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     1. Introduction 

     In [3], (41, (51, [6] and [7], P. Levy has introduced the 

notion of the conjugate sets associated with Gaussian random 

fields (G.r.f'.s) and studied the properties of these sets. 

Recently, in [1] and [2], we have also shown that this notion 

is effective to discuss the independence structures of G.r.f.s. 

In this paper, we-shall be concerned with the characterization 

of G.r.f'.s with parameter space Rd in terms of the conjugate sets 

associated with them. 

     Let S be the class of all the functions on [0,-) expressed 

in the form 

(1.1) r(t)=ct2+ f (1-e t u)u_ldy (u) (t>O), 
                J0 

where c is a non-negative constant and y denotes a measure on 

(0.,-) such that 

c 

            (1+u) dy(u)<- and r(l)=l. 

o An important subclass of S is given by 

(1.2) L={r (t) =t°'; O<a.2 } . 

Then it is well known that for every r(t)eS and every d>1 there 

exists a mean zero G.r.f. X={X(x); xeRd} with homogeneous and 

isotropic increments that is determined by the structure func-
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tion r (t) , i. e. , 

          E((X(x)-X(y))2]=r(Ix-yI) for every x,yeRd 

and 

          E (X (x) ]=0 for every xeRd. 

We can determine this G.r.f. X uniquely except for additional 

Gaussian random. variables with mean zero. We may identify two 

G.r.f:s on Rd which are determined by the same structure function, 

because such G.r.f.s have the same probabilistic structure related 

to conditional dependence. From this point of view, we often use 

the notation (X, r (t)) instead of X. For details of these G . r . f . s , 

see (21, '(8], (91.. (.131 and Remark 2 in Section 2. 

     We now consider a G.r.f. (X,r(t)) on Rd. For every FCRd (E+fl 

the symbol ur(xIE) denotes the conditional expectation of X(x) 

conditioned by { X (z) ; z e E } in the sense of. [ 6 ] . In other words, 

choosing z0eE arbitrarily, we set 

         ur(xl E)=X(z0)+E[X(x)-X(zo) IX(z)-X(zo); zeE] (xcRd) . 

The conditional covariance function of (X_,r(t.)) is defined by 

         Rr (x.1 Y I F) =E [ (X (x) -ur (x I F)) (X (Y) -ur (y J F)) ] (x, YER4) . 

We can now define, after P. Levy, the maximal conjugate set FX(xIF) 

of x relative to E as follows: 

(1.3) FX(xI F)={ycRd; Rr(x,yI F)=0}.

I
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Since (X, r (t)) is Gaussian, the set Fx (x E) proves to be the 

locus of yeRd for which X(x) and X(y) are conditionally indepen-

dent under the conditioning by {X(z); zeE}. Throughout this 

paper the phrase "conjugate set" means the phrase "maximal con-

jugate set". We also use the notation St to indicate the similar 

transformation-:.on Rd defined by Stx=tx (t>0, xeRd) . We are now 

in.a position to state our problems: 

     PROBLEM 1. Let (X,r(t)) be a G.r.f. on Rd. Suppose that, 

given another G.r. f. (Xl,rl (t)) on Rd, the relation 

(1.4) FX(xI E)CFX (xI E) 
         _ =1 

holds for'certain pairs {x,E}, xeRd, ECRd. Then is it true that 

rl (t)=r(t) ? 

     PROBLEM 2. Let (X,r(t)) be a G.r.f. on Rd. Suppose that 

the relation 

(1.5) FX (Stx StE)=StFX (x E) for every t>0 

holds for certain pairs {x, E}, xeRd, ECRd. Then is it true that 

r (t) eL ? 

     Formerly we studied the special case that E contains at 

most two points ([1], [2]). The main purpose of this paper is 

to give affirmative answers to these problems for more general 

finite sets E under certain reasonable conditions (see Section 2)
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Generally speaking, if E is finite, Problems 1 and 2 will be 

reduced to solve some functional equations for f(x)=rl(r-1(x)) 

and r(t) respectively (see Section 5). Here we shall illustrate 

the intuitive meanings of our problems. The inclusion (1.4) 

tells us the following: If a random variable X(y) is condition-

ally independent of X(x) under the conditioning by {X(z); zeE} 

in the G.r.f. (X r (t)) , the same statement holds also for the 

corresponding random variables in the G.r.f. (X1,r1(t)). 

Therefore, if Problem 1 is solved affirmatively, the family 

{FX (x F) } is thought of as a characteristic of the G.r.f . (X, r (t)) , 

so far as the conditional independence is concerned. On the 

other hand, if Problem 2 is solved affirmatively, we can claim 

that the scale invariance of (X,r(t)) in the sense of [9] (also 

see Remark 2 in Section 2) is derived from the invariance property 

-(1.5) ..of the- family {FX (x I F) } . 

     The organization of this paper is as follows. Our main 

results will be stated in Section 2. In Section 3 we shall dis-

cuss the non-degeneracy of FX(xIF), which is guaranteed by the 

condition (R) mentioned in Section 2. Next we prepare, in Sec-

tion 4, several lemmas necessary for the proofs of the results 

mentioned above. By using these lemmas, we shall prove our main 

results -in Section 5. Section 6 is devoted to the proofs of all 

the propositions stated in Section 3. Finally, in Section 7, 

we shall give some remarks about Problems 1 and 2.
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      2. Main results 

      Let (X r(t)) be a G.r.f. on Rd and E be a non-empty subset 

of Rd. Throughout this paper we promise that the parameter space 

Rd is equipped with the following orthogonal decomposition into 

subspaces G and H: 

          Rd=G®H, d33 and dim H=2. 

We always assume that E is finite and expressed as follows: 

(2.1) E={ak}l<k<n and n=#E>1, 

where #E denotes the cardinal number of E. Then the conditional 

expectation 11 (xIE) can be expressed in the form 

(2.2) ur (x I E) = X (ak) yk (x ( E) (xeRd) 
                     =1 

with certain real numbers yk(xIE) (l<k<n) satisfying the equation 

   yr k (xlE)=l. We are interested in the case that E satisfies one 
 =1 

the following conditions: 

(A.1) The points of E are independent, i.e., #E=l, or else the 

        vectors ak-al (2,<kEn) are linearly independent; and 

(A.2) The points of E are symmetric,i.e., the set {Iaj-akl}1<k .<<n 

       is independent of j (l,<j:n), including the multiplicities. 

Further we shall direct our attention to the case that E is con-' 

tained in a sphere 5(2.)={xeRd; lxl=2} (2>O). Now we can give

of
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answers to Problems 1 and 2 simultaniously. 

     Theorem 1. Let (X,r(t)) be a G.r. f. on Rd rigged with {a, E}, 

where r (t) eS, asH and ECG. Suppose that {a, E, r (t) } satisfies 

the conditions (A.1) and 

(R) a+o and Rr (a, -a E) <O; and further 

(2.3) #E>2 and yr(aJE) yk (alE)+0 for some j,k (j+k). 

(i) For another G.r. f. (X1,r1 (t)) on Rd with ri (t) ES, the 

identity rl(t)=r(t) holds if and only if 

(2.4) FX (a ( E) CFX (al E) . 
          _ =1 

(ii) It holds that r(t)sL if and only if 

(2.5) FX (Sta jStE) =StFX (a JE) for any t>O. 

