
Title Accelerating GPU Programs by Reducing Irregular
Control Flow and Memory Access

Author(s) Okuyama, Tomohiro

Citation 大阪大学, 2013, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/24957

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Accelerating GPU Programs by Reducing Irregular

Control Flow and Memory Access

January 2013

Tomohiro OKUYAMA

Accelerating GPU Programs by Reducing Irregular

Control Flow and Memory Access

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2013

Tomohiro OKUYAMA

Published Papers

Journal Papers

1. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “A Task Parallel
Algorithm for Finding All-Pairs Shortest Paths Using the GPU,” International
Journal of High Performance Computing and Networking, vol.7, no.2, pp.87–
98, April 2012.

2. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “Fast Blocked
Floyd-Warshall Algorithm on the GPU,” IPSJ Transactions on Advanced Com-
puting Systems, vol.3, no.2, pp.57–66, June 2010 (In Japanese).

International Conference Papers

1. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “A Task Parallel
Algorithm for Computing the Costs of All-Pairs Shortest Paths on the CUDA-
compatible GPU,” Proceedings of the 6th International Symposium on Parallel
and Distributed Processing with Applications (ISPA 2008), pp.284–291, Syd-
ney, Australia, December 2008.

Domestic Conference Papers

1. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “Fast Blocked
Floyd-Warshall Algorithm on the GPU,” Proceedings of High Performance
Computing Symposium 2010 (HPCS 2010), pp.9–16, January 2010 (In Japanese).

Oral Presentations

1. Kentaro Shigeoka, Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara,
“A Parallel Method for Accelerating Parameter Sweep on the GPU,” IPSJ
SIG Notes, 2012-HPC-136, 8 pages, September 2012 (In Japanese).

i

2. Yoshiyuki Asai, Takeshi Abe, Masao Okita, Tomohiro Okuyama, Nobukazu
Yoshioka, Shigetoshi Yokoyama, Masaru Nagaku, Kenichi Hagihara, and Hi-
roaki Kitano, “Multilevel modeling of Physiological Systems and Simulation
Platform: PhysioDesigner, Flint and Flint K3 service,” Proceedings of the
12th IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT 2012), pp.215–219, Izmir, Turkey, July 2012.

3. Tadashi Yoshikawa, Tomohiro Okuyama, Masao Okita, Yoshiyuki Asai, Takeshi
Abe, Taishin Nomura, Tetsuya Yagi, and Kenichi Hagihara, “Preliminary
Evaluation of OpenMP-based Parallel Simulation by Focusing on Similarity
of Formulas in Biophysical Models,” Proceedings of the 10th Symposium on
Advanced Computing Systems and Infrastructures (SACSIS 2012), 2 pages,
May 2012 (In Japanese).

4. Nobuya Fukui, Tomohiro Okuyama, Masao Okita, Takeshi Abe, Yoshiyuki
Asai, Taishin Nomura, and Kenichi Hagihara, “An Agent Allocation for a
parallel biophysical simulator insilicoSim,” Proceedings of the IEICE General
Conference, 2 pages, March 2012 (In Japanese).

5. Hiroto Kanda, Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara,
“An Instrumentation Method for Analyzing Efficiency of Memory Access in
CUDA Programs,” IPSJ SIG Notes, 2012-HPC-133, 8 pages, March 2012 (In
Japanese).

6. Masao Okita, Tomohiro Okuyama, Nobuya Fukui, Ryu Matsui, Takeshi Abe,
Heien Eric, Yoshiyuki Asai, Taishin Nomura, and Kenichi Hagihara,“Automatic
Parallelization of Heterogeneous Biological Simulator insilicoSim,” Proceedings
of the 24th Bioengineering Conference, 2012 Annual Meeting of BED/JSME,
2 pages, January 2012 (In Japanese).

7. Kentaro Shigeoka, Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara,
“Evaluation of A Parallelization Technique for Parameter Sweep Applications
using CUDA,” Proceedings of High Performance Computing Symposium 2012
(HPCS 2012), p.74, January 2012 (In Japanese).

8. Tomohiro Okuyama, Masao Okita, Takeshi Abe, Yoshiyuki Asai, Taishin No-
mura, and Kenichi Hagihara, “Accelerating General and Heterogeneous Bio-
physical Simulation Using the GPU Interpreter for Solving ODEs,” Proceedings
of the 4th Global COE International Symposium on Physiome and Systems Bi-
ology for Integrated Life Sciences and Predictive Medicine, 1 pages, November
2011.

ii

9. Ryu Matsui, Tomohiro Okuyama, Masao Okita, Takeshi Abe, Yoshiyuki Asai,
Taishin Nomura, and Kenichi Hagihara, “Focusing on dependencies in biophys-
ical models to improve scheduling in insilicoSim,” Proceedings of the Annual
Meeting of IPSJ Kansai Branch 2011, 7 pages, September 2011 (In Japanese).

10. Hiroto Kanda, Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “A
Low Overhead Method for Timestamp Logging in CUDA Programs,” Proceed-
ings of the Annual Meeting of IPSJ Kansai Branch 2011, 3 pages, September
2011 (In Japanese).

11. Tomohiro Okuyama, Masao Okita, Takeshi Abe, Yoshiyuki Asai, Taishin No-
mura, and Kenichi Hagihara, “Accelerating Interpreter of General Biophysi-
cal Simulatior ‘insilicoSim’ on the GPU,” IPSJ SIG Notes, 2011-HPC-130, 8
pages, July 2011 (In Japanese).

12. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “Auto Tuned Floyd-
Warshall Algorithm on the GPU,” Proceedings of the Work in Progress Session
held in connection with the 19th Euromicro International Conference on Par-
allel, Distributed and Network-Based Computing (PDP 2011), 2 pages, Ayia
Napa, Cyprus, February 2011.

13. Hiroto Kanda, Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “A
Log Generation Tool for Analyzing the Performance of CUDA Kernels,” IPSJ
SIG Notes, 2010-HPC-126, 7 pages, July 2010 (In Japanese).

14. Hiroto Kanda, Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara,
“Preliminary Evaluation of A Trace Generation Tool for Time Series Analysis
of CUDA kernels,” Proceedings of High Performance Computing Symposium
2010 (HPCS 2010), p.62, January 2010 (In Japanese).

15. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “Accelerating Floyd
Warshall Algorithm Using CUDA,” Proceedings of the Annual Meeting of IPSJ
Kansai Branch 2008, pp.35–38, October 2008 (In Japanese).

16. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “Accelerating All-
Pairs Shortest Path Problem Using CUDA,” IPSJ SIG Notes, 2008-HPC-114,
pp.145–150, March 2008 (In Japanese).

17. Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara, “Comparing Im-
plementations of All-Pairs Shortest Path Problem on the GPU using CUDA,”
Proceedings of High Performance Computing Symposium 2008 (HPCS 2008),
p.58, January 2008 (In Japanese).

iii

Abstract

The graphics processing unit (GPU) is recently used as a massively parallel proces-
sor to speed up general computation. However, the GPU can decrease the perfor-
mance of irregular computation, because the GPU is based on the single instruction,
multiple data (SIMD) architecture. The irregular computations here are conditional
branches and memory accesses, which vary the behavior of threads depending on the
input data. In particular, different control flow between threads causes redundant
computations to follow each control flow. Moreover, uncoalesced memory accesses
waste the memory bandwidth of the GPU. Therefore, there are many challenges to
accelerate applications that depend on irregular computation.

This thesis presents GPU-based acceleration methods for three applications, aim-
ing at developing techniques to efficiently process irregular computation on the GPU.
We focus on irregular GPU programs that have similar threads in the entire program,
although naive parallelization methods fail to exploit the similarity of threads. Our
main approach is to gather similar threads for the SIMD operations before executing
threads on the GPU. We achieve this preprocessing by observing the similarity of
memory access pattern for the first application. For the third application, we use
the similarity of operations that are executed by threads. For the second applica-
tion, we evaluate another approach, which employs an algorithm that eliminates
the irregularity by using a regular data structure instead of a pointer-based data
structure. The details are described below.

First, we describe an acceleration method for finding the all-pairs shortest paths
(APSPs) using the GPU. The APSP problem is a graph operation that finds shortest
paths between all two vertices in a graph. This computation requires many unco-
alesced memory accesses to refer to the graph data, while the memory bandwidth
bounds the performance. Our method is based on an iterative algorithm that repeat-
edly solves the single-source shortest path (SSSP) problem in parallel on the GPU.
We exploit the coarse-grained parallelism by using a task parallelization scheme that
associates a task with an SSSP problem, in addition to the fine-grained parallelism
in an SSSP problem. This scheme solves multiple SSSP problems at a time, al-
lowing us to share the graph data on a fast on-chip memory, as well as reducing
irregular memory accesses. As a result, the speedup over the existing SSSP-based

v

implementation ranges from a factor of 2.8 to that of 13, depending on the graph
topology.

We next present acceleration methods for the Floyd-Warshall (FW) algorithm
using the GPU, which is another algorithm to solve the APSP problem. This al-
gorithm uses a matrix representation of a graph, which eliminates irregular control
flow and memory accesses. The proposed method contains two variations, both de-
signed to reduce data access to off-chip memory based on an iterative blocked FW
(BFW) algorithm. The first method also reduces the number of instructions using
registers rather than the shared memory. The other method increases the block size
because it is inversely proportional to the amount of off-chip memory access. For
graphs with 256–1024 vertices, both methods are 4% faster than an existing recursive
BFW method. The first method achieves approximately 70% of peak computational
performance.

Finally, we demonstrate a GPU-based general biophysical simulator, called Flint.
With this application, the program for threads depends on the input data, as well
as the data values. Therefore, it is required to reduce the difference of control
flow between threads. Flint handles heterogeneous biophysical models described by
a large set of ordinary differential equations (ODEs). It uses an internal bytecode
representation of simulation-related expressions to handle various biophysical models
built for general purposes. The interpretation of bytecodes causes a heavy use of
conditional branches. To reduce the irregular branches, we preprocess the bytecodes,
which groups the similar bytecodes to assign a bytecode group to a SIMD core of
the GPU. In addition, each group is unified to a unified bytecode to reduce memory
accesses. We then implement two acceleration methods for Flint using a GPU.
The first method interprets multiple bytecodes in parallel on the GPU. The second
method translates a model into a source code through the internal bytecode, which
speeds up the compilation of the generated source codes, because the code size
is diminished by the bytecode unification. The first method simulates a model
containing approximately 40,000 expressions 24 times faster than that on a CPU
core. The second method achieves a performance of 2.4 times higher than that of
the former method.

These results show that the GPU can be used for accelerating applications that
include irregular computation. In particular, the task parallel scheme used for the
APSP problem can improve the throughput of computation that includes the same
type of independent subproblems. The technique used for our biophysical simulator
will be applied to other ODE-based simulations. Moreover, it can be applied to
an application that assigns different operations to threads. These findings will con-
tribute to the realization of a general technique for efficient processing of irregular
computation on the GPU and other accelerators.

vi

Acknowledgements

I would first like to express gratitude to my advisor, Professor Kenichi Hagihara, for
his guidance and support during my years at Hagihara laboratory, and for advices
and suggestions throughout this work. I would also like to sincerely thank the mem-
ber of the thesis committee, Professor Toshimitsu Masuzawa, for taking the time to
read this thesis and provide helpful questions and comments. I also offer my sin-
cere thanks to Associate Professor Fumihiko Ino, who has guided my undergraduate
study and this work and has gave me helpful advice and suggestions. I am deeply
grateful to Assistant Professor Masao Okita, who has helped me in research skills.

I would also like to offer thanks to Professor Taishin Nomura of Graduate School
of Engineering Science at Osaka University and Dr. Yoshiyuki Asai of the Open
Biology Unit at Okinawa Institute of Science and Technology, for giving me the
opportunity to join the collaborative project on biophysical simulations. I am deeply
grateful to Mr. Takeshi Abe of the Open Biology Unit at Okinawa Institute of Science
and Technology, for his support in developing the biophysical simulator Flint. I
would like to thank Dr. Eric Heien, who has firstly developed the simulator that
became a basis for Flint.

Finally, I am indebted to members of Hagihara laboratory, for their daily support
and creative discussions.

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 3
1.3 Contributions of Thesis . 4
1.4 Outline of Thesis . 5

2 Compute Unified Device Architecture 7

3 Task Parallel Algorithm for Finding APSPs 11
3.1 Introduction . 11
3.2 Related Work . 12
3.3 All-Pairs Shortest Path Problem . 14

3.3.1 Definition . 14
3.3.2 SSSP-based Iterative Algorithm 15

3.4 Task Parallel Algorithm . 16
3.4.1 Cost Computation . 20
3.4.2 Task Size Determination . 23
3.4.3 Path Recording . 25

3.5 Experimental Results . 26
3.5.1 Performance Scalability on Graph Size 27
3.5.2 Performance Stability on Graph Attributes 29
3.5.3 Overhead of Path Recording 33

3.6 Conclusion . 33

4 Accelerating Floyd–Warshall Algorithm using the GPU 35
4.1 Introduction . 35
4.2 Floyd-Warshall Algorithm . 36

4.2.1 Iterative Blocked Floyd–Warshall Algorithm 37
4.2.2 Recursive Blocked Floyd-Warshall Algorithm 39

4.3 Iterative Blocked Floyd-Warshall Algorithm on the GPU 40
4.3.1 Common Design . 40

ix

4.3.2 Matrix Multiplication based Iterative BFW 44
4.3.3 Two-level Blocking Iterative BFW 47

4.4 Auto-Tuning Technique for Matrix Multiplication based Iterative BFW 47
4.4.1 GPU Performance Model for Computation Time Estimation . 49
4.4.2 Automatic Parameter Selection 50

4.5 Experiments . 51
4.5.1 Environment . 51
4.5.2 Performance Analysis . 55
4.5.3 Evaluation of Auto-tuning Technique 59

4.6 Conclusion . 61

5 GPU-based General Biophysical Simulator 69
5.1 Introduction . 69
5.2 Related Work . 70
5.3 Flint: General Biophysicl Simulator 71
5.4 Example Physiological Models . 73
5.5 Accelerating Flint using the GPU . 74

5.5.1 Interpreter-based Simulation Using the GPU 74
5.5.2 Translator-based Simulation Using the GPU 80

5.6 Experimental Results . 81
5.6.1 Performance Evaluation . 82
5.6.2 Performance Analysis of Interpreter-based Simulation 86
5.6.3 Performance Analysis of Translator-based Simulation 88
5.6.4 Precision Analysis of Simulation Results 90

5.7 Conclusion . 92

6 Conclusion 95
6.1 Summary of This Thesis . 95
6.2 Future Work . 97

x

List of Figures

2.1 CUDA hardware model. 10

2.2 CUDA programing model. 10

3.1 Algorithm for reconstructing the sequence of vertices that compose
the shortest path between s and t. 17

3.2 Cost minimization. (a) For each vertex v in the graph, (b) the costs
of its neighbors n0, n1, and n2 are updated in the scattering phase. . 17

3.3 Iterative algorithm for finding an SSSP from the source vertex s ∈ V . 18

3.4 Adjacency list representation. Array V a stores the indices to the head
of each adjacency list in Ea. Array Ea and Wa store adjacency lists
of every vertex and edge weight, respectively. 18

3.5 Pseudo code of scattering kernel [1]. This kernel is responsible for a
single vertex v and updates the costs of its adjacent vertices. 19

3.6 Comparison of parallelization scheme between (a) previous method
[1] and (b) proposed method. Our kernel solves N SSSP problems at
a time. The graph data is shared between threads that are responsible
for the same vertex but in different SSSP problems. 19

3.7 Algorithm for finding SSSPs from each s of source vertices Sk. 21

3.8 Array interleaving for coalesced memory accesses. (a) A straight-
forward layout for Ma, Ca, and Ua stores all data for every SSSP
problems into contiguous sequences. (b) The same vertices but for
different problems are stored in a contiguous address space. B = 2,
in this case. 22

3.9 Pseudo code of proposed scattering kernel. This kernel solves N SSSP
problems in parallel. 24

3.10 Computation time for random graphs with different number |V | of
vertices. Results are presented in seconds. 28

3.11 Speedup over the SSSP-based implementation running on the CPU. . 28

3.12 Computation time for random graphs with different number |E| of
edges. The number |V | of vertices is fixed to |V | = 4K. 30

xi

3.13 Computation time for random graphs with different maximum weight
wmax. The number |V | of vertices and the number |E| of edges are
fixed to |V | = 4K and |E| = 16K. 31

3.14 Overhead of path recording for random graphs with a different num-
ber |V | of vertices. Overhead explains the increased time due to the
recording kernel called after cost computation. 34

4.1 FW algorithm. 38

4.2 Iterative blocked FW algorithm. 38

4.3 Tile updating process of the iterative BFW algorithm (n/t = 4). A
black tile represents the pivot tile. Gray tiles are the pivot row and
pivot column tiles, while white tiles are the non-pivot tiles. 38

4.4 Recursive blocked FW algorithm. 41

4.5 Recursive blocking of the matrix M in the recursive BFW algorithm. 41

4.6 Byte/operation ratio Nb/Nc of memory access to computation de-
manded by the iterative BFW algorithm and that of global memory
bandwidth to computational performance of the GPU (n = 8192). . . 43

4.7 Using on-chip memory for updating the pivot tile. 46

4.8 Partitioning of the computational region in the matrix multiplication
based method. 46

4.9 On-chip memory usage of the non-pivot kernel with the MM based
method. 48

4.10 Pseudo code for the non-pivot kernel of the two-level blocking method. 48

4.11 On-chip memory usage of the non-pivot kernel with the two-level
blocking method. 52

4.12 Flow of the auto-tuning mechanism for the MM based method. 52

4.13 Reduction ratio (%) of computation time with t = 32 compared to
that of with t = 16. 58

4.14 Breakdown analysis of the number of instructions in the non-pivot
kernel. The number n of vertices is n = 8192. 58

4.15 Breakdown analysis of the execution time with t = 32 using GeForce
GTX 280. 63

4.16 Effective computational performance and computational efficiency of
the MM based method on 7 different GPUs with t = 32. 64

4.17 Computation time of the MM based method and an task parallel
algotihm for random graphs using GeForce GTX 280. 65

4.18 Reduction ratio of the computation time of the non-pivot kernel (t =
32) using GeForce GTX 280. 65

4.19 Computation time with varying the size of parameter l of the MM
based method (n = 512). 66

xii

4.20 Reduction ratio of the computation time of iterative BFW method
with t = 32 on different GPUs. 67

5.1 Flow chart of Flint. 75
5.2 Structure of an example of a PHML model. The five rounded rect-

angles at the bottom represent Luo-Rudy cells. 75
5.3 Scheduling the evaluation order of expressions. Dependencies on

states (shown as dash lines) are ignored during the scheduling. 78
5.4 Reordering bytecodes based on their similarity. “V” and “C” rep-

resent instruction for pushing a variable and constant, respectively;
“index” is an array of indices pointing to the head of each bytecode. . 78

5.5 Adding redundant threads to avoid divergent branches. 83
5.6 Unifying bytecodes to reduce memory accesses. “VI” and “CI” are

opcodes for the indirect reference of a variable and constant, respec-
tively. 83

5.7 Pseudo code for the kernels of the interpreter. 84
5.8 Pseudo code for a GPU-enabled simulation generated by the TS method. 85
5.9 Pseudo code for an OpenMP-enabled simulation generated by the TS

method. 85
5.10 Computation time of the IS method with each optimization. Results

are presented in seconds. 89
5.11 Computation time of the TS method using coupled Luo-Rudy models

with varying numbers of cells. 91
5.12 Execution time of each kernel in the simulation program for LR-5000

generated by the TS method. 93

xiii

List of Tables

3.1 Computation time for some graph topologies. Results are presented
in seconds. 30

4.1 Symbols for representing GPU specifications. 43
4.2 Experimental environment for the GT200 GPUs. 54
4.3 Experimental environment for the G90 and G80 GPUs. 54
4.4 Parameters and resource usage of the non-pivot kernel. 54
4.5 Parameter l for the non-pivot kernel using GTX 280. 57
4.6 Computation time for random graphs[2] with a different number n of

vertices. Results are presented in milliseconds. 57
4.7 Kernel execution time of the iterative BFW methods with n = 8192.

