed at 563 - 540 nm.  The addition of antimycin A (Figure I-3B, trace 

b) increased the extent of cyt b reduction to be a level about a half that in the absence of cyt 

c-555 (Figure I-3A, trace b).  In other words, about a half of the flash-oxidized cyt cz
+ could 

be rereduced directly by the menaquinol:cyt c oxidoreductase, and the rest could be rereduced 

by externally added cyt c-555, as described in detail below. 

All the results shown in Figures I-1 to I-3 therefore suggest that both cyt c-555 and 

menaquinol:cyt c oxidoreductase can efficiently donate electrons to cyt cz. 

 

Time-resolved difference absorption spectra 

Figure I-4 exhibits the flash-induced time-resolved difference absorption spectra in 
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membranes with and without exogenous cyt c-555.  In membranes alone, a spectrum 

obtained at 1 ms after the flash excitation showed a negative peak at 552 nm, indicating the 

rapid oxidation of cyt cz (Figure I-4A).  The peak became smaller and was shifted to 554 nm 

at 10 ms, probably due to some contribution of the oxidized cyt c-556+ in the menaquinol:cyt c 

oxidoreductase.  

The 1 ms spectrum in the presence of cyt c-555 showed a broad peak at 552 - 556 nm, 

clearly indicating the oxidation of cyt c-555 by cyt cz
+ (Figure I-4B).  The peak position 

shifted gradually to the longer wavelength side with time and, finally, to 555 nm at 10 ms, 

suggesting a more contribution of the oxidized cyt c-555+.  The large extent of cyt c-555+, 

which remained at 10 ms, implied the slow rereduction rate of cyt c-555+.  It could be 

assumed that cyt c-555 rapidly rereduced cz
+ and that the resultant cyt c-555+ was rereduced by 

ascorbate added in the reaction medium under the present experimental conditions.  It was 

also noted that the extent of cyt b reduction was decreased to about half (Figure I-4B).  This 

suggests that the rereduction of cyt cz
+ by cyt c-555 decreased the extent of cyt b reduction, 

although the oxidation/reduction of cyt c-556 in menaquinol:cyt c oxidoreductase could not be 

recognized in these spectral changes. 

The addition of antimycin A in the presence of cyt c-555 did not significantly change 

the kinetics of c-type cytochromes (compare Figure I-4C to 4B).  The amplitude of the 

reduced cyt b in Figure I-4C was almost the same as that in Fig. 4B and smaller than that in 

Fig. 4A, indicating that antimycin A did not affect the extent of reduced cyt b in the presence 

of cyt c-555.  It was essentially consistent with the kinetic data obtained in Figure I-3.  

Therefore, it is natural to consider that cyt c-555 decreased the extent of photo-reduced cyt b, 

implying that two electron donors, cyt c-555 and menaquinol:cyt c oxidoreductase, function in 

parallel to rereduce cyt cz
+ and that cyt c-555+ cannot be rereduced by the menaquinol:cyt c 

oxidoreductase. 

In the presence of stigmatellin, which inhibits the Qo site of menaquinol:cyt c 
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oxidoreductase, the flash excitation induced a difference spectrum with a larger negative peak 

at around 553 nm at 1 ms (Figure I-4D).  Then, the peak at 10 ms shifted to 555 nm along 

with only a small decrease in the amplitude of the spectrum.  On the other hand, the 

absorption increase at 563 nm was significantly smaller compared to those in Figure I-4A to 

4C. These effects were ascribable to the suppression of the electron donation from the Qo site 

in the menaquinol:cyt c oxidoreductase, resulting in the suppression of the oxidant-induced 

reduction of cyt b as well as the rereduction of cyt cz
+ and cyt c-556+ [4].  The large negative 

absorption band with an apparent peak at 555 nm at 3-10 ms suggests oxidations of multiple 

c-type cytochromes, as explained by a simulation in the Discussion. 
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Discussion 
 

Electron transfers from menaquinol:cyt c oxidoreductase and cyt c-554/555 to cyt cz 

Water-soluble cyt c-554/555 has been shown to function as the direct electron donor to 

cyt cz of the RC complex [9].  It has also been demonstrated that cyt c-556 in the 

menaquinol:cyt c oxidoreductase donates electrons to cyt cz in the membrane preparation 

isolated from the wild-type cells of Cba. tepidum [4].  However, the issue concerning 

whether cyt c-554/555 functions as a shuttle-type electron carrier between the menaquinol:cyt 

c oxidoreductase and cyt cz remains to be resolved. 

In purple non-sulfur photosynthetic bacteria, a membrane-anchored cyt cy donates 

electrons to the type II RC [20].  Rhodobacter capsulatus possesses cyt cy and soluble 

periplasmic cyt c2, both of which function as parallel electron carriers from cyt bc1 complex to 

the RC in photosynthetically grown cells [8,21].  Although two cytochromes might have 

different physiological roles, both mutants defective in cyt cy and cyt c2, respectrively, can still 

grow phototrophically [8]. 

Cyt cz in green sulfur bacteria, on the other hand, is also a membrane-bound 

monoheme c-type cytochrome with three putative membrane-spanning helices [5,7].  This 

structure and its function as an electron donor to P840 in the green sulfur bacterial RC 

complex somehow resemble those of cyt cy [4].  It could therefore be expected that cyt 

c-554/555 mediated the electron transfer reaction between menaquinol:cyt c oxidoreductase 

and the RC complex as was the case with cyt c2 [20].  However, the results in this study 

clearly demonstrated that the oxidized cyt c-555 was not rereduced under the present 

experimental condition in which the menaquinol:cyt c oxidoreductase was fully operating as 

the electron donor to cyt cz (Figure I-2B).  The reduction of cyt b in the menaquinol:cyt c 

oxidoreductase was indeed shown to be depressed to almost half by the addition of 10 μM cyt 

c-555 (see Figure I-3B), strongly indicating that electron transfer reaction between cyt c-556 
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and cyt cz was hindered by externally added cyt c-555. 

A heme-containing moiety of cyt cz, which is exposed to a periplasmic space, has been 

assumed to be fluctuated to search for its reaction partners, the RC core protein and cyt c-556, 

both of which reside in membranes [4,7].  It is thus conceivable that the C-terminal domain 

of cyt cz could take different orientations during a series of reaction processes; it would 

associate with cyt c-554/555 in a manner to obey the second order reaction mode (see Figure 

I-5, inset).  The probable complex formation between cyt cz and cyt c-554/555 would then 

block the electron transfer from cyt c-556 to cyt cz, resulting in the partial suppression of cyt b 

reduction.  This implies that two paths of electron flow from cyt c-554/555 and the 

menaquinol:cyt c oxidoreductase could be balanced dependent upon their respective redox 

states as mentioned below.  It seems unlikely that the direct contact of cyt c-554/555 with cyt 

c-556 inhibited the reduction of cyt b, because the in vitro kinetic analysis demonstrated that 

cyt c-554 donated electrons to cyt cz to rereduce the oxidized P840+ [9]. 

The author made an electron transfer scheme (Figure I-5) including cyt cz, cyt 

c-554/555, and menaquinol:cyt c oxidoreductase based on the results in the present study.  

The Em values of P840 and cyt cz are known to be 230 - 240 and 170 - 180 mV, respectively 

[22-24].  Although Em of cyt c-556 in the menaquinol:cyt c oxidoreductase has not been 

measured, it has been estimated to be close to the value of 160 mV of a Rieske FeS center 

[4,25].  The Em value of cyt c-554/555 has been reported to be 130 or 148 mV by two 

research groups [9,11], which is lower than the estimated Em value of cyt c-556 in the 

menaquinol:cyt c oxidoreductase.  At 10 ms after the flash excitation in the presence of 

stigmatellin (see Figure I-4E), the redox equilibration between cyt cz and the other three redox 

centers, P840, c-556, and c-554/555, would be attained as follows. 

(1) (cyt cz /cyt cz)+  +  P840   ⇔  (cyt cz /cyt cz)  +  P840+ 

(2) cyt cz
+  +  cyt c-556  ⇔  cyt cz   +  cyt c-556+ 

(3) cyt cz
+  +  c-554/555  ⇔  cyt cz   +  c-554/555+ 
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Based on the Em values listed above, the redox state of each heme c was calculated by a Nernst 

equation (ΔEm = RT/F ln K) and the relative amounts of oxidized cyts cz
+, c-556+, and 

c-554/555+ were estimated to be 0.2 : 0.25 : 0.55, respectively, at the equilibrium.  The 

difference absorption spectrum measured at 10 ms in the presence of stigmatellin was 

simulated by summing up the estimated spectrum of each component shown in Figure I-4E.  

In this calculation, P840 was assumed to be the almost fully reduced state at 10 ms because 

this approximation had little effect within experimental errors and made the result much 

simpler.  The spectrum thus obtained reproduced well the difference absorption spectrum 

obtained in the present measurement (see a gray curve in Figure I-4D).  This result suggests 

that the three c-type cyts indeed functions to reduce P840+ and are almost equilibrated to each 

other as expected from their redox potentials.  However, more accurate kinetic data will be 

required for determination of the precise contribution of each c-type heme to the difference 

absorption spectrum in the future. 

The second-order rate constant of the electron transfer from cyt c-554 to cyt cz was 

calculated to be 1.7 x 107 M-1 s-1 in vitro using the isolated RC complex reconstituted with cyt 

c-554 [9].  In the present study, the electron transfer rate from cyt c-555 to cyt cz in 

membranes gave t1/2 = 3 ms at 10 μM of cyt c-555 (Figure I-2B, trace c).  The observed rate 

would be rational because the excess amount of cyt c-555 was added with respect to P840 

concentration (roughly estimated to be about 0.3 μM).  Cyt cz
+ was rereduced by both cyt 

c-555 and menaquinol:cyt c oxidoreductase at an almost 1:1 ratio under the present condition.  

A simple interpretation for the independent electron donation would be that the C-terminal 

domain of cyt cz has different orientations to make contact with both electron donors as 

discussed above. 

Although there is no available data concerning the in vivo concentration of cyt 

c-554/555 in green sulfur bacteria, the amounts of cyt c2 in Rps. viridis and Rba. sphaeroides 

cells have been estimated to be in the millimolar range [26,27].  If one considers that the 
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concentration of cyt c-554/555 in vivo is similar, the maximum rate constant of electron 

transfer from cyt c-554/555 to cyt cz would be several to tens μs, which would be significantly 

faster than that of the electron transfer rate from menaquinol:cyt c oxidoreductase to cyt cz (t1/e 

= 150 μs).  This implies that cyt c-554/555 can be quite an efficient electron donor to cyt cz 

and can compete against menaquinol:cyt c oxidoreductase when the reduced form of cyt 

c-554/555 is abundant in amount.  This will be discussed below in terms of sulfur oxidations. 

 

Reaction of bc-type menaquinol:cyt c oxidoreductase in Cba. tepidum 

The chemically reduced-minus-oxidized difference spectra of chlorosome-depleted 

membrane preparations of Cba. tepidum suggested the presence of cyt c-556 [4].  However, 

the assignment of cyt c-556 has not been very clear up to now because of the possibility of the 

contamination of membranes by a residual amount of cyt c-554.  Although a complete 

elimination of cyt c-554 in the membrane preparation was confirmed by SDS-PAGE and heme 

staining analyses [4], the detection of a low-molecular-weight (approx. 10,000) heme-c protein 

is very difficult in general.  It is clear, on the other hand, that the membranes isolated from 

the ΔcycA mutant of Cba. tepidum do not contain any cyt c-554.  The results in the present 

study, thus, clearly demonstrate a direct tight coupling between the menaquinol:cyt c 

oxidoreductase and cyt cz of the RC complex without any involvement of soluble electron 

carriers.  Furthermore, the presence of cyt c-556 was an indispensable component for a good 

simulation of the spectrum as shown in Figure I-4D.  The time-dependent shift of the peak 

wavelength in the 552-556 nm region in Figure I-4A also indicated the reduction of cyt cz
+ by 

another cytochrome, probably cyt c-556, with a peak at a longer wavelength.  All of these 

results strongly suggest that cyt c-556 serves as the immediate electron donor to cyt cz
+ like cyt 

c1 in the bc1-type oxidoreductase. 

In the Chlorobi, genes encoding subunits of menaquinol:cyt c oxidoreductase are 

arranged in the genome in a way different from those in other phylum of bacteria, such as 
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Proteobacteria, Firmicutes, and Cyanobacteria [28].  In most Proteobacteria, the cyt bc1 

complex minimally consists of three subunits, the Rieske iron-sulfur protein, cyt b, and cyt c1, 

which are encoded by the fbcF, fbcB, and fbcC genes, respectively [29].  These genes 

comprise one transcriptional unit called the fbc operon.  On the other hand, genes for 

cyanobacterial cyt b6f complex are split into two units.  One unit has fbcC followed by the 

fbcF gene, and another has the genes coding for cyt b6 and subunit IV.  In green sulfur 

bacteria, the fbcF and fbcB genes form a transcriptional unit, but no c-type cyt gene has been 

found at the downstream or upstream of this unit.  However, genomic analyses have enabled 

us to find five candidates of genes encoding membrane-bound c-type cyts with small 

molecular masses of 15-20 kDa from the genome of Cba. tepidum, which might be cyt c-556 

as judged from its molecular mass [4].  The author assumes gene CT0073 to be the best 

candidate because it is located upstream of the gene encoding cyt c-554/555 (CT0075).  It is, 

however, rather questionable whether the gene annotated as CT0074 (encoding only 46 amino 

acids) is a genuine gene or not.  In fact, the homologues of CT0073 but not of CT0074 could 

be found in almost all other genome-sequenced green sulfur bacteria and are arranged in the 

same way; the homologues of CT0073 and CT0075 are adjacent to each other (see Figure II-4 

in chapter II).  The product of the CT0073 homologues thus seems to be cyt c-556, which is 

functionally related to cyt c-554/555.  It is noteworthy that the thiol group of the 18th cyteine 

residue in the CT0073 could be modified with fatty acid chains after the cleavage of its signal 

peptide, as predicted by the ScanProsite analysis of prokaryotic membrane lipoproteins 

(PROSITE profile: PS51257) on the ExPASy web server [30].  Cyt c-556 might thus be 

anchored into membranes and may serve as an electron carrier, substituting for cyt c1 in the 

ordinary cyt bc1 complex. 