     Theorem 2. Let (X, r (t)) be a G. r. f . on Rd rigged with { a, E}, 

where r (t) eS, asH and ECS (z)()G. Suppose that {a, E, r (t) } satisfies 

the condition (R) . 

W For another G. r. f. (X1, r1 (t)) on Rd with rl (t) eS, the 

identity r1(t)=r(t) holds if and only if there exists an open 

interval (tl,t2) (tl<l<t2) such that 

(2.6) FX (St aI E)OH CFX (StaI E)(~H for any to (tl, t2) . 
                    =1 

(ii) It holds that r(t)eL if and only if
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(2.7) FX(Stx StE)('H= (StFX (x (E))('H for any xcH and any t>0. 

      It is meaningful to restate the second parts of the . above 

theorems by using the notion of the projective invariance of 

G.r.f:s in the sense of [81 (see Remark 2). We denote by T(Rd;E) 

the set of transformations on Rd which consists of all trans-

lations, orthogonal transformations, similar transformations 

and inversions with respect to spheres with centers contained 

in E. Then we can easily obtain the following corollaries. 

     Corollary 1. Let (X,r (t)) with {a, E} be a G. r. f . on Rd 

satisfying the same conditions stated in Theorem 1. Then it 

holds that r (t) eL if and only i f 

(2.8) FX (Ta TE) =TFX (a E) for any :TeT (Rd; E) . 

     Corollary 2. Let (X r(t)) with {a, E} be a G.r. f. on Rd 

satisfying the same conditions stated in Theorem 2. Then it 

holds that r(t)e'L _if and only if 

(2.9) FX(TxITE)fH=(TFX(xIE))IH for any xe.H and any TeT(Rd;E). 

     As for the answer to Problem 1, we have also the following 

     Theorem 3. Let (X,r(t)) be a G.r.f. on Rd rigged with {a,E}, 

where r (t) eL, acS (Q)()H and ECS (Q)fG. Suppose that {a, E, r (t) } 

satisfies the conditions (A.2) and (R). Then, for another G.r.f. 

(X1,r1 (t)) on Rd with r1 (t) eS, the identity r1 (t)=r (t) holds if
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and only if there exists an open interval (ti-,t2) such that 

(2.10) FX(StalStE)fHCFX (Stal StE)fH for any to (ti, t2) . 
                       =1 

      REMARK 1. As was stated above, our results are given under 

the assumption that E is finite. But we can also show that 

Theorem 2 holds even if E is infinite. 

     REMARK 2. We denote by Sd the class of all the functions 

on [0,-) expressed in the form 

(2.11) r(t)=c dt2+1 {1-Yd(tu) }dLd(u) (t,0) , 
0 (2.12) Yd(t)=r(d/2) (2/t) (d-2)/2J(d -2)/2(t) (t>,0), 

where J v(t) is the Bessel function of order v and cd is a non-

negative constant and further Ld denotes a measure on (0,co) such that 

          1u2(1+u2)_1dLd(u)<oo ~and r (1) =1. 
0 Then there exists a one-to-one correspondence between the class 

Sd and the class of those G.r.f.s (X,r(t)) (r(1)=1) on Rd which 

are continuous in quadratic mean ([10], [13]). The class S defined 

by (1.1) is also characterized by the relation S= n Sd. As for 
                                                                d>.1 

the class L, we note that a G.r.f. (X,r(t)) is scale invariant 

in the sense of [9] (and also projective invariant in the sense 

of [8]) if and only if r(t) cL.
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      3 , The non-degeneracy of F X (x F) and the classes of 

a structure functions 

     In the preceeding section we have considered G,r,f',s (X,r(t)) 

on Rd rigged with {a, F}, for which {a, F,r (t) } satisfies the con-

dition (R) stated in Theorem 1. This assumption plays an impor-

tant role in our discussion about the non-degeneracy of the con-

jugate sets FX(x1F) concerned. Precisely speaking, the non-

degeneracy of these sets is gi:aranteed by the following two pro-

positions. 

     Proposition 1. Let (X,r(t)) be a G.r.f. on Rd rigged with 

{a, F}, where r (t) cS, aeH and FCG. Suppose that {a, F, r (t) } satis-

fies the conditions (A,1) and (R). Then there exists a sequence 

ii k}l,k<n of open intervals such that 

                    n n (3.1) (F(a) e 4Ikc TT((ak i and 
                   k=l =1 

(3.2) 
=lIkCDF(FX(aI F) ), 

where we set (DF(x)=(1x-all,•••, Jx-a n1) for xsRd, 

     Proposition 2. Let (X,r(t)) be a G.r.f. on Rd rigged with 

{a,F}, where r(t)sS, acH and FCS(z)(G. Suppose that {a,F,r(t)} 

 satisfies the condition (R). Then there exists an open interval 

I such that 

(3.3) `YE(a)e IC(Q,00) and
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(3.4) IC E(FX(xI E)fH) for any xe`YE1 (I)(}H, 

where we set 'E(x)=Ix-all for xeRd. 

     In what follows we shall give some examples of {a,E,r(t)} 

satisfying the condition (R). As for the case E={o}, we have 

the following 

     Proposition 3. (i) Suppose that r(t)eS is strictly convex 

on (0, to) for some to (O<to<-). Then {a, {o},r(t) } satisfies the 

condition (R) for any aeH with sufficiently small ja1>0. 

(ii) Suppose that r(t)eS is strictly concave on (O,to), strictly 

convex on (to,-) for some to (O<to<-) and r' (+O) <r' (03) . Then 

{a, {o},r(t) } satisfies the condition (R) for any acH with suff-

iciently Large jaI>O. 

     We now proceed to the more general case of finite sets E 

with #E>.2. Let {ei}l\i<d be the canonical orthonormal basis of 

Rd and assume that the subspace G is spanned by {ei}l<i<d -2° 

Let us introduce the sets E 17(t) (t>O, n>2, 1<j<4) defined as 

follows: 

(3.5) E1 (L)={ak=z n/ (ek- n ej); l4ksn} 
                                        J=1 

(3.6) E (L)={ak=Q(-1)ke[(k+l)/2]' 1.<ksn} (n:even); 

m (3.7) 6n(2.)={a(I)= (2,/m) (-1)X(k~I)ek; IC{1,2,...,m}} (n= 2m) 

1

a
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(3.8) E (2,)=(ak=(Lcos2k,r/n)el+(Qsin2kTr/n)e2; l,k<n}, 

where we set X(k!I)=l for keI and X(k!I)=0 otherwise. We note 

that each set E 7(z) given above is contained in S(z) and satis-

fies the condition (A.2). Moreover the set En (2.) satisfies the 
condition (A.1). Since each -set Fn (2,) (l<j<3) consists of all 
the vertices of a high-dimensional regular polyhedron, the number 

n=#En(2.) should be dominated by some constant related to the 
dimension d of Rd. In particular, when E (L) (1<j.<3) is contain-

ed-in G, we must assume the following: 

                       d-2 forr j=1, 

(3.9) n=#En(2.).< 2(d-2) for j=2, 
                       2d-2 for j=3. 

     By using-the sets E 7(Z) given above, we can describe the 

condition (R) for any r(t) eS. 

     Proposition 4. Let aeS (!C)()H and r (t) eS be given arbitrarily. 

Then, for each j (l4j<3), {a, En (2,),r'(t) } satisfies the condition 

(R) provided that n is chosen to be sufficiently Large under the 

restriction (3.9). 

