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Abstract

The present dissertation explores asymptotic quantum state estimation theory and its ap-
plications. The first half of the dissertation is devoted to investigating the ultimate limit of
estimation precision in an asymptotic framework, assuming that any collective measurements
are available. To this end, we extend the theory of weak local asymptotic normality, an essential
ingredient in the classical asymptotic statistics, to a quantum regime. Meanwhile, it should
be noticed that realizing collective measurements over a number of quantum systems is quite
demanding, or even infeasible, in the current state of the art. In view of applications, therefore,
it is also important to elaborate the estimation theory in which we make no use of quantum
correlation, and the latter half of the dissertation is devoted to problems in this direction.

Let H be a finite dimensional Hilbert space that represents the physical system of interest.
We say a pair of density operators p and o on ‘H are mutually absolutely continuous, p ~ o in
symbols, if there exist a Hermitian operator £ (o|p) that satisfies

o = e3L(10) 3L (1)

We shall call such a Hermitian operator £ (o|p) a quantum log-likelihood ratio. The following
theorem, one of the main results in the dissertation, generalizes the theory of local asymptotic
normality (LAN) and Le Cam’s third lemma in classical statistics [Theorem 2.9]:

Theorem. Given a sequence H"™) of finite dimensional Hilbert spaces, let
s ={pf"; 00 R

be a quantum statistical model on H™ , where pén) is a parametric family of density operators

and © is an open set. Let X(") = (X:En)7 e X,«")) be a list of observables on H™) . Fiz a point
0y € ©. Assume 8™ and X satisfy the following conditions:

1. for any 6 € © andn € N, pé") is mutually absolutely continuous to pg;),

2. there exist a list A1) = (A(ln), e Afin)) of observables on each H'™ that satisfies

X () (n) 0 X ooT
((AW)’% TN o)\ )
where 3 and J are Hermitian positive semidefinite matrices of size v X r and d X d, respec-

tively, with ReJ > 0, and 7 is a complex matrix of size r X d. (The arrow ~» denotes a
q

quantum extension of convergence in law, and N (x,*) denotes a quantum Gaussian state.)

3. quantum log-likelihood ratio Egn) =L (péﬁlh/ﬁ

péz)) is expanded in h € R? as

; 1 o (n)
5271) = hlAgn) - i(Jijhth)I(") +o0 ((i(”)> ) pé?) .

(The term o(*,*) denotes an infinitesimal term defined in Section 2.2.)
It then follows that
(X, o5y ) = N(Rer) b, %)
for any h € RY.

This theorem is successfully applied to the proof of asymptotic achievability of the Holevo
bound for the local shift parameter h € R? [Theorem 2.12]:



Theorem. Let {p.g ;0O C ]Rd} be a quantum statistical model on a finite dimensional Hilbert
space ‘H, and fiz a point O € ©. Suppose that pg ~ pe, for all 0 € O, and that the quantum
log-likelihood ratio Ly, := L (pgy+n|pe,) is differentiable in h around h = 0 and twice differentiable
at h = 0. For any countable dense subset D of R? and any weight matriz G (d x d positive real

matriz), there exist a sequence M) of estimators on the model {p?ﬁ)’lh/ﬁ; h e Rd} that enjoys

lim BV [M™] =h

n—oo

and
lim Tr GV, [M ™) = Cy, (po, G)

n— oo

for every h € D. Here Cy, (pg, G) is the Holevo bound at 6.

This theorem clarifies the importance of the Holevo bound. However, the use of collective
measurements, which is essential in achieving the bound, is beyond the reach of our current
technology. In the latter half of the dissertation, therefore, we proceed to asymptotic quan-
tum estimation schemes based on separable measurements. Among others, the efficiency of the
quantum state tomography, a standard method widely used by experimental physicists, is scru-
tinized from the viewpoint of the quantum parameter estimation theory in which the trace of the
weighted covariance matrix is to be minimized. The following theorem asserts that the quantum
tomography is optimal if and only if a physically unnatural weight is adopted [Theorem 3.3]:

Theorem. Let S := {7, | x = (2%, 22%,23) € X'} be the set of strictly positive density operators
on H = C? parametrized by the Stokes parameters x € X = {z € R3 | (21)? + (2?)? + (23)%? < 1}
as

1
Ty = 5([ + ztoy + 209 + 2303),

where o1, 09,03 are the Pauli matrices. Suppose we have an unknown quantum state T =71, € S.
Tomography is optimal if and only if the weight H, is proportional to the following special one:
(z1)(z?) (@*)(z?)

1
1—(a)? (1—(=)*)(1-(=%)?) (1—(=*)2)(1=(=1)?)
(z)(z7) 1

@?)(«*)

(z°)(z") 1

(1—(=*)*)(A—(=1)?) (1—(=?)*)(1—(=%)?) 1—(z?)?

HJ(CT) =

We also report the first experimental demonstration of an adaptive quantum state estimation
(AQSE). The angle of linear polarization of single photons, or the phase parameter between the
right and the left circularly polarization, is estimated using AQSE, and the strong consistency
and asymptotic efficiency are experimentally verified.
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Chapter 1

Introduction

Quantum estimation theory was pioneered by Helstrom in late 1960s [20, 21]. He advocated
an optical communication theory based on quantum physics and mathematical statistics, and
studied a parameter estimation problem of optical signals. He derived a quantum counterpart
of the logarithmic derivative called the symmetric logarithmic derivative (SLD) and a quantum
extension of the Cramér-Rao inequality called the SLD Cramér-Rao inequality. In 1970s, Holevo,
Yuen and Lax studied several theoretically important models [50, 24]. Especially, Yuen and
Lax solved the simultaneous estimation problem of the complex amplitudes of coherent signals
under Gaussian thermal noise. In that work, they introduced the right logarithmic derivative
(RLD) and the RLD Cramér-Rao inequality to solve the two-dimensional parameter estimation
problem for the first time. Today, their result are practically used as a quantum heterodyne
measurement. In 1990s, Fujiwara and Matsumoto studied the estimation theory of pure state
models intensively and revealed its relation with Berry-Uhlmann’s geometrical phase [6, 7, 8].
After that, Matsumoto proved that the Holevo bound can be achievable for any pure state
model [35] (see Section 2.C for a simple proof). Furthermore, qubit state estimation problem
without invoking collective measurement was studied by Nagaoka (two-dimensional case [37]) and
later by Hayashi (three-dimensional case [17]). Gill and Massar also treated the same problems
independently from an entirely different point of view [13] (see Section 3.A for a simplified
argument). In 2000s, some results about asymptotic theories of quantum state estimations
appeared. Fujiwara proved the strong consistency and asymptotic efficiency of an adaptive
quantum state estimation [9]. Hayashi and Matsumoto [19] showed the asymptotic achievability
of the Holevo bound for a quantum statistical model on a Hilbert space H ~ C2. Following
their work, Gutd and Kahn [15, 31] developed a theory of (strong) quantum local asymptotic
normality for a restricted class of models.

The purpose of the present dissertation is to explore a new asymptotic quantum state esti-
mation theory and its applications. Let S = {,09 eS(H); 0B C Rd} be a quantum statistical
model comprizing smoothly parametrized quantum state pg, where S(H) is the set of quantum
states (density operators) on a Hilbert space H. Our purpose is to estimate the unknown pa-
rameter 6 as efficient as possible. An estimator M for the parameter 6 of this model, given by a
positive-operator valued measure (POVM) on O, is called unbiased if

Eo[M] =0 (1.1)

for all § € ©, where Ejp[-] denotes the expectation with respect to pg. An estimator M is called
locally unbiased [24] at 6y € © if the condition (1.1) is satisfied around 6y up to the first order
of the Taylor expansion. A locally unbiased estimator M at 6y satisfies the following inequality:

Voo M) > 750 (1.2)

where Vy,[-] denotes the covariance matrix with respect to pg,, and Jéf) is the quantum Fisher

information matrix at 6y given by Je(f) := [ReTr po, Li Lj], -, i<d> where L; is a ith SLD defined

7
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by the self-adjoint operator satisfying the equation

0 1
20i "0 =3 (Lipo, + po, Li) -
9=0,

The optimal estimator achieving the SLD Cramér-Rao lower bound Je(f) ' always exits when 6 is
one-dimensional, while it is not achievable in general because the optimal measurements for each
coordinate #¢ become incompatible. Put differently, the inequality (1.2) cannot be saturated in
general because of the non-commutativity of the SLDs. To avoid this difficulty, we often adopt
an alternative strategy to seek the estimator which minimizes Tr GVp,[M], where G is a given
d x d real positive definite matrix called a weight [24, 21]. The inequality

Tr GV, [M] > Cy, (ps, G) > Tr GISY (1.3)

is more informative than (1.2), where the quantity Cy, (pg, G) is the Holevo bound [24] at 6y
defined by

Cy, (pg,G) := I‘I/liél{Tl" GV'; V is a real matrix such that V' > Z(B), Z;;(B) = Tr pg, B; B;,

By, ..., Bq are Hermitian operators on H such that Re Tr pg,L; B; = 6;;}.(1.4)

For any n € N, the Holevo bound for the nth i.i.d. extention model S := {p?”
is %090 (anG)7 and

Ge@CRd}

nTr GV, [M™] > Cy, (po, G) (1.5)

where Vb(on) [-] denotes the covariance matrix respect to pg%", and M is a collective estimator

of pi™ which is locally unbiased. It is expected that the lower bound in (1.5) is achievable

asymptotically because the sequence of models { i h e Rd} with shrinking parameter

Qn
p90+h/\/ﬁ
h “converges” to a quantum Gaussian shift model in some sence. This property is called quantum

local asymptotic normality (QLAN). Earlier research about QLAN is given by Gutd and Kahn
[15, 31]. They proved that {p(‘iih/ﬁ; he Rd} and a quantum Gaussian shift model can be

translated by quantum channels to each other asymptotically. Although their result is powerful,
their QLAN has several drawbacks. It can be applicable only when a parametrization 6 of
S(H) takes a special form. Furthermore, it does not work if the reference state pg, has a
multiplicity of eigenvalues. Here we aim at developing QLAN theory applicable to any quantum
statistical model satisfying a mild smoothness condition. Our approach is based on a new
quantum extension of the log-likelihood ratio.

The optimal estimators appeared in QLAN theory are necessarily collective ones. It is,
however, difficult to implement collective measurements over a number of constituent systems.
We therefore confine our attention to separable estimators in the latter half of the dissertation.
We prove that the quantum state tomography, one of the standard technique widely used by
experimental physicists, is in general much less efficient than the optimal estimator. Note that the
optimal estimator depends on the true value 6y of the parameter. In such a case, we necessarily
invoke an adaptive estimation scheme [9]. We demonstrate that such an adaptive estimation
scheme can be realized by a state-of-the-art technique in quantum optics.

The dissertation is organized as follows. In Chapter 2, we develop a theory of QLAN based
on a new quantum log-likelihood ratio, and prove that the Holevo bound is asymptotically
achievable. In Chapter 3, the efficiency of tomography is studied in depth, to conclude that the
tomography is optimal if and only if a physically unnatural weight is adopted. We also give
some numerical simulations to compare the asymptotic performance of the tomography and the
optimal adaptive estimation schemes. In Chapter 4, experimental demonstration of an adaptive
quantum state estimation (AQSE) is reported. The angle of linear polarization of single photons,
or the phase parameter between the right and the left circularly polarization, is estimated using
AQSE, and the strong consistency and asymptotic efficiency are experimentally verified.



Chapter 2

Quantum Local Asymptotic
Normality Based on a New

Quantum Likelihood Ratio

Abstract

We develop a theory of local asymptotic normality in a quantum regime based on a novel quantum
analogue of the log-likelihood ratio. This formulation is applicable to any quantum statistical
model satisfying a mild smoothness condition. As an application, we prove the asymptotic
achievability of the Holevo bound for the local shift parameter.

2.1 Motivation

Given a (classical) statistical model S = {pg; 6 € ©} on a probability space (2, F, u) indexed
by a parameter # that ranges over an open subset © of R%, let us introduce a local parameter
h:= y/n(6 —0y) around a fixed 6y € O. If the parametrization 6 — py is sufficiently smooth, it is

known that the statistical properties of the model {p?ﬁ)’;h/ﬁ; h e Rd} is similar to that of the
Gaussian shift model {N(h, Je_ol) ; h € R?} for large n, where py™ is the nth i.i.d. extension of
Do, and Jy, is the Fisher information matrix of the model py at 6. This property is called the
local asymptotic normality of the model S [47].

More generally, a sequence {pé”) ;0 €0 C Rd} of statistical models on (Q(™), F(™) (") ig
called locally asymptotically normal (LAN) at 0y € © if there exist a d x d positive matrix J and
random vectors A = (A(ln), cee A&")) such that A % N(0,J) and

(n)
log ~Loth/vn _ WAM — §hlh]‘]ij + 0py, (1)

Py

for all h € RY. Here the arrow ~» stands for the convergence in distribution under pgz h) the

remainder term op, (1) converges in probability to zero under pé"), and Einstein’s summation
0 0

convention is used. The above expansion is similar in form to the log-likelihood ratio of the
Gaussian shift model:

dN(h,J7Y) 4 o 1 ..
og UL T v ey _pixa gy - Saini g
Og dN(O,Jil)( 9 9 ) h( J”) thJl]

This is the underlying mechanism behind the statistical similarities between models { pé:l N h e Rd}

and {N(h,J7'); h € R}
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In order to put the similarities to practical use, one needs some mathematical devices. In
general, a statistical theory comprises two parts. One is to prove the existence of a statistic that
possesses a certain desired property (direct part), and the other is to prove the non-existence of a
statistic that exceeds that property (converse part). In the problem of asymptotic efficiency, for
example, the converse part, the impossibility to do asymptotically better than the best which can
be done in the limit situation, is ensured by the following proposition, which is usually referred
to as “Le Cam’s third lemma” [47].

Proposition 2.1. Suppose {p(gn); febC Rd} is LAN at 0y € ©, with A™ and J being as

above, and let X = (an), ey Xﬁ")) be a sequence of random vectors. If the joint distribution
of X and A™ converges to a Gaussian distribution, in that

(3w) # 2 (6)-(% 3))

then X % N(th,X) for all h € R?,

Now, it appears from this lemma that it already tells us something about the direct problem.
In fact, by putting X ("7 := 22:1 [J_I]Jk A;Cn), we have

X™Y o 0\ (J' I

(o) = ()7 9)
so that X(™ % N (h, J~1) follows from Proposition 2.1. This proves the existence of an asymp-
totically efficient estimator for h. In the real world however, we do not know 6, (obviously!).
Thus the existence of an asymptotically optimal estimator for h does not translate into the
existence of an asymptotically optimal estimator of #. In fact, the usual way that Le Cam’s
third lemma is used in the subsequent analysis is in order to prove the so-called representation
theorem, [47, Theorem 7.10]. This theorem can be used to tell us in several precise mathematical
senses that no estimator can asymptotically do better than what can be achieved in the limiting
Gaussian model.

For instance, Van der Vaart’s version of the representation theorem leads to the asymptotic
minimax theorem, telling us that the worst behaviour of an estimator as § varies in a shrinking (1
over root n) neighbourhood of 8y cannot improve on what we expect from the limiting problem.
This theorem applies to all possible estimators, but only discusses their worst behaviour in a
neighbourhood of #. Another option is to use the representation theorem to derive the convo-
lution theorem, which tells us that regular estimators (estimators whose asymptotic behaviour
in a small neighbourhood of 8 is more or less stable as the parameter varies) have a limiting
distribution which in a very strong sense is more disperse than the optimal limiting distribution
which we expect from the limiting statistical problem.

This chapter addresses a quantum extension of LAN (abbreviated as QLAN). As in the clas-
sical statistics, one of the important subjects of QLAN is to show the existence of an estimator
(direct part) that enjoys certain desired properties. Some earlier works of asymptotic quan-
tum parameter estimation theory revealed the asymptotic achievability of the Holevo bound, a
quantum extension of the Cramér-Rao type bound (cf., Appendices 2.A, 2.B). Using a group
representation theoretical method, Hayashi and Matsumoto [19] showed that the Holevo bound
for the quantum statistical model S(C?) = {py; 0 € O} comprising the totality of density oper-
ators on the Hilbert space H ~ C? is asymptotically achievable at a given single point 6y € ©.
Following their work, Guta and Kahn [15, 31] developed a theory of strong QLAN, and proved
that the Holevo bound is asymptotically uniformly achievable around a given 6y € © for the
quantum statistical model S(CP) = {pg; # € O} comprising the totality of density operators

on the finite dimensional Hilbert space H ~ CP. They proved that {pf/” N h e Rd} and a

quantum Gaussian shift model can be translated by quantum channels to each other asymp-
totically. Although their result is powerful, their QLAN has several drawbacks. First of all,
their method works only for i.i.d. extension of the totality S(H) of the quantum states on the
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Hilbert space H, and is not applicable to generic submodels of S(H). Moreover, it makes use
of a special parametrization 6 of S(#), in which the change of eigenvalues and eigenvectors are
treated as essential. Furthermore, it does not work if the reference state pg, has a multiplicity
of eigenvalues. Hayashi and Matsumoto’s formulation [19] also suffers from the same problems.

