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Abstract

The present dissertation explores asymptotic quantum state estimation theory and its ap-
plications. The first half of the dissertation is devoted to investigating the ultimate limit of
estimation precision in an asymptotic framework, assuming that any collective measurements
are available. To this end, we extend the theory of weak local asymptotic normality, an essential
ingredient in the classical asymptotic statistics, to a quantum regime. Meanwhile, it should
be noticed that realizing collective measurements over a number of quantum systems is quite
demanding, or even infeasible, in the current state of the art. In view of applications, therefore,
it is also important to elaborate the estimation theory in which we make no use of quantum
correlation, and the latter half of the dissertation is devoted to problems in this direction.

Let H be a finite dimensional Hilbert space that represents the physical system of interest.
We say a pair of density operators ρ and σ on H are mutually absolutely continuous, ρ ∼ σ in
symbols, if there exist a Hermitian operator L (σ|ρ) that satisfies

σ = e
1
2L(σ|ρ)ρ e

1
2L(σ|ρ).

We shall call such a Hermitian operator L (σ|ρ) a quantum log-likelihood ratio. The following
theorem, one of the main results in the dissertation, generalizes the theory of local asymptotic
normality (LAN) and Le Cam’s third lemma in classical statistics [Theorem 2.9]:

Theorem. Given a sequence H(n) of finite dimensional Hilbert spaces, let

S(n) =
{
ρ
(n)
θ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model on H(n), where ρ

(n)
θ is a parametric family of density operators

and Θ is an open set. Let X(n) = (X
(n)
1 , . . . , X

(n)
r ) be a list of observables on H(n). Fix a point

θ0 ∈ Θ. Assume S(n) and X(n) satisfy the following conditions:

1. for any θ ∈ Θ and n ∈ N, ρ(n)θ is mutually absolutely continuous to ρ
(n)
θ0

,

2. there exist a list ∆(n) = (∆
(n)
1 , . . . , ∆

(n)
d ) of observables on each H(n) that satisfies((

X(n)

∆(n)

)
, ρ

(n)
θ0

)
⇝
q
N

((
0
0

)
,

(
Σ τ
τ∗ J

))
,

where Σ and J are Hermitian positive semidefinite matrices of size r× r and d×d, respec-
tively, with Re J > 0, and τ is a complex matrix of size r × d. (The arrow ⇝

q
denotes a

quantum extension of convergence in law, and N(∗, ∗) denotes a quantum Gaussian state.)

3. quantum log-likelihood ratio L(n)
h := L

(
ρ
(n)

θ0+h/
√
n

∣∣∣ρ(n)θ0

)
is expanded in h ∈ Rd as

L(n)
h = hi∆

(n)
i − 1

2
(Jijh

ihj)I(n) + o

((
X(n)

∆(n)

)
, ρ

(n)
θ0

)
.

(The term o(∗, ∗) denotes an infinitesimal term defined in Section 2.2.)

It then follows that (
X(n), ρ

(n)

θ0+h/
√
n

)
⇝
q
N((Re τ)h, Σ)

for any h ∈ Rd.

This theorem is successfully applied to the proof of asymptotic achievability of the Holevo
bound for the local shift parameter h ∈ Rd [Theorem 2.12]:
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Theorem. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model on a finite dimensional Hilbert

space H, and fix a point θ0 ∈ Θ. Suppose that ρθ ∼ ρθ0 for all θ ∈ Θ, and that the quantum
log-likelihood ratio Lh := L (ρθ0+h|ρθ0) is differentiable in h around h = 0 and twice differentiable
at h = 0. For any countable dense subset D of Rd and any weight matrix G (d× d positive real

matrix), there exist a sequence M (n) of estimators on the model
{
ρ⊗n
θ0+h/

√
n
; h ∈ Rd

}
that enjoys

lim
n→∞

E
(n)
h [M (n)] = h

and
lim

n→∞
TrGV

(n)
h [M (n)] = Cθ0 (ρθ, G)

for every h ∈ D. Here Cθ0 (ρθ, G) is the Holevo bound at θ0.

This theorem clarifies the importance of the Holevo bound. However, the use of collective
measurements, which is essential in achieving the bound, is beyond the reach of our current
technology. In the latter half of the dissertation, therefore, we proceed to asymptotic quan-
tum estimation schemes based on separable measurements. Among others, the efficiency of the
quantum state tomography, a standard method widely used by experimental physicists, is scru-
tinized from the viewpoint of the quantum parameter estimation theory in which the trace of the
weighted covariance matrix is to be minimized. The following theorem asserts that the quantum
tomography is optimal if and only if a physically unnatural weight is adopted [Theorem 3.3]:

Theorem. Let S := {τx | x = (x1, x2, x3) ∈ X} be the set of strictly positive density operators
on H = C2 parametrized by the Stokes parameters x ∈ X := {x ∈ R3 | (x1)2+(x2)2+(x3)2 < 1}
as

τx :=
1

2
(I + x1σ1 + x2σ2 + x3σ3),

where σ1, σ2, σ3 are the Pauli matrices. Suppose we have an unknown quantum state τ = τx ∈ S.
Tomography is optimal if and only if the weight Hx is proportional to the following special one:

H(T )
x :=


1

1−(x1)2 − (x1)(x2)
(1−(x1)2)(1−(x2)2) − (x3)(x1)

(1−(x3)2)(1−(x1)2)

− (x1)(x2)
(1−(x1)2)(1−(x2)2)

1
1−(x2)2 − (x2)(x3)

(1−(x2)2)(1−(x3)2)

− (x3)(x1)
(1−(x3)2)(1−(x1)2) − (x2)(x3)

(1−(x2)2)(1−(x3)2)
1

1−(x3)2

 .

We also report the first experimental demonstration of an adaptive quantum state estimation
(AQSE). The angle of linear polarization of single photons, or the phase parameter between the
right and the left circularly polarization, is estimated using AQSE, and the strong consistency
and asymptotic efficiency are experimentally verified.
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Chapter 1

Introduction

Quantum estimation theory was pioneered by Helstrom in late 1960s [20, 21]. He advocated
an optical communication theory based on quantum physics and mathematical statistics, and
studied a parameter estimation problem of optical signals. He derived a quantum counterpart
of the logarithmic derivative called the symmetric logarithmic derivative (SLD) and a quantum
extension of the Cramér-Rao inequality called the SLD Cramér-Rao inequality. In 1970s, Holevo,
Yuen and Lax studied several theoretically important models [50, 24]. Especially, Yuen and
Lax solved the simultaneous estimation problem of the complex amplitudes of coherent signals
under Gaussian thermal noise. In that work, they introduced the right logarithmic derivative
(RLD) and the RLD Cramér-Rao inequality to solve the two-dimensional parameter estimation
problem for the first time. Today, their result are practically used as a quantum heterodyne
measurement. In 1990s, Fujiwara and Matsumoto studied the estimation theory of pure state
models intensively and revealed its relation with Berry-Uhlmann’s geometrical phase [6, 7, 8].
After that, Matsumoto proved that the Holevo bound can be achievable for any pure state
model [35] (see Section 2.C for a simple proof). Furthermore, qubit state estimation problem
without invoking collective measurement was studied by Nagaoka (two-dimensional case [37]) and
later by Hayashi (three-dimensional case [17]). Gill and Massar also treated the same problems
independently from an entirely different point of view [13] (see Section 3.A for a simplified
argument). In 2000s, some results about asymptotic theories of quantum state estimations
appeared. Fujiwara proved the strong consistency and asymptotic efficiency of an adaptive
quantum state estimation [9]. Hayashi and Matsumoto [19] showed the asymptotic achievability
of the Holevo bound for a quantum statistical model on a Hilbert space H ≃ C2. Following
their work, Guţă and Kahn [15, 31] developed a theory of (strong) quantum local asymptotic
normality for a restricted class of models.

The purpose of the present dissertation is to explore a new asymptotic quantum state esti-
mation theory and its applications. Let S =

{
ρθ ∈ S(H) ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical

model comprizing smoothly parametrized quantum state ρθ, where S(H) is the set of quantum
states (density operators) on a Hilbert space H. Our purpose is to estimate the unknown pa-
rameter θ as efficient as possible. An estimator M̂ for the parameter θ of this model, given by a
positive-operator valued measure (POVM) on Θ, is called unbiased if

Eθ[M̂ ] = θ (1.1)

for all θ ∈ Θ, where Eθ[·] denotes the expectation with respect to ρθ. An estimator M̂ is called
locally unbiased [24] at θ0 ∈ Θ if the condition (1.1) is satisfied around θ0 up to the first order
of the Taylor expansion. A locally unbiased estimator M̂ at θ0 satisfies the following inequality:

Vθ0 [M̂ ] ≥ J
(S)−1

θ0
, (1.2)

where Vθ0 [·] denotes the covariance matrix with respect to ρθ0 , and J
(S)
θ0

is the quantum Fisher

information matrix at θ0 given by J
(S)
θ0

:= [ReTr ρθ0LiLj ]1≤i,j≤d , where Li is a ith SLD defined

7



8 CHAPTER 1. INTRODUCTION

by the self-adjoint operator satisfying the equation

∂

∂θi
ρθ

∣∣∣∣
θ=θ0

=
1

2
(Liρθ0 + ρθ0Li) .

The optimal estimator achieving the SLD Cramér-Rao lower bound J
(S)−1

θ0
always exits when θ is

one-dimensional, while it is not achievable in general because the optimal measurements for each
coordinate θi become incompatible. Put differently, the inequality (1.2) cannot be saturated in
general because of the non-commutativity of the SLDs. To avoid this difficulty, we often adopt
an alternative strategy to seek the estimator which minimizes TrGVθ0 [M̂ ], where G is a given
d× d real positive definite matrix called a weight [24, 21]. The inequality

TrGVθ0 [M̂ ] ≥ Cθ0 (ρθ, G) ≥ TrGJ
(S)−1

θ0
(1.3)

is more informative than (1.2), where the quantity Cθ0 (ρθ, G) is the Holevo bound [24] at θ0
defined by

Cθ0 (ρθ, G) := min
V,B

{TrGV ; V is a real matrix such that V ≥ Z(B), Zij(B) = Tr ρθ0BjBi,

B1, . . . , Bd are Hermitian operators on H such that ReTr ρθ0LiBj = δij}. (1.4)

For any n ∈ N, the Holevo bound for the nth i.i.d. extention model S(n) :=

{
ρ⊗n
θ

∣∣∣∣ θ ∈ Θ ⊂ Rd

}
is 1

nCθ0 (ρθ, G), and

nTrGV
(n)
θ0

[M̂ (n)] ≥ Cθ0 (ρθ, G) , (1.5)

where V
(n)
θ0

[·] denotes the covariance matrix respect to ρ⊗n
θ0

, and M̂ (n) is a collective estimator

of ρ⊗n
θ which is locally unbiased. It is expected that the lower bound in (1.5) is achievable

asymptotically because the sequence of models
{
ρ⊗n
θ0+h/

√
n
; h ∈ Rd

}
with shrinking parameter

h “converges” to a quantum Gaussian shift model in some sence. This property is called quantum
local asymptotic normality (QLAN). Earlier research about QLAN is given by Guţă and Kahn

[15, 31]. They proved that
{
ρ⊗n
θ0+h/

√
n
; h ∈ Rd

}
and a quantum Gaussian shift model can be

translated by quantum channels to each other asymptotically. Although their result is powerful,
their QLAN has several drawbacks. It can be applicable only when a parametrization θ of
S(H) takes a special form. Furthermore, it does not work if the reference state ρθ0 has a
multiplicity of eigenvalues. Here we aim at developing QLAN theory applicable to any quantum
statistical model satisfying a mild smoothness condition. Our approach is based on a new
quantum extension of the log-likelihood ratio.

The optimal estimators appeared in QLAN theory are necessarily collective ones. It is,
however, difficult to implement collective measurements over a number of constituent systems.
We therefore confine our attention to separable estimators in the latter half of the dissertation.
We prove that the quantum state tomography, one of the standard technique widely used by
experimental physicists, is in general much less efficient than the optimal estimator. Note that the
optimal estimator depends on the true value θ0 of the parameter. In such a case, we necessarily
invoke an adaptive estimation scheme [9]. We demonstrate that such an adaptive estimation
scheme can be realized by a state-of-the-art technique in quantum optics.

The dissertation is organized as follows. In Chapter 2, we develop a theory of QLAN based
on a new quantum log-likelihood ratio, and prove that the Holevo bound is asymptotically
achievable. In Chapter 3, the efficiency of tomography is studied in depth, to conclude that the
tomography is optimal if and only if a physically unnatural weight is adopted. We also give
some numerical simulations to compare the asymptotic performance of the tomography and the
optimal adaptive estimation schemes. In Chapter 4, experimental demonstration of an adaptive
quantum state estimation (AQSE) is reported. The angle of linear polarization of single photons,
or the phase parameter between the right and the left circularly polarization, is estimated using
AQSE, and the strong consistency and asymptotic efficiency are experimentally verified.



Chapter 2

Quantum Local Asymptotic
Normality Based on a New
Quantum Likelihood Ratio

Abstract

We develop a theory of local asymptotic normality in a quantum regime based on a novel quantum
analogue of the log-likelihood ratio. This formulation is applicable to any quantum statistical
model satisfying a mild smoothness condition. As an application, we prove the asymptotic
achievability of the Holevo bound for the local shift parameter.

2.1 Motivation

Given a (classical) statistical model S = {pθ ; θ ∈ Θ} on a probability space (Ω,F , µ) indexed
by a parameter θ that ranges over an open subset Θ of Rd, let us introduce a local parameter
h :=

√
n(θ−θ0) around a fixed θ0 ∈ Θ. If the parametrization θ 7→ pθ is sufficiently smooth, it is

known that the statistical properties of the model
{
p⊗n
θ0+h/

√
n
; h ∈ Rd

}
is similar to that of the

Gaussian shift model
{
N(h, J−1

θ0
) ; h ∈ Rd

}
for large n, where p⊗n

θ is the nth i.i.d. extension of
pθ, and Jθ0 is the Fisher information matrix of the model pθ at θ0. This property is called the
local asymptotic normality of the model S [47].

More generally, a sequence
{
p
(n)
θ ; θ ∈ Θ ⊂ Rd

}
of statistical models on (Ω(n),F (n), µ(n)) is

called locally asymptotically normal (LAN) at θ0 ∈ Θ if there exist a d× d positive matrix J and

random vectors ∆(n) = (∆
(n)
1 , . . . , ∆

(n)
d ) such that ∆(n) 0⇝ N(0, J) and

log
p
(n)

θ0+h/
√
n

p
(n)
θ0

= hi∆
(n)
i − 1

2
hihjJij + opθ0

(1)

for all h ∈ Rd. Here the arrow
h⇝ stands for the convergence in distribution under p

(n)

θ0+h/
√
n
, the

remainder term opθ0
(1) converges in probability to zero under p

(n)
θ0

, and Einstein’s summation
convention is used. The above expansion is similar in form to the log-likelihood ratio of the
Gaussian shift model:

log
dN(h, J−1)

dN(0, J−1)
(X1, . . . , Xd) = hi(XjJij)−

1

2
hihjJij .

This is the underlying mechanism behind the statistical similarities between models
{
p
(n)

θ0+h/
√
n
; h ∈ Rd

}
and

{
N(h, J−1) ; h ∈ Rd

}
.

9



10 CHAPTER 2. QLAN BASED ON A NEW QUANTUM LIKELIHOOD RATIO

In order to put the similarities to practical use, one needs some mathematical devices. In
general, a statistical theory comprises two parts. One is to prove the existence of a statistic that
possesses a certain desired property (direct part), and the other is to prove the non-existence of a
statistic that exceeds that property (converse part). In the problem of asymptotic efficiency, for
example, the converse part, the impossibility to do asymptotically better than the best which can
be done in the limit situation, is ensured by the following proposition, which is usually referred
to as “Le Cam’s third lemma” [47].

Proposition 2.1. Suppose
{
p
(n)
θ ; θ ∈ Θ ⊂ Rd

}
is LAN at θ0 ∈ Θ, with ∆(n) and J being as

above, and let X(n) = (X
(n)
1 , . . . , X

(n)
r ) be a sequence of random vectors. If the joint distribution

of X(n) and ∆(n) converges to a Gaussian distribution, in that(
X(n)

∆(n)

)
0⇝ N

((
0
0

)
,

(
Σ τ
tτ J

))
,

then X(n) h⇝ N(τh,Σ) for all h ∈ Rd.

Now, it appears from this lemma that it already tells us something about the direct problem.

In fact, by putting X(n)j :=
∑d

k=1

[
J−1

]jk
∆

(n)
k , we have(

X(n)

∆(n)

)
0⇝ N

((
0
0

)
,

(
J−1 I
I J

))
,

so that X(n) h⇝ N(h, J−1) follows from Proposition 2.1. This proves the existence of an asymp-
totically efficient estimator for h. In the real world however, we do not know θ0 (obviously!).
Thus the existence of an asymptotically optimal estimator for h does not translate into the
existence of an asymptotically optimal estimator of θ. In fact, the usual way that Le Cam’s
third lemma is used in the subsequent analysis is in order to prove the so-called representation
theorem, [47, Theorem 7.10]. This theorem can be used to tell us in several precise mathematical
senses that no estimator can asymptotically do better than what can be achieved in the limiting
Gaussian model.

For instance, Van der Vaart’s version of the representation theorem leads to the asymptotic
minimax theorem, telling us that the worst behaviour of an estimator as θ varies in a shrinking (1
over root n) neighbourhood of θ0 cannot improve on what we expect from the limiting problem.
This theorem applies to all possible estimators, but only discusses their worst behaviour in a
neighbourhood of θ. Another option is to use the representation theorem to derive the convo-
lution theorem, which tells us that regular estimators (estimators whose asymptotic behaviour
in a small neighbourhood of θ is more or less stable as the parameter varies) have a limiting
distribution which in a very strong sense is more disperse than the optimal limiting distribution
which we expect from the limiting statistical problem.

This chapter addresses a quantum extension of LAN (abbreviated as QLAN). As in the clas-
sical statistics, one of the important subjects of QLAN is to show the existence of an estimator
(direct part) that enjoys certain desired properties. Some earlier works of asymptotic quan-
tum parameter estimation theory revealed the asymptotic achievability of the Holevo bound, a
quantum extension of the Cramér-Rao type bound (cf., Appendices 2.A, 2.B). Using a group
representation theoretical method, Hayashi and Matsumoto [19] showed that the Holevo bound
for the quantum statistical model S(C2) = {ρθ ; θ ∈ Θ} comprising the totality of density oper-
ators on the Hilbert space H ≃ C2 is asymptotically achievable at a given single point θ0 ∈ Θ.
Following their work, Guţă and Kahn [15, 31] developed a theory of strong QLAN, and proved
that the Holevo bound is asymptotically uniformly achievable around a given θ0 ∈ Θ for the
quantum statistical model S(CD) = {ρθ ; θ ∈ Θ} comprising the totality of density operators

on the finite dimensional Hilbert space H ≃ CD. They proved that
{
ρ⊗n
h/

√
n
; h ∈ Rd

}
and a

quantum Gaussian shift model can be translated by quantum channels to each other asymp-
totically. Although their result is powerful, their QLAN has several drawbacks. First of all,
their method works only for i.i.d. extension of the totality S(H) of the quantum states on the
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Hilbert space H, and is not applicable to generic submodels of S(H). Moreover, it makes use
of a special parametrization θ of S(H), in which the change of eigenvalues and eigenvectors are
treated as essential. Furthermore, it does not work if the reference state ρθ0 has a multiplicity
of eigenvalues. Hayashi and Matsumoto’s formulation [19] also suffers from the same problems.

The purpose of the present chapter is to develop a theory of (weak) QLAN based on a new
quantum extension of the log-likelihood ratio. This formulation is applicable to any quantum
statistical model satisfying a mild smoothness condition, and is free from artificial setups such
as the use of a special coordinate system and/or non-degeneracy of eigenvalues of the reference
state at which QLAN works. We also prove asymptotic achievability of the Holevo bound for
the local shift parameter h that belong to a dense subset of Rd.

This chapter is organized as follows. The main results are summarized in Section 2.2. We
first introduce a novel type of quantum log-likelihood ratio, and define a quantum extension of
local asymptotic normality in a quite analogous way to the classical LAN. We then explore some
basic properties of QLAN, including a sufficient condition for an i.i.d. model to be QLAN, and
a quantum extension of Le Cam’s third lemma. Proofs of those results are provided in Section
2.3. Section 2.4 is devoted to application of QLAN, including the asymptotic achievability of the
Holevo bound and asymptotic estimation theory for some typical qubit models. For the reader’s
convenience, a brief account of quantum estimation theory are presented in appendices A-D.
Those prerequisites are used throughout this chapter.

It is also important to notice the limits of this work, which means that there are many open
problems left to study in the future. In the classical case, the theory of LAN builds, of course, on
the rich theory of convergence in distribution, as studied in probability theory. In the quantum
case, there still does not exist a full parallel theory. Some of the most useful lemmas in the
classical theory simply are not true when translated in the quantum domain. For instance, in
the classical case, we know that if the sequence of random variables Xn converges in distribution
to a random variable X, and at the same time the sequence Yn converges in probability to a
constant c, then this implies joint convergence in distribution of (Xn, Yn) to the pair (X, c).
The obvious analogue of this in the quantum domain is simply untrue. In fact, there is not
even a general theory of convergence in distribution at all: there is only a theory of convergence
in distribution towards quantum Gaussian limits. Unfortunately, even in this special case the
natural analogue of the just mentioned result simply fails to be true.