     Before stating the results on the class L, we shall intro-_: 

duce here the real number p[E] which corresponds to each set 

ECS (Q) (2>O, # E>.2) . When we set
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(3.10) F (a) =F (a; E)=2 ( Vi)a-2a- n ( ~ak-al 1/2.)a (0<a42) , 

1 we see that the function F(a) is strictly concave on (0,2] and 

satisfies the inequalities F (+O)= 1>0>F >0>F(2). Then the real number 

p[E] is defined as the unique solution of F(a)=O in (0, 2) . Ob-

viously the equality p[StE]=p'[E] holds for each t>0. Further 

we see that F(a)>O on (0, p [E]) and F(a)<O on (p [E], 2] . Thus 

setting 

(3.11) L (R)={r (t)=ta; S<cc52} (0<S<2) , 

we have the following 

     Proposition 5. Let aeS (Q)nH, ECS (z)()G and r (t) eL be given. 

Suppose that E satisfies the conditions (A.2) and #E>,2. Then 

{a, E,r{t)} satisfies the condition (R) if and only if r (t) eL (p [E]) . 

     We can extend this result to the case of regularly varying 

functions, which correspond to G.r.f'.s with non-degenerate scal-

ing limits (see [9] and (11]). In general, a function r (t) is 

called a regularly varying function with.7exponent a (r.v.f.(a)) 

for some a>0 if r(t) is a positive continuous function defined 

on some interval (0,t0) and satisfies the equality 

(3.12) 1i t0r (xt) /r (t) =xa for any x>0. 

We denote by L the class of r.v.f.s r(t)cS with exponent a for 

N some ae(0,2]. Obviously we have LCL. More general examples of
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N subclasses of L will be given in the next section. Now setting 

N (3.13) L(s)={r(t) eS; r(t) is a r.v.f. (a) for some ae(S,2] } (O<a<2), 

we have the following 

N 

    Proposition 6. Let aeS (.Q)()H, ECS (Q)(\G and r (t) eL (p [ E] ) 

be given. Suppose that E satisfies the conditions (A.2) and 

#E>,2. Then {Spa,SpE,r(t) } satisfies the condition (R) for suff-

iciently small p>O. 

     Consequently, we can describe the condition (R) for the 

N classes L and L by using Propositions 5, 6 and the following 

     Proposition 7. When we set an-.=p [En (L) ] (n 32, ' 1,<j~4),we have. 

(3.14) lim a =0 (1,           n j.<4); and so                -+o* nj 

(3.15) L= JL(anj) and L= U L(anj) (1<j<4). 
              A n a 

     It is difficult in general to describe the value of p[Ej 

explicitly. In the special case:of 6=E (Q), however, we can 

find an analogue an of an 1_p [En (.)) defined by 

(3.16) a = log ((n+l) /n) 2 (n>2).           n log ( (n+ n 

     Proposition 8. Suppose that aeS ( (n+l) (n-1) L)('H, A.>O and 

2sn4d-2. Then the following assertions hold: 

(i) Given r(t)cL, {a,Ej(R),r(t)} satisfies the condition (R)
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if and only i f r (t) eL (a
n) . 

(ii) Given r (t) eL (an), {Spa, SpEn (2,) 
tion (R) for sufficiently small p>O 

     Obviously we see that nom an=0 

         L= UL(an) and 
              n>2 

We also note that, inspired by the 

r.v.f.(a), we can similarly discuss 

fies the equality 1 r (xt) /r (t) =x 

sitions stated in this section will

 r (t) } satisfies the condi-

 and so 

L U2 (an) . 
  n>2 

defining condition (3.12) of 

 the case that r(t)eS satis=., 

 for any x>O. All the propo-

 be proved in Section 6.
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      4. Lemmas 

     In this section, we shall provide some preliminary lemmas. 

Let (X,r(t)) be a G.r.f. on Rd and E be a subset of Rd given 

by (2.1). First we see that ur (x I z) =X (z) and so 

         Rr(xsylz)={r(Ix-z_I)+r(Iy-zl)-r(lx-yl)}/2 (x,y,zeRd). 

In general, we can employ the expression (2.2) of ur (x I E) (#E;>2) 
Strictly speaking, the coefficients Yk=Yr(x!E) (1sksn) satisfy 
the following equations: 

n 

       ~Yk-1 

n 

          ` Rr(aj,aklal)Yk=Rr(aj,xlal) (2<j<n) . 
    11 

Moreover, if we assume that r (t) e S (r(t)+t2),, the solution of 

these equations can be determined uniquely on account of the 

property (iv) of Lemma 5. It is convenient to introduce the 

following notations: 

(4.2) Ar(x,ylE) =r(IY-aki)Yr(xIE) (x,yeRd) and 

1 (4.3) A(r;E)=Ar(o,allE)==r(Ial-akl)Yr(oIE) , 
                                 k=1 

Then we immediately obtain the following. expression: For . 

any x, yeRd, 

(4.4) 2Rr(x,yfE)=r(lx-all)+Ar(x,ylE)-r(lx-yI)-Ar(x,allE) .
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     Lemma 1. Let (,r(t) ) be a G.r, f. on Rd and Zet ..ECC5(f)nG 

be given arbitrarily. Then the coefficients y (xJE) (1<k<n) in 

the expression (2.2) may be chosen to satisfy the relation 

(4.5) yr (x I E) =yr (o I E) (xeH, l<k<n). 

Moreover Rr (x, y i E) has the following expression: For any , x, yeH, 

(4.6) 2Rr (x, y I E) =r (I x-al I) +r (I y-al I) -r (I x-y i) -A (r; E) ; and 

(4.7) 0<A(r;E)<2r(9). 

      Proof. It follows from the assumption on E that 

          Rr (aj, x I a1) =r (I aj-ail)/2 for any xeH -(2.-<,j4n). r 

Therefore the solution Yk=yr(xIE) (1.<k<n) of (4.1) for each xeH 
depends only on E, which implies the relation (4.5). The ex-

pression (4.6) immediately follows from (4.4): The inequalities 

(4.7) are derived from the following: A (r; E) =2{r (.) -Rr (o, o I E) } 

and 0<Rr (o, o I E) <Rr (o, o I al)=r(2.). The proof is thus-completed. 

      Now we shall consider the roles of the conditions (A.1) 

and (A.2) to be imposed on E. For the sake of convenience, we 

assume that the space Rd is realized by row vectors. Then we 

shall employ the expression ak=(aki'...,akd) (1<k,<n).and assume 

that 1<n<d. On the other hand, given a--(al.,---.,a d) cRd and I= 

                                                                   ).and  (i 1, ...' i
n) (1'<i1<-<i n<d) , we set aI (ai 1 , ... ai n
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Z 

             aI[Y]=(al, ..._'y
l~ ...~...~ad) for every y=(y 1, ...lyn 

Further we shall introduce the following notations: For every 

y= (y yn) tRn, we set 

          FI a E (y) = (I aI [y] -all , ..., I aI [y] -an l ) 
and 

                        y l-ali 
1 ,*,_,y n-alin 

                fI(y)= ................ 
                        y1-ani

l,•••,yn-anin . 

Given ycRn and 6>0, we denote by V6(y) the open ball in Rn with 

center y and radius 6. Then we see that the Jacobian of the 

mapping FI a E: Rn--+Rn for each y (aI[y]JE) is given by 

(4.8) (JFI a E) (y)=.( IaI(y]-akl )_1f~I(y). 
                     ' ' k=1 

By using this relation, we can discuss the regularity of FI
,a9E 

under the assumption (A.1) on E. 

