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1. Introduction

In [3], [41, [51, [61 and [7], P.‘Lévy has introduced the
notion of the conjugate sets associated with Gaussian random
fields (G.r.f.s) and studied the properties_of these sets.
Recently, in [1l] and [2], Wé have also shown that this notion
is effecti?e to discuss the independence structures of G.r.fl.s.
In this paper, we shall be concerned with the characterization
of G.r.f.s with parameter space’Rd in terms of the conjugate sets‘
associated with them. |

Let S be the class of all the functions on [0,«) expressed
in the form

© 2 _
(1.1) .r(t>=ct2+f (1-e" "% u"tay () (£20),
0

where ¢ is a non-negative constant and vy denotes‘a measure on
(0, ) such that

® -1

J (1+u) “dy(u) <= and r(l)=1.

0 :

An important subclass of S is given by
(1.2) L={r(t)=t%; 0<ag2}.

Then it is well known that for every r(t)eS and every d>»1l there
exists a mean zero G.r.f. X={X(x); xaRd} with homogeneous and’

isotropic increments that is determined by the structure func-



tion r(t), i.e.,

E[(X(x)-X(y))2]=x(|x~y|) for every x,yst
and

E[X(x)]=0 for every»std.

We can determine this G.r.f. X uniquely except for additiomal
Gaussian random variables wiﬁh mean zero. We may identify two
G.r.fls on Rd which are determined by the same étructure function,
because such G.r.fls have the same probabilistic structure related
to conditional dependence. From this point of View, we often use
the hotation (X,r(t)) instead of X. For details of these G.r.fls,
seev[Z],iIS], {91, [13] and Remark 2 in Section 2. ,

| We ndw\consider a G.r.f. (X,r(%t)) on r%.  For every ecr? (E+¢5,
the symbol ur(xlE) denotes the conditional expectation of X(x)

~conditioned by {X(z); zeE} in the sense of [6]. In other words,

choosing zer arbitrarily, we set
ﬁr(x[E)=X(zo)+E[X(x)—X(zo)[X(z)—X(zO); éeE] (xeRd).

The conditional éo&arianée function of (é,r(f)i is defined by
ér(X,YlE)=E[(X(X)-ur(XJE))(X(Y)—ur(Y[E)il (x{yeRd),

We can now define, after P. Lévy, the mazimal conjugate set Fx(xlE)

of x relative to E as follows:

(1.3) Fé(xls)={'yead; R_(x,y|E)=0}.



Since (X,r(t)) is Gaussian, the set Fx(x[E) proVes to be the
iocus of yeRd for which X(x) and X(y)_éré conditionally indepen-
dent under the conditioning by {X(z); zeE}. Throughout this
paper the phrase "conjugate set” means the phrase "maximal con-
jugate set". We also use the notation St‘to indiéate the similar

transformation..on Rd defined by S_x=tx (¢>0, XERd). We are now

t
in a position to state our problems:

PROBLEM 1. Let (X,r(t)) be a G.r.f. on Rd. Suppose that,

given another G.r.f. (X,,r, (%)) on Rd, the relation

(1.4) Fo(x|EYCF, (x|B)

£,

holds for'certain pairs {x,E}, xaRé, ECRd. Then is i1t true that

i rl(t)=r(t) ?

PROBLEM 2. Let (X,x(t)) be a G.r.f. on Rd. Suppose that

the relation
(1.5) Fé(stxlstE)=StF§‘xlE) ' for every t>0

holds for certain pairs {x,E}, xeRd, ECRd; Then is it true that

r(t)el ?

Formerly we studied the'special case that E contains at
most two points ([l], [2]). The main purpdse of this paper is
to give affirmative answers to these problems for more general

finite sets E under certain reasonable conditions (see Section 2).



Generally speaking, if E is finite, Problems 1 and 2 will be
reduced to solve some functional equations for f(x)=r1(r-1(x))
and r(t) respectively (see Section 5). Here we shall illustrate
the intuitive meanings of our problems. The inclusion (1.4)
tells us the following: If a random variable X(y) is condition-
ally independent of X(x) under the conditioning by {X(z); zeE}
in the G.r.f. (X,r(t)), the same statement holds also for the
corresponding randomnvariables in the G.r.f. (éd,rl(t)).
Therefore, if Problem 1 is solved affifmatively, the family
{FX(XIE)} is thought of as a characteristic of the G.r.f. (X,r (%)),
so—far as the conditional independence is conéerned. On the
other hand, if Prbblem é is solved affirmatively, we can claim
that the scale invariance éf (g;r(t)) in the sense of [9] (also
see Remark 2 in Section 2) is derived from the invariance property‘
(1.5) .of ‘the family {F(x|E)}.

The organization :} this paper is as follows. Our main
results will be stated in Section 2. In Sectioni3 we shall dis-
cuss the non-degeneracy of Fx(xlE), which is guaranteed by the
condition (ﬁ) mentioned in S;ction 2. Next we prepare, in Sec-
tion 4, several lemmas necessary for the proofs of the results
mentioned above. By using these lemmas, we sHall prove our main
.results in Section 5. Section 6 is devoted to the proofs of all

the propositions stated in Section 3. Finally, in Section 7,

we shall give some remarks about Problems 1 and 2.



2. - Main results

Let (X,r(t)) be a G.r.f. on Rd and E be a non-empty subset

of Rd. Throughout this paper we promise that the parameter space

d

R” is equipped with the following orthogonal decomposition into

subspaces G and H:

r%=ceH, d»3 and  dim H=2.

We always assume that E is finite and expressed as follows:

(2.1) E={ak} gnd n=%#E21,

1gk<n '

where #E denotes the cardinal number of E. Then the conditional

expectation ur(xlE) can be expressed in the form

(2.2) ur(xlE)=Zf;X(ak)y§(xlE) (xerR%)

with certain real numbers Yi(xlf) (1<k<n) satisfying the equation
% Yﬁ(xlE)=l. We are interested in the case that E satisfies one of
=1 ‘

the following conditions:

(A.1) The points of E are independent, i.e., #E=1, or else the
vectors a,-a; (2¢k<n) are linearly independent; and

(A.2) The points of E are symmetric,ife., the set {laj-akl}lsksn
is independent of j (l<jsn), including the multiplicities.

Further we shall direct our attention to the case that E is con--

tained in a sphere S(2)={xeRd; |x|=2} (2»0). Now we can give



answers to Problems 1 and 2 simultaniously.

‘Theorem 1. Let (X,r(t)) be a G.r.f. on Rd rigged with {a,E},
where r(t)eS, acH and ECG. Suppose that {a,E,r(t)} safisfies

_ the conditions (A.l) and
(R) ato and Rr(a,-a|E)<0; and further

(2.3) $E2 and v (a|E)vS(a| )40 for some i,k (3%K).

(i) - For another G.r.f. (zl,rl(t)) on Rd with rl(t)as, the

tdentity rl(t)=r(t) holds 1f and only <if

(2.4) FelalBCFy (a]B).