Because of these obstructions we are not at present able to follow the standard route from
Le Cam’s third lemma to the representation theorem, and from there to asymptotic minimax or
convolution theorems.

However we believe that this chapter presents some notable steps in this direction. Moreover,
just as with Le Cam’s third lemma, one is able to use the lemma to construct what can be
conjectured to be asymptotically optimal measurement and estimation schemes. We make some
more remarks on these possibilities later in this chapter.

2.2 Main results

Definition 2.2 (Quantum log-likelihood ratio). We say a pair of density operators ρ and σ on
a finite dimensional Hilbert space H are mutually absolutely continuous, ρ ∼ σ in symbols, if
there exist a Hermitian operator L that satisfies

σ = e
1
2Lρ e

1
2L.

We shall call such a Hermitian operator L a quantum log-likelihood ratio. When the reference
states ρ and σ need to be specified, L shall be denoted by L (σ|ρ), so that

σ = e
1
2L(σ|ρ)ρ e

1
2L(σ|ρ).

We use the convention that L (ρ|ρ) = 0.

Example 2.3. Faithful states are always mutually absolutely continuous. In fact, given ρ > 0
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and σ > 0, they are related as σ = e
1
2L(σ|ρ)ρe

1
2L(σ|ρ), where

L (σ|ρ) = 2 log

(√
ρ−1

√√
ρσ

√
ρ
√
ρ−1

)
= 2 log

(
√
σ

(√√
σρ

√
σ

)−1 √
σ

)
.

Note that Tr ρ e
1
2L(σ|ρ) is identical to the fidelity between ρ and σ, and e

1
2L(σ|ρ) is nothing but

the operator geometric mean σ#ρ−1, where A#B := A1/2
(
A−1/2BA−1/2

)1/2
A1/2 for positive

operators A,B.

Example 2.4. Pure states ρ = |ψ⟩ ⟨ψ| and σ = |ξ⟩ ⟨ξ| are mutually absolutely continuous if and
only if ⟨ξ|ψ⟩ ̸= 0.

Proof. Suppose first that ρ ∼ σ. Then

|⟨ξ|ψ⟩|2 = Tr ρσ = Tr |ψ⟩ ⟨ψ| e 1
2L(σ|ρ) |ψ⟩ ⟨ψ| e 1

2L(σ|ρ) =
∣∣∣⟨ψ| e 1

2L(σ|ρ) |ψ⟩
∣∣∣2 > 0.

Suppose next that ⟨ξ|ψ⟩ ̸= 0. Then

R := I +
1

|⟨ξ|ψ⟩|
|ξ⟩ ⟨ξ| − |ψ⟩ ⟨ψ|

is positive definite, and L (σ|ρ) := 2 logR satisfies

e
1
2L(σ|ρ) |ψ⟩ = R |ψ⟩ = ⟨ξ|ψ⟩

|⟨ξ|ψ⟩|
|ξ⟩ ,

showing that ρ ∼ σ. Note that Tr ρ e
1
2L(σ|ρ) is the fidelity again.

Given a d× d real skew-symmetric matrix S, let CCR (S) be the CCR algebra defined by

e
√
−1Xie

√
−1Xj = e

√
−1Sije

√
−1(Xi+Xj) (1 ≤ i, j ≤ d),

(see [34, 44, 28, 24]). We call X = (X1, . . . , Xd) the basic canonical observables of CCR (S). A

state ϕ on CCR (S) is characterized by the characteristic function Fξ{ϕ} := ϕ(e
√
−1ξiXi), where

ξ = (ξi)di=1 ∈ Rd and Einstein’s summation convention is used. A state ϕ on CCR (S) is called
a quantum Gaussian state, denoted by ϕ ∼ N(h, J), if the characteristic function takes the form

Fξ{ϕ} = e
√
−1ξihi− 1

2 ξ
iξjVij ,

where h = (hi)
d
i=1 ∈ Rd and V = (Vij) is a real symmetric matrix such that the Hermitian

matrix J := V +
√
−1S is positive semidefinite. When the canonical observables X need to be

specified, we also use the notation (X,ϕ) ∼ N(h, J).
We will discuss relationships between a quantum Gaussian state ϕ on a CCR and a state on

another algebra. In such a case, we need to use the quasi-characteristic function

ϕ

(
r∏

t=1

e
√
−1ξitXi

)
= exp

(
r∑

t=1

(√
−1ξithi −

1

2
ξitξ

j
tJji

)
−

r∑
t=1

r∑
s=t+1

ξitξ
j
sJji

)
, (2.1)

of a quantum Gaussian state, where (X,ϕ) ∼ N(h, J) and {ξt}rt=1 is a finite subset of Cd [28].

Given a sequenceH(n), n ∈ N, of finite dimensional Hilbert spaces, letX(n) = (X
(n)
1 , . . . , X

(n)
d )

and ρ(n) be a list of observables and a density operator on each H(n). We say the sequence(
X(n), ρ(n)

)
converges in law to a quantum Gaussian state N(h, J), denoted as (X(n), ρ(n)) ⇝

q

N(h, J), if

lim
n→∞

Tr ρ(n)

(
r∏

t=1

e
√
−1ξitX

(n)
i

)
= ϕ

(
r∏

t=1

e
√
−1ξitXi

)
for any finite subset {ξt}rt=1 of Cd, where (X,ϕ) ∼ N(h, J). Here we do not intend to introduce
the notion of “quantum convergence in law” in general. We use this notion only for quantum
Gaussian states in the sense of convergence of quasi-characteristic function.

The following is a version of the quantum central limit theorem (see [28], for example).
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Proposition 2.5 (Quantum central limit theorem). Let Ai (1 ≤ i ≤ d) and ρ be observables
and a state on a finite dimensional Hilbert space H such that Tr ρAi = 0, and let

X
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗Ai ⊗ I⊗(n−k).

Then (X(n), ρ⊗n) ⇝
q
N(0, J), where J is the Hermitian matrix whose (i, j)th entry is given by

Jij = Tr ρAjAi.

For later convenience, we introduce the notion of an “infinitesimal” object relative to the

convergence (X(n), ρ(n)) ⇝
q
N(0, J) as follows. Given a list X(n) = (X

(n)
1 , . . . , X

(n)
d ) of ob-

servables and a state ρ(n) on each H(n) that satisfy (X(n), ρ(n)) ⇝
q
N(0, J) ∼ (X,ϕ), we say a

sequence R(n) of observables, each being defined on H(n), is infinitesimal relative to the conver-
gence (X(n), ρ(n))⇝

q
N(0, J) if it satisfies

lim
n→∞

Tr ρ(n)

(
r∏

t=1

e
√
−1

(
ξitX

(n)
i +ηtR

(n)
))

= ϕ

(
r∏

t=1

e
√
−1ξitXi

)
(2.2)

for any finite subset of {ξt}rt=1 of Cd and any finite subset {ηt}rt=1 of C. This is equivalent to
saying that ((

X(n)

R(n)

)
, ρ(n)

)
⇝
q
N

((
0
0

)
,

(
J 0
0 0

))
,

and is much stronger a requirement than

(R(n), ρ(n))⇝
q
N(0, 0).

An infinitesimal object R(n) relative to (X(n), ρ(n))⇝
q
N(0, J) will be denoted as o(X(n), ρ(n)).

The following is in essence a simple extension of Proposition 2.5, but will turn out to be
useful in applications.

Lemma 2.6. In addition to assumptions of Proposition 2.5, let P (n), n ∈ N, be a sequence of
observables on H, and let

R(n) :=
1√
n

n∑
k=1

I⊗(k−1) ⊗ P (n)⊗ I⊗(n−k).

If limn→∞ P (n) = 0 and limn→∞
√
nTr ρP (n) = 0, then R(n) = o(X(n), ρ⊗n).

We are now ready to extend the notion of local asymptotic normality to a quantum regime.

Definition 2.7 (QLAN). Given a sequence H(n) of finite dimensional Hilbert spaces, let S(n) ={
ρ
(n)
θ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model on H(n), where ρ

(n)
θ is a parametric family

of density operators and Θ is an open set. We say S(n) is quantum locally asymptotically normal
(QLAN) at θ0 ∈ Θ if the following conditions are satisfied:

1. for any θ ∈ Θ and n ∈ N, ρ(n)θ is mutually absolutely continuous to ρ
(n)
θ0

,

2. there exist a list ∆(n) = (∆
(n)
1 , . . . , ∆

(n)
d ) of observables on each H(n) that satisfies(

∆(n), ρ
(n)
θ0

)
⇝
q
N(0, J),

where J is a d× d Hermitian positive semidefinite matrix with ReJ > 0,
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3. quantum log-likelihood ratio L(n)
h := L

(
ρ
(n)

θ0+h/
√
n

∣∣∣ρ(n)θ0

)
is expanded in h ∈ Rd as

L(n)
h = hi∆

(n)
i − 1

2
(Jijh

ihj)I(n) + o(∆(n), ρ
(n)
θ0

), (2.3)

where I(n) is the identity operator on H(n).

It is also possible to extend Le Cam’s third lemma (Proposition 2.1) to a quantum regime.
To this end, however, we need a device to handle the infinitesimal residual term in (2.3) in a
more elaborate way.

Definition 2.8. Let S(n) =
{
ρ
(n)
θ ; θ ∈ Θ ⊂ Rd

}
be as in Definition 2.7, and let X(n) =

(X
(n)
1 , . . . , X

(n)
r ) be a list of observables on H(n). We say the pair (S(n), X(n)) is jointly QLAN

at θ0 ∈ Θ if the following conditions are satisfied:

1. for any θ ∈ Θ and n ∈ N, ρ(n)θ is mutually absolutely continuous to ρ
(n)
θ0

,

2. there exist a list ∆(n) = (∆
(n)
1 , . . . , ∆

(n)
d ) of observables on each H(n) that satisfies((

X(n)

∆(n)

)
, ρ

(n)
θ0

)
⇝
q
N

((
0
0

)
,

(
Σ τ
τ∗ J

))
, (2.4)

where Σ and J are Hermitian positive semidefinite matrices of size r× r and d× d, respec-
tively, with Re J > 0, and τ is a complex matrix of size r × d.

3. quantum log-likelihood ratio L(n)
h := L

(
ρ
(n)

θ0+h/
√
n

∣∣∣ρ(n)θ0

)
is expanded in h ∈ Rd as

L(n)
h = hi∆

(n)
i − 1

2
(Jijh

ihj)I(n) + o

((
X(n)

∆(n)

)
, ρ

(n)
θ0

)
. (2.5)

With Definition 2.8, we can state a quantum extension of Le Cam’s third lemma as follows.

Theorem 2.9. Let S(n) and X(n) be as in Definition 2.8. If (ρ
(n)
θ , X(n)) is jointly QLAN at

θ0 ∈ Θ, then (
X(n), ρ

(n)

θ0+h/
√
n

)
⇝
q
N((Re τ)h, Σ)

for any h ∈ Rd.

In applications, we often handle i.i.d. extensions. In classical statistics, a sequence of i.i.d.
extensions of a model is LAN if the log-likelihood ratio is twice differentiable [47]. Quite analo-
gously, we can prove that a sequence of i.i.d. extensions of a quantum statistical model is QLAN
if the quantum log-likelihood ratio is twice differentiable.

Theorem 2.10. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model on a finite dimensional

Hilbert space H satisfying ρθ ∼ ρθ0 for all θ ∈ Θ, where θ0 ∈ Θ is an arbitrarily fixed point.
If Lh := L (ρθ0+h|ρθ0) is differentiable around h = 0 and twice differentiable at h = 0, then{
ρ⊗n
θ ; θ ∈ Θ ⊂ Rd

}
is QLAN at θ0: that is, ρ⊗n

θ ∼ ρ⊗n
θ0

, and

∆
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗ Li ⊗ I⊗(n−k)

and Jij := Tr ρθ0LjLi, with Li being the ith symmetric logarithmic derivative at θ0 ∈ Θ, satisfy
conditions (ii) (iii) in Definition 2.7.

By combining Theorem 2.10 with Theorem 2.9, we obtain the following.
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Corollary 2.11. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model on H satisfying ρθ ∼ ρθ0

for all θ ∈ Θ, where θ0 ∈ Θ is an arbitrarily fixed point. Further, let {Bi}1≤i≤r be observables on
H satisfying Tr ρθ0Bi = 0 for i = 1, . . . , r. If Lh := L (ρθ0+h|ρθ0) is differentiable around h = 0
and twice differentiable at h = 0, then the pair

({
ρ⊗n
θ

}
, X(n)

)
of i.i.d. extension model

{
ρ⊗n
θ

}
and the list X(n) = {X(n)

i }1≤i≤r of observables defined by

X
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗Bi ⊗ I⊗(n−k)

is jointly QLAN at θ0, and (
X(n), ρ⊗n

θ0+h/
√
n

)
⇝
q
N((Re τ)h,Σ)

for any h ∈ Rd, where Σ is the r × r positive semidefinite matrix defined by Σij = Tr ρθ0BjBi

and τ is the r × d matrix defined by τij = Tr ρθ0LjBi with Li being the ith SLD at θ0.

As in the classical case, Corollary 2.11 prompts us to expect that any estimator for a
quantum Gaussian shift model

{
N((Re τ)h,Σ) ; h ∈ Rd

}
could be realized asymptotically on{

ρ⊗n
θ0+h/

√
n
; h ∈ Rd

}
. This program will be partly demonstrated in Section 2.4 in the form of

achievability of the Holevo bound.

2.3 Proofs of main theorems

2.3.1 Proof of Lemma 2.6

We shall prove (2.2) for {ξt}rt=1 ⊂ Cd and {ηt}rt=1 ⊂ C.

Tr ρ⊗n

(
r∏

t=1

e
√
−1

(
ξitX

(n)
i +ηtR

(n)
))

= Tr ρ⊗n

[
r∏

t=1

exp

{√
−1√
n

n∑
k=1

I⊗(k−1) ⊗
(
ξitAi + ηtP (n)

)
⊗ I⊗(n−k)

}]

= Tr ρ⊗n

[
r∏

t=1

{
exp

(√
−1√
n

(
ξitAi + ηtP (n)

))}⊗n
]

= Tr ρ⊗n

{ r∏
t=1

exp

(√
−1√
n

(
ξitAi + ηtP (n)

))}⊗n


=

[
Tr ρ

{
r∏

t=1

exp

(√
−1√
n

(
ξitAi + ηtP (n)

))}]n

=

Tr ρ
 ∑

k1,...,kr∈Z+

(√
−1√
n

)k1+···+kr r∏
t=1

1

kt!

(
ξitAi + ηtP (n)

)kt


n

,

where Z+ = {0, 1, 2, . . . }. The terms corresponding to k1 + · · ·+ kr = 1 in the summand are

Tr ρ

(√
−1√
n

r∑
t=1

(
ξitAi + ηtP (n)

))
=

(
r∑

t=1

ηt

) √
−1√
n

Tr ρP (n) = o

(
1

n

)
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because Tr ρAi = 0 and Tr ρP (n) = o( 1√
n
). The terms corresponding to k1 + · · ·+ kr = 2 are

− 1

n
Tr ρ

{ ∑
k1+···+kr=2

(
r∏

t=1

1

kt!

(
ξitAi + ηtP (n)

)kt

)}

= − 1

2n

r∑
t=1

Tr ρ
(
ξitAi + ηtP (n)

)2 − 1

n

r∑
t=1

r∑
s=t+1

Tr ρ
(
ξitAi + ηtP (n)

) (
ξjsAj + ηsP (n)

)
= − 1

2n

r∑
t=1

ξitξ
j
tTr ρAiAj −

1

n

r∑
t=1

r∑
s=t+1

ξitξ
j
sTr ρAiAj + o

(
1

n

)

= − 1

2n

r∑
t=1

ξitξ
j
tJji −

1

n

r∑
t=1

r∑
s=t+1

ξitξ
j
sJji + o

(
1

n

)
.

In the third line, we used the fact that P (n) = o(1). Let us denote the terms corresponding to
k1 + · · ·+ kr ≥ 3 by

rn := Tr ρ

 ∑
k1+···+kr≥3

(√
−1√
n

)(k1+···+kr) r∏
t=1

1

kt!

(
ξitAi + ηtP (n)

)kt

 .

Then

|rn| ≤
∑

k1+···+kr≥3

∥∥∥∥∥
(

1√
n

)(k1+···+kr) r∏
t=1

1

kt!

(
ξitAi + ηtP (n)

)kt

∥∥∥∥∥
≤ 1

n
√
n

∑
k1+···+kr≥3

∥∥∥∥∥
r∏

t=1

1

kt!

(
ξitAi + ηtP (n)

)kt

∥∥∥∥∥
≤ 1

n
√
n

∑
k1+···+kr≥3

r∏
t=1

1

kt!

∥∥ξitAi + ηtP (n)
∥∥kt

≤ 1

n
√
n

∑
k1,...,kr∈Z+

r∏
t=1

1

kt!

∥∥ξitAi + ηtP (n)
∥∥kt

=
1

n
√
n

r∏
t=1

exp
∥∥ξitAi + ηtP (n)

∥∥
≤ 1

n
√
n
exp

(
r∑

t=1

(∥∥ξitAi

∥∥+ ∥ηtP (n)∥
))

.

Since limn→∞ P (n) = 0, the operators P (n) are uniformly bounded. As a consequence, limn→∞ n |rn| =
0, so that rn = o

(
1
n

)
. Thus we conclude that

lim
n→∞

Tr ρ⊗n

(
r∏

t=1

e
√
−1

(
ξitX

(n)
i +ηtR

(n)
))

= lim
n→∞

(
1− 1

2n

r∑
t=1

ξitξ
j
tJji −

1

n

r∑
t=1

r∑
s=t+1

ξitξ
j
sJji + o

(
1

n

))n

= exp

(
−1

2

r∑
t=1

ξitξ
j
tJji −

r∑
t=1

r∑
s=t+1

ξitξ
j
sJji

)

= ϕ

(
r∏

t=1

e
√
−1ξitXi

)
.

The last equation is due to (2.1) with h = 0.
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2.3.2 Proof of Theorem 2.9

Let X1, . . . , Xr, ∆1, . . . , ∆d be the basic canonical observables of CCR

(
Im

(
Σ τ
τ∗ J

))
, and ϕ̃

the quantum Gaussian state N

((
0
0

)
,

(
Σ τ
τ∗ J

))
on that CCR. Assumption (2.5) guarantees

that the quantities

R
(n)
h := L(n)

h −
{
hi∆

(n)
i − 1

2
Jijh

ihjI(n)
}

enjoy R
(n)
h = o

((
X(n)

∆(n)

)
, ρ

(n)
θ0

)
for each h ∈ Rd. Consequently, for a finite subset {ξt}rt=1 of Cd,

Tr ρ
(n)

θ0+h/
√
n

(
r∏

t=1

e
√
−1ξitX

(n)
i

)

= Tr
(
e

1
2L

(n)
h ρ

(n)
θ0

e
1
2L

(n)
h

)( r∏
t=1

e
√
−1ξitX

(n)
i

)

= e−
1
2h

ihjJijTr ρ
(n)
θ0

e
1
2

(
hi∆

(n)
i +R

(n)
h

)( r∏
t=1

e
√
−1ξitX

(n)
i

)
e

1
2

(
hi∆

(n)
i +R

(n)
h

)

= e−
1
2h

ihjJijTr ρ
(n)
θ0

(
e
−
√
−1

(√
−1
2 hi∆

(n)
i +

√
−1
2 R

(n)
h

))( r∏
t=1

e
√
−1ξitX

(n)
i

)(
e
−
√
−1

(√
−1
2 hi∆

(n)
i +

√
−1
2 R

(n)
h

))
.

Since R
(n)
h is infinitesimal relative to the convergence (2.4), we see from (2.2) that

lim
n→∞

Tr ρ
(n)

θ0+h/
√
n

(
r∏

t=1

e
√
−1ξitX

(n)
i

)

= e−
1
2h

ihjJij ϕ̃

(
e−

√
−1

√
−1
2 hi∆i

(
r∏

t=1

e
√
−1ξitXi

)
e−

√
−1

√
−1
2 hi∆i

)

= e−
1
2h

ihjJij exp

(
−1

2

r+1∑
t=0

ξ̃it ξ̃
j
t Σ̃ji −

r+1∑
t=0

r+1∑
s=t+1

ξ̃it ξ̃
j
sΣ̃ji

)

= e−
1
2h

ihjJij exp

(
−1

2

{
−1

4
hjhjJji +

r∑
t=1

ξitξ
j
tΣji −

1

4
hjhjJji

})

× exp

(√
−1

2

r∑
t=1

hiξjt τji +

√
−1

2

r∑
t=1

ξith
jτji +

1

4
hihjJji −

r∑
t=1

r∑
s=t+1

ξitξ
j
sΣji

)

= exp

(
r∑

t=1

(√
−1ξith

j (Re τ)ij −
1

2
ξitξ

j
tΣji

)
−

r∑
t=1

r∑
s=t+1

ξitξ
j
sΣji

)
,

where Σ̃ :=

(
Σ τ
τ∗ J

)
and (ξ̃0, ξ̃1, . . . , ξ̃r, ξ̃r+1) := (−

√
−1
2 h, ξ1, . . . , ξr, −

√
−1
2 h), and (2.1) was

used at the second equation. This is the quasi-characteristic function of N((Re τ)h,Σ).