 

Photosynthetic electron transfer chains and sulfur metabolism 

Cyt c-554/555 is likely to serve as the electron acceptor from sulfur metabolism 
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operated by Sox (sulfur oxidation) proteins [12,31].  The Sox system is known to be essential 

for both thiosulfate and sulfide oxidations in a purple bacterium, Rhodovulum sulfidophilum 

[32], and probably in a chemolithotroph, Paracoccus pantotrophus [33].  A soluble small 

cytochrome has been considered to function as an electron acceptor from SoxA, which is 

involved in thiosulfate oxidation [33,34] (Figure I-5).  On the other hand, Cba. 

thiosulfatiphilum is known to show an activity of a membrane-associated sulfide:quinone 

reductase (SQR) [35].  SQR oxidizes sulfide and reduces a quinone pool in the membrane, 

and the electrons are donated to P840 in the RC complex via menaquinol:cyt c oxidoreductase.  

The genome sequence analysis of Cba. tepidum has revealed the three paralogues of the gene 

encoding SQR (CT0117, CT0876, and CT1087) [36], while a recent study has demonstrates 

that two of them, CT0117 and CT1087, are required for sulfide-dependent growth of Cba. 

tepidum [37]. 

Sulfur oxidations are therefore expected to be linked closely in vivo to the two 

electron transfer paths of the menaquinol:cyt c oxidoreductase and cyt c-554/555.  As 

mentioned in chapter II, electrons from thiosulfate oxidation are transferred to the RC complex 

mainly via cyt c-554/555 and the path of cyt c-554/555 would be dominant when thiosulfate is 

rich in media.  Contrary to this, the activity of menaquinol:cyt c oxidoreductase would be 

increased when the redox state of quinone pool is shifted to the reduced side under the 

sulfide-rich condition.  The balance of electron flows between menaquinol:cyt c 

oxidoreductase and cyt c-554/555 would thus be coordinately regulated dependent upon 

chemical species of sulfur compounds in a natural habitat. 
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Figures 

 

 

Figure I-1.  Flash-induced absorption changes monitored at 552 - 540 nm (c-type cyts) in 

membranes isolated from ΔcycA mutant cells of Cba. tepidum (A) without or (B) with 

externally added cyt c-555 purified from Cba. parvum.  Traces a and b represent kinetics in 

the absence and presence of 20 μM stigmatellin, respectively.  Measurements were done at 

295 K.  The concentrations of membranes and cyt c-555 were adjusted to be A810 = 1.5 

(approx. 0.3 μM P840) and 10 μM, respectively.  Thin lines indicate the results of kinetic 

analyses by curve-fitting programs. 
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Figure I-2.  Flash-induced absorption changes monitored at (A) 547 - 540 nm (cyt cz) and 

(B) 558 - 540 nm (mainly cyt c-555) in membranes.  Traces a, b, and c represent no addition 

and additions of 1 μM and 10 μM cyt c-555, respectively.  Measurements were done at 295 K.  

The concentration of membranes was adjusted to be A810 = 1.5 (approx. 0.3 μM P840). 
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Figure I-3.  Flash-induced absorption changes monitored at 563 - 540 nm (cyt b) in 

membranes (A) without or (B) with externally added cyt c-555.  Traces a and b represent 

kinetics in the absence and presence of 20 μM antimycin A, respectively.  Measurements 

were done at 295 K.  The concentrations of membranes and cyt c-555 were adjusted to be 

A810 = 1.5 (approx. 0.3 μM P840) and 10 μM, respectively. 
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Figure I-4.  Time-resolved difference 

absorption spectra of c- and b-type 

cytochromes in membranes (A) without and 

(B)-(D) with cyt c-555 after flash excitation. 

The oxidized-minus-reduced difference 

spectra of cyt cz, cyt c-556, and cyt c-555 

are also shown in (E).  C and D, in the 

presence of 20 μM antimycin A and 20 μM 

stigmatellin, respectively.  Times after the 

flash excitation are indicated in the figure.  

Measurements were done at 295 K.  The 

concentrations of membranes and cyt c-555 

were adjusted to be A810 = 1.5 (approx. 0.3 

μM P840) and 10 μM, respectively.  A 

difference absorption spectrum of cyt cz was 

obtained from [4].  That of cyt c-555 was 

obtained in the present study.  An expected 

spectrum of cyt c-556 was simply obtained 

by shifting the spectrum of cyt cz to the red side by 4 nm.  A spectrum after the redox 

equilibration was simulated by estimating the contributions of cyt cz, cyt c-556, and cyt c-555 

to be 0.2 : 0.25 : 0.55 as described in text and depicted as a gray curve in (D). 
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Figure I-5.  Schematic illustration of electron transfer pathways around the oxidizing side of 

the Cba. tepidum RC.  Electron flows are represented by arrows.  A heme-binding portion 

of membrane-bound cyt cz is assumed to be exposed into the solvent and fluctuates during 

reaction to contact with its reaction partners, cyt c-556 and cyt c-554/555.  Sulfide and 

thiosulfate serve as the electron sources for photosynthesis in Cba. tepidum.  SQR, 

sulfide-quinone reductase; Q, quinone. (inset) A model to represent two different orientations 

of the C-teminal domain of cyt cz, which associates with cyt c-556 and cyt c-554/555. 
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CHAPTER II 

 

Sulfur Oxidation in Mutants of Chlorobaculum tepidum Devoid of 

Cytochrome c-554 and SoxB 
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Summary 

 

In this chapter, the sulfur oxidation pathways of green sulfur bacteria were studied 

using e Chlorobaculum tepidum mutants.  A mutant devoid of cytochrome c-554 in 

Chlorobaculum tepidum exhibited a decreased growth rate but normal growth yield when 

compared to the wild type.  From quantitative determinations of sulfur compounds in media, 

the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to 

sulfate as the wild type.  This indicates that cytochrome c-554 would increase the rate of 

thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for 

thiosulfate oxidation itself.  On the other hand, mutants in which a portion of the soxB gene 

was replaced with the aacC1 cassette did not grow at all in a medium containing only 

thiosulfate as an electron source.  Both of them exhibited partial growth yields in media 

containing only sulfide when compared to the wild type.  This indicates that SoxB is not only 

essential for thiosulfate oxidation but also responsible for sulfide oxidation.  An alternative 

electron carrier or electron transfer path would thus be operating between the Sox system and 

the reaction center complex in the mutant devoid of cytochrome c-554.  Cytochrome c-554 

might function in any other pathway(s) as well as the thiosulfate oxidation one, since even 

green sulfur bacteria that cannot oxidize thiosulfate contain a homologous gene encoding this 

electron carrier. 
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Introduction 

 

Green sulfur bacteria are strictly anaerobic phototrophic organisms that utilize 

reduced sulfur compounds (sulfide, thiosulfate, and/or elemental sulfur) as electron sources for 

carbon dioxide fixation [1-3].  All these sulfur compounds are oxidized to sulfate, and 

liberated electrons are finally supplied to the light-driven energy conversion system, where the 

type 1 reaction center (RC) generates a strong reductant, reduced ferredoxin, to produce 

NADPH through ferredoxin-NADP+ oxidoreductase [4,5].  Reduced ferredoxin also serves as 

an electron donor for the reductive carboxylation reactions in the reverse tricarboxylic acid 

cycle [6]. 

Two electron-donating paths to cytochrome (cyt) cz of the RC complex are known to 

function in the green sulfur bacterium, Cba. tepidum [7]; one is through soluble cyt c-554, 

which contains a single c-type heme with an apparent molecular mass of about 10 kDa, and 

another is through membrane-bound menaquinol:cyt c oxidoreductase (CT0302-0303) (this 

soluble cyt c is named cyt c-555 after its α-absorption peak shift in the case of Cba. parvum; 

cyt c-554/555 is used when there is no need to distinguish them by their α-absorption peaks in 

the context).  In chapter I, it was demonstrated by the reconstitution experiments that cyt 

c-554 was not a shuttle carrier between menaquinol:cyt c oxidoreductase and cyt cz, contrary 

to the case of purple bacterial cyt c2.  Cyt c-554 was, therefore, considered to be involved 

only in the electron transfer from thiosulfate oxidation, as suggested by several in vitro 

biochemical experiments that were carried out in the early 1970s [4,8,9], although there has 

been no concrete in vivo evidence for this. 

On the other hand, a subject concerning thiosulfate oxidation system, as well as its 

related electron transfer path(s), has not been resolved yet in green sulfur bacteria.  A Sox 

multienzyme system, which is known to be involved in thiosulfate oxidation, has been 

elucidated to consist of at least four components (SoxAX, YZ, CD, and B) in the 
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chemolithotrophic bacterium Paracoccus pantotrophus [10].  This type of multienzyme 

system seems to be widely distributed in thiosulfate-utilizing bacteria [11].  The genomic 

analysis of Cba. tepidum has also revealed the presence of the sox gene cluster, which is 

presumably involved in thiosulfate oxidation [12,13].  However, contrary to the case in P. 

pantotrophus, the soxCD genes, which are responsible for the oxidation of the outer sulfur 

atom covalently bound to a cysteine residue in SoxY, are missing in the Cba. tepidum genome 

[14].  Other reaction mechanisms not involving SoxC/D have therefore been suggested to 

enable thiosulfate oxidation to sulfate [13].  A recent work has demonstrated that SoxK 

(CT1020), which made a ternary complex along with SoxAX (CT1019, CT1016), was 

necessary to exhibit a maximal reduction rate of cyt c-554 when the thiosulfate oxidation 

activity was measured in an in vitro reconstitution system [15]. 

Tsukatani et al. previously reported that cyt c-554 is not essential for the phototrophic 

growth of Cba. tepidum [16].  As a full growth of the insertion mutant of the cycA gene 

(CT0075) encoding cyt c-554 (ΔcycA mutant) was observed in a medium containing both 

sulfide and thiosulfate, the author simply considered that a tight coupling reaction between 

menaquinol:cyt c oxidoreductase and the RC complex, which enabled electron supply from 

sulfide oxidation by a membrane-bound sulfide:quinone reductase (SQR; CT0117, CT1087), 

would sustain its photosynthetic growth [17,18].  In this study, a mutant devoid of SoxB 

(CT1021) (ΔsoxB mutant) and a double mutant of cyt c-554 and SoxB (ΔcycAsoxB mutant) 

were constructed in order to reinvestigate the intrinsic role of cyt c-554 in vivo with modern 

molecular biological techniques in combination with traditional assays of sulfur compound 

concentrations in media.  The author examined the capabilities of three mutant strains so far 

obtained to oxidize both sulfide and thiosulfate in media.  A complete oxidation of thiosulfate 

was unexpectedly observed in the ΔcycA mutant.  The present results indicate that cyt c-554 

is an efficient but not essential electron carrier for the thiosulfate oxidation in Cba. tepidum.  

The functions of cyt c-554/555 in green sulfur bacterial species which cannot oxidize 
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thiosulfate were also disscued from evolutionary aspects. 
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Materials and methods 

 

Bacterial strains and growth conditions 

The strain WT2321 of Cba. tepidum [19] was used as the wild type and host for 

transformation.  The ΔcycA strain was obtained in previous work [16].  Pf-7 medium [20], 

which contained 4 mM thiosulfate and 2.5 mM sulfide as electron sources, was used for the 

growth analyses shown in Figure 2.  However, in order to measure sulfur compounds more 

precisely as well as to get full growth of culture, an additional buffering reagent, 

3-(N-morpholino)propanesulfonic acid (MOPS), was added to Pf-7 medium at a final 

concentration of 10 mM [21] and the concentration of thiosulfate contained was increased to 9 

mM, which was then designated as Pf-7-MOPS.  As the upper limit of sulfide tolerance for 

Cba. tepidum was reported to be about 4 mM [20], the concentration of sulfide in Pf-7-MOPS 

was adjusted at 2.5 mM.  Pf-7-MOPS containing only thiosulfate or sulfide as a sole electron 

source was prepared basically according to the method described by Frigaard and Bryant [21] 

as follows.  One liter of Pf-7-MOPS medium without Na2S2O3·5H2O, Na2S·9H2O, and 

NaHCO3 was autoclaved at 121°C for 20 min and cooled in an anaerobic chamber (Coy 

Laboratory Products, Ann Arbor, MI) overnight in order to completely remove any residual 

oxygen from the medium.  In an anaerobic chamber, 2.3 g of Na2S2O3·5H2O or 0.6 g of 

Na2S·9H2O was dissolved into a freshly prepared solution of 2.0 g of NaHCO3 in 50 ml.  

After filter sterilization, each solution was added to the medium to make a 9 mM thiosulfate- 

or 2.5 mM sulfide-containing medium.  Growth on agar CP plates was carried out as 

described previously [21,22]. 

 

Plasmid construction for natural transformation 

A 2.7-kb DNA fragment containing the soxB gene was amplified by polymerase chain 

reaction (PCR) using an SOB-F primer (5’-ACATGCCATGGTCATCTTCGCCGCTGATC) 



-Chapter II- 
 

- 65 - 

and an SOB-R primer (5’-GCTCTAGAAGGTAAAGCCCTGCTTGG), both of which were 

designed on the basis of the complete genomic sequence of Cba. tepidum [12].  In these 

primer sequences, heterologous bases are italicized, and recognition sites are underlined, 

respectively, an NcoI site for SOB-F and an XbaI site for SOB-R.  Plasmid pSB was 

produced by digesting this DNA fragment with NcoI and XbaI and cloning the product thus 

obtained into the same recognition sites of pKF3 (Takara Bio Inc.).  Plasmid pSB was then 

cut at two HindIII sites located at both ends of the soxB gene and ligated with the gentamycin 

resistance (Gmr) cassette, which was produced by HindIII digestion of pUCGM [23], as 

shown in Figure II-1A.  The resultant plasmid, pSB-Gmr, was prepared in a large amount 

with a MIDI-prep kit (Invitrogen).  About 1 μg of pSB-Gmr was linearized by cutting at the 

NcoI site and applied to natural transformation in strain WT2321 of the Cba. tepidum and the 

ΔcycA strain as described previously [21].  The transformants grown on selective (Gmr) CP 

plates were restreaked three times onto Gmr CP plates.  Single colonies on the third plate 

were inoculated into the liquid media, and the grown cells were inoculated again into selective 

liquid media containing appropriate antibiotics (gentamycin for the ΔsoxB strain and 

streptomycin/gentamycin for the ΔcycAsoxB strain).  These growth cultures were used for 

further investigations. 