The purpose of the present chapter is to develop a theory of (weak) QLAN based on a new
quantum extension of the log-likelihood ratio. This formulation is applicable to any quantum
statistical model satisfying a mild smoothness condition, and is free from artificial setups such
as the use of a special coordinate system and/or non-degeneracy of eigenvalues of the reference
state at which QLAN works. We also prove asymptotic achievability of the Holevo bound for
the local shift parameter h that belong to a dense subset of R.

This chapter is organized as follows. The main results are summarized in Section 2.2. We
first introduce a novel type of quantum log-likelihood ratio, and define a quantum extension of
local asymptotic normality in a quite analogous way to the classical LAN. We then explore some
basic properties of QLAN, including a sufficient condition for an i.i.d. model to be QLAN, and
a quantum extension of Le Cam’s third lemma. Proofs of those results are provided in Section
2.3. Section 2.4 is devoted to application of QLAN, including the asymptotic achievability of the
Holevo bound and asymptotic estimation theory for some typical qubit models. For the reader’s
convenience, a brief account of quantum estimation theory are presented in appendices A-D.
Those prerequisites are used throughout this chapter.

It is also important to notice the limits of this work, which means that there are many open
problems left to study in the future. In the classical case, the theory of LAN builds, of course, on
the rich theory of convergence in distribution, as studied in probability theory. In the quantum
case, there still does not exist a full parallel theory. Some of the most useful lemmas in the
classical theory simply are not true when translated in the quantum domain. For instance, in
the classical case, we know that if the sequence of random variables X,, converges in distribution
to a random variable X, and at the same time the sequence Y,, converges in probability to a
constant ¢, then this implies joint convergence in distribution of (X,,Y,) to the pair (X, c).
The obvious analogue of this in the quantum domain is simply untrue. In fact, there is not
even a general theory of convergence in distribution at all: there is only a theory of convergence
in distribution towards quantum Gaussian limits. Unfortunately, even in this special case the
natural analogue of the just mentioned result simply fails to be true.

Because of these obstructions we are not at present able to follow the standard route from
Le Cam’s third lemma to the representation theorem, and from there to asymptotic minimax or
convolution theorems.

However we believe that this chapter presents some notable steps in this direction. Moreover,
just as with Le Cam’s third lemma, one is able to use the lemma to construct what can be
conjectured to be asymptotically optimal measurement and estimation schemes. We make some
more remarks on these possibilities later in this chapter.

2.2 Main results

Definition 2.2 (Quantum log-likelihood ratio). We say a pair of density operators p and o on
a finite dimensional Hilbert space H are mutually absolutely continuous, p ~ o in symbols, if
there exist a Hermitian operator L that satisfies

o =e2t p ezt

We shall call such a Hermitian operator L a quantum log-likelihood ratio. When the reference
states p and o need to be specified, L shall be denoted by L (o|p), so that

o = e3L(e10) 5 3L (1),

We use the convention that L (p|p) = 0.

Example 2.3. Fuaithful states are always mutually absolutely continuous. In fact, given p > 0
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and o > 0, they are related as o = eéﬁ(dp)peéﬂ("‘p), where

£(olp) = 2108 (VT Var oy T ) = 21og (ﬁ( ﬁpﬁ)l \/5> |

Note that Trpeéﬁ(‘”p) is identical to the fidelity between p and o, and e2£(elp) g nothing but
the operator geometric mean o#p~"t, where A#B = A'/? (14_1/2314_1/2)1/2 AY2 for positive
operators A, B.

Example 2.4. Pure states p = |¢) (¢| and o = [€) (£] are mutually absolutely continuous if and
only if (€[ # 0.
Proof. Suppose first that p ~ 0. Then
EIO? = T por = T [9) (] €3 EC19) ) ] 3E0) — [ s 31 )| > .
Suppose next that (£]i) # 0. Then

R:=1+ & P
|<§|w>||><| |¥) (¢
is positive definite, and L (o|p) := 2log R satisfies
lL',(a'|p) _ _ <§|¢>
ez 'l,/J =R 1/) = g )
[¥) = R[¢) £0) 19
showing that p ~ 0. Note that Trpe%‘:(ﬂp) is the fidelity again. O

Given a d x d real skew-symmetric matrix S, let CCR (S) be the CCR algebra defined by
e\/?lxie\/jlxj — e\/jlsije\/jl(x'i"l‘xj) (1 <ij< d),

(see [34, 44, 28, 24]). We call X = (X1, ..., Xg4) the basic canonical observables of CCR (S). A
state ¢ on CCR () is characterized by the characteristic function Fe{p} := ¢p(eV~16X:), where
¢ = (¢H9, € R? and Einstein’s summation convention is used. A state ¢ on CCR (S) is called
a quantum Gaussian state, denoted by ¢ ~ N(h,J), if the characteristic function takes the form

Fe{py =c V=1g'h— 3¢ é’Vu

where h = (h;)L; € R? and V = (V};) is a real symmetric matrix such that the Hermitian
matrix J := V + /=18 is positive semidefinite. When the canonical observables X need to be
specified, we also use the notation (X, ¢) ~ N(h,J).

We will discuss relationships between a quantum Gaussian state ¢ on a CCR and a state on
another algebra. In such a case, we need to use the quasi-characteristic function

VI | “ieih - Leigig ) — iei g

¢ (}:[le ) = exp (; (ﬁfthz 2§t§t Jﬂ) ;S;_l ftfs']ﬂ> ) (2.1)

of a quantum Gaussian state, where (X, ¢) ~ N(h,J) and {&}/_; is a finite subset of C? [28].
Given a sequence (™), n € N, of finite dimensional Hilbert spaces, let X (") = (Xf"), ceey Xén))

and p(™ be a list of observables and a density operator on each H(™). We say the sequence

(X("),p(”)) converges in law to a quantum Gaussian state N(h,.J), denoted as (X (™ p(™) o

N(h,J), if

T
lim Tr p(™ ( erftx“”) _ ¢,< emsm)
S 11 11
for any finite subset {&}7_; of C%, where (X, ¢) ~ N(h,J). Here we do not intend to introduce
the notion of “quantum convergence in law” in general. We use this notion only for quantum
Gaussian states in the sense of convergence of quasi-characteristic function.

The following is a version of the quantum central limit theorem (see [28], for example).
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Proposition 2.5 (Quantum central limit theorem). Let A; (1 < i < d) and p be observables
and a state on a finite dimensional Hilbert space H such that Tr pA; =0, and let

XM = 3 190 @ 4, @ 18R,
k=1

N

Then (X (™) p®™) ~s N(0,.J), where J is the Hermitian matriz whose (i,7)th entry is given by
q

Jij =Tr ijAz

For later convenience, we introduce the notion of an “infinitesimal” object relative to the
convergence (X p(™) ~s N(0,.J) as follows. Given a list X = (Xl(”), . Xén)) of ob-
q

servables and a state p(™ on each H( that satisfy (X, p(™) ~ N(0,J) ~ (X, ), we say a
q

sequence R(™) of observables, each being defined on H™)| is infinitesimal relative to the conver-
gence (X p(™)) ~s N(0,.J) if it satisfies
q

t=1

Jon, T o™ (H eﬁ(fixf"’“f“”))) = (Heﬁ“’“) (22)
t=1

for any finite subset of {&};_, of C? and any finite subset {n;};_, of C. This is equivalent to

saying that
XN 0y (J 0
and is much stronger a requirement than

(R™ p(™) ~ N(0,0).
q

An infinitesimal object R relative to (X, p(™) ~ N(0,.J) will be denoted as o( X, p(™).
q

The following is in essence a simple extension of Proposition 2.5, but will turn out to be
useful in applications.

Lemma 2.6. In addition to assumptions of Proposition 2.5, let P(n), n € N, be a sequence of
observables on H, and let

n
R™M .= in > 120D @ P(n) @ 180,
k=1

Iflim,, o P(n) =0 and lim,, o /n TrpP(n) = 0, then R™ = o(X (™) p®").
We are now ready to extend the notion of local asymptotic normality to a quantum regime.

Definition 2.7 (QLAN). Given a sequence H™) of finite dimensional Hilbert spaces, let S =
{p((,n) ;0€0C Rd} be a quantum statistical model on H™, where pén) is a parametric family

of density operators and © is an open set. We say 8™ is quantum locally asymptotically normal
(QLAN) at 0y € O if the following conditions are satisfied:

1. forany § € ©® and n € N, pé”) is mutually absolutely continuous to p(gz),
2. there exist a list A = (Ag"), e AEI")) of observables on each #(™ that satisfies
(A", 0f) ~ N(0..0),

where J is a d X d Hermitian positive semidefinite matrix with Re J > 0,



14 CHAPTER 2. QLAN BASED ON A NEW QUANTUM LIKELIHOOD RATIO

(n)

3. quantum log-likelihood ratio E;ln) =L (péﬁlh/ﬁ Po, ) is expanded in h € R? as
£l =niA - §(Jijh’h3)l(") +o(AM, gy, (23)

where I(™ is the identity operator on H(™).

It is also possible to extend Le Cam’s third lemma (Proposition 2.1) to a quantum regime.
To this end, however, we need a device to handle the infinitesimal residual term in (2.3) in a
more elaborate way.

Definition 2.8. Let S = {pén); 0ec0O CRd} be as in Definition 2.7, and let X =

(Xl(n), ceey Xﬁn)) be a list of observables on H™. We say the pair (S, X (™) is jointly QLAN
at By € O if the following conditions are satisfied:

(n)

1. forany 0 € © and n € N, p, " is mutually absolutely continuous to p(n)

0o

2. there exist a list A™ = (A A((jn)) of observables on each H(™ that satisfies

((an) o) 53 (6)-(5 7)) 2.9

where ¥ and J are Hermitian positive semidefinite matrices of size r x r and d x d, respec-
tively, with Re J > 0, and 7 is a complex matrix of size r X d.

3. quantum log-likelihood ratio E;ln) =L ( (n) péz)) is expanded in h € R? as

Poo-+h/ v

, ) 1 o (n)
£ = pint 5 (ih' W)™ + o ((f(n)> : péﬁ”) : (2.5)

With Definition 2.8, we can state a quantum extension of Le Cam’s third lemma as follows.

Theorem 2.9. Let S™ and X™) be as in Definition 2.8. If (pén),X(")) is jointly QLAN at
0o € O, then

(X, 6% ) = N(Rer) %)

for any h € R%.

In applications, we often handle i.i.d. extensions. In classical statistics, a sequence of i.i.d.
extensions of a model is LAN if the log-likelihood ratio is twice differentiable [47]. Quite analo-
gously, we can prove that a sequence of i.i.d. extensions of a quantum statistical model is QLAN
if the quantum log-likelihood ratio is twice differentiable.

Theorem 2.10. Let {pe; 0eoC Rd} be a quantum statistical model on a finite dimensional
Hilbert space H satisfying po ~ pe, for all 0 € ©, where 6y € © is an arbitrarily fized point.
If Ly, == L (pog+rlpo,) is differentiable around h = 0 and twice differentiable at h = 0, then
{pg@"; 0eoOC Rd} is QLAN at 0y: that is, p(?” ~ pg%", and

1 n
A(n) = ZI@)(k—l) QL; ® I®(n—k)
i \/’ﬁ
k=1

and Ji; := Trpg, LjL;, with L; being the ith symmetric logarithmic derivative at 6y € ©, satisfy
conditions (i) (iii) in Definition 2.7.

By combining Theorem 2.10 with Theorem 2.9, we obtain the following.
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Corollary 2.11. Let {pg ;e C ]Rd} be a quantum statistical model on H satisfying peg ~ peo,
for all® € ©, where 8y € © is an arbitrarily fized point. Further, let {B;}1<i<, be observables on
H satisfying Trpg,B; =0 for i =1,...,r. If Ly, := L (poy+nlpe,) is differentiable around h =0
and twice differentiable at h = 0, then the pair ({p?”} , X(")) of i.i.d. extension model {p?"}

and the list X" = {Xi(n)}lgigr of observables defined by

n

1
X(”) — E I@(k—l) ®B; ® I®(”—k)
‘ Vn ‘

is jointly QLAN at 0y, and
n Xn
(X057 )~ N(Rer) b, %)

for any h € R, where ¥ is the r x r positive semidefinite matriz defined by i = Trpe,B;B;
and T is the r x d matriz defined by ;5 = Tr pg, L; B; with L; being the ith SLD at 0.

As in the classical case, Corollary 2.11 prompts us to expect that any estimator for a
quantum Gaussian shift model {N((Re T)h,X); h € Rd} could be realized asymptotically on

{ pgi’jrh NG h e ]Rd}. This program will be partly demonstrated in Section 2.4 in the form of

achievability of the Holevo bound.
2.3 Proofs of main theorems

2.3.1 Proof of Lemma 2.6

We shall prove (2.2) for {&};_; € C? and {n;}}_, C C.

T ®n (ﬁ ﬁ(iiXW +7ItR(")) >
Trp e ‘
t=1

[ r

="Tr p®n HeXp {‘/\/; il®(k71) ® (E:Al Jrntp(n)) ® I®(nk)}‘|
Lt=1 k=1
- on

= Tr p®™ H {exp (\/\/? (f;Al + mP(n))) }

Lt=1

= Tr p&" {Hexp( (& A; +nP(n )))}m

Trp{H@XP( (& A + mP(n )))Hn

—\ Rt T t
= |Trp Z (\/\/;> EE!(&;ANL?%P(”))]C )

where Zy = {0,1,2,...}. The terms corresponding to k1 + -+ + k, = 1 in the summand are

Trp( T Z EA+mP ) <Z’7t> () = (31)
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because Tr pA; = 0 and TrpP(n) = (\%) The terms corresponding to ky + -+ + k. = 2 are

5 ()

ki+-+k.=2
ZTM & A; +mP(n —fz Z Trp (& A; +mP(n)) (€145 +nsP(n))
t=1 s=t+1
1 " 1 N 1
— —?ZnggTrpAiAj - ,Z D GeTrpAiA;+o (>
n t=1 n t=1 s=t+1 n
1 s 1N iy 1
=g D G iy > Geltol ).
t=1 t=1 s=t+1

In the third line, we used the fact that P(n) = o(1). Let us denote the terms corresponding to
ki+---+k. >3 by

(kvtothn) o
v =1 1 ; t
rpi=Trp Z <) 1_[1 Fey! (szi + ntp(n))k
t=

Eito+ke>3 vn
Then
(ki+-+kr) T 1 . Ky
ral - < () 11 7y (6t o)
i+ +k >3 =1 "0
s 1 . k?
< — (& A+ nP(n))"
nfk+2+2k> t= 1kt! t
< f 3 H 'HgtA + 7 P(n)||™
VI ks =1
1 k
< X i A+ neP ()|
o %:eh tl_Il f
1 - i
— mtl;[l exp ||€/A; + n:P(n)]|
<

e (S (il + o)

t=1

Since lim,,_, P(n) = 0, the operators P(n) are uniformly bounded. As a consequence, lim,, o, n
0, so that r, = o ( 1) Thus we conclude that

n
nlggo Trp®n <He EtX(n)Jrn R )) = nlLH;O < Zﬁt gJJZ - - Z Z gthJﬂ 40
t=1 [ f i
1 o o
= exp (—2251% 1 i — Z Z ftzngjz)
t=1 t=1 s=t+1
= ¢ eﬁ&i&-) )
i

The last equation is due to (2.1) with h = 0.

7| =

4)
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2.3.2 Proof of Theorem 2.9

Let X4, ..., X,, Ay, ..., Ay be the basic canonical observables of CCR (Im (72 ;)), and q~5

the quantum Gaussian state NV ((8) , (72 ;)) on that CCR. Assumption (2.5) guarantees

that the quantities
R}(z ) = l:;l ) — {hZAE ) — Jijhlhjl(n)}

(n)
enjoy Ri(ln) =0 (()A((”)) ,p((;:)) for each h € R%. Consequently, for a finite subset {¢;}7_; of C,

() T o/ T X
Tlr;)e()+]1/\/H (He
t=1

(n) 1 () i)
:Tr< 1c p() ! )(Heﬁitxi )

t=1

(n) (n) r ; 1 (i) pn)
IR VRE JUTrp (hA +R{ Heﬁf?Xf") eﬁ(h AM R

t=1

. _ LT i At T <n> " i e (n) (VT A VT p(n)
— o EnH Sy ) (e VI (IR A + TR )(Heﬁftxi o VI(F R A IR ) )

t=1

Since Rgn) is infinitesimal relative to the convergence (2.4), we see from (2.2) that

T
iy (n)
lim Tr p™ Hevflgtxi
n—00 '090""}1/\/H hale
r
/=1 114 i V=131
_ eféh h’ JU¢ <e\/1 21h A; <H ex/l@)ﬂ) e,\/,l 5—h Ai)
t=1
r+1 r+1 r+1
_lpipig.. ot
=€ 2h W i eEXp | —5 E g § E ftf E]’L
t=0 t=0 s=t+1
_ A~ Sh'hI gy,
=€ 2 7 exp

1 ..
{ ihthJﬂ—i—th gzﬂ—ﬁxhﬂhuﬁ})
V=1 ¢ i¢d V=1 ¢ ipj [y - - i
xexp( D) Zh ggTji-F D) Zﬁth]Tji+Zh h]in—Z Z ftfgzﬂ
t=1 t=1

N —

M\»—t
—_

t=1
t=1 s=t+1

= exp (Z (ﬁezhﬂ‘ (Re7),; - 56 zzﬁ) -2 > 5252%-) 7

t=1 t=1 s=t+1

J
used at the second equation. This is the quasi-characteristic function of N((Re) h,X).

where i = <7§< T) and (507 glv RN 57’7 gr—i—l) = (7@}17 517 R gr, 7@}1)7 and (21) was

2.3.3 Proof of Theorem 2.10

Since

®
pem = (e%ll(peIpeo)peoeéﬁ(pelpeo)) "

_ (e%Zﬁ'zlI®(’“’1)®£(pe\peo)®l®<””“))p®n (e2 n I®(’”"1)®E(pe\peo)®l®<"*"‘))

)
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we see that

n
L™ |y ) = Y170 @ L polpa,) © 19070 (2.6)
k=1

This proves p5™ ~ ,03%” for all # € © and n € N.
Before proceeding to the proof of (ii) and (iii) in Definition 2.8, we give some preliminary
consideration. Let the quantum log-likelihood ratio £y := £ (pg,+hn|pe,) be expanded into

Ly, = h'A; + Bi;h'h + o(h?),

where A; (1 <1i < d) and B;; (1 <4,j < d) are Hermitian operators on #. Observe that A; is
the SLD in the ith direction. In fact,

1, . 1, .
Pog+h = €XD {2 (h*A; + O(h))] Po, €XP {2 (h*A; + O(h))]
1.
= Phy + ihl (peoAi + Aipgo) + O(h’)a

so that
1
9ipoy = 5 (pooAi + Aipe,) -

This observation also shows that Tr pg, A; = 0 for all i. On the other hand,

Tt poo+n = Trpg, exp (h*A; + Bijh'h? + o(h?))