2.3.3 Proof of Theorem 2.10

Since

ρ⊗n
θ =

(
e

1
2L(ρθ|ρθ0)ρθ0e

1
2L(ρθ|ρθ0)

)⊗n

=
(
e

1
2

∑n
k=1 I⊗(k−1)⊗L(ρθ|ρθ0)⊗I⊗(n−k)

)
ρ⊗n
θ0

(
e

1
2

∑n
k=1 I⊗(k−1)⊗L(ρθ|ρθ0)⊗I⊗(n−k)

)
,
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we see that

L
(
ρ⊗n
θ

∣∣ρ⊗n
θ0

)
=

n∑
k=1

I⊗(k−1) ⊗ L (ρθ|ρθ0)⊗ I⊗(n−k). (2.6)

This proves ρ⊗n
θ ∼ ρ⊗n

θ0
for all θ ∈ Θ and n ∈ N.

Before proceeding to the proof of (ii) and (iii) in Definition 2.8, we give some preliminary
consideration. Let the quantum log-likelihood ratio Lh := L (ρθ0+h|ρθ0) be expanded into

Lh = hiAi +Bijh
ihj + o(h2),

where Ai (1 ≤ i ≤ d) and Bij (1 ≤ i, j ≤ d) are Hermitian operators on H. Observe that Ai is
the SLD in the ith direction. In fact,

ρθ0+h = exp

[
1

2

(
hiAi + o(h)

)]
ρθ0 exp

[
1

2

(
hiAi + o(h)

)]
= ρθ0 +

1

2
hi (ρθ0Ai +Aiρθ0) + o(h),

so that

∂iρθ0 =
1

2
(ρθ0Ai +Aiρθ0) .

This observation also shows that Tr ρθ0Ai = 0 for all i. On the other hand,

Tr ρθ0+h = Tr ρθ0 exp
(
hiAi +Bijh

ihj + o(h2)
)

= Tr ρθ0

(
I +

(
hiAi +Bijh

ihj
)
+

1

2

(
hiAi +Bijh

ihj
)2

+ o(h2)

)
= 1 + hi (Tr ρθ0Ai) + hihjTr ρθ0

(
Bij +

1

2
AiAj

)
+ o(h2)

= 1 + hihjTr ρθ0

(
Bij +

1

2
AiAj

)
+ o(h2).

Since Tr ρθ0+h = 1 for all h, the above equation leads to

Tr ρθ0

(
Bij +

1

2
AiAj

)
= 0. (2.7)

Now we prove (ii). Let Jij := Tr ρθ0AjAi, and let

∆
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗Ai ⊗ I⊗(n−k).

It then follows from the quantum central limit theorem (Proposition 2.5) that
(
∆(n), ρ⊗n

θ0

)
⇝
q

N(0, J).

Finally, we prove (iii). It follows from (2.6) that

L(n)
h =

n∑
k=1

I⊗(k−1) ⊗ Lh/
√
n ⊗ I⊗(n−k).

Let us show that

R
(n)
h := L(n)

h −
(
hi∆

(n)
i − 1

2

(
Jijh

ihj
)
I⊗n

)
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is infinitesimal relative to the convergence
(
∆(n), ρ⊗n

θ0

)
⇝
q
N(0, J). It is rewritten as

R
(n)
h =

n∑
k=1

I⊗(k−1) ⊗
[
Lh/

√
n − 1√

n
hiAi +

1

2n

(
Jijh

ihj
)
I

]
⊗ I⊗(n−k)

=
n∑

k=1

I⊗(k−1) ⊗
[

1√
n
hiAi +

1

n
Bijh

ihj + o(
1

n
)− 1√

n
hiAi +

1

2n

(
Jijh

ihj
)
I

]
⊗ I⊗(n−k)

=
n∑

k=1

I⊗(k−1) ⊗
[
1

n
Bijh

ihj +
1

2n

(
Jijh

ihj
)
I + o(

1

n
)

]
⊗ I⊗(n−k)

=

n∑
k=1

I⊗k−1 ⊗ 1√
n
P (n)⊗ I⊗(n−k),

where

P (n) :=
√
n

(
1

n

(
Bij +

1

2
JijI

)
hihj + o(

1

n
)

)
.

Note that limn→∞ P (n) = 0, and that

lim
n→∞

√
nTr ρθ0P (n) = Tr ρθ0

(
Bij +

1

2
JijI

)
hihj

= Tr ρθ0

(
Bij +

1

2
JjiI

)
hihj

= Tr ρθ0

(
Bij +

1

2
AiAj

)
hihj

= 0

because of (2.7). It then follows from Lemma 2.6 that R
(n)
h = o(∆(n), ρ⊗n

θ0
) for each h ∈ Rd. This

completes the proof.

2.3.4 Proof of Corollary 2.11

That ρ⊗n
θ ∼ ρ⊗n

θ0
was proven in the proof of Theorem 2.10. Let ∆

(n)
1 , . . . ,∆

(n)
d be as in the proof

of Theorem 2.10. It then follows from the quantum central limit theorem that((
X(n)

∆(n)

)
, ρ⊗n

θ0

)
⇝
q
N

((
0
0

)
,

(
Σ τ
τ∗ J

))
. (2.8)

Further, because of Lemma 2.6, the sequence R
(n)
h of observables given in the proof of Theorem

2.10 is also infinitesimal relative to the convergence (2.8). Now that (ρ⊗n
θ , X(n)) are jointly

QLAN at θ0, the property
(
X(n), ρ⊗n

θ0+h/
√
n

)
⇝
q
N((Re τ)h,Σ) is an immediate consequence of

Theorem 2.9. This completes the proof.

2.4 Applications to quantum statistics

Quantum Le Cam’s third lemma (Corollary 2.11) implies convergence of
{
ρ⊗n
θ0+h/

√
n
; h ∈ Rd

}
to a quantum Gaussian shift model

{
N((Re τ)h, Σ) ; h ∈ Rd

}
. This fact prompts us to expect

that, for sufficiently large n, the estimation problem for the parameter h of ρ⊗n
θ0+h/

√
n
could be

reduced to that for the shift parameter h of a quantum Gaussian shift model N((Re τ)h, Σ).
The latter problem has been well-established to date (see Appendix 2.B). In particular, the
best strategy for estimating the shift parameter h is the one that achieves the Holevo bound
Ch (N((Re τ)h,Σ), G), (see Theorem 2.25). Moreover, it can be shown (see Corollary 2.24) that
the Holevo bound Ch (N((Re τ)h,Σ), G) is identical to the Holevo bound Cθ0 (ρθ, G) for the
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model ρθ at θ0 This observation strongly suggests the existence of a sequenceM (n) of estimators

for the parameter h of
{
ρ⊗n
θ0+h/

√
n

}
n
that asymptotically achieves the Holevo bound Cθ0 (ρθ, G).

This section is devoted to materialize this program: we prove that there exist a sequence

M (n) of estimators on
{
ρ⊗n
θ0+h/

√
n

}
n
that is asymptotically unbiased and achieves the Holevo

bound Cθ0 (ρθ, G) for all h that belong to a dense subset of Rd. Since this result requires only
twice differentiability of the quantum log-likelihood ratio of the model ρθ, it will be useful in a
wide range of statistical estimation problems.

2.4.1 Achievability of the Holevo bound

Theorem 2.12. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model on a finite dimensional

Hilbert space H, and fix a point θ0 ∈ Θ. Suppose that ρθ ∼ ρθ0 for all θ ∈ Θ, and that the
quantum log-likelihood ratio Lh := L (ρθ0+h|ρθ0) is differentiable in h around h = 0 and twice
differentiable at h = 0. For any countable dense subset D of Rd and any weight matrix G, there

exist a sequence M (n) of estimators on the model
{
ρ⊗n
θ0+h/

√
n
; h ∈ Rd

}
that enjoys

lim
n→∞

E
(n)
h [M (n)] = h

and
lim

n→∞
TrGV

(n)
h [M (n)] = Cθ0 (ρθ, G)

for every h ∈ D. Here Cθ0 (ρθ, G) is the Holevo bound at θ0.

Proof. Let D := Dρθ0
be the commutation operator with respect to the state ρθ0 (see Appendix

2.A), and let T be the minimal D invariant extension of the SLD tangent space spanR {Li}di=1 of
the model {ρθ} at θ = θ0, i.e., the smallestD invariant real linear subspace of Hermitian operators

on H containing all the SLDs {Li}di=1 of ρθ at θ0. The minimality ensures that Tr ρθ0A = 0 for
all A ∈ T because T ′ = {A ∈ T ; Tr ρθ0A = 0} is also D invariant.

Let {Dj}rj=1 be a basis of T , thus d ≤ r. Let Σ be an r × r matrix whose (i, j)th entry

is given by Σij = Tr ρθ0DjDi, and let τ be an r × d matrix whose (i, j)th entry is given by
τij = Tr ρθ0LjDi. According to Theorem 2.19 in Appendix 2.A, the Holevo bound for a weight
G > 0 can be expressed as

Cθ0 (ρθ, G) = min
F

{TrGZ +Tr
∣∣∣√G ImZ

√
G
∣∣∣ ; Z = tFΣF,

F is an r × d real matrix satisfying tF Re (τ) = I}. (2.9)

Letting

X
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗Di ⊗ I⊗(n−k) (1 ≤ i ≤ r),

Corollary 2.11 asserts that
({
ρ⊗n
θ

}
, X(n)

)
is jointly QLAN at θ0, and that(

X(n), ρ⊗n
θ0+h/

√
n

)
⇝
q
N((Re τ)h,Σ). (2.10)

Let F be the matrix that attains the minimum in (2.9), and let Z := tFΣF , Ṽ := ReZ,

S̃ := ImZ, V̂ =
√
G−1

∣∣∣√G ImZ
√
G
∣∣∣√G−1, and Ẑ = V̂ −

√
−1S̃. It then follows from Corollary

2.24 and Theorem 2.25 in Appendix 2.B that

Cθ0 (ρθ, G) = TrG
(
Ṽ + V̂

)
.

Further, Lemma 2.13 below assures that there exist a finite dimensional Hilbert space Ĥ and a
state σ and observables Bi (1 ≤ i ≤ d) on Ĥ such that TrσBi = 0 and TrσBjBi = Ẑij . Let

X
(n)

i := X̃
(n)
i ⊗ Î⊗n + I⊗n ⊗ Y

(n)
i (1 ≤ i ≤ d),
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where X̃(n) := F k
i X

(n)
k (1 ≤ i ≤ d),

Y
(n)
i :=

1√
n

n∑
k=1

Î⊗(k−1) ⊗Bi ⊗ Î⊗(n−k) (1 ≤ i ≤ d),

and Î is the identity on Ĥ. A crucial observation is that
(
X

(n)
, ρ

(n)
h

)
, where ρ

(n)
h := ρ⊗n

θ0+h/
√
n
⊗

σ⊗n, converges to a classical Gaussian state:(
X

(n)
, ρ

(n)
h

)
⇝
q
N(h, Ṽ + V̂ ), (2.11)

for all h ∈ Rd. In fact,

lim
n→∞

Tr ρ
(n)
h

(
s∏

t=1

e
√
−1ξitX

(n)
i

)
= lim

n→∞
Tr ρ

(n)
h

{(
s∏

t=1

e
√
−1ξitX̃

(n)
i

)
⊗

(
s∏

t=1

e
√
−1ξitY

(n)
i

)}

= lim
n→∞

[
Tr ρ⊗n

θ0+h/
√
n

(
s∏

t=1

e
√
−1ξitX̃

(n)
i

)][
Trσ⊗n

(
s∏

t=1

e
√
−1ξitY

(n)
i

)]

= ϕh

(
s∏

t=1

e
√
−1ξitX̃i

)
ψ

(
s∏

t=1

e
√
−1ξitYi

)
, (2.12)

where X̃i := F k
i Xk (1 ≤ i ≤ d) are canonical observables with X1, . . . , Xr being the basic

canonical observables of CCR (ImΣ) and (X,ϕh) ∼ N((Re τ)h,Σ), and Y1, . . . , Yd are the basic

canonical observables of CCR
(
Im Ẑ

)
with (Y, ψ) ∼ N(0, Ẑ). In the last line in (2.12), we used

(2.10) as well as the quantum central limit theorem for Y (n). By using the explicit form (2.1) of
the quasi-characteristic function for the quantum Gaussian state, (2.12) is rewritten as

exp

(
r∑

t=1

(√
−1ξithi −

1

2
ξitξ

j
tZji

)
−

r∑
t=1

r∑
s=t+1

ξitξ
j
sZji

)
exp

(
−1

2

r∑
t=1

ξitξ
j
t Ẑji −

r∑
t=1

r∑
s=t+1

ξitξ
j
sẐji

)

= exp

(
r∑

t=1

(√
−1ξithi −

1

2
ξitξ

j
t (Ṽ + V̂ )ji

)
−

r∑
t=1

r∑
s=t+1

ξitξ
j
s(Ṽ + V̂ )ji

)
.

This proves (2.11).
Now according to Lemma 2.14 below, there exist a quintuple sequence

M (n,m,ℓ,q,p) =
{
M (n,m,ℓ,q,p)

ω ; ω ∈ Ω(n,m,l,p,q)
}

of POVMs on
(
H⊗ Ĥ

)⊗n

, taking values in a certain finite subset Ω(n,m,l,p,q) of Rd, that enjoys

the properties

lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

E
(n)

h [M (n,m,ℓ,q,p)] = h,

and
lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

V
(n)

h [M (n,m,ℓ,q,p)] = Ṽ + V̂ ,

for all h ∈ Rd, where E
(n)

h [ · ] and V (n)

h [ · ] denote the expectation and the covariance with respect

to ρ
(n)
h . It then follows from Lemma 2.15 below that for any countable dense subset D of Rd

and any h ∈ D, there exist a subsequence {(n,m(n), ℓ(n), q(n), p(n)}n∈N such that

lim
n→∞

E
(n)

h [M (n,m(n),ℓ(n),q(n),p(n))] = h,

and
lim
n→∞

V
(n)

h [M (n,m(n),ℓ(n),q(n),p(n))] = Ṽ + V̂ .
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This implies that the POVM M (n) on H⊗n that is uniquely defined by the requirement

Tr ρ(n)M (n)
ω = Tr

(
ρ(n) ⊗ σ⊗n

)
M (n,m(n),ℓ(n),q(n),p(n))

ω

for all density operator ρ(n) on H⊗n and ω ∈ Ω(n,m(n),l(n),p(n),q(n)) enjoys

lim
n→∞

E
(n)
h [M (n)] = h,

lim
n→∞

V
(n)
h [M (n)] = Ṽ + V̂ .

for all h ∈ D. Recalling that TrG(Ṽ + V̂ ) = Cθ0 (ρθ, G), the proof is complete.

Lemma 2.13. Given a d × d positive semidefinite Hermitian matrix J , there exist a finite
dimensional Hilbert space H and a pure state ρ and observables Ai (1 ≤ i ≤ d) on H such that
Tr ρAi = 0 and Tr ρAjAi = Jij.

Proof. Let H = Cd+1, and let {|i⟩}di=0 be a CONS of H. We set |ψ⟩ := |0⟩ and |ℓi⟩ :=∑d
k=1

[√
J
]
ik
|k⟩ for i = 1, . . . , d. Then ρ := |ψ⟩ ⟨ψ| and Ai := |ℓi⟩ ⟨ψ|+|ψ⟩ ⟨ℓi| satisfy Tr ρAi = 0

and Tr ρAjAi = Jij .

Lemma 2.14. Given a sequence H(n) of finite dimensional Hilbert spaces, let X(n) =
(
X

(n)
1 , . . . , X

(n)
d

)
be a list of observables on H(n), and let

{
ρ
(n)
h

}
h

be a family of density operators on H(n)

parametrized by h ∈ Rd. If there is a real d× d positive definite matrix V such that(
X(n), ρ

(n)
h

)
⇝
q
N(h, V ) (2.13)

holds for all h ∈ Rd, then there exist a quintuple sequence
{
M (n,m,ℓ,q,p); (n,m, ℓ, q, p) ∈ N5

}
of

POVMs on H(n) that enjoy the properties

lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

E
(n)
h [M (n,m,ℓ,q,p)] = h,

and
lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

V
(n)
h [M (n,m,ℓ,q,p)] = V.

Proof. Let

Ω(m,ℓ) :=

{
ℓ

m

−→
k +

ℓ

2m
(1, . . . , 1) ;

−→
k ∈ Zd

}
∩ [−l, l]d

be a finite subset of Rd, comprising (2m)d lattice points in the hypercube [−l, l]d, and let

Ω(m,ℓ,p) := Ω(m,ℓ) ∩ [−p, p]d and Ω
(m,ℓ,p)
0 := Ω(m,ℓ,p) ∪ {0}. We introduce a Gaussian density

function f
(q)
ω (x) on Rd centered at ω = (ω1, . . . , ωd) ∈ Rd by

f (q)ω (x) :=

{
d∏

i=1

g(q)ωd+1−i
(xd+1−i)

}{
d∏

i=1

g(q)ωi
(xi)

}
,

where x = (x1, . . . , xd) ∈ Rd and

g(q)s (t) :=
( q

2π

) 1
4

exp
(
−q
4
(t− s)2

)
, (s, t ∈ R).

By using this function, we define a POVM M (n,m,l,q,p) =
{
M

(n,m,l,q,p)
ω ; ω ∈ Ω

(m,ℓ,p)
0

}
on H(n)

that takes values in the finite subset Ω
(m,ℓ,p)
0 by

M (n,m,ℓ,q,p)
ω := R(m,ℓ,q)(X(n))

[
f (q)ω (X(n)) +

I(n)

(2m)d

]
R(m,ℓ,q)(X(n))
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for ω ∈ Ω(m,ℓ,p), and

M
(n,m,ℓ,q,p)
0 :=

∑
ω∈Ω(m,ℓ)\Ω(m,ℓ,p)

{
R(m,ℓ,q)(X(n))

[(
f (q)ω (X(n)) +

I(n)

(2m)d

)]
R(m,ℓ,q)(X(n))

}
.

Here

R(m,ℓ,q)(x) := g

 ∑
ω∈Ω(m,ℓ)

f (q)ω (x)


is the normalization with

g(t) :=
1√
t+ 1

.

Intuitively speaking, the difference set Ω(m,ℓ) \ Ω(m,ℓ,p) works as a “buffer” zone that gives the
default outcome ω = 0. This device is meaningful only when p < ℓ.

We shall prove that

lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

∑
ω∈Ω

(m,ℓ,p)
0

P (ω)Tr ρ
(n)
h M (n,m,ℓ,q,p)

ω =

∫
Rd

P (ω)ph(ω)dω, (2.14)

where P (ω) is an arbitrary polynomial of ω such that P (0) = 0 and ph(ω) is a probability density
function of the classical normal distribution N(h, V ). Once (2.14) has been proved, we can verify

lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

E
(n)
h [M (n,m,ℓ,q,p)] = h

and

lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

V
(n)
h [M (n,m,ℓ,q,p)] = V

just by letting P (ω) = ωi or P (ω) = ωiωj (1 ≤ i, j ≤ d) in (2.14).

The first limit n→ ∞ in (2.14) yields

lim
n→∞

∑
ω∈Ω

(m,ℓ,p)
0

P (ω)Tr ρ
(n)
h M (n,m,ℓ,q,p)

ω

= lim
n→∞

∑
ω∈Ω(m,ℓ,p)

P (ω)Tr ρ
(n)
h M (n,m,ℓ,q,p)

ω

= lim
n→∞

∑
ω∈Ω(m,ℓ,p)

P (ω)Tr ρ
(n)
h R(m,ℓ,q)(X(n))

[
f (q)ω (X(n)) +

I(n)

(2m)d

]
R(m,ℓ,q)(X(n))

=
∑

ω∈Ω(m,ℓ,p)

P (ω)Eh

[
R(m,ℓ,q)(X)2

(
f (q)ω (X) +

I

(2m)d

)]

=

∫
Rd

∑
ω∈Ω(m,ℓ,p) P (ω)

(
f
(q)
ω (x) + 1

(2m)d

)
∑

ω∈Ω(m,ℓ)

(
f
(q)
ω (x) + 1

(2m)d

) ph(x)dx. (2.15)

In the fourth line, we used the assumption (2.13) and Corollary 2.29 in Appendix 2.D, as well as

the fact that functions g
(q)
s (t) on R and g(t) on t ≥ 0 are both bounded and continuous. Further,

X = (X1, . . . , Xd) is a classical random vector that follow the normal distribution N(h, V ), and
Eh[ · ] denotes the expectation with respect to N(h, V ). As for the second limit m→ ∞, due to∣∣∣∣∣∣

∑
ω∈Ω(m,ℓ,p) P (ω)

(
f
(q)
ω (x) + 1

(2m)d

)
∑

ω∈Ω(m,ℓ)

(
f
(q)
ω (x) + 1

(2m)d

)
∣∣∣∣∣∣ ≤ max

ω∈[−p,p]d
|P (ω)| <∞,
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the bounded convergence theorem yields

lim
m→∞

(2.15) =

∫
Rd

lim
m→∞

(
ℓ
m

)d∑
ω∈Ω(m,ℓ,p) P (ω)

(
f
(q)
ω (x) + 1

(2m)d

)
(

ℓ
m

)d∑
ω∈Ω(m,ℓ)

(
f
(q)
ω (x) + 1

(2m)d

) ph(x)dx

=

∫
Rd

∫
ω∈[−p,p]d

P (ω)p(q)(ω, x)dω∫
ω∈[−ℓ,ℓ]d

p(q)(ω, x)dω
ph(x)dx, (2.16)

where p(q)(ω, x) =
(

q
2π

) d
2 exp

(
− q

2

∑d
i=1(xi − ωi)

2
)
, and Darboux’s theorem for the Riemann

integral was used in the second line. Finally, the dominated convergence theorem and Fubini’s
theorem yield

lim
p→∞

lim
q→∞

lim
ℓ→∞

(2.16) = lim
p→∞

lim
q→∞

∫
Rd

∫
ω∈[−p,p]d

P (ω)p(q)(ω, x)dω∫
Rd p(q)(ω, x)dω

ph(x)dx

= lim
p→∞

lim
q→∞

∫
Rd

(∫
ω∈[−p,p]d

P (ω)p(q)(ω, x)dω

)
ph(x)dx

= lim
p→∞

lim
q→∞

∫
ω∈[−p,p]d

(∫
Rd

p(q)(ω, x)ph(x)dx

)
P (ω)dω

= lim
p→∞

lim
q→∞

∫
ω∈[−p,p]d

p
(q)
h (ω)P (ω)dω

= lim
p→∞

∫
ω∈[−p,p]d

ph(ω)P (ω)dω

=

∫
Rd

ph(ω)P (ω)dω, (2.17)

where p
(q)
h (ω) is the density function of N(h, V + 1

q I). This completes the proof.