Genomic DNAs of all the strains were prepared according to the method described 

previously [22].  Plasmid constructions and other routine molecular biological procedures 

were carried out using chemically competent Escherichia coli DH5α as a host. 

 

Growth rate measurements 

The wild-type and mutant strains of Cba. tepidum were routinely grown at 40°C in a 

home-built growth chamber illuminated from the front with a light intensity of 30 μmol of 

photons m-2 s-1 using incandescent lamps, although the optimum temperature for growth is 

47°C [20].  In the case of the growth measurements of mutants, no antibiotic was added into 
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liquid media in order to avoid any influence to their growth behavior.  It has recently been 

demonstrated that temperature for growth affects cellular physiology, that is, compositions of 

bacteriochlorophyll c homologs and physical properties of chlorosomes [24].  Although the 

phenotypes observed in this study were expected to be more severe at the optimum 

temperature, the same conclusions concerning sulfur oxidation would be drawn from 

experiments at different temperatures. 

For a quick estimation of the growth rate, the optical density at 660 nm was routinely 

monitored using a photometer (mini photo 518R, TAITEC).  For a more reliable estimation, 

the protein content in each culture was determined basically according to the method 

described by Mukhopadhyay et al. [25].  Inoculation was done by transferring an aliquot 

amount (1 μg protein) of early stationary-phase cells, which were grown preliminarily under 

the same condition, into a freshly prepared medium in a 30-ml screw-capped tube without a 

headspace.  Each culture was kept in the dark for 1 - 2 hrs before measurements started.  

The average value of five independent measurements was plotted against the time elapsed.  

The optical density was not monitored consecutively in each tube, but it was discarded after 

measurement in order to avoid any interference of growth. 

 

Quantitative determinations of sulfur compounds 

After centrifugation of each culture, the resultant supernatant was kept at -80°C until 

use except for sulfide determination.  The content of the sulfur compounds in the supernatant 

was determined as follows: the sulfide content was estimated by the formation of methylene 

blue [26], the thiosulfate content, by cyanolysis in the presence of Cu2+ ion followed by 

Fe-SCN complex formation [27], and the sulfate content, by the formation of BaSO4 

precipitates after the reaction with BaCl2 under acidic conditions [28].  As Pf-7-MOPS 

contained 0.8 mM MgSO4, it was impossible to clarify physiological meanings of values less 

than 0.8 mM obtained in the present measurement (see Table II-1). 
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The elemental sulfur was also quantified after hexane extraction of the centrifugation 

pellet, followed by further extraction with methanol and subsequent measurement of the 

absorption of the finally obtained extract at 260 nm [29].  The hot cyanolysis method was 

also applied to estimate it and almost the same result was obtained [30] (data not shown). 

Although a freshly prepared liquid medium (both Pf-7 and Pf-7-MOPS) contained 2.5 

mM sulfide, the actual measurement value of sulfide immediately after inoculation was found 

to be only 1 mM due to its volatilization and/or oxidation during a centrifugation step to 

collect the supernatant (see Figure II-2B).  The initial sulfide content was therefore 

confirmed to be about 2.4 mM by a direct addition of reagents into the medium in a culture 

tube after the removal of its screw cap and a subsequent color development in it (see Table 

II-1).  The cyanolysis method tends to react slightly with elemental sulfur and/or polysulfide 

derived from sulfide oxidation by air [27], which would, thus, overestimate the thiosulfate 

content to be 0.1-0.3 mM in sulfide-containing media (also see Table II-1). 
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Results 

 

Construction of Cba. tepidum mutants 

The soxB gene was disrupted in both the Cba. tepidum wild type and the ΔcycA strain 

by replacing the central portion of a soxB gene with the aacC1 gentamycin cassette as 

depicted in Figure II-1A.  The insertion of the aacC1 gene into the correct locus in the 

genomic DNA was verified by PCR analyses using a primer set of SOB-F/SOB-R.  Although 

2.7-kb fragments containing a full size of the soxB gene were amplified from the wild type and 

ΔcycA strain, products with a size of 2.0 kb were obtained from the ΔsoxB and 

ΔcycAsoxB::aacC1 strains (Figure II-1B).  This was interpreted to be due to the deletion of a 

1.6-kb fragment within the coding region of the soxB gene when an aacC1 cassette with the 

size of 0.9 kb was inserted (see Figure II-1A).   On the other hand, a primer set of 

C554F/C554R, which was applied to cause the insertional disruption of the cycA gene in the 

previous study [16], confirmed that both mutants were never affected by the present 

transformation procedures.  Furthermore, the same results were also obtained in mutants after 

several generations of cultivation in non-selective Pf-7 and/or Pf-7-MOPS media (data not 

shown), indicating that the aacC1 cassette was stably incorporated into the genome. 

 

Growth rates and oxidations of sulfide and thiosulfate in complete media 

Figure II-2A shows the growth profiles of the wild type and three mutants (ΔcycA, 

ΔsoxB, and ΔcycAsoxB strains) cultivated in Pf-7 medium [20], which contains both sulfide 

and thiosulfate (Figure II-2A).  All of them grew almost at the same rate during the initial 15 

hrs, and their doubling times were estimated to be 2 hrs, nearly the same as that reported 

originally in Cba. tepidum under optimal conditions [20].  During this period, sulfide was 

consumed completely in all cultures, while the thiosulfate contents remained almost 

unchanged (Figure II-2, B and C).  Although sulfide appeared to be exhausted more slowly in 
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the cultures of the disruption mutants of the soxB gene (ΔsoxB and ΔcycAsoxB strains) than in 

those of the wild type and the ΔcycA strain, their growth rates did not clearly reflect these 

small distinctions. 

After 15 hrs, the wild type and the ΔcycA strain still continued to grow to attain their 

full growth, although the ΔcycA strain was slightly retarded compared to the wild type (P < 

0.001) (Figure II-2A).  The doubling time of the wild type was thus almost the same as 

before, while that of the mutant strain was estimated to be about 4.5 hrs.  In agreement with 

their respective growth profiles, the wild type consumed thiosulfate more rapidly than the 

ΔcycA strain (Figure II-2C), and no significant difference was observed between their final 

cell yields. 

On the other hand, the ΔsoxB and ΔcycAsoxB strains ceased to grow after 15 hrs, 

when sulfide in their cultures was completely exhausted, and their final cell yields were 

estimated to be less than one tenth of that of the wild type (Figure II-2, A and B; also see Table 

II-1).  Since the SoxB is a component in a multienzyme system involved in thiosulfate 

oxidation, it was conceivable that both mutants could not utilize thiosulfate as an electron 

source [11].  In fact, the thiosulfate contents in their cultures were constant during the 

measurements of their growths, as shown in Figure 2C. 

 

Utilization of sulfide and thiosulfate as electron sources 

It still remained unknown to what degree the mutants could efficiently utilize sulfide 

and thiosulfate for their photosynthetic growths.  The growth profiles, therefore, were 

observed after transferring into freshly prepared media containing only sulfide or thiosulfate as 

the sole electron source (Figure II-3).  Cell numbers were roughly estimated by measuring 

optical densities at 660 nm for the sake of convenience because there was no need to 

discriminate subtle differences in growth rates.  The final cell yields were nevertheless 

measured by determining the protein contents in order to avoid overestimates due to light 
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scattering (Table II-1).  The sulfur content in each culture after the stationary phase was also 

measured to estimate the degree of oxidation of the two electron sources. 

When 9 mM thiosulfate was provided as the sole electron source, the ΔsoxB and 

ΔcycAsoxB strains did not grow completely (Figure II-3A), and no consumption of thiosulfate 

was observed in either culture (Table II-1).  The ΔcycA strain grew more slowly than the wild 

type, as expected from the result obtained in the Pf-7 medium, and required much more time 

to attain full growth (Figures II-2A and II-3A).  This could be interpreted as a result 

reflecting the relatively slower oxidation rate of thiosulfate in the mutant compared to that in 

the wild type (Figure II-2C).  The cell yield of the ΔcycA strain was, however, almost the 

same as that of the wild type in Pf-7-MOPS medium with or without thiosulfate (Table II-1).  

The entire consumption of thiosulfate by both the wild type and the ΔcycA strain indicated that 

they could utilize thiosulfate for their photosynthetic growth and completely oxidize it to 

sulfate.  In fact, the amounts of sulfate accumulated after their full growths were nearly 

equivalent to those of thiosulfate added into freshly prepared media in terms of the sulfur 

contents (Table II-1). 

On the other hand, when 2.5 mM sulfide was added to the media as a sole electron 

source, all four strains showed a similar growth profile (Figure II-3B).  It is well known that 

polysulfide and/or elemental sulfur globules, which are the products of sulfide oxidation, are 

excreted outside of the cells during phototrophic growth and then oxidized further to sulfate 

[31].  The small bulges in the growth curves of the wild type and the ΔcycA strain, which 

could be observed at around 15 hrs in Figure II-3B, were thus ascribable to their transient 

appearance detected as a scattering artifact.  From the amounts of sulfate accumulated in the 

cultures after full growth, most of the sulfide added into freshly prepared media seemed to be 

completely oxidized to sulfate by the wild type and the cycA::aadA strain (Table II-1).  

Although the ΔsoxB and ΔcycAsoxB strains could consume sulfide judging from Figure II-2B, 

they were found to oxidize it only partially (Table II-1).  Almost the same amount of sulfate 
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was detected in the ΔsoxB strain as compared to that in the control medium, and a half amount 

of sulfate expected from a complete sulfide oxidation seemed to be accumulated in the 

ΔcycAsoxB strain.  In fact, the final cell yields of the wild type and the ΔcycA strain were 

about 2 times larger than those of the ΔsoxB and ΔcycAsoxB strains (Table II-1), in agreement 

with the incomplete oxidation of sulfide to sulfate by the latter two mutants.  In the present 

experiment, the maximal sulfide concentration in media was limited to 2.5 mM because of its 

toxic effect on cells at higher concentrations. 
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Discussion 

 

The physiological function of cyt c-554 

The ΔcycA strain could grow even in the medium containing only thiosulfate as an 

electron source but exhibited a rather retarded growth rate compared to that of the wild type 

(Figure II-3A), which was attributable to a relatively slower oxidation rate of thiosulfate by 

the mutant than the wild type (Figure II-2C).  However, it is noteworthy that the mutant still 

retained a capability to completely oxidize thiosulfate to sulfate.  This was also supported by 

the fact that the final cell yield of the ΔcycA strain was almost the same as that of the wild type, 

implying that the mutant can utilize all the reducing power derived from thiosulfate oxidation 

for its own growth.  Therefore, the present results have clearly demonstrated that cyt c-554 

functions as an efficient electron carrier between the Sox system and cyt cz as expected but is 

not indispensable for thiosulfate oxidation. 

In the medium containing both sulfide and thiosulfate, the wild type as well as the 

ΔcycA strain utilized sulfide exclusively during the early stage of growth and then oxidized 

thiosulfate after sulfide exhaustion (see Figure II-2) [32].  This suggests that an activity of 

thiosulfate oxidation might be somehow regulated, presumably by the redox state of the 

quinone pool, because the sulfide oxidation by SQR could control its redox balance.  It is 

noteworthy that the ΔcycA strain commenced thiosulfate consumption about 10 hrs later after 

the wild type did (Figure II-2C).  In accordance with this, the mutant strain also resumed its 

growth after a time lag in media containing only thiosulfate as an electron donor as well 

(Figure II-3A).  It may suggest that an electron-carrying component other than cyt c-554 or 

an alternative electron transfer path was induced to oxidize thiosulfate, although there is no 

genetic information at present from the relevant genomic analysis.  Recently, the RT-PCR 

analysis of three SQR homologs has indicated that the transcription level of CT1087 increased 
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when sulfide was supplemented to cultures [17].  It will therefore be interesting issues to 

study regulation mechanisms of sulfur oxidation pathway in detail. 

 

In vivo mechanisms of sulfur oxidation in Cba. tepidum 

It has been demonstrated in vitro that the Sox multienzyme system, which oxidizes 

sulfite, thiosulfate, sulfur, and/or sulfide, consists of four protein components, namely, SoxAX, 

SoxYZ, SoxB, and SoxCD, in Paracoccus pantotrophus [10].  On the other hand, the 

genome sequence analysis of Cba. tepidum has revealed that no orthologs of the soxC and D 

genes, which encode sulfur dehydrogenase (SoxCD), are found in the sox gene cluster or at 

other locations [12].  The present results clearly demonstrate that the soxB gene is 

indispensable for the oxidation of thiosulfate (see Figure II-3A and Table II-1), suggesting that 

some other component(s) than the SoxCD or a different oxidation mechanism must be 

operating in Cba. tepidum.  Although an alternative carrier would also accept electrons from 

this Sox system, it is not at all clear at present what could play the role of cyt c-554 in the 

ΔcycA strain. 

Furthermore, an additional interesting phenotype was recognized in mutants devoid 

of SoxB, i.e., neither the ΔsoxB strain nor the ΔcycAsoxB one oxidized sulfide completely to 

sulfate (Table II-1).  They did not also excrete any polysulfide/sulfur globules outside of the 

cells (Table II-1), although the cultures of the soxB mutants appeared to become somewhat 

turbid and show some kind of aggregations.  One possible interpretation might be that the 

Sox system in Cba. tepidum is somehow involved in the oxidation of intermediate(s) produced 

during sulfide oxidation.  This should be resolved by a more intensive analysis of all possible 

intermediate(s) and/or in vitro reconstitution experiments in the future. 

The mechanisms of sulfur oxidation as well as its metabolic pathways remain 

enigmatic in green sulfur bacteria, although several in vitro reconstitution experiments had 
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intensively been conducted in the early 1970s [8,9].  Recent work has demonstrated that 

SoxK, whose gene is located between the soxA and soxB genes in the genome of Cba. tepidum 

[13], drastically enhanced the thiosulfate-dependent reduction of cyt c-554 by forming a 

ternary complex with SoxAX, when added into a reaction mixture containing SoxYZ 

(CT1017-1018) and SoxB [15].  However, it still remains an unknown and critical issue how 

thiosulfate is completely oxidized to sulfate in vivo.  Now that genomic databases are 

available in some sulfur-oxidizing bacteria, comparative studies as well as molecular genetic 

analyses using Cba. tepidum will clarify the components involved in sulfide and/or thiosulfate 

oxidation and enable us to envisage the entire picture of the sulfur metabolism in green sulfur 

bacteria in the near future. 