(hiA; + Byhind)* + o(h2)>

) L 1
Tr pa, (I + (h'A; + Bijh'h) + 3

) o 1
1+ A (TI" pgoAi) + h'h Tr IZR (Bij + 2A1AJ> + O(hQ)

- 1
L+ h*hTr po, (Bij + 2AiAj) +o(h?).
Since Tr pg,+n = 1 for all h, the above equation leads to
1
Tr Po, (Blj + 2AZA]> =0. (27)

Now we prove (ii). Let J;; := Tr pg, A;A;, and let

W 1N ek n-
A = = It Ve ek,

k=1

It then follows from the quantum central limit theorem (Proposition 2.5) that (A("), p?}") ~s
q
N(0,.J).
Finally, we prove (iii). It follows from (2.6) that

EEL”) — ZPXJ(k—l) ® ‘Ch/\/ﬁ ® [®(n—Fk)
k=1

Let us show that
R n r n i A n 1 7 i1 l-®n
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is infinitesimal relative to the convergence (A, pg%") ~+ N(0,J). Tt is rewritten as
q

n

(n)  _ k-1 [ Lo 1 ipj —k
R = Y 1#k Vg ﬁh/ﬁ—\/ﬁhlAiJr%(Jijhhﬂ)[}®1®<” )

k=1

= (1 1 . 1 1 . 1 .
= Y I®* D@ | ——hiA; + —Byh'h +o(=) — —=h'A; + — (Jh') I| @ 190F)
2 © |yt At G Bl + o) = a5 (W) 1| &

- 1 1 - 1
= 126D @ | ZByh'h + — (Ji;hh) I+ o(=) | @ 1¥(=F)
; ®_n J +2n(Jj ) JrO(n) ®
n 1
= 11 @ —P(n) @ 1K),
T

where ) . .
P(n) := —( Bij + =Jij I ) h'h? +o(=) | .
(n) ﬁ(n( ”+2J” )hh +0(n)>
Note that lim, ., P(n) = 0, and that
1 .
li_>m Vn'Trpg, P(n) = Trpg, (Bl-j + 2Jijl> h'h?

1 o
= Tr Poo (Blj + 2JJ11> hth?

1 .
Tr Poo (Bij + 2A1A3> h'h?
=0

because of (2.7). It then follows from Lemma 2.6 that R,(Ln) =o(AM), pgi”) for each h € R?. This
completes the proof.

2.3.4 Proof of Corollary 2.11

That pg@” ~ pg%" was proven in the proof of Theorem 2.10. Let Agn), e Al(jn) be as in the proof
of Theorem 2.10. It then follows from the quantum central limit theorem that

(@m)ir) v () (5 7)) (2.8)

Further, because of Lemma 2.6, the sequence Ré") of observables given in the proof of Theorem

2.10 is also infinitesimal relative to the convergence (2.8). Now that (p5", X(™)) are jointly

QLAN at 6y, the property (X("),p?” N ) ~> N((ReT)h,X) is an immediate consequence of
o+ /\/ﬁ q

Theorem 2.9. This completes the proof.

2.4 Applications to quantum statistics

Quantum Le Cam’s third lemma (Corollary 2.11) implies convergence of {pgi’ih N h e Rd}

to a quantum Gaussian shift model {N((Re T)h,X); h e Rd}. This fact prompts us to expect

that, for sufficiently large n, the estimation problem for the parameter h of pgz(’)ih /v could be

reduced to that for the shift parameter h of a quantum Gaussian shift model N((ReT)h, 3).
The latter problem has been well-established to date (see Appendix 2.B). In particular, the
best strategy for estimating the shift parameter h is the one that achieves the Holevo bound
Ch (N((ReT)h,X), G), (see Theorem 2.25). Moreover, it can be shown (see Corollary 2.24) that
the Holevo bound Cj, (N((ReT)h,X), G) is identical to the Holevo bound Cpy, (pg, G) for the
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model py at 6y This observation strongly suggests the existence of a sequence M (™ of estimators

Xn
p90+h/\/ﬁ n
This section is devoted to materialize this program: we prove that there exist a sequence

for the parameter h of { that asymptotically achieves the Holevo bound Cy, (ps, G).

M) of estimators on {pgjrh y \/ﬁ} that is asymptotically unbiased and achieves the Holevo
n

bound Cy, (pg, G) for all h that belong to a dense subset of R%. Since this result requires only
twice differentiability of the quantum log-likelihood ratio of the model py, it will be useful in a
wide range of statistical estimation problems.

2.4.1 Achievability of the Holevo bound

Theorem 2.12. Let {pe; 0ebC Rd} be a quantum statistical model on a finite dimensional
Hilbert space H, and fix a point 0y € O. Suppose that pg ~ pe, for all 0 € ©, and that the
quantum log-likelihood ratio Ly, := L (poy+rl|pe,) s differentiable in h around h = 0 and twice
differentiable at h = 0. For any countable dense subset D of RY and any weight matriz G, there

exist a sequence M(™ of estimators on the model {p?j&h/ﬁ; h e Rd} that enjoys

lim BV [M™] =h

n—oo

and
lim Tr GV, [M ™) = Cy, (po, G)

n— oo

for every h € D. Here Cy, (pg, G) is the Holevo bound at 6.

Proof. Let D := Dy, be the commutation operator with respect to the state py, (see Appendix

2.A), and let T be the minimal D invariant extension of the SLD tangent space spang {Li}?zl of
the model {pg} at 6 = 6y, i.e., the smallest D invariant real linear subspace of Hermitian operators
on H containing all the SLDs {Li}le of pp at fp. The minimality ensures that Tr pg, A = 0 for
all A€ T because 7' = {A € T; Trpg, A =0} is also D invariant.

Let {Dj};:1 be a basis of T, thus d < r. Let ¥ be an r x r matrix whose (4, j)th entry
is given by X;; = Trpp,D;D;, and let 7 be an r x d matrix whose (7,7)th entry is given by
Ti; = Tr pg, L;D;. According to Theorem 2.19 in Appendix 2.A, the Holevo bound for a weight
G > 0 can be expressed as

Coo (po,G) = min{TrGZ + Tr VGIm ZVG| ; Z = 'FYF,

Fis an r x d real matrix satisfying *F' Re (1) = I}. (2.9)
Letting

n 1 ¢ _ - .
X! )::—nZI®(k Ve DIk (1<i<r),
k=1

Corollary 2.11 asserts that ({p?"} , X(”)) is jointly QLAN at 6y, and that
(X<n>,p§ﬁh/ﬁ) “ N((Rer)h, 3). (2.10)

Let F be the matrix that attains the minimum in (2.9), and let Z := 'FXF, V :=ReZ,
S:=ImZ,V=vGT ‘\/@Im Z\/@‘ VG—T1, and Z = V —/=18. It then follows from Corollary
2.24 and Theorem 2.25 in Appendix 2.B that

Coo (96,G) = Tr G (V+V) .

Further, Lemma 2.13 below assures that there exist a finite dimensional Hilbert space # and a
state o and observables B; (1 < ¢ <d) on H such that TroB; =0 and TroB;B; = Z;;. Let

X=X e i ey ™ (1<i<a),
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where X (™) := FikX,gn) (1<i<d),

K3

n 1 fote o (n— ‘
Y( ) ::72‘[@0@ 1)®BZ®I®(TL k) (1§Z§d),

k=1
and I is the identity on #. A crucial observation is that (Y( ), pgln)) where p( ") pgizh IR ®
o®" converges to a classical Gaussian state:
(X 50) = N,V + V), (2.11)
a

for all h € R?. In fact,

(n) n s ir(n
lim Tro\" (] |er5tX = lim Trp" | [V 645" ) & VTG Y™
n—00 pabir n—00 Pl P
Tr0'®" (I | e,/_lgzyi(n)>‘|

T oV TE X
T Py <H er )
t=1 t=1

h (Heﬁfﬂ v (Heﬁf?’”‘) : (2.12)
t=1 t=1

where XZ = Fika (1 < i < d) are canonical observables with Xi, ..., X, being the basic
canonical observables of CCR (Im X)) and (X, ¢p) ~ N((Re7T)h,X), and Y7, ..., Yy are the basic

canonical observables of CCR (Im Z) with (Y,4) ~ N(0,Z). In the last line in (2.12), we used

(2.10) as well as the quantum central limit theorem for V(™). By using the explicit form (2.1) of
the quasi-characteristic function for the quantum Gaussian state, (2.12) is rewritten as

exp (Z (ﬁsz‘hi - ;gzszzji> -> > sz‘a%) exp( nggzﬂ Z Z @5%)

t=1 t=1 s=t+41 t=1 s=t+1

— exp <Z (ﬁgz‘hi el ) SN Gev v, )

t=1 t=1 s=t+1

= lim
n— 00

This proves (2.11).
Now according to Lemma 2.14 below, there exist a quintuple sequence

M (mitiap) {Mb(dmm,f,q,p) Cwe Q(mm’l,p,q)}

n

of POVMs on (7—[ ® 7:1) , taking values in a certain finite subset Q(7:0P:9) of R4, that enjoys
the properties

lim lim lim lim lim Eﬁl )[M("’ml’q*m] = h,
P—00 q—00 £—00 M —00 N—+00

and

lim lim lim lim lim ng )[M("””’é’q’p)] =V+V,

P—00 q—00 £— 00 M—+00 N—+00

for all h € R%, where E\"[-] and V"

to ﬁ;ln). It then follows from Lemma 2.15 below that for any countable dense subset D of R¢

and any h € D, there exist a subsequence {(n,m(n),£(n),q(n),p(n)}, cy such that

[-] denote the expectation and the covariance with respect

lim EoY [ (m () Lm).atn)p(m)] = b,

n— 00

and

hm V} )[ (n,m(n),é(n),q(n),p(n))] ‘7 ‘A/

n—oo
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This implies that the POVM M on H®" that is uniquely defined by the requirement

Tr p™ M = Ty (p(m ® a®") M), £(m).a(m).p(n)

for all density operator p(™ on H®™ and w € Q™ ():L().p(n).4(M) enjoys

lim B [M™] = h,

n—oo

lim V(n)[ (”)] =V4V.

n—oo

for all h € D. Recalling that Tr G(V 4+ V) = Cy, (ps, G), the proof is complete. O

Lemma 2.13. Given a d X d positive semidefinite Hermitian matriz J, there exist a finite
dimensional Hilbert space H and a pure state p and observables A; (1 <i < d) on H such that
TrpA; =0 and Tr pA; A; = J;j.

Proof. Let H = C%!, and let {|i )} o be a CONS of H. We set |¢) := |0) and [¢(;) =
Zk:l [\f} " |k) fori =1, ..., d. Then p:= |¢) (¢| and A; := |€;) (¥|+]¢) (¢;] satisfy TrpA; =0
and T]."pAJ/L = J” O

Lemma 2.14. Given a sequence H™) of finite dimensional Hilbert spaces, let X (™) = (Xl(n), cee,

be a list of observables on H™, and let {pgln)}h be a family of density operators on H™
parametrized by h € R, If there is a real d x d positive definite matriz V such that

(X 47) = N (0, V) (2.13)

holds for all h € R%, then there exist a quintuple sequence {M("’m’e*q’p); (n,m,4,q,p) € N5} of
POVMs on H"™ that enjoy the properties

lim lim lim lim lim E(")[M(”mquvp)] h,
P—+00 q— 00 f—$00 TM—+00 N—00

and
lim lim lim lim lim V(")[M(" meqp)] 174

P—00 q—00 £— 00 M—>00 N—00

Proof. Let ’ ¢
Qimd) . {m? b1, 1) Ke Zd} ni=1,0°

2m

be a finite subset of R?, comprising (2m)¢ lattice points in the hypercube [~[,{]¢, and let
QUmtr) .= QO A [—p, p]¢ and Qém’e’p) = QmEr) U {0}, We introduce a Gaussian density

function f(q)( ) on R? centered at w = (wy, ..., wq) € R? by

f(Q) {Hg&%l ) (Taq1—i }{Hg(q) }
where = (21, ..., 4) € R? and

g\ D (t) = (%)% exp (—%(t - s)2> ) (s,t €R).

By using this function, we define a POVM M (%7hap) — {Mf,n’m’l’q’p); weE Qém’e’p)} on H(™
that takes values in the finite subset Q(()m’é’p ) by

7(n)
2m

M(rmban) ._ Rlmta)(x(n) [ffﬂ)( X 4 )d} ROt (x (0

x{)
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for w € QM4P) and

n,m,t,q, m n n I(n) m n
Mé @p) . _ Z {R( Lq)(X( )) |:<fLSQ)(X( ))_|_ (27(1 R( ,Z,q)(X( )) i

m
we(mH\Q(m,£,p) )

Here

R (@) img (3 S0 G)

weQ(m,Z)

is the normalization with
1

VE+T
Intuitively speaking, the difference set Q™9 \ QU™6P) works as a “buffer” zone that gives the

default outcome w = 0. This device is meaningful only when p < /.
We shall prove that

g(t) ==

lim lim lim lim i P(w)Tr p{™ M{vmbar) = [ p 2.14
A fo fom fm f, 2, PGOTenL o e, (244)
welly

where P(w) is an arbitrary polynomial of w such that P(0) = 0 and pj(w) is a probability density
function of the classical normal distribution N (h, V). Once (2.14) has been proved, we can verify

lim lim lim lim lim E[pmber)] = p
P—00 g—00 f—+00 M—+00 N—00

and

lim lim lim lim lim V™ [pmbon)] = v
P—>00 q—00 £— 00 M—+00 N—+00

just by letting P(w) = w; or P(w) = wjw; (1 <4i,j <d) in (2.14).
The first limit n — oo in (2.14) yields

lim Z P(W)TI‘ pg")ML"’m’equp)

n—oo
weQm oy
_ 1 (n) 2 r(n,m,2,q,p)
fnhﬁrr;o Z P(w)Trp,” M,
weQ(mep)
—dim Y P)TepV RO (X)) | £ (X (00) 4 o ROmta) (x (m)
n—00 h w (Qm)d
weQm £.p)
. I
= > pem R (1900 + i )]
wEQUmLp)

top P Lq) + %
/ D weqmin) (W)(()f () + )ph(x)dx. (2.15)
RE Y eqomn (qu (z) + W)

In the fourth line, we used the assumption (2.13) and Corollary 2.29 in Appendix 2.D, as well as
the fact that functions g,ﬁ‘“ (t) on R and ¢(t) on ¢t > 0 are both bounded and continuous. Further,
X = (Xq, ..., X4) is a classical random vector that follow the normal distribution N (h, V), and
E;[-] denotes the expectation with respect to N(h, V). As for the second limit m — oo, due to

> weamen Pw) ( u(ﬂ) (z) + #>
(2m)
(q) 1 S max 4 |P(w)| < 00,
2enm (fw (@) + W) w€[=p,p]
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the bounded convergence theorem yields

(£)" Cueqimen P) (15@) + k52 )

lim (2.15) = / lim - pp(z)dz
R I [y
" )p(q)(w x)dw
- / Jue-ppt ¥ = pn(z)dz, (2.16)
Rd we[ 0qa P D (w, z)dw

q
27

integral was used in the second hne. Finally, the dominated convergence theorem and Fubini’s
theorem yield

where p(@(w,z) = () exp( 1 2?21(951‘ - wi)g), and Darboux’s theorem for the Riemann

e P@)p'? (w, )dw
lim lim lim (2.16) = lim lim fwe[ P
P—00 q—00 f—>00 P—00 ¢—00 Jpd f]Rd p(q) (w, Qf)dw