£

(ii) It holds that r(t)el if and only if
(2.5) Fé(staIStE)=stFé(a|E) for any t>0,

Theorem 2. Let (X,r(t)) be a G.r.f. on Rd rigged with‘{a,E},
where r(t)eS, éeH and ECS(L)N\G. Suppose that {a,E,r(t)} satisfies
the condition (R).

(i) For another G.r.f. (X,,r,(t)) on R? with r (¢)¢S, the
identity rl(t)=r(t) holds i1f and only 1if there exists an open

;nterval (tlstz) (t1<l<t2) such that

(2.6) Fé(sta[EM\HC:Fél(Sta]EMWH for any te(t ,t,).

2

(ii) It holds that r(t)el <f and only if



(2.7) Fé(stx[StEN1H=(stF§(xlE)N\H for any xeH and any t>0.

It is meaningful to restate the second parts of the above
theorems by using the notion of the projective invariance of
G.r.fls in the sense of [8] (see Remark é). We denote by T(Rd;E)
the set of transformations on Rd'which consists of all trans-
lations, orthogonal transformations, similar transformations
and inversions with respect to spheres with centers contained

in E. Then we can easily obtain the following corollaries.

Corollary 1. Let (X,r(t)) with {a,E} be a G.».f. on g4

satisfying the same conditions stated in Theorem 1. Then it

holds that r(t)el 2f and only <if
(2.8) F (Ta|TE)=TF (a| E) for any TeT (R E).

Corolléry 2. Let (X,r(t)) with {a,E} be a G.r.f. on R
satisfying the same conditions stated in Theorem 2. Then it

holds that r(t)el if and only if
(2;9) Fx(Tx(TEX\H=(TFX(x|E))ﬂH for any xeH and any ?eT(Rd;E).
As for the answer to Problem 1, we have also the following

. Theorem 3. Let (X,r(t)) be a G.r.f. on Rd rigged with {a,E},
where r(t)el, aeS(L)NH and ECS(L)(\G. Suppose that {a,E,r(t)}
satisfies the conditions (A.2) and (R). Then, for another G.r.f.

(8,57, (8)) on RY with r (s)eS, the identity r (+)=r(¢) holds <if

=17



and only i1f there exists an open interval (t,,t,) such that

(2.10) ﬁé(sta]stEanc:F (StaIStE)ﬂH for any te(t ,t,).

X, 2

REMARK 1. As was stated above, our results are given under
the assumption that E is finite. But we can also show that

Theorem 2 holds even if E is infinite. ¢

REMARK 2. We denote by Sd the class of all the functions

on [0,~) expressed in the form

(2.11) r(t)=cdt2+L {l—Yd(tu)}de(u) (z20),

(2.12) Yd(t)=r(d/2)(2/t (20),

(@-2) /2 %)

where Jv(t)'is the Bessel function of order v and 4 is a non-

negative constant and further Ld denotes a measure on (0,«) such that
J u2(1+u2)_1de(u)<m and r(l)=1.
0 A ,

Then there exists a one-to-one correspondence between the class
Sd and the claés of those G.r.fls (X,r(2)) (r(1)=1l) on Rd which
are continuqus in quadratic meén ([10]; [13]). The class S defined
by (1.1) is also characterized by the relation S=gﬁ\3d. As for
the class L, we note that a G.r.f. (X,r(¢)) is scaii invariant

in the sense of [9] (and also projective invariant in the sense

of [8]) if and only if r(f)el.
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3., The non-degeneracy of Fx(x[E) and the classes of

structure functions

In the preceeding section we have considered G.r.fls (X,r(¢))
on Rd rigged with {a,E}, for whichb{a,E,r(t)} satisfies the con-
dition (R) stated in Theorem 1. This assumption plays an impor-
tant role in our discussion about the noh—degeneracy of the con-
jugate sets Fx(xlE) concerned. Precisely speaking, the non-

degeneracy of these sets is guaranteed by the following two pro-

positions.

Proposition 1. Let (X,r(%)) be a G.r.f. on Rd rigged with
{a,E}, where r(t)eS, acH and ECG. Suppose that {a,E,r(t)} satis-
fies the conditions (A.l) and (R). Then there exists a sequence

{Ik}l<k<n of open inte?vals such that
n n
(3.1) op(a)e Ik=l| IkQ!=l] (lakl,oo) ‘and
(3.2) !=!lIkC®E(F__}_$__(a|E)),
where we set kx)=(lx—a R [x-a I)}for xer?
E 1t ? n *

Proposition 2. Let (X,r(t)) be a G.r,f. on Rd rigged with
{a,E}, where r(t)eS, acH and ECS(L)NG. Suppose that {a,E,r(t)}
" satisfies the condition (R). Then there exists an open interval

I such that

(3.3) ¥o(a)e TC(2,=) and



1l

(3.4) ICY, (F, (x| E)NR) for any xe¥7 (I)(H,
where we set WE(x)=lx-al] for xer?,

In what follows we shall give some examples of {a,E,r(t)}
satisfying the condition (R). As for the case E={ol}l, we have

the following

Proposition 3. (i) Suppose that r(t)eS is strictly convex
on (0,%,) for some t, (0<t,<=)., Then {a,{o},r(t)} satisfies the
condition (R) for any acH with sufficiently small |a|>0.

(ii) Suppose téﬁt r(t)eS ts strictly concave on (0,%,), strictly
. eonvex on (to,w) for some to (0<t0<m) and r'(+0)<r'(«). Then
{a, {0}, r(t)} satisfies the condition (R) for any acH with suff-

iciently large |al>0.

We now proceed to the more general case of finite sets E

d

R” and assume that the subspace G is spanned by {ei}lgisd—2°

be the canonical orthonormal basis of

Let us introduce the sets Ei(z) (2>0, n22, 1lgj<4) defined as

follows:
n
(3.5) EL (1) ={a,=2/n7 Tn=1) (e, - %g;;ej); l<k<n};
—a = k . . .
(3.6) E;(z)—{ak—z(-l) [ (k+1) /217 lsksn} (n:even) ;

| m |
(3.7) E3(2)={a(I) =%j.(z//ﬁ) (-1 x &1 D e s IC(l,2,+++,m}} (n=2");
=1
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(3.8) E;(2)={ak=(zeosan/n)e1+(zsin2kﬂ/n)e2; l<ksnl,

where we set x(k|I)=1 for keI and x(k|I)=0 otherwise. We note
that each set Ei(z) given above is contained in S(2) and satis-
fies the condition (A.2). Moreover the set E;(z) satisfies the
condition (a.1). Sincé each: set Ei(z) (l{st) consists of all
the vertices of a high-dimensional regular polyvhedron, the numbér
n=#EZ(l) should be dominated by some constant related to the
dimension 4 of Rd. In particular, when Ei(l) (1<j<3) is contain-

ed 'in G, we must assume the following:

(3.9) | n=#E] (2)<{ 2(d-2) for §=2,
242 for j=3.

By using ‘the sets Ei(z)’given above, we can describe the

condition (R) for any r(t)eS.

Proposition 4, Iet aeS(L)NH and r(t)eS be given arbitrarily.
Then, for each J§ (1l<j<3), {a,Ei(z),r(t)} satisfies the condition
(R) provided that n is chosen to be sufficiently large under the

restriction (3.9).