Results are shown in milliseconds. 57
4.8 Instruction throughput of the non-pivot kernel using GeForce GTX

280. The number n of vertices is n = 8192. 58

5.1 Number of functions and ODEs in the tested models. 83
5.2 Total execution time with output of the results. Results are presented

in seconds. 87
5.3 Global memory footprint for the IS method (KB). 87
5.4 Computation time without output of the results. Results are pre-

sented in seconds. 87
5.5 Effective memory bandwidth (GB/s). 89
5.6 Number of bytecodes before unifying them. Each item shows the

series of the number of bytecodes in each phase separated by right
arrows. 89

5.7 Number of different opcode sequences in each phase. Each item shows
the series of numbers separated by right arrows. 91

5.8 Compilation time for the source codes generated using the TS method.
Results are presented in seconds. 91

5.9 Relative root mean square errors. 93

xv

Chapter 1

Introduction

1.1 Background

The graphics processing unit is a dedicated hardware component to accelerate graph-
ics tasks, which is used with specialized application programming interfaces (APIs)
such as OpenGL [3] and DirectX [4]. In recent years, the general-purpose computa-
tion on the GPU (GPGPU) [5] employs this hardware to speed up general scientific
computation using the high computational performance of the GPU. For this pur-
pose, NVIDIA provides a software development environment called the compute
unified device architecture (CUDA) instead of graphics APIs. This environment
allows us to use the GPU as a massively parallel processor that runs thousands of
threads on hundreds of cores.

The parallel computing model of the CUDA-compatible GPU is called single
instruction, multiple threads (SIMT) [6] model. With this model, the GPU runs
multiple threads that process the same program, namely kernel. The GPU assigns
a batch of threads called warp to a group of cores. Although, these cores process
threads in the single instruction, multiple data (SIMD) fashion, programmers do
not have to mind the SIMD width and the number of cores in the GPU. They can
write a kernel as a sequential program. Each thread has a thread index to control
its behavior, for instance, accessing different data by threads.

This characteristic facilitates the development of GPU programs. However, to
achieve higher performance, developers should consider the underlying SIMD ar-
chitecture. For example, if threads in a warp branch in a different way, the warp
decreases the computational efficiency because it follows each control flow of threads.
These branches are called divergent branches. In addition, the memory coalescing
is important to utilize the wide memory bandwidth of the GPU. The coalesced
memory access is a localized memory access from a warp.

Therefore, the GPU has been applied to applications that have data parallelism,

1

because these applications have a regular memory access pattern and all threads
follow the same control flow. The regular memory access facilitates the coalescing
of memory access on the GPU. Many researches show that GPUs achieve substan-
tial performance for these applications, which reaches ten times or more speedups
compared to that on the CPU.

Meanwhile, there are many challenges to accelerate irregular programs using
SIMD processors. Irregular programs typically use pointer-based data structures or
more complex data structures. These programs cause many irregular computation
including irregular control flow and memory accesses, because the behavior of pro-
grams deeply depends on the data. There have been many researches to process
these irregular programs on SIMD machines. A general approach is to emulate a
multiple instruction, multiple data (MIMD) machine on a SIMD machine [7]. For
the SIMD machines, a typical register-based programming model provides less flex-
ibility, which requires programmers to explicitly operate on vector registers. To
provide more flexibility, Shu and Wu [8] developed a runtime system to emulate
MIMD threads on a SIMD machine. There is also another approach that statically
translates a thread-based program to the program that runs on a SIMD machine [9].

For the GPU, CUDA provides a more flexible thread-based programming model
compared to that for SIMD machines described above. However, the irregular com-
putation decreases the computational efficiency of the GPU. For the GPU program,
irregular control flow can cause divergent branches because threads can follow dif-
ferent flow each other. Irregular memory access can prevent memory coalescing. In
addition, irregular computation can prevent the utilization of the fast on-chip shared
memory. This memory enables us to reduce off-chip memory accesses by sharing
data between threads. However, threads tend to refer to different data each other
in irregular programs, resulting in no data that can be shared between threads.

In this thesis, we describe GPU-based acceleration methods for three applications
that have irregular computation. The first two applications are programs to find
all-pairs shortest paths (APSPs) using different algorithms. The third application is
a general biophysical simulator. These applications have threads that operate in the
similar way on the GPU, although naive parallelization methods run threads that
execute different operations on SIMD cores of the GPU. Our basic approach is to
statically rearrange the threads and data assignment to reduce irregular computation
before executing the program on the GPU. Therefore, we also assume that the
operations of threads are reproducible for the same input data. In other words, the
thread having the same thread index executes the same operation, if we give the
same input data. In particular, the control flow of thread is independent of random
numbers and data that are written by concurrent memory writes without exclusive
control.

The details of these applications are described below.

2

All-Pairs Shortest Path Problem Graph operations are typical irregular com-
putation. These operations cause many irregular memory accesses to chase the
pointers, because graphs are commonly represented by pointer-based data struc-
tures. In addition, the control flow depends on the given graph, which may cause
many divergent branches on the GPU.

The APSP problem is a graph operation that finds shortest paths between all
two vertices in a given graph. This problem has been applied to a wide variety of
fields such as bioinformatics [10] and computer aided design (CAD) [11].

However, the APSP problem requires a large amount of computation. For in-
stance, the Floyd-Warshall (FW) [12, 13] algorithm solves this problem in O(|V |3)
time, where |V | represents the number of vertices in a graph. A straightforward
method for solving the APSP problem is to iteratively compute single-source short-
est path (SSSP) for every source vertex. Dijkstra’s algorithm [14] accelerated with
a Fibonacci heap is known as a fast method to find an SSSP for a sparse graph.
Using this algorithm, we can find APSPs in O(|V ||E|+ |V |2 log |V |) time, where |E|
represents the number of edges in a graph. In contrast to algorithmic studies men-
tioned above, many researchers are trying to accelerate the algorithms using various
accelerators, including GPUs [1, 15, 16], field-programmable gate arrays (FPGAs)
[17], and clusters [18].

General Biophysical Simulator Numerical integration, referred to here as a
simulation, of biophysical and physiological models enables researchers to analyze
and understand various physiological functions. With the advance of measurement
technology in physiology, the degrees of freedom used for mathematical modeling
have rapidly increased. Large models now contain thousands of dynamic variables
and mathematical expressions. Generally, the development of such models requires
a number of model modifications, each of which is followed by a simulation that
runs for millions of time steps. These time-consuming processes motivated us to
accelerate lengthy simulations.

A biophysical simulator, called Flint, is designed to process general and heteroge-
neous biophysical models. This simulator numerically integrates a model described
by a large set of ordinary differential equations. Flint uses an internal interpreter to
simulate a variety of models built for general purpose. The interpreter causes many
branches depending on the bytecodes that represent simulation related expressions.

1.2 Objectives

We focus on accelerating three applications, aiming at discussing techniques to im-
plement irregular programs that run efficiently on the GPU.

3

Fast Computation of APSPs by SSSP-based Algorithm Using CUDA, Har-
ish and Narayanan [1] present a fast SSSP-based method for large graphs, which
iteratively computes SSSPs on the GPU. However, with this algorithm, threads per-
form in different ways because a thread is corresponding to a vertex in a graph.
In particular, it can be further accelerated by memory access optimization. For
example, the algorithm may be modified such that it fully uses the entire memory
hierarchy, including fast but small on-chip shared memory. Therefore, the goal is to
accelerate the computation of APSPs on the GPU by reducing irregularity in the
memory accesses. For this purpose, we use a coarse-grained parallelism that exists
between different SSSP problems.

Computation of APSPs Using Floyd-Warshall Algorithm For sparse graphs,
our task parallel algorithm achieves reasonable speedup using the GPU. However,
this method increases the execution time for dense graphs because its complexity
depends on the number of edges, in addition to the number of vertices. On the other
hand, the complexity of the FW algorithm depends only on the number of vertices.
Therefore, we evaluate the performance of the FW algorithm on the GPU.

General Biophysical Simulator Using the GPU This application is an ex-
ample of more complex and advanced application compared to the APSP problem.
The computation, as well as the data, of this application depends on the given bio-
physical model. Therefore, the simulator is required to automatically parallelize
the simulation for the GPU. In addition, the input model includes a variety of
mathematical expressions. Consequently, a naive parallelization causes numerous
divergent branches and degrades the performance of the GPU. This simulator must
coordinate thread assignment to reduce divergent branches for efficiently utilizing
the GPU.

1.3 Contributions of Thesis

The main results of this thesis are summarized as follows.

Task Parallel Algorithm for Finding APSPs Using the GPU We have
developed a task parallel algorithm that computes multiple SSSPs in parallel on the
GPU. Our method uses the coarse-grained parallelism between SSSP problems, in
addition to the fine-grained parallelism in each SSSP problem. A task parallelization
scheme is used to exploit the coarse-grained parallelism, which associates a task with
an SSSP problem.

4

This scheme enables us to efficiently access graph data by sharing the data
between threads on the GPU. Moreover, the use of two-level parallelism increases
the number of threads on the GPU, which is beneficial to an efficient computation.

The experimental result shows that our method is 2.8 to 13 times faster than the
iterative SSSP-based method, although the speedup depends on the graph topology.

Iterative Blocked FW Algorithm Using the GPU We have implemented a
fast iterative blocked Floyd-Warshall (BFW) algorithm on the GPU. The proposed
method contains two variations, both designed to reduce data access to off-chip
memory because the bandwidth limits the performance of the FW algorithm. The
first method applies a fast matrix multiplication routine to the computation, aiming
at reducing the number of instructions. The other method uses a two-level blocking
technique to reduce the on-chip memory usage.

As a result, both methods show 4% faster performance than an existing fast
recursive BFW algorithm for 256–1024 vertices. For larger graphs, our matrix mul-
tiplication based method shows similar performance as that of the recursive method.
The effective performance of this method is approximately 70% of peak computa-
tional performance, which indicates that our implementation successfully derives the
performance of the GPU.

GPU-based Fast Simulation of General Biophysical Models We have de-
veloped two acceleration methods for Flint using the GPU. The first one simulta-
neously interprets multiple bytecodes on the GPU. It automatically parallelizes the
simulation using a level scheduling algorithm. The bytecodes are reordered by their
similarity to assign similar bytecodes to a warp, which reduces divergent branches.
In addition, this method also unifies the similar bytecodes to a unified bytecode to
reduce data amount of memory accesses. The second method translates a model
into a CUDA code. This method generates the code from the unified bytecodes to
diminish the generated code size. Otherwise, the compilation time increases to an
impractical range.

The interpreter-based method achieves 24 times speedup over the CPU based
simulation for a model with approximately 40,000 expressions. The translator-based
method is up to 2.4 times faster than the interpreter-based method.

1.4 Outline of Thesis

The rest of this thesis is organized as follows. Chapter 2 summarizes an overview of
GPU and CUDA. Chapter 3 and Chapter 4 present the acceleration methods for the
APSP algorithm using the GPU and evaluate their performance. We describe an
SSSP based method that explores the task parallelism in Chapter 3. The acceleration

5

of FW algorithm is described in Chapter 4. Chapter 5 presents a fast general
biophysical simulator using the GPU and shows experimental results. Chapter 6
concludes this thesis and discusses the future work.

6

Chapter 2

Compute Unified Device
Architecture

The GPU is a hardware component to accelerate graphics processing. The CUDA [6]
framework provides a general-purpose parallel computing environment for the GPU,
which enables the execution of thousands or more threads in parallel on the GPU.

Figure 2.1 shows an overview of the architecture of CUDA-compatible GPU.
The GPU employs a hierarchical architecture that consists of several streaming
multiprocessors (SMs), each having CUDA cores for processing threads. In an SM,
these cores simultaneously execute the same instruction as single instruction, mul-
tiple data (SIMD) processors. The number of CUDA cores in an SM depends on
the GPU architecture, while the number of SMs in a GPU varies by the GPU. The
CUDA cores within the same SM are allowed to share on-chip memory called shared
memory, which is as fast as registers. This memory hierarchy is useful to save the
memory bandwidth between CUDA cores and off-chip memory, because it can be
used as a software cache shared by multiple CUDA cores belonging to the same SM.

On the other hand, the off-chip memory, called device memory, has larger latency
that is 400–600 clock cycles per memory transaction [6]. CUDA logically partitions
this memory in some memory areas having different functions. The most general
area is called global memory. All CUDA cores can read and write data to this
memory. The CPU also can transfer data between the main memory and the global
memory. CUDA also uses a part of device memory as the local memory of each
thread, which is a thread local storage for temporal variables if the thread lacks
registers.

Corresponding to its hierarchical processor architecture, CUDA has a hierarchical
thread programming model (Figure 2.2). That is, threads are structured into equal-
sized groups, each called a thread block (TB), while all threads execute the same
program, namely a kernel. Programmers write the kernel as a C-like function.
All threads simultaneously execute the same kernel with different thread indices to

7

perform SIMD computation. Threads in the same TB run on a single SM and have
synchronization capability within them. These threads can also share data using
the shared memory.

Meanwhile, a kernel cannot synchronize different TBs on the GPU, because each
TB will be independently assigned to an SM. Therefore, developers have to write
their kernel such that there is no data dependence among different TBs. Due to the
same reason, the GPU does not have a mechanism that synchronizes all threads.
Such global synchronization involves splitting the kernel into two pieces, which are
then launched sequentially from the CPU. The synchronization is accomplished by
terminating the first piece of kernel.

An SM processes a TB in the following way. Supposing that a TB is assigned to
an SM, the SM splits the TB into groups of threads called warps. The number of
threads in a warp, which is defined as 32 threads in current hardware, is called as the
warp size. Each of warps is then processed by the SM in a SIMD fashion. Therefore,
branching threads in the same warp will divergent the warp. Such divergent warps
[6] significantly degrade the computational efficiency, because instructions must be
serialized due to different control flows.

Generally, each SM executes multiple TBs in parallel, because the GPU architec-
ture is designed to hide the memory access latency with independent computation
of different warps. This also explains why TBs must be independent. Such inde-
pendent TBs are useful to allow SMs to continue computation by switching the TBs
that have to wait data from device memory. Therefore, it is better to assign multi-
ple TBs to every SM. However, memory resources such as the shared memory and
registers usually limit the number of TBs per SM.

To achieve higher performance, it is necessary to utilize the device memory band-
width, which reaches more than 100 GB/s. For the global memory access, localized
memory access from a warp is important to achieve the full utilization of this wide
memory bus. This technique is called memory coalescing [6]. Using this technique,
the global memory accesses issued from threads in a (half-) warp can be coalesced
into a single memory transactions if the source/destination address satisfies an align-
ment requirement. Otherwise, the GPU issues multiple memory transactions if a
warp accesses a wide address range. The requirements for memory coalescing differ
according to the generation of GPU architecture, summarized in the following.

G80 and G90 GPUs (Tesla architecture) The G80 architecture is the first CUDA-
compatible GPU architecture. The G90 GPUs add the support for atomic
functions on the global memory, which provides atomic read-modify-write
capabilities. These architectures have the most restricted coalescing rule; a
thread with ID N within the half-warp should access address base+N , where
base is a multiple of 16 bytes. They also have no cache for the device memory.
GPUs of these architectures have 8 CUDA cores per SM. The shared memory

8

size is 16 KB per SM.

We use these architectures for evaluations in Chapter 3 and Chapter 4. It
should be noted that the proposed algorithm in Chapter 3 assumes the strict
requirement to be executable on these older GPUs.

GT200 GPUs (Tesla architecture) The requirements of coalesced memory ac-
cesses are relaxed, such that threads in a half-warp can access to data in any
order by a memory transaction if the data is in the same memory segment of
size 32, 64, or 128 bytes. GT200 GPUs also have 8 CUDA cores and 16 KB
of shared memory per SM.

We use this architecture in Chapter 4.

GF100 GPUs (Fermi architecture) These GPUs have 2-level cache for the de-
vice memory. Consequently, a global memory transaction is issued for a cache
line (128 bytes). GPUs of this architecture have 32 or 48 CUDA cores per SM.
The L1 cache and the shared memory share 64 KB of on-chip memory. The
shared memory size is configurable: 16 KB or 48 KB per SM.

We evaluate our biophysical simulator described in Chapter 5 using a Fermi
GPU having 32 CUDA cores per SM.

9

SM SMSM

CUDA

core

Shared memory

Graphics card

Streaming multiprocessor (SM)

...

Device memory (Global and local memory)

...

GPU

Main

memory

CPUCUDA

core

CUDA

core

Figure 2.1: CUDA hardware model.

...

SM

TB

warp

... ...

warp

...
TB

...
TB

...

...

SM

CUDA thread

Figure 2.2: CUDA programing model.

10

Chapter 3

Task Parallel Algorithm for
Finding APSPs

3.1 Introduction

In this chapter, we propose an SSSP-based algorithm to accelerate the cost compu-
tation of APSPs. The cost of a path here is given by the sum of the weights of edges
composing the path. Our method enhances Harish’s method [1] by exploiting not
only off-chip memory but also on-chip memory. However, we use a different paral-
lelization scheme for computing APSPs in order to save the bandwidth between off-
chip memory and CUDA cores. In addition to the fine-grained parallelism exploited
by the previous method, we exploit the coarse-grained parallelism existing between
different SSSP problems. That is, the proposed scheme exploits task parallelism so
that it solves in parallel multiple SSSP problems with different sources. This al-
lows CUDA cores to simultaneously access the same data because each CUDA core
takes the responsibility for solving one of the task-parallel problems. Such common
access leads to an efficient use of on-chip shared memory, which is useful to reduce
data accesses to off-chip memory. Furthermore, the proposed scheme contributes
to achieve higher speedup with more parallel tasks and less synchronization on the
GPU. We also describe how the paths can be recorded with their costs.

The rest of the chapter is organized as follows. Section 3.2 gives an introduction
of related work. Section 3.3 describes the APSP problem and summarizes the itera-
tive SSSP-based method. Section 3.4 presents our algorithm and Section 3.5 shows
experimental results. Finally, Section 3.6 concludes the chapter.

11

3.2 Related Work

There are two widely known algorithms to find APSPs: an SSSP-based iterative
algorithm and the FW algorithm. The former algorithm repeatedly solves SSSP
problems with varying the source vertex s ∈ V on a graph G = (V,E, w), where V
and E are the sets of vertices and edges in G, respectively. The function w : E → W
assigns a weight to each edge, where W is a set of edge weights. The SSSP problem
finds the shortest paths from s to all other vertices v ∈ V . A fast solution of SSSP
problems is required to speed up the SSSP-based iterative algorithm. The Dijkstra’s
algorithm [14] and the Bellman-Ford algorithm [19, 20] are widely known algorithms
to find SSSPs.

The Dijkstra’s algorithm finds SSSPs for a directed graph having non-negative
edge weights. This algorithm can reduce its computational amount using a priority
queue. Using Fibonacci heap [21] to implement the priority queue, the complexity
of this algorithm is reduced to O(|V | log |V | + |E|). However, the binomial heap
is commonly used as the priority queue rather than the Fibonacci heap, because
the Fibonacci heap uses a complex data structure. Using the binomial heap, the
complexity of the Dijkstra’s algorithm is O((|V |+ |E|) log |V |). On the other hand,
these improvements might not be suitable for the parallel computing, because it is
not easy to efficiently operate on these heaps in parallel.