= lim lim / P(w)p'?(w, z)dw | pp(z)dz
pro0 o0 Jrd \ Jwel-p.p)d

= lim lim (/ p(q)(w,x)ph(x)dx) P(w)dw
we[-p,p]* \JR4

P—00 q— 00

pr(x)dx

= lim I (9 () P(w)d
LN O

= lim pr(w)P(w)dw
P20 Jue(—pp)d

/ pp(w)P(w)dw, (2.17)
Rd

where p(Q)( ) is the density function of N(h,V + %I). This completes the proof. O

Lemma 2.15. For each i €N, let {a, .. .. i (n1,n2,...,n,,n) € NCTDL be an (r 4 1)-tuple
sequence on a normed space V. If, for each i € N, there exists an o € V such that

i

e B B G = 0
then there exist a subsequence {(ni(n),na(n),...,n.(n),n)}nen that satisfies
M a0y () (. = €
for alli e N.
Proof. We first prove the case when r = 1. Let al, := lim,_al, ,. We construct a subse-
quence {(nq(k),n(k ))}keN in a recursive manner as follows. We set n1(1) =n(l) =1. For k > 2,

it follows from lim,, . a’, = a' that there exist an Ny(k) € N such that ny > Ny (k) implies

1

max |a2Zl — | < —-
1<i<k

Thus the number n; (k) := max {Ny(k),ni(k — 1) + 1} satisfies

1
.

i
max a/nl (k) —

1<i<k

(2.18)

For this ni(k), it follows from lim,, . aih(k)n =
n > N(k) implies

a,,, () that there exist an N(k) € N such that

S

) X 1
O, (kyn — aﬁl(k)‘ < (2.19)

max
1<i<k
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Thus we set n(k) := max {N(k),n(k —1) 4+ 1}.
Now let k(n) := max {k; n(k) < n}, which is non-decreasing in »n and lim,,_, k(n) = co. We
show that the subsequence {ni(k(n)),n); n € N} enjoys the required property: for all i € N,
Jim @ gy = @

Given i € N and £ > 0 arbitrarily, there exist an N € N such that n > N implies k(n) >
max {i, {%] } Then for all n > N, we have

@y (k(n))m 0”’ S |G km)n ~ G o) | T @ (n)) ~ 0‘"

J . J J —Ad
= lﬁ?lglz((n) anl(k(n))n anl(k(n)) +1Srjn§a’5((n) anl(k(n)) ¢
< 2 <

k(n) =

In the third inequality, we used (2.18) and (2.19), as well as its premise n > n(k(n)) > N(k(n)).
The proof for a generic r is similar. O

2.4.2 Application to qubit state estimation
In order to demonstrate the power of our method, we explore qubit state estimation problems.
Example 2.16 (3-dimensional faithful state model).

The first example is an ordinary one, comprising the totality of faithful quit states:

(I+ 0oy + 0205 + 9303) ;0= (0")1<i<s € @}

DO =

S@%{m

where o; (i = 1,2,3) are the standard Pauli matrices and © is the open unit ball in R®. Due
to the rotational symmetry, we take the reference point to be 6y = (0,0,7), with 0 < r < 1.
By a direct calculation, we see that the SLDs of the model py at 8 = 6y are (L1, Lo, L3) =
(01, 02, (rI + 03)7!), and the SLD Fisher information matrix J) at §, is given by the real
part of the matrix

1 —ry/—1 0
J = [Tf ngLjLi}ij = T\/—l 1 0
0 0 1/(1—r?)

Given a 3 x 3 real positive definite matrix G, the minimal value of the weighted covariances
at 8 = 6 is given by
min Tr Gy, [M] = C)) (00, G)
M

where the minimum is taken over all estimators M that are locally unbiased at 6y, and
2
@ywmm:<ﬁ ¢amww@)

is the Hayashi-Gill-Massar bound [17, 13] (see also [49]). On the other hand, the SLD tangent
space is obviously D invariant, and the Holevo bound is given by

Coy (9o, G) 1= Tr I 4 T [VG I J VG|

where
o 1 —ry/—1 0
JB = (ReJ) 1 J(Re )t = | ry/—1 1 0
0 0 1—r2
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is the inverse RLD Fisher information matrix (See Corollary 2.20 in Appendix 2.A).
It can be shown that the Hayashi-Gill-Massar bound is greater than the Holevo bound:

Chy) (0. G) > Ca, (pa, G) .
Let us check this fact for the special case when G = J¥). A direct computation shows that
Cgi) (pea J(S)) = 97

and
Ceo (pg, J(S)) =34 2r.

The left panel of Figure 2.1 shows the behavior of Cy, (pe,J(s)) (solid) and C’(gi) (pg,J(S))
(dashed) as functions of r. We see that the Holevo bound Cp, (pg, J (S)) is much smaller than
5 (90, 7).

Does this fact imply that the Holevo bound is of no use? The answer is contrary, as Theorem
2.12 asserts. We will demonstrate the asymptotic achievability of the Holevo bound. Let

w1 x
Az( ) }:I@)k—l ® L; @ I8 F
n
k=1

and let Xi(n) = Agn) for i = 1,2,3. It follows from the quantum central limit theorem that

(55)-) e 60 9)
L(0) := L (pg|ps,) = 2log (ﬁ m%m\/@>

is obviously of class C*° in 6, Corollary 2.11 shows that ({p?"} , X(")) is jointly QLAN at 6y,
and that

Since

(X5, m) = N(Re Ik, J)

for all h € R3. This implies that a sequence of models {p?ﬁ)’lh/ﬁ; h e Rd} converges to a
quantum Gaussian shift model { N((Re J)h, J); h € R*}. Note that the imaginary part

0 -ry—1 0
S=|rv-1 0 0
0 0 0

of the matrix J determines the CCR, (.9), as well as the corresponding basic canonical observables
X = (X1, X?,X3). When r # 0, the above S has the following physical interpretation: X! and
X2 form a canonical pair of quantum Gaussian observables, while X2 is a classical Gaussian
random variable. In this way, the matrix J automatically tells us the structure of the limiting
quantum Gaussian shift model.

Now, the best strategy for estimating the shift parameter h of the quantum Gaussian shift
model { N((Re J)h, J); h € R?} is the one that achieves the Holevo bound Cj, (N((Re J) h, J), G),
(cf., Theorem 2.25 in Appendix 2.B). Moreover, this Holevo bound Cj (N((ReJ)h,J), G) is
identical to the Holevo bound Cy, (pg, G) for the model py at 6y, (cf., Corollary 2.24. Recall
that the matrix J is evaluated at 6y of the model py). Theorem 2.12 combines these facts, and

concludes that there exist a sequence M (™) of estimators on the model {p?ﬁ)’l by h e R3} that
is asymptotically unbiased and achieves the common values of the Holevo bound:

lim Tr GV, [M™)] = C, (N((Re J)h, J),G) = Ca, (ps, G)

n—oo
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Figure 2.1: The left panel displays the Holevo bound C/q o, (pg, J (S)) (solid) and the Hayashi-
Gill-Massar bound C(%?O,r) (pg7 J(S)) (dashed) for the 3-D model py = % (I + 0%y + 60%05 + 9303)
as functions of r = |#||. The right panel displays the Holevo bound C(g (pg,J*)
(solid) and the Nagaoka bound C((é)r) (po,J (S)) (dashed) for the 2-D model py =

1 (1 + 001 + 6205 + 1 /T— 0] 03).

for all h that belong to a countable dense subset of R3.

It should be emphasized that the matrix J becomes the identity at the origin 6y = (0,0, 0).
This means that the limiting Gaussian shift model {N(h,J); h € R®} is “classical.” Since
such a degenerate case cannot be treated in [15, 31, 19], our method has a clear advantage in
applications.

Example 2.17 (Pure state model).

The second example is to demonstrate that our formulation allows us to treat pure state
models. Let us consider the model & = {[¢)(6))(x(0)|; 6 = (0%)1<i<2 € O} defined by

1 1(pt 2 1
) = ———o3(0'rtt0) < > ,
v cosh ||6]] 0

where © is an open subset of R? containing the origin, and || - || denotes the Euclid norm. By
a direct computation, the SLDs at 6y = (0,0) are (L1, Ls) = (01, 02), and the SLD Fisher
information matrix J(%) is the real part of the matrix

J = [Trpg,L;Li],; = (\/1?1 _\F> ’

that is, J¥) = I. Since the SLD tangent space is D invariant [7], the Holevo bound for a weight
G > 0 is represented as

Co, (p9,G) = TrGIJB ™ 4 Tr

@Imﬂm”\/é‘

where

JBR = ReJ) 1 I(ReJ) ! = ( 1 _ﬁ)

V-1 1

is the inverse RLD Fisher information matrix (see Corollary 2.20 in Appendix 2.A).
Let us demonstrate that our QLAN is applicable also to pure state models. Let

1 n
A = =TI g L @ 19
i T a '
k=1
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and let Xi(") = AZ(-") for i = 1,2. It follows from the quantum central limit theorem that
() i) (05 3))
L(0) := L (pg|pe,) = 0*c1 + 0*05 — log cosh || 0|

is of class C> with respect to 6, it follows from Corollary 2.11 that ({p§™}, X™) is jointly
QLAN at 6y, and that

Since

-1
(X(n)7p§07_z|_h/\/ﬁ) ~ N((Re J)ha J) = N(ha J(R) )

for all h € R2. Theorem 2.12 further asserts that there exist a sequence M of estimators on
the model {p?ﬁﬁ h i h e RQ} that is asymptotically unbiased and achieves the Holevo bound:

lim Tr GV, [M™] = ¢, (N(h, JB, G) = Clo) (po, G)

n—oo

for all h that belong to a dense subset of R®. In fact, the sequence M (™ can be taken to be a

separable one, making no use of quantum correlations [35]. (See also Appendix 2.C for a simple
proof.) Note that the matrix J (B g degenerate, and the derived quantum Gaussian shift

model {N(h, J(R)fl)}h is a canonical coherent model [7].
Example 2.18 (2-dimensional faithful state model).

The third example treats the case when the SLD tangent space is not D invariant. Let us
consider the model

1 .
S= {,09 =5 (1—1—9101 + 0209 + 200/1 — H9||203) 1 0=(0")1<i<2 € 9} ,

where 0 < zyp < 1, and © is the open unit disk. Due to the rotational symmetry around z-axis,
we take the reference point to be 6y = (0,r), with 0 < r < 1. By a direct calculation, we see

that the SLDs at 6y are (L1, La) = (01, ﬁ(og — rI)). It is important to notice that the SLD
tangent space span {Li}?:l is not D invariant unless » = 0. In fact
Doy = z(r)oy — ros, Doy = —2z(r)oy,

where z(r) := E[os] = 20v/1 —r2. The minimal D invariant extension 7 of the SLD tangent
space has a basis (D1, Da, D3) := (L1, L2, 05 — z(r)I). The matrices X, J, and 7 appeared in
Definition 2.8 and Corollary 2.11 are calculated as

1 —\E() T - 2(r)
= T D). = — i % (T 1) 22,
¥ = [TronDibi, ﬁz(r) z(r)? (Z(r) +ﬁ> 0
—rv/—=1—2z2(r) — %— —1) PA 1
1 VI
J o= [TFPOOLJ’LZ']U = 22 Z(Q)Z(T) )
\ETT) z(r)?
%
1 2 — —17)
T = T ioi].. = 120 “0
Tronlsody = | V=135 P
AT - (V)
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Given a 2 X 2 real positive definite matrix GG, the minimal value of the weighted covariances
at 0 = 6 is given by

min Tr GVy, [M] = C( )(peaG)y
M

where the minimum is taken over all estimators M that are locally unbiased at 6, and
2
c@wm@~@ww@>

is the Nagaoka bound [37] (see also [49]).
It can be shown that the Nagaoka bound is greater than the Holevo bound:

Chy (0. G) > Ca, (00, G).
Let us check this fact for the special case when G = J5). A direct computation shows that
Co (o, 7)) =4,

and

21+ 2) —r2(1 — 22), f 0<r< %
— 2
C@o (vaJ(S)) =
22 . 20
if

94 0 _~0
+ r2(1—23)’ 1—22

<.
The right panel of Figure 2.1 shows the behavior of Cy, (pg, J*)) (solid) and C; 1) (po, J¥)) with
20 = (dashed) as functions of r. We see that Holevo bound Cy, (pg, Js
(1) s
Clo.r) (PGJ( ).
As in Example 2.16, we demonstrate that the Holevo bound is asymptotically achievable.
Let

) is much smaller than

1 n
A(ﬂ) — ®k—1 ] n—k S
i 7 E QL; @1 , (i=1,2),
k=1
and let

X" = \FZI@”“ LoD, @I%"*  (j=1,2,3).

It then follows from the quantum central limit theorem that

XN g Yo7
(<A(n)> ’ peon ? N 07 * T .
Therefore, Corollary 2.11 shows that ({ pg,@"} X ) is jointly QLAN at 6o, and that

(xm N((ReT)h,X)

7p60+h/f)
for all h € R?.

It should be noted that the off-diagonal block 7 of the “quantum covariance” matrix is not a
square matrix. This means that the derived quantum Gaussian shift model { N((ReT)h,X); h € R?}
forms a submanifold of the total quantum Gaussian shift model derived in Example 2.16, corre-
sponding to a 2-dimensional linear subspace in the shift parameter space. Nevertheless, Theorem

'he}R3}

2.12 asserts that there exist a sequence M (™ of estimators on the model {pﬁih/ —;

that is asymptotically unbiased and achieves the Holevo bound:

lim Tr GV, [M™)] = C, (N((Re)h, %), G) = C, (ps, G)

n—o0

for all h that belong to a dense subset of R3.
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2.4.3 Translating estimation of h to estimation of ¢

As we have seen in the previous subsections, our theory enables us to construct asymptotically
optimal estimators of h in the local models indexed by the parameter 6y + h//n. In practice
of course, 6y is unknown and hence estimation of h, with fy known, is irrelevant. The actual
sequence of measurements which we have constructed depends in all interesting cases on 6.

However, the results immediately inspire two-step (or adaptive) procedures, in which we first
measure a small proportion of the quantum systems, in number n; say, using some standard
measurement scheme, for instance separate particle quantum tomography. From these measure-
ment outcomes we construct an initial estimate of 8, let us call it . We can now use our theory
to compute the asymptotically optimal measurement scheme which corresponds to the situation
0o = 0. We proceed to implement this measurement on the remaining quantum systems collec-
tively, estimating h in the model § = §+h/,/na where ns is the number of systems still available
for the second stage.

What can we say about such a procedure? If ny/n — a > 0 as n — oo then we can expect
that the initial estimate 0 is root n consistent. In smooth models, one would expect that in this
case the final estimate § = 6 + h/,/ns would be asymptotically optimal up to a factor 1 — a: its
limiting variance will be a factor (1 — a)~! too large.

If however ny — oo but ny/n — a = 0 then one would expect this procedure to break down,
unless the rate of growth of ny is very carefully chosen (and fast enough). On the other hand,
instead of a direct two-step procedure, with the final estimate computed as O+h /+/T2, one could
be more careful in how the data obtained from the second stage measurement is used. Given
the second step measurement, which results in an observed value h, one could write down the
likelihood for h based on the given measurement and the initially specified model, and compute
instead of the just mentioned one-step iterate, the actual maximum likelihood estimator of 6
based on the second stage data. Such procedures have earlier been studied by Gill and Massar
[13] and others, and shown in special cases to perform very well.

However, in general, the computational problem of even calculating the likelihood given data,
measurement, and model, is challenging, due to the huge size of the Hilbert space of n copies of
a finite dimensional quantum system.

2.5 Concluding remarks

We have developed a new theory of local asymptotic normality in a quantum regime based on
a quantum extension of the log-likelihood ratio. This formulation is applicable to any model
satisfying a mild smoothness condition, and is free from artificial setups such as the use of a
special coordinate system and/or non-degeneracy of eigenvalues of the reference state. We also
have proved asymptotic achievability of the Holevo bound for the local shift parameter on a
dense subset of the parameter space.

There are of course many open questions left. Among others, it is not clear whether ev-
ery sequence of statistics on a QLAN model can be realized on the limiting quantum Gaussian
shift model. In classical statistics, such a problem has been solved affirmatively as the rep-
resentation theorem, which asserts that, given a weakly convergent sequence T of statistics

on {péﬁrh/ﬁ; he Rd}, there exist a limiting statistics T on {N(h,J™'); h € R?} such that

T o7, Representation theorem is useful in proving, for example, the non-existence of an
asymptotically superefficient estimator (the converse part, as stated in Introduction). Moreover,
the so-called convolution theorem and local asymptotic minimax theorem, which are the stan-
dard tools in discussing asymptotic lower bounds for estimation in LAN models, immediately
follows [47]. Extending the representation theorem, convolution theorem, and local asymptotic
minimax theorem to a quantum regime is an intriguing open problem. However it surely is
possible to make some progress in this direction, as for instance the results of Gill and Guta
[11]. In that paper, the van Trees inequality was used to derive some results in a “poor man’s”
version of QLAN theory; see also [12].