Before stating the results on the class L, we shall intro-~ :.
duce here the real number p[E] which corresponds to each set

ECS(2) (2>0, #E>2). When we set
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(3.10) F(a)=F (a;E)=2(/2)%-2%- %gf:(]ak—al|/z)a (0<a<2),
=1

we see that the function F(a) is strictly concave on (0,2] ana
satisfies the inequalities F (+0)= %>0>F(2). Then the real number
plE] is defined as the unique solution of F(a)=0 in (0,2). Ob-
viously the equality p[StE]=p[E} holds for each t>0; Further

we see that F(a)>0 on (0,p[E]) and F(a)<0 on (p[E]l,2]. Thus

setting
(3.11) L(B)={x (t)=t; B<ag2} (0<B<2),
we have the following

P;oppsi;iqn 5. Let aeS(L)NH, ECS(L)NG and f(t)sL be given.
Suppose that E satisfies the conditions (A.2) and #E22. Then

{a,E,r(t)} satisfies the condition (R) if and only if r(t)el(p[E]).

We cén\extend this result to the case of regularly varying _
functions, which correspond to G.r.f'.s Qith non-degenerate scal-
ing limits (see [9] and [l11]). 1In general, a function r(t) is
called a regularly varying function with:expomnent a (r.v.f.(a))
for some «>0 if r(¢) is a positive continuous function defined

on some interval (O,to) and satisfies the equality
(3.12) %;mor(xt)/r(t)=x“ for any x>0.

We denote by T the class of r.v.fls r(t)eS with exponent o for

some ae(0,2]. Obviously we have LCEt More general examples of
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~y
subclasses of L will be given in the next section. Now setting

(3.13)  T(B)={r(#)eS; r(¢) is a r.v.f.(a) for some ac(8,2]} (0<g<2),

we have the following

Proposition 6. Let aeS(L)NH, ECS(2NG and r(t)el(plE])
be given. Suppose that E satisfies the conditions (A.2) and
#E>2, Then {Spa,SpE,r(t)} satisfies the condition (R) for suff-

iciently small p>0.

Consequently, we can describe the condition (R) for the

classes L and ley using Propositions 5, 6 and the following

Proposition 7. When we set anj:p[Ei(z)]‘(n>23’l<j<4),we_have

(3.14) %ig anj=0 (lsj<4); “and so

(3.15) L=\ Ji(a, ) and - T=\ T, (1si<a).
' n n

F]

- It is difficult in general to describe the value of p[E]
éxplicitly. In the special case.of E#Eé(z), however, we can

find an analogue o« of ukl=p[E;(£)] defined'by

_ log ((n+1)/n)?2
(3.18) o = ST ED /) (n>2) .

Proposition 8. Suppose that aeS(/]n+l)/(n-1)z)ﬂH, >0 and
2¢n<d-2. Then the following assertions hold:

(i) Given r(t)el, {a,Eé(z),r(t)} satisfies the condition (R)
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if and only if r($el(a).
(ii) Given r(t)eannL {spa,spEi(l),r(t)} satisfies the condi-

tion (R) for sufficiently small p>0.

Obviously we see that %;g an=0 and so
1={_JL(e) and =l /Tt .
ns2 _ &54 n
We also note that, inspired by the defining condition (3.12) of
r.w.t.(a), we can similarly discuss the case that r(t)eS satis=. .
fies the equality %;g r(xt)/r(t)=x¢ for any xz>0. All the propo-

sitions stated in this section will be proved in Section 6.
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4., Temmas

In this section, we shall provide some preliminary lemmas.
Let (X,r(¢t)) be a G.r.f. on r% and £ be a subset of r4 given

by (2.1). First we see that ur(x]z)=x(z) and so
R_(x,y]2z)={r (|x-z])+r (|y-z]) -z (|x~y]) }/2 (x,,2er%) .

In general, we can employ the expression (2.2) of ur(xlE) (#E»2) .
Strictly speaking,»the coefficients Yk=Y§(XlE) (l<k<n) satisfy
the following equations: '

' _n

n
;=£Rr(aj,akIal)vk=Rr(aj;xlal) (2¢jsn) .

Moreover, if we assume that r(¢)eS (r (t)%t2), the solution of

(4.1)

these equations can be determined uniquely on account of the
property (iv) of Lemma 5.> It is convenient to introduce the

following notations:

n
d
(4.2) Ar(x,ylE)=§=£r(|y-ak])y§(x[£)  Geyer) and
(4.3) A(r;E)=Ar(o,al|E)#%L£r(ral‘akl)Yﬁ(0|E)-

Then we immediately obtain the fbllowing_expression: For

any x,yst;

(4.4) - 2R _(x,y|E)=r(|x-a; D+A (x,7|E)-x (|x-y|)-A_ (x,a, |E).
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Lemma 1. Let (X,r(¢)) be a G.r.f. on Rd and let ECS ()G
be given arbitrarily., Then the coefficients yi(x[E) (lgksn) in

the expression (2.2) may be chosen to satisfy the relation

(4.5) Yﬁ(x]E)=y§(olﬁ) (xeH, lsk<n).

Moreover Rr(x,ylE) has the following expression: For any X,yeH,
(4.6) 2Rr(x,y|E)=r([x—al\5+rf]y-all)-r(]x—yl)—A(r;E); and
(4.7) O<A(r;E)L2r(2).

Proof. It follows from the assumption on E that

._Rr(aj,xlal)=r([aj—all)/Z for any xeH (2<¢j€n).

Therefore the solution yk=yi(x]6) (1sksn) of (4.1) for each xeH
depends only on E, which\implies the relation (4.5). ‘The ex-
pression (4.6) immédiately follows from (4.4). The inequalities
(4.7) are derived from the following: 'A(r;E)=2{r(£)—Rr(o,o!E)}

and Oer(o,olE)<Rr(o,o|al)=r(£). The proof is thus-completed.

Now we shall consider the roles of the conditions (A.l)
and (A.2) to be imposed on E. For the sake of convenience, we
assume that the space Rd is realized by row vectors. Then we
shall employ the expression ak=(ak1""’akd) (1g<k<n) .and assume
that l<n<d. On the other hand, given a=(a1,---,ad)ERd and I=

(ﬁl,-'°,in) (1<i1<'°'<in<d), we set aI=(ai1"'.’ain)‘and
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: \ib/ S;@/ n
aI[y]=(a1:“':yl:'°': n:"':ad) for every Y=(y1:"':yn)€R .

Further we shall introduce the follcwing notations: For every

y= (yl, ° o -’yn) éRn, we set

Fra,e@=(laslyl-a;l,++,laslyl-a,|)

and
yl"alil" .’ynfalt
=] e
yl-anil’ "ty

Given yeRn and §>0, we denote by Vs(y) the open ball in R" with
center y and radius §. Then we see that the Jacobian of the

mapping FI,a,E: R® —R" for each y (aI[y]¢E) is given by

. g
(4.8) (JF; o ¢ (y)=,(i£la1[y1—akl) £(y).