The Bellman-Ford algorithm requires O(|E||V |) computations, which is larger
than that of the Dijkstra’s algorithm. However, this algorithm can handle graphs
having negative edge weights. This algorithm has doubly-nested loops. The inner
loop can be easily parallelized because there is no data dependency. However, the
SSSP-based iterative algorithm using the Bellman-Ford algorithm tends to have
larger complexity of O(|E||V |2) than that of the FW algorithm, because the number
|E| of edges is greater than the number |V | of vertices in general.

Harish and Narayanan [1] present two APSP algorithms, namely the FW al-
gorithm and the SSSP-based iterative algorithm, both implemented using CUDA.
They demonstrate that the SSSP-based implementation takes approximately 10 sec-
onds to obtain APSP costs for a graph of |V | = 3072 vertices. The speedup over
the CPU-based FW implementation reaches a factor of 17. With respect to mem-
ory consumption, their SSSP-based algorithm requires O(|V |) space while the FW
algorithm requires O(|V |2) space, because the FW algorithm represents a graph in
a matrix of size |V |, called adjacency matrix. This advantage allows us to deal with
larger graphs, up to |V | = 30, 720 vertices processed within two minutes. However,
only off-chip memory is used because (1) there is no data that can be shared between
CUDA cores and (2) the entire graph data is too large for 16 KB of on-chip memory.

Katz and Kinder [15] propose an optimized version of the FW implementation
running on the CUDA-compatible GPU. Their method is based on an iterative
blocked FW (BFW) algorithm proposed by [22], which partitions the adjacency

12

matrix into two dimensional tiles and iteratively updates these tiles. It takes 13.7
seconds to compute APSPs for a graph of |V | = 4096. A multi-GPU version is also
presented to demonstrate the scalability of their method. It takes 354 seconds to
process a graph of |V | = 11, 264 vertices on two NVIDIA GeForce 8800 GT cards.

The recursive BFW method proposed by Buluç et al. [23], which recursively di-
vides the adjacency matrix into tiles. This method uses a fast matrix multiplication
method [24] to achieve higher performance. In particular, this method allows the
GPU to efficiently run the matrix multiplication routine at a low depth of its recur-
sion, because the routine processes large submatricies on the GPU. For |V | = 4096,
their method computes APSPs in 1.01 seconds using GeForce 8800 Ultra, which
reaches 126.7 Gflop/s.

Bleiweiss [25] implements Dijkstra’s algorithm and A* search algorithm [26] with
a priority queue using CUDA. Their implementations are designed for agent nav-
igation in crowded game scenes, where multiple point-to-point shortest paths are
simultaneously computed for smaller graphs. Thus, their problem is slightly differ-
ent from our target problem.

Micikevicius [16] presents an OpenGL-based method that implements the FW
algorithm on the GPU by mapping it to the graphics pipeline. The implementation
runs on an NVIDIA GeForce 5900 Ultra, which demonstrates three times faster
results compared with a 2.4 GHz Pentium 4 CPU. It takes approximately 203 seconds
to compute APSPs for |V | = 2048.

Harish et al. [27] presented another matrix calculation based method for finding
APSPs on the GPU. This algorithm requires O(|V |3 log |V |) computations, which is
larger than that of the FW algorithm. They adopt a lazy evaluation technique to
accelerate their method for sparse graphs. This technique speeds up their method
by 2–3 times. Their method finds APSPs in 0.3 seconds for a graph with |V | = 2048
using GeForce GTX 280, and in 2.2 seconds for |V | = 4096. This method can
also handle a large graph that is too large to be stored in the off-chip memory of
the GPU by dividing the matrix representation of the graph. For instance, this
method processes a graph with |V | = 30K in 3072 seconds. In addition, they show
that the lazy evaluation technique can be applied to the recursive BFW method by
Buluç et al. and achieves a same range of 2–3 times speedup as that of their matrix
calculation base method.

An FPGA-based method is proposed by [17]. They implement a tiled version
of the FW algorithm and develop an analytical model to predict the performance
for larger FPGAs. As compared with a CPU-based method running on a 2.2 GHz
Opteron, their method reduces execution time for |V | = 16, 384 from approximately
four hours to 15 minutes, achieving a speedup of 15.2.

An auto-tuning approach is proposed by [28] to accelerate the iterative BFW
algorithm on the CPU. Their method is optimized by cache blocking and single
instruction, multiple data (SIMD) parallelization [29, 30]. It employs a two-level

13

blocking algorithm and selects the appropriate tile size for each level of cache. Using
a 3.6 GHz Pentium 4 CPU, it takes 30 seconds to solve an APSP problem for
|V | = 4096.

Finally, Srinivasan et al. [18] show a cluster approach to parallelize the FW
algorithm on a distributed memory machine. However, the performance does not
scale well with the number of computing nodes, because the data size |V | seems to
be small for the deployed cluster. A speedup of 1.2 is observed on a 32-node system
when using a graph with |V | = 4096.

With respect to the FW implementation, the computation time mentioned above
is limited by the memory bandwidth rather than the arithmetic performance: 76.8,
36.8, and 80.1 GB/s (9.6, 4.6, and 10 GFLOPS) on the FPGA [17], the CPU [28], and
the GPU [15], respectively. Similarly, the SSSP-based method can be regarded as a
memory-intensive application rather than a compute-intensive application. Actually,
it requires two operations and at least two memory accesses to update the cost of
a vertex. Thus, considering the ratio of the memory bandwidth to the arithmetic
performance, the SSSP-based method requires at least 1 B/FLOP while the GPU
employed by [1] provides 0.25 B/FLOP. Therefore, the performance will be increased
if we save the memory bandwidth between off-chip memory and CUDA cores.

3.3 All-Pairs Shortest Path Problem

3.3.1 Definition

The APSP problem is to find the shortest paths between all pair (u, v) of vertices
on a given graph G = (V, E, w), where V is the set of vertices in G, E is the set of
edges in G, w : E → W is a function that assigns a weight to each edge, and u ∈ V
and v ∈ V are vertices in G. The edge (u, v) ∈ E is a directed edge from the vertex
u ∈ V to the vertex v ∈ V . The edge weight w(u, v) ∈ W represents the weight of
the edge (u, v), where W is the set of edge weights. In this thesis, we assumes that
W = N for simplicity. In other words, the edge weight is a non-negative integer. In
this chapter, |V | represents the number of vertices in G and |E| is the number of
edges in G.

This problem outputs the length of shortest paths between all pairs of vertices
and the sequences of vertices that compose each shortest path. The path from the
vertex v1 ∈ V to the vertex vk ∈ V is a sequence v1, v2, · · · , vk of vertices that satisfy
(vi, vi+1) ∈ E for 1 ≤ i < k.

The length of path v1, v2, · · · , vk is the sum of edge weights on the path, namely,
k−1∑
i=1

w(vi, vi+1). The shortest path from u ∈ V to v ∈ V is the path that has most

shortest length of path among all paths between u and v.

14

Note that the sequence of vertices that compose the shortest path between any
two vertices can be easily reconstructed from the cost of APSPs and the graph G.
Figure 3.1 shows the reconstruction algorithm for the shortest path between vertex
s and t. In this figure, D is the distance matrix, the element D[u, v] of which
represents the cost of the shortest path from vertex u to v.

Moreover, there is a demand to calculate the costs of paths in a short time.
Therefore, the proposed methods focus on accelerating the computation of the cost
of APSPs. However, to facilitate the reconstruction, we also show a method to
record parent vertices with our task parallel algorithm in this chapter.

3.3.2 SSSP-based Iterative Algorithm

Harish and Narayanan [1] compute the costs of APSPs in a directed graph G =
(V, E, w) with positive weights. In the following, let |V | and |E| be the number of
vertices and that of edges, respectively. Given a graph G, the method computes an
SSSP |V | times with varying the source vertex s ∈ V . This iteration is sequentially
processed by the CPU, but each SSSP problem is solved in parallel on the GPU.

To solve an SSSP problem, an iterative algorithm [1] is implemented using
CUDA. This algorithm associates every vertex v ∈ V with cost cv, which repre-
sents the cost of the current shortest path from the source s to the destination
v. The algorithm then minimizes every cost until converging to the optimal state.
This cost minimization is done by processing two phases alternatively: the scattering
phase and the checking phase. In the scattering phase, all vertices try to minimize
the costs of their neighbors in parallel. Figure 3.2 illustrates how this minimization
works for a single vertex v. After this, the checking phase confirms whether the
previous scattering phase has changed the costs of vertices.

Figure 3.3 shows this algorithm. Firstly, the cost of every vertex v ∈ V except
the source s is initialized to infinity, which means that v is not reachable from s at
the initial state. On the other hand, the cost is set to zero for the source s. The
cost minimization then begins at line 4 for a set M of vertices, where M is the
modification set, which contains vertices whose neighbor(s) have not yet reached to
the optimal state. Given such a vertex v ∈ M , the algorithm updates the cost cn

at line 9, for every neighbor n ∈ V such that (v, n) ∈ E. The updated cost here
is temporally stored to a variable un in order to check convergence later at line 13.
Vertices that have changed their costs are added to set M for further minimization
(line 14). The iteration stops when M becomes empty.

This algorithm requires synchronization between the scattering phase and the
checking phase (line 12). Otherwise, some processing elements might overwrite the
updated cost uv after uv has been confirmed to be minimal. It also should be noted
that the algorithm requires atomic instructions to correctly process the scattering
phase. Since multiple processing elements can update the same cost un at the same

15

time, we have to deal with the consistency of concurrent write accesses. Atomic
instructions solve this issue but they are supported only on GPUs with compute
capability 1.1 and higher [6]. If we lack this capability, the minimum cost un will be
overwritten by a larger cost at line 9, resulting in a wrong result.

We now explain how Harish and Narayanan implement the algorithm on the
GPU. As we mentioned earlier, there is no global synchronization mechanism in
CUDA. Therefore, they develop two kernels, each for the scattering phase and for
the checking phase. In both kernels, a thread is responsible for a vertex v ∈ V in
the graph. Thus, the cost minimization is parallelized using |V | threads.

Figure 3.4 illustrates how a graph is represented in their kernels. They employ
an adjacency list representation to store a graph in device memory. In this represen-
tation, each vertex data has a pointer to its adjacency list of edges. The adjacency
list of vertex v here contains every neighboring vertex n ∈ V such that (v, n) ∈ E.
Harish and Narayanan convert these lists into arrays V a, Ea, and Wa, which store
vertex set V , edge set E, and edge weights assigned by w, respectively. As shown in
Figure 3.4, element V a[v] has an index to array Ea, where the head of the adjacency
list of v exists. Since all adjacency lists are concatenated into array Ea of size |E|,
the adjacency list of vertex v is stored from element V a[v] to V a[v + 1] − 1 in Ea.
Similarly, the weight of edge Ea[i] is stored in Wa[i], where 0 ≤ i ≤ |E| − 1. In
addition to the arrays mentioned above, they use additional arrays Ma, Ca, and
Ua to store modification set M , current cost cv, and updated cost uv, respectively.
Each of these arrays has |V | elements and its index v corresponds to vertex v. They
store these three arrays in device memory.

Figure 3.5 shows a pseudo code of the scattering kernel, which implements lines
6–11 in Figure 3.3. This kernel is invoked for every thread tv, which is responsible
for vertex v ∈ V . After this kernel execution, the CPU launches the second kernel
to process the checking phase. This checking kernel updates array Ma and also
sets a flag to true if any updated cost is found. The CPU then checks this flag to
determine if the iteration should be stopped or not. Thus, the flag prevents the
CPU from scanning the entire array Ma.

3.4 Task Parallel Algorithm

We now describe the proposed algorithm for accelerating the computation of APSPs
on a directed, positively weighted graph G. Firstly, we present how our algorithm
accelerates the cost computation of Harish’s SSSP-based method. We then describe
how the algorithm records the paths after the cost computation.

16

Input D: distance matrix
w: weight function
s: source vertex
t: destination vertex

Output path array: shortest path from s to t

1: ReconstructPath(D, w, s, t)
2: if (s = t)
3: push(path array, s)
4: return success

5: if (D[s, t] != ∞)
6: push(path array, s)
7: for n in Successor(s)
8: if (w(s, n) + D[n, t] = D[s, t])
9: return SearchPath(D, n, t)

10: return error /* The path does not exist.*/

Figure 3.1: Algorithm for reconstructing the sequence of vertices that compose the
shortest path between s and t.

n
0

s

n
1

v

n
2

c
n0 = 17 c

n1 = 57

2

40

8

10

c
n2 = ∞

c
v

= 25

25

17

c
s

= 0

(a)

n
0

s

n
1

v

n
2

c
n0 = 17 c

n1 = 33

2

40

8

10

c
n2 = 35

c
v

= 25

25

17

c
s

= 0

(b)

Figure 3.2: Cost minimization. (a) For each vertex v in the graph, (b) the costs of
its neighbors n0, n1, and n2 are updated in the scattering phase.

17

SSSP Algorithm(s, V , E, w) /* s: source vertex */
1: initialize cv := ∞ and uv := ∞ for all v ∈ V /* uv: updated cost of vertex v */
2: cs := 0 /* cv: current cost of vertex v */
3: M := {s}
4: while M is not empty do
5: for each vertex v ∈ V in parallel do
6: if v ∈ M then /* Scattering phase */
7: remove v from M

8: for each neighboring vertex n ∈ V such that (v, n) ∈ E do
9: un := min(cn, cv + w(v, n)) /* w(v, n): weight of edge (v, n) */

10: end for
11: end if
12: synchronization
13: if cv > uv then /* Checking phase */
14: add v to M

15: cv := uv

16: end if
17: end for
18: end while

Figure 3.3: Iterative algorithm for finding an SSSP from the source vertex s ∈ V .

4

5

10

6

8

9

7 2
0

5

4

7

6

31 1

3

2
12

15

0 2 3 5 8 10 10 11

1 2 4 4 7 0 6 7 3 6 5 5

9 7 15 1 3 12 4 2 6 8 5 10

0 1 2 3 4 5 6 7

Wa

Ea

Va

Figure 3.4: Adjacency list representation. Array V a stores the indices to the head
of each adjacency list in Ea. Array Ea and Wa store adjacency lists of every vertex
and edge weight, respectively.

18

SSSP Scattering Kernel(V a, Ea, Wa, Ma, Ca, Ua)
1: v := threadID
2: if Ma[v] = true then
3: Ma[v] := false
4: for i := V a[v] to V a[v + 1] − 1 do
5: n := Ea[i]
6: Ua[n] := min(Ua[n], Ca[v] + Wa[n])
7: end for
8: end if

Figure 3.5: Pseudo code of scattering kernel [1]. This kernel is responsible for a
single vertex v and updates the costs of its adjacent vertices.

SSSP for
vertex v0

. . .

s = v0

Thread

Vertex
SSSP for
vertex v1

SSSP for
vertex v2

(a)

SSSP for
vertex set S0

. . .

. . .

S
0

= {v0, v1, …, v
N-1}

s = v0 s = v1

Threads that can share data

. . .

SSSP for
vertex set S1

SSSP for
vertex set S2

(b)

Figure 3.6: Comparison of parallelization scheme between (a) previous method [1]
and (b) proposed method. Our kernel solves N SSSP problems at a time. The
graph data is shared between threads that are responsible for the same vertex but
in different SSSP problems.

19

3.4.1 Cost Computation

As shown in Figure 3.6(b), our algorithm computes N tasks in parallel, where a task
deals with an SSSP problem. This task parallel scheme allows us to share graph
data between different tasks. Another important benefit is that it allows the kernel
to generate more threads at a launch. This leads to an efficient execution on the
GPU, which employs a massively multithreaded architecture. Since the algorithm
we use for a single SSSP problem is the same one developed by [1], we explain here
how tasks are grouped to share the graph data.

Let ps denote the SSSP problem with the source vertex s ∈ V . The APSP prob-
lem consists of |V | SSSP problems p0, p1, . . . , p|V |−1 and there is no data dependence
between them. Therefore, we can pack any N problems into a group to solve the
group in parallel, where 1 ≤ N ≤ |V |. Thus, the k-th group contains N SSSP prob-
lems pkN , pkN+1, . . . , p(k+1)N−1, where 0 ≤ k ≤ d|V |/Ne−1. Let Sk denote the set of
source vertices in the k-th group of N SSSP problems, where 0 ≤ k ≤ d|V |/Ne − 1.
The proposed scheme then computes SSSPs from every source s ∈ Sk on the GPU
while it invokes this computation d|V |/Ne times sequentially from the CPU. We
assign a vertex to a thread as Harish and Narayanan do in their algorithm. Accord-
ingly, our kernel processes N |V | threads in parallel while the previous kernel does
|V | threads, as shown in Figure 3.6.

Similar to Harish’s algorithm, our algorithm consists of the scattering phase and
the checking phase, as shown in Figure 3.7. However, our algorithm differs from the
previous algorithm with respect to the use of shared memory in the scattering phase.
Let tv,s be the thread, which is responsible for vertex v ∈ V in problem ps, where
s ∈ V . In our algorithm, thread tv,s tries to update the cost cn,s (variable un,s at line
13 in Figure 3.7), which represents the cost of neighboring vertex n ∈ V in problem
ps. The graph data that can be shared between threads is edge (v, n) at line 12 and
weight w(v, n) at line 13, because both variables do not depend on the source vertex
s. In order to share such s-independent data between threads, we structure a thread
block (TB) such that it includes N threads tv,kN , tv,kN+1, . . . , tv,(k+1)N−1, which are
responsible for the same vertex v but in different problems. Figure 3.8 shows the
data structure more precisely. Note that every TB contains a multiple B of such
N threads to increase the TB size for higher performance. Thus, such threads can
save the memory bandwidth if they update the costs of their neighbors. However, it
requires additional copy operations to duplicate data to shared memory. Therefore,
threads might degrade the performance if such common access rarely occurs during
execution.

With respect to the graph representation, our kernel uses a slightly different
data structure from the previous kernel. We use the same arrays V a, Ea, and Wa,
but they are partially shared between threads as mentioned before. The remaining
arrays Ca, Ua, and Ma are separately allocated for every problem ps, so that these

20

N SSSPs Algorithm(Sk, V , E, w)
1: /* Sk: set of source vertices */
2: /* uv,s: updated cost of vertex v in problem ps */
3: /* cv,s: current cost of vertex v in problem ps */
4: initialize cv,s := ∞ and uv,s := ∞ for all v ∈ V and s ∈ Sk

5: initialize cs,s := 0 for all s ∈ Sk

6: add pair 〈s, s〉 to set M for all s ∈ Sk

7: while M is not empty do
8: for each vertex v ∈ V and each source s ∈ Sk in parallel do
9: /* Scattering phase */

10: if 〈v, s〉 ∈ M then
11: remove 〈v, s〉 from M

12: for each neighboring vertex n ∈ V such that (v, n) ∈ E do
13: un,s := min(cn,s, cv,s + w(v, n))
14: end for
15: end if
16: synchronization
17: /* Checking phase */
18: if cv,s > uv,s then
19: add 〈v, s〉 to M

20: cv,s := uv,s

21: end if
22: end for
23: end while

Figure 3.7: Algorithm for finding SSSPs from each s of source vertices Sk.

21

.

t0,0 t1,0
t
|V|-1,0 t0,1 t0,N-1 t

|V|-1,N-1t1,1 t1,N-1

|V|

. . .

Elements used for SSSP from source v0

N |V|

Thread

Array

(a)

v0

N

Thread

Array

N |V|

. . .