It also remains to be seen whether our asymptotically optimal statistical procedures for the
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local model with local parameter h can be translated into useful statistical procedures for the
real world case in which 6 is unknown.

Appendices

Appendix 2.A Commutation operator and the Holevo bound

In the study of quantum statistics, Holevo [24] introduced useful mathematical tools called the
square summable operators and the commutation operators associated with quantum states. Let
‘H be a separable Hilbert space and let p be a density operator. We define a real Hilbert space
L3 (p) associated with p by the completion of the set By (H) of bounded Hermitian operators
with respect to the pre-inner product (X,Y) :=ReTrpXY. Letting p = >_ s;[1;)(¢;| be the
spectral representation, an element X € Ci(p) can be regarded as an equivalence class of those
Hermitian operators, called the square summable operators, which satisfy >, s;(|X Vil|? < oo
(so that ¥; € Dom(X) if s; # 0) under the identification X; ~ Xy if X19; = Xo1); for s; # 0.
The space L3 (p) thus provides a convenient tool to cope with unbounded observables. Note that
when H is finite dimensional, the setup is considerably simplified to be L3 (p) = By (H)/ ker p.

Let £2(p) be the complexification of £ (p), which is also regarded as the completion of B(H)
with respect to the pre-inner product

1
(X.Y), = g Trp(Y X"+ X"Y).

Thus £2(p) is a complex Hilbert space with this inner product. Let us further introduce two
sesquilinear forms on B(#H) by

1
X, Y),:=TrpY X~ X,Y], = —Trp(Y X* - X*Y).
( I )p I'p I [ bl }p 2\/: I'p( )
and extend them to £2(p) by continuity.
The commutation operator D, : L2(p) — L?(p) with respect to p is defined by

[X.Y], = (X,D,Y),.
which is formally represented by the operator equation
Dyp(X)p+ pDp(X) = V-1 (Xp — pX).

(To be precise, Holevo’s original definition is different from the above one by a factor of 2.) The
operator D, is a C-linear bounded skew-adjoint operator. Moreover, since the forms [-, -], and
(-, ), are real on the real subspace £ (p), this subspace is invariant under the operation of D,,.
Thus D, can be regarded as an R-linear bounded skew-adjoint operator when restricted to E% (p)
as D, : L3(p) = L3 (p). When no confusion is likely to arise, we drop the subscript p of D, and
simply denote it as D.

Let S = {pg; 6 € © € R%} be a quantum statistical model satisfying the conditions: 1) the
parametrization 6 — py is smooth and nondegenerate so that the derivatives {Jpy /Gﬁi}lgigd
exist in trace class and form a linearly independent set at each point 6 € ©, and 2) there exists

a constant ¢ such that )

0
‘Trng < (X, X)p,

06
for all X € B(H) and 4. The second condition assures that the linear functionals X —
(0/00)Tr pgX can be extended to continuous linear functionals on £2(pp). Given a quantum
statistical model satisfying the above conditions, the symmetric logarithmic derivative (SLD)
Ly ; in the ith direction is defined as the operator in £3(p,,) satisfying

0
ﬁ'ﬂ poX = (Lo,i, X)p,-
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It is easily verified that Ly, € £3(pg); so the definition is formally written as

ape 1
) — 2 (Lo Lo.). 2.9
900 — 3 Le.ipe+poLoi) (2.20)

When no confusion occurs, we simply denote Ly, as L;. Since L; is a faithful operator rep-
resentation of the tangent vector 9/06%, we shall call the R-linear space spang{L;}% ; the
SLD tangent space of the model pg at 6. Incidentally the d X d real symmetric matrix Jy :=
(ReTrpgLiLj], <; j<4 is called the SLD Fisher information matriz of the model S at 6.

An estimator M for the parameter 6 of the model S is called unbiased if
Ey[M]) =10 (2.21)

for all § € ©, where Fy[-] denotes the expectation with respect to pg. An estimator M is called
locally unbiased at 6y € © if the condition (2.21) is satisfied around 6 = 6, up to the first order
of the Taylor expansion. It is well known that an estimator M that is locally unbiased at 6
satisfies the quantum (SLD) Cramér-Rao inequality, Vg, [M] > Joq ! where V,[-] denotes the
covariance matrix with respect to py,. The lower bound Jo, 1 cannot be attained in general due
to the non-commutativity of the SLDs. Because of this fact, we often switch the problem to
minimizing the weighted sum of covariances, Tr GVj, [M |, given a d x d real positive definite
matrix G. It is known that this quantity also has a variety of Cramér-Rao type lower bounds
[24]):

TI'G‘/QO[M] > Cp, (pt97G) .

Among others, we concentrate our attention to the Holevo bound [24]:
Co, (p9,G) = r&i]gl{Tr GV'; V is a real matrix such that V > Z(B), Z;;(B) = Tr ps, B; Bi,
By, ..., Bq are Hermitian operators on H such that Re Tr pg,L; B; = 6;{2.22)
The minimization problem over V is explicitly solved, to obtain
Coy (p0.G) = min{TrGZ(B) + Tr VGIm Z(B)WG| ; Zi;(B) = Tr pg, B Bi,
By, ..., By are Hermitian operators on H such that ReTr pg, L; B; = 6ij}.

Our aim here is to derive a further concise expression for it in terms of the minimal D invariant
extension of the SLD tangent space.

Theorem 2.19. Given a quantum statistical model {pg; e C Rd} on H, let T be the min-
imal D invariant extension of the SLD tangent space spang{L;}%_, of the model at 6 = 6y, and
let {D;}_; be a basis of T. The Holevo bound defined by (2.22) is rewritten as

Co, (p9,G) = m}n{TrGZ + Tr ‘\@ImZ\@
F is an r x d real matriz satisfying ‘F Re (1) = I}, (2.23)

. 7 = 'FYF,

where ¥ and T are r X r and r X d complex matrices whose (i,j)th entries are given by ¥;; =
Tr ,OSODjDi and Tij = Tr ngLJ‘Di.

Proof. Let T+ be the orthogonal complement of 7 in £2(pp,) with respect to the inner product
(- ~>p90, and let P : L2(pg,) — T and Pt : L2(pp,) — T+ be the projections associated with

the decomposition £3(pg,) =T & T+. Note that if X € T+ and Y € T, then

(X,Y),, =(X.Y),, + V—1(X, DY),, =0.

Pogy Po

We show that the operators {B; }?:1 that achieve the minimum in (2.22) can be taken from
T. Let {B; }?:1 C L3(pg,) satisfies the local unbiasedness condition Re Tr pg, L; Bj = ;;, which
is rewritten as

(Li, Bj) ,, = 0ij-

Pog
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Then {P(B;)}9_, also satisfies the local unbiasedness

(Li, P(Bj)),,, = (Lis Bj),, = i
Further,

Zi;(B) = (Bi,B)),, = (P(Bi)+P"(B:),P(B;)+P"(B)))
(P(Bi), P(B))),, + (P*(Bi), P (B,))

Pog

= Z;;(P(B)) + Zi;(P*(B)).

Po, Pog

Since Z( -) is a Gram matrix and is positive semidefinite, this decomposition implies that Z(B) >
Z(P(B)). Thus the observables B that minimize (2.22) can be taken from 7.

Let Bj € T be expanded as Bj = FJ' Dy, where F is an r x d real matrix. Then the local
unbiasedness condition is rewritten as

(Li,Bj), = Ff(Li,Dy), =36,

Pa, pe,

or in a matrix form,
'F(Ret) =1.

Further, the Gram matrix Z(B) is rewritten as

Zij(B) = (Bi, By),, = F'F} (D, Dy)

Pog Pogy

or,

Z(B) = 'FYF.

This proves the claim. O

When the SLD tangent space itself is D invariant, the Holevo bound can be represented in
terms of the RLD Fisher information matrix as follows.

Corollary 2.20. Let {pg ;0e0C Rd} be a quantum statistical model, and let L; (1 <i<d)
be the SLDs at 0y. If the SLD tangent space spang {Li}?zl at 0y is D invariant, then

Coy (p0, G) = Te GI) ™! 4 Tr [VG Im (J®) VG

where (J®)~1 .= (ReJ) ™" J (ReJ) ™" with Jij = Tr pg, L L;.

Proof. Let us set D; := L; for 1 < i < d in Theorem 2.19. Then ¥ = 7, and the local
unbiasedness condition ‘F (Ret) = I has a unique solution F = (ReX)™ ', whereby Z =
(ReJ) ' J(ReJ)™ " O

Note that RLDs may not exist if the model is degenerate (i.e., non-faithful). This means that
JU) may not be well-defined for such a model. Nevertheless we use the notation (J%)~! even
for a degenerate model, and call it the inverse of the RLD Fisher information matrix, as long as
the SLD tangent space is D invariant. For an idea behind this nomenclature, consult [7].

Finally, we show that the Holevo bound for the nth i.i.d. extension model is precisely % times

that for the base model.

Corollary 2.21. Given a quantum statistical model S = {pg; 0eOC ]Rd}, let S = {p(;@"; 0eOC Rd}
be the nth i.i.d. extension model. Then

1
090 (pé@naG) = Ecgo (p97G)'
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Proof. Let us distinguish quantities that belong to models of different extension by specifying
the degree n of extension in the superscript. Letting {L;}¢ ; and {D; }i—1 be SLDs and a basis
of T in Theorem 2.19, the corresponding quantities for S(™) are given by

n

LW =31l g L@ 19

k=1
and .
D](_n) — Z]®k—1 ® Dj ® J®n—k
k=1
Thus
20—y 20— pe) Z ey,
n
so that
7 — tpmnm pe) — L 0)
n
and )
Co, (05", G) = - Co, (po, G)
doe to Theorem 2.19. O

Appendix 2.B Estimation of quantum Gaussian shift model

In this section, we briefly overview the estimation theory for a quantum Gaussian shift model.
For a mathematically rigorous treatment, consult [24].

Lemma 2.22. Let (X, ¢p) ~ N(h,J), where J is a d x d positive semidefinite complex matriz.
Then
on(X;) = hy (2.24)

and

on((Xj = hy)(Xi — hi)) = Jij (2.25)
hold.
Proof. Letting U(§) := e\/jlgixi,

MUE) = 14V Ion(EX) ~ Lon((€X0)) +o(e)
= L VIIa(XE — Son(XXES +o(e?)

= 14+ V—1¢p(Xy)E" — %d)h(Xi o X;)&'¢ + o(€?),

where X; 0 X, = % (X:X; + X,;X;). Further, letting V =ReJ and S =Im J,
1y gigd 1 1 1 2
—1&*h,—LV..¢gvgd i e i el
R (x/—lﬁ hi = 5 Visé fﬂ> +3 (x/—l& hi = 5 Visé fﬂ) +0(¢?)

_ 1 o
= 1+V-1&h; — B (Vij + hihj) €67 + o(£2).
A comparison immediately leads to (2.24) and the identity ¢, (X; o X;) = V;; + hsh;. Thus

on((X; —hi)(Xi —h)) = on(X; Xy — hi Xs — hi X + hihy)
= qﬁh(Xin) — hihj

1
gbh (X1 OXj — 2[X'L7Xj]> — hzhj = Jlj



2.B. ESTIMATION OF QUANTUM GAUSSIAN SHIFT MODEL 35

In what follows, we treat the quantum Gaussian shift model {N(7h,%); h € R?} on CCR (ImX),
where ¥ is an r X r complex matrix such that ¥ > 0 and ReX > 0, and 7 is an r X d real matrix
with d < r such that rank7 = d. Let X = (X1, ..., X,.) be the basic canonical observables of
CCR (ImZX), and (X, ¢p) ~ N(7h,X).

Lemma 2.23. Let U(¢) := eV =18'Xi The SLD L; (1 <i<d) at h defined by

S 0n(U(€)) = 30n U(OLe + L) (226)

is given by
-

Li=Y" [(Re o)~ T} ,, (Xe = (Th)eD). (2.27)

=1

Proof. In this proof we lift Einstein’s summation convention. Let V' = Re Y and S = Im 3, and
fix a k € {1,...,d} arbitrarily. Due to the Baker-Hausdorff formula,

i#k

By differentiating in &*, we have

5er V(O =~V (; Sl Xk> U(e).

((Z Skt — 5 <Th)k1) U(E))

<Z Skt — \/jla—fk — (Th)k> on(U())
<Z Sui€’ — 37576 — (Th)g > oV —1'érh—3 "'eVe

Zsmﬁi - (Th)k> Pn(U(€)) = V=1 (V=1(rh), — (VE)r) ¢n(U(€))
i=1

Thus

On((Xx = (Th)R1)U(£))

= (S¢+V=1Vv¢), on(U(9))
= VL(J8), on(U(E)). (2.28)
Similarly, we obtain
Pn(U(E)(Xy, — (Th)D)) = V=1 (JE), (U (€)). (2.29)

By combining (2.28) and (2.29),
Sn ((Xi = (Th)RD)U(E) + U(&)(Xx — (th)il) ) = 2v/=1(VE),, ¢n(U(£))- (2.30)

On the other hand, by a direct calculation

o o “Tterp_ Lt
g (U€) = e = AL (U ). 2.31)
A comparison between (2.30) and (2.31) yields

r

L= [V7'r],, (Xe = (th)).

=1
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Let Ly := Xj, — (Th)gI. Tt follows from (2.28) and (2.29) that Dy, (L;) = S1_, (V~'S) ki Lk,
where Dy, is the commutation operator with respect to ¢, defined by

&n (U(§)Dy, (X) + Dy, (X)U(€)) = V=161 (U(§)X — XU(€)).

This means 7 = span {ik}
span {L;}?_, C T and

,
. is Dy, invariant. Further, we can check from (2.27) that
=1

on(LiLi) = Sij (2.32)
and R
Re ¢n(L;Li) = 735 (2.33)

These relations play a fundamental role in connecting a general quantum statistical model
S={pp; 0 € © C R} on H with a quantum Gaussian shift model G = {N(th,X); h € R?} as
follows. Let {L}%; be the SLDs of the model S at § = g, and let 7 the minimal D invariant
extension of the SLD tangent space span{L }{,. Further let {D$}7_, be a basis of 7% and let
Y and 7 are r X r and  x d matrices whose (7, j)th entries are given by X;; = Tr pg,D;D; and
7i; = Re'Tr pg, L; D;. Based on those information, we introduce a quantum Gaussian shift model
G={N(rh,%); h € R} on CCR (Im X), which exhibits relations (2.32) and (2.33). Recall that
the Holevo bound of a quantum statistical model is completely determined by the information
Y and 7 (Theorem 2.19). We thus obtain the following important consequence.

Corollary 2.24. The Holevo bound Cy, (pg, G) for the model S at 8 = Oy is identical to the
Holevo bound Cy, (N(7h, %), G) for the Gaussian shift model G.

As to the achievability of the Holevo bound Cj, (N(7h,X), G) for the Gaussian shift model
G, we have the following.

Theorem 2.25. Given a weight G > 0, there exist an unbiased estimator M that achieves the
Holevo bound for the model {N(th,%); h € R}, i.e.,

Tr GV, [M] = Cy (N(h, %), G) .
Proof. Let F' be the matrix that achieve the minimum of (2.23) for the model {N(7h,¥)}n,

and let Z = 'FYF. Further, let V=ReZ, S =ImZ. V = VG- |v/GIm ZVG| VG-, and

Z =V —y/=18. We introduce an ancillary quantum Gaussian state (Y, ) ~ N(0, Z) on another
CCR (—S‘), and a set of canonical observables

X, =X, @I+1Y; (1<i<d),

on CCR (S) ®CCR <—§>, where X; = FFX;,. Tt is important to notice that the CCR subalgebra

A[X] generated by {X,;}1<i<a is a commutative one because

i N .
—5— X, Xj] =83 = Si; =0

for 1 <14,5 < d. Moreover

(on ® 7#)(6@5771') — [% (eﬁﬁlfﬁ-)} {1/, (eﬁein)} — oV IE = FEE (VY5

This means that the observables X, (1 <1 < d) follow the classical Gaussian distribution
N(h,V + V). In particular,
E [ X]=h
for all h € R?, and o L
TrGV,LIX]=TrG(V + V) =C), (N(th,X),G).