     Lemma 2. Let aeRd and ECRd (1<#E<d) be given such that 

the points a,al,•••,a
n are independent, i.e., the vectors a-ak 

(l-<k<n) are linearly independent. Then there exist I=(il,..._i 

(l~<'il<•••<in<d) and 6>0 such that the mapping 

(4.9) FI a, E: V6(a1)-U6 (I, a, E) 

provides a homeomorphism, where we set Ua (I, a, E) =FI, a, (VS (aI)) .

 ER' .

)
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      Proof. Because of the assumption on the arrangement of a 

and E, there exists I=(i 
n) (l4i1<•••<in<d) such that 

f I(aI)T0. This implies that there exists 6>0 such that 

(4.10) fl(y)T0 and a1[y] ~E for any yeV6 (a1) . 

It follows from (4.8) and (4.10) that the mapping FI
-, a, E is 

regular on Va(aI). Thus we see by using the inverse mapping 

theorem that the mapping (4.9) provides a homeomorphism for a 

sufficiently small 6. 

     It is notable that, --if ECS (2)()G satisfies.the condition (.A.2), 

we may choose the real numbers y (x!E) (1`k,<n) as follows: 

        Yr (x (E)= n (xcH, l<,k,<n). 

In the preceeding section we have introduced several sets E which 

satisfy the conditions (A.2) and ECS(2) for some D>0. We note 

that such sets will be also constructed by using the following 

lemma. 

     Lemma 3. Let Ei (i=1, 2) be two finite subsets of Rd satis-

fying the conditions (A.2) and Ei(S (iii) (i=1,2). Suppose that 

(x,y)=0 for any xeE1 and any yeE2. Then the set 

           E={x+y; xcE1, yeE2} 

satisfies the conditions (A.2) and ECS( ki+22).
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     The proof is elementary, and so is omitted. We shall now 

discuss the properties of functions in the class S. 

     Lemma 4. Suppose that r (t) eS is given by (1-1). Then r (t) 

admits the following expression: 

(4.11) r(t)=ct2+ j~{1-Yd(tu) }fd(u)ud-ldu 
0 where fd(u) is defined by 

         fd (u) _ (2d-lr (d/2) ] -1 f °d/2-1e-U2/4g dl (S) (u>0) 

0 

     Proof. Let us introduce the formula 

(4.12) e-t2s=joYd(tu)(2d-lr(d/2)]_1s_d/2ud-le-u2/4sdu (t)0, s>0) 
This will be easily shown by using the following alternative 

expression of Yd (t) 

         Yd(t)=j d-lei(x'z)d6d(z) a (t=lxl, xeRd). 
S where ad is the uniform probability measure on the unit sphere 

Sd-l={zeRd; IzI=1}. We now immediately obtain the desired exp-

ression (4.11) by combining (1.1) and (4.12). 

     Lemma 5. Each function r(t)eS satisfies the following pro-

perties: 

(i) r(t) is strictly increasing and analytic on (0,00); 

(ii) r (x) is strictly increasing and analytic on (0,r(co));

.
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(iii) r (/t-) is strictly concave on (0,-) except the case r(t)=t2; 

(iv) For any n distinct points xkeRd--{o} (d,>l, n,>l, l<k<n), the 

positive definite quadratic form 

n 

           Qr(=)= Rr(xj~xklo)~jEk-1 -=( 1, ...'En)eRn, 
                    j, 1 

is non-degenerate except the case r(t)=t2. In other words, 

Qr(=)=0 implies that -=o. 

     Proof. Suppose that r(t) is given by (1.1). Then we have 

                                               00 
-

          r' (t)=2t{c+
J et2udy (u) }>0 for any t>O. 

0 It follows that r(t) is strictly increasing on (0,°). Further 

we can extend this function analytically to the function r(z) 

on the complex domain {zeC; largzl«r/4} ((12]). Therefore we 

obtain the assertions '(i) and (ii). The assertion (iii) will 

be seen by the following fact: If r(t)+t2, we'have 

                2 °°            d2 r (r) =-
J e-tuudY (u) <O for any t> 0 .           dtz 0 

We shall now proceed to the proof of the assertion (iv). On 

account of the expression (4.11) of r(t), we see that 

        r(Ixl)=clxl2 + IRdlei(x'z)-ll2(2wd) 1fd(lzl)dz (xeRd), 
where we set wa 27rd/2/r(d/2) Further we have, for any x,ycRd, 

         Rr(x,ylo)=c(x,y)+J d(ei(x'z)-1) (e-i(Y.,z)-1) (2wd)-lfd(lzl)dz. 

R
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Thus we obtain the following representation of Qr(E): 

        Qr (_)=c 1 > kxk 12+J ~ ~n Ek (e2 (xk' z)-1) j 2 (2wd) -lfd (lz )dz. 
                   k=l Rd k=l 

Now we assume that r (t) **t 2 and Qr (?) =0 . Then we have y ((0, -)) > O 

and so the function fd (u) is positive and continuous on (0,-). 
This implies that 

n 

(4.13) ~k (e&(x k3 z)-1)=O for any zcRd. 

Now we set 

          V={zeRd; (xk,z)TO (1.<k<n) and (xj,z)+(xk,z) for any 

                 j, k (l<j <k<n) } . 

It is easy to see that V is a non-empty open subset of Rd and 

satisfies the relation StV=V for any t>O. Let us choose a point 

z 0 EVl1 Sd-1 arbitrarily and set ck=i (xk, z 0 ) (l<k<n) . Then, setting 

z=tz0 in (4.13), we have the equality 

            n ekt            n 
~k(e -1)=O for any t>O. 

1 

Further differentiating in t, we have 

                  ckt 
              ~keke =0 for any t>O. 

1 

By the way, the constants ck (1.<<k.<n) satisfy the following con-

ditions: ck+0 (1.<k<n) and cj+ck for any j,k (l<j<k,<n). There-

fore we can easily show that ~k=0 (1<ksn), which completes the
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proof . 

      Before stating the next lemma, we shall introduce some nota-

tions. For every r(t)eSd and every probability measure A on 

(0,11, we set s * [ a ] =inf {support of A } and further 

        rX (t)=f ir(t)pda (p) and rx (t)=J lr(tp)da (p) (t>0) . 
                   0 0 

The following lemma provides various examples of r.v.f'.s r(t) eS. 

      Lemma 6. Let A be a probability measure on (0,1]. 

(i) Assume that s* [a] >0 and r (t) eSd is, a rr v: f . (a)- • for some a>0. 

Then r'(t) and rA(t) are r.v.f:s (s*[a]a) . 

(ii) For , every r (t) sS, it holds that rA (t) eS and rX {t) eS. 

     The details of the proof are omitted. We can obtain the 

assertion (i) by elementary calculation. As for the assertion 

(ii), we may employ the theory of the inner transformations of 

completely monotone functions ([10I). We shall next consider an 

interesting functional equation related-to Problem 2. 