By using this relation, we can discuss the regularity of Fr a E
. . 3 3

under the assumption>(A.l) on E.

d

Lemma 2, Let aeRd and ECR (ls#Esdi be given such that

the points a,a;,""',a, are independent, i.e., the vectors a-a,
(lsksn) are linearly independent. Then there exist‘I=(i1,°--,in)

(l§i1<°-°<in<d) and 6>0 such that the mapping

(4.9) : Vo (a)) =U (T, a,E)

FI,a,E

provides a homeomorphism, where we set UG(I’a’E)=FI,a,E(V6(aI))‘
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Proof, Because of the assumption on the arrangement of a
and E, there exists I=(il,---,in) (l<i1<'°'<insd) such that

fg(aI)%o. This implies that there exists §>0 such that

(4.10) fg(y)#o and aI{y]¢E for any yev,(ap).

It follows from (4.8) and (4.10) that the mapping FI a E is

. 3 3
regular on Va(aI)' Thus we see by using the inverse mapping
theorem that the mapping (4.9) provides a homeomorphism for a

sufficiently small §.

Ik is notable that, if ECS(QN}G«satisfieswthe éondition {rA.2),

we may choose the real numbers yi(x[E) (1<k<n) as. follows:
x 1
yr(xlE)= = (xeH, 1l<ksn).

In the preceeding section we have introduced several sets E which
satisfy the conditions (A.2) and ECS(L) for some 2>0., We note

that such sets will be also constructed by using the following

lemma.

Lemma 3. Let Ei (1=1,2) be two finite subsets of'Rd satis-
fying the conditions (A.2) and Ef:S(zi) (7=1,2). Suppose that

(x,y)=0 for any erl and any ysEZ. Then the set

E={x+y; xeE , yeE,}

satisfies the conditions (A.2) and ECS(¢£f+2§).
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The proof is elementary, and so is omitted. We shall now

discuss the properties of functions in the class S.

Lemma 4. Suppose that r(t)eS is given by (l.1). Then r(%)

admits the beZoming expression:

(4.11) r(t)=ct?+ f {l—Yd(tu)}f§(u)ud_ldu (t20),
0 :

where fé(u) is defined by

S:d/z—le—u /4s

f§(u)=[2d'1r(d/z)1'lj dy () (u>0) .

0"

Proof, Let us introduce the formula

-t2 ® - -1 - -1 —y2
(4.12) et 5:[ vt (28720 (@/2) 1 e Y/ 287 U 40,

0

(t20, §>0).

This will be easily shown by using the following alternative

expression of Yd(t):
) d
Yd(t)=JSd_let(x’z)dod(z)  (t=]x|, xerR™),

where 94 is the uniform probability measure on the unit sphere
Sd—l={ZeRd; |z]=1}. We now immediately obtain the desired exp-

ression (4.l11l) by combining (1.1l) and (4.12).

Lemma 5. Each function r(t)eS satisfies the following pro-
perties:
(1) x(t) is strictly increasing and analytic on (0, =);

-1 . :
(il) r (x) is strictly increasing and analytic on (0,xr(«));
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(iii) x (/%) is strictly concave on (0,=) except the case r(t)=t2;
(iv) For any n distinct points xkeRd\io} (d>21, n2l, lgksn), the

positive definite quadratic form

n
)= = «c o e n
Qr(-"-'-)"'z _'Rr(xj’xklo)gjgk’ » < (’Sl: ,Sn)eR 3
Jd =1 -
is non-degenerate except the case xr (t)=t?., In other words,

Qr(E)=O implies that E=o0,.
Proof. Suppose that r(¢) is given by (l1.1l). Then wé have

. 03__2
r'(t)=2t{c+J e ¢ “dy (u) }>0 for any t>0.
' 0

It follows that r(¢) is strictly increasing on (0,=). Furthef
we can extend this function analytically to the function r(z)
on the complex domain {zeC; |argz|<mw/4} ([12]). Therefore we
obtain the assertions (i) and (ii). The assertion (iii) will
be seen by the fbllo&ing fact: 1If r(t)t?, we'have‘

2 R
%?7 r(/?)=—J e tuudy(u)<0 for any %>0.
0

We shall now proceed to the proof of the assertion (iv). On

account of the expression (4.11) of r(t), we see that

r(|x|)=c|x]|2 + [ dlei(x’z)—ll2(2wd)_1f£(|zl)dz (std),
R

where we set md=2nd/2/r(d/2); Further we have, for any x,yeRd,

R_(x,y]o)=c (x,y)+fRd(ei (,2) 1y (7" W21y (2“’d)_1sz (|z])az.
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Thus we obtain the following representation of Qr(E):

n n .
=)= 2 1(x5,52) _7y12 -loy .
Q. (E) °|%=lskxk| +j d|§=£gk(e k 1) [2(2wy) "£5(|2z])dz.
R

Now we assume that r(t):,—'st2 and Qr(3)=0. Then we have vy ((0,=))>0
and so the function f}(u) is positive and continuous on (0,«).

This implies that

7 7 ( z) d
(4.13) ; Ek(e 2% _1)=0 for any zeR™.
Now we set

V={zst; éxk,z)+0 (1sk<n) and (xj,z)+(xk,z) for any

Jsk (lgj<ksn)l.

It is easy to see that V is a non-empty open sukset of Rd and

satisfies the relation StV=V for any t>0. Let us choose a point

d-1

z,eVNS arbitrarily and set ckéi(xk,zo) (Lg<k<n). Then, setting

z=tz, in (4.13), we have the equality

_ 1 ckt ‘
g £, (e -1)=0 for any t¢>0.

0

Further differentiating in ¢, we have

o ckt
£, c,e =0 for any t¢>0.
'%Z; k" k

By the way, the constants s (l<k<n) satisfy the following con-
ditions: ck+0 (lgk<n) and cj+ck for any j,k (lsj<ks<n). There-

fore we can easily show that Ek=0 (1<k<n), which completes the
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-proof.,

Before stating the next lemma, we shall introduce some nota-
tions. For every r(t)sSd and every probability measure A on
(0,1], we set s, [A]=inf{support of A} and further

Aot p L :
ro(g)="r(£)"dr(p) -and r,(¢)=] r(t7)dr(p) (£30).
0 0

The following lemma provides various examples of r.v.f.s r(¢)eS.

Lemma 6., Let A be a probability measure on (0,1].
(i) Assume that s,[A]>0 and r(t)eSd is.a r.v:f.(a¢) Ffor some a>0,
Then rl(t) and rA(t),are r.v.fls (s, [A]1a).

(1) For every x(t)eS, it holds that ¥ (£)eS and T, (¢)eS.

The details of the proof are omitted. We can obtain the
assertion (i) by elementary calculation. 'As for the assertion.
(ii), we may employ the theory of the inner transformations of

completely monotone functions {[10]). We shall next consider an

interesting functional equation related to Problem 2.