The claim was verified. O
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Appendix 2.C Estimation theory for pure state models

Lemma 2.26. Let p be a pure state and Ay, ..., Ag observables on a finite dimensional Hilbert
space H. If Jij == Tr pAjA; are all real for 1 <14,j < d, there exist observables K1, ..., Kq such
that

[Ai + K, Aj + K;] =0,
for1<i,j <d and
Kip=0
for1 <i<d.
Proof. Let p := |¢) (¢, and let |l;) := A; |¢) for 1 < i < d. Because (¢|l;) and (L;|l;) (= Jj:)

are all real, there exist a CONS {|ex) ?:mlﬂ of H such that (eg|y) and (ex|l;) are all real, and
that {(e|y) # 0 for all k. Let

[ol}

2

A= 30 Gl
Q- ‘ ekw) k kil

and K; := A; — A;. Obviously A+ K, Aj + K] = [A“AJ] =0, and

NS

—~
N

£
Il

K lo) = (Ai = Ai) ) = 1) — ) = 0.
This means K;p = 0. O

Theorem 2.27. Let {pg; 0eOC Rd} be a quantum statistical model comprising pure states
on a finite dimensional Hilbert space H, and let Cy, (pg, G) be the Holevo bound at 6y € ©
for a given weight G > 0. There exist a locally unbiased estimator M at 8y € © such that
T\FGV[M} = C@o (p97 G)

Proof. Let 7 be the minimal D invariant extension of the SLD tangent space span {Li}?:l of the
model {py} at @ = 6, i.e., containing all the SLDs {Li}?zl of {pp} at o, let {Dj};:1 be a basis
of T. Let 3,7 be r x r, X d complex matrices defined by X;; = Tr pg,D; D;, 7i; = Tr pg, L;D;.
According to Theorem 2.19, the Holevo bound for a weight G > 0 can be expressed

Coo (o, G) = min{TrGZ + Tr VGIm ZVG| ; Z = 'FYF,

F is an r x d real matrix satisfying *F Re (1) = I}. (2.34)

Let F be the matrix that attains the minimum in (2.34), and let Z := 'FXF, V := Re Z,
S = Im Z, V =vVG1 \/@ImZ\/é‘ vG~1, and 7 =V — /—1S8. Lemma 2.13 assures that

there exist a Hilbert space 7—AlAand a pure state o and observables B; (1 <1i < d) on H such that
TroB; =0 and TroB;B; = Z;;. Further, let

yl:Xl®f+I®Bl (1<i<d),

where X; := F¥Dy, (1 <i<d), and I is the identity matrix on 7{. It then follows that

(2.35)

]

Tr (pg, ® 0) iji = (‘7 + V)

According to Lemma 2.26, there exist observables Ky, ..., Kjon H®H such that (X +K;, Yj +
K;]=0and K; (pg, ® o) = 0. Let T; := {101+ (X; + K;). ThenT1, ..., T, are simultaneously
measurable, and satisfy the local unbiasedness condition:

Tr (pg, ® o) Tj = 0
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and
Tr (9;p0, ® U)Tj = Tr@ipgo)E'J

= FfTrdipg, Dy

= FfReTr pg,L;iDx

= {F (Re7)};; = ij-
Further

Vbo[f]ij =Tr (pgo & O') (Yl + Kl) (Yz + Kl) = (‘7 + V) .
ij

This completes the proof. O

Appendix 2.D Quantum central limit theorem

Jaksié¢, Pautrat, and Pillet [28] proved the following strong version of a quantum central limit
theorem.

Proposition 2.28. Given a sequence H™ of Hilbert space, let p) and A™ = (Ag"), cee A((i"))
be a state and a list of observables on H™ that enjoy the quantum central limit theorem in the
sense of convergence of the quasi-characteristic function:

(Am,p(n)) = N(h, J) ~ (X, 0),

where J is a d X d positive semidefinite matriz. Then for any bounded continuous functions

f1, -+, fm and a noncommutative polynomial P, it follows that
—_—
i (n) (n)
Jim TP (740)) = o (P (X))
where f(B ) (f1(B1)s -, f1i(Ba), -y fm(B1), -, fm(Ba)) for a given list B = (B, ..., By)

of observables, and P (f(B ) = P(f1(B1), .., fr(Ba)s - s fn(B1), ., fru(Ba))-

Proposition 2.28 is strong enough to prove the following, which is essential in constructing a
sequence of POVMs that asymptotically achieves the Holevo bound (Theorem 2.12).

Corollary 2.29. Under the same assumption as in Proposition 2.28, for any bounded contin-
wous functions g, f1, ..., fm, and noncommutative polynomials P,Q, with P being Hermitian
operator-valued, it follows that

Jm e (P (1)) ) @ (74} g (P (547)))
=o(s ( (7)) @ (7x]) o (P (751)))-

Proof. Let | := maxi<;<m sup, |fi(x)|. There exist [p > 0 and lg > 0 such that ip > HP(?)H

and lg > HQ(?)H for any list B = (Bi, ..., Bam) of observables such that ||B;|| < I. Let

l, :=sup{|g(x)| ; = € [~lp,lp]}. There exist a sequence R*)(z) of polynomials that uniformly
converges to g(x) on [—Ip,lp]|.

Let s o T R (P (W)) 0 (W) R <P <W)> ;

i (o) ) o )

and let
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We show that ay,, uniformly converges to a,, as k — oo. In fact, letting [g := sup { R¥)(z); k € N,z € [~Ip,p]},

sup |an, — agn|

oy (o (7)) (7)o (7))

(75) - o (7))

v [o (¢ (7007)) - 19 (¢ (7373))] @ (767 a0 (» (7079) )
b (2 (%) o (75

|
gl (» (7051)) - (+ (163) )|

+lglr sup
<lg(ly+1r) swp  |g(@) = RP(@)|,

z€[=lp,lp]

= sup
neN

which converges to zero as k — oo.
The uniform convergence ag, = a, as well as the existence of limy_, lim,, o Gryn, which
follows from Proposition 2.28, ensure that

s (o (7)) o (7)o (7))

~ i lim T RO ( (f(A—("))>>> 0 (f(A—(");) R (P (J‘(A—(");))

= lim lim ag,
n—o00 k—o00

= lim lim ag,
k—o00 n—0o0

- o (19 (1 (7)) @ (705) 2 (» (7))
o (7)o T (7).

This proves the claim. O







Chapter 3

Efficiency of Quantum State
Tomography for Qubits

Abstract

The efficiency of quantum state tomography is discussed from the point of view of quantum
parameter estimation theory, in which the trace of the weighted covariance is to be minimized.
It is shown that tomography is optimal only when a special weight is adopted.

3.1 Motivation

Let £L(H) be the set of linear operators on a Hilbert space H = C2, and let S := {7, | v =
(x',22,2%) € X} be the set of strictly positive density operators on H parametrized by the
Stokes parameters x € X := {x € R? | (z1)? + (22)? + (23)%? < 1} as

1
Ty 1= 5([ +xloy + 2?0y + 2303), (3.1)

where 01, 03, 03 are the Pauli matrices. Suppose we have an unknown quantum state 7 = 7, € S.
We are interested in identifying the true value of the parameter x.
Let

MO () = {(My, My, ..., M) | M; € L(H), M; >0, Y M; =1}
i=1
be the set of positive operator-valued measures (POVMs) on H taking values on a finite set
of outcomes labeled by {1,2,...,s}, and let M(H) = U2, M) (H). Given POVMs M =
(My,Ms,...,Ms,), N = (N1, Na,...,Ng,), and areal number p between 0 and 1, we can generate
a new POVM by a randomized combination of them as follows:

pMEB (1 _p)N = (leavaslv(l _p)Nh?(l _p)N‘?z) € M(H)

We can repeat this randomization procedure inductively to obtain @?:1 piM®) M(H), where
MO M@ M® e M(H) and p; > 0(1 < i < k) such that % p; = 1. We shall call
@le piM @ a random measurement when MM M@ . M® e M(H) are all projection-
valued measurements (PVMs). Applying a random measurement means applying one of the
projection-valued measurement {M (i)}lgig r chosen at random according to the probability dis-
tribution p= (pi)lgigkl-

Let MW, M®@) M®) be projection-valued measurements given by the spectral decomposition
of the observables o1, 0, 03, respectively, and let M(T) := %(M(l)@M(Q)EBM(‘?)) be their random

!Helstrom [21] defined a random measurement based on a different type of convex structure of M(H) as
(pM1 4+ (1 —p)N1,...,pMs+ (1 — p)Ns). Our definition of random measurement is seemingly different from his.

41
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measurement according to the uniform distribution. Suppose that, among m applications of M (T)
to the unknown state 7,, the uth PVM M (1) has been chosen m,, times and the outcomes +1
have been observed mf times, where m = my +mg + mg and m, = mz +m,, for p € {1,2,3}.

We can construct an unbiased estimator for the Stokes parameters x = (2!, 2%, 23) as
+ —
my —m
gt= R we {1,2,3}. (3.2)
my

We shall call this estimator a tomography in this chapter. Note that the tomography can be
regarded as a maximum likelihood estimator. In fact, since the probability distribution for the
outcomes £1 of the uth PVM

M = (;(I—kau), ;(1—@)), (3.3)

applied to the state 7, € S is given by pMm = (#, 1_2””“ ), the probability distribution for the

T

outcome of the tomography M (D) is

1
MO gah 1=t 1421 2% 142% 1 - 27, (3.4)

As a consequence, the likelihood function for the outcomes (mz:)lgugg, obtained by m applica-

tions of M(T) is ,

I T
lm(l‘) = Z <mj log 1 +637 _|_ml; log 1 63; ) ,
p=1
and it is easy to see that %lm = 0 is equivalent? to (3.2).

In order to investigate the optimality of the tomography, let us recall some basic facts from
quantum parameter estimation theory. Let {pg | § = (6*,...,0) € ©} be a smooth parametric
family of density operators on a Hilbert space H with parameter space © C R%. An estimator
is represented by a pair (M,6) of a POVM M € M(H) and a map 6 : N — O that gives the

estimated value 6(n) from each observed data n € N. An estimator (M, 0) is called unbiased if

Eg[M, 0] := > 0(n) Tx pgM,, =0 (3.5)
neN

is satisfied for all @ € ©. An estimator (M, 0) is called locally unbiased [24] at a given point 6, € ©
if the condition (3.5) is satisfied around 6 = 6y up to the first order of the Taylor expansion. It
is well known that an estimator (M, 0) that is locally unbiased at 0y satisfies the following series
of inequalities [24, 21]:

Voo [M, 0] > (go, (M)) ™" > (Jo,) ™", (3.6)
where Vp[-] denotes the covariance matrix, and go(M) is the classical Fisher information matrix
at 0 with respect to M € M(H) defined by

(%Trngn)(%Trngn)
go(M) := lz Tr oM.

n 1<i,j<d

Further, Jp is the quantum Fisher information matrix at 6 given by

0 1
Jo = [Tr(agipe)%} = {2Trpe(LiLj + LjLi)} ;

1<i,j<d 1<i,j<d

where L; is the ith symmetric logarithmic derivative (SLD) defined by the selfadjoint operator
satisfying the equation

0 1
ggiPe = 5Lire + polLi). (3.7)

2There are possibilities that & ¢ X. However it follows from the law of large numbers of the tomography that
z € X for sufficiently large m almost surely.
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The inequality Vy,[M, 6] > (Ja,)~" is called the quantum Cramér-Rao inequality. The first in-
equality in (3.6) is saturated when 0%(n) = 0% + > (9o(M)~1)" 95 (log Tr pgM,,) is adopted.
However the second inequality in (3.6) cannot be saturated in general because of the non-
commutativity of the SLDs. To avoid this difficulty, we often adopt an alternative strategy
to seek the estimator which minimizes Tr Hy, Vj, [M, é], where Hy is a given d x d real positive
definite matrix for each 6 called a weight [24, 21]. Thus the problem of finding the optimal
estimator boils down to the problem of finding M € M(H) which minimizes Tr Hy, gg, (M)~!.

It is known that when dim H = 2, there is a definitive answer to the optimality of estimators,
which is summarized in the following Propositions.

Proposition 3.1. For a given weight Hy,
min {Tr Hygo(M)™' | M € M(H)} = (Tr Rg), (3.8)

where Ry := 1/J971H9 \/J(;l. The minimum is attained if and only if M € M(H) satisfies

VJoRov/ Jy
M)="——F—. 3.9
90(M) T Ry (3.9)
Proposition 3.1 was first proved by Nagaoka [37] (cf. [7]) when d = 2. The case d = 3 is
proved by Hayashi [17], and independently by Gill and Massar [13]. Further, Nagaoka constructed
explicitly a measurement which attains the minimum when d = 2. His construction of an optimal
estimator can be generalized as follows.

Proposition 3.2. Given a weight Hy, let us diagonalize Ry as Ry = USU™' where S =
diag(Si,...,Sq) is a diagonal matriz and U € O(d), and let M) be a projection-valued mea-
surement given by the spectral decomposition of the operator

d
L= K™*L, (3.10)
k=1

where K .= (U=1/J;1)*. Then the random measurement

M::le(l)@...@de(d) (3.11)
satisfies (3.9), where p; := S;/(S1+ -+ + Sq).

Note that the optimal measurement (3.11) depends on the true value of § € © in general.
In such a case, we necessary invoke an adaptive estimation scheme [9] to achieve the minimum
(3.8).

Now it is natural to inquire whether the tomography is optimal in view of Propositions 3.1
and 3.2. The answer is given by the following.

Theorem 3.3. Tomography is optimal if and only if the weight H, is proportional to the fol-
lowing special one:

1 _ @hed) @)
(=12 TEHI-6D)  — A-E))(I_ED?)
g — | e 1 L @HEY (3.12)
z (=2 (1— ()7 ()2 T=@HI- |- '
@*)(ah) (@*)@®) 1

(1-(=*)*)(1—(=1)?) (1—(=?)*)(1-(=%)?) 1—(z)?

Note that HéT) is not rotationally symmetric. This implies that the optimal weight depends
on the choice of the coordinate axes. Theorem 3.3 also implies that the tomography is not
optimal for a rotationally symmetric weight that is natural for a physical point of view.

This chapter is organized as follows. Theorem 3.3 is proved in Section 3.2, and the non-
optimality of the tomography for a rotationally symmetric weight is discussed and numerically
demonstrated in Section 3.3. An extension to the case when dimH > 3 is also discussed there.
For the reader’s convenience, simple proofs of Propositions 3.1 and 3.2 are given in Appendix.
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3.2 Proof of Theorem 3.3
We prove Theorem 3.3 in a series of Lemmas.
Lemma 3.4. Let L, be the SLD of B% for pe {1,2,3}. Then

x#
P
B 9detr

L,= (I—71).

Proof. We need only verify that L, satisfies equation (3.7).

bl f e
L,7r=0o,m — mT(I —T)=0,T — ?I.
Therefore
1 1 1 1 xt
i(L#T +7Ly) = 5({77 ou} —atl) = 5({5170#} + {Eamgu} — )
1 o 1o}
- HT _ b)) — ZH
2(Uu+x I—a"I) 5 = o
where {A, B} := AB + BA for A, B € L(H). O

Lemma 3.5. Let J, be the SLD Fisher information matriz at x. Then

Jo = (I~ |z} ()"
where |x) = |

Proof. We calculate the elements of J,.

or o aH aHa?
Iy = Tr—1L,=Tr-t — I— =0, +—.
() " on ' (0” 2det7( T>> Wt Tdetr
Thus
1
=1+ — =1 .
J‘L + 4det7' ‘.T> <Jj| + 1— 7'2 |x> <x|
Then
2
(1~ o) o) (14 25 o ol ) = T4 =g lob ol = o) ol = -z o) (ol =
where 7 = \/(z|z). Therefore I + — |z) (z| = (I — |z) (z)) 1. O

Lemma 3.6. Given F, € g,(M(H)) with F, > 0. There erists a weight H, such that

i TrH,g, (M) "} =Tr H F! 3.13
Mglj\;r%m{r 2Ye(M)™'} = Tr H, F, (3.13)

if and only if
TrJ 'F, = 1. (3.14)

Further, when (3.14) is satisfied,
H, =FkF, J]'F, (3.15)

is the only weight which satisfies (3.13) where k is an arbitrary real positive number.
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Proof. We first assume that there exists a weight H, which satisfies (3.13). Let R, := \/ V/ JotH, N/ Jg L.
According to Proposition 3.1, F,, must be
P VI Ry Jy
" TrR,
so that
Ve B/ e

TrJ, 'F, =TrJ* 1.

Tr R,

Then we conclude (3.14).
We next assume that (3.14) is satisfied. Let H, = kF, J; ' F. It follows from Proposition 3.1
that

2
min  TrH,g,(M)™' = (Tr\/k\/ngFIJJIFI\/Jf)

MeM(H)
— k(TvJ ') =k (TrJ, ' Fy)
= Tr(kF,J 'F,)F,' =TrH.F, '

Further, the weight of the form (3.15) are the only weights which satisfy (3.13) because the
mapping

VIV HNE VT VLR

MY (d,R) > H, TR € 9(MH)
Te\/ Vo TH, VT e
is injective where M () (d,R) := {G | G is d x d real positive definite matrix, TrG = 1}. O

Proof of Theorem 3.3. We can calculate the classical Fisher information matrix with respect
to M) from (3.4) as follow:

9o (M) = 3 0 T—(22)2 (1) : (3.16)
0 =N
Then
1 1—(x1)? 0 0
T M®) = Tyl e[ 0 e 0
0 0 =y
- 1( 1 N 1 N 1 (x1)2 (22)? (x3)2)
T O3 @)?2 T 1-(@)?  1-(@®)2 1-(2)2 1-(22)2 1- (a9)2

= 1
We see from Lemma 3.6 that H, := kg, (M) J -1 g,(M™)) are the only weights which satisfy

i TrHy go(N) 'Y = Tr H, g, (M),
i) VT Ho 9o (N) 7 = T i g (M)

Then

k9w<M(T)) Jz_lgx(M(T))
=k go (M) (I = |z) ()9 (MT)) = k (g2 (M D)% — g, (M) |z) (2| go (M D))
(z')(@*) (&) (@")

1
1(*(1932)22) (1—=(21)?)(1—(22)?) (1*(97?)2)(13*(11)2)
x)( 1 z°)(x
(1=(=)?) (1 -(22)?) 1(*(;;"2)1) T (1= (A-(2%)?)

