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Accelerating GPU Programs by Reducing Irregular Control Flow and
Memory Access
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The graphics processing unit (GPU) is recently used as a massively parallel processor to speed up general
computation. However, the GPU can decrease the performance of irregular computation, because the GPU is based on
the single instruction, multiple data (SIMD) architecture. The irregular computations here are conditional branches and
memory accesses, which vary the behavior of threads depending on the input data. In particular, different control flow
between threads causes redundant computations to follow each control flow. Moreover, uncoalesced memory accesses
waste the memory bandwidth of the GPU. Therefore, there are many challenges to accelerate applications that depend
on irregular computation.

This thesis presents GPU-based acceleration methods for three applications, aiming at developing techniques to
efficiently process irregular computation on the GPU. We focus on irregular GPU programs that have similar threads
in the entire program, although naive parallelizafion methods fail to exploit the similarity of threads. Our main
approach is to gather similar threads for the SIMD operations before executing threads on the GPU. We achieve this
preprocessing by observing the similarity of memory access pattern for the first application. For the third application,
we use the similarity of operations that are executed by threads. For the second application, we evaluate another
approach, which employs an algorithm that eliminates the irregularity by using a regular data structure instead of a
pointer-based data structure. The details are described below.

First, we describe an acceleration method for finding the all-pairs shortest paths (APSPs) using the GPU. The APSP
problem is a graph operation that finds shortest paths between all two vertices in a graph. This computation requires
many uncoalesced memory accesses to refer to the graph data, while the memory bandwidth bounds the performance.
Our method is based on an iterative algorithm that repeatedly solves the single-source shortest path (SSSP) problem in
parallel on the GPU. We exploit the coarse-grained parallelism by using a task parallelization scheme that associates a
task with an SSSP problem, in addition to the fine-grained parallelism in an SSSP problem. This scheme solves
multiple SSSP problems at a time, allowing us to share the graph data on a fast on-chip memory, as well as reducing
irregular memory accesses. As a result, the speedup over the existing SSSP-based implementation ranges from a factor
of 2.8 to that of 13, depending on the graph topology.

We next present acceleration methods for the Floyd-Warshall (FW) algorithm using the GPU, which is another
algorithm to solve the APSP problem. This algorithm uses a matrix representation of a graph, which eliminates
irregular control flow and memory accesses. The proposed method contains two variations, both designed to reduce
data access to off-chip memory based on an iterative blocked FW (BFW) algorithm. The first method also reduces the
number of instructions using registers rather than the shared memory. The other method increases the block size
because it is inversely proportional to the amount of off-chip memory access. For graphs with 256 1024 vertices, both
methods are 4% faster than an existing recursive BFW method. The first method achieves approximately 70% of peak
computational performance.

Finally, we demonstrate a GPU-based general biophysical simulator, called Flint. With this application, the program
for threads depends on the input data, as well as the data values. Therefore, it is required to reduce the difference of
control flow between threads. Flint handles heterogeneous biophysical models described by a large set of ordinary
differential equations (ODEs). It uses an internal bytecode representation of simulation-related expressions to handle
various biophysical models built for general purposes. The imerpretatioh of bytecodes causes a heavy use of
conditional branches. To reduce the irregular branches, we preprocess the bytecodes, which groups the similar
bytecodes to assign a bytecode group to a SIMD core of the GPU. In addition, each group is unified to a unified
bytecode to reduce memory accesses. We then implement two acceleration methods for Flint using a GPU. The first
method interprets multiple bytecodes in parallel on the GPU. The second method translates a model into a source code
through the internal bytecode, which speeds up the compilation of the generated source codes, because the code size is
diminished by the bytecode unification. The first method simulates a model containing approximately 40,000
expressions 24 times faster than that on a CPU core. The second method achieves a performance of 2.4 times higher
than that of the former method.

These results show that the GPU can be used for accelerating applications that include irregular computation. In
particular, the task parallel scheme used for the APSP problem can improve the throughput of computation that
includes the same type of independent subproblems. The technique used for our biophysical simulator will be applied
to other ODE-based simulations. Moreover, it can be applied to an application that assigns different operations to
threads. These findings will contribute to the realization of a general technique for efficient processing of irregular
computation on the GPU and other accelerators.
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