 

Evolutionary aspects of green sulfur bacterial cyts c 

Recent genomic analyses of twelve species of green sulfur bacteria have revealed that 

an orthologous gene encoding a low-molecular-weight, soluble monoheme cyt c-554/555 is 

distributed in all of them (Figure II-4A) [33].  Although their deduced amino acid sequences 

exhibit a relatively wide range of identities (41–91%) to each other, the identities in species 

containing the Sox gene cluster exhibit a higher identity proportion (approximately 64–91%).  

An orthologous gene encoding cyt c-556 is also distributed as probable membrane-bound 

c-type cyt in all species, and their amino acid sequences exhibit 31–75% identity to each other.  

Except for Chloroherpeton thalassium [34] and Chlorobium (Chl.) chlorochromatii [35], the 

gene for cyt c-556 is located immediately upstream of the gene for cyt c-554/555; however, in 

the Cba. tepidum genome only, an ORF (CT0074) is located between two genes for cyts 

c-554/555 and c-556, although the annotation of CT0074 is doubtful.  These genomic 

organizations strongly suggest that the ET pathways involving both cyts c-554/555 and c-556 

are evolutionarily conserved in green sulfur bacteria regardless of their capability for 

thiosulfate oxidation. 
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The cluster analysis of green sulfur bacterial cyts cz, c-554/555, and c-556, as well as 

heliobacterial cyt c-553, has clarified three major groups, as shown in Figure II-4B.  Cyts 

c-554/555 and c-556 are closely related to each other but distantly related to cyt cz, suggesting 

that the former two share a paralogous relationship with each other as electron donors to cyt cz.  

Cyts c-554/555 in four thiosulfate-oxidizing species (Cba. tepidum, Cba. parvum, Chl. 

phaeovibriodes, and Chl. clathratiforme; see [1,13]) do not form a monophyletic cluster, 

implying that they might have evolved independently in accordance with physiological 

demands of individual species.  Furthermore, cyt c-554/555 of Chl. ferroxidans shows a high 

sequence identity (approximately 69%) compared to those of thiosulfate-oxidizing species.  

Chl. ferroxidans, which does not use reduced sulfur compounds (sulfide, thiosulfate, and 

elemental sulfur) as electron sources but oxidizes ferrous ion to ferric ion [36], contains 

neither the sox gene cluster nor other relevant genes [13].  This could imply two possibilities 

concerning the function of cyt c-554/555.  One is that cyt c-554/555 has the same function as 

an electron carrier among all species of green sulfur bacteria; Cba. tepidum cyt c-554 not only 

accepts electrons from the Sox system but would also operate in (an)other unknown but 

common pathway(s).  The other is that cyt c-554/555 has different functions depending on 

the species; Cba. tepidum cyt c-554 accepts electrons from the Sox system, while Chl. 

ferroxidans cyt c-554/555 would do so from the oxidation system of ferrous ion.  At present, 

there is no biochemical and/or molecular biological data concerning cyt c-554/555 from Chl. 

ferroxidans or any other species which cannot oxidize thiosulfate at all.  In general, cyts 

would be evolutionarily “adaptive” or “flexible” to physiological variations and have different 

functions depending on species [37]. 
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Tables 

 

Table II-1: Cell yields and concentrations of sulfur compounds in stationary phase cultures 
(after 72 hrs of growth) of the wild type and three mutants 

Strains Electron sources  
in Pf-7-MOPS 

Cell yields 
(μg protein/ml) 

Sulfide 
concentrations 
(mM) 

Thiosulfate 
concentrations 
(mM) 

Elemental sulfur 
concentrations 
(mM) 

Sulfate 
concentrations 
(mM) 

wild type sulfide/ 
thiosulfate 184.3 (±28.8) N.D.a N.D.a 0.1 (±0.0) 21.6 (±1.2) 

thiosulfate 211.0 (±10.9) N.D.a N.D.a 0.9 (±0.1) 17.4 (±1.9) 

sulfide 31.9 (±0.9) N.D.a N.D.a 0.1 (±0.0) 3.0 (±0.1) 

ΔcycA sulfide/ 
thiosulfate 170.5 (±22.6) N.D.a N.D.a 0.1 (±0.0) 22.1 (±1.0) 

thiosulfate 211.6 (±11.3) N.D.a N.D.a 0.4 (±0.0) 18.9 (±1.1) 

sulfide 33.0 (±2.0) N.D.a N.D.a 0.1 (±0.0) 2.8 (±0.1) 

ΔsoxB sulfide/ 
thiosulfate 11.8 (±0.5)b N.D.a 9.5 (±0.1)b N.D.a 0.4 (±0.0)b 

thiosulfate N.D.a N.D.a 9.2 (±0.1)b N.D.a 0.1 (±0.0)b 

sulfide 14.7 (±0.9)b N.D.a 0.3 (±0.0) N.D.a 0.9 (±0.1)b 

ΔcycAsoxB sulfide/ 
thiosulfate 21.1 (±3.3)b,c N.D.a 9.1 (±0.6)b N.D.a 1.2 (±0.1)b,c 

thiosulfate N.D.a N.D.a 9.2 (±0.0)b N.D.a 0.1 (±0.0)b 

sulfide 19.3 (±2.6)b,c N.D.a 0.2 (±0.0) N.D.a 1.7 (±0.1)b,c 

noned sulfide/ 
thiosulfate - 2.1 (±0.1) 9.2 (±0.1) N.D.a 0.1 (±0.0) 

thiosulfate - N.D.a 9.0 (±0.1) N.D.a 0.1 (±0.0) 

sulfide - 2.4 (±0.1) 0.1 (±0.0) N.D.a 0.7 (±0.0) 

a Not detectable. 
b P < 0.001, for comparison to the wild type within the same condition. 
c P < 0.05, for comparison to the soxB::aacC1 strain within the same condition. 
d Concentrations of sulfur compounds were measured in freshly prepared media as described 
in the text.  Note that Pf-7-MOPS contains 0.8 mM  
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Figures 

 

 

Figure II-1.  (A) Schematic map for the construction of ΔcycA (upper) and ΔsoxB (lower) 

mutants.  Genes are indicated by rectangles.  The arrows represent the oligonucleotide 

primers used for the cloning and confirmation of mutations.  Plasmids were digested at the 

AhdI site for natural transformation and then introduced into Cba. tepidum.  (B) PCR 

analysis of the genomes from the wild type (lanes 1 and 5), ΔcycA strain (lanes 2 and 6), 

ΔsoxB strain (lanes 3 and 7), and ΔcycAsoxB strain (lanes 4 and 8). The loci of cycA and soxB 

were amplified by PCR with the primer sets of C554F and C554R (lanes 1-4) and of SOB-F 

and SOB-R (lanes 5-8), respectively.  The numbers indicate the lengths of the DNA 

fragments in kilobases. 
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Figure II-2.  (A) Growth profiles for the wild type (open squares), ΔcycA strain (closed 

squares), ΔsoxB strain (open circles), and ΔcycAsoxB strain (closed circles) cultivated in Pf-7 

media at 40°C.  (B) and (C) Sulfide and thiosulfate consumptions during the cultivation of 

wild type and three mutants.  The symbols are the same as in (A).  The average of five 

independent measurements of the cell density (μg protein/ml) and the sulfide and thiosulfate 

concentrations [24] in media were plotted against time.  Standard deviations are also 

indicated by bars in (B) and (C), but too small to be noted other than three points indicated in 

(C).  Measurement values were missing at 30 hrs in the wild type and ΔcycA mutant in (C) 

because they were plotted at 40 hrs instead. 
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Figure II-3.  Growth profiles for the wild type (open squares), ΔcycA strain (closed squares), 

ΔsoxB strain (open circles), and ΔcycAsoxB strain (closed circles) cultivated in Pf-7-MOPS 

media with (A) thiosulfate or (B) sulfide at 40°C.  The average of five independent 

measurements of the cell density at 660 nm was plotted against time. 
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Figure II-4.  (A) Multiple alignment of amino acid sequences of green sulfur and 

heliobacterial c-type cyts (cyts cz, c-554/555, c-556 and c-553) constructed with a Clustal W 

program.  The typical binding motif for c-type heme, C-X-X-C-H, is completely conserved in 

all cyts c, and the relevant cysteine and histidine residues are boxed in wine red and pink, 

respectively.  The blue-shaded region is a signal-like peptide sequence for lipidation.  The 

conserved cysteine residues just after the signal sequences are written in red and shaded in 

pink.  (B) Cluster analysis of green sulfur and heliobacterial c-type cyts.  The unrooted 

phylogenetic tree was constructed by neighbor-joining method with MEGA4 [38].  The 

bootstrap values were calculated with 1000 replications and are shown by the sides of the 

branches.  The asterisks represent green sulfur bacteria capable of thiosulfate oxidation.  

The mature proteins start from the 23rd tyrosine and 18th cysteine residues for cyts c-554/555 

and c-556, respectively, in Cba. tepidum and from the 23rd cysteine residue for cyt c-553 in 

Hbt. modesticaludam.  In the case of cyt cz, the sequence of its C-terminal hydrophilic and 

soluble heme-containing domain (referred to as “cz-sol”) [39,40], which corresponds to the 

one from the 96th amino acid in Cba. tepidum, was used for the analysis.  Sequence data of 

cyt c-554/555 and c-556 homologues were obtained from the JGI microbial genomic database 

(http://img.jgi.doe.gov) by blast searches using Cba. tepidum c-554 (CT0075) and c-556 

(CT0073) as queries.  Although two candidates for cyt c-556 in the Chl. luteolum genome (C. 

luteolum c-556-1 and -2) were hit with high scores, the conserved cysteine residue was found 

only in the Chl. luteolum c-556-1.  In Chloroherpeton thalassium, an orf gene (Ctha_1874) 

seems to encode a fused protein of cyt cz and cyt c-554/555 at the N-terminal and C-terminal 

halves, respectively.  These halves are therefore tentatively referred to as “N-cz” and “C-cz”, 

respectively.  Other sequence data were obtained from the JGI microbial genomic database 

and the Genbank database. 
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Molecular Biological Approaches toward the Elucidation of the Electron 

Transfer Pathway in the Photosynthetic Reaction Center Complex of 

Chlorobaculum tepidum 
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Summary 

 

A rapid isolation method and a gene manipulation method has been required for 

structural and functional analyses at a molecular level of the homodimeric type I 

photosynthetic reaction center (RC) complex.  The author constructed the green sulfur 

bacterium Cba. tepidum mutant in which the 6xHis-tag-pscA gene encoding the His-tagged 

RC core protein was incorporated into a coding region of the recA gene, causing the 

duplication of pscA gene concomitantly with the disruption of the recA gene.  The 

inactivation of the recA gene strongly suppressed homologous recombination in Cba. tepidum.  

Although the mutant expressed both non- and His-tagged RC core proteins, the highly pure 

and photoactive His-tagged RC complex was isolated in one-step by Ni2+-affinity 

chromatography.  The LC-MS/MS analysis revealed that the His-tagged RC complex was a 

mixture of the His-tagged homodimer and non-/His-tagged heterodimer.  Furthermore, 

low-temperature ESR analyses indicated that there were a series of electron transfer 

components, iron-sulfur centers and quinones, in that complex.  In this chapter, the author 

proposes “the pscA gene duplication method” as the most promising method for a site-directed 

mutagenesis of the homodimeric RC including intentional heterodimerization. 
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Introduction 

 

Photosynthetic reaction centers (RCs) are pigment-associated membrane protein 

complexes which produce energized electrons through a series of redox reactions driven by a 

capture of solar energy.  All RCs so far found in photosynthetic organisms have been 

classified into two types based on their terminal electron acceptors: type I (Fe-S-type) and type 

II (quinone-type) RCs [1].  Oxygenic cyanobacteria and chloroplasts of plants and algae 

utilize both of them, photosystem (PS) I and II, which form the linear electron transport 

pathway through the cytochrome (cyt) b6f complex, while all anoxygenic photosynthetic 

bacteria use only one type of them.  Purple photosynthetic bacteria and filamentous 

anoxygenic photosynthetic bacteria have type II RCs which do not evolve oxygen.  Green 

sulfur bacteria and heliobacteria, which are strictly anaerobic photosynthetic bacteria, have 

type I RCs.  Unlike all other RCs, their RCs consist of two identical core polypeptides, thus 

called “homodimeric” type I RCs [2,3]. 

Crystal structures of the “heterodimeric” type I and II RCs, which consist of a set of 

two almost identical, but partially different core polypeptides, clarified that all of their core 

polypeptides form quite similar heterodimers sharing the common folding motif of 

membrane-spanning α-helices as well as the spatial configuration of electron transfer (ET) 

components [1].  Those ET components make up two symmetrically-arranged ET chains 

along a pseudo-C2 axis parallel to the membrane normal, while ET reactions itself occur via 

only one of two chains in all of heterodimeric type I and II RCs [1,4-6].  This functional 

asymmetry is thought to be due to the heterogeneity of local environments on two chains 

provided by heterodimeric core protein.  These heterodimeric RCs would be originated from 

a common homodimeric ancestor whose two electron transfer chains are equally redox active 

[7].  From that point of view, the detail structural and functional information of homodimeric 

type I RCs will lead to understandings of the mechanisms and evolution of RCs due to 
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retaining the ancestral features, homodimeric structures.  However, the information about ET 

pathways as well as its molecular organization in green sulfur bacterial and heliobacterial RCs 

is very scarce due to the difficulty in large-scale preparation and spectroscopic analyses of 

them.  The main reason for this lies in its extreme instability under oxygenic conditions 

where iron-sulfur (Fe-S) centers are easily destroyed [2,3]. 

The green sulfur bacterial RC complex is composed of four subunits: PscA, PscB, 

PscC, PscD, and the Fenna-Mathews-Olson (FMO) protein [2].  A pair of PscA makes up a 

homodimeric core protein which contains the primary electron donor, P840; the primary 

electron acceptor (A0), Chl aPD; and the interpolypeptide Fe-S centers, FX.  PscB is a 

functional homologue of PsaC of PS I, binding two Fe-S centers which serve as the terminal 

electron acceptors, FA and FB.  But, they are different in amino acid sequences as well as 

association properties with the RC [8].  PscC is a unique subunit of green sulfur bacterial RC 

complex, which is also called cyt cz.  Cyt cz has three membrane-spanning α-helices in its 

N-terminus, and binds a c-type heme in its C-terminal water-soluble domain.  Two cyt cz are 

tightly bound to the RC complex and serve as the direct electron donor to the photooxidized 

P840 [9,10].  That electron donation rate extraordinarily depends on solvent viscosity due to 

the fluctuation of the C-terminal domain [11].  FMO is the BChl a containing protein 

bridging the excitation energy transfer from the chlorosome, which is an extramembranous 

antenna system, to the RC core complex [7].  Three FMO form a functional trimer with each 

monomer binding 7 or 8 BChl a [12,13].  PscD is required for the efficient energy transfer 

from the chlorosome to the RC via FMO protein, but not for photosynthetic growth [14].  