     Lemma 7. Let p(t), q(t), f (t) and g(t) be functions on 

(0,-) such that p(t)+0 and q(t)+0, and Let h(u,v) be a positive 

function on IxJ, where I and J are open intervals contained in 

(0,-). Assume that these functions satisfy the functional equation 

(4.14) f (th (u, v))=p (t) f (tu)+q (t) f (tv)+g (t)
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for any (t, u, v) e (0, -)sIxJ, and furtherr assume that f (t) is twice 

differentiable and strictly monotone on (0,-). Then f (t) admits 

the following expression: 

(4.15) f (t)=C1ta+C2 or f (t)=slogt+C3, (t>0), 

where a, s and Ci (15i,<3) are arbitrary real constants (aC1+0, s+O) . 

     Proof. First we can show by using the equation (4.14) and 

the assumption on f (t) that h (u, v) is twice differentiable on 

IXJ. By differentiating the both sides of (4.14) in u or v, we 

have the following two equations: For any (t,u,v)E(0,-)x I'J, 

         f' (th(u,v))au(u,v)=p(t)f' (tu) and 

         f' (th(u,v))ah(u,v)=q(t)f' (tv). 

Therefore we see that au (u, v)w(u, v) +O for any (u, v) cIxJ, because 
there exist t, -,t 2e F-(0,-) such that p (t1) q (t2)+0 . Now differenti-

ating the both sides of the last equation in u, we have the fo-

llowing: For any (t,u,v)e(0,-)xIXJ, 

2 

        f " (th (u, v) ) t ~u (u, v) av (u, v) +f ' (th (u, v)) a uav (u, v) =0 

and further 

          f"(th(u,v))t _f"(h(u,v)) 
              t u,v)) u,v 

By the change of variables this equation can be replaced by the
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following: 

          f"(t)t_ _f"(h(u,v))h(u,v) for any (t ,u,v)e(0,-)'IxJ, t1(t) hu
,v 

Therefore the both sides of this equation are identically equal 

to a certain real constant a which is independent of the vari-

ables t, u and v. It follows that, for any t>O, 

           f" (t) _ a d a                 -- t or equivalently flog f' (t)=-t-. 

Then we have the expression f' (t)=bj(b40) and further 

         f (t)={b/(a+l) }ta+l+C or f (t)=blogt+C' (t>O) 

according as a+-l or a=-l respectively. Thus we obtain the 

desired expression (4.15). 

     REMARK 3. As for the assumptions on f (t) in Lemma 7, the 

phrase "strictly monotone" may be replaced by the phrase "non-

constant" provided that iOJ+~ and p(t)q(t)+O for each t>O.
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      5. Proofs of main results 

     Proof of Theorem 1. Without loss of generality, we may 

assume that yr, (a E) yr (a E) TO. It follows from Proposition 1 

that there exists a sequence {Ik}l
,<k,<n of open intervals, for 

which the conditions (3.1) and (3.2) hold. Therefore, for each 

n u= (u 1, • • •, un) cTT Ik, there exists y [u] eFX (a E) such that                k=1 = 

          t E (y [u]) =u or equivalently y [u] -ak i =uk (l$k<n). 

     In order to show the part (i), it suffices to prove the "if" 

part. We note that the sets r(Ik) (l(k,<n) are;.-.non-empty open 

intervals contained in (0,-) and we set Ar(p)=(r 1 (p 1) , • • •, r-1 (pn) ) 
n for every p= (p 1, • • •, p

n) c r (Ik) . Then we see that, for every    n k=1
n 

PC] r (I ) , we have (p) eTTI and 
  k=1 k r k=1 k J 

         Y[or(P)] EFX(aIE)CFX (a E),, 
                       -1 

         IY [Ar (P) ] -ak l=r-1(Pk) (1<k<<n). 

Therefore we can show by (4.4) the following two:. equations: 

n For every PEI r(Ik), 
              k=1 

n 

       Ir(JYrr(P)]_aI)iiPk1k+Ml              A(5.1) ~=1 
        tr1(lY[or(p)]-aj)=~r1(r-1(pk))yk+Ml, 

                                 k=1 

where we set yk=yr (a (E) , yk=yr (a l E) (l:k.<n), M=r (l a-al () -Ar (a, al E) 

1
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and M1=r 1 (I a-al l) -Ar (a, al E) . Let f (x) be the function on [0_,r(-)) 

1 defined by f (x)=r1 (r-1 W). Then we obtain from (5.1) the follow-

n ing functional equation: For any (p1, • • •,pn) eTTr(Ik) , 
                                                         k=1 

(5.2) f ( ~~_=l pkYk+M)= -lf (pk) Yk+M1 . 
We note that f (x) is analytic on (0 _,r(-)) and the range of the 

function 

               n n 
         x pkYk+M ((ply" ,pn)ETTr(Ik)) 

contains an interior point because of the assumption 1112+0. 

Now differentiating the both sides of (5.2) in p1 and p2 succ-

essively, we have the following: 

                 n n_           f" (IpkYk+M) =0 for any (p 1, ..., pn) Er (Ik) . 

Therefore we see by the analyticity of f" (x) that f" (x)_0 on 

(0,r(-)). Further we have f(x)=x on [0,r (m)) by using the con-

ditions f(O)=.O and f(l)=I. This implies that, for any t,0, 

r1 (t)=r1 (r-1 (r(t)))=f (r(t))=r(t) . The proof of the part (i) is 

thus completed. 

     We now proceed to the proof of the part (ii). It,suffices 

to prove the "if" part. Let us again use the notation y[u] for 

n every ueT[I , which was introduced above. Then we see by the 
         k=l k 

assumption (2.5) that 

n (5.3) Sty[u] EFX(StalStE) for any (t, u) E(0,-)xUIk. 
                  = k=1
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For the sake of convenience, we shall introduce the following 

functions: 

         Pk (t) =Yk (Sta l StE) (t>0, lEk<n), 

n 

         g(t)=r(tIa-alj)-) 7r(tla1-akl)pk(t) (t>O) and 
                               k=1 

           h(u1'...'u
n)=r-1( n r(uk)Pk(1)+g(1)) ((u1'...~un)E n Ik). 

Then we can derive from (5.3) the following functional equation: 

n For any (t,u , . • •, u ) E'(0, -)x~I , 
                     n k=1 k 

n (5.4) r (th (u 1, ..., un)) r (tuk) Pk (t) +g (t) 

It should be noted that p1 (1) p2 (l) TO and h (ul, .. •, un) >O on Ik. 
                                                                      k=1 

By applying Lemma 7 to the equation (5.4), we see that r(t) can 

be expressed in the form 

         r(t)=C 1ta+C2 or r (t)=alogt+C3 (t>O), 

where a,s and CZ (1<i<3) are real constants (aC1+O, $+0). There-

fore we obtain the desired expression r(t)=e (O<a<2) by using . 

the conditions r(O)=O and r(l)=1 and also the concavity of-.r(/). 

The proof of the part (ii) is thus completed. 

     Proof of Theorem 2. It follows from Proposition 2 that 

there exists an open interval I such that the conditions (3.3) 

and (3.4) hold. If we set a=lal and a(u)=( u2-R2/a)a (u>L), we 

have a(u)E:' 1 (I)nH for any ucl. Therefore, for any u,V I, there
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exists b (u, v) EEX (a (u) E)()H such that 

          T E (b (u, v)) =v or equivalently l b (u, v) -al =v . 

     In order to show the part (i), it suffices to prove the 

"if" part . Without loss of generality, we may assume that 

IC( t_ a2+Q2, t2a2+Y2) . Then r (I) is a non-empty open interval 

contained in (0,o). Further we set, for every p,ger(I), 

          a[p]=a(r 1 (p)) and b[p,q]=b(r-1 (p),r-1 (q)). 