. . .

t0,0 t0,1 t1,0

.

t0,N-1

Thread block (BN threads)

. . .

t1,N-1 t
|V|-1,0 t

|V|-1,N-1

v1 v
|v|-1

(b)

Figure 3.8: Array interleaving for coalesced memory accesses. (a) A straightforward
layout for Ma, Ca, and Ua stores all data for every SSSP problems into contiguous
sequences. (b) The same vertices but for different problems are stored in a contiguous
address space. B = 2, in this case.

22

arrays have N |V | elements as shown in Figure 3.8(b). The reason why we need
such larger arrays is that the GPU does not support dynamic memory allocation
though each SSSP problem can have a different number of unoptimized vertices at
each iteration. Therefore, we simply use N times more arrays to provide dedicated
arrays to each of N problems.

This decision might prevent us from using small shared memory for arrays Ca,
Ua, and Ma. However, it is not a critical problem because each element in these
arrays is accessed only by its responsible thread. Instead, as shown in Figure 3.8(b),
it is important to interleave array Ma to allow threads tv,0, tv,1, . . . , tv,N−1 in the same
TB to access array elements in a coalesced manner. Similarly, we arrange arrays
Ca and Ua into the same structure to realize coalesced accesses in the checking
kernel. This also contributes to simplify addressing for data accesses. However, it is
not easy to realize coalesced accesses in the scattering kernel because every thread
updates different elements of Ua.

Figure 3.9 shows a pseudo code of our scattering kernel. As we mentioned before,
we use shared memory for vertex set V , edge set E, and edge weights assigned by
w: arrays from, to, es, and ws at lines 6 and 12. In addition, we also use shared
variable ms to perform reductions of modification set M at lines 7–10. That is,
set M is shared among N threads, which are responsible for the same vertex v but
for different problems. This means that all of such N threads must be engaged
in data duplication if any of them has not yet finished the minimization. This
cooperative strategy is essential to increase the number of coalesced accesses on the
GPU. For memory-intensive applications, we think that CUDA cores must be used
for parallelization of memory accesses, namely coalesced accesses, rather than that
of computation. Note that this shared space is used only for this purpose, so that
we write the new set M directly to device memory at line 22.

Similar to Harish’s algorithm, our method uses a flag to check the convergence
of cost computation. Since this flag has to be shared between all threads, we store
the flag in global memory. However, we initialize per-TB flags on shared memory
at the beginning of the checking kernel. This duplication minimizes the overhead
of serialization, which can occur when many threads set the flag at the same time.
After checking the convergence, one of threads in each TB writes the flag back to
global memory.

3.4.2 Task Size Determination

The proposed kernel requires arrays of size (3N + 1)|V | + 2|E| in device memory
while the previous kernel requires those of 4|V | + 2|E| size. Therefore, our kernel
cannot deal with larger graphs as compared with the previous kernel though it has
an advantage over the FW algorithm. Thus, it is better to minimize N to compute
APSPs for larger graphs. In contrast, we should maximize N to receive the timing

23

N SSSPs Scattering Kernel(V a,Ea, Wa,Ma, Ca, Ua, N)
1: v := threadID div N /* vertex ID */
2: s := threadID mod N /* source (problem) ID */
3: /* vertex ID in arrays V a, Ma and Ca */
4: vg := blockID ∗B + v

5: /* Arrays in shared memory */
6: shared ms[B]
7: ms[v] := false
8: if Ma[vg, s] = true then
9: ms[v] := true

10: end if
11: if ms[v] = true then
12: shared from[N], to[N], es[B, N], ws[B, N]
13: /* Copy data to shared memory */
14: from[v] := V a[vg]
15: to[v] := V a[vg + 1]
16: neighbors := to[v] − from[v]
17: if s < neighbors then
18: es[v, s] := Ea[from[v] + s]
19: ws[v, s] := Wa[from[v] + s]
20: end if
21: if Ma[vg, s] = true then
22: Ma[vg, s] := false
23: for i := 0 to neighbors − 1 do begin
24: n := es[v, i]
25: Ua[n, s] := min(Ua[n, s], Ca[vg, s] + ws[v, i])
26: end for
27: end if
28: end if

Figure 3.9: Pseudo code of proposed scattering kernel. This kernel solves N SSSP
problems in parallel.

24

benefit of shared memory. Therefore, selection of N is an important issue in our
algorithm.

There are two requirements that should be considered when determining N .
Firstly, N must be smaller than the maximum size of a TB to share data between
threads in the same TB. Since the maximum size is currently 512 threads [6], this
requirement will be satisfied when N ≤ 512. Secondly, N must be a multiple of
warp size (32) to achieve coalesced accesses and to reduce divergent warps. The
second requirement guarantees coalesced accesses to Ma because every warp will
contain threads that process the same vertex v and access data in a contiguous
address. Furthermore, such threads have the same number of iterations at line 23
in Figure 3.9 because they have to update the costs of the same neighbors. This
is useful to avoid divergent warps at line 23. However, we cannot eliminate all
divergent warps in the kernel because the branch instructions at lines 17 and 21
depend on each thread.

According to the design considerations mentioned above, we currently use N =
32 in our kernel. This configuration allows us to eliminate synchronization from the
scattering kernel, because N is equivalent to the warp size. That is, all threads that
must be synchronized each other belong to the same warp, where SIMD instructions
guarantee implicit synchronization between threads. Otherwise, threads in the same
TB have to synchronize each other after loading data in shared memory. Finally, we
experimentally determine to use B = 4. Thus, TBs in our kernel have 128 threads.

3.4.3 Path Recording

Our path recording framework is based on a backtracing strategy that specifies the
paths after the cost computation presented in Section 3.4.1. That is, this strategy
computes the shortest path from the destination vertex d ∈ V to the source vertex
s ∈ V . To realize such a backtracing procedure, our method records which ver-
tex has determined the final costs after the cost minimization. Suppose that we
compute the shortest path from the source vertex s to the destination vertex n1 in
Figure 3.2(b). Our algorithm starts from vertex n1 and finds that the neighboring
vertex v determines the cost of vertex n1. In other words, the shortest path consists
of vertex v, which is the parent of vertex n1. The algorithm then moves to parent
vertex v and iterates this backtracing procedure until reaching the source vertex s.
This backtracing procedure can be processed in O(|V |) time for each path, so that
we compute this procedure on the CPU.

In order to allow the CPU to perform backtracing, our algorithm records all
of parents after the cost computation. For each source vertex s, we store parent
vertices in array Pa of size |V | such that element Pa[v, s] has the parent of vertex v.
This is done by an additional kernel, namely the recording kernel, which is invoked
after the convergence of cost minimization. Since our method solves N SSSPs at a

25

time, the recording kernel also records all parents needed for N SSSPs. A thread
in the recording kernel is responsible for a vertex v ∈ V as same as the scattering
kernel. Each thread tv,s records a direct predecessor u ∈ V as its parent such that
u satisfies cv,s = cu,s + w(u, v). To find such a parent, thread tv,s simply checks
every direct predecessor u ∈ V such that (u, v) ∈ E. Since this operation requires
predecessors for each vertex, we use inverted graph G′ = (V, E ′, w′) to simplify the
operation, where E ′ contains the inverted edge (v, u) of edge (u, v) ∈ E and w′

is a function to assign corresponding edge weights. Therefore, our method further
requires |V | + 2|E| space to store the adjacency list of G′. With respect to array
Pa, we reuse the memory space for array Ua, so that we do not allocate additional
space.

After recording all parents in Pa, the CPU backtraces the shortest path from the
destination vertex d to the source vertex s [21]. Firstly, the CPU refers Pa[d, s] to
find the parent vertex u of vertex d. The CPU then records u and finds the parent
vertex of u from Pa[u, s]. In this way, the CPU recursively backtraces the path until
reaching the source vertex s such that Pa[u, s] = s.

3.5 Experimental Results

We evaluate the performance of our method by comparing it with other two methods:
the SSSP-based method [1] and the Dijkstra-based method [14] running on the GPU
and the multi-core CPU, respectively. Note that the comparison is done with respect
to the cost computation. After this comparison, we also evaluate the overhead of
path recording.

The Dijkstra-based method is accelerated using a binary heap. Furthermore, we
parallelize the method using all CPU cores. In more detail, we do not parallelize
this algorithm but run a sequential program with different sources on each CPU
core, because there is no efficient parallelization for Dijkstra’s algorithm. Thus, a
CPU thread is responsible for solving SSSP problems for a subset of source vertices.
CPU threads are managed using OpenMP [31].

We execute GPU-based implementations on a PC with an NVIDIA GeForce 8800
GTS (G92 architecture). This graphics card has 512 MB of device memory and 16
SMs, each having 8 CUDA cores. It also should be mentioned that G92 architecture
supports atomic instructions to correctly process the scattering kernel. CUDA-based
implementations run on Windows XP with CUDA 2.0 and driver version 178.28. The
Dijkstra-based method is executed on an Intel Xeon 5440 2.83 GHz quad-core CPU,
12 MB L2 cache, and 8 GB RAM.

26

3.5.1 Performance Scalability on Graph Size

We investigate the performance with varying the graph size in terms of the number
|V | of vertices and that |E| of edges. The graph data we used in this experiment
is random graphs generated by a tool [2]. Using this tool, we generate graphs such
that every weight has an integer value within the range [1, wmax], where wmax = |V |.

Figure 3.10 shows the computation time obtained with varying the number |V |
of vertices. During measurements, the number |E| of edges is fixed to |E| = 4|V |,
meaning that a single vertex has four outgoing edges in average. In addition to
the three methods mentioned before, we also implement an unshared version of the
proposed method that uses device memory instead of shared memory. Due to the
capacity of on-board memory, our method fails to solve the problem for |V | = 1.2M
while Harish’s method can deal with |V | = 10.7M on our machine.

As compared with the previous SSSP-based method, the proposed method achieves
the best speedup of 13 when |V | = 1K. In particular, our method runs more effi-
ciently than the previous method when the graph has fewer vertices. The reason for
this is that our method has many threads that can be used for hiding the memory
latency. For example, it generates 32K threads for 16 SMs when |V | = 1K, which is
equivalent to 2K threads per SM. In contrast, the previous method has 64 threads
per SM. Thus, more threads belonging to different TBs are assigned to every SM in
our method. Such multiple assignments are essential to hide the latency with other
computation, making the GPU-based methods faster than the CPU-based Dijkstra
method, which is faster than the previous method (Figure 3.11).

Since the proposed method solves N SSSP problems at a time, the number of
kernel launches is reduced to approximately 1/N as compared with the previous
method. This implies that we can reduce the synchronization overhead needed at
the end of a kernel execution. This reduction effects are observed clearly when |V |
is small, where synchronization cost accounts for a relatively large portion of total
execution time. Thus, less synchronization allows threads to have shorter waiting
time at the kernel completion.

By comparing the proposed two methods, the speedup achieved by shared mem-
ory ranges from a factor of 1.2 to that of 1.4. This speedup is achieved by shared
memory, which eliminates approximately 16% of the data access between CUDA
cores and device memory compared to the proposed method without shared mem-
ory. On the other hand, the unshared version of the proposed method is at least 1.9
times faster than the previous method. Thus, the acceleration is mainly achieved by
the task parallel scheme rather than shared memory. However, the speedup achieved
by the task parallel scheme decreases as |V | increases, because the increase allows
the previous method to assign many threads to SMs, as we do in our method. In
contrast, the speedup given by shared memory increases with |V |. Therefore, we
think that shared memory is useful to deal with larger graphs.

27

0.01

0.1

1

10

100

1K 2K 4K 8K 16K 32K

Proposed method

Proposed method w/o shared memory

SSSP-based method

Dijkstra SSSP-based (4 CPU threads)

|V |: Number of vertices

E
x

ec
u

ti
o

n
 t

im
e

(s
)

95

Figure 3.10: Computation time for random graphs with different number |V | of
vertices. Results are presented in seconds.

0

0.5

1

1.5

2

1K 2K 4K 8K 16K 32K

Propsoed method

Proposed method w/o shared memory

SSSP-based method

|V |: Number of vertices

S
p

ee
d

u
p

Figure 3.11: Speedup over the SSSP-based implementation running on the CPU.

28

Figure 3.12 shows the computation time for graphs with a different number
|E| of edges. Every graph has the same number of vertices: |V | = 4K. These
results indicate that all methods increase the execution time with |E|. In particular,
the shared version of the proposed method shows better acceleration results as |E|
increases. Thus, shared memory can effectively reduce the number of data reads
from global memory for larger graphs with many edges and vertices. It also should
be noted that the proposed method uses O(BN) space in shared memory, which is
independent from the graph size |V | and |E|. Thus, the graph size is limited by the
capacity of device memory rather than that of shared memory.

3.5.2 Performance Stability on Graph Attributes

Figure 3.13 shows the results obtained using graphs with a different maximum weight
wmax. All graphs have the same numbers of vertices and edges: |V | = 4K and |E| =
16K. These results show that the execution time increases with wmax. However,
this increasing behavior is not so sharp as compared with that shown in Figure 3.12,
because wmax does not directly affect the execution time. The increase of wmax

means that the graph has edge weights with a larger distribution. In such a case,
we need more iterations to minimize the costs, because shorter paths having many
edges can overwrite costs that have updated by longer paths having a few edges
with larger weights. In addition, a change of a cost of vertex u affects the cost of
vertex v, where the temporal shortest paths from source vertex to v pass through u.

We next investigate the performance on different topologies. Table 3.1 shows
the computation time for various graph topologies. Every graph data has the same
number |V | = 4677 of vertices but with different topologies: a random graph [2],
a power law graph [32, 33], a ring, and a complete graph. The random graph and
the power law graph have |E| = 16K edges with wmax = 4096. The remaining
two graphs have the same weight wmax = 1 for all edges, in order to facilitate the
evaluation of performance stability on these graph topologies. The power law graph
has many low-degree vertices but also has less high-degree vertices. In more detail,
the maximum and average outdegrees in our graph are 834 and 3.5, respectively,
and 84% of vertices have a lower degree than 3.

In this table, we can see that all methods significantly vary their performance
depending on the graph topology. The GPU-based methods outperform the CPU-
based method with respect to the random graph and the complete graph. However,
the CPU-based method provides the fastest result for the ring graph and the power-
law graph. For the ring graph, this is due to the employed parallel algorithm rather
than the GPU implementation, because every vertex in the ring graph has a single
outgoing edge, which serializes the scattering phase. Thus, the problem is left on
the parallel algorithm rather than the implementation.

For the power law graph, the CPU shows a faster result compared to that for the

29

|E|: Number of edges

0

5

10

15

20

25

30

8K 16K 32K 64K 128K 256K 512K

Proposed method

Proposed method w/o shared memory

SSSP-based method

63 152

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Figure 3.12: Computation time for random graphs with different number |E| of
edges. The number |V | of vertices is fixed to |V | = 4K.

Table 3.1: Computation time for some graph topologies. Results are presented in
seconds.

Method Platform
Topology

Random Power law Ring Complete

SSSP-based [1] 4.39 6.37 687 5730
Proposed w/o shared memory GPU 0.884 1.73 53.7 175
Proposed 0.669 0.942 58.2 77.3
Dijkstra SSSP-based (4 threads) CPU 0.835 0.437 0.0962 158

30

w
max

: Maximum weight

E
x
ec

u
ti

o
n
 t

im
e

(s
)

0

1

2

3

4

8 16 32 64 128 256 512 1024 2048 4096

Proposed method

Proposed method w/o shared memory

SSSP-based method

Figure 3.13: Computation time for random graphs with different maximum weight
wmax. The number |V | of vertices and the number |E| of edges are fixed to |V | = 4K
and |E| = 16K.

31

random graph. On the other hand, the GPU-based methods basically decrease their
performance as compared with that for the random graph. We think that this is
due to the load imbalance in the scattering kernel, because the power law graph has
wide outdegrees ranging from 0 to 834. Thus, the most loaded thread has to update
834 neighbors while 84% of threads do this only for at most 3 neighbors. Such a load
imbalanced situation will increase the kernel execution time. Actually, the power
law graph requires 28% less kernel launches than the random graph. Thus, the
GPU-based methods can vary the performance according to the graph degree. The
workload will be balanced if every vertex has the same number of outgoing vertices.
Otherwise, a sorting mechanism will help us improve the performance.

The previous method takes 156 times longer time to solve the ring graph as
compared with the random graph. This increasing time can be explained by the
number of kernel launches. The ring graph has a unique topology where every
vertex has a single edge. Since the previous kernel updates the neighboring cost of
a single vertex, it has to launch the kernel |V | = 4677 times to compute an SSSP in
this case. In contrast, it requires only 23 launches per SSSP for the random graph.
Thus, the ring graph requires 203 times more launches than the random graph,
increasing the execution time.

The proposed method also takes longer time for the ring graph but it is approxi-
mately 12 times faster than the previous method. We expect a 32-fold speedup over
the previous method, because our method simultaneously processes N = 32 vertices
using 128 CUDA cores. Thus, there is a gap between measured performance and
expected performance. This gap can be explained by the branch overhead and the
duplication overhead. Our method has more branch instructions in the scattering
kernel due to the use of shared memory. Moreover, it requires duplication operations
to use shared memory, but this overhead can degrade the performance as we men-
tioned in Section 3.4.1. The duplication overhead also explains why the unshared
version outperforms the shared version when processing the ring graph.

The complete graph shows the worst result among the four topologies used in
this experiment. As compared with the random graph, the previous method and
our method spend 1310 times and 116 times longer time for the complete graph,
respectively. In this graph, every vertex has |V | − 1 neighbors, so that |V | − 1 rep-
etitions are required to write new costs of neighbors in the scattering kernel. Since
each thread sequentially processes these repetitions, the scattering kernel spends rel-
atively longer time. Although these repetitions are common to both of the proposed
and previous kernels, our kernel demonstrates a higher tolerance to these repeti-
tions. This tolerance is given by shared memory because each thread refers |V | − 1
elements of Ea and Wa, which is duplicated in on-chip shared memory.

32

3.5.3 Overhead of Path Recording

Finally, we analyze the overhead of path recording. Figure 3.14 shows the ratio of
the recording kernel to the remaining two kernels in terms of execution time for
random graphs. That is, the execution time in Figure 3.10 will be increased by the
ratio in Figure 3.14 if APSPs are recorded after the cost computation. According
to Figure 3.14, the overhead of path recording ranges from 3.0% to 7.7%. This
overhead is mainly due to the recording kernel. In addition to this additional kernel
execution, we also need to send array Pa back to the main memory. Note that we do
not include the execution time spent for the backtracing in this overhead, because
the number of necessary paths varies with applications of the APSP problem. The
CPU takes negligibly short time for backtracing a path compared to the overhead
of path recording for these random graphs.

3.6 Conclusion

In this chapter, we have proposed a fast algorithm for finding APSPs using the
CUDA-compatible GPU. The proposed algorithm is based on Harish’s SSSP-based
method and increases the performance by on-chip shared memory. We exploit the
coarse-grained task parallelism in addition to the fine-grained data parallelism ex-
ploited by the previous method. This combined parallelism makes it possible to
share graph data between processing elements in the GPU, saving the bandwidth
between off-chip memory and processing elements. It also allows us to run more
threads with less kernel launches, leading to an efficient method for highly multi-
threaded architecture of the GPU. The method is also capable of recording shortest
paths as well as their costs.

The experimental results show that the proposed method is 2.8–13 times faster
than the previous SSSP-based method. As compared with the previous method, the
task parallel scheme demonstrates higher performance for smaller graphs. However,
this advantage becomes smaller when dealing with larger graphs with more vertices.
In contrast, shared memory increases its effects for larger graphs with more vertices
and edges. With respect to the graph topology, we show that the ring graph se-
rializes both the previous and proposed methods. We also demonstrate that both
methods vary their performance according to the graph degree. The overhead of
path recording is at most 7.7% for random graphs.