Unlike these unambiguous identifications of biochemical components in the green sulfur 

bacterial RC complex, the existence of quinone molecules which function as a secondary 

electron acceptor (A1) in all other kinds of RCs is still controversial [2].  In the case of 

heliobacteria, the transient ESR signal of P800+A1
- with A/E/A/E pattern has been obtained 

under similar experimental condition in the RC core complex of heliobacterium 
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Heliobacterium modesticaldum [15].  Although menaquinone molecules have been present in 

some preparations of green sulfur bacterial RC [16,17], there is no evidence for its function as 

secondary electron acceptor (A1); no flash-induced transient reduction signal of menaquinone 

has been observed [17,18]. 

Molecular genetic methods are thus expected to be the most promising approach to 

resolve the issues.  In the case of heterodimeric type I and type II RCs, there have been many 

successful reports of site-directed mutagenesis to the RC core proteins (reviewed in [5,6,19]).  

For example, in the purple bacterial RC, the spin distribution and also redox potential of the 

primary electron donor have been modified by substitution of the leucine proximal to the BChl 

a [20].  In other instances, the substitutions of the axial ligand for the primary electron donor 

have been reported in all three types of heterodimeric RC [21-23].  In the case of the 

homodimeric type I RC, the meso-thermophilic green sulfur bacterium Cba. tepidum is 

amenable to a genetic manipulation and the information of its genome sequences is available 

[24-26]; however, any mutant strain having the mutated RC core protein has never been 

obtained so far, presumably because of its lethal effect.  The author thus proposes another 

strategy to obtain any mutated RC complex, “the pscA gene duplication method”; the tag-pscA 

gene encoding the RC core protein with an affinity tag attached to its N-terminus is 

incorporated into the recA locus, which causes the disruption of the recA gene concomitantly 

with the duplication of the pscA gene (Figure III-1).  This strategy includes two different 

ideas.  First, since the recA gene is responsible for homologous DNA recombination and 

repair [27], its disruption mutant could be a suitable host for the expression of externally 

incorporated homologous genes.  In various bacterial strains, RecA protein triggers SOS 

response to DNA damage by its protease activity specific to LexA protein which is the direct 

repressor of SOS genes including the recA gene [28].  However, there is neither any typical 

LexA homologue in the Cba. tepidum genome nor LexA-binding consensus sequences, 

SOS-box or LexA-box, in upstream region of the recA gene [28].  Thus, the disruption of the 
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Cba. tepidum recA gene is expected to affect only on homologous DNA recombination system, 

but not on response system to DNA damage.  Second, since the authentic pscA gene 

expresses the wild-type RC core protein, the mutant expressing the mutagenized tag-pscA 

gene is expected to grow even in the presence of nonfunctional RC complex.  The mutated 

RC complex would be obtained by a specific adsorption to the affinity column.  Another 

usefulness of the pscA gene duplication is a method for the intentional heterodimerization of 

the homodimeric RC.  According to the pscA gene duplication, any given mutation is 

supposed to be only on the His-tagged PscA.  In principle, it is thus possible to construct the 

heterodimeric RC that is intentionally changed from the homodimeric one with any 

site-directed mutation of interest (Figure III-1, lower). 

The successful pscA gene duplication requires two conditions.  First, the disruption 

of the recA gene has to cause a deficiency the homologous recombination in the Cba. tepidum, 

but not affect the structure and function of its RC complex.  According to the whole genome 

analysis of Cba. tepidum, no other orf but CT1930 is expected to be the recA gene [26].  

Since any recA-disruption mutant of Cba. tepidum has never been isolated so far, the effects 

on the homologous recombination as well as the photosynthetic system should be investigated 

in the Cba. tepidum.  Second, the affinity tag must be available for isolation of the Cba. 

tepidum RC complex.  The successful isolation of the tagged RC complex is reported in all 

three kinds of heterodimeric RCs [29-37], but not in any homodimeric RC.  In this study, as a 

model case of the pscA gene duplication, the author introduced the 6xHis-tag-pscA gene 

instead of the mutagenized one and succeeded in one-step purification of the 

highly-photoactive His-tagged RC complex containing a series of electron transfer 

components.  Furthermore, the constructed mutant expressed not only the His-tagged PscA 

homodimer but also non-/His-tagged PscA heterodimer. 
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Experimental procedures 

 

Strains and culture conditions 

The strain WT2321 [38] of Cba. tepidum was used as the wild-type strain in this 

study.  All Cba. tepidum strains were grown anaerobically in liquid CL media or solid CP 

media as previously described [24].  Gentamicin was added to medium at a final 

concentration of 30 μg ml-1 as required to select mutant cells.  The growth temperature was 

routinely set at 40ºC to prevent thermal denaturation of the antibiotic resistance gene products.  

Growth chamber was illuminated at approximately 30 μmole photons m-2 s-1 by incandescent 

lamps. 

Chemically competent Escherichia coli DH5α cells were used as a host for routine 

molecular biological procedures.  100 μg ml-1 of ampicillin, 20 μg ml-1 of chloramphenicol 

and 10 μg ml-1 of gentamicin were used to select E. coli cells with desired plasmid. 

 

Construction of the plasmid for inactivation of the Cba. tepidum recA gene 

Sequences of primers used for PCRs in present study are shown in Table III-1.  A 

5’-upstream region (1 kbp) of the Cba. tepidum recA gene (CT1930) were amplified by PCR 

with recA-4105F and recA-5104R primers, and a 3’-end and downstream region (1 kbp) were 

amplified with recA-2203F primer and recA-3208R primers.  They were sequentially cloned 

into pKF3 (TaKaRa Bio Inc.) with StuI and BamHI for the 5’-upstream region fragment, and 

SmaI and SphI for the 3’-upstream region fragment, yielding plasmid pKF3-ΔrecA.  A 0.8 

kbp fragment containing a gentamicin resistance gene, aacC1 gene, which was obtained from 

pUCGM [39] by SacII digestion followed by blunting and BamHI digestion, was inserted 

between BamHI and SmaI sites of pKF3-ΔrecA, yielding plasmid pKF3-ΔrecA::aacC1.  A 

2.8 kbp StuI fragment of pKF3-ΔrecA::aacC1 was ligated with a SmaI digest of pHP45 [40] 

obtaining plasmid pHP45-ΔrecA::aacC1.  Sufficient amount of pHP45-ΔrecA::aacC1 
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prepared from a large scale cultures was linearized with AhdI and used for a transformation of 

Cba. tepidum. 

 

Construction DNA for insertion of the 6xHis-tag-pscA gene into the recA locus 

When PscA proteins seemed to be highly produced in E. coli, any attempt to clone a 

full-length Cba. tepidum pscA gene was unsuccessful, probably because PscA was potentially 

toxic to E. coli.  Therefore, all plasmid constructions involving cloning of the pscA gene were 

performed under limited conditions in which transcription of pscA gene was completely or 

strongly suppressed.  To add a His-tag to the N-terminus of PscA, a 3.1 kbp fragment 

containing a Cba. tepidum pscAB gene cluster were amplified by PCR using pscB-948F and 

pscA-4070BR, and cloned into pET15b (Novagen) with BamHI and BlpI in proper reading 

frame, yielding plasmid pHisAB15b.  Another fragment amplified with pscB-1081F and 

pscA-4435R, which contained a putative promoter as well as the pscAB genes, was cloned into 

the blunt-ended BamHI site of pHP45, yielding plasmid pHP45-AB-P.  Using pHP45-AB-P 

as a template DNA, a 5.7 kbp fragment was amplified by PCR with pscA-4072F and 

pscA-4070R.  After digestion with NcoI and BglII, an amplified fragment was ligated with a 

0.3 kbp NcoI-BglII fragment of pHisAB15b, yielding plasmid pHP45-HisAB-P.  A 3.5 kbp 

SmaI fragment of pHP45-HisAB-P was inserted into the SmaI site of pHP45-ΔrecA::aacC1, as 

the 6xHis-tag-pscAB gene cluster and the aacC1 gene were transcribed in the same direction.  

However, since all resultant plasmids had a nonsense mutation in the pscA coding sequence, 

megaprimer PCR [41] was employed to obtain a DNA construct with the correct sequence.  

Using one of the mutated plasmid, pHP45-HisA*B-P, megaprimers were synthesized by PCR 

with pscA-4095F and HP45-blaF for 5’-flanking region, and pscB-1410R and HP45-ropR for 

3’-flanking region.  Megaprimer PCR was then carried out according to the previously 

reported method [41] in a reaction mixture that contained the two gel-purified megaprimers, 

recA-2203F primer, recA-5104R primer, and pHP45-HisAB-PT.  A 6.2 kbp amplification 
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product with the correct sequence was gel-purified and directly used for a transformation of 

Cba. tepidum. 

 

Transformation of Cba. tepidum and analytical PCR 

Natural transformation was performed by the previously described method [24].  

Transformants were selected on gentamicin-containing CP plates and restreaked three times 

onto selective CP plates.  To monitor the segregation of wild-type and mutant alleles in each 

isolation step, analytical PCR was carried out directly using individual colonies as templates 

(see below).  Fully-segregated transformant colonies were inoculated into fresh CL media 

containing gentamicin and cultivated until early stationary phase.  After checking the 

segregations again, frozen stocks were prepared and used as original mutant strains for further 

investigations. 

Genomic DNA preparation and analytical PCR were performed basically as 

previously described [14].  For rough tests, a colony or a cell suspension was used as a 

template for the PCR.  A colony was picked with a toothpick and directly soaked into the 

PCR reaction mixture.  When using a cell suspension as a template, cells were harvested by 

centrifugation and resuspended in water, and then directly added to a PCR reaction mixture at 

final 50-fold dilution [41]. 

 

Steady-state spectral measurement 

The steady-state fluorescence emission and absorption spectra were measured with a 

spectrofluorophotometer RF-1500 (Shimadzu) and spectrophotometer UV-3101PC 

(Shimadzu), respectively.  When measuring the whole cell fluorescence emission and 

absorbance spectra, the samples were prepared as previously described [14]. 
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Measurement of homologous recombination frequency of Cba. tepidum 

The homologous recombination frequency of C. tepidum was estimated as the 

insertional inactivation frequency of the bchU gene by the aadA streptomycin-spectinomycin 

resistance cassette [42].  After transformations of the wild-type and recA mutant, each 

frequency was calculated by counting colonies on both selective and non-selective plates.  

The mean values and standard deviations in the Table III-2 were obtained from at least three 

independent experiments. 

 

Preparation of the Cba. tepidum His-tagged RC complex 

The Cba. tepidum cells expressing the His-tagged RC complex were grown in 

1.2-liter medium bottles.  After 2 days of cultivation, cells were harvested by centrifugations 

at 12,000g for 5 min and stored at -80ºC until use.  Unless otherwise indicated, the 

subsequent processes were carried out in an anaerobic chamber (Coy Laboratory products) at 

room temperature.  All buffers and resins used for preparation were fully degassed by 

standing in an anaerobic chamber overnight and supplemented with 10 mM L-cysteine and/or 

2 mM dithiothreitol for appropriate reductive conditions.  Preparation of 

chlorosome-containing membranes and subsequent solubilization of them were carried out 

basically as previously reported [43] with a modification as follows: the membranes at 2.5 mg 

BChl (a+c) ml-1 were solubilized with 50 mM Tris-HCl (pH 8.0), 30 mM 

n-octyl-β-D-glucopyranoside (β-OG, Sigma), 300 mM NaCl, 2 mM dithiothreitol, and 

protease inhibitors.  After removing unsolubilized materials by centrifugation at 110,000g for 

1 h, 200 ml of the resultant supernatant was mixed with 60 ml of 50% suspension of the 

Ni2+-immobilized sepharose resin, His-Accept (Nacalai tesque), which had been 

pre-equilibrated with the same buffer as used in solubilization.  The mixture was gently 

shaken in a conical flask with a tilt shaker for 1 h, and loaded into an empty column.  The 
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column was washed with 200 ml of wash buffer [50 mM Tris-HCl (pH 8.0), 2 mM sucrose 

monolaurate (SM-1200, Dojindo laboratories), 300 mM NaCl, 10 mM imidazole, and 2 mM 

dithiothreitol] to exchange the detergent.  The His-tagged RC complex was eluted with 

elution buffer [50 mM Tris-HCl (pH 8.0), 2 mM sucrose monolaurate, 300 mM NaCl, 300 

mM imidazole, and 2 mM dithiothreitol].  For the ESR measurements and further 

purification by gel filtration, the eluted fraction was concentrated by ultrafiltration with a 15 

kDa cutoff membrane (Minicon concentrator, Millipore).  SDS-PAGE was performed 

according to Laemmli’s method [44].  The separated protein bands were stained with 

Coomassie Brilliant Blue. 

 

Time-resolved optical spectroscopy 

Flash-induced absorbance changes were measured with a home-built single-beam 

spectrophotometer.  Samples in an air-tight cuvette (1 cm × 1 cm) were continuously probed 

with a single-wavelength measuring beam isolated from a tungsten-halogen lamp with a 20 cm 

monochromator.  Excitation flashes (decayed within 1 ms) were provided by a Xe flash lamp 

filtered by suitable band-pass filters, and entered the sample from a perpendicular direction to 

the measuring beam.  The sample was protected from the measuring beam by a shutter until 

200 ms prior to the excitation flash.  The transmitted measuring beam from the sample was 

detected by a photomultiplier through suitable long-pass filters and a 10 cm monochromator.  

The detected signal was amplified by an operational amplifier and stored in a digital 

oscilloscope.  Collected signals were averaged 32-128 scans as required. 