Then it follows from the assumption (2.6) that, for any p, qEr (I) , 

        b [p, q] eFX (a [p] I E)f1HC EX (a [p] , E)(1H. 
                          =1 

Therefore we can show by (4.6) the following two equations: 

For every p, q er (I) , 

          r(Ia[p]-b[p,q] I)=p+q-A, 

          r1 (; a[p]-b[p,q] j)=r1 (r-1 (p))+r1 (r-1 (q))-A1, 

where we set -A=A. (r; E) and A, =A (ri; E) . Now setting f (x)=r1 (r-1 (X)) 

for xE [0, r (-)) , we can derive .from the above equations the foll-

owing functional equation: 

          f (p+q-A)-f (p)+f (q)-A1 for any p,ger(I). 

Therefore we see that f(x)=x on [Or(-)) , by using the analyticity 

of f (x) and the conditions f(O)=O and f(l)=l. Thus we have the
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desired identity ri(t)=r(t). 

     We now proceed to the proof of the part (ii). It suffices 

to prove the "if" part. Let us again use the notations a(u) 

and b(u,v) for every u,veI, which were introduced above. Then 

we see by.the assumption (2.7) that 

(5.5) Stb(u,v) eFX(Sta(u) IStE)()H for any (t,u,v) e(0,o)xixI. 

Therefore setting 

          g (t)=-A (r, StE) (t>0) , 

           h(u,v)=r-1 (r(u)+r(v)+g(1) ) (u,vel) , 

we can derive from (5.5) the following functional equation: 

For any (t, u, v) e (0, -)>e IxI , 

         r(th(u,v))=r(tu)+r(tv)+g(t). 

Thus we obtain the desired expression r(t)=ta (0<a,<2) by the 

same discussion as the proof of Theorem 1. 

     Proof of Theorem 3. It suffices to prove the "if" part. 

We see by Proposition 2 that there exists an open interval I such 

that PF (a) eIC(Q., -) and ICE (FX (a F)flH) . Therefore, for any uel, 

there exists b [u] eFX (a I F)n H such that 

         T 'E (b [u ]) =u or equivalently , b [u] -al j=u . 

By using the assertion (ii) of Theorem 2 and the assumption (2.10),
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we have the following: For any (u, t) eIXJ, 

         Stb [u] cFx (Sta I StE)()HCF x (Sta (StE)nH, 

where we set J=(t1,t2). Therefore we obtain by (4.6) the foll-

owing two equations: For every (u, t) c IxJ, 

         1r(tI a-b[u] ()=r(ut)+r(,r2Qt)-A(r;StE), 
(5.6) 

          r1 (tja-b[u] j)=r1 (ut)+r1 (/2t)-A(r1;StE) . 

For the sake of convenience, we set Ao=r(/Q) and Ak=r(lal-ak() 

(l<k<n). Then we have 

                           n n 

(5.7) -A (r;StE)= n~r(jtal-tak1)= rnt)~ 'Akr 
                        k=1 kk=1 

because the set StE satisfies the condition (A.2). Now setting 

f(x)=r 1 (r 1 (x)) for xe [O,r(-)) , we can derive from (5.6) and 

(5.7) the following functional equation: For any (s, q) er (I)xr (J) , 

n 

         f (sq+Aq)=f (sq)+f (AOq)- n f (Akq) , 

n where A=AO- nIAk. Further setting p=sq, this equation can be 
               k=1 

replaced by the following: For any (p,q)eU, 

n (5.8) f (p+Aq) =f (p) +f (A0q)- n~f (Akq) , 
                                      k=1 

where U denotes a domain of R2 defined by 

         U={ (p,q) cR2; gcr(J), p/gcr(I) }.

17
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On the other hand, by using the property (iii) of Lemma 5 and 

(4 .7) , we have 

(5.9) A (r;E)= nLr( la 2) 
                            k=1 - 11 

n 

              r( 1 al-a 
                     k=1 kI2) 

                 .< r(I)=A0. 

Then combining (5.7) and (5.9), we have A>O. In the special 

n case A=O, we have r(t)=t2 and n -~Ak=Ao . Therefore, if we assume 
that r1 (t)_ r (t) , the function f(x)=r 1 (v) is strictly concave. 

Thus we see by. (5.8) that 

                       n n 

        f (AOq)= n
k=1f (Akq) <f (n~Akq)=f(AOq)                                       k=1 

Consequently we have the desired identity r1(t)=r(t) by contra-

diction. As for the case A>O, we can easily obtain the expression 

f (x)=x on [O,r(-)) from (5.8) by using the analyticity of f (X) 

and the conditions f(O)=O and f(l)=l. Thus we have the identity 

r1(t)=r(t), which completes the proof.
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6. Proofs of Propositions-in Section 3

     In Section 3, we have assumed that {ei}1<i`d is the cano-

nical orthonormal basis of Rd and further the subspaces G and H 

are spanned by {ei}l<i<d -2 and {ed_l,ed} respectively. In order 

to prove Proposition 1 we shall introduce the family {Te; 0<e<,r} 

of orthogonal transformations on Rd defined as follows: 

           Teei=ei (l:i<d-2), 

            Teed _l=ed-lcose+edsine, 

             Teed=-ed _lsine+edcose. 

     Proof of Proposition 1. It immediately follows from the 

assumption that the points a,a1,•••,a n are independent and l<n,<,d-l. 

Therefore we see by Lemma 2 that there exist I= (i 1, • • •, in) 

(l,<i 1 <.••<in<d) , d>0 and a domain Ud (I, a, E) of Rn such that the 

mapping 

            FI a E' V6 (a1) ---+u6 (I ., a, E) 

provides a homeomorphism. In particular, we have (DE (a)=F I , a, E (a1) 

EU6 (I, a, E) . Therefore there exists a sequence { Ik }1<k .<<n of open 

n intervals satisfying the conditions (3.1) and 
k 1IkCU6 (I, a, E) . 

n We denote by V6(aI) the inverse image of J=1 Ik by the mapping 
1 FI a Then the mapping 

              ^ n 
          Fh a, E: VS (aI)--)TJIk
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is also a homeomorphism. Now we shall introduce a continuous 

function f (e, x) on [ O, T< ]xRd defined by 

          f (6, x) =Rr (a, T6x 1E) ( (e, x) a [ O, Tr7xRd) . 

Because of the property (iv) of Lemma 5 and the assumption (R), 

we have 

          f (O,a)=r(a,a(E)>0 and f (Tr,a)=Rr(a,-aI E) <O. 

Further by choosing the above-mentioned 6 sufficiently small, 

n 
we have the following: For any yeV6(a1), 

          f (O, a1[Y]) >0 and f (Tr, a1[Y]) <0. 

Therefore we see by using the intermediate value theorem that, 

n for any yeV6 (a1) , there exists 0 (y) e (0, Tr) such that f (0 (y) , aI [y])=0. 

In other words, we have 

         TO (
Y) aI[Y] CFX(a, E) for any yeVS (aI) . 

n Then-we see.that, for any yeV6(a1), 

         Fi
~a~ E(Y)=~D E(aI[Y])=OE(TO(Y)aI[Y]) ecIE(FX(aI E)) , 

and so we have FI a E(V6(aI))c E(FX(alE)). Thus we obtain the 
relation (3.2), which completes the proof. 