Lemma 2.15. For each i ∈ N, let
{
ain1n2···nrn; (n1, n2, . . . , nr, n) ∈ N(r+1)

}
be an (r + 1)-tuple

sequence on a normed space V . If, for each i ∈ N, there exists an αi ∈ V such that

lim
n1→∞

lim
n2→∞

· · · lim
nr→∞

lim
n→∞

ain1n2···nrn = αi,

then there exist a subsequence {(n1(n), n2(n), . . . , nr(n), n)}n∈N that satisfies

lim
n→∞

ain1(n)n2(n)···nr(n)n
= αi

for all i ∈ N.

Proof. We first prove the case when r = 1. Let ain1
:= limn→∞ ain1n. We construct a subse-

quence {(n1(k), n(k))}k∈N in a recursive manner as follows. We set n1(1) = n(1) = 1. For k ≥ 2,
it follows from limn1→∞ ain1

= αi that there exist an N1(k) ∈ N such that n1 ≥ N1(k) implies

max
1≤i≤k

∣∣ain1
− αi

∣∣ < 1

k
.

Thus the number n1(k) := max {N1(k), n1(k − 1) + 1} satisfies

max
1≤i≤k

∣∣∣ain1(k)
− αi

∣∣∣ < 1

k
. (2.18)

For this n1(k), it follows from limn→∞ ain1(k)n
= ain1(k)

that there exist an N(k) ∈ N such that

n ≥ N(k) implies

max
1≤i≤k

∣∣∣ain1(k)n
− ain1(k)

∣∣∣ < 1

k
. (2.19)
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Thus we set n(k) := max {N(k), n(k − 1) + 1}.
Now let k(n) := max {k; n(k) ≤ n}, which is non-decreasing in n and limn→∞ k(n) = ∞. We

show that the subsequence {n1(k(n)), n); n ∈ N} enjoys the required property: for all i ∈ N,

lim
n→∞

ain1(k(n))n
= αi.

Given i ∈ N and ε > 0 arbitrarily, there exist an N ∈ N such that n ≥ N implies k(n) ≥
max

{
i,
⌈
2
ε

⌉}
. Then for all n ≥ N , we have∣∣∣ain1(k(n))n

− αi
∣∣∣ ≤

∣∣∣ain1(k(n))n
− ain1(k(n))

∣∣∣+ ∣∣∣ain1(k(n))
− αi

∣∣∣
≤ max

1≤j≤k(n)

∣∣∣ajn1(k(n))n
− ajn1(k(n))

∣∣∣+ max
1≤j≤k(n)

∣∣∣ajn1(k(n))
− αj

∣∣∣
<

2

k(n)
≤ ε.

In the third inequality, we used (2.18) and (2.19), as well as its premise n ≥ n(k(n)) ≥ N(k(n)).
The proof for a generic r is similar.

2.4.2 Application to qubit state estimation

In order to demonstrate the power of our method, we explore qubit state estimation problems.

Example 2.16 (3-dimensional faithful state model).

The first example is an ordinary one, comprising the totality of faithful quit states:

S(C2) =

{
ρθ =

1

2

(
I + θ1σ1 + θ2σ2 + θ3σ3

)
; θ = (θi)1≤i≤3 ∈ Θ

}
where σi (i = 1, 2, 3) are the standard Pauli matrices and Θ is the open unit ball in R3. Due
to the rotational symmetry, we take the reference point to be θ0 = (0, 0, r), with 0 ≤ r < 1.
By a direct calculation, we see that the SLDs of the model ρθ at θ = θ0 are (L1, L2, L3) =(
σ1, σ2, (rI + σ3)

−1
)
, and the SLD Fisher information matrix J (S) at θ0 is given by the real

part of the matrix

J := [Tr ρθ0LjLi]ij =

 1 −r
√
−1 0

r
√
−1 1 0
0 0 1/(1− r2)

 .

Given a 3× 3 real positive definite matrix G, the minimal value of the weighted covariances
at θ = θ0 is given by

min
M̂

TrGVθ0 [M̂ ] = C
(1)
θ0

(ρθ, G) ,

where the minimum is taken over all estimators M̂ that are locally unbiased at θ0, and

C
(1)
θ0

(ρθ, G) =

(
Tr

√√
GJ (S)−1

√
G

)2

is the Hayashi-Gill-Massar bound [17, 13] (see also [49]). On the other hand, the SLD tangent
space is obviously D invariant, and the Holevo bound is given by

Cθ0 (ρθ, G) := TrGJ (R)−1

+Tr
∣∣∣√G Im J (R)−1√

G
∣∣∣ ,

where

J (R)−1

:= (Re J)−1J(Re J)−1 =

 1 −r
√
−1 0

r
√
−1 1 0
0 0 1− r2
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is the inverse RLD Fisher information matrix (See Corollary 2.20 in Appendix 2.A).
It can be shown that the Hayashi-Gill-Massar bound is greater than the Holevo bound:

C
(1)
θ0

(ρθ, G) > Cθ0 (ρθ, G) .

Let us check this fact for the special case when G = J (S). A direct computation shows that

C
(1)
θ0

(
ρθ, J

(S)
)
= 9,

and
Cθ0

(
ρθ, J

(S)
)
= 3 + 2r.

The left panel of Figure 2.1 shows the behavior of Cθ0

(
ρθ, J

(S)
)
(solid) and C

(1)
θ0

(
ρθ, J

(S)
)

(dashed) as functions of r. We see that the Holevo bound Cθ0

(
ρθ, J

(S)
)
is much smaller than

C
(1)
θ0

(
ρθ, J

(S)
)
.

Does this fact imply that the Holevo bound is of no use? The answer is contrary, as Theorem
2.12 asserts. We will demonstrate the asymptotic achievability of the Holevo bound. Let

∆
(n)
i :=

1√
n

n∑
k=1

I⊗k−1 ⊗ Li ⊗ I⊗n−k

and let X
(n)
i := ∆

(n)
i for i = 1, 2, 3. It follows from the quantum central limit theorem that((

X(n)

∆(n)

)
, ρ⊗n

θ0

)
⇝
q
N

(
0,

(
J J
J J

))
.

Since

L(θ) := L (ρθ|ρθ0) = 2 log

(√
ρ−1
θ0

√√
ρθ0ρθ

√
ρθ0

√
ρ−1
θ0

)
is obviously of class C∞ in θ, Corollary 2.11 shows that

({
ρ⊗n
θ

}
, X(n)

)
is jointly QLAN at θ0,

and that (
X(n), ρ⊗n

θ0+h/
√
n

)
⇝
q
N((Re J)h, J)

for all h ∈ R3. This implies that a sequence of models
{
ρ⊗n
θ0+h/

√
n
; h ∈ Rd

}
converges to a

quantum Gaussian shift model
{
N((Re J)h, J) ; h ∈ R3

}
. Note that the imaginary part

S =

 0 −r
√
−1 0

r
√
−1 0 0
0 0 0


of the matrix J determines the CCR (S), as well as the corresponding basic canonical observables
X = (X1, X2, X3). When r ̸= 0, the above S has the following physical interpretation: X1 and
X2 form a canonical pair of quantum Gaussian observables, while X3 is a classical Gaussian
random variable. In this way, the matrix J automatically tells us the structure of the limiting
quantum Gaussian shift model.

Now, the best strategy for estimating the shift parameter h of the quantum Gaussian shift
model

{
N((Re J)h, J) ; h ∈ Rd

}
is the one that achieves the Holevo bound Ch (N((Re J)h, J), G),

(cf., Theorem 2.25 in Appendix 2.B). Moreover, this Holevo bound Ch (N((Re J)h, J), G) is
identical to the Holevo bound Cθ0 (ρθ, G) for the model ρθ at θ0, (cf., Corollary 2.24. Recall
that the matrix J is evaluated at θ0 of the model ρθ). Theorem 2.12 combines these facts, and

concludes that there exist a sequenceM (n) of estimators on the model
{
ρ⊗n
θ0+h/

√
n
; h ∈ R3

}
that

is asymptotically unbiased and achieves the common values of the Holevo bound:

lim
n→∞

TrGV
(n)
h [M (n)] = Ch (N((Re J)h, J), G) = Cθ0 (ρθ, G)
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Figure 2.1: The left panel displays the Holevo bound C(0,0,r)

(
ρθ, J

(S)
)
(solid) and the Hayashi-

Gill-Massar bound C
(1)
(0,0,r)

(
ρθ, J

(S)
)
(dashed) for the 3-D model ρθ = 1

2

(
I + θ1σ1 + θ2σ2 + θ3σ3

)
as functions of r = ∥θ∥. The right panel displays the Holevo bound C(0,r)

(
ρθ, J

(S)
)

(solid) and the Nagaoka bound C
(1)
(0,r)

(
ρθ, J

(S)
)

(dashed) for the 2-D model ρθ =

1
2

(
I + θ1σ1 + θ2σ2 +

1
4

√
1− ∥θ∥2 σ3

)
.

for all h that belong to a countable dense subset of R3.

It should be emphasized that the matrix J becomes the identity at the origin θ0 = (0, 0, 0).
This means that the limiting Gaussian shift model

{
N(h, J) ; h ∈ R3

}
is “classical.” Since

such a degenerate case cannot be treated in [15, 31, 19], our method has a clear advantage in
applications.

Example 2.17 (Pure state model).

The second example is to demonstrate that our formulation allows us to treat pure state
models. Let us consider the model S = {|ψ(θ)⟩⟨ψ(θ)| ; θ = (θi)1≤i≤2 ∈ Θ} defined by

ψ(θ) :=
1√

cosh ∥θ∥
e

1
2 (θ

1σ1+θ2σ2)
(

1
0

)
,

where Θ is an open subset of R2 containing the origin, and ∥ · ∥ denotes the Euclid norm. By
a direct computation, the SLDs at θ0 = (0, 0) are (L1, L2) = (σ1, σ2), and the SLD Fisher
information matrix J (S) is the real part of the matrix

J = [Tr ρθ0LjLi]ij =

(
1 −

√
−1√

−1 1

)
,

that is, J (S) = I. Since the SLD tangent space is D invariant [7], the Holevo bound for a weight
G > 0 is represented as

Cθ0 (ρθ, G) := TrGJ (R)−1

+Tr
∣∣∣√G Im J (R)−1√

G
∣∣∣

where

J (R)−1

:= (Re J)−1J(ReJ)−1 =

(
1 −

√
−1√

−1 1

)
is the inverse RLD Fisher information matrix (see Corollary 2.20 in Appendix 2.A).

Let us demonstrate that our QLAN is applicable also to pure state models. Let

∆
(n)
i :=

1√
n

n∑
k=1

I⊗k−1 ⊗ Li ⊗ I⊗n−k
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and let X
(n)
i := ∆

(n)
i for i = 1, 2. It follows from the quantum central limit theorem that((

X(n)

∆(n)

)
, ρ⊗n

θ0

)
⇝
q
N

(
0,

(
J J
J J

))
.

Since
L(θ) := L (ρθ|ρθ0) = θ1σ1 + θ2σ2 − log cosh ∥θ∥

is of class C∞ with respect to θ, it follows from Corollary 2.11 that
({
ρ⊗n
θ

}
, X(n)

)
is jointly

QLAN at θ0, and that

(X(n), ρ⊗n
θ0+h/

√
n
)⇝ N((Re J)h, J) = N(h, J (R)−1

)

for all h ∈ R2. Theorem 2.12 further asserts that there exist a sequence M (n) of estimators on

the model
{
ρ⊗n
θ0+h/

√
n
; h ∈ R2

}
that is asymptotically unbiased and achieves the Holevo bound:

lim
n→∞

TrGV
(n)
h [M (n)] = Ch

(
N(h, J (R)−1

), G
)
= C(0,0) (ρθ, G)

for all h that belong to a dense subset of R3. In fact, the sequence M (n) can be taken to be a
separable one, making no use of quantum correlations [35]. (See also Appendix 2.C for a simple

proof.) Note that the matrix J (R)−1

is degenerate, and the derived quantum Gaussian shift

model
{
N(h, J (R)−1

)
}
h
is a canonical coherent model [7].

Example 2.18 (2-dimensional faithful state model).

The third example treats the case when the SLD tangent space is not D invariant. Let us
consider the model

S =

{
ρθ =

1

2

(
I + θ1σ1 + θ2σ2 + z0

√
1− ∥θ∥2 σ3

)
; θ = (θi)1≤i≤2 ∈ Θ

}
,

where 0 ≤ z0 < 1, and Θ is the open unit disk. Due to the rotational symmetry around z-axis,
we take the reference point to be θ0 = (0, r), with 0 ≤ r < 1. By a direct calculation, we see

that the SLDs at θ0 are (L1, L2) =
(
σ1,

1
1−r2 (σ2 − rI)

)
. It is important to notice that the SLD

tangent space span {Li}2i=1 is not D invariant unless r = 0. In fact

Dσ1 = z(r)σ2 − rσ3, Dσ2 = −z(r)σ1,

where z(r) := E[σ3] = z0
√
1− r2. The minimal D invariant extension T of the SLD tangent

space has a basis (D1, D2, D3) := (L1, L2, σ3 − z(r)I). The matrices Σ, J , and τ appeared in
Definition 2.8 and Corollary 2.11 are calculated as

Σ := [Tr ρθ0DjDi]ij =


1 −

√
−1

z20
z(r)

r
√
−1− z(r)

√
−1

z20
z(r)

z20
z(r)2

−
(

r

z(r)
+
√
−1

)
z20

−r
√
−1− z(r) −

(
r

z(r)
−
√
−1

)
z20 1

 ,

J := [Tr ρθ0LjLi]ij =

 1 −
√
−1

z20
z(r)

√
−1

z20
z(r)

z20
z(r)2

 ,

τ := [Tr ρθ0Ljσi]ij =


1 −

√
−1

z20
z(r)

√
−1

z20
z(r)

z20
z(r)2

−r
√
−1− z(r) −

(
r

z(r)
−
√
−1

)
z20

 .
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Given a 2× 2 real positive definite matrix G, the minimal value of the weighted covariances
at θ = θ0 is given by

min
M̂

TrGVθ0 [M̂ ] = C
(1)
θ0

(ρθ, G) ,

where the minimum is taken over all estimators M̂ that are locally unbiased at θ0, and

C
(1)
θ0

(ρθ, G) =

(
Tr

√√
GJ (S)−1

√
G

)2

is the Nagaoka bound [37] (see also [49]).
It can be shown that the Nagaoka bound is greater than the Holevo bound:

C
(1)
θ0

(ρθ, G) > Cθ0 (ρθ, G) .

Let us check this fact for the special case when G = J (S). A direct computation shows that

C
(1)
θ0

(
ρθ, J

(S)
)
= 4,

and

Cθ0

(
ρθ, J

(S)
)

=


2(1 + z0)− r2(1− z20), if 0 ≤ r ≤

√
z0

1− z20

2 +
z20

r2(1− z20)
, if

√
z0

1− z20
< r.

The right panel of Figure 2.1 shows the behavior of Cθ0

(
ρθ, J

(S)
)
(solid) and C

(1)
θ0

(
ρθ, J

(S)
)
with

z0 = 1
4 (dashed) as functions of r. We see that Holevo bound Cθ0

(
ρθ, J

(S)
)
is much smaller than

C
(1)
(0,r)

(
ρθ, J

(S)
)
.

As in Example 2.16, we demonstrate that the Holevo bound is asymptotically achievable.
Let

∆
(n)
i :=

1√
n

n∑
k=1

I⊗k−1 ⊗ Li ⊗ I⊗n−k, (i = 1, 2),

and let

X
(n)
j :=

1√
n

n∑
k=1

I⊗k−1 ⊗Dj ⊗ I⊗n−k, (j = 1, 2, 3).

It then follows from the quantum central limit theorem that((
X(n)

∆(n)

)
, ρ⊗n

θ0

)
⇝
q
N

(
0,

(
Σ τ
τ∗ J

))
.

Therefore, Corollary 2.11 shows that
({
ρ⊗n
θ

}
, X(n)

)
is jointly QLAN at θ0, and that

(X(n), ρ⊗n
θ0+h/

√
n
)⇝

q
N((Re τ)h,Σ)

for all h ∈ R2.
It should be noted that the off-diagonal block τ of the “quantum covariance” matrix is not a

square matrix. This means that the derived quantum Gaussian shift model
{
N((Re τ)h,Σ) ; h ∈ R2

}
forms a submanifold of the total quantum Gaussian shift model derived in Example 2.16, corre-
sponding to a 2-dimensional linear subspace in the shift parameter space. Nevertheless, Theorem

2.12 asserts that there exist a sequence M (n) of estimators on the model
{
ρ⊗n
θ0+h/

√
n
; h ∈ R3

}
that is asymptotically unbiased and achieves the Holevo bound:

lim
n→∞

TrGV
(n)
h [M (n)] = Ch (N((Re τ)h,Σ), G) = Cθ0 (ρθ, G)

for all h that belong to a dense subset of R3.
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2.4.3 Translating estimation of h to estimation of θ

As we have seen in the previous subsections, our theory enables us to construct asymptotically
optimal estimators of h in the local models indexed by the parameter θ0 + h/

√
n. In practice

of course, θ0 is unknown and hence estimation of h, with θ0 known, is irrelevant. The actual
sequence of measurements which we have constructed depends in all interesting cases on θ0.

However, the results immediately inspire two-step (or adaptive) procedures, in which we first
measure a small proportion of the quantum systems, in number n1 say, using some standard
measurement scheme, for instance separate particle quantum tomography. From these measure-
ment outcomes we construct an initial estimate of θ, let us call it θ̃. We can now use our theory
to compute the asymptotically optimal measurement scheme which corresponds to the situation
θ0 = θ̃. We proceed to implement this measurement on the remaining quantum systems collec-
tively, estimating h in the model θ = θ̃+h/

√
n2 where n2 is the number of systems still available

for the second stage.
What can we say about such a procedure? If n1/n → α > 0 as n → ∞ then we can expect

that the initial estimate θ̃ is root n consistent. In smooth models, one would expect that in this
case the final estimate θ̂ = θ̃+ ĥ/

√
n2 would be asymptotically optimal up to a factor 1−α: its

limiting variance will be a factor (1− α)−1 too large.
If however n1 → ∞ but n1/n→ α = 0 then one would expect this procedure to break down,

unless the rate of growth of n1 is very carefully chosen (and fast enough). On the other hand,

instead of a direct two-step procedure, with the final estimate computed as θ̃+ ĥ/
√
n2, one could

be more careful in how the data obtained from the second stage measurement is used. Given
the second step measurement, which results in an observed value ĥ, one could write down the
likelihood for h based on the given measurement and the initially specified model, and compute
instead of the just mentioned one-step iterate, the actual maximum likelihood estimator of θ
based on the second stage data. Such procedures have earlier been studied by Gill and Massar
[13] and others, and shown in special cases to perform very well.

However, in general, the computational problem of even calculating the likelihood given data,
measurement, and model, is challenging, due to the huge size of the Hilbert space of n copies of
a finite dimensional quantum system.

2.5 Concluding remarks

We have developed a new theory of local asymptotic normality in a quantum regime based on
a quantum extension of the log-likelihood ratio. This formulation is applicable to any model
satisfying a mild smoothness condition, and is free from artificial setups such as the use of a
special coordinate system and/or non-degeneracy of eigenvalues of the reference state. We also
have proved asymptotic achievability of the Holevo bound for the local shift parameter on a
dense subset of the parameter space.