(@)

1
- (A=EF)A-ED2) T (1-E2)2)(A-()?) 1—(x®)?

— 9k g,

—9ok| —
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Figure 3.1: Indicatrices for several typical weights H,, where H, = HJ(CT) (left), H, = J,
(middle), and H, = I (right).

3.3 Discussions

Let us investigate the properties of the weight HéT) that is optimal for the tomography. We
first regard a weight H, as a metric tensor on the tangent space 7., S at x € X, and let us
plot the indicatrix, the set of end points of tangent vectors v € T,S centered at z satisfying
tvH,v = 1. Figure 3.1 shows the indicatrices on the x'22-plane for H, = HQ(CT) (left), H, = J,,

(middle), and H, = I (right) Obviously H" is not rotationally symmetric, and is awkwardly
distorted when = = (2!, 22, 23) € X is off the coordinate axes. This means that the tomography
depends highly on the ChOlce of the coordinate axes. Actually, an estimation scheme should be
independent of the choice of the coordinate axes because their choice is completely arbitrary. It
is therefore natural to adopt a rotationally symmetric weight H, which satisfies U*H () U = H,
for U € SO(3).

Any rotationally symmetric weight can be represented by

1
H9 = f(r)I + (9(r) — f(r)) 3 o) {al, (3.17)
for x # 0 where f, g are functions on (0, 1) such that f(r) > 0 and g(r) > 0 (see Appendix 3.B).
Given a weight H, = Hg(cf’g), let M/:9) € M(H) be the corresponding optimal measurement
given by (3.11), and let ¢, := TrH‘rgf’g)gm(J\J(f’g))’1 and i) = Tng(Cf’g)gz(M(T))’l. It then
follows from (3.8) and (3.16) that

Cy

(Tr VVITHY JP)Z
(2vF0) + VA~ g0) (3.18)

and
T =3(2f(r) + (1 = 1?)g(r)) + 3tr*(g(r) — £(r)), (3.19)

where t :=1— M Note that 0 <t < 2 , and that ¢ = 0 if and only if = is on one of
the coordmate axes, and t=2% 1f and only if z is parallel to one of the vectors (1,1,1), (—1,1,1),
(1,-1,1), and (1,1,-1). In addltlon

&0 e = 2(VI— 0 - VID) + 32 (0lr) - F0) (3.20)
2 (V=70 - Vai) 43 G o) (5 -1). G2

By considering the cases g(r) > f(r) and f(r) > g(r) separately, we conclude that AT > ¢, for
any rotationally symmetric weight H;f g
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Figure 3.2: The behavior of ¢, (solid) and cg) (dashed) as functions of radius r in the direction

v = %(1, 1,1)t for HY9 = g, (left) and HP9 =1 (right).

For example, when HY*9 = J,., for which f(r) =1and g(r) = 15, we see that g(r)— f(r) —

oo as r — 1, so that ch) becomes much larger than c¢,. On the other hand, when H;E;f’g) =1,
for which f(r) = g(r) = 1, the second terms in (3.20) and (3.21) vanish, and the difference

" — ¢, becomes relatively small. Figure 3.2 shows the behavior of ¢, (solid) and Y (dashed)

as functions of radius = in the direction v = %(1, 1,1)* for a7y = J, (left) and Y9 =1
(T

(right). When Ha(cf’g) = J., we see that cw) diverges as r — 1, while ¢, converges to 9. When

H;f’g) = I, on the other hand, cg) and ¢, converge to 6 and 4 respectively as r — 1, and their

difference is relatively small.

Now let us make a numerical simulation to compare the asymptotic performance of the
tomography and the optimal adaptive estimation schemes for H, = J, and H, = I. We set the
qubit state to be estimated as 7, with x¢ = (0.55,0.55,0.55). Since the optimal estimator given
in Proposition 3.2 depends on the true value of z € X', we shall invoke an adaptive estimation
scheme in evaluating Tr H,g,(M (z))~!, with M(z) being the optimal POVM for z € X, as
follows [36, 9]: We begin by choosing #(?) € X arbitrarily. Suppose that M (&) is applied and
that the outcome n; € {1,2,...,s} is obtained. The maximum likelihood estimator is given by

&M = argmax [, (z),
TEX

where
Iy (z) := log Tr7(z) M, (&9).

At the mth stage (m > 2), suppose that M (Z(™~Y) is applied and that the outcome n,, €
{1,2,...,s} is obtained. The maximum likelihood estimator at the mth stage is given by

2™ .= argmax I, (),
TEX

where

Im(z) := > _log Tr7(x) My, (£071).
i=1

Because of the strong consistency and the asymptotic efficiency of the adaptive estimation [9],
the sequence m x Tr H,, V[#("™)] of the weighted covariances multiplied by m converges to
Tr Hy, 9oy (M (20)) ™! as m — oo. Let us demonstrate this behavior by a numerical simula-
tion. We have performed two kinds of numerical simulations in which the weight H, has been
set as H, = J, and H, = I. These results are shown in the left and the right figure in Figure
3.3, where the solid and dashed curves correspond to the adaptive estimation and the tomogra-
phy, and the solid and dashed horizontal lines correspond to the theoretical limits. As figures of
merit, we have plotted in Figure 3.3 the sample averages of 2m x B(7.,, Tz(m) ), where B(-,-) is
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Figure 3.3: A numerical comparison between the tomography and the optimal adaptive esti-
mation for the weight H,, where H, has been set as H, = J, (left) or H, = I (right). The
solid and dashed curves correspond to the adaptive estimation and the tomography, respectively,
and the solid and dashed horizontal lines correspond to the theoretical limit. As a figure of
merit, we have plotted the sample averages of 2m x B(7,, Tz(m)) or m X |zg — #(™)|? instead of
m x Tr H,, V]z(™)].

the Bures distance, or m x |zg — 2™ |? instead of m x Tr J,, V[2(™)] or m x Tr V[£(™)] because
they are asymptotically equivalent (See Appendix 3.C). The sample averages are calculated by
repeating the estimation schemes 1000 times. We see that the sample average of each estimation
scheme approaches the corresponding theoretical value, as m becomes large. We further observe
that the adaptive estimation scheme is more efficient than the tomography, and the difference
of their performances is noticeable when H, = J,. We could conclude that the tomography is
not efficient for a rotationally symmetric weight that is natural in estimating an unknown qubit
state.

Finally we shall touch upon a generation to a higher dimensional Hilbert space H. Let

g =dimH(> 3) and let {

ega)> 7 | be an orthonormal basis for each o =1, ..., ¢+ 1 satisfying

|<e§a)|e§-5)> 1?2 = % (aw # B) for all ¢,5. A finite subset {‘ega)>}a7i of the Hilbert space H is
called a full set of mutually unbiased bases. 1t is known that a full set of mutually unbiased bases

exists when ¢ is a prime number or the power of a prime [1]. As before, we regard the uniform
combination

MO .= L %M(a)
B q + 1 a=1

U

of the PVMs M (@) .= (‘ega)> <ega) e,(f)> <e§f‘) ) € M(H) as a tomography on H. Let S be

the set of strictly positive density operators on H, and let © = {z,;} be an affine parametrization

of § given by
]}

Figure 3.4 shows the behavior of ¢, (solid) and oD (dashed) as functions of r in the direction
v € R”~1 where

Ty = é[—i— szo"i(

a=1i=1

¢e =min{Tr Jog.(M)"" | M € M(H)},
CgcT) =Tr Jwgz(M(T)>_1

with v17 = 1 and va; = 0 (@ # 1 or ¢ # 1) for dimH = 3 (left) and dimH = 4 (right). We
see that the behavior for dimH = 3 and 4 are almost the same as that for dimH = 2 plotted

in Figure 3.2. This observation suggests that the same non-optimality result would hold for
dimH > 3.
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Figure 3.4: The behavior of ¢, (solid) and ) (dashed) as functions of r in the direction
v € R”~! where vy = 1 and v4; = 0 (e # 1ori#1)for dimH = 3 (left) and dimH = 4
(right).

Appendices
Appendix 3.A Proofs of Propositions 3.1 and 3.2

In this appendix, we give simple proofs of Propositions 3.1 and 3.2 for the reader’s convenience.
We start with some lemmas which hold for an arbitrary finite dimensional Hilbert space H. Let

us define the inner product (-, -), on L(H), as
(A, B), = %Tr po(A*B + BA®).

Then we can rewrite go(M) by SLD as follows:
<Li7 MI>6 <Lj7 va>9

%: <Iv Mx>9
Further we can also rewrite Jp as Jy = [(Li, L;)]ij. Let us define L’ as (3.10). Let us define

- [

go(M) =

)

] 1<ij<d

1<i,j<d
Lemma 3.7. {L}; U{I} is orthonormal with respect to (-, -),.
Proof.
(L L7) =S K“K (Lo, Ly = Y KoK = (U7 a7 0) = 69
s,t s,t
Further .
i I> —SOKE (L, D)y =S KPTrpgLy = S K*Trd;pp = 0,
< p 25: ( Do 25: T'po ZS: I dipe
then

(I, I)g =Trpg = 1.

Lemma 3.8. It holds that
Trgo(M) < dimH — 1,

for all M € M(H).
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Proof.
2 2
S, (LY M, d (L + (I, M),
Trgg(M) = Z <I<Mx>9 > Z Z < > m>9 : a <I’ M$>9
3> (W - Mm>9) (3.22)
_ ;m_lg;ﬂm_l (3.23)

= TrI—1=dimH-—1.
Inequality (3.22) follows from Bessel’s inequality, and inequality (3.23) from
(I, M), Tr My = (Tr pgM,) (Tr M) > TrpgM2 = (M, M), .
O

Lemma 3.9. Let go(M(H)) = {go(M) | M € M(H)}. Then go(M(H)) is a convex set.
Similarly, go(M(H)) is also a convez set.

Proof. Let MM M@ ¢ M(H) and let 0 < p < 1. Then we see

9o(pM D @ (1 — p)M @),

= Z v <Li’ M“(Cl)>9 <Lj’ M§1)>9 + (1-p)* <Li’ M§2)>9 <Lj’ M§2)>9
. p(1, M) y (L —p) (1. M)
<Li’ M£1)>a <Lj’ M£1)> <Li’ M§2)>9 <Lj’ M§2)>9

_Z 1 ’ +Z(1_ ) 2
r ! <I’ M; )>9 Y ’ <I’ MQS )>e

=pgo(M™M);; + (1 = p)gg(MP);;.  (3.24)

This implies that any convex combination of gg(M™)) and go(M @) belongs to gg(M(H)). O

Now we restrict ourselves to the case when dimH = 2. In this case it is necessary that
1<d<3.

Lemma 3.10. Given v = (vy,...,v4)" € R? such that |v| = 1, then
Go(M™)) = |v) (v], (3.25)

whdere M(”) is a projection-valued measurement given by the spectral decomposition of L.,
Yimy vill'.

Proof.
4021 ) = 5 v
S N
< (L, Ly)g =1, (3.26)
where M%) v)/ <M(v Mév)>. Because {Mév)}x is orthonormal with respect to (-, -),,

the inequality (3.26) follows from Bessel’s inequality. Further by definition, L, € span{M,((v)}x.
Therefor
(0| go(M™) o) = 1. (3.27)
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According to Lemma 3.8,
Trgo(M®) < dimH —1=1. (3.28)

We can conclude (3.25) from (3.27) and (3.28) and go(M ™)) > 0. O
Lemma 3.11. Let M (d,R) be the set of d x d real positive semi definite matrices. Then
GoM(H))={GeMT(d,R)| TrG < 1}.
Proof. According to Lemma 3.10, for any v = (v1,...,v4)" € R? such that |v| =1,
[0) (v] € Go(M(H)).

We further observe that 0 € go(M(H)) because the POVM M(©) := (I) provides no information.
Then we see from Lemma 3.9 that

Go(M(H)) co<{|v> (ol

veR?, |v| = 1} u{0}) = {Ge M*(d,R)| TrG < 1}.

The converse inclusion follows from Lemma 3.8. O

Lemma 3.12.

Go(M(H)) = {\/J?Gﬁe

Ge M (dR),TtG < 1}.

Proof. o _ _
Go(M)i; =Y K"K go(M)y = K"go(M)a(K*)",
st st
thus
Go(M) =U"1\/J;  go(M)\/J; 'U.
Therefore

VIsUge(M)U ™/ Jg = go(M).

It follows from lemma 3.11 that

go(M(H)) = {\/jeUGU_l Jo GeM*(d,R)J‘rGgl}.

G € a0 | = {VIGVT

O

Lemma 3.13. Given S € M+ (d,R) such that S > 0,
min {Tr SG™';G € M (d,R), TrG = 1} = (TrV'S)2.

Only if G = v/S/(Tr/S) then Tr SG—! = (Trv/S)?.

Proof. For G = ()<, j<q - let f(G) = Tr (SG~1) + A(Tr G — 1) where ) is a Lagrange
multiplier. Then -

;Gf =Tr S(—G*lﬁcﬂ) + A3 = —(ej| GTISG ™ |e;) + Adij =0
ij

0G,;j
where {e;}, ;<4 is the standard CONS of R?. Thus
GTlSG™t = I

from which

SIS
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and )
= (:vs)
because of Tr G = 1. As a consequence

mGinTr (SG™Y) = Tr(AG) = X = (TrVS)2.

O
Proof of Proposition 3.1. According to Lemma 3.12 and Lemma 3.13,
Ménj\iAI%H) Tr Hy go(M)™' = min{Tng\/EG—l\/E| Ge M (dR),TrG =1}
= min{Tr Je_ng\/EG_l |G € MT(d,R), TrG = 1}
= (TrRe)’.
When Tr Hp go(M )~ achieves the minimum,
_ R
Tr Ry’
thus
O

Proof of Proposition 3.2. Assume that d = 3. According to (3.24) and Lemma 3.10,

g(M) = VIgUgs(M)U/Tg = \/TeU{p1de(M ™M) + page(M®) + psge(M@) U1/ Tp
1 0 0 0 0 O 0 0 O
= VJU{pt| 0 0 0 | +p2| 0 1 0 | +ps[ 0 0 0 |YU VT
0 0 O 0 0 O 0 0 1
USU JoR
= \/JHU—U Ws = /Jo N _ VIR s
Tr Ry
When d = 1 or 2, we can prove this in a similar way. O

Appendix 3.B Rotationally symmetric weight

In this appendix, we show that any rotationally symmetric weight is represented in the form

= f(r)I+(9(r) = f(?"))ri2 ) (], (3.29)

for x # 0 where f, g are functions on (0,1) such that f(r) > 0 and g(r) > 0.
Given z € X (z # 0) arbitrarily, let e, ez, e3 be an orthonormal basis of R? with ez = lo)

Bk
and let V € SO(3) be any rotation about eg-axis. Since

V*H,V = V*Hy )V = H,, (3.30)

H, and V are simultaneously diagonalized, and e3 is one of their common eigenvectors. Other
eigenvalues of H, must be degenerate because V' is any rotation about es-axis. Then H, should
be represented as

H, F(@)lex) {exl + () le2) (e2| + g(x) les) (es]

FaT + () — Fla)) g o) {a. (331)
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Let U € SO(3) be any rotation. It follows that

U*Hya)U

U |FU) + §(U) ~ fUn) 5 U U | U

U+ (§(U) ~ F(U) 5 [U°U) (U]

FUDI+ @(U) ~ F(U) 5 1) (. (3:32)

We see that it follows f(z) = f(Ux) and §(z) = §(Uz) for any U € SO(3) by comparing (3.31)
and (3.32). Therefore f and § must be represented by f(z) = f(|z]) and §(z) = g(|z]).

Appendix 3.C Bures distance and quantum Fisher infor-
mation matrix

The Bures distance between two states p and o is defined by

B(p,o) := 4 (1 T W) .

1 o
B(Ta, Totds) = 3 Z Jpijdz'dz? + O(|dx|?) (3.33)

ij

It is known that

when |dx| is sufficiently small. Given an estimator (M, Z) that is locally unbiased at xzg € X, it
follows from (3.33) that

Tr JIUVIO [M? Lﬂ = EIO [M7 Z on,ij (iﬂ - x%))(i'] - 95]0)]
i

= B, [M,2B(74,, 1) + O(]& — z0|)].






Chapter 4

Experimental Demonstration of
Adaptive Quantum State
Estimation

Abstract

The first experimental demonstration of an adaptive quantum state estimation (AQSE) is re-
ported. The strong consistency and asymptotic efficiency of AQSE have been mathematically
proven [J. Phys. A:Math. Gen. 39 12489 (2006)]. In this chapter, the angle of linear polarization
of single photons, or the phase parameter between the right and the left circularly polarization, is
estimated using AQSE, and the strong consistency and asymptotic efficiency are experimentally
verified. AQSE will provide a general useful method in both quantum information processing
and metrology.