     Before we proceed to the proof of Proposition 2, we shall 

introduce an alternative expression of Rr(x,yIE) restricted to HxH.
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Suppose that ECS(Q)nG. Then we have, for any x,yeH, 

(6.1) 2Rr(x,YIE)=fr(IxI.,IYI,L(x,Y)), 

where L(x,y) denotes the angle between the vectors x and y 

(0.L (x, y) <Tr) and fr (E, n, e) denotes a continuous function on 
[0, -)><[O, -) x [ O, Tr ] defined by 

          fr(~,n,e)=r( 2+~2)+r( )-r( +n -2 ncose)-A(r;E). 

     Proof of Proposition 2. Because of the property (iv) of 

Lemma 5 and the assumption (R), we have 

          fr (a, a, O) =2Rr (a, a l E) >O and fr (a, a, Tr) =2Rr (a, -a l E) <O , 

where we set a=laI. Further there exists an open interval (tl,t2) 

(O<t1 1.<1<t2) such that we have, for any s, to (t1, t2) , 

         fr (as, at, 0) >0 and fr (as, at, Tr) <0 . 

Then we see by using the intermediate value theorem that, for 

any s, tc (tl, t2) , there exists a (s, t) a (0,,r) such that 

fr (as, at, e (s, t))=O . It follows that, given x (s) eH satisfying 
Ix(s) I=as, there exists y(s,t) eFX(x(s) IE)(}H such that 

(6.2) I y (s, t) I =at and L (x (s),y (s, t))=0 (s, t) . 

If we set I=( a t1+Q2, a2t2+92), we immediately obtain (3.3) 

Te(a)= a2+z2eIC(Z,-) . Therefore we have only to prove (3.4).
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                                                     2 a and t= u2_ 2/a Given xE`Y
F (I)nH and ueI, we set s= / 

Then we have s,tc(ti,t2) and lxi=as. Therefore setting x(s)=x, 

there exists y(s,t) EFX(x(s) F)nH such that the condition (6.2) 

holds. Then we see that u='YF(y(s,t)) EYE(FX(xl F)CH), which imp-

lies the property (3.4). 

     Proof of Proposition 3. Let us consider the function g(t) 

on [0 _,-) defined by g (t) =2r (t) -r (2t) . Then we have 

          .2Rr(x,-xlo)=g(lxl) for any xsRd. 

Therefore, given acH (a+o), {a, {o }, r (t) } satisfies the condi-

tion (R) if and only if g(a)<0, where we set a=jal. Under the 

assumption stated in the part (i), we have g(O)=O and g'(t)<O 

on (0.1t 0/2) . Then we have g(a)<O for any as (0, to/2) , which com-

pletes the proof of the part (i). We now proceed to the proof 

of the part (ii). We may assume that a>t0. Because of the st-

rict convexity of r(t) on (to,-) we see that G(t)=r(t+a)-r(t) 

is strictly increasing on (to,-). It follows that G(t0)<G(a) 

and so we have 

          g(a)<-r(t0+a)+r(a)+r(t0); -t0r' (a+0t0)+r(t0) 

for some 0 (0<0<1). On the other hand, r1(t) and g(t) are st-

rictly decreasing on (0,t0) and on (to,-) respectively. There-

fore we see that
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          lim g(a):-t0r' (°°)+r(t0)4-t0r' (+0)+r(t0) 

                          =rt 

0 

Consequently we have g(a)<0 for a sufficiently large a, which 

completes the proof of the part (ii). 

     Proof of Proposition 4. First we note that we have 

        Yk (x l En (2)) = n (xc.I, 14k,<n) , 

because of the property (A.2) of E (z) (1,<j,<3). Then we obtain 

the following equalities: 

(6.3) 2Rr(a,-aIE (Q))=2r(Yf2 A.)-r(21)-A(r;E (Q)) (14j,<3); 

                      r ( 2n Z) (n-l) /n (,j=1) , 

         A(r; En(A,) )= {r(21)+(n-2)r(~Q) }/n (j=2) f

             E:r mL)(k)/2m 
                          k=l 

(6.4) 1im A(r;En(2.))=r(IZ) (1,<j,<3) . 

As for the equalities (6.4), the cases j=l and j=2 

We can show the case j=3 by using the following 

from the de Moivre-Laplace theorem: For any p,q 

                         1 if 1/2 c (p, 

, 

       m}~ ~'(k)/2m- 1/2 if p=1/2 o q 
               p< m(q 

                         0 if 1/21 [p, q] . 

Therefore we obtain from (6.3) and (6.4) that

(~=3, n=2m); 

=2 are obvious. 

formula derived 

 (O:p<q:l) , 

q) 

r =1/2,
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         yip; 2Rr(a,-ajE (Q))=r(/ Q)-r(2Y.)<0 (l:j:3). 

Consequently we have the inequalities Rr (a, -a En (2,)) <0 (1<j<3) 
if n is chosen to be sufficiently large under the restriction (3.9). 

     Proof of Proposition 5. In what follows we shall employ the 

notation r
a(t)=ta (0<a,<2). Then we see by (3.10) and (6.1) that 

           2Rr (a,-a E)=fr (2, A., 7r)=QaF (a; E) (0<a.<<2) . 
                  a a 

Therefore we see by using the property of p[E] that the inequality 

Rr (a, -a J E) <0 holds if and only if p[E]<a,<2, which means the 
a assertion of Proposition 5. 

     Proof of Proposition 6. Assume that r(t) is a r.v.f. (a) 

for some ae (p [E], 2] . Then we see by (3.10) and (6.1) that 

         liT02R r(Spa'-SpalspE)/r(p) 
            li 0{2r(/ p)/r (P)-r(2YP)/r(P)°n r(Jak-allp)/r(p)} 

                                                       k-1 
               =2. 'F (a; E) <0. 

Therefore the inequality Rr(Spa,-SpaISpE)<0 holds for suffici-
ently small p>0, which means the assertion of Proposition 6. 

     Proof of Proposition 7. We see by (3.10) and (4.3) that 

         F(a;En(2))=2(~)a-2a-A(ra;En(k))/2.a " (0<a:2,l<j<4) 

Therefore by using the property (6.4) and the approximation
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                                   J 7T/2 property of the definite integral sin axdx, we can show that, 
0 for each j (1,<j,<,4), the functions Fn- (a)=F (a; En (t)) (n>2) converge 

to a certain function F. (a) on (0 -.21-as n-*-. In fact, we have 

               (Vi)a{1-(Vi)a } (1<j<3), 
         F~ (a) 

-{ (Vi)a-1}2-{2ar((a+l)/2) -1} (j=4) .                                7 r a+ 

Since we have Fi (a) <O on (0,2] (1«<4) , we immediately obtain 

the equalities lima =0 (1<j44) and also the relations in (3.15). 
                     n->co nJ 

     Proof of Proposition 8. First we have.,.for .any ae (0, 2] , 

        2Rr (a, -a F En (2.) ) =,a (1n/ (n-l)) a { (n+l) /n- (V2 1) /n) )a,. 

a Therefore the inequality Rr (a, -a l En 1(Z))<0 holds if and only if 
a an<a42, which means the assertion (i). In order to prove the 

part (ii) we assume that r (t) eS is a r.v.f. (a) for some ae (an, 2]. 