Lemma 7. Let p(t), a(t), £(t) and g(t) be functions on
(0,=) such that p(t)=0 and q(t)£0, and let h(u,v) be a positive
funetion on IxXJ, where I and J are open intervals contained in

(0,»). Assume that these functions satisfy the functional equation

(4.14) £ (th(u,v))=p () £ (tu)+q(£) £ (2v)+g(2)
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for any (t,u,v)e(0,=)xIxJ, and further assume that £(t) is twice
differentiable and strictly monotone on (0,=). Then £(t) admits

the following expression:
(4.15)  £()=C,t+C, or £ (£)=8logt+C,. (t>0),
where a,8 and C, (lsi<3) are arbitrary real constants (aC 70, 8%0) .

Proof. First we can show by using the equation (4.14) and
the assumptibn on f£(¢) that h(u,v) is twice differentiable on
IxJ. By differentiating the both sides of (4.14) in u or v, we

have the following two equations: For any (t,u,v)e(0,=)xXIxXJ,
' f'(th(u,v)) (u v)=p(t)E"' (tu) and
£' (th(u, v)) (u v)=q(t) L' (tv).

Therefore we see that gz(u, ) (u,v)+0 for any (u, v)eIxJ, because
there exist tl,tzs(o,m) such that p(tl)q(t2)+0. Now differenti-
ating the both sides of the last equaticn in u, we have the fo-

llowing: For any (t,u,v)e(0,«)xXIxJ,

f"(th(u,v))tah(u v)ah(u,v)+f'(th(u u))g‘av(u ) =0

and further

£7 (th(u,v))t _ £" (h(u,v))
T (Eh(%,0))  E'(R(%,0))"

By the change of variables this equation can be replaced by the
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following:

£ (2) ¢ _£" (h(u,v))h(u,v)
' (7) ' (h(u,v))

for any (f,u,v)e(0,2)XIxJ,

Therefore the both sides of this equation are identically equal
to a certain real constant ¢ which is independent of the vari-

ables ¢, u and v. It follows that, for any >0,

fll(t) —a . . d —a
AR CIE or equivalently a;log f'(t)-n?“

Then we have the expression f'(1‘;)=l71‘,5'I (b+0) and further

i

£(t)={b/(a+1l) }t*T14C or £(t)=Plogt+C’ (£>0)

according as af-1 or a=-1 respectively. Thus we obtain the

desired expression (4.15).

REMARK 3, As for the assumptions on f£(¢) in Lemma 7, the
phrase "strietly monotone'” may be replaced by the phrase "non-

constant" provided that INJ+¢ and p(t)qg(t)$0 for each >0,
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5. Proofs of main results

Proof of Theorem 1. Without loss of generality, we may

assume that yé(alE)yé(alE)%O. ‘It follows from Proposition 1

that there exists a sequence {Ik} of open intervals, for

1gksn
which the conditions (3.1) and (3.2) hold. Therefore, for each

n ,
u=(u1,.--,un)ei=glk, there exists y[u]eFéfa[E) such that
¢z (y[ul)=u or equivalently |y[u]-ak[=uk (Lgkgn) .

In order to show the part (i), it suffices to prove the mifn
part. We note that the sets r(Ik) (1lg<k<n) are.non-empty open
intervals contained in (0,«) and we set Ar(p)=(r-1(p1),e..,rjl(pﬁ))

n
for every p=(p1,...,pn);£ Lr(Ik).j Then we see that, for every

n n
pe r(I,), we have A_(p)e I, and
Y[Ar(p)] eFéfalE)C:Féd(alE),
|y [a, (P)1-ay |=r"" (p,) (Lksn) .

Therefore we can show by (4.4) the following two equations:

n
For every pel |r(I ),
k=1 X

r(ly[Ar(p)]—al)=; ikak+M’

(5.1)
n
-1
rl(ly[Ar(p)]_a])=%;;rl(r (pk))Yi+M1’

where we set yk=7§(a|E), Yi=Yk (a|E) (1lgksn), M=r(|a—al|)—Ar(a,al|E)
1

r
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“and M1=r1(|a—al|)—Ar (a,aIIE). Let £(z) be the function on [O,f(m))
1
defined by £(z)=r, (r ' (z)). Then we obtain from (5.1) the follow-

n
ing functional equation: For any (pl,"',pn)SA |r(Ik),
=1

(5.2) f(%f:pkyk+M)=%f:f(pk)yi+Ml.
=] =1

We note that f(xz) is analytic on (0,r(«)) and the range of the
function
n 7
=) PpYtM ((pl,'",pn)el lr(Ik))
=1 _ k=1
contains an interior point because of the assumption Ylyz+0.
Now differentiating the both sides of (5.2) in p, and p, succ-

essively, we have the following:

- | i
f“(; lpkyk+M)=0 for any (pl,v-',pn)sl:yr(lk).

Therefore we see by thebanalyticity of £" (x) that £"(x)=0 on
(0,r(=)). Further we have f£(z)=x on [0,r(«)) by using the con-
ditions £(0)=0 and £(1)=1. This implies that, for any t20,
r (¢)=r, (s~ (r(t)))=£(z(¢))=r(t). The proof of the part (i) is
thus completed.

We now proceed to the proof of the part (ii). It suffices
to prove the Mif" part. Let us again use the notation y[uj for
every uezﬁglk, which was introduced above. Then we see by the

assumption (2.5) that

, -
(5.3) sty[u]eFé}Sta[StE) for any (t,u)e(o’u)*llglk.
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For the sake of convenience, we shall introduce the following

functions:
P, (t)=v<(s,al|s,E) (£>0, 1l<ks<n),
n
g(t)=r(t|a—al[)fZ::r(tlal—akl)pk(t) (£>0) and
C F=T
-1 n . n
hu ,**u )= _ (up )Py (1) +g (1)) ((u1,°°‘,un)él;EIk).

Then we can derive from (5.3) the following functional equation:

For any (t,u 120 ety )e(O w)xl IIk,
.~ . n
(5.4) r(th(ul,---,un))= _ r(tuk)pk(t)+g(t).
It should be noted that P, (l)p (1) 0 and h(u ,~-' U )>O on l IIk.
By applying Lemma 7 to the eqguation (5.4), we see that r(t) can

be expressed in the form
r(t)=c t"+c,  or r (t)=glogt+C, (t>0),

where a,8 and Ci (1<i<3) are real constants (a01+0, 6%0). There-
fore we obtain the desired expression r(t)=¢t (0<ag2) by using .
the conditions r(0)=0 and r(l)=1l and also the concavity of .r (V%).

The proof of the part (1i) is thus completed.