33

|V |: Number of vertices

O
v
er
h
ea
d
 (
%
)

0

2

4

6

8

10

1K 2K 4K 8K 16K 32K

Figure 3.14: Overhead of path recording for random graphs with a different number
|V | of vertices. Overhead explains the increased time due to the recording kernel
called after cost computation.

34

Chapter 4

Accelerating Floyd–Warshall
Algorithm using the GPU

4.1 Introduction

The Floyd-Warshall (FW) [12, 13] algorithm is a solution to find all-pairs shortest
paths (APSPs) for a directed weighted graph. This algorithm uses an adjacency
matrix M that represents a given graph G as a square matrix of size n, where n
is the number of vertices in the graph G. It calculates the distance matrix D that
is a square matrix of order n, each element of which is the cost (distance) between
two vertices. This algorithm is a memory bound operation, because it requires 2n
arithmetic calculations and 4n memory accesses per element of M . However, the
algorithm is easily to be parallelized for single instruction multiple data (SIMD) [29]
processors as well as data partitioning. These characteristics have encouraged re-
searchers to speed up this algorithm using accelerators including graphics processing
units (GPUs) [5].

Katz and Kider [15] presented the iterative blocked FW (BFW) algorithm on
the GPU using the compute unified device architecture (CUDA) [6], which divides
M into equally sized square tiles and iterates the calculations of each tile. This
method caches these tiles into on-chip shared memory to reduce global memory ac-
cess, because the division improves the locality of memory accesses. However, the
computational efficiency of their method remains at a low level of 6% compared to
the peak computational performance of the GPU, which implies that this imple-
mentation can be improved for higher performance.

On the other hand, Buluç et al. [23] proposed the recursive blocking method that
recursively divides M into submatrices. This method applies a fast matrix-multiply
(MM) routine developed by Volkov et al. [24] to each submatrix computation. The
recursive method is at least 5 times faster than the iterative method, achieving

35

approximately 66% of the peak computational performance. The MM routine uses
registers rather than shared memory, because an operation with two operands on
the shared memory decreases the instruction throughput of the GPU [23]. The
instruction set architecture (ISA) of GT200 GPUs allows only one operand on the
shared memory. Therefore, the GPU moves a one of shared memory operands to
a register before the calculating an operation having two or more shared memory
operands. This MM routine might be also helpful to improve the performance of
the iterative BFW algorithm.

This chapter presents two acceleration methods for iterative BFW algorithm
using the CUDA-compatible GPU: the MM based method and two-level blocking
method. The MM based method applies the fast MM routine [24] to the calculation
of tiles in the similar way as the recursive method. It also enlarges the calculation
areas corresponding to each thread, aiming at reusing data on the shared memory
and a part of calculated values. However, larger calculation area decreases the par-
allelism and degrades the performance. Therefore, this method uses an auto tuning
technique to selects the calculation area size at runtime. For auto-tuning techniques
for the GPU, there have been some researches such as stencil calculation [34] and fast
Fourier transform (FFT) [35]. These methods run the program several times vary-
ing the value of the tuning parameters to find the suitable values. In contrast, our
technique statically selects the parameters according to the number of vertices and
the specifications of the GPU without running the program. Therefore, this method
can eliminate the time to tuning the parameters when using different GPUs.

The two-level blocking method allows larger tile size than the existing iterative
method [15], which reduces off-chip memory accesses. For this purpose, this method
uses two-level blocking of M to decrease the required amount of the shared memory.

The rest of the chapter is organized as follows. Section 4.2 summarizes the FW
algorithm. Section 4.3 presents the two proposed methods and Section 4.4 describes
the auto tuning technique for the MM based method. Section 4.5 shows experimental
results. Finally, Section 4.6 concludes the chapter.

4.2 Floyd-Warshall Algorithm

The FW algorithm finds APSPs in O(n3) time. This algorithm can handle a di-
rected weighted graph including negatively weighted edges, if there is no cycle hav-
ing negative cost. The FW algorithm uses a matrix representation of a graph, called
adjacency matrix. The adjacency matrix M is a square matrix of size n. An element
M [u, v] has the weight of edge (u, v); u ∈ V and v ∈ V , which is defined as follows.

M [u, v] =

0, u = v
w(u, v), u 6= v, (u, v) ∈ E
∞, u 6= v, (u, v) 6∈ E

36

Figure 4.1 shows the FW algorithm. This algorithm overwrites M in place. After
the computation, M is equal to the distance matrix D. In other words, an element
M [u, v] is the cost of shortest path from u ∈ V to v ∈ V . To store M , this algorithm
consumes O(n2) space on the memory.

The FW algorithm updates all elements of the matrix M and repeats this op-
eration n times. The most outer loop, shown in line 2 in Figure 4.1, has a data
dependency and cannot be parallelized. In contrast, the inner nested two loops in
lines 3 and 4 can be parallelized because these loops have no dependency.

4.2.1 Iterative Blocked Floyd–Warshall Algorithm

The iterative BFW algorithm was proposed by Venkataraman et al. [22] to improve
the cache utilization of the CPU. This algorithm partitions the adjacency matrix
M into multiple tiles, the size of which are t × t, and iteratively updates all tiles in
a certain order. Figure 4.2 describes the iterative BFW algorithm and Figure 4.3
illustrates the updating order of the tiles. In these figures, TI,J denotes a tile on
M and the upper-left tile is T1,1. In the following, the black tile TK,K in Figure 4.3
is referred to as pivot tile. The gray tiles on the same block row of the pivot tile
(TK,J , 1 ≤ J ≤ n/t) are referred to as pivot row tiles. TI,K , 1 ≤ I ≤ n/t are also
referred to as pivot column tiles. The other white tiles are referred to as non-pivot
tiles.

At first, this algorithm updates the upper-left tile T1,1 as the first pivot tile. Sec-
ondly, it updates all pivot row and column tiles that are illustrated as the gray tiles.
After that, it updates non-pivot tiles. This algorithm then repeats this operation
with moving the black tile TK,K from the upper left corner to the lower right corner.

The procedure FWI in Figure 4.2 updates each tile. The parameter A of this
procedure is a tile to be updated, while B and C are tiles that are referenced to
update the tile A. The tile B is a pivot column tile (or the pivot tile) in the
same tile row as the updating tile A. Similarly, C is a pivot row tile in the same
tile column as A. Therefore, some of these parameters point to the same tile,
when this procedure updates the pivot tile or the pivot row and column tiles. For
instance, when updating the pivot tile, all of three parameters point to the pivot
tile. Consequently, this operation is equivalent to apply the original FW algorithm
(Figure 4.1) to the pivot tile. When FWI updates a pivot row or column tile, either
the parameter of B or C is equal to A and the other parameter points to the pivot
tile.

This reference dependency among tiles restricts the updating order of tiles to
obtain a consistent result. Tiles must be updated in the order of the pivot tile, the
pivot row and column tiles, and the non-pivot tiles. On the other hand, all of pivot
row and column tiles can be updated in parallel, because the updating procedures
of these tiles are independent each other. Moreover, the non-pivot tiles can be also

37

1: FloydWarshall(M , n) // M : adjacency matrix, n: # of vertices
2: for k := 1 to n

3: for i := 1 to n

4: for j := 1 to n

5: M [i, j] := min(M [i, j], M [i, k] + M [k, j])

Figure 4.1: FW algorithm.

1: IterativeBFW(M , n, t) // M : adjacency matrix, n: # of vertices
2: for K := 1 to n/t // t: tile size
3: FWI(TK,K , TK,K , TK,K , t) // pivot tile
4: for I := 1 to n/t, I != K

5: FWI(TI,K , TI,K , TK,K , t) // pivot-row tiles
6: for J := 1 to n/t, J != K

7: FWI(TK,J , TK,K , TK,J , t) // pivot-column tiles
8: for I := 1 to n/t, I != K

9: for J := 1 to n/t, J != K

10: FWI(TI,J , TI,K , TK,J , t) // non-pivot tiles
11: FWI(A, B, C, t)
12: for k := 1 to t

13: for i := 1 to t

14: for j := 1 to t

15: A[i, j] := min(A[i, j], B[i, k] + C[k, j])

Figure 4.2: Iterative blocked FW algorithm.

t

K = 1 K = 2 K = 3 K = 4

T1,1 T1,2

T2,1 T2,2

T4,4

n

Figure 4.3: Tile updating process of the iterative BFW algorithm (n/t = 4). A
black tile represents the pivot tile. Gray tiles are the pivot row and pivot column
tiles, while white tiles are the non-pivot tiles.

38

updated in parallel.
FWI refers to each element of B and C t times, and updates each element of

A t times. Therefore, this procedure accesses to O(t3) elements per an execution.
Consequently, the iterative BFW algorithm accesses to O(n3) elements in total. On
the other hand, if A, B and C are cached to a fast on-chip memory, the number of
off-chip memory accesses decreases by 1/t per an execution of FWI. Consequently,
FWI accesses 2t2, 3t2, and 4t2 elements on the off-chip memory with the pivot tile,
a pivot row or column tile, and a non-pivot tile, respectively. Therefore, the number
Nb of data that is accessed by this algorithm to the off-chip memory is given by Eq.
4.1, where sizeof(element) represents the data size of matrix element.

Nb = (4n3/t − 2n2) × sizeof(element) (4.1)

According to Matsumoto and Sedukhin [36], the iterative BFW algorithm updates
n(n2 − 2t + 1) elements in total. This algorithm uses two arithmetic operations per
element; an addition and a minimization of two operands. Therefore, the number
Nc of arithmetic operations is given by Eq. 4.2.

Nc = 2n(n2 − 2t + 1) (4.2)

4.2.2 Recursive Blocked Floyd-Warshall Algorithm

Figure 4.4 illustrates the recursive BFW algorithm [23]. This algorithm partitions
the adjacency matrix M into four submatrices of size n/2. It then recursively par-
titions the upper-left and lower-right submatrices. Figure 4.5 shows this recursive
partitioning process. In Figure 4.4, the product “A · B” of tile A and B represents
an operation that substitutes the addition and multiply of elements in a general
matrix multiplication with a minimization and addition, respectively. “A + B” also
represents an operation that applies a minimization to each element of two matrices.

The CPU recursively calls RecursiveBFW procedure to logically partition the
adjacency matrix in lines 3 and 7 in Figure 4.4. The CPU then launches a kernel to
update each submatrix using the GPU in lines 4–6 and 8–10 in Figure 4.4. To achieve
a consistent result, synchronizations between all GPU threads are required after a
launch of kernel in lines 5, 6, 9, and 10, because these kernels have data dependency
with their following kernel launches. Consequently, this algorithm requires at least
four kernel launches per recursion. The depth of recursion is log2 n/tR because a call
of RecursiveBFW procedure divides the matrix into halves. tR here is the size of
submatrix that stops the recursion. When the size of submatrix is smaller than tR,
RecursiveBFW procedures updates the submatrix using the original FW algorithm.
Assuming that we apply the FW algorithm to a submatrix using a kernel launch, the
CPU launches the kernel n/tR times. Consequently, the recursive method requires

at least 4
∑log2 n/tR

i=0 (2i) + n/tR = 5n/tR − 4 kernel launches. Note that Buluç et

39

al. [23] launch two kernels in lines 4 and 5, although these kernel launches can be
merged to a launch. The same is true of kernel launches in lines 8 and 9. Therefore,
their method launches kernels 7n/tR − 6 times.

On the other hand, the iterative BFW algorithm requires 3n/t kernel launches.
This algorithm moves the pivot tile n/t times, while each step requires three syn-
chronizations after updating the pivot tile, the pivot row and column tiles, and the
non-pivot tiles. Therefore, the recursive BFW algorithm requires 4n/t−6 or 2n/t−4
extra kernel launches compared to the iterative BFW algorithm. Therefore, when
the computation time is short and the overhead to launch kernels is relatively large,
the iterative algorithm can achieve higher performance than the recursive algorithm.

4.3 Iterative Blocked Floyd-Warshall Algorithm

on the GPU

The matrix multiplication (MM) based method and the two-level blocking method
consist of the same procedures except for the procedure to update non-pivot tiles. In
this section, the design that is common between the two methods is firstly described,
and different procedures are then described.

4.3.1 Common Design

The adjacency matrix M occupies a large area O(n2) of memory, which is overwrit-
ten during the computation. Therefore, M is stored in the global memory. Our
implementation firstly transfers the given graph data from the main memory to the
global memory. The CPU then iteratively launches three kernels on the GPU to
execute the iterative BFW algorithm. Finally, the calculated result is transferred to
the main memory.

The proposed two methods use three kernels, which update the pivot tile, pivot
row and column tiles, and non-pivot tiles. These three kernels are denoted by pivot
kernel, pivot row and column kernel, and non-pivot kernel, respectively. These
kernels employ two-level parallelism of the iterative BFW algorithm. We parallelize
the loop on i and j (lines 13 and 14 in Figure 4.2) to simultaneously update multiple
elements using threads in a thread block (TB). In addition, all tiles are updated in
parallel using multiple TBs in the pivot row and column kernel and the non-pivot
kernel (lines 4 and 6). These kernels must be terminated to synchronize all threads.
This synchronization is required to obtain a consistent result.

Selecting Tile Size As described earlier, this algorithm reduces more amounts Nb

of data accessed to the off-chip memory using large t. However, larger t increases the

40

1:RecursiveBFW(M , n, tR)
2: if n ≤ tR return FW(M) // apply the FW algorithm to M

3: M1,1 := RecursiveBFW(M1,1, n/2, tR)
4: M1,2 := M1,1 · M1,2

5: M2,1 := M2,1 · M1,1

6: M2,2 := M2,2 + M2,1 · M1,2

7: M2,2 := RecursiveBFW(M2,2, n/2, tR)
8: M2,1 := M2,2 · M2,1

9: M1,2 := M1,2 · M2,2

10: M1,1 := M1,1 + M1,2 · M2,1

Figure 4.4: Recursive blocked FW algorithm.

t
R

Recursive

partitioning

Adjacency matrix M

Figure 4.5: Recursive blocking of the matrix M in the recursive BFW algorithm.

41

use of on-chip memory and results in lower efficiency of parallel computing, because
TBs shares the on-chip memory such as registers and the shared memory. Therefore,
we increase t so that we can avoid that memory bandwidth becomes a theoretical
performance bottleneck. Under this condition, we use t as small as possible to avoid
performance degradation.

Figure 4.6 illustrates the required byte/operation ratio Nb/Nc of the iterative
BFW algorithm and the byte/operation ratio Og/Bg of each GPU. Nb represents
the amount of data accessed to the off-chip memory. Nc is the number of required
calculations. Nb and Nc are calculated from Eq. 4.1 and Eq. 4.2 in Section 4.2.1
with n = 8192 and sizeof(element) = 4, respectively. Og and Bg are the values
derived from the specifications of the GPU. Table 4.1 summarizes these variables
for representing GPU specifications used in this chapter. Note that the MM based
method requires slightly different number of memory accesses, due to the design of
the MM routine. N ′

b/Nc in Figure 4.6 shows the byte/operation ratio of the MM
based method, where N ′

b is calculated from Eq. 4.3 to be described in Section 4.3.2.

According to Figure 4.6, the byte/operation ratio Nb/Nc of the algorithm is
below the byte/operation ratios Og/Bg of all GPUs, when t ≥ 32. This means that
the bandwidth of global memory does not become a performance bottleneck of this
algorithm when t ≥ 32, even if the GPUs fully utilizes the computing performance.
In order to facilitate the implementation that achieves coalesced accesses, we select
t in the multiple of 16. Therefore, we select t = 32 for the tile size. We assign each
thread to update multiple elements in each kernel, because the maximum TB size
limits t to less than 23 if each thread updates only one element. The detailed design
is different according to the kernel. We describe the design of each kernel in the
following.

Pivot Kernel The pivot kernel is launched with a TB to update the pivot tile,
where the TB includes th threads. This kernel splits the tile into t/h block rows and
updates every h rows at a time (Figure 4.7). Each thread has a two-dimensional
thread index 〈i, j〉 and updates t/h elements A[i, j + hj′](0 ≤ j′ < t/h) in the tile A
of FWI. We synchronize all threads in the TB after updating all elements, because
FWI has data dependency in the loop on k.

Each element in the tile A is stored in a register of the thread that is respon-
sible for updating the element. These registers are allocated as an array contain-
ing t/h elements in our implementation. Loops in the kernel are unrolled using
#pragma unroll directive [6] so that the compiler statically calculates addresses of
the array elements. This allows the compiler to optimize the code and to store the
array elements in registers. Otherwise, an array of temporal variables is stored in
the local memory, which has as large latency as the global memory. In our experi-
ments, the compiler successfully stores the array using registers except for the case

42

Table 4.1: Symbols for representing GPU specifications.

Symbol Description

Mg Number of streaming multiprocessors (SMs)
Sg Number of CUDA cores per SM
Hg Frequency of CUDA cores
Wg Number of threads per warp (warp size)
Og Peak computational performance given by Og = MgSgHg

Bg Peak global memory bandwidth

0

0.1

0.2

0.3

0.4

0.5

0.6

16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Nb/Nc Nb’/Nc (MM based method)

8800 GTX 8800 GTS 512GTX 280

B
y

te
/o

p
er

at
io

n

Tile size t

Figure 4.6: Byte/operation ratio Nb/Nc of memory access to computation demanded
by the iterative BFW algorithm and that of global memory bandwidth to compu-
tational performance of the GPU (n = 8192).

43

with t = 64, h = 1 and t = 64, h = 2.
All threads commonly refer to the k-th row and k-th column in the pivot tile to

update their corresponding elements. Therefore, we duplicate these common data
from registers to the shared memory before processing k-th update. This duplication
requires the shared memory allocation of 2t elements, as well as it increases the
number of accesses to the shared memory. However, the shared memory usage is
small enough to use larger t, because this kernel only launches a TB.

Pivot Row and Column Kernel The pivot row and column kernel simultane-
ously updates 2(n/t − 1) tiles in the corresponding region. It processes a tile using
a TB, while each TB includes th threads and updates the assigned tile in the same
way as the pivot kernel. The updating tile A is stored into registers and the k-th row
or column of A is duplicated to the shared memory. In addition, the k-th column
or row of the pivot tile is stored into the shared memory, because threads also refer
to these data in common. Therefore, this kernel allocates 2t elements of the shared
memory per TB.

Non-pivot Kernel The non-pivot kernel has no data dependency between updat-
ing elements. Therefore, some loop optimization techniques can be applied to this
kernel, such as loop interchange and loop blocking. The MM based method employs
a fast MM routine that uses a loop interchange and loop blocking technique. The
two-level blocking method uses a loop blocking technique, in order to reduce the
number of elements that are required to store on-chip memory by two-level block-
ing. We describe two implementations of the non-pivot kernel in the following two
sections.

4.3.2 Matrix Multiplication based Iterative BFW

The update of non-pivot tiles (lines 8–10 in Figure 4.2) has a similar access pattern
with a matrix multiply-accumulate operation. Concretely, it accesses to the mem-
ory in the same pattern as the operation that multiplies the pivot column by the
pivot row and then accumulates the result on M . Therefore, this method applies
a fast MM routine proposed by Volkov et al. [24] to the non-pivot kernel, replac-
ing the addition and multiplication of elements with minimization and addition,
respectively.