Then we see by using the assertion (i) that 

         liTORr(Spa,-SpaISpEn(L))/r(p)=Rr (a,-al E (Q)) <0. 

a Therefore the inequality Rr(Spa,-SpajSpEn(R))<0 holds for suff-
iciently small p>0, which means the assertion (ii).
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      7. Additional results 

      In this section we shall be concerned with certain modifi-. 

cations of our problems stated in Section 1. Let (X r(t)) be 

an arbitrary G.r.f. on Rd. In (2], we have introduced a family 

of subsets of Rd defined as follows: For every a,beRd and every 

qeR, we set 

          CX(a,b;q)={xeRd; Pr (xla,b)=X(a) (l-q)/2+X(b) (l+q)/2}. 

it is interesting to see that the sets CX(a,b;q) and FX(xjF) 

have some properties in common. In particular, the increments 

X (x) -X (y) and X (a) -X (b) are mutually independent if and only if 

there exists qeR such that x,yeCX(a,b;q). It is obvious to see 

that CX(a,b;l)=FX(alb), CX(a,b;q)=CX(b,a;-q) and 

(7.1) CX(a,b;q)={xeRd; r(1x-aj)=r(jx-bj)+gr(la-bj)} 

                  ={xeRd; R
r(x,aI b)=r(~a-b~ ) (1-q)/2}. 

Therefore the set CX (a, b; q) proves to be a solid. of revolution: -. 

with axis containing a and b. For this reason,.we shall consider 

the set CX(a,b;q) under the following restriction: a,beH and 

q>0.. Note setting, for every r(t) eS and every q>O, 

          Dr={(u,v)cR2; u>O, v>0, r(~u-v~)<r(u)+gr(v)<r(u+v)}, 

we have the following results.
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     Theorem 4. Let (X,r(t)) be a G.r. f. on Rd, where r(t) eS. 

Suppose that Dr contains an interior point for some q>O. 
(i) For another G.r. f. (X1,r1 (t)) on Rd with ri (t) eS, the 

identity r
1 (t)=r(t) holds if and only if there exists q1>0 such 

that 

(7.2) CX(a,b;q)nHCCX (a,b;gl)nH for any a,beH. 

(ii) It holds that r(t)eL if and only if 

(7.3) CX (Stas tb; q)nH= (StCX (a, b; q) )nH for any a, beH and any 

a 

     In order to prove this theorem we shall employ the follow-

ing lemma. 

     Lemma 8. Let (X,r (t)) be a G. r f. on Rd, where r (t) eS. 

Suppose that Dr contains an interior point for some q>O. Then 
there exist open intervals I and J contained in (0,-), for which 

the following statement holds: For any (u,v)eIxJ and any a,beH 

satisfying la-b I=v, there exists x [u, v] eCX (a, b; q)nH such that 

jx[u,v]-bj=u. 

     Proof. We see by the assumption that there exist open in-

tervals I and J contained in (0,o) such that IxJCDr. Let us 
choose (u,v)cIxJ and a,beH (la-b(=v) arbitrarily. Then we have 

r (u) +qr (v) cIu v, where we set Iu v= [r (ju-v j) , r (u+v) ] . If xeH

t>0.
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runs over the circle with center b and radius u, the range of 

the function r(Ix-aj) coincides with the interval Iu v. It fo-

llows from the intermediate value theorem that there exists 

x[u,v]eH such that jx[u,v]-bj=u and r(jx[u,v]-aj)=r(u)+qr(v). 

In other words, we see by (7.1) that x [u, v] eCX (a, b; q) , which 

completes the proof. 

     Proof of Theorem 4. Let I and J be the open intervals stated 

in Lemma 8. Then, for any (u,v)eIxJ and any aetI (Ia{=v), there 

exists x [u, v ]eCX (a, o; q)()H such that lx [u, v ] (=u . In order to show 

the part (i), it suffices to prove the "if" part. To this end, 

setting f(x)=r 1 (r-1 (x)) for xe [O,r (-)) , we have only to prove 

that f (x)=x on [O,r (o)) . We can show by (7.1) and (7.2) the 

following two equations: For any (u,v)eIxJ and any aeH (Ial=v), 

, 

           j,q         fr(x[uvJ_aI)=r(u)+r(v) 
         lrI ((x(u,v]-a')=r1 (u)+glrl (v) . 

Then we obtain from these equations the following functional 

equation: 

         f (x+qy)=f (x)+qlf (y) for any (x,y) er(I)xr(J) . 

Thus we can easily show that f (x)=x on (0, r (-) ) in the same way 

as the proof of Theorem 1. In order to show the part (ii), it 

suffices to prove the "if" part. We see by (7.3) that
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          Stx[u,vIccX(Sta,Sto;q)()H for any (t,u,v)e(0,-)xIxJ. 

Therefore, setting h (u, v) =r-1 (r (u) +qr (v)) for (u, v) e IxJ, we obtain 

by (7.1) the following functional equation: 

          r(th(u,v))=r(tu)+gr(ty) for any (t,u,v)e(0,-)xIxJ. 

Consequently we obtain the desired expression r(t)=e (0<a<2) 

by using Lemma 7. 

     Finally we shall give a result about the existence of int-

erior points in Dr. 

     Proposition 9. Assume that r(t)eS and q>O. In order that 

there exists an interior point in Dr, it is sufficient that the 

pair {r(t),q} satisfies one of the following four conditions: 

(i) 0<q<1 and r(t) is arbitrary; 

(ii) q31 and r (t) is ;strictly convex on (0, t0) with qr' (+0) < 

r' (t0/2) for some t0 (0<t0<oo); 

(iii) q.l and r (t) is strictly convex on (t0, co) with qr' (+0) < 

r'(-) for some t0 (0<t0<-), where we set F' (+0)= 0r' (t); and 

(iv) 4=1, and r(t)=t. 

     Proof. Because of the continuity of r(t), it suffices to 

prove that there exist u>O and v>O such that 

(7.4) r(~u-vI)<r(u)+qr(v)<r(u+v) .
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 Let us consider the case (i). For any v>O, we have 0<(1-q)r(v) 

 <r(v). Then there exists u such that O<u<v and r(u)=(l-q)r(v) 

 or equivalently r (v) =r (u) +qr (v) , from which we obtain (7.4). 

 By the way, the first inequality of (7.4) holds for each q>.l, 

 u>O and v>O, since we have r(lu-vl)<max{r(u),r(v) }<r(u)+qr(v) . 

 Therefore, in the case q>,l, we have only to show the second in-

 equality of (7.4). We now proceed to the proof of the case (ii). 

 Noting that r'(t) is strictly increasing on (O,to) and qr'(+O) 

 <r' (to/2) , we can choose v satisfying O<v<to/2 and r' (+0) <qr' (v) 

 <r'(to/2). Then there exists u such that O<u<to/2 and r'(u)= 

 qr' (v) . Therefore we have qr' (t) <qr' (v)=r' (u) <r' (u+t) for any 

 tE (0, v) . It follows that 

v 

 (7.5) r(u+v)-r(u)-qr(v)=J {r' (u+t)-qr' (t) }dt>O, 

0 

 which completes the proof of the case (ii). In the case (iii), 

 we can choose u satisfying u>t0 and qr'(+0)<r'(u),' Then there 

 exists v>0 such that the inequalities qr'(t)<r'(u)<r'(u+t) hold 

 on (0,v). Thus we again obtain (7.5), which completes the proof 

 of the case (iii). The proof of the case (iv) is obvious, since 

we have Dr=(0,~)x(0,~) ,
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