4.1 Motivation

Quantum theory is inherently statistical. This entails repetition of experiments over a number
of identically prepared quantum objects, for example, quantum states, if one wants to know the
“true state” or the “true value” of the parameter that specifies the quantum state [29, 42, 3,
22]. Such an estimation procedure is particularly important for quantum communication and
quantum computation [39], and is also indispensable to quantum metrology [14, 38, 41, 48, 30].
In applications, one needs to design the estimation procedure in such a way that the estimated
value of the parameter should be close to the true value (consistency), and that the uncertainty
of the estimated value should be as small as possible (efficiency) for a given limited number
of samples. In order to realize these requirements, Nagaoka advocated an adaptive quantum
state estimation (AQSE) procedure [36], and recently Fujiwara proved the strong consistency
and asymptotic efficiency for AQSE [9].

In this chapter, we report the first experimental demonstration of AQSE using photons. The
angle of a half wave plate (HWP) that initializes the linear polarization of input photons is
estimated using AQSE. A sequence of AQSE is carried out with 300 input photons, and the
sequence is repeated 500 times for four different settings of HWP. The statistical analysis of
these results verifies the strong consistency and asymptotic efficiency of AQSE. Recently, it has
been mathematically proven that the precision of AQSE outperforms the conventional state
tomography [49]. It is thus expected that AQSE will provide a useful methodology in the broad
area of quantum information processing, communication, and metrology.

55
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4.2 Adaptive Quantum State Estimation

Let us first explain AQSE in detail. For simplicity, we restrict ourselves to one-dimensional quan-
tum statistical model S = {py; 0 € O (C R)}, a smooth parametric family of density operators
on a Hilbert space ‘H having a one-dimensional parameter . Our aim is to estimate the true
value of # by means of a certain quantum estimation scheme. An estimator is represented by
a pair (M, 0), where M = {M(z); x € X} is a positive operator-valued measure (POVM) that
takes values on a set X', and 6 : X — © is a map that gives the estimated value f(z) from each
observed data x € X. The observed data x € X has probability density

flx;0, M) :=Tr pgM(x), (4.1)

which depends on both the parameter 6 and the measurement M.
In traditional statistics, it is often the case to confine our attention to unbiased estimators.
An estimator (M, 0) is called unbiased if

Eg[M,0) =6 (4.2)

is satisfied for all € ©, where Ey[ - | denotes the expectation with respect to the density (4.1). It
is well known [21] that an unbiased estimator (M, ) satisfies the quantum Cramér-Rao inequality
VoM, 6] > (Jg) ™", where Vy[ - | denotes the variance, and Jp is the quantum Fisher information
of the model S defined by Jy := Tr pg L2, where Ly is the symmetric logarithmic derivative (SLD)
defined by the self-adjoint operator satisfying the equation < d”(’ =z (Lgpg + poLyg) .

In quantum statistics, however, it is regarded that unblasedness is too restrictive a require-
ment, and we usually weaken the condition to a “local” one. An estimator (M, ) is called locally
unbiased [24] at a given point p € © if the condition (4.2) is batisﬁed around 6 = 6y up to the
first order of the Taylor expansion, that is, if Ep,[M,0] = 6 and o d B[ M, 6] | g—p. = 1 hold.
Clearly, an estimator is unbiased if and only if it is locally unbiased at all § € 6 A crucial
observation is that an estimator (M, 6) that is locally unbiased at y also satisfies the quantum
Cramér-Rao inequality

%0[M7é] > (JQO)_l (43)
at 0 = 0y, and that the lower bound in (4.3) is achievable for any one-dimensional quantum
statistical model S. To put it differently, the best locally unbiased estimator (LUE) for the
parameter 6 at 6 = 6 is the one that satisfies Vg, [M, 0] = (Jp,) "

Here we encounter a difficulty which often becomes the target of criticism: since the best
LUE for estimating the parameter # depends, in general, on the unknown parameter 6 itself, the
estimation strategy based on LUEs would be infeasible. In a different yet analogous context,
Cochran [5] ingeniously described this kind of dilemma as follows: “You tell me the value of 6
and I promise to design the best experiment for estimating 6.”

To surmount this difficulty, Nagaoka [36] advocated an adaptive quantum state estimation
(AQSE) scheme as follows. Suppose that, by prior investigation of the quantum statistical
model S, one has the list of optimal LUEs (M( -10),0( - ;9)) for each # € ©. One begins
with an arbitrary initial guess by € O, and applies the measurement M ( - ;éo) that is optimal
at éo. Suppose the data x; is observed, one then applies the maximum likelihood method
to the likelihood function L;(6) = f(xl,ﬁ M( - ;0p)), to obtain the next guess 6. At stage
n (> 2), one applies the measurement M( - Hn 1), where 0,_1 is the maximum likelihood
estimator (MLE) obtained at the previous stage. The likelihood function is then given by
L,(0) := H? 1 flzi 0, M( - :0;_1)), where ; is the observed data at stage i, and one obtains the
nth MLE 6,, that maximizes L »(0). It is quite natural to expect that the sequence 0,, of MLEs
would converge to the true value of the parameter 6. In fact, under certain regularity conditions,
it can be shown that the sequence 6, is strongly consistent and asymptotically efficient [9].

4.3 Experimental setup

Now let us discuss the implementation of AQSE using photons (Fig. 1). Here the unknown
parameter is the angle 8 of HWPO, which determines the phase ¢ between right and left circularly
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Single photon detectors
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Linearly polarized
photons 7
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Figure 4.1: Schematic of adaptive quantum state estimation. Photons are linearly polarized with
a polarization direction determined by HWP(0. The polarization is analyzed by HWP1 and the
polarizing beam splitter (PBS). The controller sets HWP1 to an angle calculated on the basis of
the photon measurement results.

polarizations of input photons by the relation ¢ = 46. An arbitrary linear polarization can be
described using right and left circular polarizations as follows:

B
V2

By changing the angle of the half wave plate (HWP1), we can adjust the measurement basis.
For such measurement, the POVM having optimal estimation capability is given by

M(0) = (M(1;0), M(2;0)) = (1€) (€], 1 = 1€) (€1), (4.5)

where (¢ = (Cos (29+ %) , sin (20 + %)) By applying the POVM M(0) to the input state
[1(0)) := |1), one obtains the probability distribution on X := {1,2} which is isomorphic to the
fair coin flipping.

The drawback to realizing this measurement is that the optimal POVM M (#) depends on
the unknown value of the parameter . We can avoid this drawback by adopting an AQSE
as follows. We begin by setting the initial log-likelihood function to be lp(f) = 0, and then
start inputting and detecting photons one by one. For nth photon, we apply the measurement
M(én,l) which depends on the latest MLE én,l. Let x, € X be the outcome indicating which
detector has been lit. The log-likelihood function is then updated by the formula

1 (0) = ln—1(0) + log (¥(0)| M (2n; 0n—1) [4(0)) , (4.6)

9) = = (1R) + ¢ L)) = cos(2) 1) +sin(5) V). (14)

and the nth MLE is given by 6, = arg maxy l,,(6). Let us denote the true value of the parameter 6
by 0. Tt is known [9] that the sequence 6,, of MLEs converges to the true value #* with probability
one (strong consistency) and that the distributions of the random variables v/n (6,, — ") converge
to the normal distribution N (0, J;tl) (asymptotic efficiency), where Jy denotes the quantum
Fisher information of the parameter 6, which turns out to be 16 for our model (4.4).

INote that any fixed POVM of the form (4.5) is optimal for almost all values of the parameter ¢ if we treat
only the pure state model (4.4). However, if we treat mixed state models, the dependence of optimal POVM to
the parameter becomes crucial [41].
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Figure 4.2: (a) Schematic of the experimental setup. (b)(c) An example showing the update of
a log-likelihood function. The second term log (1(0)| M (zy; 0n—1) [¢0(6)) in eq. (4.6) is shown in
panel (b), and the updated 1,,(6) is shown in panel (c). The blue arrows indicate the true value
ot
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The experimental setup is shown in Fig. 2(a). Single photons at 780nm are generated from
a heralded single photon source [25], consisting of a CW diode pump laser (wavelength: 402
nm) and a 3 mm long BBO crystal (Type I). A pair of a signal photon (780 nm) and a trigger
photon (830 nm) is created via spontaneous parametric down conversion. The detector (DT,
SPCM-AQR, Perkin Elmer) after an interference filter (IF1, center wavelength 830nm) outputs
an electric pulse (width 30ns) when it detects a trigger photon and the electric pulse heralds
the generation of a signal photon, which is coupled to a polarization maintaining fiber (PMF)
after an interference filter (IF2, center wavelength 780 nm, width 4 nm). The polarization of
photons are then initialized to be horizontal using a polarizer (extinction ratio 107°). The
target parameter §° was set using HWP0. The polarization state of the photon was analyzed
by HWP1 and a polarizing beam splitter (PBS). After passing through the PBS, photons are
guided to single photon detectors (D0 and D1, SPCM-AQR, Perkin Elmer) on each PBS output
port. The outputs of single photon detectors are gated by the rise of the heralding signal and
connected to the “first-come discriminator,” consisting of a home-made electric circuit. When the
discriminator receives the first signal from one of the detectors (D0 or D1) after the measurement
for (n — 1)th photon starts, the discriminator informs which detector has been clicked. The
minimum pulse interval of 2.5ns can be discriminated. Note that the discriminator ignores the
case when it receives the pulses from both the detectors within 2.5ns. The angle of HWP1 for
measuring the nth photon is determined by calculating the discretized MLE én, the maximizer
of the log-likelihood function (4.6) chosen from among the 10000 points that divide the domain
[0,7/2) of the parameter # into equal parts (Figs. 2(b) and 2(c)). When the change of HWP1
angle is completed, the measurement for the next (nth) photon will be started. In a sequence
of AQSE, the above mentioned procedure is carried out up to 300 input photons (n=300). For
four different HWPO angles 8 = 0, 30, 60, and 78.3 [deg], we repeated the sequence for 500 times
(r=500).

Let us first observe the strong consistency for the sequence 6,, of MLEs for the parameter 6 of
HWPO. Fig. 3 (a) shows 500 trajectories of estimated HWPO angle 0, against the number n of
photons when the true value 6 of the parameter is set to be 60 degree. The curves correspond to
independent runs of adaptive estimation. Evidently, each curve of 0, approaches the true value
#t, which is in accord with the mathematical result that 6,, — 6! almost surely as n — oo, even
though the curves are dissimilar to each other reflecting the genuine statistical nature of quantum
system. The convergence to the true value is clear in Fig. 3(b) where first 10 trajectories in Fig.
3(a) are superposed.

4.4 Experimental results

We next test the hypothesis that the MLE 6, follows a normal distribution for large n. More
concretely, we will investigate if the random variable v/nJs (én —0) follows the standard normal
distribution N(0,1), i.e., v/nJg (0, — 0) ~ N(0,1), where @ is the sample average of MLEs 0,
over sufficiently many independent trials. A goodness of fit test [23] was carried out as follows:

1) The real axis was divided into 23 intervals (bins) {I,}72,, where I1,..., Is; are disjoint
partitions of the interval [—3.5,3.5] of equal width, and Iy = (—o0,—3.5), Is2 = (3.5,+00).
In reality, these bins were slightly shifted by §/10000, where § := /nJs 7/20000 is the scaled
resolution of the estimator ém so that the data v/nJy (én - ?) did not fall on the boundaries of
the bins. ,

2) The test-statistic X2 := Ziio % was calculated, where Nj is the number of ob-
served data which fell into bth bin, p, the theoretical probability of falling a datum into bth
bin under the null hypothesis N(0,1), and r the number of repetitions of adaptive estimation
procedure.

3) The test-statistic X2 was analyzed using the chi-square distribution X%37p of degree 23 —p,
where p = 2 degrees of freedom ought to be subtracted because of the normalization and the use
of sample average 0.

Figure 4.4 shows the histogram of the observed data obtained by r = 500 independent
experiments of adaptive estimation scheme, each using n = 300 photons. The true values 6% of
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Figure 4.3: (a) Trajectories of estimated HWPO angles against the number n of photons for

r = 500 repetitions is shown in a three dimensional plot. (b) The first 10 curves are superposed
in a two dimensional graph.
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Figure 4.4: Histogram of the observed data obtained by r = 500 independent experiments of
adaptive estimation scheme, each using n = 300 photons. These histograms were taken for four
different true values of (a) 0 [deg], (b) 30 [deg], (c) 60 [deg] and (d) 78.3 [deg].

Table 4.1: Confidence intervals for the mean i and the variance v. CL means
confidence level.

0 [deg] w [deg] (90% CL) v (90% CL)
0.0 -0.15 £ 0.06 [0.054, 0.067]
30.0 29.90 + 0.06 [0.055, 0.067]
60.0 60.00 + 0.06 [0.056, 0.068]
78.3 78.27 + 0.06 [0.055, 0.068]

the parameter § of HWPO are set to be 0, 30, 60, and 78.3 degrees. The density function of the
standard normal distribution N (0, 1) is also plotted as the solid curve. All the experimental data
agree with the standard normal distribution. To be precise, the values of the test statistic X?
are (a) 16.8 (b) 15.7 (c¢) 12.8 (d) 16.2, and the null hypothesis is accepted with 10% significance
level in each case.

Having obtained the strong evidence that the distribution of the MLE has converged quite
well to a normal distribution at n = 300, we finally proceed to the estimation of confidence
intervals [23] for the mean p and variance v, assuming that /7 (0, — ) ~ N (0, v). The confidence
intervals for 4 and v are obtained by the standard procedure based on the statistical laws that

s (0 — p) ~ T,_y and (277}) V ~ x2_,. Here V is the unbiased variance of MLEs 6,, over r
trials, and T,._1 the t-distribution of degree r — 1.

Table 1 summarizes the results for » = 500 with 90% confidence level. Recall that the
asymptotic efficiency asserts that p ~ 0 and v ~ J(;l(z 0.0625). Since the precision of the
present experiment is about 40.2 degree?, we conclude that the estimated values of y and v
listed in Table I are in excellent agreement with the theoretical values.

It should be noted that the purpose of our AQSE is completely different from ‘adaptive
measurements’ proposed by Berry and Wiseman [2]. Their scheme was devised to estimate

2The precision of the rotation stage for HWP1 and the accuracy of the polarization basis states limited the
total precision of the experimental setup to +0.2 degree.
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the phase difference between the two arms of an interferometer using a special N-photon two-
mode state, approximating the canonical measurement proposed by Sanders and Milburn [46],
and is not applicable to general quantum state estimation problems. By contrast, our AQSE
is a general-purpose estimation scheme applicable to any quantum statistical model using n
identical copies of an unknown state. AQSE may also be used in verifying the achievability of
the Cramér-Rao version of the Heisenberg limit O(1/N?) [27] by applying the scheme to the
n-ii.d. extension pj™ of an N-photon phase-shift model pg on H ~ (C2)®N. (See also [10] for
estimating a unitary channel under noise.) Incidentally, AQSE is based on the Cramér-Rao type
point estimation theory and is free from the choice of a priori distribution which matters in
Bayesian statistics such as adaptive Bayesian quantum tomography [26].

4.5 Concluding remarks

In summary, we have verified both the strong consistency and asymptotic efficiency of AQSE
by experimentally estimating the angle of linear polarization of photons. Since AQSE has been
mathematically proven to outperform the conventional estimation scheme such as the state
tomography [49], we plan to apply AQSE to multi-parameter cases and compare the performance
with other protocols using fixed measurement basis [4]. It will also be intriguing to apply AQSE
to enhance the performance of quantum metrological experiments beating the standard quantum
limit [14, 38, 41, 48].



Chapter 5

Conclusions

In the present dissertation, we explored asymptotic quantum state estimation theory and its
applications.

We first investigated the ultimate limit of estimation precision for the case when any collective
measurements are available. We developed a theory of quantum local asymptotic normality
based on a new quantum log-likelihood ratio, which is applicable to any quantum statistical
models satisfying mild regularity conditions. We also derived a quantum analogue of Le Cam’s
third lemma, and proved the asymptotic achievability of the Holevo bound for the local shift
parameter on a dense subset of the parameter space. There are of course many open problems left.
Among others, extending the representation theorem, convolution theorem, and local asymptotic
minimax theorem to a quantum statistical framework would be the most important ones to be
addressed. The difficulty with those problems lies in the fact that many standard tools in the
classical statistics do not work in a quantum case. For example, suppose that random variables
X, converge in distribution to a random variable X, and that Y,, converge in distribution to
a constant ¢, then the pairs (X,,Y,) converge to (X, ¢) in distribution. However its obvious
extension to a quantum case is not always true. Before tackling the above mentioned open
problems, we need to establish a theory of “quantum convergence in law.”

We next investigated a more realistic situation in which only separable measurements are
available. We scrutinized the case when dim’H = 2, and showed that the quantum state to-
mography is optimal if and only if a physically unnatural weight is adopted. Unfortunately, we
do not know anything definitive about the optimality of estimators when dim H > 3, although
numerical evaluation of the minimal values of the weighted covariance matrices is possible as in
Figure 3.4. Incidentally, investing the theory of quantum local asymptotic normality for separa-
ble measurements, or even for a given restricted class of measurements, would be an important
subject from the viewpoint of applications.

We further reported the first experimental demonstration of an adaptive quantum state
estimation (AQSE). The angle of linear polarization of single photons, or the phase parameter
between the right and the left circularly polarization, was estimated using AQSE, and the strong
consistency and asymptotic efficiency were experimentally verified. Experimental demonstration
of AQSE for two or three dimensional qubit models is now in progress and will be reported
elsewhere.
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