There are of course many open questions left. Among others, it is not clear whether ev-
ery sequence of statistics on a QLAN model can be realized on the limiting quantum Gaussian
shift model. In classical statistics, such a problem has been solved affirmatively as the rep-
resentation theorem, which asserts that, given a weakly convergent sequence T (n) of statistics

on
{
p
(n)

θ0+h/
√
n
; h ∈ Rd

}
, there exist a limiting statistics T on

{
N(h, J−1) ; h ∈ Rd

}
such that

T (n) h⇝ T . Representation theorem is useful in proving, for example, the non-existence of an
asymptotically superefficient estimator (the converse part, as stated in Introduction). Moreover,
the so-called convolution theorem and local asymptotic minimax theorem, which are the stan-
dard tools in discussing asymptotic lower bounds for estimation in LAN models, immediately
follows [47]. Extending the representation theorem, convolution theorem, and local asymptotic
minimax theorem to a quantum regime is an intriguing open problem. However it surely is
possible to make some progress in this direction, as for instance the results of Gill and Guţă
[11]. In that paper, the van Trees inequality was used to derive some results in a “poor man’s”
version of QLAN theory; see also [12].

It also remains to be seen whether our asymptotically optimal statistical procedures for the
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local model with local parameter h can be translated into useful statistical procedures for the
real world case in which θ0 is unknown.

Appendices

Appendix 2.A Commutation operator and the Holevo bound

In the study of quantum statistics, Holevo [24] introduced useful mathematical tools called the
square summable operators and the commutation operators associated with quantum states. Let
H be a separable Hilbert space and let ρ be a density operator. We define a real Hilbert space
L2
h(ρ) associated with ρ by the completion of the set Bh(H) of bounded Hermitian operators

with respect to the pre-inner product ⟨X,Y ⟩ρ := ReTr ρXY . Letting ρ =
∑

j sj |ψj⟩⟨ψj | be the

spectral representation, an element X ∈ L2
h(ρ) can be regarded as an equivalence class of those

Hermitian operators, called the square summable operators, which satisfy
∑

j sj∥Xψj∥2 < ∞
(so that ψj ∈ Dom(X) if sj ̸= 0) under the identification X1 ∼ X2 if X1ψj = X2ψj for sj ̸= 0.
The space L2

h(ρ) thus provides a convenient tool to cope with unbounded observables. Note that
when H is finite dimensional, the setup is considerably simplified to be L2

h(ρ) = Bh(H)/ ker ρ.
Let L2(ρ) be the complexification of L2

h(ρ), which is also regarded as the completion of B(H)
with respect to the pre-inner product

⟨X,Y ⟩ρ :=
1

2
Tr ρ(Y X∗ +X∗Y ).

Thus L2(ρ) is a complex Hilbert space with this inner product. Let us further introduce two
sesquilinear forms on B(H) by

(X,Y )ρ := Tr ρY X∗, [X,Y ]ρ :=
1

2
√
−1

Tr ρ(Y X∗ −X∗Y ).

and extend them to L2(ρ) by continuity.
The commutation operator Dρ : L2(ρ) → L2(ρ) with respect to ρ is defined by

[X,Y ]ρ = ⟨X,DρY ⟩ρ ,

which is formally represented by the operator equation

Dρ(X)ρ+ ρDρ(X) =
√
−1 (Xρ− ρX).

(To be precise, Holevo’s original definition is different from the above one by a factor of 2.) The
operator Dρ is a C-linear bounded skew-adjoint operator. Moreover, since the forms [ · , · ]ρ and
⟨ · , · ⟩ρ are real on the real subspace L2

h(ρ), this subspace is invariant under the operation of Dρ.
Thus Dρ can be regarded as an R-linear bounded skew-adjoint operator when restricted to L2

h(ρ)
as Dρ : L2

h(ρ) → L2
h(ρ). When no confusion is likely to arise, we drop the subscript ρ of Dρ and

simply denote it as D.
Let S = {ρθ ; θ ∈ Θ ∈ Rd} be a quantum statistical model satisfying the conditions: 1) the

parametrization θ 7→ ρθ is smooth and nondegenerate so that the derivatives {∂ρθ/∂θi}1≤i≤d

exist in trace class and form a linearly independent set at each point θ ∈ Θ, and 2) there exists
a constant c such that ∣∣∣∣ ∂∂θi Tr ρθX

∣∣∣∣2 ≤ c ⟨X,X⟩ρθ

for all X ∈ B(H) and i. The second condition assures that the linear functionals X 7→
(∂/∂θi)Tr ρθX can be extended to continuous linear functionals on L2(ρθ). Given a quantum
statistical model satisfying the above conditions, the symmetric logarithmic derivative (SLD)
Lθ,i in the ith direction is defined as the operator in L2(ρρθ

) satisfying

∂

∂θi
Tr ρθX = ⟨Lθ,i, X⟩ρθ

.
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It is easily verified that Lθ,i ∈ L2
h(ρθ); so the definition is formally written as

∂ρθ
∂θi

=
1

2
(Lθ,i ρθ + ρθ Lθ,i). (2.20)

When no confusion occurs, we simply denote Lθ,i as Li. Since Li is a faithful operator rep-
resentation of the tangent vector ∂/∂θi, we shall call the R-linear space spanR{Li}di=1 the
SLD tangent space of the model ρθ at θ. Incidentally the d × d real symmetric matrix Jθ :=
[ReTr ρθLiLj ]1≤i,j≤d is called the SLD Fisher information matrix of the model S at θ.

An estimator M̂ for the parameter θ of the model S is called unbiased if

Eθ[M̂ ] = θ (2.21)

for all θ ∈ Θ, where Eθ[ · ] denotes the expectation with respect to ρθ. An estimator M̂ is called
locally unbiased at θ0 ∈ Θ if the condition (2.21) is satisfied around θ = θ0 up to the first order
of the Taylor expansion. It is well known that an estimator M̂ that is locally unbiased at θ0
satisfies the quantum (SLD) Cramér-Rao inequality, Vθ0 [M̂ ] ≥ J−1

θ0
, where Vθ0 [ · ] denotes the

covariance matrix with respect to ρθ0 . The lower bound J−1
θ0

cannot be attained in general due
to the non-commutativity of the SLDs. Because of this fact, we often switch the problem to
minimizing the weighted sum of covariances, TrGVθ0 [M̂ ], given a d × d real positive definite
matrix G. It is known that this quantity also has a variety of Cramér-Rao type lower bounds
[24]:

TrGVθ0 [M̂ ] ≥ Cθ0 (ρθ, G) .

Among others, we concentrate our attention to the Holevo bound [24]:

Cθ0 (ρθ, G) := min
V,B

{TrGV ; V is a real matrix such that V ≥ Z(B), Zij(B) = Tr ρθ0BjBi,

B1, . . . , Bd are Hermitian operators on H such that ReTr ρθ0LiBj = δij}.(2.22)

The minimization problem over V is explicitly solved, to obtain

Cθ0 (ρθ, G) = min
B

{TrGZ(B) + Tr
∣∣∣√G ImZ(B)

√
G
∣∣∣ ; Zij(B) = Tr ρθ0BjBi,

B1, . . . , Bd are Hermitian operators on H such that ReTr ρθ0LiBj = δij}.

Our aim here is to derive a further concise expression for it in terms of the minimal D invariant
extension of the SLD tangent space.

Theorem 2.19. Given a quantum statistical model
{
ρθ ; θ ∈ Θ ⊂ Rd

}
on H, let T be the min-

imal D invariant extension of the SLD tangent space spanR{Li}di=1 of the model at θ = θ0, and
let {Dj}rj=1 be a basis of T . The Holevo bound defined by (2.22) is rewritten as

Cθ0 (ρθ, G) = min
F

{TrGZ +Tr
∣∣∣√G ImZ

√
G
∣∣∣ ; Z = tFΣF,

F is an r × d real matrix satisfying tF Re (τ) = I}, (2.23)

where Σ and τ are r × r and r × d complex matrices whose (i, j)th entries are given by Σij =
Tr ρθ0DjDi and τij = Tr ρθ0LjDi.

Proof. Let T ⊥ be the orthogonal complement of T in L2
h(ρθ0) with respect to the inner product

⟨·, ·⟩ρθ0
, and let P : L2

h(ρθ0) → T and P⊥ : L2
h(ρθ0) → T ⊥ be the projections associated with

the decomposition L2
h(ρθ0) = T ⊕ T ⊥. Note that if X ∈ T ⊥ and Y ∈ T , then

(X,Y )ρθ0
= ⟨X,Y ⟩ρθ0

+
√
−1 ⟨X,DY ⟩ρθ0

= 0.

We show that the operators {Bj}dj=1 that achieve the minimum in (2.22) can be taken from

T . Let {Bj}dj=1 ⊂ L2
h(ρθ0) satisfies the local unbiasedness condition ReTr ρθ0LiBj = δij , which

is rewritten as
⟨Li, Bj⟩ρθ0

= δij .
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Then {P(Bj)}dj=1 also satisfies the local unbiasedness

⟨Li,P(Bj)⟩ρθ0
= ⟨Li, Bj⟩ρθ0

= δij .

Further,

Zij(B) = (Bi, Bj)ρθ0
=
(
P(Bi) + P⊥(Bi),P(Bj) + P⊥(Bj)

)
ρθ0

= (P(Bi),P(Bj))ρθ0
+
(
P⊥(Bi),P⊥(Bj)

)
ρθ0

= Zij(P(B)) + Zij(P⊥(B)).

Since Z( · ) is a Gram matrix and is positive semidefinite, this decomposition implies that Z(B) ≥
Z(P(B)). Thus the observables B that minimize (2.22) can be taken from T .

Let Bj ∈ T be expanded as Bj = F k
j Dk, where F is an r × d real matrix. Then the local

unbiasedness condition is rewritten as

⟨Li, Bj⟩ρθ0
= F k

j ⟨Li, Dk⟩ρθ0
= δij ,

or in a matrix form,
tF (Re τ) = I.

Further, the Gram matrix Z(B) is rewritten as

Zij(B) = (Bi, Bj)ρθ0
= F k

i F
ℓ
j (Dk, Dℓ)ρθ0

,

or,

Z(B) = tFΣF.

This proves the claim.

When the SLD tangent space itself is D invariant, the Holevo bound can be represented in
terms of the RLD Fisher information matrix as follows.

Corollary 2.20. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model, and let Li (1 ≤ i ≤ d)

be the SLDs at θ0. If the SLD tangent space spanR {Li}di=1 at θ0 is D invariant, then

Cθ0 (ρθ, G) = TrG(J (R))−1 +Tr
∣∣∣√G Im (J (R))−1

√
G
∣∣∣ ,

where (J (R))−1 := (Re J)
−1
J (Re J)

−1
with Jij = Tr ρθ0LjLi.

Proof. Let us set Di := Li for 1 ≤ i ≤ d in Theorem 2.19. Then Σ = τ , and the local
unbiasedness condition tF (Re τ) = I has a unique solution F = (ReΣ)

−1
, whereby Z =

(Re J)
−1
J (ReJ)

−1
.

Note that RLDs may not exist if the model is degenerate (i.e., non-faithful). This means that
J (R) may not be well-defined for such a model. Nevertheless we use the notation (J (R))−1 even
for a degenerate model, and call it the inverse of the RLD Fisher information matrix, as long as
the SLD tangent space is D invariant. For an idea behind this nomenclature, consult [7].

Finally, we show that the Holevo bound for the nth i.i.d. extension model is precisely 1
n times

that for the base model.

Corollary 2.21. Given a quantum statistical model S =
{
ρθ ; θ ∈ Θ ⊂ Rd

}
, let S(n) =

{
ρ⊗n
θ ; θ ∈ Θ ⊂ Rd

}
be the nth i.i.d. extension model. Then

Cθ0

(
ρ⊗n
θ , G

)
=

1

n
Cθ0 (ρθ, G) .
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Proof. Let us distinguish quantities that belong to models of different extension by specifying
the degree n of extension in the superscript. Letting {Li}di=1 and {Dj}rj=1 be SLDs and a basis

of T in Theorem 2.19, the corresponding quantities for S(n) are given by

L
(n)
i =

n∑
k=1

I⊗k−1 ⊗ Li ⊗ I⊗n−k

and

D
(n)
j =

n∑
k=1

I⊗k−1 ⊗Dj ⊗ I⊗n−k.

Thus

Σ(n) = nΣ(1), τ (n) = nτ (1), F (n) =
1

n
F (1),

so that

Z(n) = tF (n)Σ(n)F (n) =
1

n
Z(1),

and

Cθ0

(
ρ⊗n
θ , G

)
=

1

n
Cθ0 (ρθ, G)

doe to Theorem 2.19.

Appendix 2.B Estimation of quantum Gaussian shift model

In this section, we briefly overview the estimation theory for a quantum Gaussian shift model.
For a mathematically rigorous treatment, consult [24].

Lemma 2.22. Let (X,ϕh) ∼ N(h, J), where J is a d× d positive semidefinite complex matrix.
Then

ϕh(Xi) = hi (2.24)

and
ϕh((Xj − hj)(Xi − hi)) = Jij (2.25)

hold.

Proof. Letting U(ξ) := e
√
−1ξiXi ,

ϕh(U(ξ)) = 1 +
√
−1ϕh(ξ

iXi)−
1

2
ϕh(
(
ξiXi

)2
) + o(ξ2)

= 1 +
√
−1ϕh(Xi)ξ

i − 1

2
ϕh(XiXj)ξ

iξj + o(ξ2)

= 1 +
√
−1ϕh(Xi)ξ

i − 1

2
ϕh(Xi ◦Xj)ξ

iξj + o(ξ2),

where Xi ◦Xj =
1
2 (XiXj +XJXi). Further, letting V = Re J and S = Im J ,

e
√
−1ξihi− 1

2Vijξ
iξj = 1 +

(√
−1ξihi −

1

2
Vijξ

iξj
)
+

1

2

(√
−1ξihi −

1

2
Vijξ

iξj
)2

+ o(ξ2)

= 1 +
√
−1ξihi −

1

2
(Vij + hihj) ξ

iξj + o(ξ2).

A comparison immediately leads to (2.24) and the identity ϕh(Xi ◦Xj) = Vij + hihj . Thus

ϕh((Xj − hj)(Xi − hi)) = ϕh(XjXi − hjXi − hiXj + hihj)

= ϕh(XjXi)− hihj

= ϕh

(
Xi ◦Xj −

1

2
[Xi, Xj ]

)
− hihj = Jij .



2.B. ESTIMATION OF QUANTUM GAUSSIAN SHIFT MODEL 35

In what follows, we treat the quantum Gaussian shift model
{
N(τh,Σ) ; h ∈ Rd

}
on CCR (ImΣ),

where Σ is an r× r complex matrix such that Σ ≥ 0 and ReΣ > 0, and τ is an r× d real matrix
with d ≤ r such that rank τ = d. Let X = (X1, . . . , Xr) be the basic canonical observables of
CCR (ImΣ), and (X,ϕh) ∼ N(τh,Σ).

Lemma 2.23. Let U(ξ) := e
√
−1ξiXi . The SLD Li (1 ≤ i ≤ d) at h defined by

∂

∂hk
ϕh(U(ξ)) =

1

2
ϕh (U(ξ)Lk + LkU(ξ)) (2.26)

is given by

Lk =
r∑

ℓ=1

[
(ReΣ)

−1
τ
]
ℓk
(Xℓ − (τh)ℓI). (2.27)

Proof. In this proof we lift Einstein’s summation convention. Let V = ReΣ and S = ImΣ, and
fix a k ∈ {1, . . . , d} arbitrarily. Due to the Baker-Hausdorff formula,

U(ξ) = e
√
−1

∑r
i=1 ξiXi = exp

(
−
√
−1

r∑
i=1

Skiξ
kξi

)
exp

(√
−1ξkXk

)
exp

√
−1
∑
i ̸=k

ξiXi

 .

By differentiating in ξk, we have

∂

∂ξk
U(ξ) = −

√
−1

(
r∑

i=1

Skiξ
i −Xk

)
U(ξ).

Thus

ϕh((Xk − (τh)kI)U(ξ)) = ϕh

((
r∑

i=1

Skiξ
i −

√
−1

∂

∂ξk
− (τh)kI

)
U(ξ)

)

=

(
r∑

i=1

Skiξ
i −

√
−1

∂

∂ξk
− (τh)k

)
ϕh(U(ξ))

=

(
r∑

i=1

Skiξ
i −

√
−1

∂

∂ξk
− (τh)k

)
e
√
−1 tξτh− 1

2
tξV ξ

=

(
r∑

i=1

Skiξ
i − (τh)k

)
ϕh(U(ξ))−

√
−1
(√

−1(τh)k − (V ξ)k
)
ϕh(U(ξ))

=
(
Sξ +

√
−1V ξ

)
k
ϕh(U(ξ))

=
√
−1
(
J̄ξ
)
k
ϕh(U(ξ)). (2.28)

Similarly, we obtain

ϕh(U(ξ)(Xk − (τh)kI)) =
√
−1 (Jξ)k ϕh(U(ξ)). (2.29)

By combining (2.28) and (2.29),

ϕh ( (Xk − (τh)kI)U(ξ) + U(ξ)(Xk − (τh)kI) ) = 2
√
−1 (V ξ)k ϕh(U(ξ)). (2.30)

On the other hand, by a direct calculation

∂

∂hk
ϕh(U(ξ)) =

∂

∂hk
e
√
−1 tξτh− 1

2
tξV ξ =

√
−1(tξτ)kϕh(U(ξ)). (2.31)

A comparison between (2.30) and (2.31) yields

Lk =
r∑

ℓ=1

[
V −1τ

]
ℓk
(Xℓ − (τh)ℓI).
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Let L̃k := Xk − (τh)kI. It follows from (2.28) and (2.29) that Dϕh
(L̃i) =

∑r
i=1(V

−1S)kiL̃k,
where Dϕh

is the commutation operator with respect to ϕh defined by

ϕh (U(ξ)Dϕh
(X) +Dϕh

(X)U(ξ)) =
√
−1ϕh (U(ξ)X −XU(ξ)) .

This means T = span
{
L̃k

}r

k=1
is Dϕh

invariant. Further, we can check from (2.27) that

span {Li}di=1 ⊂ T and

ϕh(L̃jL̃i) = Σij (2.32)

and
Reϕh(LjL̃i) = τij . (2.33)

These relations play a fundamental role in connecting a general quantum statistical model
S =

{
ρθ ; θ ∈ Θ ⊂ Rd

}
on H with a quantum Gaussian shift model G =

{
N(τh,Σ) ; h ∈ Rd

}
as

follows. Let {LS
i }di=1 be the SLDs of the model S at θ = θ0, and let T S the minimal DS invariant

extension of the SLD tangent space span{LS
i }di=1. Further let {DS

j }rj=1 be a basis of T S and let
Σ and τ are r × r and r × d matrices whose (i, j)th entries are given by Σij = Tr ρθ0DjDi and
τij = ReTr ρθ0LjDi. Based on those information, we introduce a quantum Gaussian shift model
G =

{
N(τh,Σ) ; h ∈ Rd

}
on CCR (ImΣ), which exhibits relations (2.32) and (2.33). Recall that

the Holevo bound of a quantum statistical model is completely determined by the information
Σ and τ (Theorem 2.19). We thus obtain the following important consequence.

Corollary 2.24. The Holevo bound Cθ0 (ρθ, G) for the model S at θ = θ0 is identical to the
Holevo bound Ch (N(τh,Σ), G) for the Gaussian shift model G.

As to the achievability of the Holevo bound Ch (N(τh,Σ), G) for the Gaussian shift model
G, we have the following.

Theorem 2.25. Given a weight G > 0, there exist an unbiased estimator M̂ that achieves the
Holevo bound for the model {N(τh,Σ) ; h ∈ Rd}, i.e.,

TrGVh[M̂ ] = Ch (N(τh,Σ), G) .

Proof. Let F be the matrix that achieve the minimum of (2.23) for the model {N(τh,Σ)}h,
and let Z = tFΣF . Further, let Ṽ = ReZ, S̃ = ImZ. V̂ =

√
G−1

∣∣∣√G ImZ
√
G
∣∣∣√G−1, and

Ẑ = V̂ −
√
−1S̃. We introduce an ancillary quantum Gaussian state (Y, ψ) ∼ N(0, Ẑ) on another

CCR
(
−S̃
)
, and a set of canonical observables

Xi := X̃i ⊗ I + I ⊗ Yi (1 ≤ i ≤ d),

on CCR
(
S̃
)
⊗CCR

(
−S̃
)
, where X̃i = F k

i Xk. It is important to notice that the CCR subalgebra

A[X] generated by {Xi}1≤i≤d is a commutative one because

√
−1

2
[Xi, Xj ] = S̃ij − S̃ij = 0

for 1 ≤ i, j ≤ d. Moreover

(ϕh ⊗ ψ)(e
√
−1ξiXi) =

[
ϕh

(
e
√
−1ξiX̃i

)] [
ψ
(
e
√
−1ξiYi

)]
= e

√
−1ξihi− 1

2 ξ
iξj(Ṽ+V̂ )ij .

This means that the observables Xi (1 ≤ i ≤ d) follow the classical Gaussian distribution
N(h, Ṽ + V̂ ). In particular,

Eh[X] = h

for all h ∈ Rd, and
TrGVh[X] = TrG(Ṽ + V̂ ) = Ch (N(τh,Σ), G) .

The claim was verified.
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Appendix 2.C Estimation theory for pure state models

Lemma 2.26. Let ρ be a pure state and A1, . . . , Ad observables on a finite dimensional Hilbert
space H. If Jij := Tr ρAjAi are all real for 1 ≤ i, j ≤ d, there exist observables K1, . . . , Kd such
that

[Ai +Ki, Aj +Kj ] = 0,

for 1 ≤ i, j ≤ d and

Kiρ = 0

for 1 ≤ i ≤ d.