We switch the partitioning scheme according to the kernel, because the scheme
of the MM routine is different from that of the pivot kernel and the pivot raw
and column kernel. This scheme is essential to achieve higher performance. Fig-
ure 4.8 illustrates the logical partitioning of matrix M for the non-pivot kernel of
this method. This method partitions M into submatrices containing 16 × 64 ele-

44

ments. A TB including 64 threads handles each submatrix. A TB corresponding to
a submatrix T ′

I′,J ′ updates the submatrix referring to a region B′
I′ in the pivot row

and another region C ′
J ′ in the pivot column. The size of B′

I′ and C ′
J ′ are 16× t and

t × 64, respectively.
A thread updates all the 16 elements in a column of T ′

I′,J ′ (Figure 4.9). It stores
these elements in registers, while the region B′

I′ is stored in the shared memory.
This method uses a register for an element in C ′

J ′ registers. Each element of C ′
J ′ is

referenced by only one thread, because elements in a column of submatrix depend
on that element while a column of submatrix updated by a thread. We thus load
an element of C ′

J ′ from the global memory to registers and execute all computations
that depend on the element. Therefore, the updating an element in line 15 in
Figure 4.2 requires two elements on registers and an element on the shared memory.
Consequently, this method avoids the performance degradation that is caused by an
extra instruction to move a data from the shared memory to a register when both
B′

I′ and C ′
J ′ are stored in the shared memory.

We modify the MM routine in three points to increase the performance. First,
each TB operates on l submatrices. This reduces the number of instructions and
memory accesses to load B′

I′ from the global memory to the shared memory by 1/l,
because updating these submatrices commonly refers to B′

I′ . However, a large l
decreases the number of TBs, resulting in performance degradation. The suitable
size of l varies with the graph size and the GPU. Therefore, we select l at runtime
using an auto-tuning technique described in Section 4.4.

Next, our method duplicates all the elements of B′
I′ into the shared memory to

reduce the number of synchronization in a TB. The original MM routine only stores
162 elements of B′

I′ in the shared memory to reduce the shared memory usage [24]. It
appropriately changes the part of B′

I′ that is stored in the shared memory according
to the calculation progress. This requires the synchronization between threads in a
TB after changing the stored elements. On the other hand, the size of B′

I′ is 16t
with the non-pivot kernel, which is enough small to store on the shared memory.
We thus store all the elements of B′

I′ in the shared memory at first of the kernel,
and reduce the synchronization to once in the kernel.

Finally, we omit the calculation of the pivot row and column tiles, because these
tiles have been updated when updating non-pivot tiles (lines 8 and 9 in Figure 4.2).
To omit the calculation of pivot row tiles, we do not assign TBs to these regions by
appropriately adjusting the thread block indices. On the other hand, a TB operates
on a multiple tiles in the row, each thread skips to store the calculation result to the
global memory, if it calculates in an element in the pivot column tiles. Although it
is possible to skip the calculation of pivot column tiles, skipping the store of results
is slightly faster in the experiment.

When we use larger tile size t, this method refers to the global memory more than
the two-level blocking method, because the MM routine uses a fixed size partitioning.

45

Shared memory

h

t

k-th

column

k-th

row

Update h rows

in parallel

Pivot tile T
K,K

on registers

th threads in a TB

(t,h)

(1,1)

copy

copy

Figure 4.7: Using on-chip memory for updating the pivot tile.

64

B’
I’

C’
J’

16

t = 32

T’
I’,J’

Adjacency matrix M

Figure 4.8: Partitioning of the computational region in the matrix multiplication
based method.

46

This routine refers to n2t(1/64 + 1/16) elements in the pivot row and column tiles
on the global memory in total. Therefore, the non-pivot kernel accesses 5n2t/64 +
2(n− t)2 elements on the global memory per launch. Eq. 4.3 gives the total amount
of memory accesses of the MM based method.

N ′
b = {(5t/64 + 2)n3/t + 2n2 − 2nt} × sizeof(element) (4.3)

For n = 8192, the amount of memory accesses of the MM based method is almost
equal to that of the two-level blocking method when t = 26. If t is larger than 26,
this method accesses to the memory more than the two-level blocking method.

4.3.3 Two-level Blocking Iterative BFW

The two-level blocking method partitions each non-pivot tile to reduce the amount
of data on the shared memory. For the second level partitioning, we use a two-
dimensional blocking method that is commonly used for the MM.

Figure 4.11 depicts the memory usage of the non-pivot kernel, where a TB up-
dates the tile TI,J . Each tile is partitioned into sub-tiles of size t′. A TB includes
tt′ threads and simultaneously operates on t/t′ sub-tiles that are arranged along
the row. This thread assignment avoids too small TB size that may decrease the
performance.

The tile B and C of FWI are partially duplicated to the shared memory, which
are required to complete the update of t/t′ tiles that are updated in parallel. In
detail, we copy t′ columns in B and t′ rows in C from the global memory to the
shared memory. When the update of t/t′ tiles are completed, we copy the next
t′ columns and t′ rows in B and C, respectively. Consequently, this method uses
2tt′ elements of the shared memory. In order to avoid the bank conflicts [6], the t′

columns in B are transposed to store in the shared memory. Nevertheless, if the sub-
tile size t′ is t′ < 16, the GPU cannot achieve the coalesced memory access when
loading these columns. Therefore, we use the texture cache to hide the memory
latency. The pivot rows are copied to the texture memory [6] before launching the
non-pivot kernel.

We also assign l tiles to a TB, although a TB cannot reuse data on the shared
memory because this method stores a part of B. However, some address calculation
results are reused between the operations to update a tile.

4.4 Auto-Tuning Technique for Matrix Multipli-

cation based Iterative BFW

In this section, we describe the auto-tuning technique to determine the size of pa-
rameter l that adjusts the calculation area of a TB in the MM based method.

47

Shared memory

B’
I’

C’
J’

t

64 threads

16

t = 32

64

16T’
I’,J’

Register

Global memory

B’
I’

. . .

. . .

. . .

copy
copy

Figure 4.9: On-chip memory usage of the non-pivot kernel with the MM based
method.

1: int A[t, t] // Updating tile TI,J

2: shared int B[t, t′] // Referring tile TI,K

3: shared int C[t′, t] // Referring tile TK,J

4: for k1 := 0 to t/t′ − 1
5: Load the part of TI,K from texture to shared memory B

6: Load the part of TK,J from GM to shared memory C

7: for i1 := 1 to t′ in parallel
8: for j := 1 to t in parallel
9: for k2 := 1 to t′

10: k := k1 × t′ + k2
11: for i2 := 1 to t/t′ − 1
12: i := i2 × t′ + i1
13: A[i, j] := min(A[i, j], B[i, k] + C[k, j])

Figure 4.10: Pseudo code for the non-pivot kernel of the two-level blocking method.

48

As described in Section 4.3.1, the computation theoretically bounds the perfor-
mance of this method with t ≥ 32. Therefore, our auto-tuning technique selects l,
which minimizes the estimated computation time that is calculated using a perfor-
mance model of the GPU .

First, we describe the performance model to estimate the computation time.
After that, we present the auto-tuning technique to automatically determine appro-
priate size of the parameter l.

4.4.1 GPU Performance Model for Computation Time Es-
timation

This model estimates the number of instructions executed on the GPU and the in-
struction throughput. The estimated computation time is calculated from these two
values. It assumes that the computation time of a kernel is equal to the computation
time of a SM that processes the largest number of TBs. Table 4.1 lists the symbols
that are corresponding to the specification of a GPU. In addition, we use below
symbols in this section, the values of which are depends on the kernel.

L： the average number of instructions executed by a thread

U： the number of TBs

X： the number of threads in a TB (TB size)

Y： the maximum number of warps that are executed on a SM at a time

The estimated execution time F is given by Eq. 4.4, where LTB represents the
number of executed instructions per TB, USM is the number of TBs assigned to an
SM, and RSM is the effective computation performance of an SM.

F = LTBUSM/RSM (4.4)

LTB, USM, and RSM are calculated as follows.

LTB = LX (4.5)

USM = dU/Mge (4.6)

RSM = SgHgZ (4.7)

LTB is simply calculated by the multiplication of the number L of instructions
executed by a thread and the TB size X (Eq. 4.5). We assume that a GPU assigns
TBs to SMs in round-robin fashion. Therefore, the largest number USM of TBs
assigned to an SM is given by Ep. 4.6.

49

SgHg in Eq. 4.7 is the peak computation performance of an SM. Z in Eq. 4.7
represents the estimated instruction throughput, which is defined as Eq. 4.8.

Z = (YSM/Y)/dYSM/Y e (4.8)

YSM is the number of warps assigned to an SM, which is given by YSM = USMX/Wg.
CUDA-compatible GPUs hide the memory access latency by switching warps. If the
number of warps that are ready to execute is less than Y , the GPU might not fully
hide the memory access latency and decreases the computation throughput. There-
fore, we assume that an SM processes every Y warps at a time and the SM reduces
the throughput to (YSM mod Y)/Y when processing the remaining (YSM mod Y)
warps. The entire throughput Z is estimated by Eq. 4.8.

A limitation of this model is that this model is not applicable to a program that
has a performance bottleneck in memory accesses, because the model estimates the
performance using the estimated computation time. In addition, it cannot han-
dle a program, which has a potential performance bottleneck that depends on the
parameter values. It also should be noted that some parameters might cause a re-
markable change in the order of instruction issues. Recompiling the program might
also change the order of instructions. Although, these changes will vary the per-
formance, our model cannot detect such changes because the model estimates the
throughput only based on the number of warps that are executed in parallel on the
GPU. Our technique focuses on parameters that change the workload per warp at
runtime.

4.4.2 Automatic Parameter Selection

Figure 4.12 illustrates the flow of auto-tuning mechanism that automatically selects
the size of l. First, this mechanism collects resource consumption of kernels at a
compilation time, such as the number of registers used and amount of data allocated
on the shared memory. Before executing BFW algorithm, it selects appropriate size
of l using the specification of the GPU and the number n at runtime. It estimates
the computation time with varying l in a range of 1 ≤ l ≤ n/64 to determine the
size of l that minimizes the estimated computation time.

Collecting Resource Consumption at Compilation Time At compilation
time, we collect the size of L, U , X, and Y . The average number L of instructions
per thread is represented by a function of l and the number of instructions in each
code block in the non-pivot kernel. We count the instructions in each code block
in disassembled results of compiled kernels in a cubin file [6]. A tool, decuda [37],
is used to disassemble the cubin file. I depends on l, because a TB updates l
submatrices in the MM based method. Therefore, it is represented as I = α + βl,

50

where α and β are constants. These constants are calculated from the number of
instructions in each code block.

The number U of TBs is depends on n and l, which is given by U = dn/64/le −
(n/16− t/16) in the MM based method. Note that we assume that n and t are the
multiple of 64 and 16 for the simplicity. The number X of threads in a TB is fixed
to 64, which is determined by the algorithm.

We use a tool, called CUDA Occupancy calculator [6], to obtain the maximum
number Y of warps that are executed at a time on an SM. This tool requires the
number X of TB size, the number of registers used by a thread, and the amount of
shared memory used by a TB as its inputs. The latter two values are available in a
compiler output message.

Collecting Hardware Specification at Runtime Our method gathers the
specification of the GPU at runtime that is used to run the compiled execution
file. The CUDA runtime library provides cudaGetDeviceProperties() API func-
tion that returns the specification of GPU at runtime, including the values of Mg,
Hg, and Wg. However, the library does not have a function to know the number Sg

of CUDA cores in an SM. The GPUs used in the experiments have Sg = 8 CUDA
cores per SM. Therefore, we assume Sg = 8 for our experiments.

4.5 Experiments

In this section, we analyze the performance of two iterative BFW algorithms. In
addition, we evaluate the auto-tuning technique for the MM based method.

4.5.1 Environment

Table 4.2 and Table 4.3 summarize the experimental environments. We use three
architecture generations of seven GPUs that are compatible with CUDA. Although
GeForce 9800 GX2 contains two GPU chips in it, we use only a GPU of them.
Table 4.3 shows the specification of a GPU chip of 9800 GX2. The warp size Wg

and the number of CUDA cores per SM are Wg = 32 and Sg = 8, respectively,
which are the same between seven GPUs. The unit “Gop/s” of Og represents that
the GPU executes 109 computations per second. We develop all programs using
Microsoft Visual Studio 2008 and CUDA version 2.3. The video driver is version
190.38.

We use random graphs generated by a tool [2]. Each graph has m = 4n edges,
where n is the number of vertices. Edge weights are positive integers that are less
than n. We implement all programs to use integer edge weights.

51

Shared memory

t’

t

t’
Register

Tile B (T
I,K

)

Tile C (T
K,J

)

t’

Tile A (T
I,J

)

tt’ threads

(t,t’)

(1,1)

t’

Texture memory

Global memory Update h rows

in parallel

Figure 4.11: On-chip memory usage of the non-pivot kernel with the two-level block-
ing method.

Executable File

•Number of

registers

•Amount of SMEM

TB size

Y : Maximum number of
ac!ve warps on an SM

Auto tuning

Func!on
n : Number of

ver!ces
Selected

parameter L

Execu!on

Compila!on

Itera!ve

BFW Kernel
CUDA Run!me Library

A user specified formula that

 es!mates the number I of

instruc!ons

•Number of SMs

•Hg : processor

clock rate

•Wg :

Warp size

NVCC

(compiler)
CUBIN

CUDA

Kernel

Graph G

CUDA Occupancy

Calculator

Figure 4.12: Flow of the auto-tuning mechanism for the MM based method.

52

Our implementation reads an input graph file and stores the graph data in the
adjacency list format on the main memory. Next, it transfers the graph data to the
device memory of the GPU. The GPU initializes the adjacency matrix M using the
transferred data. Therefore, it consumes O(n2 + n + 2m) of the device memory,
which limits the graph size. For instance, GeForce 9800 GX2 and 8800 GTS 512,
which have 512 MB of device memory, cannot handle graphs with approximately
n ≥ 11K vertices if the number of edges is m = 4n.

The values of parameter h of the pivot kernel and pivot row and column kernel
are manually selected from h ∈ {2i; 0 ≤ i ≤ 4, 2i ≤ 512/t} to achieve higher
performance. We select h = 16, 8, and 4 for the pivot kernel with t = 16, 32, and
64, respectively. For the pivot row and column kernel, we use h = 4 with all tile
size. We use the same value of h for the MM based method and for the two-level
blocking method.

Table 4.4 summarizes the parameters and occupancy[6] of the non-pivot kernel
using GeForce GTX 280. We determine the parameter t′ of the two-level blocking
method by a preliminary experiment. The values of l in Table 4.5 shows the auto-
tuning results for the MM based method on GeForce GTX 280, while the values of
l for the two-level blocking method are manually selected by an experiment.

Eq. 4.9 and Eq. 4.10 are the functions for estimating the average number L
of instructions per thread and the number U of TBs in the MM based method,
respectively.

L =

72 + 609l, (t = 16)
84 + 1166l, (t = 32)
108 + 2844l (t = 64)

(4.9)

U = dn/64/le(n/16 − t/16) (4.10)

We compile the kernels to collect these functions and other kernel specific infor-
mation such as X and Y . Then, we embed these functions and values into the CPU
code and recompile the program to enable the auto-tuning mechanism for the MM
based method.

We also implement the recursive BFW algorithm [23] for evaluating our method.
The original design of this algorithm assumes tR ≤ 22 to simplify the implementation
of the FW algorithm that is used to update a submatrix. We use the pivot kernel
described in Section 4.3.1 to implement that with tR = 32 and tR = 64, instead of
the original FW implementation.

In this section, we use the number of arithmetic computations of the original FW
algorithm to calculate the computational efficiency, in order to compare the iterative
and recursive methods. The number of arithmetic computations is 2n(n − 1)2.

53

Table 4.2: Experimental environment for the GT200 GPUs.

GPU GTX 280 FX 5800 GTX 260

Number Mg of SMs 30 24
Frequency Hg (MHz) 1296 1242
Device memory (MB) 1024 4096 896
Bandwidth Bg (GB/s) 141.7 102.4 111.9
Og (Gop/s) 311.0 238.5
Bg/Og 0.46 0.33 0.47
Expansion bus PCI-e 2.0 x16
CPU Core i7 940 Xeon X5472 Xeon X5450
Frequency of the CPU 2.93 GHz 3.0 GHz
Main memory (GB) 12 8
OS XP 64bit (SP2) Vista 64bit (SP2) XP 64bit (SP2)

Table 4.3: Experimental environment for the G90 and G80 GPUs.

GPU architecture G90 G80
GPU 9800 GX2 8800 GTS 512 8800 GTX 8800 GTS

Number Mg of SMs 16 12
Frequency Hg (MHz) 1500 1625 1350 1200
Device memory (MB) 512 768 640
Bandwidth Bg (GB/s) 64.0 86.4 64.0
Og (Gop/s) 192.0 208.0 172.8 115.2
Bg/Og 0.33 0.31 0.50 0.56
Expansion bus PCI-e 2.0 x16 PCI-e x16
CPU Core2 Quad Q9550 Xeon X5472 Core2 Quad Q9550
Frequency of the CPU 2.83 GHz 3.00 GHz 2.83 GHz
Main memory (GB) 8
OS XP 64bit (SP2) Vista 64bit (SP2) XP 64bit (SP2)

Table 4.4: Parameters and resource usage of the non-pivot kernel.

MM based Two-level blocking
t 16 32 64 16 32 64

t′ — — — 4 2 4
TB size X 64 64 64 64 64 256
Shared memory (bytes) 1144 2232 4408 576 576 2112
Registers 39 40 40 18 30 30

Y
GT200 12 12 6 16 16 16

G80 and G90 6 6 6 12 8 8

Occupancy[6]
GT200 38% 38% 19% 50% 50% 50%

G80 and G90 25% 25% 25% 50% 33% 33%

54

4.5.2 Performance Analysis

Table 4.6 shows the computation time using GeForce GTX 280. The computation
time here is that the time to execute the FW algorithms on the GPU, which is not
include the initialization of the adjacency matrix on the global memory and the
transfer of results from the global memory to the main memory. For n ≤ 1024, the
MM based method reduces the computation time by 20–48% and 17–45% compared
to the recursive BFW method with tR = 32 and 64, respectively. For n = 256–
1024, the two-level blocking method with t = 32 decreases the time by 5.6–28%
and 2.0–23% compared to the recursive method with tR = 32 and 64, respectively.
On the other hand, both iterative methods with t = 32 show similar performance
to that of the recursive method for larger n. The MM based method and the
recursive method achieves a high computational efficiency, which reaches 72.7% of
peak integer computational performance for n = 8192 with t = 32 and tR = 32. The
computational efficiency is calculated from the number of arithmetic computations
of the original FW algorithm (2n(n − 1)2) and the computation time. Therefore,
the high efficiency suggests that these implementations fully utilize the performance
of the GPU.

Comparison of Different Tile Sizes Figure 4.13 is the reduction ratio of com-
putation time comparing t = 32 and t = 16. The both iterative methods with t = 32
decrease the computation time than that of t = 16. This result supports estimated
performance improvement by a reduction of memory accesses. However, this ratio
is greater than the estimated ratio described in Section 4.3.1.

In particular, the two-level blocking method shows higher reduction ratio. For
example, the estimated reduction ratio is 9.0% for n = 8192, while the measured
ratio is 19.7%. In this case, the estimated execution time is 3.88 seconds with
t = 16. The time is derived from the estimated memory access time Nb/Bg, because
the bandwidth limits the performance according to Figure 4.6. On the other hand,
the estimated execution time is 3.53 seconds with t = 32, because the computation
bounds the performance. Therefore, the estimated reduction ratio is 9.0%. The
reduction in the number of kernel launches seems to cause the gap between the
estimated reduction ratio and the measured ratio. The iterative method launches
3n/t kernels, which is inversely proportional to the tile size. Therefore, larger t
makes the less overhead of kernel launches in the iterative method.

Comparing t = 32 and 64, the case with t = 32 achieve higher performance than
that with t = 64, except for the two-level blocking method for n = 1024. Table 4.7
shows the computation time of each kernel to examine the cause. For the MM based
method, the increase of computation time of the non-pivot kernel occupies 90% of
entire increased time. This kernel decreases the performance, because the rack of
on-chip memory degrades the number Y of warps that are executed on an SM at a

55

time. It allocates approximately 4 KB of the shared memory per TB, which reduces
Y to half with t = 64 compared that with t = 32 (Table 4.4).