Proof of Theorem 2. It follows from Proposition 2 that -

there exists an open interval I such that the conditions (3.3)
and (3.4) hold. If we set a=|a| and a(u)=(/u2-2%/a)a (u>L), we

have a(u)eYEl(IM\H for any ueI. Therefore, for any u,vel, there
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exists b(u,v)eFX(a(u)lE)ﬂH'such that
?E(b(u,ﬁ))=v or equivalently lb(u’v)—al!=v°

In order to show the part (i), it suffices to prove the

"if" part. Without loss of generality, we may assume that

IC(/E?a2+22,/%%a2+12). Then r(I) is a non-empty open interval

contained in (0,«). Further we set, for every p,qer(I),
-1 - -1
alpl=a(r™ (p)) and blp,ql=b(x ' (p),r  (q)).
Then it follows from the assumpticn (2.6) that, for any p,qexr(I),

blp,qleF (alpl [ENHCFy (alpl|ENE.
= =1

Therefore we can show by (4.6) the following two equations:

For every p,qer(I),
r(|alpl-blp,ql|)=p+q-A,
r, (lalpl-blp,q] N=r, (z™ @) +r ("} () -1,

. » -1
where we set A=A (r;E) and IA1=A(ri;E). Now setting f(x)=r1(r (x))
for xe[0,r(«)), we can derive from the akbove equations the foll-

owing functional equation:
f(ptq-M)=£(p)+£(q) -4, for any p,qer(I).

Therefore we see that f£(x)=x on [0,r(«)) by using the analyticity

of f(x) and the conditions £(0)=0 and £(1)=1. Thus we have the
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Cesired identity rl(t)=r(t).

We now proceed to the proof of the part (ii). It suffices
to prove the "iIf"” part. Let us again use the notations a(u)
and b(u,v) for every u,vel, which were introduced above. Then

we see by the assumption (2.7) that
(5.5) S,b(u,v) eF (s a(u) [S,E)NE  for any (%,u,v)e(0,=)xI<I.

Therefore setting

-

{g(t)=—A(r;StE) (£>0),

h(u,v)=x  (r(u)+r(v)+g (1)) (u,veI),

we can derive from (5.5) the following functional equation:

For any (t,u,v)e(0,=)xIxI,
r(th(u,v))=r(tu)+xr(tv)+g(t).

Thus we obtain the desired expression r(t)=t" (0<a<2) by the

same discussion as the proof of Theorem 1.

Proof of Theorem 3. It suffices to prové the "7f" part.

We see.by Proposition 2 that there exists an open interval I such
that WE(a)aIC(z,w) and ICYE(FX(aIEM\H). Therefore, for any uel,

there exists b[u]eFX(alEN\H'such that
?E(b[u])=u or equivalently : Ib[u]-al]=u.

By using the assertion (ii) of Theorem 2 and the assumption (2.10),
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we have the following: For any (u,t)eIxJd,
Stb[u]sFé(Sta[StE)ﬂHC:Fél(StaIStE)ﬂH,

where we set J=(t1,t ). Therefore we obtain by (4.6) the foll-

2

owing two equations: For every (u,t)eIxd,

r(t|a-blul [)=r(ut)+r (V22¢)-A(r;S E),
(5.6) ,
r,(¢la-blul [)=r (ut)+r (V222)-A(r;;8.E).

For the sake of convenience, we set A0=r(/§£) and Ak=r(]al-ak[)
(1<k<n) . Then we have

r(t)5"
TRl

n
- . —1 1 -— =
(5.7) A (xr;s.B) ﬁ%=£r(]tal takl) A s

because the set StE satisfies the condition (A.2). Now setting
f(x)=r1(r-l(x)) for ze[0,r(w)), we can derive from (5.6) and

(5.7) the following functional equation: -For any (s;q)er(Ib<r(J),

n
£ (sq+Aq) =E (sq) +£ (A q) - %%:;f(Akq)r

n L
where A=A - ig A, . Further setting p=sq, this equation can be

n{=3 k : _ _ :
replaced by the following: For any (p,q)eU,

- Ly*-
(5.8) f(p+Aq)—f(p)+f(A0q)— zk=lf(AkQ)’
where U denotes a domain of R2 defined by

U={(p,q) eR%; gexr(J), p/qer(I)}.
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On the other hand, by using the property (iii) of Lemma 5 and

(4.7), we have

(5.9) A(x;E)= %k lr(/]al—ak|2)

l n
r(/212)=A0;

A

/A

Then combining (5.7) and (5.2), we have A20. In the special

n
case f=0, we have r(t)=t2 and %g A =hy. Therefore, if we assume
that rl(t)ér(t), the function f(x)=r1(/5) is strictly concave.

Thus we see by. (5.8) that

: 1N, 12 |
E(h,q)= _% ;f(Akq)<f(E{_—;Akq)=f(Aoq) .

Consequently we have the desired identity rl(t)=r(t) by contra-
diction. As for the case A>0, we can easily obtain the expression
f(x)=x on [0,r(«)) from (5.8) by using the\analyticity of f(x)

and the conditions £(0)=0 and £(1)=1. Thus We have the identity

rl(t)=r(t), which completes the proof.
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6. Proofs of Propositions in Section 3

In Section 3, we have assumed that {e. }1<z<d is the cano-
nical orthonormal basis of Rd and further the subspaces G and H
are spanned by {e. }l<z<d 5 and {ed_l,ed} respectively. In order
to prove Proposition 1 we shall introduce the family {Te; 0go6gm}

of orthogonal transformations on Rd defined as follows:

Teed_l=ed_lcos6+ed51ne,

Teed=-ed_151ne+edcose.

Proof of Proposition l. It immediately follows from the

assumption that the points a,a;,***,a are independent and lgngd-1l.
Therefore we see by Lemma 2 that there exist I=(£1,°°',in)

(1gi <+++<i <d), 6>0 and a domain U, (I,a,E) of R" such that the

mapping

Froa,ef Vslap—=Us(L, & E)

provides a homeomorphism. In particular, we have ¢ (a)=F (a;)
E I,a,E'" I

eU (I,a,E). Therefore there exists a sequence {Ik}l of open

<ksn
intervals satisfying the conditions (3.1) and ! ! kC:U (I,a,E).
We denote by V (aI) the inverse image of ! ] % by the mapping

I,a,E' Then the mapplng

A n
Froa, et Ve (ar)—’ktll Tk
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is also a homeomorphism. Now we shall introduce a continuous

function £(6,x) on [O,W]XRd defined by
f(e,x)=Rr(a,T9x[E) ((e,x)e[o,anRd).

Because of the property (iv) of Lemma 5 and the assumption (R),

we have
f(O,a)#Rr(a,alE)>0 and f(n,a)=Rr(a,—a|E)v<0.

Further by choosing the above-mentioned & sufficiently small,

A
we have the following: For any ers(aI),
£(0,a;[yl)>0 and £(m,a lyl)<0.

Therefore we see by using the intermediate value theorem that,
Pas
for any ers(aI), there exists Q(y)e(o,u) such that f(@(y),aI[y])=0.

In other words, we have
T Fo(alE £ w ye¥ (a)
e(y)al.[y]_e é}a! ) or any yeV (a ),
Then ‘we see .that, for any YEGG(aI)'
Fr a,g(¥)=0g(aslyl)=0p(Ty  ya lyl) e®E(Fé(al E)),

N ‘ .
and so we have FI,a,E(VG(aI))Czéf(FéxalE))" Thus we obtain the

relation (3.2), which completes the proof.