 

nLC-MS/MS 

Approx. 4 μM of RC complexes (equal to approx. 0.4 μg/μl of PscA protein) was 

digested with 20 ng/μl of trypsin at 37°C for overnight under undenaturing condition [50 mM 
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Tris-HCl (pH 8.0), 2 mM sucrose monolaurate].  The resultant peptides were separated by 

EASY-nLC (Proxeon, Denmark) and analyzed its mass spectra with micrOTOF-QII (Bruker 

Daltonics, USA).  10 μl of 1/20-30 diluted trypsin-digested sample was injected into the 

pre-column, NS-MP-10 BioSphere C18 (5 μm particle size, 120-Å pore size, 100 μm inner 

siameter, 20 mm length; NanoSeparations, Netherland), with 10 μl/min flow rate using 

autosampler and washed pre-column with Solution A [0.1% formic acid in double distilled 

water, HPLC grade].  The desalted peptides were subsequently separated by analytical 

column, NS-AC-10-C18 BioSphere C18 (5 μm particle size, 120-Å pore size, 75 μm inner 

diameter, 100 mm length; NanoSeparations, Netherland), at 200 nl/min flow rate.  The 

solvent gradient was started at 5% Solution B [0.1% formic acid in acetonitrile, HPLC grade] 

and linearly increase to 50% Solution B for 60 min.  The separated peptides on a C18 column 

were introduced into the micrOTOF-QII mass spectrometer with nanoelectrospray ionization 

under positive mode.  The capillary voltage was -4.5 kV and drying gas temperature was set 

200°C.  The collision energy of the quadrupole for MS/MS fragmentation of each peptide 

using Ar gas was set from 20-40 eV.  Acquired mass spectra in micrOTOF-QII were 

processed by DataAnalysis 3.4 and Biotools 3.2 (Bruker Daltons). 

 

EPR measurements 

Low-temperature EPR measurements were performed using a Bruker ESP-300E 

spectrometer (Bruker Biospin) equipped with a liquid-helium flow cryostat and a 

temperature-control system (CF935, Oxford Instruments).  Continuous white light for 

photoaccumulation was provided from a tungsten-halogen lamp through heat-cut glass filters.  

A Xe flash lamp was used for measurements of flash-induced EPR signals. 
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Results 

 

Inactivation of the recA gene and insertion of the 6xHis-tag-pscAB gene cluster 

Two different C. tepidum mutants lacking a functional recA (CT1930) gene were 

constructed by the natural transformation method as previously described [24] (Figure III-2A).  

The recA::aacC1 strain, in which the aacC1 gentamicin resistance cassette was inserted into 

the recA region, was used as a control.  In another mutant, the recA::(HisAB-aacC1) strain, 

the 6xHis-tag-pscAB gene cluster was additionally inserted upstream of the aacC1 cassette.  

The 6xHis-tag-pscAB construct contains a putative 365-bp promotor region upstream of the 

intrinsic pscAB gene cluster in order to express the N-terminally  His6-tagged PscA along 

with the authentic PscA in vivo.  Segregations of the wild-type and mutant alleles were 

confirmed by the PCR method using the recA-inside and -outside primer set to amplify the 

recA locus (Figure III-2B).  No fragment corresponding to the wild-type allele was detected 

in the amplified products from two mutant cells.  The amplified products from the 

recA::aacC1 cells were approximately 100-bp smaller than those from the wild-type cells.  

This size corresponds to the difference in the length between the deleted recA gene and the 

inserted aacC1 cassette.  On the other hand, the amplified products from the 

recA::(HisAB-aacC1) cells were approximately 3.4 kbp larger than those from the 

recA::aacC1 cells because of additional insertion of the 6xHis-tag-pscAB gene cluster.  

Direct sequencing of these product revealed no unintended alteration of nucleotides, indicating 

that the recA gene was insertionally inactivated with the desired constructs in these two 

mutants. 

Duplication of the pscAB gene cluster in the recA::(HisAB-aacC1) strain was further 

confirmed by the PCR method using the pscA up-stream primer set (Figure III-2A).  The 

450-bp fragments amplified from the wild-type, recA::aacC1 and recA::(HisAB-aacC1) cells 

were derived from the authentic pscAB gene cluster (Figure III-2B, panel b).  However, an 
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additional 520-bp fragment was also found only from the recA::(HisAB-aacC1) cells.  This 

fragment corresponded in size to the extended region derived from the 6xHis-tag-pscAB 

construct inserted into the recA locus.  These results clearly indicated that the pscAB gene 

cluster was successfully duplicated in the recA::(HisAB-aacC1) strain.  The 6xHis-tag-pscAB 

construct was stably retained in the genome of the recA::(HisAB-aacC1) strain since the same 

PCR results were reproducibly obtained from cultures after several generations (data not 

shown). 

 

Phenotypes of Cba. tepidum mutant lacking the recA gene 

Both recA::aacC1 and recA::(HisAB-aacC1) strains could grow photosynthetically, 

and showed essentially the same whole cell absorption and fluorescence emission spectra as 

the wild-type strain (data not shown).  Therefore, there seemed to be no serious effect on the 

photosynthetic system of the C. tepidum by the disruption of the recA gene as well as the 

insertion of the 6xHis-tag-pscAB construct into the recA region.  The responsibility of the 

CT1930 for the homologous recombination was further examined by estimating 

transformation frequencies of the wild-type and recA::aacC1 strains.  When the wild-type 

strain was used as a host, about 1% of the total cells could be transformed into the bchU- strain 

(Table III-2).  In contrast, when the recA::aacC1 strain was used as a host, its transformation 

frequency was found to be much smaller by 10-5-10-6 than the wild type.  Since the 

BchU-less mutant appeared to exhibit a normal phenotype in its growth compared to the wild 

type [42], the significant decrease of the transformation frequency obtained in the 

recA::aacC1 strain was attributable to the complete deficiency of the double-crossover DNA 

recombination.  This result clearly indicates that the CT1930 is involved in the homologous 

recombination and that no orf other than the CT1930 would serve as a recA-like gene in the C. 

tepidum [26]. 
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Purification of the His-tagged RC complex 

A crude fraction containing the RC complex was obtained after extraction with β-OG 

from chlorosome-containing membranes of the recA::(HisAB-aacC1) strain, followed by its 

isolation using a Ni2+ affinity chromatography, as described in experimental procedures.  As 

expected, dark green components were adsorbed onto the Ni2+-immobilized resin.  Most of 

them were retained after a wash procedure with 10 mM imidazole and then eluted with 300 

mM imidazole.  The eluate contained four major polypeptides of the green sulfur bacterial 

RC [2], that is, PscA, FMO, PscB, and PscC, although no band corresponding in the apparent 

molecular mass to the PscD appeared to be observed (Figure III-3A, lane 1).  In fact, the 

further purification step by a gel filtration chromatography with Sephacryl S-300 revealed that 

these four polypeptides were coeluted from the column and formed a stable complex as the 

His-tagged RC complex (Figure III-3A, lane 2).  A 40-60% fraction of the total extracted RC 

was supposed to be adsorbed onto the resin, given the absorbance difference between the 

extract and non-adsorbed fraction.  Contrary to this, no RC complex extracted from the 

wild-type membrane bound to the immobilized Ni2+ resin (data not shown).  Therefore, the 

His-tagged RC complex was successfully expressed in the recA::(HisAB-aacC1) strain and 

could be obtained in a single step as well as considerably high purity by a Ni2+ affinity 

chromatography. 

The absorption spectrum and the chemically induced oxidized-minus-reduced 

difference spectrum of the His-tagged RC complex are shown in Figure III-4.  There were 

three major peaks at 815, 671, and 601 nm in the absorption spectrum, which were attributed 

to characteristic Q bands of BChl a and Chl aPD in green sulfur bacterial RC complex [43].  

The shoulder around 835 nm, which was ascribable to a specific absorption for a special 

dimmer of BChl a molecules (P840) in the RC core protein, was also observed.  The ratio of 

the absorbance at 815 nm to that at 835 nm was calculated to be 2.2-2.6, which was similar to 

that of 1FMO-RCC complex comprising a monomer of FMO protein and a RC core protein 
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[45].  The chemically induced oxidized-minus-reduced difference spectrum showed the 

negative peak at 830 nm with a shoulder at 840 nm, which was attributed to the oxidation of 

P840.  Assuming the extinction coefficient for BChl a at Qy peak and the difference 

extinction coefficient for P840 at 830 nm to be 100 mM-1 cm-1 [46], the apparent antenna size 

of the present RC preparation was estimated to be 26 BChl a/P840, which was also consistent 

with the estimated value from the 1FMO-RCC complex.  The electric-field-induced 

absorbance change of Chl aPD exhibited an isosbestic point at 665 nm.   

The small absorption peak at 551 nm, which disappeared after addition of excess 

ferricyanide, was attributed to the α peak of cytochrome cz.  Its wavelength was slightly 

different from 552 nm in a similar RC complex solubilized by the same detergents as in the 

present study (9), but was identical to that in the one obtained by solubilization with Triton 

X-100 (18).  Cytochrome cz seems to show its α-peak wavelength from 551- to 553 nm due 

to some structural modification and/or distortion [47].  The C-terminal soluble domain of 

cytochrome cz, which was overexpressed in Escherichia coli, exhibited its α peak at 550.5 nm 

[48] and had almost the same redox potential as in membranes [49].  Assuming the difference 

extinction coefficient for c-type heme of cytochrome cz at 551 nm to be 20 mM-1 cm-1 [50], the 

amplitude of the negative absorption peak at 551 nm in the chemically redox difference 

spectrum indicated that about 1.7 hemes per P840 were present in the His-tagged RC 

preparation. 

 

Flash-induced absorption changes of P840 in the His-tagged RC complex 

The oxidized primary electron donor, P840+, immediately formed after the flash 

excitation, is rereduced by cytochrome cz at the time constant (t1/e) of 150 μs in the isolated 

RC complex at 295 K, and its rereduction rate becomes slower in highly viscous reaction 

media [9,11].  In the absence of glycerol, the flash-induced P840+ was so rapidly rereduced 

by cytochrome cz that its rereduction kinetics could not be fully followed at the present time 
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resolution of ca. 1 ms and its signal amplitude was apparently too small to be detected (Figure 

III-3B, trace a).  Contrary to this, at least the 10-fold greater intensity of the photooxidized 

P840+ was observed in the presence of 60% glycerol, which exhibited a monophasic decay 

kinetics with a relatively larger t1/e = 65 ms (Figure III-3B, trace b).  This kinetics seemed to 

be a mixture of two different ET processes to the P840+; one was from cytochrome cz and 

another was from FA/FB, because they had been shown to give almost the same time constant 

in the presence of 60% glycerol at 295 K [11].  The flash-induced difference absorption 

spectrum at 1 ms after the flash excitation (Figure III-5, open circles) was almost identical to 

the chemically induced redox difference spectrum of P840+ (see Figure III-4, trace b).  The 

decay associated spectrum with t1/e = 60 ms, which was obtained by a global analysis, was also 

reasonably fitted to the difference spectrum at 1 ms (Figure III-5, dotted line).  These data 

including subunit compositions described above suggest that the His-tagged RC complex 

contains all ET components essential for the light-energy conversion reaction to produce 

reducing power. 

 

LC-MS/MS analyses of the His-tagged RC preparation 

In principle, the recA::(HisAB-aacC1) mutant cells can expess three kinds of RC 

complexes: the non-tagged PscA homodimer, the His-tagged PscA homodimer, and the 

non-/His-tagged PscA heterodimer (Figure III-1, lower).  The His-tagged RC preparation 

obtained in the present study would thus be a mixture of the His-tagged PscA homodimer and 

the non-/His-tagged PscA heterodimer.  This heterogeneity was explored by the LC-MS/MS 

analysis of peptides produced by a tryptic digestion of the His-tagged RC preparation under 

non-denaturing conditions (Figure III-6 and III-7A).  The N-terminal tryptic peptide of the 

His-tagged PscA was detected as the 1767.86 Da fragment (m/z = 884.932, accuracy < 10 

ppm) at the retention time of 8.2 min in the LC-MS analysis, whose product ion spectrum by 

the tandem mass spectrometry (MS/MS) further confirmed that it corresponded to peptide 
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2-13 (GSSHHHHHHSSGLVPR) in the His-tagged PscA (Figure III-8).  On the other hand, 

no ion peak corresponding to every possible N-terminal peptide of the non-tagged PscA could 

be identified at all in the MS/MS data.  There were two conceivable explanations for this: 1) 

the non-tagged PscA polypeptide was never present in the His-tagged RC preparation, or 2) 

the amount of the N-terminal peptide recovered from a tryptic digestion of the non-tagged 

PscA polypeptide was too small to be analyzed by the MS/MS. 

In order to resolve this issue, we tried to determine the retention time and the accurate 

mass of the N-terminal tryptic peptide of the non-tagged PscA using the RC complex isolated 

from the wild-type strain by our previous methods [9].  The LC-MS/MS analysis revealed 

that peptide 2-16 (AEQVKPAGVKPK) in the authentic PscA, which was eluted at 17.8 min 

from the C18 column, was acetylated at the N-terminal alanine residue, giving a molecular 

mass of 1292.74 Da (accuracy < 10 ppm) (Figure III-7B, upper panel and III-9).  This 

fragment was regarded as the sole N-terminal tryptic peptide of the non-tagged PscA because 

no peptide fragment subjected to any other potential modification, e.g., an oxidation, 

formylation, and/or acetylation of the first methionine residue, was never detected.  A small 

but obvious peak with the same mass and retention time could be detected in the tryptic 

digests of the His-tagged RC preparation in the LC-MS analysis (Figure III-7B, lower panel).  

This result clearly indicated that the recA::(HisAB-aacC1) mutant cells expressed the 

non-/His-tagged PscA heterodimeric RC complex in addition to the His-tagged PscA 

homodimeric one. 

The amounts of these two kinds of RC complexes in the His-tagged RC preparation 

were roughly estimated by comparing the intensity of the ion peak corresponding to the 

non-tagged N-terminal peptide from the His-tagged preparation with that from the authentic 

RC one.  The intensity of peptide 214-225 (Figure III-6), which showed a molecular mass of 

1240.609 Da (accuracy < 10 ppm) and was reproducibly detected in both authentic and 

His-tagged RC preparations (data not shown), was used as the internal standard to calculate a 
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relative amount of each preparation.  The non-tagged PscA polypeptide content in the 

His-tagged RC preparation was thus estimated to be 8.1 ± 1.7% compared to that in the 

authentic RC one in three independent measurements.  A similar estimation (approx. 10%) 

was also obtained by the SDS-PAGE analysis; non- and His-tagged PscA polypeptides could 

be almost, but not quite separated on the gel containing a high concentration of urea to 

improve its resolution (data not shown).  Since non-tagged PscA polypeptide in the 

His-tagged RC preparation should be derived only from the non-/His-tagged PscA heterodimer, 

the estimated value implies that the artificial heterodimeric RC complex constitutes about one 

fifth of the total amount in this preparation. 