In addition, the computation times of the pivot row and column kernel with
t = 64 are 49–60 milliseconds longer than that with t = 32 for both iterative
methods. With t = 64, the compiler failed to fully unroll loops in this kernel,
because it requires too much instructions to unroll the loops. Consequently, the
kernel decreases the performance of both methods.

Comparison of Two Iterative BFW Methods In Table 4.6, the MM based
method reduces the computation time by 9.0%～32% with t = 32 compared to that
of the two-level blocking method. The execution time of non-pivot kernel occupies a
large part of the computation time with larger graphs, for instance, the ratio is 98%
for n = 8192. Therefore, we evaluate the instruction throughputs and the number
of instructions of non-pivot kernel to discuss the difference between the two iterative
methods.

Table 4.8 shows the instruction throughput for n = 8192, measured by CUDA
Visual Profiler [6]. With t = 32, the throughput is almost the same between the
two methods.

On the other hand, the two-level blocking method executes more instructions
than that of the MM based method. Figure 4.14 illustrates the total number of
instructions executed on the GPU for the non-pivot kernel. To compare the two
iterative methods, we set l = 1 for this experiment. The number of instructions
for updating elements accounts for 81.6% and 74.4% of total instructions that are
executed for the MM based method and two-level blocking method (t′ = 2), respec-
tively. The rest of instructions include address calculations, data movements, and
control flow instructions, which does not contribute to the effective computational
performance. In other words, the MM based method is optimized more than the
two-level blocking method in the number of instructions.

Breakdown Analysis of the Execution Time Figure 4.15 shows the execution
time including the initialization of the adjacency matrix and the transfer of results
from the device memory to the main memory, in addition to the computational
time. For n = 8192, the MM based method takes 4940 milliseconds using GeForce
GTX 280. In this case, the computation time (Table 4.6) accounts for 98% of the
execution time. The auto-tuning of l takes up to 2% of the execution time, which is
not a performance bottleneck in practice. For n ≤ 512, the computation time is 26–
60% of the execution time, which implies that the initialization and data transfers
will become a performance bottleneck for such small graphs.

56

Table 4.5: Parameter l for the non-pivot kernel using GTX 280.

Vertices n
MM based Two-level blocking

t = 16 t = 32 t = 64 t = 16 t = 32 t = 64

128 1 1 1 1 1 1
256 1 1 1 1 1 1
512 2 2 3 5 1 1
1024 2 2 1 10 5 1
2048 8 8 1 10 1 1
4096 4 4 4 16 3 1
8192 16 16 4 27 6 10
9216 29 29 18 48 10 5
10240 8 8 16 64 14 7
11264 16 16 16 44 21 16

Table 4.6: Computation time for random graphs[2] with a different number n of
vertices. Results are presented in milliseconds.

Iterative Recursive[23]
Vertices n MM based Two-level blocking

tR=16 tR=32 tR=64
t=16 t=32 t=64 t=16 t=32 t=64

128 0.425 0.404 0.638 0.696 0.569 0.793 0.783 0.561 0.533
256 0.866 0.818 1.295 1.555 1.197 1.609 2.028 1.585 1.498
512 3.096 2.555 3.705 4.987 3.405 3.934 5.645 4.738 4.415

1024 16.40 13.75 15.38 20.54 16.24 15.72 19.03 17.21 16.58
2048 95.61 86.70 104.4 122.1 97.63 100.8 95.64 91.97 91.97
4096 669.5 633.8 715.2 877.6 701.0 714.9 639.0 631.5 631.5
8192 5116 4861 5526 6731 5403 5483 4883 4866 4867
9216 7170 6966 7650 9512 7654 7751 — — —

10240 9885 9504 10490 13020 10480 10580 — — —
11264 13070 12590 13760 17280 13910 14100 — — —

Table 4.7: Kernel execution time of the iterative BFW methods with n = 8192.
Results are shown in milliseconds.

MM based Two-level blocking
t 16 32 64 16 32 64

Pivot kernel 10.3 8.71 16.7 18.1 12.5 18.7
Pivot row and column kernel 105 74.4 134 139 85.9 128
Non-pivot kernel 5020 4790 5380 6540 5270 5300

57

0

5

10

15

20

25

30

35

128 256 512 1024 2048 4096 8192 9216 10240 11264

MM based method

Two-level blocking method

Number n of vertices

R
ed

u
ct

io
n
 r

at
io

 (
%

)

Figure 4.13: Reduction ratio (%) of computation time with t = 32 compared to that
of with t = 16.

Table 4.8: Instruction throughput of the non-pivot kernel using GeForce GTX 280.
The number n of vertices is n = 8192.

MM based Two-level blocking
t 16 32 64 16 32 64

Throughput 0.854 0.851 0.742 0.975 0.879 0.814

0

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

t' =1 t' =2 t' =4 t' =8 t' =16

Two-level blocking method

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

Other

Shared memory reference

Calculation for updating elements

Initialization

MM based

method

Figure 4.14: Breakdown analysis of the number of instructions in the non-pivot
kernel. The number n of vertices is n = 8192.

58

Performance of the MM based Method on Different GPUs Figure 4.16(a)
and Figure 4.16(b) illustrate the effective computational performance and efficiency
of the MM based method using different GPUs, respectively. In these figures, we
vary n by 256 in a range of 512 ≤ n ≤ 11264.

GeForce GTX 280 achieves 200 Gop/s or higher performance for n ≥ 2560, and
reaches 227 Gop/s for n = 11, 264. On the other hand, GeForce GTX 260 shows
highest efficiency for n ≥ 1536 in Figure 4.16(b), achieving 82.1% for n = 10, 752.
In addition, GeForce 8800 GTS 512 achieves the efficiency of 50% for n ≥ 2560,
although it presents the lowest efficiency among the tested seven GPUs. This GPU
has the lowest byte/operation ratio between them (Table 4.3), which results in a
low efficiency because it fails to fully hide the memory access latency.

In Figure 4.16(a), there are periodic performance drops using GeForce GTX 260
for some graph size, such as n = 10240. The partition camping [6] seems to cause
these drops, which slows down the global memory accesses.

Comparing the MM based Method and A Task Parallel Algorithm Fig-
ure 4.17 shows the computation time of the MM based method (t = 32) and a task
parallel algorithm [38] that is described in Chapter 3. The computation time is mea-
sured with varying the number of vertices using GeForce GTX 280. For n ≤ 8192,
the graphs are random graphs [2] that are used for the performance evaluation shown
in Table 4.6. The graphs with n = 16K and 32K use the same setup of that of smeller
graphs: m = 4n edges and edge weights are positive integers that are less than n.

For n ≤ 2048, the MM based method is up to 7.8 times faster than the task
parallel method, because the MM based method achieves high computational effi-
ciency. On the other hand, the MM based method takes 3.8 times longer time to
process n = 8192 compared to that of the task parallel method. The MM based
method seems to take longer computation time than that of the task parallel method
with larger graphs, because the time complexity of the FW algorithm is O(n3). In
addition, the MM based method cannot handle graphs with n ≥ 16K because of
the lack of device memory amount. This method consumes O(n2) space of device
memory, while the task parallel method uses O(n + m) space.

4.5.3 Evaluation of Auto-tuning Technique

We now evaluate the effectiveness of the auto-tuning technique for the MM based
method. In this section, we fix the tile size to t = 32, which shows higher perfor-
mance than other tile size in the performance analysis described earlier.

First, we evaluate the execution time of the non-pivot kernel with and without
the auto-tuning technique. After that, we explain the effectiveness of the auto-
tuning technique against the whole MM based method. We compare the below four
methods that tune the parameter l of the MM based method.

59

Manually tuned (MT) method With this method, we manually select l for each
n, which achieves highest performance in a preliminary experiment.

Fixed throughput (FT) method This method is a variation of the proposed
method without throughput estimation. We estimate the number L of in-
structions in the same way as the proposed method. However, we assume
that the throughput is constantly 1.0. This method ignores the performance
degradation according to the number of warps.

Total instruction based (TI) method This method estimates the computation
time by dividing the total number of instructions by the peak computational
performance. The number L of instructions per thread is estimated in the
same way as the proposed method. The total number of instructions is a
product of L and the number UX of threads. This method ignores a load
imbalance between SMs in addition to the throughput degradation.

Auto tuning (AT) method This represents the proposed auto-tuning technique.

Figure 4.18 shows the reduction ratio of computation time of the non-pivot kernel
compared to that with l = 1 using GeForce GTX 280. The non-pivot kernel with
l = 1 assigns a submatrix to a TB in the same way of the original MM routine.
Therefore, we use this configuration as the base case that does not optimize the
parameter l.

Figure 4.18 uses preliminarily measured computation time to eliminate measure-
ment error of timings by multiple program executions. We first measure the average
computation time per kernel launch for each t, n, and l. In this measurement, we
repeatedly launch the kernel in approximately 1 second and calculate the average
computation time. The pivot tile is fixed to the top-left corner in the matrix to
simplify the measurement. The MT method use this preliminarily results to selects
the size of l.

The AT method reduces the computation time by 6.8% for n = 768 in Fig-
ure 4.18. For n ≥ 5120, it decreases the time by approximately 4–5%. These results
show the effectiveness of the auto-tuning technique. Moreover, it achieves reason-
able speedups because the difference between the reduction ratio of MT and AT
method is less than 1.5%.

In Figure 4.18, the FT method significantly degrades the performance for n = 512
and 3328, while the AT method avoids these performance drops. This result supports
that the throughput estimation of the AT method improves the prediction accuracy
of the computation time.

Figure 4.19 shows the estimated and measured computation time with varying
l for n = 512, where the FT method significantly decreases the performance. The
FT method selects l = 8, because it minimizes the estimated computation time

60

with the maximum l that divides n/t with no remainder. The number of instruc-
tions decreases with the increase of l if l divides n/t with no remainder, while the
throughput is fixed to 1. However, a large size of l decreases the parallelism, because
the number of TBs decreases with the increase in l. For instance, the number of TBs
is 30 for n = 512 with l = 8, and the number of warps is two per SM on GeForce
GTX 280. On the other hand, the number Y of warps that are executed in parallel
is 12. Consequently, SMs cannot fully hide the memory access latency for a small
graph with a large size of l.

In Figure 4.19, the AT method estimates larger computation times than the
actual time, although the suitable parameter size is correct (l = 2). Therefore,
the AT method requires further improvement in the estimation of the instruction
throughput.

The TI method tends to show lower performance compared to the other three
methods in Figure 4.18. This method assumes that the computation time is deter-
mined by the total number of instructions and the peak computational performance
of the GPU. Meanwhile, the total number of instructions reduces with l. Therefore,
this method selects the maximum size of l for each graph size.

Finally, Figure 4.20(a) shows the reduction ratio of computation time using the
AT method compared to the computation time using a fixed parameter l = 1. For
n ≥ 2560, the G90 and GT200 GPUs successfully reduce the computation time
with the AT method. In particular, GeForce GTX 280 reduces the time by 5.4% for
n = 4352. We also evaluate the performance on different GPUs using pre-selected
parameters that have optimized for a specific GPU. Figure 4.20(b) illustrates the
reduction ratio, comparing the computation time using the AT method for each
GPU and that using a manually tuned l for GeForce GTX 280. For n = 2816,
GeForce GTX 260 reduces the time by 20%. However, the G80 and G90 GPUs tend
to increase the computation time. This means that the AT method requires further
improvement to select appropriate parameters for each GPU.

4.6 Conclusion

In this chapter, we describe two acceleration methods of the iterative BFW algorithm
using CUDA. According to the byte/operation ratio of the GPU and the algorithm,
we determine the tile size as t = 32. To implements the iterative BFW method with
this tile size, a thread updates multiple elements in the adjacency matrix. The first
acceleration method applies a fast matrix multiplication routine to the computation,
which improved the computational efficiency by reducing shared memory accesses.
This method also uses an auto-tuning technique that automatically determines a
proper calculation area size of thread block by estimating the computation time
based on a performance model. The model estimates the computation time based

61

on the estimated number of instructions executed on a SM. The second method uses
two-level blocking to cache a tile on the shared memory.

As a result, the matrix multiplication based method showed slightly higher per-
formance than that of the two-level blocking method. The matrix multiplication
based method reduced the computation time by 17–45% compared to that of an
existing recursive BFW method for graphs with 256–1024 vertices. Moreover, the
effective performance of this method reached to 70% of peak computational perfor-
mance. The auto-tuning technique reduced the computation time by up to 5.4%
using GeForce GTX 280.

62

0

10

20

30

40

50

60

70

80

90

100

128 256 512 1024 2048 4096 8192 9216 10240 11264

Memory allocation

Auto-tuning

Input data transfer

Matrix initialization

Result transfer

Others

Computation

Number n of vertices

T
im

e
ra

ti
o
 i

n
 e

x
ec

u
ti

o
n
 t

im
e

(%
)

Figure 4.15: Breakdown analysis of the execution time with t = 32 using GeForce
GTX 280.

63

0

50

100

150

200

250

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264

8800 GTS 8800 GTX

8800 GTS 512 9800 GX2

GTX 260 FX 5800

GTX 280

Number n of vertices

E
ff

ec
ti

v
e

co
m

p
u
ta

ti
o
n
al

 p
er

fo
rm

an
ce

 (
G

o
p
/s

)

(a) Effective computational performance.

0

10

20

30

40

50

60

70

80

90

100

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264

8800 GTS 8800 GTX

8800 GTS 512 9800 GX2

GTX 260 FX 5800

GTX 280

Number n of vertices

C
o
m

p
u
ta

ti
o
n
 e

ff
ic

ie
n
cy

 (
%

)

(b) Computational efficiency.

Figure 4.16: Effective computational performance and computational efficiency of
the MM based method on 7 different GPUs with t = 32.

64

0.1

1

10

100

1000

10000

100000

128 256 512 1024 2048 4096 8192 16384 32768

C
o

m
p

u
ta

ti
o

n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number n of vertices

Iterative BFW algorithm (MM based method)

Task parallel algorithm

Figure 4.17: Computation time of the MM based method and an task parallel
algotihm for random graphs using GeForce GTX 280.

-100

-80

-60

-40

-20

0

20

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264

TI method

FT method

MT method

AT method

R
ed

u
ct

io
n
 r

at
io

 (
%

)

Number n of vertices

Figure 4.18: Reduction ratio of the computation time of the non-pivot kernel (t = 32)
using GeForce GTX 280.

65

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8

Estimated computation time by the FT method

Estimated computation time by the AT method

Measured computation time

Size of parameter l

C
o
m

p
u
ta

ti
o
n
 t

im
e

in
 m

il
is

ec
o
n
d
s

Figure 4.19: Computation time with varying the size of parameter l of the MM
based method (n = 512).

66

-40

-30

-20

-10

0

10

20

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264

8800 GTS 8800 GTX

8800 GTS 512 9800 GX2

GTX 260 FX 5800

GTX 280

R
ed

u
ct

io
n

 r
at

io
 (

%
)

Number n of vertices

(a) Reduction ratio using the AT method compared to the computation time using l = 1.

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264

8800 GTS 8800 GTX

8800 GTS 512 9800 GX2

GTX 260 FX 5800

GTX 280

R
ed

u
ct

io
n

 r
at

io
 (

%
)

Number n of vertices

(b) Reduction ratio using the AT method compared to the computation time using the
parameter l that are manually tuned for GeForce GTX 280.

Figure 4.20: Reduction ratio of the computation time of iterative BFW method with
t = 32 on different GPUs.

67

Chapter 5

GPU-based General Biophysical
Simulator

5.1 Introduction

There have been many studies and programs targeted at accelerating biophysical
simulations via parallel computing. Some researchers speed up their simulations
[39, 40, 41, 42] using graphics processing units (GPUs) [6]. However, most of these
approaches are aimed at simulating a specific biological model or a specific type of
model.

On the other hand, Ackermann et al. [43] proposed a translator-based simula-
tion methodology that can translate a general model into a source code. The general
biophysical model here is a set of ordinary differential equations (ODEs) and math-
ematical functions. It allows us to model diverse physiological functions regardless
of the scale of the components, such as cells, tissues, and organs, but is not spe-
cialized in a particular function like neurons or cardiac cells. An ODE describes
how physiological state, such as ion concentration and membrane potential, evolves
over time. Ackermann et al. [43] demonstrated that their program can generate and
compute many simulation instances with varying initial values of given ODEs, each
of which runs independently using a thread on the GPU in an embarrassingly paral-
lel fashion. Hence, this method does not parallelize each simulation instance itself.
To our knowledge, there is no biophysical simulator that automatically explores the
parallelism within a simulation instance of a general ODE model to run on a GPU.

Herein, we describe two acceleration methods for simulating general ODE models
using a GPU, which automatically parallelize a single simulation instance. Our two
methods extend a biophysical simulator called Flint [44] such that the simulation
runs on a GPU. Flint is based on insilicoSim [45], which adopts an interpreter-
based calculation technique to simulate various general ODE models. It translates

69

each mathematical function and ODE into an internal bytecode and executes a
simulation by interpreting them. In the following, mathematical functions and ODEs
are referred to as expressions.

The first new method runs the Flint interpreter on a GPU using the compute
unified device architecture (CUDA) [6]. This method executes interpreters for mul-
tiple bytecodes in parallel on the GPU. Bytecodes have data dependencies between
them, because an expression involves some variables, each of which is set by another
expression. A level scheduling algorithm [46] is used to automatically parallelize
the simulation under the constraints of these data dependencies, which is aiming
at running as many threads as possible to efficiently use the GPU. Another chal-
lenge is to efficiently process irregular calculations on the GPU, because a model
includes a number of different expressions. To calculate these expressions in parallel,
this method assigns different bytecodes to threads using conditional branches that
cause many divergent branches [6], resulting in performance degradation. To reduce
the number of divergent branches, similar bytecodes are assigned to threads in a
warp [6]. The required memory access is also reduced by unifying the bytecodes
assigned to a warp.

The second new method translates a model into a CUDA code. This method
is expected to be faster than the interpreter-based method, which has the overhead
involved in interpreting the bytecodes. A naive translation method generates a C++
expression for each expression. This naive method does not seem to be applicable
for a larger model, because it produces a large source code, and its compilation time
becomes longer than the simulation itself. In addition, it needs as many branches as
expressions to compute different expressions using threads on the GPU. Therefore,
the CUDA code is generated through the internal bytecodes. Before generating the
source code, bytecode unification is performed as in the interpreter-based method.
C++ expressions then are generated for a unified bytecode. This technique enables
us to decrease the generated code size and the number of branches required for
assigning the expressions to the threads.

The rest of this chapter is organized as follows. Section 5.2 gives a brief in-
troduction of related studies. Section 5.3 summarizes the existing implementation
of Flint, and Section 5.4 introduces examples of physiological models. Section 5.5
describes the proposed two methods. Section 5.6 describes the experimental results.
Section 5.7 presents the conclusions.

5.2 Related Work

There have been many studies aimed at accelerating biophysical simulations using
GPUs [47]. Taylor et al. [40] implemented a soft tissue simulation based on the
finite element method using a GPU. Sato et al. [39], Lionetti et al. [41], and Garcia

70

et al. [42] used GPUs to simulate cardiac cells or tissues. Sato et al. [39] simulate
a cardiac tissue model that consists of ODEs and partial differential equations.
Garcia et al. [42] presented an adaptive step size simulation to calculate the ODEs
for cardiac activity on a GPU. Lionetti et al. [41] also described cardiac simulations
using GPUs that can handle various mathematical models for cardiac cells, although
the connections between the cells are fixed.