Proof. Let ρ := |ψ⟩ ⟨ψ|, and let |li⟩ := Ai |ψ⟩ for 1 ≤ i ≤ d. Because ⟨ψ|li⟩ and ⟨li|lj⟩ (= Jji)

are all real, there exist a CONS {|ek⟩}dimH
k=1 of H such that ⟨ek|ψ⟩ and ⟨ek|li⟩ are all real, and

that ⟨ek|ψ⟩ ̸= 0 for all k. Let

Ãi :=

dimH∑
k=1

⟨ek|li⟩
⟨ek|ψ⟩

|ek⟩ ⟨ek| ,

and Ki := Ãi −Ai. Obviously [Ai +Ki, Aj +Kj ] = [Ãi, Ãj ] = 0, and

Ki |ψ⟩ =
(
Ãi −Ai

)
|ψ⟩ = |li⟩ − |li⟩ = 0.

This means Kiρ = 0.

Theorem 2.27. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model comprising pure states

on a finite dimensional Hilbert space H, and let Cθ0 (ρθ, G) be the Holevo bound at θ0 ∈ Θ
for a given weight G > 0. There exist a locally unbiased estimator M̂ at θ0 ∈ Θ such that
TrGV [M̂ ] = Cθ0 (ρθ, G).

Proof. Let T be the minimal D invariant extension of the SLD tangent space span {Li}di=1 of the

model {ρθ} at θ = θ0, i.e., containing all the SLDs {Li}di=1 of {ρθ} at θ0, let {Dj}rj=1 be a basis
of T . Let Σ, τ be r × r, r × d complex matrices defined by Σij = Tr ρθ0DjDi, τij = Tr ρθ0LjDi.
According to Theorem 2.19, the Holevo bound for a weight G > 0 can be expressed

Cθ0 (ρθ, G) = min
F

{TrGZ +Tr
∣∣∣√G ImZ

√
G
∣∣∣ ; Z = tFΣF,

F is an r × d real matrix satisfying tF Re (τ) = I}. (2.34)

Let F be the matrix that attains the minimum in (2.34), and let Z := tFΣF , Ṽ := ReZ,

S̃ := ImZ, V̂ =
√
G−1

∣∣∣√G ImZ
√
G
∣∣∣√G−1, and Ẑ = V̂ −

√
−1S̃. Lemma 2.13 assures that

there exist a Hilbert space Ĥ and a pure state σ and observables Bi (1 ≤ i ≤ d) on Ĥ such that
TrσBi = 0 and TrσBjBi = Ẑij . Further, let

Xi := X̃i ⊗ Î + I ⊗Bi (1 ≤ i ≤ d),

where X̃i := F k
i Dk (1 ≤ i ≤ d), and Î is the identity matrix on Ĥ. It then follows that

Tr (ρθ0 ⊗ σ)XjXi =
(
Ṽ + V̂

)
ij
. (2.35)

According to Lemma 2.26, there exist observables K1, . . . , Kd on H⊗Ĥ such that [Xi+Ki, Xj+

Kj ] = 0 andKi (ρθ0 ⊗ σ) = 0. Let T̂i := θi0I⊗Î+
(
Xi +Ki

)
. Then T̂1, . . . , T̂d are simultaneously

measurable, and satisfy the local unbiasedness condition:

Tr (ρθ0 ⊗ σ) T̂j = θj0
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and

Tr (∂iρθ0 ⊗ σ) T̂j = Tr ∂iρθ0X̃j

= F k
j Tr ∂iρθ0Dk

= F k
j ReTr ρθ0LiDk

= {F (Re τ)}ji = δij .

Further

Vθ0 [T̂ ]ij = Tr (ρθ0 ⊗ σ)
(
Xi +Ki

) (
Xi +Ki

)
=
(
Ṽ + V̂

)
ij
.

This completes the proof.

Appendix 2.D Quantum central limit theorem

Jaksić, Pautrat, and Pillet [28] proved the following strong version of a quantum central limit
theorem.

Proposition 2.28. Given a sequence H(n) of Hilbert space, let ρ(n) and A(n) = (A
(n)
1 , . . . , A

(n)
d )

be a state and a list of observables on H(n) that enjoy the quantum central limit theorem in the
sense of convergence of the quasi-characteristic function:(

A(n), ρ(n)
)
⇝
q
N(h, J) ∼ (X,ϕ),

where J is a d × d positive semidefinite matrix. Then for any bounded continuous functions
f1, . . . , fm and a noncommutative polynomial P , it follows that

lim
n→∞

Tr ρ(n)P

(−−−−−→
f(A(n))

)
= ϕ

(
P
(−−−→
f(X)

))
,

where
−−−→
f(B) := (f1(B1), . . . , f1(Bd), . . . , fm(B1), . . . , fm(Bd)) for a given list B = (B1, . . . , Bd)

of observables, and P
(−−−→
f(B)

)
:= P (f1(B1), . . . , f1(Bd), . . . , fm(B1), . . . , fm(Bd)).

Proposition 2.28 is strong enough to prove the following, which is essential in constructing a
sequence of POVMs that asymptotically achieves the Holevo bound (Theorem 2.12).

Corollary 2.29. Under the same assumption as in Proposition 2.28, for any bounded contin-
uous functions g, f1, . . . , fm, and noncommutative polynomials P,Q, with P being Hermitian
operator-valued, it follows that

lim
n→∞

Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
= ϕ

(
g
(
P
(−−−→
f(X)

))
Q
(−−−→
f(X)

)
g
(
P
(−−−→
f(X)

)))
.

Proof. Let l := max1≤i≤m supx |fi(x)|. There exist lP > 0 and lQ > 0 such that lP >
∥∥∥P (−→B )

∥∥∥
and lQ >

∥∥∥Q(
−→
B )
∥∥∥ for any list

−→
B = (B1, . . . , Bdm) of observables such that ∥Bi∥ ≤ l. Let

lg := sup {|g(x)| ; x ∈ [−lP , lP ]}. There exist a sequence R(k)(x) of polynomials that uniformly
converges to g(x) on [−lP , lP ].

Let

akn := Tr ρ(n)R(k)

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

))
,

and let

an := Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
.
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We show that akn uniformly converges to an as k → ∞. In fact, letting lR := sup
{
R(k)(x) ; k ∈ N, x ∈ [−lP , lP ]

}
,

sup
n∈N

|an − akn|

= sup
n∈N

∣∣∣∣ Tr ρ(n)g(P (−−−−−→f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
= −Tr ρ(n)R(k)

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

)) ∣∣∣∣
≤ sup

n∈N

∣∣∣∣Tr ρ(n)g(P (−−−−−→f(A(n))

))
Q

(−−−−−→
f(A(n))

) [
g

(
P

(−−−−−→
f(A(n))

))
−R(k)

(
P

(−−−−−→
f(A(n))

))]∣∣∣∣
+ sup

n∈N

∣∣∣∣Tr ρ(n) [g(P (−−−−−→f(A(n))

))
−R(k)

(
P

(−−−−−→
f(A(n))

))]
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

))∣∣∣∣
≤ lglQ sup

n∈N

∥∥∥∥g(P (−−−−−→f(A(n))

))
−R(k)

(
P

(−−−−−→
f(A(n))

))∥∥∥∥
+lQlR sup

n∈N

∥∥∥∥g(P (−−−−−→f(A(n))

))
−R(k)

(
P

(−−−−−→
f(A(n))

))∥∥∥∥
≤ lQ(lg + lR) sup

x∈[−lP ,lP ]

∣∣∣g(x)−R(k)(x)
∣∣∣ ,

which converges to zero as k → ∞.
The uniform convergence akn ⇒ an as well as the existence of limk→∞ limn→∞ akn, which

follows from Proposition 2.28, ensure that

lim
n→∞

Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
= lim

n→∞
lim
k→∞

Tr ρ(n)R(k)

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

))
= lim

n→∞
lim
k→∞

akn

= lim
k→∞

lim
n→∞

akn

= lim
k→∞

ϕ
(
R(k)

(
P
(−−−→
f(X)

))
Q
(−−−→
f(X)

)
R(k)

(
P
(−−−→
f(X)

)))
= ϕ

(
g
(
P
(−−−→
f(X)

))
Q
(−−−→
f(X)

)
g
(
P
(−−−→
f(X)

)))
.

This proves the claim.





Chapter 3

Efficiency of Quantum State
Tomography for Qubits

Abstract

The efficiency of quantum state tomography is discussed from the point of view of quantum
parameter estimation theory, in which the trace of the weighted covariance is to be minimized.
It is shown that tomography is optimal only when a special weight is adopted.

3.1 Motivation

Let L(H) be the set of linear operators on a Hilbert space H = C2, and let S := {τx | x =
(x1, x2, x3) ∈ X} be the set of strictly positive density operators on H parametrized by the
Stokes parameters x ∈ X := {x ∈ R3 | (x1)2 + (x2)2 + (x3)2 < 1} as

τx :=
1

2
(I + x1σ1 + x2σ2 + x3σ3), (3.1)

where σ1, σ2, σ3 are the Pauli matrices. Suppose we have an unknown quantum state τ = τx ∈ S.
We are interested in identifying the true value of the parameter x.

Let

M(s)(H) := {(M1,M2, . . . ,Ms) |Mi ∈ L(H), Mi ≥ 0,
s∑

i=1

Mi = I}

be the set of positive operator-valued measures (POVMs) on H taking values on a finite set
of outcomes labeled by {1, 2, . . . , s}, and let M(H) =

∪∞
s=1 M(s)(H). Given POVMs M =

(M1,M2, . . . ,Ms1), N = (N1, N2, . . . , Ns2), and a real number p between 0 and 1, we can generate
a new POVM by a randomized combination of them as follows:

pM ⊕ (1− p)N := (pM1, . . . , pMs1 , (1− p)N1, . . . , (1− p)Ns2) ∈ M(H).

We can repeat this randomization procedure inductively to obtain
⊕k

i=1 piM
(i) ∈ M(H), where

M (1),M (2), . . . ,M (k) ∈ M(H) and pi ≥ 0 (1 ≤ i ≤ k) such that
∑k

i=1 pi = 1. We shall call⊕k
i=1 piM

(i) a random measurement when M (1),M (2), . . . ,M (k) ∈ M(H) are all projection-
valued measurements (PVMs). Applying a random measurement means applying one of the
projection-valued measurement {M (i)}1≤i≤k chosen at random according to the probability dis-
tribution p = (pi)1≤i≤k

1.
LetM (1),M (2),M (3) be projection-valued measurements given by the spectral decomposition

of the observables σ1, σ2, σ3, respectively, and letM (T ) := 1
3 (M

(1)⊕M (2)⊕M (3)) be their random

1Helstrom [21] defined a random measurement based on a different type of convex structure of M(H) as
(pM1 + (1− p)N1, . . . , pMs + (1− p)Ns). Our definition of random measurement is seemingly different from his.
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measurement according to the uniform distribution. Suppose that, amongm applications ofM (T )

to the unknown state τx, the µth PVM M (µ) has been chosen mµ times and the outcomes ±1
have been observed m±

µ times, where m = m1 +m2 +m3 and mµ = m+
µ +m−

µ for µ ∈ {1, 2, 3}.
We can construct an unbiased estimator for the Stokes parameters x = (x1, x2, x3) as

x̂µ :=
m+

µ −m−
µ

mµ
, µ ∈ {1, 2, 3}. (3.2)

We shall call this estimator a tomography in this chapter. Note that the tomography can be
regarded as a maximum likelihood estimator. In fact, since the probability distribution for the
outcomes ±1 of the µth PVM

M (µ) =

(
1

2
(I + σµ),

1

2
(I − σµ)

)
, (3.3)

applied to the state τx ∈ S is given by pM
(µ)

τx = ( 1+xµ

2 , 1−xµ

2 ), the probability distribution for the

outcome of the tomography M (T ) is

pM
(T )

τx =
1

6
(1 + x1, 1− x1, 1 + x2, 1− x2, 1 + x3, 1− x3). (3.4)

As a consequence, the likelihood function for the outcomes (m±
µ )1≤µ≤3 obtained by m applica-

tions of M (T ) is

lm(x) =

3∑
µ=1

(
m+

µ log
1 + xµ

6
+m−

µ log
1− xµ

6

)
,

and it is easy to see that ∂
∂xµ lm = 0 is equivalent2 to (3.2).

In order to investigate the optimality of the tomography, let us recall some basic facts from
quantum parameter estimation theory. Let {ρθ | θ = (θ1, . . . , θd) ∈ Θ} be a smooth parametric
family of density operators on a Hilbert space H with parameter space Θ ⊂ Rd. An estimator
is represented by a pair (M, θ̂) of a POVM M ∈ M(H) and a map θ̂ : N → Θ that gives the

estimated value θ̂(n) from each observed data n ∈ N. An estimator (M, θ̂) is called unbiased if

Eθ[M, θ̂] :=
∑
n∈N

θ̂(n)Tr ρθMn = θ (3.5)

is satisfied for all θ ∈ Θ. An estimator (M, θ̂) is called locally unbiased [24] at a given point θ0 ∈ Θ
if the condition (3.5) is satisfied around θ = θ0 up to the first order of the Taylor expansion. It

is well known that an estimator (M, θ̂) that is locally unbiased at θ0 satisfies the following series
of inequalities [24, 21]:

Vθ0 [M, θ̂] ≥ (gθ0(M))−1 ≥ (Jθ0)
−1, (3.6)

where Vθ[·] denotes the covariance matrix, and gθ(M) is the classical Fisher information matrix
at θ with respect to M ∈ M(H) defined by

gθ(M) :=

[∑
n

( ∂
∂θiTr ρθMn)(

∂
∂θj Tr ρθMn)

Tr ρθMn

]
1≤i,j≤d

.

Further, Jθ is the quantum Fisher information matrix at θ given by

Jθ :=

[
Tr (

∂

∂θi
ρθ)Lj

]
1≤i,j≤d

=

[
1

2
Tr ρθ(LiLj + LjLi)

]
1≤i,j≤d

,

where Li is the ith symmetric logarithmic derivative (SLD) defined by the selfadjoint operator
satisfying the equation

∂

∂θi
ρθ =

1

2
(Liρθ + ρθLi). (3.7)

2There are possibilities that x̂ /∈ X . However it follows from the law of large numbers of the tomography that
x̂ ∈ X for sufficiently large m almost surely.
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The inequality Vθ0 [M, θ̂] ≥ (Jθ0)
−1 is called the quantum Cramér-Rao inequality. The first in-

equality in (3.6) is saturated when θ̂i(n) = θi +
∑

j(gθ(M)−1)ij ∂
∂θj (log Tr ρθMn) is adopted.

However the second inequality in (3.6) cannot be saturated in general because of the non-
commutativity of the SLDs. To avoid this difficulty, we often adopt an alternative strategy
to seek the estimator which minimizes TrHθ0Vθ0 [M, θ̂], where Hθ is a given d × d real positive
definite matrix for each θ called a weight [24, 21]. Thus the problem of finding the optimal
estimator boils down to the problem of finding M ∈ M(H) which minimizes TrHθ0gθ0(M)−1.

It is known that when dimH = 2, there is a definitive answer to the optimality of estimators,
which is summarized in the following Propositions.

Proposition 3.1. For a given weight Hθ,

min
{
TrHθgθ(M)−1 |M ∈ M(H)

}
= (TrRθ)

2
, (3.8)

where Rθ :=

√√
J−1
θ Hθ

√
J−1
θ . The minimum is attained if and only if M ∈ M(H) satisfies

gθ(M) =

√
JθRθ

√
Jθ

TrRθ
. (3.9)

Proposition 3.1 was first proved by Nagaoka [37] (cf. [7]) when d = 2. The case d = 3 is
proved by Hayashi [17], and independently by Gill and Massar [13]. Further, Nagaoka constructed
explicitly a measurement which attains the minimum when d = 2. His construction of an optimal
estimator can be generalized as follows.

Proposition 3.2. Given a weight Hθ, let us diagonalize Rθ as Rθ = USU−1 where S =
diag(S1, . . . , Sd) is a diagonal matrix and U ∈ O(d), and let M (i) be a projection-valued mea-
surement given by the spectral decomposition of the operator

L̂i :=

d∑
k=1

KikLk, (3.10)

where Kik := (U−1
√
J−1
θ )ik. Then the random measurement

M := p1M
(1) ⊕ · · · ⊕ pdM

(d) (3.11)

satisfies (3.9), where pi := Si/(S1 + · · ·+ Sd).

Note that the optimal measurement (3.11) depends on the true value of θ ∈ Θ in general.
In such a case, we necessary invoke an adaptive estimation scheme [9] to achieve the minimum
(3.8).

Now it is natural to inquire whether the tomography is optimal in view of Propositions 3.1
and 3.2. The answer is given by the following.

Theorem 3.3. Tomography is optimal if and only if the weight Hx is proportional to the fol-
lowing special one:

H(T )
x :=


1

1−(x1)2 − (x1)(x2)
(1−(x1)2)(1−(x2)2) − (x3)(x1)

(1−(x3)2)(1−(x1)2)

− (x1)(x2)
(1−(x1)2)(1−(x2)2)

1
1−(x2)2 − (x2)(x3)

(1−(x2)2)(1−(x3)2)

− (x3)(x1)
(1−(x3)2)(1−(x1)2) − (x2)(x3)

(1−(x2)2)(1−(x3)2)
1

1−(x3)2

 . (3.12)

Note that H
(T )
x is not rotationally symmetric. This implies that the optimal weight depends

on the choice of the coordinate axes. Theorem 3.3 also implies that the tomography is not
optimal for a rotationally symmetric weight that is natural for a physical point of view.

This chapter is organized as follows. Theorem 3.3 is proved in Section 3.2, and the non-
optimality of the tomography for a rotationally symmetric weight is discussed and numerically
demonstrated in Section 3.3. An extension to the case when dimH ≥ 3 is also discussed there.
For the reader’s convenience, simple proofs of Propositions 3.1 and 3.2 are given in Appendix.
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3.2 Proof of Theorem 3.3

We prove Theorem 3.3 in a series of Lemmas.

Lemma 3.4. Let Lµ be the SLD of ∂
∂xµ for µ ∈ {1, 2, 3}. Then

Lµ = σµ − xµ

2 det τ
(I − τ).

Proof. We need only verify that Lµ satisfies equation (3.7).

Lµτ = σµτ −
xµ

2 det τ
τ(I − τ) = σµτ −

xµ

2
I.

Therefore

1

2
(Lµτ + τLµ) =

1

2
({τ, σµ} − xµI) =

1

2
({1

2
I, σµ}+ {x

µ

2
σµ, σµ} − xµI)

=
1

2
(σµ + xµI − xµI) =

σµ
2

=
∂

∂xµ
τ

where {A,B} := AB +BA for A,B ∈ L(H).

Lemma 3.5. Let Jx be the SLD Fisher information matrix at x. Then

Jx = (I − |x⟩ ⟨x|)−1

where |x⟩ =

 x1

x2

x3

.

Proof. We calculate the elements of Jx.

(Jx)µν = Tr
∂τ

∂xµ
Lν = Tr

σµ
2

(
σµ − xµ

2 det τ
(I − τ)

)
= δµν +

xµxν

4 det τ
.

Thus

Jx = I +
1

4det τ
|x⟩ ⟨x| = I +

1

1− r2
|x⟩ ⟨x| .

Then

(I − |x⟩ ⟨x|)
(
I +

1

1− r2
|x⟩ ⟨x|

)
= I +

1

1− r2
|x⟩ ⟨x| − |x⟩ ⟨x| − r2

1− r2
|x⟩ ⟨x| = I,

where r =
√
⟨x|x⟩. Therefore I + 1

1−r2 |x⟩ ⟨x| = (I − |x⟩ ⟨x|)−1
.

Lemma 3.6. Given Fx ∈ gx(M(H)) with Fx > 0. There exists a weight Hx such that

min
M∈M(H)

{
TrHxgx(M)−1

}
= TrHxF

−1
x (3.13)

if and only if

TrJ−1
x Fx = 1. (3.14)

Further, when (3.14) is satisfied,

Hx = kFx J
−1
x Fx (3.15)

is the only weight which satisfies (3.13) where k is an arbitrary real positive number.
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Proof. We first assume that there exists a weightHx which satisfies (3.13). LetRx :=

√√
J−1
x Hx

√
J−1
x .

According to Proposition 3.1, Fx must be

Fx =

√
JxRx

√
Jx

TrRx
,

so that

TrJ−1
x Fx = TrJ−1

x

√
JxRx

√
Jx

TrRx
= 1.

Then we conclude (3.14).
We next assume that (3.14) is satisfied. Let Hx = kFx J

−1
x F . It follows from Proposition 3.1

that

min
M∈M(H)

TrHxgx(M)−1 =

(
Tr

√
k
√
J−1
x Fx J

−1
x Fx

√
J−1
x

)2

= k
(
TrJ−1

x Fx

)2
= k

(
Tr J−1

x Fx

)
= Tr (kFx J

−1
x Fx)F

−1
x = TrHxF

−1
x .