Before we proceed to the proof of Proposition 2, we shall

introduce an alterrnative expression of Rr(x,ylE) restricted to HxH.
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Suppose that ECS(2)NG. Then we have, for any x,yeH,
(6.1) 2R _(x,y|B)=EL(|x], |¥], L (x, 7)),

where £(x,y) denotes the angle between the vectors x and y
(05t (x,v)<m) and fg(g,n,e) denotes a continuous function on

[0,=)x[0,=)x[0, 7] defined by

fE(E,'n, 0)=r (V£2+22)+r (/nZ+22) -r (V£Z+n2-2Encos6) A (x; E) .

Proof of Proposition 2. Because of the property (iv) of

Lemma 5 and the assumption (R), we have

fE(a,a,O)=2Rr(a,a|E)>O and fi(a,a,w)=2Rr(a,—a|E)<0,

where we set a=|a|. Further there exists an open interval (t,,t,)

(0<tlsl<t2) such that we have, for any s,te(tl,tz),
E E
fr(as,at,0)>0 . and fr(as,at,n)<0.

Then we see by using the intermediate value theorem that, for
any s,te(t ,t,), there exists 0(s,t)e(0,r) such that ~_
fg(as,at,@(s,t))=0. It follows that, given x(s)eH satisfying

|x(s) |=as, there exists y(s,t)aFX(x(s)lEﬂ\H such that

(6.2) |y (s, t) |=at and L(x(s),y(s,t))=0(s,t).

If we set I=(/22t§+22,/b2t§+22), we immediately obtain (3.3):

WE(a)=¢a2+zzeIC(2,w). Therefore we have only to prove (3.4).
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Given xswgl(l)ﬂH and uel, we set s=/§g?§77:ziya and t=/§7:177q.
Then we have s,te(?,,t,) and |x|=as. Therefore setting x(s)=x,
there exists y(s,t)eFx(x(s)lE)ﬂH such that the condition.(6.2)

holds. Then we see t;ét u=WE(y(s,t))eYE(FX(x[E)nH), which imp-

lies the property (3.4).

Proof of Proposition 3. Let us consider the function g ()

on [0,») defined by g(t)=2r(¢)~-r(2¢). Then we have
- d
2Rr(x,—x|o)—g(|x|) for any xeR™.

Therefofe, given acH (a%o), {a,{o},r(z)} satisfies the condif
tion (R) if and only if g(a)<0, where we set a=|a|. Under the
assumption stated in the part (i); we have g(0)=0 and g'(¢)<0

on (O,to/Z). Then we have g(a)<0 for any aa(O,to/2), which com-
pleteé the proof of the part (i). We now proceed to the proof
of the part (ii). We may assume that a>t0. Because of the st-
fict convexity of r(¢) on (to,w) we see,that G(t)=r(t+a)—r(t)

is strictly increasing on (to,m). It follows that G(¢,)<G(a)

and so we have
g(a)<-r(t0+a)+r(a)+r(t0)?—tor'(a+et0)+r(t0)

for some 6 (0<6<1l)., On the other hand, r'(t) and g(t) are st-
rictly decreasing on (O,to) and on (to,m) respectively. There-

fore we see that
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%gg g(a)&-tor'(w)+r(to)s~t0r'(+0)+r(t0)

t
=J “{r' (t)-r' (+0) }dz<0.
0

Consequently we have g(a)<0 for a sufficiently large a, which~

completes the proof of the part (ii).

Proof of Proposition 4. First we note that we have
vKexled ()= 2 (e, 1<k<n)
r n n L’ ~ ~ 4

because of the property (A.2) of Ei(z) (l1<j<3). Then we obtain

the following equalities:

(6.3) _»2Rr(a,-a|Ei(z))=2r(/72)—r(2£)—A(r;Ei(2)) (L<j<3) 5
| r (/277 (7=1) 2) (n=1) /n (7=1),
M Bl = r 20+ (=0 r (20 Y/ (§=2)
r (2/%7m2)(%)/2" (7=3, n=2");
. %=1 k
(6.4) lim A(r;E)(2))=r(/22)  (1<7<3).

As for the equalitiés (6.4), the éases j=1 and j=2 are obvious.
We can show the case j=3 by using the following formula derived

from the de Moivre-Laplace theorem: For any p,q (0sp<qgl),

if 1/2e(p,q),

1
lim > (Z)/2m= 1/2 if p=1/2 or ¢q=1/2,
p<k/mgq
0

if 1/2¢lp,ql.

Therefore we obtain from (6.3) and (6.4) that
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Jim 2R_(a,-a|EJ (2))=r (/Z0) -z (22) <0 (1¢5<3) .

Consequently we have the inequalities Rr(a,-a[Ei(l))<0 (l<j<3)

if n is chosen to be sufficiently large under the restriction (3.9).

Proof of Proposition 5. In what follows we shall employ the

notation ra(t)=ta (0<ae<2). Then we see by (3.10) and (6.1) that

E
2R (a,-a|E)=f_

o o

(2,8, 7)=2%F (a; E) (0<a<2) .

Therefore we see by using the property of p[E] that the inequality

Rr (a,-a]E) <0 holds if and only if p[E]l<oc<2, which means the
[¢]
assertion of Proposition 5.

Proof of’Propoéition 6. Assume that r(t) is a r.v.f.(a)

for some ae(p[E],2]. Then we see by (3.10) and (6.1) that

%igoer(Spa,-SpaISpE)/r(p)

=%g{go{2r(/flp)/r(p)—r(22p)/r(p)—%

r(la,-a,[p)/x(p)}
5 (layay [)/5(p))

=3%F (a;E) <0.

Therefore the inequality Rr(Spa,—Spa‘SpE)<0 holds for suffici-

ently small p>0, which means the assertion of Proposition 6,

Proof of Proposition 7. We see by (3.10) and (4.3) that

F(a; B (1))=2(/2)%=2% -0 (x ;E) (2)) /2%~ (0<ag2,1<i4).

Therefore by using the property (6.4) and the approximation
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/2
property of the definite integral J sin®xdx, we can show that,

0 . ‘
for each J (lgj<4), the functions Fnj(a)=F(u;Ei(£)) {(n>»2) converge

to a certain function Fj(a) on (0,2]:-as n+=, In fact, we have

_{(/7)“{1-</§)“} (1g5<3),
Fj(a)— .

[¢1
(v -1y2- 2 THe ) 2] gy (7247 -

Since we have Fj(a)<0 on (0,2] (l1gj<4), we immediately obtain

the equzlities %ig anj=0 (1<j<4) and alsc the relations in (3.15).

Proof of Proposition 8. First we have, for :any ae(OjZ],
2R_ (a,-a|El(2))=0" (V2n/(n=10)° { (n+1) /n- (V2 (n+1) /m) " 1.
. o ’

Therefore the inequality R_ (a,—alEé(z))<O holds if and only if
o

an<as2, which means the assertion (i). In order to prove the

part (ii) we assume that r(t)eS is a r.v.f.(a) for some ae(a ,2].

Then we see by using the assertion (i) that

%imoRr(Spa,—SpalspE%(z) )/r-(p)=Rrcl (a,-a|El(2))<0.