 

Light-induced ESR signals of Fe-S centers in the His-tagged RC complex 

The ESR measurements were carried out to clarify the intactness of terminal 

iron-sulfur centers in the His-tagged RC fraction.  The illumination for 1 min at 5 K induced 

a irreversible signal of the reduced Fe-S center with apparent g-values of gz = 2.079, gy = 

1.901, and gx = 1.863 when measured at 10 K (Figure III-10A).  Their g-values and 

temperature dependence (data not shown) closely resembled those of the center FB
- reported in 

isolated RC complexes [43,51] as well as membranes [52]. 

After the illumination for 20 min at 210 K followed by the subsequent cooling to 5 K 

under the illumination, two other signals with apparent g-values of gx = 1.886 and gy = 1.948 

at 10 K and gx = 1.754 and gy = 1.928 at 5 K, respectively, were observed (Figure III-10B).  

These signals exhibited different temperature dependences (Figure III-10C).  The former 

signal could be assigned to the spin-interacting state of FA
-/FB

- and the latter one to the center 

FX
- as previously characterized in both membranes [43,51,53] and isolated RC complexes 

[14,52,53].  All of the above data indicated that there was a complete set of photoreducible 

Fe-S centers, namely, FX, FA and FB, on the acceptor side in the His-tagged RC fraction. 
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Photoaccumulated ESR signal of semiquinone radical in the His-tagged RC complex 

In order to examine whether quinone molecules were served as an electron acceptor, 

the photoaccumulated ESR signal of semiquinone radicals was measured, as previously 

reported in the membrane of C. parvum [16] and the RC core complex of H. modesticaldum 

[15].  In the presence of dithionite, the illumination for 1 min at 5 K using the sample frozen 

in the dark induced an irreversible ESR signal with the apparent g-value of g = 2.0043 when 

measured at 30K (Figure III-11, solid line).  This signal was attributable mainly to the P840+ 

in addition to a tiny contribution by semiquinone radical.  Contrary to this, the same 

mesurement using the photoaccumulated sample prepared as in Figure III-10B slightly shifted 

the g-value of the signal to a lower magnetic field at g = 2.0049 and broadened its bandwidth 

(Figure III-11, broken line).  The difference ESR spectrum between them showed the g-value 

of g = 2.0066 with the broad bandwidth of 12 G (Figure III-11, short-dotted line), indicating 

that quinone molecules, which could be photoaccumulated in the present conditions, were 

contained in the His-tagged RC complex. 

 

Spin-polarized ESR signals of the charge-separated state P840+FX
- 

The electron transfer reactions within the His-tagged RC complex were investigated 

at cryogenic temperature by flash-induced transient ESR measurements.  Figure III-12A 

shows flash-induced transient ESR spectra of the His-tagged RC complex at 10 K in the 

presence of dithionite.  The spin-polarized ESR signal with E/A (E, emission; A, absorption) 

pattern around 339.4 mT was observed just after the flash excitation and completely converted 

into the stable ESR signal derived only from P840+ within 4 ms.  Almost the same 

spin-polarized signal was also reported in the membrane preparation and the isolated RC 

complex of C. tepidum at 100 K and assigned to the charge-separated state of P840+FX
- [18].  

This clearly indicated that the electron transfer reaction from the P840 to FX proceeded so 

rapidly in the Chlorobium RC complex even at cryogenic temperature as to detect the 



-Chapter III- 
 

- 107 - 

spin-polarized signal formed between them.  The kinetics at a positive peak of 339.4 mT 

(Figure III-12A, inset) exhibited a biphasic decay with time constants (t1/e) of 1.1, and 7.5 ms 

whose contributions were estimated to be 75% and 25%, respectively.  The fast phase was 

assigned to the spin relaxation time of the spin-polarized state of P840+FX
- [18].  The slow 

phase would thus be attributable to the charge recombination rate between P840+ and FX
- at 10 

K.  On the other hand, the transient ESR measurement of the chlorosome-free membrane, 

which was isolated from the wild-type strain according to the previously described method 

[10], exhibited almost identical spectral and kinetic properties to those of the His-tagged RC 

fraction (Figure III-12B).  The His-tagged RC complex, therefore, seems to have intrinsic 

biophysical nature so far described in the wild-type one and could be a useful sample to be 

prepared easily and in large amount as well. 
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Discussion 

 

The Cba. tepidum recA mutant as a host for the homologous gene expression 

The recA gene is involved in homologous recombination to repair the damaged DNA 

in bacteria [54-56].  Indeed, the disruption of the C. tepidum recA gene caused drastic 

decrease of homologous recombination efficiency (Table III-2).  A defect in the recA-related 

repair system is, however, lethal for oxygenic photosynthetic organisms, since an exposure to 

light produces reactive oxygen radicals including singlet oxygen that would damage 

chromosomal DNA.  The recA- mutant of a cyanobacterium Synechocystis sp. PCC6803 

accumulated nonviable cells even under low-light intensity (about 10 μmole photons m-2 s-1) 

[56].  In contrast, the mutant of C. tepidum was found to be viable judging from colony 

counts on plates.  This may simply imply that no oxidative stress exceeds harmful threshold 

level in the mutant because C. tepidum requires the strictly anaerobic condition for its growth. 

A recent study has demonstrated that antioxidant enzymes were constitutively 

expressed to defense against the oxidative stress in the C. tepidum [57].  Other DNA repair 

system by non-homologous recombination could thus be operative in response to such stress 

because the phenotype of the mutant was stably maintained after multiple subcultures.  

Although RecA protein also serves as a trigger for the SOS response to the damaged DNA in 

many bacterial lineages, the typical RecA-LexA-mediated SOS response system is missing in 

C. tepidum [28].  In conclusion, the recA- strain constructed in the present study would be a 

desirable host for the stable expression of homologous genes as well as mutated ones those are 

essential for the photosynthetic growth. 

 

The Cba. tepidum His-tagged RC complex 

This is the first report for the affinity purification of green sulfur bacterial RC 
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complex.  The His-tagged RC complex contained a series of functional electron cofactors and 

exhibited a stable charge separation state between P800 and terminal acceptors FA/FB.  The 

addition of (His)6-tag to the N-terminus of PscA was thus effective for a convenient and 

short-time preparation of the photoactive C. tepidum RC complex.  Gulis et al. reported a 

successful purification of PS I by the addition of N-terminal His-tag to PsaA core protein in 

green alga Chlamydomonas reinhardtii [34].  They noted that the N-terminus of PsaA was a 

desirable portion for the attachment of tags from the point of view of 3D structure; it protrudes 

to an aqueous phase from membranes and the N-terminal 12 residues are never resolved due to 

a disorder as seen in the crystal of PS I complex of a cyanobacterium Thermosynechococcus 

elongatus.  On the other hand, when the (His)6-tag was attached to the C-terminus of PscA, 

no RC complex could be adsorbed onto the Ni2+-immobilized resin, presumably because the 

tag was embedded within complex (data not shown).  A similar case was experienced by 

Tang and Chitnis who failed to attach the (His)6-tag to the C-termini of PsaK and PsaL in 

cyanobacterium Synechocystis sp. PCC6803 [37].  In general, the cytoplsmic/stromal side 

would be preferable to the periplasmic/lumenal side for the attachment of tags to type I RCs 

(Table III-3).  Especially in green sulfur bacterial RC, the C-teminal water-soluble domain of 

cytochrome cz could reduce the accessibility of the tag at the periplasmic/lumen side.  In the 

case of type II RC, successful rapid preparations were achieved by attaching the His-tag not 

only at the cytoplsmic/stroma side, but also the periplasmic/lumen side.  This relationship 

between RC types and favorable tag-attachment sites might reflect the difference in structure 

and/or function between each type of RC. 

Although the addition of the His-tag did not interfere with the electron transfer 

activity of RC by all measures, the PscD subunit was not included in the His-tagged RC 

complex fraction (Figure III-3A).  The whole cell fluorescence emission of the 

recA::(HisAB-aacC1) mutant did not show an increase in fluorescence emission like in 

PscD-less mutant [14] , meaning that the PscD subunit was in the His-tagged RC complex, but 
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would dissociate during the preparation, especially solubilization of the membranes.  Since 

PscD is estimated to bind to the corresponding side of RC complex to N-terminus of PscA 

[2,14] , the loss of PscD subunit could be conceivably caused by the change of electrostatic 

environment around the cytoplasmic side of RC complex due to positive charges of the 

consecutive 6 histidine residues.  Supporting this notion, the His-tagged RC complex had a 

low content of FMO (1FMO/RC, Figure III-3B and III-4) which also bind to the cytoplasmic 

side of RC complex [2,7].  However, since PscD would not affect the structure and stability 

of the RC complex, the loss of PscD subunit would not cause any serious problem on further 

structural investigations of the His-tagged RC complex.  Indeed, the temperature dependence 

of the spin-interacting ESR signal of FA
-/FB

- in present preparation (Figure 6B) was similar to 

that in membrane of the wild-type rather than the PscD-less mutant whose signal intensity 

peaks at slightly higher temperature, 12 K [14]. 

 

The electron transfer in green sulfur bacterial RC at cryogenic temperature 

The author observed the flash-induced spin-polarized ESR signal of P840+FX
- in the 

His-tagged RC complex and the membrane even at cryogenic temperature (Figure III-12).  

The charge recombination reaction between P840+ and FX
- was also observed with a time 

constant of 7.5 ms.  This time constant is significantly shorter than that reported in transient 

ESR signals of Cba. tepidum membrane and isolated RC complex at 100 K, t1/e ~ 30 ms [18].  

A similar temperature dependence has been closely examined in the heliobacterial RC core 

complex of Heliobacterium modesticaldum whose FX
- lifetime is 12-19 ms at above 200 K, 

accelerates on cooling, and replaced 3-5 ms at below 150 K [58].  This feature in 

homodimeric type I RC is completely different from that in PS I [59], in which the charge 

recombination time is 250 μs at room temperature, slows on cooling and becomes barely 

detectable below 200 K due to the suppression of the electron transfer from A1
- and FX.  

Another controversy in homodimeric type I RC has been the involvement of quinine as A1 
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acceptor in the forward electron transfer.  A certain proportion of photoexcited electrons were 

accumulated on quinones by the preillumination at 200 K in the presence of dithionite (Figure 

III-11).  However, further investigations are required for the elucidation of the functionality 

of quinones in green sulfur bacterial RC. 

 

A methodological proposal for the site-directed mutagenesis in Cba. tepidum 

In this paper, the author examined availability of the pscA gene duplication as a 

mutagenesis method for the Cba. tepidum RC (Figure III-1).  Our present results clearly 

demonstrated suitability of the recA locus for the introduction of homologous gene and 

availability of the affinity tag for specific purification of RC complex.  In addition, the 

approximately half of total extracted RCs did not adsorb onto the Ni2+-immobilized resin, 

indicating that the recA::(HisAB-aacC1) mutant strain expressed the non-tagged RC core 

protein encoded by the authentic pscA gene.  The non-tagged RC complex is obviously 

supposed to be same as the wild-type one and retain the proper function, which can 

complement any growth deficiency suffered due to the nonfunctional mutated RC, affirming 

the pscA gene duplication approach for the construction of the mutated RC.  This approach 

integrating the disruption of recA gene and the attachment of affinity tag can be also 

applicable to purification and biochemical analyses for any other genes, which are likely to 

play an essential role in Cba. tepidum, such as petCB genes (CT0302 and CT0303) and ndh 

genes (CT0766 to CT0776) expected to encode homologues of cytochrome bc complex and 

complex I of the respiratory chain, respectively. 

Another noteworthy advantage of the pscA gene duplication is as a method for 

construction of the heterodimeric RC with a site-directed mutation (see above).  The 

LC-MS/MS analyses in present study showed that the His-tagged RC preparation contained 

not only the His-tagged PscA homodimer but also a significant amount of the non-/His-tagged 

PscA heterodimer (Figure 4B).  Thus, construction of the heterodimeric RC is thought to be 
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really possible by means of the pscA gene duplication.  However, there are two problems that 

need to overcome for actual preparation and investigations of the heterodimeric RC.  First, 

since the content of heterodimer in the present His-tagged RC preparation, approx. 15%, is not 

enough for detailed biochemical and spectroscopic analyses, some improvements for yielding 

much more heterodimers are required.  One possible strategy is regulation of the expression 

level of the duplicated pscA gene.  In the recA::(HisAB-aacC1) mutant cells, since the 

6xHis-tag-pscA gene could be transcribed by not only the promoter of pscA gene but also the 

endogenous promoter for the recA gene (Figure III-1), the expression levels of non-tagged 

PscA would be lower than that of the His-tagged PscA.  This may be improved by driving the 

authentic pscA gene with more effective promoter; however, no promoter sequence analyzed 

in detail has been available in Cba. tepidum.  Instead of enhance the expression level of 

authentic pscA gene, a similar improvement can be obtained by same expression levels of two 

genes at a local point in the cell.  This will be achieved by tandemly-arranged wild-type pscA 

and 6xHis-tag-pscA genes driven with common one promoter.  Another reason for lower 

content of the heterodimer could be a significant loss during the preparation.  Indeed, 15-25% 

of total RCs adsorbed onto the Ni2+-immobilized resin eluted with 10 mM imidazole at the 

washing stage.  Considering that the non-/His-tagged PscA heterodimer has only one His-tag 

while the His-tagged PscA homodimer has two, the heterodimeric RCs would bind more 

loosely to the resin than the homodimeric His-tagged RC.  Hence, the fraction eluted with 10 

mM imidazole might contain the non-/His-tagged PscA heterodimer at higher contents.  The 

improvement strategy for this is related to the second problem. 