Further, the weight of the form (3.15) are the only weights which satisfy (3.13) because the
mapping

M (1)(d,R) ∋ Hx 7→
√
Jx

√√
J−1
x Hx

√
J−1
x

√
Jx

Tr

√√
J−1
x Hx

√
J−1
x

=

√
JxRx

√
Jx

TrRx
∈ gx(M(H))

is injective where M (1)(d,R) := {G | G is d× d real positive definite matrix, TrG = 1}.

Proof of Theorem 3.3. We can calculate the classical Fisher information matrix with respect
to M (T ) from (3.4) as follow:

gx(M
(T )) =

1

3


1

1−(x1)2 0 0

0 1
1−(x2)2 0

0 0 1
1−(x3)2

 . (3.16)

Then

TrJ−1
x gx(M

(T )) = Tr
1

3
(I − |r⟩ ⟨r|)


1

1−(x1)2 0 0

0 1
1−(x2)2 0

0 0 1
1−(x3)2


=

1

3
(

1

1− (x1)2
+

1

1− (x2)2
+

1

1− (x3)2
− (x1)2

1− (x1)2
− (x2)2

1− (x2)2
− (x3)2

1− (x3)2
)

= 1

We see from Lemma 3.6 that Hx := k gx(M
(T )) J−1

x gx(M
(T )) are the only weights which satisfy

min
N∈M(H)

{
TrHx gx(N)−1

}
= TrHx gx(M

(T ))−1.

Then

k gx(M
(T )) J−1

x gx(M
(T ))

= k gx(M
(T )) (I − |x⟩ ⟨x|)gx(M (T )) = k (gx(M

(T ))2 − gx(M
(T )) |x⟩ ⟨x| gx(M (T )))

= 9k


1

1−(x1)2 − (x1)(x2)
(1−(x1)2)(1−(x2)2) − (x3)(x1)

(1−(x3)2)(1−(x1)2)

− (x1)(x2)
(1−(x1)2)(1−(x2)2)

1
1−(x2)2 − (x2)(x3)

(1−(x2)2)(1−(x3)2)

− (x3)(x1)
(1−(x3)2)(1−(x1)2) − (x2)(x3)

(1−(x2)2)(1−(x3)2)
1

1−(x3)2


= 9kH

(T )
x .
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x1

x2

x1

x2

x1

x2

Figure 3.1: Indicatrices for several typical weights Hx, where Hx = H
(T )
x (left), Hx = Jx

(middle), and Hx = I (right).

3.3 Discussions

Let us investigate the properties of the weight H
(T )
x that is optimal for the tomography. We

first regard a weight Hx as a metric tensor on the tangent space TτxS at x ∈ X , and let us
plot the indicatrix, the set of end points of tangent vectors v ∈ TxS centered at x satisfying
tvHxv = 1. Figure 3.1 shows the indicatrices on the x1x2-plane for Hx = H

(T )
x (left), Hx = Jx

(middle), and Hx = I (right). Obviously H
(T )
x is not rotationally symmetric, and is awkwardly

distorted when x = (x1, x2, x3) ∈ X is off the coordinate axes. This means that the tomography
depends highly on the choice of the coordinate axes. Actually, an estimation scheme should be
independent of the choice of the coordinate axes because their choice is completely arbitrary. It
is therefore natural to adopt a rotationally symmetric weight Hx which satisfies U∗H(Ux)U = Hx

for U ∈ SO(3).
Any rotationally symmetric weight can be represented by

H(f,g)
x := f(r)I + (g(r)− f(r))

1

r2
|x⟩ ⟨x| , (3.17)

for x ̸= 0 where f, g are functions on (0, 1) such that f(r) > 0 and g(r) > 0 (see Appendix 3.B).

Given a weight Hx = H
(f,g)
x , let M (f,g) ∈ M(H) be the corresponding optimal measurement

given by (3.11), and let cx := TrH
(f,g)
x gx(M

(f,g))−1 and c
(T )
x := TrH

(f,g)
x gx(M

(T ))−1. It then
follows from (3.8) and (3.16) that

cx =

(
Tr

√√
J−1
x H

(f,g)
x

√
J−1
x

)2

=
(
2
√
f(r) +

√
(1− r2)g(r)

)2
, (3.18)

and
c(T )
x = 3(2f(r) + (1− r2)g(r)) + 3tr2(g(r)− f(r)), (3.19)

where t := 1− (x1)4+(x2)4+(x3)4

r4 . Note that 0 ≤ t ≤ 2
3 , and that t = 0 if and only if x is on one of

the coordinate axes, and t = 2
3 if and only if x is parallel to one of the vectors (1, 1, 1), (−1, 1, 1),

(1,−1, 1), and (1, 1,−1). In addition,

c(T )
x − cx = 2

(√
(1− r2)g(r)−

√
f(r)

)2
+ 3r2 (g(r)− f(r)) t (3.20)

= 2
(√

(1− r2)f(r)−
√
g(r)

)2
+ 3r2 (f(r)− g(r))

(
2

3
− t

)
. (3.21)

By considering the cases g(r) ≥ f(r) and f(r) > g(r) separately, we conclude that c
(T )
x ≥ cx for

any rotationally symmetric weight H
(f,g)
x .
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Figure 3.2: The behavior of crv (solid) and c
(T )
rv (dashed) as functions of radius r in the direction

v = 1√
3
(1, 1, 1)t for H

(f,g)
x = Jx (left) and H

(f,g)
x = I (right).

For example, whenH
(f,g)
x = Jx, for which f(r) = 1 and g(r) = 1

1−r2 , we see that g(r)−f(r) →
∞ as r → 1, so that c

(T )
x becomes much larger than cx. On the other hand, when H

(f,g)
x = I,

for which f(r) = g(r) = 1, the second terms in (3.20) and (3.21) vanish, and the difference

c
(T )
x −cx becomes relatively small. Figure 3.2 shows the behavior of crv (solid) and c

(T )
rv (dashed)

as functions of radius r in the direction v = 1√
3
(1, 1, 1)t for H

(f,g)
x = Jx (left) and H

(f,g)
x = I

(right). When H
(f,g)
x = Jx, we see that c

(T )
rv diverges as r → 1, while crv converges to 9. When

H
(f,g)
x = I, on the other hand, c

(T )
rv and crv converge to 6 and 4 respectively as r → 1, and their

difference is relatively small.
Now let us make a numerical simulation to compare the asymptotic performance of the

tomography and the optimal adaptive estimation schemes for Hx = Jx and Hx = I. We set the
qubit state to be estimated as τx0 with x0 = (0.55, 0.55, 0.55). Since the optimal estimator given
in Proposition 3.2 depends on the true value of x ∈ X , we shall invoke an adaptive estimation
scheme in evaluating TrHxgx(M(x))−1, with M(x) being the optimal POVM for x ∈ X , as
follows [36, 9]: We begin by choosing x̂(0) ∈ X arbitrarily. Suppose that M(x̂(0)) is applied and
that the outcome n1 ∈ {1, 2, . . . , s} is obtained. The maximum likelihood estimator is given by

x̂(1) := argmax
x∈X

l1(x),

where
l1(x) := logTr τ(x)Mn1(x̂

(0)).

At the mth stage (m ≥ 2), suppose that M(x̂(m−1)) is applied and that the outcome nm ∈
{1, 2, . . . , s} is obtained. The maximum likelihood estimator at the mth stage is given by

x̂(m) := argmax
x∈X

lm(x),

where

lm(x) :=
m∑
i=1

log Tr τ(x)Mni(x̂
(i−1)).

Because of the strong consistency and the asymptotic efficiency of the adaptive estimation [9],
the sequence m × TrHx0

V [x̂(m)] of the weighted covariances multiplied by m converges to
TrHx0gx0(M(x0))

−1 as m → ∞. Let us demonstrate this behavior by a numerical simula-
tion. We have performed two kinds of numerical simulations in which the weight Hx has been
set as Hx = Jx and Hx = I. These results are shown in the left and the right figure in Figure
3.3, where the solid and dashed curves correspond to the adaptive estimation and the tomogra-
phy, and the solid and dashed horizontal lines correspond to the theoretical limits. As figures of
merit, we have plotted in Figure 3.3 the sample averages of 2m× B(τx0 , τx̂(m)), where B(·, ·) is
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Figure 3.3: A numerical comparison between the tomography and the optimal adaptive esti-
mation for the weight Hx, where Hx has been set as Hx = Jx (left) or Hx = I (right). The
solid and dashed curves correspond to the adaptive estimation and the tomography, respectively,
and the solid and dashed horizontal lines correspond to the theoretical limit. As a figure of
merit, we have plotted the sample averages of 2m×B(τx0 , τx̂(m)) or m× |x0 − x̂(m)|2 instead of
m× TrHx0V [x̂(m)].

the Bures distance, or m× |x0 − x̂(m)|2 instead of m×TrJx0V [x̂(m)] or m×TrV [x̂(m)] because
they are asymptotically equivalent (See Appendix 3.C). The sample averages are calculated by
repeating the estimation schemes 1000 times. We see that the sample average of each estimation
scheme approaches the corresponding theoretical value, as m becomes large. We further observe
that the adaptive estimation scheme is more efficient than the tomography, and the difference
of their performances is noticeable when Hx = Jx. We could conclude that the tomography is
not efficient for a rotationally symmetric weight that is natural in estimating an unknown qubit
state.

Finally we shall touch upon a generation to a higher dimensional Hilbert space H. Let

q = dimH(≥ 3) and let {
∣∣∣e(α)i

⟩
}qi=1 be an orthonormal basis for each α = 1, . . . , q + 1 satisfying

|
⟨
e
(α)
i |e(β)j

⟩
|2 = 1

q (α ̸= β) for all i, j. A finite subset {
∣∣∣e(α)i

⟩
}α,i of the Hilbert space H is

called a full set of mutually unbiased bases. It is known that a full set of mutually unbiased bases
exists when q is a prime number or the power of a prime [1]. As before, we regard the uniform
combination

M (T ) :=
1

q + 1

q+1⊕
α=1

M (α)

of the PVMsM (α) := (
∣∣∣e(α)1

⟩⟨
e
(α)
1

∣∣∣ , · · · , ∣∣∣e(α)q

⟩⟨
e
(α)
q

∣∣∣) ∈ M(H) as a tomography onH. Let S be

the set of strictly positive density operators on H, and let x = {xα,i} be an affine parametrization
of S given by

τx =
1

q
I +

q+1∑
α=1

q−1∑
i=1

xα,i(
∣∣∣e(α)i

⟩⟨
e
(α)
i

∣∣∣− 1

q
I).

Figure 3.4 shows the behavior of crv (solid) and c
(T )
rv (dashed) as functions of r in the direction

v ∈ Rq2−1 where

cx := min{TrJxgx(M)−1 |M ∈ M(H)},
c
(T )
x := TrJxgx(M

(T ))−1

with v11 = 1 and vαi = 0 (α ̸= 1 or i ̸= 1) for dimH = 3 (left) and dimH = 4 (right). We
see that the behavior for dimH = 3 and 4 are almost the same as that for dimH = 2 plotted
in Figure 3.2. This observation suggests that the same non-optimality result would hold for
dimH ≥ 3.
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Figure 3.4: The behavior of crv (solid) and c
(T )
rv (dashed) as functions of r in the direction

v ∈ Rq2−1 where v11 = 1 and vαi = 0 (α ̸= 1 or i ̸= 1) for dimH = 3 (left) and dimH = 4
(right).

Appendices

Appendix 3.A Proofs of Propositions 3.1 and 3.2

In this appendix, we give simple proofs of Propositions 3.1 and 3.2 for the reader’s convenience.
We start with some lemmas which hold for an arbitrary finite dimensional Hilbert space H. Let
us define the inner product ⟨·, ·⟩θ on L(H), as

⟨A, B⟩θ :=
1

2
Tr ρθ(A

∗B +BA∗).

Then we can rewrite gθ(M) by SLD as follows:

gθ(M) =

[∑
x

⟨Li, Mx⟩θ ⟨Lj , Mx⟩θ
⟨I, Mx⟩θ

]
1≤i,j≤d

,

Further we can also rewrite Jθ as Jθ = [⟨Li, Lj⟩]ij . Let us define L̂i as (3.10). Let us define

ĝθ(M) =

∑
x

⟨
L̂i, Mx

⟩
θ

⟨
L̂j , Mx

⟩
θ

⟨I, Mx⟩θ


1≤i,j≤d

.

Lemma 3.7. {L̂i}i ∪ {I} is orthonormal with respect to ⟨·, ·⟩θ.

Proof.⟨
L̂i, L̂j

⟩
θ
=
∑
s,t

KisKjt ⟨Ls, Lt⟩θ =
∑
s,t

KisJθ,st(K
∗)tj = (U−1

√
J−1
θ Jθ

√
J−1
θ U)ij = δij .

Further ⟨
L̂i, I

⟩
θ
=
∑
s

Kis ⟨Ls, I⟩θ =
∑
s

KisTr ρθLs =
∑
s

KisTr ∂iρθ = 0,

then
⟨I, I⟩θ = Tr ρθ = 1.

Lemma 3.8. It holds that
Tr ĝθ(M) ≤ dimH− 1,

for all M ∈ M(H).
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Proof.

Tr ĝθ(M) =
∑
x

∑d
i=1

⟨
L̂i, Mx

⟩2
θ

⟨I, Mx⟩θ
=
∑
x

 d∑
i=1

⟨
L̂i, Mx

⟩2
θ
+ ⟨I, Mx⟩2θ

⟨I, Mx⟩θ
− ⟨I, Mx⟩θ


≤

∑
x

(
⟨Mx, Mx⟩θ
⟨I, Mx⟩θ

− ⟨I, Mx⟩θ

)
(3.22)

=
∑
x

⟨Mx, Mx⟩θ
⟨I, Mx⟩θ

− 1 ≤
∑
x

TrMx − 1 (3.23)

= Tr I − 1 = dimH− 1.

Inequality (3.22) follows from Bessel’s inequality, and inequality (3.23) from

⟨I, Mx⟩θ TrMx = (Tr ρθMx) (TrMx) ≥ Tr ρθM
2
x = ⟨Mx, Mx⟩θ .

Lemma 3.9. Let gθ(M(H)) := {gθ(M) | M ∈ M(H)}. Then gθ(M(H)) is a convex set.
Similarly, ĝθ(M(H)) is also a convex set.

Proof. Let M (1),M (2) ∈ M(H) and let 0 ≤ p ≤ 1. Then we see

gθ(pM
(1) ⊕ (1− p)M (2))ij

=
∑
x

p2
⟨
Li, M

(1)
x

⟩
θ

⟨
Lj , M

(1)
x

⟩
θ

p
⟨
I, M

(1)
x

⟩
θ

+
∑
y

(1− p)2
⟨
Li, M

(2)
y

⟩
θ

⟨
Lj , M

(2)
y

⟩
θ

(1− p)
⟨
I, M

(2)
y

⟩
θ

=
∑
x

p

⟨
Li, M

(1)
x

⟩
θ

⟨
Lj , M

(1)
x

⟩
θ⟨

I, M
(1)
x

⟩
θ

+
∑
y

(1− p)

⟨
Li, M

(2)
y

⟩
θ

⟨
Lj , M

(2)
y

⟩
θ⟨

I, M
(2)
y

⟩
θ

= pgθ(M
(1))ij + (1− p)gθ(M

(2))ij . (3.24)

This implies that any convex combination of gθ(M
(1)) and gθ(M

(2)) belongs to gθ(M(H)).

Now we restrict ourselves to the case when dimH = 2. In this case it is necessary that
1 ≤ d ≤ 3.

Lemma 3.10. Given v = (v1, . . . , vd)
t ∈ Rd such that |v| = 1, then

ĝθ(M
(v)) = |v⟩ ⟨v| , (3.25)

where M (v) is a projection-valued measurement given by the spectral decomposition of Lv :=∑d
i=1 viL̂

i.

Proof.

⟨v| ĝθ(M (v)) |v⟩ =
∑

x

∑
i,j vivj

⟨L̂i,M(v)
x ⟩

θ
⟨L̂j ,M(v)

x ⟩
θ⟨

I,M
(v)
x

⟩
θ

=
∑

x

⟨Lv,M
(v)
x ⟩2

θ⟨
I,M

(v)
x

⟩
θ

=
∑

x

⟨Lv,M
(v)
x ⟩2

θ⟨
M

(v)
x ,M

(v)
x

⟩
θ

=
∑

x

⟨
Lv, M̃

(v)
x

⟩2
θ

≤ ⟨Lv, Lv⟩θ = 1, (3.26)

where M̃
(v)
x :=M

(v)
x /

√⟨
M

(v)
x , M

(v)
x

⟩
. Because {M̃ (v)

x }x is orthonormal with respect to ⟨·, ·⟩θ,

the inequality (3.26) follows from Bessel’s inequality. Further by definition, Lv ∈ span{M̃(v)
x }x.

Therefor
⟨v| ĝθ(M (v)) |v⟩ = 1. (3.27)
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According to Lemma 3.8,
Tr ĝθ(M

(v)) ≤ dimH− 1 = 1. (3.28)

We can conclude (3.25) from (3.27) and (3.28) and ĝθ(M
(v)) ≥ 0.

Lemma 3.11. Let M+(d,R) be the set of d× d real positive semi definite matrices. Then

ĝθ(M(H)) =
{
G ∈M+(d,R) | TrG ≤ 1

}
.

Proof. According to Lemma 3.10, for any v = (v1, . . . , vd)
t ∈ Rd such that |v| = 1,

|v⟩ ⟨v| ∈ ĝθ(M(H)).

We further observe that 0 ∈ ĝθ(M(H)) because the POVMM (0) := (I) provides no information.
Then we see from Lemma 3.9 that

ĝθ(M(H)) ⊃ co(

{
|v⟩ ⟨v|

∣∣∣∣ v ∈ Rd, |v| = 1

}
∪ {0}) =

{
G ∈M+(d,R)|TrG ≤ 1

}
.

The converse inclusion follows from Lemma 3.8.

Lemma 3.12.

gθ(M(H)) =

{√
JθG

√
Jθ

∣∣∣∣ G ∈M+(d,R),TrG ≤ 1

}
.

Proof.
ĝθ(M)ij =

∑
st

KisKjtgθ(M)st =
∑
st

Kisgθ(M)st(K
∗)tj ,

thus

ĝθ(M) = U−1
√
J−1
θ gθ(M)

√
J−1
θ U.

Therefore √
JθUĝθ(M)U−1

√
Jθ = gθ(M).

It follows from lemma 3.11 that

gθ(M(H)) =

{√
JθUGU

−1
√
Jθ

∣∣∣∣ G ∈ ĝθ(M(H))

}
=

{√
JθG

√
Jθ

∣∣∣∣ G ∈M+(d,R),TrG ≤ 1

}
.

Lemma 3.13. Given S ∈M+(d,R) such that S > 0,

min
{
TrSG−1;G ∈M+(d,R), TrG = 1

}
= (Tr

√
S)2.

Only if G =
√
S/(Tr

√
S) then TrSG−1 = (Tr

√
S)2.

Proof. For G = (gij)1≤i,j≤d , let f(G) := Tr (SG−1) + λ(TrG − 1) where λ is a Lagrange
multiplier. Then

∂f

∂Gij
= Tr

[
S(−G−1 ∂G

∂Gij
G−1)

]
+ λδij = −⟨ej |G−1SG−1 |ei⟩+ λδij = 0

where {ei}1≤i≤d is the standard CONS of Rd. Thus

G−1SG−1 = λI

from which

G =

√
S√
λ
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and

λ =
(
Tr

√
S
)2

because of TrG = 1. As a consequence

min
G

Tr (SG−1) = Tr (λG) = λ = (Tr
√
S)2.

Proof of Proposition 3.1. According to Lemma 3.12 and Lemma 3.13,

min
M∈M(H)

TrHθ gθ(M)−1 = min{TrHθ

√
J−1
θ G−1

√
J−1
θ |G ∈M+(d,R),TrG = 1}

= min{Tr
√
J−1
θ Hθ

√
J−1
θ G−1 |G ∈M+(d,R),TrG = 1}

= (TrRθ)
2
.

When TrHθ gθ(M)−1 achieves the minimum,

G =
Rθ

TrRθ
.

thus

gθ(M) =
√
JθG

√
Jθ =

√
JθRθ

√
Jθ

TrRθ
.

Proof of Proposition 3.2. Assume that d = 3. According to (3.24) and Lemma 3.10,

gθ(M) =
√
JθUĝθ(M)U−1

√
Jθ =

√
JθU{p1ĝθ(M (1)) + p2ĝθ(M

(2)) + p3ĝθ(M
(3))}U−1

√
Jθ

=
√
JθU{p1

 1 0 0
0 0 0
0 0 0

+ p2

 0 0 0
0 1 0
0 0 0

+ p3

 0 0 0
0 0 0
0 0 1

}U−1
√
Jθ

=
√
JθU

S

TrS
U−1

√
Jθ =

√
Jθ
USU−1

TrS

√
Jθ =

√
JθRθ

√
Jθ

TrRθ
.

When d = 1 or 2, we can prove this in a similar way.

Appendix 3.B Rotationally symmetric weight

In this appendix, we show that any rotationally symmetric weight is represented in the form

Hx := f(r)I + (g(r)− f(r))
1

r2
|x⟩ ⟨x| , (3.29)

for x ̸= 0 where f, g are functions on (0, 1) such that f(r) > 0 and g(r) > 0.