Therefore the inequality Rr(Spa,—Spa]SpEé(z))<O holds for suff-

iciently small p>0, which means the assertion (ii).
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7. Additional results

In this section we shall be concerned with certain modifi- .
cations of our problems stated in Section 1. Let (X,r(%¢)) be

an arbitrary G.r.f. on Rd. In [2], we have introduced a family

d

of subsets of R” defined as follows: For every a,bst and every

qeR, we set

Cx(a,b;q)={Xst; u (x]|a,b)=X(a) (1-q) /2+X (b) (1+q) /2}.

It is interesting to see that the sets CX(a,b;q) and FX(x]E)
have some properties in common. In parf?cular, the in;rements
X(x)=-X(y) and X(a)—x(b) are mutually independent if and only if
there exists geR such that x,yeCX(a,b;q). -It is obvious tn see

that Cé(a,b;1)=F§(alb), Cé(a,b;q}=0§(b,a;—q) and

(7.1) Cy(a,bsq)=(xer?; r(|x-a|)=r(|x-b|)+qr(]a-b|)}

=txer%; R_(x,a|b)=r(]a-b|) (1-q)/2}.
Therefore the set Cx(a,b;q) proves to be a-solid- of .revolution: .
with axis containing a and b. For this reason, .we shall consider
the set Cx(a,b;Q) under the following restriction: a,beH and

q>0.. Now setting, for every r{(t)eS and every ¢>0,
“Dg={(“’v)€R2" u>0, v>0, r(|u-v|)sr(u)+qr(v)<r(utv)},

we have the following results.
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Theorem 4. Let (X,r(¢)) be a G.r.f. on Rd, where r(t)eS.
Suppose that Dg contains an interior point for some q>0.

(1) For another G.r.f. (X

_1,

rl(t)) on Rd with ri(t)aS, the
identity rl(t)=r(t) holds i1f and only i1f there exists q1>0 such

that

(7.2) Cx(a,b;q)ﬂHc:CX (a,b;q1X1H for any a,beH.
£ =] -

(ii) It holds that x(t)el if and only if

(7.3) Céfsta,Stb;q)nH=(StC§fa,b;q)N\H for any a,beH and any t>0.

'

In order to prove this theorem we shall employ the follow-

ing lemma.

Lemma 8. Let (X,r(%)) be a G.r.f. on Rd, where r(t)eS.
Suppose that Dg contains an interior point for some q>0. Then
there exist open intervals I and J éontained in (O,w),.for which
the following statement holds: For any‘(u,v)eIxJ and any a,beH
satisfying ]ajb|=v, there exists x[u,v]eC (a,b;q)NH such that

|x[u,v]-b|=u.

Proof. We see by the assumption that there exist open in-
tervals I and J contained in (0,«) such that IxJCDg. Let us
choose (u,v)eIxJ and a,beH (|a-b|=v) arbitrarily. Then we have

r(u)+qr(v) el , where we set I v=[;(|u—v|),r(u+v)]. If xeH

3
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runs over the circle with center b and radius u, the range of
the function r(|x-a|) coincides with the interval I,,p- It fo-
llows from the intermediate value theorem that there exists
x[u,v]eH such that |x[u,v]-b|=u and r(|x[u,v]-al|)=r(u)+qr(v).

In other wofds, we see by (7.1l) that x[u,v]ecx(a,b;q), which

completes the proof.

Proof of Theorem 4, Let I and J be the open intervals stated

in Lemma 8. Then, for any (u,v)eIxJ and any acH (l§{=v), there
exists x[u,v]scx(a,o;qnﬁH such that |x[u,v]|=u. In order to show
the part (i), i: suffices to prove the "<f" part. To this end,
setting f(x)=r1(r_1(x)) for ze[0,r(=)), we have only to prove
that f(z)=z on [0,r(»)). We can show by (7.1) and (7.2) the

| following two equations: For any (u,v)eIxJ and any aeH (|a|év),

r(|xlu,v]l-al)=r(u)+qr(v),

(r, (|xlu,v]-al)=r (u)+q,r, (v).

Then we obtain from these equations the following functional

equation;
f(x+qy)=f(x)+qlf(y) - for any (z,y)er(I)xx(J).

Thus we can easily show that f(x)=x on [0,r(«)) in the same way
as the proof of Theorem 1. In order to shew the part (ii), it

suffices to prove the "if" part. We see by (7.3) that
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Stx[u,v]acx(sta,sto;q)ﬂH for any (t,u,v)e (0,=)xIxJ.

Therefore, sétting h(u,v)=r-1(r(u)+qr(v)) for (u,v)eIxJ, we obtain

b& (7.1) the following functional equation:
r(th(u,v))=r (tu)+qr (tv) for any (t,u,v)e(0,=)xIxJ,

Consequently we obtain the desired expression r(t)=t" (0<ag2)

by using Lemma 7.

. Finally we shall give a result about the existence of int-

erior points in Dz.

Proposition 9. Assume that r(t)eS and ¢q>0. In order that
there exists an interior point in Dg, 1t 18 sufficient that the
pdir {r(t),q} satisfies one of the following four conditions:
(i) 0<q?l and r(t) is arbitrary;

(ii) ¢31 and r(t) is;stri;tly convex on (0,%) with qr' (+0)<
r'(t0/2) for some T (0<t0<w); ‘ |

(iii) ¢>1 and r(t) is strictly convex on (t ,=) with qr' (+0) <
r'(=) for some t (0<to<m), where we set f'(+0)=€§§br'(t); and

(iv) g=l.and xr(t)=t.

Proof. Because of the continuity of r(t), it suffices to

prove that there exist u>0 and v>0 such that

(7.4)  r(lu-v])<r(u)+qr (v) <r (u+v) .
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Let us consider the case (i). For any v>0, we have 0<(l-q)r(v)
<r(v). Then there exists u such that O<u<v and‘r(u)=(l—q)r(v)
or equivalently r(v)=r(u)+qr(v), from which we obtain (7.4).

By the way, the first inequality of (7.4) holds for each gq21,
>0 and v>0, since we have r(|u-v|)<max{r(u),r (v) }<r(u)+qr(v).
Therefore, in the case ¢21, we have only to show the secona in-
equality of (7.4). We now pro¢eed to the proof of the case (ii).
Noting that r'(t) is strictly increasing on (O,to) and qr' (+90)
<r'(t0/2), we can choose v satisfying 0<v<t0/2 and r' (+0)<qr' (v)
<r‘(t0/2). 'Then there exists u such that O<u<t6/2 and r'(u)=
gr'(v). Thereforelwe have gr'(t)<qr' (v)=r'(u)<r'(u+t) for any
‘ts(O,v)._'it follows that

v
(7.5) r(u+v)~r(u)-qr(v)=j {r' (u+t)-qr'(¢) }dt>0,
. 0 .

which completes the proof of the case (ii). In the case (iii),
we can choose u satisfying u>t0 and qr'(+0)<r'(u). Then there
exists v>0 such that the inequalities qu(t)<r'(u)<r'(u+t) hol@
on (0,v). Thus we again obtain (7.5), which completes the proof
of the case (iii). The proof of the case (iv) is obvious, since

we have Dé=(0,w)x(0,w).
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