The second problem in preparation and investigations of the heterodimer is the 

isolation method for the heterodimeric RC complex.  In present study, the His-tagged PscA 

homodimer and the non-/His-tagged PscA heterodimer could be separated by its affinity to 

Ni2+, but not completely.  The most promising method for complete isolation of the 

heterodimer is attaching different kinds of affinity tags, such as His-tag and strep-tag, to the 
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authentic and duplicated pscA genes.  For example, when the strep-tag and His-tag attach to 

the authentic and duplicated pscA genes, respectively, the Strep-tagged/His-tagged PscA 

heterodimer can be purified by tandem affinity chromatography using 

strep-tactin-immobilized resin and Ni2+-immobilized resin.  This strategy is also expected to 

improve yield of the heterodimeric RC because heterodimeric RC complexes in the wash 

fraction of Ni2+-affinity chromatography can be recovered using the Strep-tag attached to the 

authentic PscA.  Since the His-tag did not cause harmful effect on the structure and function, 

some small tag similar to His-tag, such as strep-tag [60], would be also available for affinity 

purification of RC.  Indeed, the author has succeeded in constructing the Cba. tepidum 

mutant strains whose authentic pscA gene was replaced with 6xHis-tag-pscA gene or 

strep-tag-pscA gene.  These mutants have showed no obvious growth defects and deleterious 

effects on photosynthetic systems (data not shown).  Therefore, in conclusion, the pscA gene 

duplication method would enable us to experimentally explore and investigate mutations that 

make two symmetric electron transfer pathways asymmetric by the heterodimerization with 

any given mutation. 
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Tables 

 

Table III-1: Primers used for DNA constructions and analytical PCRs 

Primer namea Sequenceb 

recA-2203F (SphI, StuI) TTTGCATGCAGGCCTTATTTCTCGCCCTTGTACTCC 

recA-3208R GGGCTGTCGAGTTCGGCATCATC 

recA-4105F (BamHI) TTTGGATCCGTATGGTCCTGGTTTACTGC 

recA-5104R CCTATTCTCATCACCGGTGCAAC 

pscA-4070BR (BamHI) AAAGGATCCGATGGCTGAACAAGTGAAACCC 

pscA-4435R GGTGAAATCGATGTGCATGTC 

pscA-4072F (NcoI) TCAGCCATGGTATGTTCTCCTTTGTTTGAACG 

pscA-4070R ATGGCTGAACAAGTGAAACCC 

pscA-4095F TATTTTCAGGTTGAAGAAACCG 

pscB-1410R CTCCGAAAGCCAAGAAGCA 

pscB-1081F CGATTCCTGACTATCTGGCT 

pscB-948F (BlpI) AAAGCTCAGCTTTATTCTTTCTGGCCTGTACTGC 

HP45-blaF CAAGGATCTTACCGCTGTTG 

HP45-ropR GCTTACAGACAAGCTGTGAC 

recA-inside primers CGAGCTTTTCAGTGCCATAAC 

CATGTCGTACCGCCCATTC 

recA-outside primers ATTGAGAATCAGTCTGGGCG 

ATTGCGGATGGATTTGGGTG 

pscA up-stream primers GGTGAAATCGATGTGCATGTCc 

ATTTGCCTTCGGAGCTGGTG 

a Restriction enzyme sites attached to primers for cloning are shown in parentheses. 

b Recognition sequences of restriction enzymes used for DNA constructions are underlined. 

c This sequence is completely identical to that of pscA-4435R.  
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Table III-2: Comparison of transformation efficiencies for the bchU gene inactivation of 

between the wild-type and the recA::aacC1 mutant strains of C. tepidum 

Strain Amount of DNA  
for the transformation 

Number of vial cells 

(cfu/ml) a Transformation frequency b 

wild-type 0.1 μg  5.6 ± 0.4 ×109 2.5 ± 1.2 ×10-4 

1 μg  8.0 ± 2.0 ×109 4.9 ± 1.6 ×10-3 

10 μg  6.2 ± 2.4 ×109 1.1 ± 0.6 ×10-2 
  

recA::aacC1 0.1 μg  4.4 ± 1.6 ×109  1.1 ± 1.9 ×10-9 c 

1 μg  9.6 ± 2.0 ×109  7.7 ± 5.7 ×10-9 c 

10 μg  6.0 ± 1.6 ×109  3.1 ± 0.6 ×10-8 c 

a The number of cells in the liquid culture at late exponential phase. 
b The ratio of the number of drug-resistant colonies on the selective plate to the total number 
of colonies (see Experimental procedures).   
c P < 0.05, for comparison to the wild-type within the same conditions. 
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Table III-3: (His)6-tag attachment sites in various kinds of RCs and their membrane 

topologies 

Topology of  
the tag position a Type of RC Attachment site of 

the His-tag Comment and Reference 

Cytoplasmic/stroma side Purple bacterial RC C-terminus of H subunit Ref. 29 

PS II N-terminus of D1 decreasing of O2-evolving activity, Ref. 35

C-terminus of CP43 Ref. 36 

C-terminus of CP47 Ref. 30 

N-terminus of cyt b559 (PsbE) Ref. 32 

PS I N-terminus of PsaA Ref. 34 

Grean sulfur bacterial RC b N-terminus of PscA this study 

Periplasmic/lumen side Purple bacterial RC C-terminus of M subunit Ref. 33 

PS II C-terminus of D2 Ref. 35 

C-terminus of PsbH Ref. 31 

PS I C-terminus of PsaK buring the tag in the complex, Ref. 37 

C-terminus of PsaL buring the tag in the complex, Ref. 37 

Grean sulfur bacterial RC b C-terminus of PscA buring the tag in the complex, this study. 

a The membrane topologies were estimated based on the crystal structures of the purple 
bacterial RC (PDB ID: 1PRC), cyanobacterial PS II (PDB ID: 3BZ), and PS I (PDB ID: 
1JB0). 
b The membrane topology of PscA was estimated based on the number of predicted 
transmembrane helices and homology of the amino acid sequence to cyanobacterial PS I (2, 
20). 
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Figures 

 

Figure III-1.  Mutagenesis strategy for 

constructing the site-directed mutant of Cba. 

tepidum RC.  The recA gene is inactivated 

by insertion of the mutated tag-pscA gene 

together with selection marker such as a 

gentamicin resistance cassette.  All of the 

mutated RC complexes can be isolated with 

the affinity tags which are supposed to attach to only mutated PscA core proteins.  The 

authentic pscA gene remained untouched is expected to express the native RC core proteins 

and promise the photosynthetic growth of the Cba. tepidum mutant. 

  



-Chapter III- 
 

- 118 - 

 

Figure III-2.  Insertional inactivation of the 

recA gene and duplication of the pscA gene in 

Cba. tepidum.  (A) Schematic map for the 

construction of recA-disrupted mutants.  The 

upper map indicates the genomic region of the 

wild-type Cba. tepidum around the recA gene.  

The middle and lower maps indicate the 

regions of DNA constructs used for 

homologous recombination.  The arrows the 

oligonucleotide primers used for the PCR analyses in panel B.  (B) (a) PCR analyses of the 

genomes from the wild-type (lanes 1 and 4), the recA::aacC1 (lanes 2 and 5), and the 

recA::(HisAB-aacC1) (lanes 3 and 6) strains at the recA regions.  Lanes 1-3 and 4-6 

contained the amplification products of the PCRs using the recA-inside (short-dotted arrows in 

panel A) and the recA-outside (broken arrows in panel A) primer sets, respectively.  Lanes M 

contained λ/StyI digests as molecular weight makers.  (b) PCR analyses for verifying the 

pscA gene duplication.  The upstream regions of pscA genes were amplified from the 

genomes of the wild-type (lane 1), the recA::aacC1 (lane 2), and the recA::(HisAB-aacC1) 

(lanes 3) using the pscA up-stream primer sets (solid arrows in panel A).  Lane M contained 

100 bp DNA ladder makers. 
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Figure III-3.  SDS-PAGE analysis (A) and flash-induced absorption kinetics (B) of the 

His-tagged RC preparation.  (A) Lane 1, the His-tagged RC preparation eluted from the 

Ni2+-immobilized resin; lane 2, the His-tagged RC preparation purified by gel filtration with 

Sephacryl S-300.  Numders and bars in the left indicate masses and mobilities of 

polypeptides in LMW protein marker (GE Healthcare), respectively: phosphorylase b (97 

kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), carbonic anhydrase (31 kDa), 

trypsin inhibitor (20.1 kDa), and α-lactalbumin (14.4 kDa).  (B) The kinetics at 830 nm in the 

absence (trace a) and presence of 60% glycerol (trace b).  Measurements were carried out at 

room temperature.  The concentrations of samples were adjusted to be Abs.815 = 1.0. 
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Figure III-4.  The absorption (a) and 

chemically oxidized-minus-reduced 

different spectra (b) of the His-tagged RC 

preparation.  The gray thin lines indicate 

the results of kinetic analyses by curve 

fitting programs.  The absorption (trace a) 

and chemically oxidized-minus-reduced difference spectra (trace b) of the His-tagged RC 

complex.  The difference spectrum was obtained by oxidizing the sample with a small 

amount of ferricyanide, followed by reducing it again with an excess amount of ascorbate.  

The sample used for the difference spectrum was same as that for trace a. 
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Figure III-5.  The flash-induced 

absorption spectrum of P840 in the 

His-tagged RC preparation.  The 

flash-induced absorption spectrum (open 

circles) and the decay associated spectrum 

of 60 ms components (dotted line) at 

600-900 nm.  The kinetics at each 

wavelength was measured in the presence of 60% glycerol at room temperature, and fitted by 

global analysis with monoexponential function whose time constant was shared in all kinetics.  

The concentrations of samples were adjusted to be Abs.815 = 1.0. 
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Figure III-6.  The overall amino acid sequence alignment of the authentic (non-tagged) and 

His-tagged PscAs.  The trypsin cleavage sites are indicated by broken lines with asterisks.  

The shaded sequences are N-terminal tryptic peptides detected by LC-MS/MS in the present 

study.  The peptides used for confirmation and quantitation of heterogeneity in the Hi-tagged 

RC preparation are shaded in dark gray.  The alanine having acetylated amino group is 

written in white. 
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Figure III-7.  LC-MS/MS analyses of 

N-terminal tryptic peptides of the authentic 

and His-tagged RC preparations.  (A) The 

amino acid sequence alignment of the 

authentic (non-tagged) and His-tagged 

PscAs at N-terminal region.  The trypsin 

cleavage sites are indicated by broken lines 

with asterisks.  The shaded sequences are 

N-terminal tryptic peptides detected by 

LC-MS/MS in the present study.  The 

alanine having acetylated amino group is 

written in white and shaded in dark gray.  

The overall sequence alignment and 

detected tryptic peptides are shown in Figure S3.  (B) Mass spectra of N-terminal tryptic 

peptides of non-tagged PscAs obtained from the authentic (upper) and Hi-tagged RC 

preparations (lower) at 646-650 m/z.  These peptides were separated with C-18 column and 

eluted at 17.8 min.  The asterisk indicates the 2+-ion peak of the N-terminal tryptic peptides 

of non-tagged PscA whose amino acid sequence was confirmed by MS/MS (see Figure S5). 
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Figure III-8.  Mass spectra for the precursor (upper) and product (lower) ions of the 

N-terminal tryptic peptide of the His-tagged PscA.  The peptide for precursor ion was 

separated from the His-tagged RC preparation with C-18 column and eluted at 8.2 min.  The 

asterisk indicates the 2+-ion peak used for MS/MS.  The precursor ion was fragmented by 

collision induced dissociation with Ar gas.  The y-ion peaks and its m/z are shown in product 

ion spectrum.  The amino acid sequence deduced from their mass differences is also shown 

on the top of them. 
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Figure III-9.  Mass spectra for the precursor (upper) and product (lower) ions of the 

N-terminal tryptic peptide of the non-tagged PscA.  The peptide for precursor ion was 

separated from authentic RC preparation with C-18 column and eluted at 17.8 min.  The 

asterisk indicates the 2+-ion peak used for MS/MS.  The precursor ion was fragmented by 

collision induced dissociation with Ar gas.  The y-ion peaks and its m/z are shown in product 

ion spectrum.  The amino acid sequence deduced from their mass differences is also shown 

on the top of them. 
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Figure III-10.  ESR spectra of iron-sulfur 

centers and their temperature dependency in the 

His-tagged RC.  (A) The sample was frozen to 5 

K in the dark in the presence of an excess 

dithionite.  The light-minus-dark difference 

spectrum was obtained by subtracting the 

spectrum measured without illumination from the 

spectrum measured after the illumination for 5 

minutes at 5 K.  Conditions of ESR 

measurements: temperature, 10K; microwave 

power, 10 mW; microwave frequency, 9.518 

GHz; modulation amplitude, 20 G; and 

modulation frequency, 100 KHz.  (B) The 

photoaccumulated sample was prepared by the 

preillumination for 20 minutes at 210 K in the 

presence of an excess dithionite and the 

subsequent cooling to 5 K under the illumination.  

The light-minus-dark difference spectra at 5 

(upper) and 10 K (lower), respectively, were 

obtained by subtracting the spectra measured in the sample frozen in the dark from the spectra 

measured after the illumination for 5 minutes at 5 K in the photoaccumulated sample.  

Conditions of ESR measurements are the same as in (A) except for temperature.  (C) The 

temperature dependency of ESR signals obtained in (B).  The intensities of gx signals 

corresponding to gx values of approx. 1.89 (closed circle) and 1.75 (open circles) were 

normalized and plotted against temperature.  



-Chapter III- 
 

- 127 - 

 

Figure III-11.  ESR spectrum of 

photoaccumulated A1 semiquinone radicals 

in the His-tagged RC.  The spectra were 

measured after the illumination for 1 minute 

at 5 K using the sample frozen in the dark 

(solid line) and photoaccumulated sample as 

in Figure III-10 (broken line), respectively.  

The difference spectrum (short-dotted line) 

was obtained by subtracting the former from the latter.  Conditions of ESR measurements: 

temperature, 30K; microwave power, 1 mW; microwave frequency, 9.524 GHz; modulation 

amplitude, 4.1 G; and modulation frequency, 100 KHz. 
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Figure III-12.  The flash-induced ESR spectra in the His-tagged RC preparation (A) and the 

membrane from the wild-type strain (B) at 10 K.  The dark-frozen sample was excited with 

the xenon flash at 10 K.  Transient ESR signals of 4 ms (lower) and just after the flash 

excitation (upper) are plotted against the magnetic field.  The decay kinetics at 339.4 mT are 

shown as inset.  The field position corresponding to 339.4 mT was shown as a broken line in 

spectra.  The gray thin line indicates the result of kinetic analysis by a curve fitting program.  

Conditions of ESR measurements: microwave power, 0.1 mW; microwave frequency, 9.520 

GHz; modulation amplitude, 4.0 G; and modulation frequency, 100 KHz. 
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