Given x ∈ X (x ̸= 0) arbitrarily, let e1, e2, e3 be an orthonormal basis of R3 with e3 = |x⟩
|x| ,

and let V ∈ SO(3) be any rotation about e3-axis. Since

V ∗HxV = V ∗H(V x)V = Hx, (3.30)

Hx and V are simultaneously diagonalized, and e3 is one of their common eigenvectors. Other
eigenvalues of Hx must be degenerate because V is any rotation about e3-axis. Then Hx should
be represented as

Hx = f̂(x) |e1⟩ ⟨e1|+ f̂(x) |e2⟩ ⟨e2|+ ĝ(x) |e3⟩ ⟨e3|

= f̂(x)I + (ĝ(x)− f̂(x))
1

r2
|x⟩ ⟨x| . (3.31)
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Let U ∈ SO(3) be any rotation. It follows that

U∗H(Ux)U = U∗
[
f̂(Ux)I + (ĝ(Ux)− f̂(Ux))

1

r2
|Ux⟩ ⟨Ux|

]
U

= f̂(Ux)I + (ĝ(Ux)− f̂(Ux))
1

r2
|U∗Ux⟩ ⟨U∗Ux|

= f̂(Ux)I + (ĝ(Ux)− f̂(Ux))
1

r2
|x⟩ ⟨x| . (3.32)

We see that it follows f̂(x) = f̂(Ux) and ĝ(x) = ĝ(Ux) for any U ∈ SO(3) by comparing (3.31)

and (3.32). Therefore f̂ and ĝ must be represented by f̂(x) = f(|x|) and ĝ(x) = g(|x|).

Appendix 3.C Bures distance and quantum Fisher infor-
mation matrix

The Bures distance between two states ρ and σ is defined by

B(ρ, σ) := 4

(
1− Tr

√√
ρσ

√
ρ

)
.

It is known that

B(τx, τx+dx) =
1

2

∑
ij

Jx,ijdx
idxj +O(|dx|3) (3.33)

when |dx| is sufficiently small. Given an estimator (M, x̂) that is locally unbiased at x0 ∈ X , it
follows from (3.33) that

TrJx0Vx0 [M, x̂] = Ex0 [M,
∑
ij

Jx0,ij(x̂
i − xi0)(x̂

j − xj0)]

= Ex0 [M, 2B(τx0 , τx̂) +O(|x̂− x0|3)].





Chapter 4

Experimental Demonstration of
Adaptive Quantum State
Estimation

Abstract

The first experimental demonstration of an adaptive quantum state estimation (AQSE) is re-
ported. The strong consistency and asymptotic efficiency of AQSE have been mathematically
proven [J. Phys. A:Math. Gen. 39 12489 (2006)]. In this chapter, the angle of linear polarization
of single photons, or the phase parameter between the right and the left circularly polarization, is
estimated using AQSE, and the strong consistency and asymptotic efficiency are experimentally
verified. AQSE will provide a general useful method in both quantum information processing
and metrology.

4.1 Motivation

Quantum theory is inherently statistical. This entails repetition of experiments over a number
of identically prepared quantum objects, for example, quantum states, if one wants to know the
“true state” or the “true value” of the parameter that specifies the quantum state [29, 42, 3,
22]. Such an estimation procedure is particularly important for quantum communication and
quantum computation [39], and is also indispensable to quantum metrology [14, 38, 41, 48, 30].
In applications, one needs to design the estimation procedure in such a way that the estimated
value of the parameter should be close to the true value (consistency), and that the uncertainty
of the estimated value should be as small as possible (efficiency) for a given limited number
of samples. In order to realize these requirements, Nagaoka advocated an adaptive quantum
state estimation (AQSE) procedure [36], and recently Fujiwara proved the strong consistency
and asymptotic efficiency for AQSE [9].

In this chapter, we report the first experimental demonstration of AQSE using photons. The
angle of a half wave plate (HWP) that initializes the linear polarization of input photons is
estimated using AQSE. A sequence of AQSE is carried out with 300 input photons, and the
sequence is repeated 500 times for four different settings of HWP. The statistical analysis of
these results verifies the strong consistency and asymptotic efficiency of AQSE. Recently, it has
been mathematically proven that the precision of AQSE outperforms the conventional state
tomography [49]. It is thus expected that AQSE will provide a useful methodology in the broad
area of quantum information processing, communication, and metrology.

55
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4.2 Adaptive Quantum State Estimation

Let us first explain AQSE in detail. For simplicity, we restrict ourselves to one-dimensional quan-
tum statistical model S = {ρθ; θ ∈ Θ(⊂ R)}, a smooth parametric family of density operators
on a Hilbert space H having a one-dimensional parameter θ. Our aim is to estimate the true
value of θ by means of a certain quantum estimation scheme. An estimator is represented by
a pair (M, θ̌), where M = {M(x); x ∈ X} is a positive operator-valued measure (POVM) that
takes values on a set X , and θ̌ : X → Θ is a map that gives the estimated value θ̌(x) from each
observed data x ∈ X . The observed data x ∈ X has probability density

f(x; θ,M) := Tr ρθM(x), (4.1)

which depends on both the parameter θ and the measurement M .
In traditional statistics, it is often the case to confine our attention to unbiased estimators.

An estimator (M, θ̌) is called unbiased if

Eθ[M, θ̌] = θ (4.2)

is satisfied for all θ ∈ Θ, where Eθ[ · ] denotes the expectation with respect to the density (4.1). It
is well known [21] that an unbiased estimator (M, θ̌) satisfies the quantum Cramér-Rao inequality

Vθ[M, θ̌] ≥ (Jθ)
−1

, where Vθ[ · ] denotes the variance, and Jθ is the quantum Fisher information
of the model S defined by Jθ := Tr ρθL

2
θ, where Lθ is the symmetric logarithmic derivative (SLD)

defined by the self-adjoint operator satisfying the equation dρθ

dθ = 1
2 (Lθρθ + ρθLθ) .

In quantum statistics, however, it is regarded that unbiasedness is too restrictive a require-
ment, and we usually weaken the condition to a “local” one. An estimator (M, θ̌) is called locally
unbiased [24] at a given point θ0 ∈ Θ if the condition (4.2) is satisfied around θ = θ0 up to the
first order of the Taylor expansion, that is, if Eθ0 [M, θ̌] = θ0 and d

dθEθ[M, θ̌]
∣∣
θ=θ0

= 1 hold.
Clearly, an estimator is unbiased if and only if it is locally unbiased at all θ ∈ Θ. A crucial
observation is that an estimator (M, θ̌) that is locally unbiased at θ0 also satisfies the quantum
Cramér-Rao inequality

Vθ0 [M, θ̌] ≥ (Jθ0)
−1

(4.3)

at θ = θ0, and that the lower bound in (4.3) is achievable for any one-dimensional quantum
statistical model S. To put it differently, the best locally unbiased estimator (LUE) for the

parameter θ at θ = θ0 is the one that satisfies Vθ0 [M, θ̌] = (Jθ0)
−1

.
Here we encounter a difficulty which often becomes the target of criticism: since the best

LUE for estimating the parameter θ depends, in general, on the unknown parameter θ itself, the
estimation strategy based on LUEs would be infeasible. In a different yet analogous context,
Cochran [5] ingeniously described this kind of dilemma as follows: “You tell me the value of θ
and I promise to design the best experiment for estimating θ.”

To surmount this difficulty, Nagaoka [36] advocated an adaptive quantum state estimation
(AQSE) scheme as follows. Suppose that, by prior investigation of the quantum statistical
model S, one has the list of optimal LUEs

(
M( · ; θ), θ̌( · ; θ)

)
for each θ ∈ Θ. One begins

with an arbitrary initial guess θ̂0 ∈ Θ, and applies the measurement M( · ; θ̂0) that is optimal

at θ̂0. Suppose the data x1 is observed, one then applies the maximum likelihood method
to the likelihood function L1(θ) = f(x1; θ,M( · ; θ̂0)), to obtain the next guess θ̂1. At stage

n (≥ 2), one applies the measurement M( · ; θ̂n−1), where θ̂n−1 is the maximum likelihood
estimator (MLE) obtained at the previous stage. The likelihood function is then given by

Ln(θ) :=
∏n

i=1 f(xi; θ,M( · ; θ̂i−1)), where xi is the observed data at stage i, and one obtains the

nth MLE θ̂n that maximizes Ln(θ). It is quite natural to expect that the sequence θ̂n of MLEs
would converge to the true value of the parameter θ. In fact, under certain regularity conditions,
it can be shown that the sequence θ̂n is strongly consistent and asymptotically efficient [9].

4.3 Experimental setup

Now let us discuss the implementation of AQSE using photons (Fig. 1). Here the unknown
parameter is the angle θ of HWP0, which determines the phase ϕ between right and left circularly
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Figure 4.1: Schematic of adaptive quantum state estimation. Photons are linearly polarized with
a polarization direction determined by HWP0. The polarization is analyzed by HWP1 and the
polarizing beam splitter (PBS). The controller sets HWP1 to an angle calculated on the basis of
the photon measurement results.

polarizations of input photons by the relation ϕ = 4θ. An arbitrary linear polarization can be
described using right and left circular polarizations as follows:

|ψ⟩ = 1√
2
(|R⟩+ eiϕ |L⟩) = cos(

ϕ

2
) |H⟩+ sin(

ϕ

2
) |V ⟩ . (4.4)

By changing the angle of the half wave plate (HWP1), we can adjust the measurement basis.
For such measurement, the POVM having optimal estimation capability is given by

M(θ) = (M(1; θ),M(2; θ)) = (|ξ⟩ ⟨ξ| , I − |ξ⟩ ⟨ξ|) , (4.5)

where ⟨ξ| =
(
cos
(
2θ + π

4

)
, sin

(
2θ + π

4

))
. By applying the POVM M(θ) to the input state

|ψ(θ)⟩ := |ψ⟩, one obtains the probability distribution on X := {1, 2} which is isomorphic to the
fair coin flipping.

The drawback to realizing this measurement is that the optimal POVM M(θ) depends on
the unknown value of the parameter θ1. We can avoid this drawback by adopting an AQSE
as follows. We begin by setting the initial log-likelihood function to be l0(θ) = 0, and then
start inputting and detecting photons one by one. For nth photon, we apply the measurement
M(θ̂n−1) which depends on the latest MLE θ̂n−1. Let xn ∈ X be the outcome indicating which
detector has been lit. The log-likelihood function is then updated by the formula

ln(θ) := ln−1(θ) + log ⟨ψ(θ)|M(xn; θ̂n−1) |ψ(θ)⟩ , (4.6)

and the nth MLE is given by θ̂n = argmaxθ ln(θ). Let us denote the true value of the parameter θ

by θt. It is known [9] that the sequence θ̂n of MLEs converges to the true value θt with probability

one (strong consistency) and that the distributions of the random variables
√
n (θ̂n−θt) converge

to the normal distribution N(0, J−1
θt ) (asymptotic efficiency), where Jθ denotes the quantum

Fisher information of the parameter θ, which turns out to be 16 for our model (4.4).

1Note that any fixed POVM of the form (4.5) is optimal for almost all values of the parameter ϕ if we treat
only the pure state model (4.4). However, if we treat mixed state models, the dependence of optimal POVM to
the parameter becomes crucial [41].
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Figure 4.2: (a) Schematic of the experimental setup. (b)(c) An example showing the update of

a log-likelihood function. The second term log ⟨ψ(θ)|M(xn; θ̂n−1) |ψ(θ)⟩ in eq. (4.6) is shown in
panel (b), and the updated ln(θ) is shown in panel (c). The blue arrows indicate the true value
θt.
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The experimental setup is shown in Fig. 2(a). Single photons at 780nm are generated from
a heralded single photon source [25], consisting of a CW diode pump laser (wavelength: 402
nm) and a 3 mm long BBO crystal (Type I). A pair of a signal photon (780 nm) and a trigger
photon (830 nm) is created via spontaneous parametric down conversion. The detector (DT,
SPCM-AQR, Perkin Elmer) after an interference filter (IF1, center wavelength 830nm) outputs
an electric pulse (width 30ns) when it detects a trigger photon and the electric pulse heralds
the generation of a signal photon, which is coupled to a polarization maintaining fiber (PMF)
after an interference filter (IF2, center wavelength 780 nm, width 4 nm). The polarization of
photons are then initialized to be horizontal using a polarizer (extinction ratio 10−5). The
target parameter θt was set using HWP0. The polarization state of the photon was analyzed
by HWP1 and a polarizing beam splitter (PBS). After passing through the PBS, photons are
guided to single photon detectors (D0 and D1, SPCM-AQR, Perkin Elmer) on each PBS output
port. The outputs of single photon detectors are gated by the rise of the heralding signal and
connected to the “first-come discriminator,” consisting of a home-made electric circuit. When the
discriminator receives the first signal from one of the detectors (D0 or D1) after the measurement
for (n − 1)th photon starts, the discriminator informs which detector has been clicked. The
minimum pulse interval of 2.5ns can be discriminated. Note that the discriminator ignores the
case when it receives the pulses from both the detectors within 2.5ns. The angle of HWP1 for
measuring the nth photon is determined by calculating the discretized MLE θ̂n, the maximizer
of the log-likelihood function (4.6) chosen from among the 10000 points that divide the domain
[0, π/2) of the parameter θ into equal parts (Figs. 2(b) and 2(c)). When the change of HWP1
angle is completed, the measurement for the next (nth) photon will be started. In a sequence
of AQSE, the above mentioned procedure is carried out up to 300 input photons (n=300). For
four different HWP0 angles θ = 0, 30, 60, and 78.3 [deg], we repeated the sequence for 500 times
(r=500).

Let us first observe the strong consistency for the sequence θ̂n of MLEs for the parameter θ of
HWP0. Fig. 3 (a) shows 500 trajectories of estimated HWP0 angle θ̂n against the number n of
photons when the true value θt of the parameter is set to be 60 degree. The curves correspond to
independent runs of adaptive estimation. Evidently, each curve of θ̂n approaches the true value
θt, which is in accord with the mathematical result that θ̂n → θt almost surely as n→ ∞, even
though the curves are dissimilar to each other reflecting the genuine statistical nature of quantum
system. The convergence to the true value is clear in Fig. 3(b) where first 10 trajectories in Fig.
3(a) are superposed.

4.4 Experimental results

We next test the hypothesis that the MLE θ̂n follows a normal distribution for large n. More
concretely, we will investigate if the random variable

√
nJθ (θ̂n − θ) follows the standard normal

distribution N(0, 1), i.e.,
√
nJθ (θ̂n − θ) ∼ N(0, 1), where θ is the sample average of MLEs θ̂n

over sufficiently many independent trials. A goodness of fit test [23] was carried out as follows:

1) The real axis was divided into 23 intervals (bins) {Ib}22b=0, where I1, . . . , I21 are disjoint
partitions of the interval [−3.5, 3.5] of equal width, and I0 = (−∞,−3.5), I22 = (3.5,+∞).
In reality, these bins were slightly shifted by δ/10000, where δ :=

√
nJθ π/20000 is the scaled

resolution of the estimator θ̂n, so that the data
√
nJθ (θ̂n − θ) did not fall on the boundaries of

the bins.

2) The test-statistic X2 :=
∑22

b=0
(Nb−r pb)

2

r pb
was calculated, where Nb is the number of ob-

served data which fell into bth bin, pb the theoretical probability of falling a datum into bth
bin under the null hypothesis N(0, 1), and r the number of repetitions of adaptive estimation
procedure.

3) The test-statistic X2 was analyzed using the chi-square distribution χ2
23−p of degree 23−p,

where p = 2 degrees of freedom ought to be subtracted because of the normalization and the use
of sample average θ.

Figure 4.4 shows the histogram of the observed data obtained by r = 500 independent
experiments of adaptive estimation scheme, each using n = 300 photons. The true values θt of
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Figure 4.3: (a) Trajectories of estimated HWP0 angles against the number n of photons for
r = 500 repetitions is shown in a three dimensional plot. (b) The first 10 curves are superposed
in a two dimensional graph.
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Figure 4.4: Histogram of the observed data obtained by r = 500 independent experiments of
adaptive estimation scheme, each using n = 300 photons. These histograms were taken for four
different true values of (a) 0 [deg], (b) 30 [deg], (c) 60 [deg] and (d) 78.3 [deg].

Table 4.1: Confidence intervals for the mean µ and the variance v. CL means
confidence level.

θt [deg] µ [deg] (90% CL) v (90% CL)
0.0 -0.15 ± 0.06 [0.054, 0.067]
30.0 29.90 ± 0.06 [0.055, 0.067]
60.0 60.00 ± 0.06 [0.056, 0.068]
78.3 78.27 ± 0.06 [0.055, 0.068]

the parameter θ of HWP0 are set to be 0, 30, 60, and 78.3 degrees. The density function of the
standard normal distribution N(0, 1) is also plotted as the solid curve. All the experimental data
agree with the standard normal distribution. To be precise, the values of the test statistic X2

are (a) 16.8 (b) 15.7 (c) 12.8 (d) 16.2, and the null hypothesis is accepted with 10% significance
level in each case.

Having obtained the strong evidence that the distribution of the MLE has converged quite
well to a normal distribution at n = 300, we finally proceed to the estimation of confidence
intervals [23] for the mean µ and variance v, assuming that

√
n (θ̂n−µ) ∼ N(0, v). The confidence

intervals for µ and v are obtained by the standard procedure based on the statistical laws that√
r
V

(θ − µ) ∼ Tr−1 and r−1
(v/n) V ∼ χ2

r−1. Here V is the unbiased variance of MLEs θ̂n over r

trials, and Tr−1 the t-distribution of degree r − 1.

Table 1 summarizes the results for r = 500 with 90% confidence level. Recall that the
asymptotic efficiency asserts that µ ≃ θt and v ≃ J−1

θt (= 0.0625). Since the precision of the
present experiment is about ±0.2 degree2, we conclude that the estimated values of µ and v
listed in Table I are in excellent agreement with the theoretical values.

It should be noted that the purpose of our AQSE is completely different from ‘adaptive
measurements’ proposed by Berry and Wiseman [2]. Their scheme was devised to estimate

2The precision of the rotation stage for HWP1 and the accuracy of the polarization basis states limited the
total precision of the experimental setup to ±0.2 degree.
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the phase difference between the two arms of an interferometer using a special N -photon two-
mode state, approximating the canonical measurement proposed by Sanders and Milburn [46],
and is not applicable to general quantum state estimation problems. By contrast, our AQSE
is a general-purpose estimation scheme applicable to any quantum statistical model using n
identical copies of an unknown state. AQSE may also be used in verifying the achievability of
the Cramér-Rao version of the Heisenberg limit O(1/N2) [27] by applying the scheme to the
n-i.i.d. extension ρ⊗n

θ of an N -photon phase-shift model ρθ on H ≃ (C2)⊗N . (See also [10] for
estimating a unitary channel under noise.) Incidentally, AQSE is based on the Cramér-Rao type
point estimation theory and is free from the choice of a priori distribution which matters in
Bayesian statistics such as adaptive Bayesian quantum tomography [26].

4.5 Concluding remarks

In summary, we have verified both the strong consistency and asymptotic efficiency of AQSE
by experimentally estimating the angle of linear polarization of photons. Since AQSE has been
mathematically proven to outperform the conventional estimation scheme such as the state
tomography [49], we plan to apply AQSE to multi-parameter cases and compare the performance
with other protocols using fixed measurement basis [4]. It will also be intriguing to apply AQSE
to enhance the performance of quantum metrological experiments beating the standard quantum
limit [14, 38, 41, 48].



Chapter 5

Conclusions

In the present dissertation, we explored asymptotic quantum state estimation theory and its
applications.

We first investigated the ultimate limit of estimation precision for the case when any collective
measurements are available. We developed a theory of quantum local asymptotic normality
based on a new quantum log-likelihood ratio, which is applicable to any quantum statistical
models satisfying mild regularity conditions. We also derived a quantum analogue of Le Cam’s
third lemma, and proved the asymptotic achievability of the Holevo bound for the local shift
parameter on a dense subset of the parameter space. There are of course many open problems left.
Among others, extending the representation theorem, convolution theorem, and local asymptotic
minimax theorem to a quantum statistical framework would be the most important ones to be
addressed. The difficulty with those problems lies in the fact that many standard tools in the
classical statistics do not work in a quantum case. For example, suppose that random variables
Xn converge in distribution to a random variable X, and that Yn converge in distribution to
a constant c, then the pairs (Xn, Yn) converge to (X, c) in distribution. However its obvious
extension to a quantum case is not always true. Before tackling the above mentioned open
problems, we need to establish a theory of “quantum convergence in law.”

We next investigated a more realistic situation in which only separable measurements are
available. We scrutinized the case when dimH = 2, and showed that the quantum state to-
mography is optimal if and only if a physically unnatural weight is adopted. Unfortunately, we
do not know anything definitive about the optimality of estimators when dimH ≥ 3, although
numerical evaluation of the minimal values of the weighted covariance matrices is possible as in
Figure 3.4. Incidentally, investing the theory of quantum local asymptotic normality for separa-
ble measurements, or even for a given restricted class of measurements, would be an important
subject from the viewpoint of applications.

We further reported the first experimental demonstration of an adaptive quantum state
estimation (AQSE). The angle of linear polarization of single photons, or the phase parameter
between the right and the left circularly polarization, was estimated using AQSE, and the strong
consistency and asymptotic efficiency were experimentally verified. Experimental demonstration
of AQSE for two or three dimensional qubit models is now in progress and will be reported
elsewhere.
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