Ackermann et al. [43] described an acceleration method for biophysical simula-
tions using a GPU. They generated a CUDA code from a general model written
in systems biology markup language (SBML) [48]. Their method increased the
simulation speed by 59.3 times compared with those using a CPU. However, they
mentioned that the method may have a decreased level of performance for larger
models because of the lack of registers on the GPU. On the other hand, our methods
are designed to accelerate a simulation instance of a larger model using a GPU.

Heien et al. [45] pointed out that compiling a source code that is directly trans-
lated from a biophysical model takes a significantly longer time than its simulation.
Therefore, they propose an interpreter-based simulation instead of translating mod-
els into C++ codes. We follow this scheme with our interpreter-based method. In
addition, our translator-based method reduces the compilation time so that this
method can be a practical way to simulate a large model. For this purpose, our
translator decreases the size of a generated source code by unifying similar expres-
sions and extracting constants from the source code to an external data file.

They also described a parallel computing method for Flint using message pass-
ing interface (MPI) [49]. Comparing with the serial version of Flint, it was 6.0
times faster on an 8-core CPU if node-to-node communication time was not consid-
ered, and 3.5 times faster with the communications that bound the performance.
Therefore, we suggest shared memory parallel computing of Flint using the GPU.

5.3 Flint: General Biophysicl Simulator

Flint is a simulator developed concurrently with PhysioDesigner1, an application
on which users can build multilevel mathematical models of physiological functions.
Models developed on PhysioDesigner are written in physiological hierarchy markup
language (PHML) [50, 51], which is an XML-based language designed to describe
hierarchical structure and a functional network of models. PHML enables the mod-
eling of a wide variety of large-scale biophysical objects.

PHML is derived from and compatible with insilico markup language (ISML) [51].
Flint can parse models written in not only PHML but also ISML and SBML. As a
distinguished feature of Flint, it can also handle SBML-PHML hybridized models

1Flint and PhysioDesigner are available at http://physiodesigner.org.

71

that can be developed on PhysioDesigner. SBML-PHML hybrid modeling is a no-
table way to describe multilevel biochemical and physiological systems. This feature
can expand the scope of Flint as a simulator in the integrated life science field. In this
framework, users can concentrate on modeling without worrying about numerical
algorithms including parallelization, because Flint performs numerical calculations
of models with parallel computing. In other words, Flint is required to simulate any
models built for general purpose with high-performance parallel computing.

A PHML model is a set of modules, where a module typically represents a bio-
physical unit, for instance, a cell forming an organ and an organ forming a network
of multiple organs. A module can encapsulate other modules to represents hierar-
chical physiological architecture, for instance a tissue consisting of multiple cells.
The model also can specify interdependencies between modules including uni- and
bi-directed interactions between any two modules, such as between cells and/or
between other physiological units.

A module contains expressions, namely, ODEs and mathematical functions2.
Each ODE represents a time evolution of a physiological state as a function of time
t. A mathematical function is an explicit function, the dependent variable of which
is referenced by the ODEs and the other functions. PHML allows expressions to
refer to variables defined in different modules using the interdependencies of those
modules that include the variables.

Flint simulates a time evolution of physiological states by numerically solving
an initial value problem for a given set of ODEs of a physiological function, using
the Euler or Runge-Kutta methods for numerical calculations. Figure 5.1 illustrates
the flow chart of a numerical simulation of a model in Flint. First, this simulator
extracts the constants, variables, and expressions from a given model written in
PHML as the input. It then constructs a directed acyclic graph G = (V,E), where
V is the node set of G and E is the directed edge set of G. The graph G is the
data dependency graph of the expressions to schedule the calculation order. A node
f ∈ V of G is an expression. A directed edge 〈f, g〉 ∈ E represents the dependency
between the two expressions f and g and indicates that g depends on f . In other
words, g refers to a variable that is set by f . Therefore, g must be calculated after
f to obtain a consistent result.

Flint then partitions G into a set of subgraphs to divide the simulation, if the
user requests the parallelization of the simulation using MPI. It applies a graph
partitioning algorithm to G, aiming at minimizing the communication between pro-
cessing elements (PEs). After the partitioning, Flint distributes the partitioned
subgraphs to each PE. Each PE schedules the calculation order from the assigned
subgraph. The schedule is based on a topological sort of the dependency subgraph.

2PHML is capable of handling scalar, vector, and matrix data types, although Flint and the
proposed method currently support only scalar data.

72

Flint ignores dependencies of referring to states that are shown as dashed lines in
Figure 5.1 when scheduling, where a state is a variable given by an ODE. With the
Euler or Runge-Kutta methods, the states in the next time step are calculated from
those of the current time step, while the other expressions depending on the states
refer to the state values of the current time step. Therefore, the dependencies on
the states can be ignored. On the other hand, an expression that refers to other
functions must be calculated after the dependent functions. After the scheduling,
Flint generates a bytecode per expression in a model.

After the initialization described above, Flint executes the simulation for a time
interval specified in time steps of l/s by repeatedly interpreting each bytecode,
where l and s are the user-specified time duration and time step of the simulation,
respectively.

Flint supports a stack machine instruction set for its internal bytecode. It gener-
ates a bytecode from an expression by traversing its syntax tree in post order. The
instruction set has stack operation, arithmetic, comparison, and simple conditional
branching instructions. For instance, the CONSTANT and VARIABLE opcodes push a
constant and a variable into the stack, respectively, while the ASSIGN opcode pops
a computed value from the stack and sets it to a variable. These opcodes are fol-
lowed by a constant value or variable. Arithmetic instructions include trigonometric,
exponential, and logarithm functions. Instructions for addition and multiplication
have an uncommon feature in that these operators can have multiple operands for
efficiently operating sums and products on many variables. For this feature, Flint
writes an opcode followed by the number of its operands into bytecodes.

5.4 Example Physiological Models

In this section, an example of a PHML model is described to show the parallelism
in a model simulation. Luo and Rudy [52] introduced a mathematical model for the
membrane potential of a ventricular cell. This model receives a stimulus current and
simulates the change of the membrane potential using Eq. 5.1. The main expressions
of this model are as follows.

dV/dt = −(Istim +
6∑

i=1

Ii)/C, (5.1)

dIi/dt = αi(1 − Ii) − βiIi (i = 1, . . . , 6), (5.2)

where V is the membrane potential, C is the membrane capacitance and Istim is
a stimulus current. The variable Ii (i = 1, . . . , 6) represents six cell ionic currents.
Each ionic current refers to two variables — αi and βi — as in Eq. 5.2. The functions
that sets αi and βi depend only on V ; thus, these functions can be computed in
parallel.

73

Therefore, a physiological model contains some independent expressions that
can be calculated in parallel as described above. Moreover, all expressions that refer
only to constants and states can be independently calculated, because the numerical
calculation of the next values of states depends on their current values.

The original Luo-Rudy model consists of 30 functions and 8 ODEs including the
expressions presented above. For the PHML model of a single Luo-Rudy cell, we
add a function that represents the stimulus current, which feeds pulse currents to
the cell. Figure 5.2 shows a coupled Luo-Rudy model that includes five Luo-Rudy
cells connected by adder functions and gap junctions. The adder function and gap
junction have one and two functions, respectively. In this model, a gap junction
refers to the membrane potential V of the two cells, while an adder function refers
to a gap junction and the V of a cell. Each cell receives a current from an adder
function. Therefore, all the cells can be calculated in parallel after computing the
gap junctions and adder functions. The dependency between the expressions varies
according to the input model because Flint receives general physiological models.
Therefore, this simulator automatically analyzes the dependency at runtime.

It should also be noted that typical large models include networks of cells, such
as neurons and cardiac tissue. These models contain multiple modules of the same
structure and similar expressions that equal the number of cells, because all the cell
models are the same. For instance, the five Luo-Rudy cells in Figure 5.2 have the
same type of ODE for each membrane potential V . This characteristic allows the
unification of those expressions to improve the performance of the proposed method.

On the other hand, according to the PHML specification, we can also create a
model that only consists of a module including thousands of expressions or a hetero-
geneous model that containing different types of modules. Therefore, our methods
explore lower level of data dependencies between the expressions to automatically
parallelize the simulation, instead of higher level of data dependencies between mod-
ules.

5.5 Accelerating Flint using the GPU

We now describe two proposed methods to accelerate Flint using a GPU: an interpreter-
based simulation (IS) and a translator-based simulation (TS).

5.5.1 Interpreter-based Simulation Using the GPU

The IS method automatically schedules an evaluation order for the bytecodes using
a level scheduling algorithm, instead of a topological sort. It splits the dependency
graph into multiple phases. Each phase consists of bytecodes that are independent of
each other. These initializations are processed on the CPU. The GPU then calculates

74

Input

PHML

model

<?xml versi

<is:insilico-

. . .

Execute a simulation

for (time = 0; time < l; time += s)

for all bytecodes b
f
of Functions

run_interpreter(b
f
)

for all bytecodes b
s

of ODEs (states)

run_interpreter(b
s
)

Output: Time evolution of user-

specified variables in the model

time

y

x

a

Partition

the graph G

for a parallel

simulation

using MPI

A = 0.01, B= 2.43

b =F(y), c = J(y)

dx/dt=Q(a), . . .

Parse variables

and expressions Create data dependency graph G

Schedule the evaluation

order of expressions

Create bytecodes

for each expression

b = F(y)

c = J(y)

dy/dt = R(x, c, d)

..
.

b = F(y)

a = H(x, b, c)

c = J(y)

d = K(y, a)

dx/dt = Q(a) dy/dt = R(x, c, d)

Initialization

V C + V * C - =

V C + V - V * =

V C + V * C - =

V C + =

Figure 5.1: Flow chart of Flint.

Figure 5.2: Structure of an example of a PHML model. The five rounded rectangles
at the bottom represent Luo-Rudy cells.

75

all the bytecodes in the same phase in parallel. Each thread interprets a bytecode.
All the threads are synchronized after calculating each phase by terminating the
kernel, because there are dependencies between the bytecodes in the different phases.

A naive implementation has a low computational performance because of a large
number of divergent branches and the need to access the global memory numerous
times. Moreover, most of the CUDA cores are idle when processing smaller phases
that consist of fewer bytecodes. Therefore, we apply six methods after the scheduling
to improve the performance:

1. Merge small phases to reduce idle cores

2. Reorder bytecodes according to their similarity

3. Add redundant threads to uniform bytecodes

4. Unify bytecodes to reduce global memory access

5. Remap variable IDs to improve data locality

6. Parallelize the sum of many variables

To implement the IS method, scheduling, bytecode generation, and the execution
of simulation were modified, but the remaining parts of Flint remain unchanged.
This approach allows for the use of the same input and output facilities of the
original Flint program.

Scheduling the Order of Bytecode Evaluation

Figure 5.3 shows the scheduling of the evaluation order of the bytecodes. Initially, a
dependency graph G is created by analyzing the dependencies of the expressions in
a model (Figure 5.3(a)). The graph is then split into the function subgraph GF and
the state subgraph GS because we develop different kernels to evaluate the functions
and ODEs. The subgraphs GF and GS include all the functions and ODEs in G,
respectively. The last phase is generated from GS, in which the GPU simultaneously
calculates all the ODEs.

To maintain the dependencies between the functions, a level scheduling algorithm
is applied to GF (Figure 5.3(b)). This algorithm takes all the source nodes n ∈ GF

that have no incoming edges and creates the first phase consisting of these nodes.
All the sources and their outgoing edges are then removed from GF . The second
phase is created from the new sources. These operations are repeated until GF is
empty.

After the level scheduling, the proposed method merges the small function phases
into their former phases. First, the proposed method attempts to shift all the

76

functions in the second and later phases into their former phases. The function e
and f are assumed to be in phases j and k (j < k), respectively. The function f is
shifted from phase k to phase j, if phase j does not have any dependent function
of f except for e. Thus, the evaluation of e is scheduled followed by the evaluation
of f . This function shifting is applied to all the functions in order, except for the
functions in the first phase. It then deletes any empty phases that have no functions.

The two bytecodes that are corresponding to e and f are simply concatenated
to sequentially compute these functions using a thread. However, this operation
increases the load imbalance between the threads, because it assigns multiple func-
tions to some threads. Therefore, the number of functions processed using a single
thread is limited to three based on the result of preliminary experiment.

For instance, in Figure 5.3(b), the expression d = K(y, a) in phase 3 refers to
the variable a that is set in phase 2. The expression d = K(y, a) is shifted to phase
2 because K(y, a) refers to no variable set in phase 2 other than a. In contrast,
a = H(x, b, c) is left in phase 2, because it depends on the two variables b and c that
are computed in parallel in phase 1.

Bytecode Optimization

Figure 5.4 describes how the proposed method assigns similar bytecodes to a warp to
reduce the number of divergent branches. The bytecodes in each phase are reordered
by comparing their opcode sequences. The opcode sequence here is a list of all
operation codes in a bytecode. First, the proposed method sorts the bytecodes in
each phase in the descending order based on their length. The length of a bytecode
here is the number of opcodes in the bytecode. A phase is then divided into sets
B1, B2, . . ., where the set Bi consists of bytecodes having the same length. Next, the
bytecodes are reordered in each set Bi according to their similarity. To achieve this
reordering, all the bytecodes in Bi are actually sorted by string sorting, considering
their opcode sequences as strings.

Nevertheless, divergent branches are caused if the number of bytecodes in a set
Bi is not a multiples of the warp size [6]. To decrease the number of divergent
branches, redundant threads are launched, and all threads in the same warp are
made to process the bytecodes having the same opcode sequence (Figure 5.5).

Next, the bytecodes per warp are unified to decrease the number of global mem-
ory accesses (Figure 5.6). The threads in a warp interpret the bytecodes that have
the same opcode sequence due to the bytecode reordering and redundant threads.
However, these bytecodes may have different constants and variables as operands
of stack operations. In this case, these different operands are stored into a con-
stant table. These different operands are indirectly referenced through the constant
table. We define specific instructions to represent these indirect memory accesses:
CONSTANT IND, VARIABLE IND and ASSIGN IND instructions. CONSTANT IND instruc-

77

b = F(y)

a = H(x, b, c)

c = J(y)

d = K(y, a)

dx/dt = Q(a) dy/dt = R(x, c, d)

(a) Data dependencies

Phase 1

Phase 2

Phase 3

Phase 4

b = F(y)

a = H(x, b, c)

c = J(y)

d = K(y, a)

dx/dt = Q(a) dy/dt = R(x, c, d)

F
u

n
ct

io
n

s
S

ta
te

s
(b) Level scheduling

Phase 1

Phase 2

Phase 3

b = F(y)

a = H(x, b, c), d = K(y, a)

c = J(y)

dx/dt = Q(a) dy/dt = R(x, c, d)

F
u

n
ct

io
n

s
S

ta
te

s

(c) Merge small phases with former phases

Figure 5.3: Scheduling the evaluation order of expressions. Dependencies on states
(shown as dash lines) are ignored during the scheduling.

V C + V * C - =Thread 0 0

V C + =Thread 1 8

V C + V - V * =Thread 2 12

V C + V * C - =Thread 3 20

index bytecode

(a) Original order

V C + V * C - =Thread 0 0

V C + V - V * =Thread 2 16

Thread 1 8 V C + V * C - =

V C + =Thread 3 24

index bytecode

(b) Reordered bytecodes

Figure 5.4: Reordering bytecodes based on their similarity. “V” and “C” represent
instruction for pushing a variable and constant, respectively; “index” is an array of
indices pointing to the head of each bytecode.

78

tion is defined to push the constants from the constant table into stacks used by each
thread. VARIABLE IND instruction pushes the variable values into stacks referencing
the addresses of the variables from the constant table. ASSIGN IND instruction is
also defined to store values into different variables. These operands are written in
the unified bytecodes followed by an offset of referring values in the constant table.

The order of the variables in the memory is also reordered to increase the data
locality by remapping their IDs. Flint assigns a variable ID to each variable and
stores the variables in the order of their IDs. However, this order has a marginal
relationship with the access sequence of the variables, because Flint initially deter-
mines these IDs according to their appearance in the input model. Therefore, in
the proposed method, all the variables are numbered on the basis of their order
of appearance in the bytecodes after the reordering of the bytecodes is completed.
These numbers are then remapped as new variable IDs, and the variables are stored
into an array in the order of their new IDs.

Finally, bytecodes containing sums of many variables are parallelized using threads
in a warp. Typically, a model for a network of cells has sums, such as the sum of
the electric currents of other cells. An expression including the sum of 32 or more
variables is assigned to a warp of 32 threads. The warp splits the sum into 32
parts and simultaneously calculates each part using each thread of the warp. After
calculating all the parts, the warp sums them up in a parallel reduction manner.
This operation is implemented using a warp-synchronous technique [6] to eliminate
explicit synchronizations between the threads within a warp.

Implementation of the Interpreter For the GPU

The IS method launches a kernel on the GPU to compute each phase. We run the
same number of threads as the number of bytecodes in a phase, and each thread
interprets a bytecode. The index of bytecodes, variables, constant table, and byte-
codes are stored in the global memory, while the stacks are stored in the local
memory [6] of each thread.

Figure 5.7 depicts the pseudo code for the kernel of the interpreter. The kernel
update funcs in line 33 and update odes euler in line 35 calculate the functions
and ODEs, respectively. The parameter index for both kernels is an array of indices
that points to the head of each bytecode, while codes is an array of bytecodes and
consts is the constant table. The i-th thread refers to index[i] to get its responsi-
ble bytecode. The input and output arrays are for input and output variable values
of each phase, respectively.

When bytecodes are unified per warp, CONSTANT IND and VARIABLE IND opera-
tors indirectly refer to a constant and variable that change according to the threads,
respectively. When a warp reads these opcodes, all the threads in the warp read the
following offset from the bytecode (lines 12–14). Each thread adds its lane ID to

79

the offset and retrieves the value from the constant table. The lane ID is the index
of the thread in its belonging warp.

The CPU launches either update funcs or update odes euler for each phase
in each time step. The size of a thread block (TB) was set with the warp size of
32 to simplify the implementation of interpreting unified bytecodes and parallelized
sums. After evaluating all the phases, the CPU transfers the computed results from
the global memory to the main memory as necessary. The CPU then advances a
time step and repeats the evaluation of each phase.

5.5.2 Translator-based Simulation Using the GPU

The TS method translates bytecodes into a CUDA code for the GPU. This method
uses the same level scheduling and bytecode optimizations as those used in the IS
method.

However, with this method, all the bytecodes in a phase that have the same
opcode sequences are unified into a unified bytecode, while the bytecodes are unified
per warp with the IS method. The TS method generates a conditional branch per
bytecode to assign different calculation to the threads. To reduce the overhead of
these branches, we unify all bytecodes that have the same opcode sequence, which
also decreases the generated code size. The redundant threads are inserted so that
the number of threads that process the same unified bytecode is multiple of the warp
size.

The TS method also uses an auto-tuning technique to determine the TB size.
It inserts a code for measuring the kernel execution time of each phase. During
the early steps of the simulation, the generated simulation program measures the
execution time of each phase every 100 steps, while increasing the TB size as a
multiple of the warp size. This program terminates the tuning process for a phase
when the execution time of the phase is longer than the previous 100 steps, because
we assume that the time is convex downward with respect to the TB size. Therefore,
the TB size for the previous 100 steps is selected as the tuned TB size. The program
runs the phase in the remaining steps using the selected TB size.

Figure 5.8 illustrates a part of the generated code for simulating a model on the
GPU. A kernel is created for each phase and different calculations are assigned to
threads by branching them according to their indices, as shown in Figure 5.8 in
lines 6, 9, and 11. An expression corresponding to a unified bytecode is processed
using as many threads as bytecodes before unifying them to calculate all of them
in parallel. For example, 128 threads are assigned to calculate line 10 in parallel,
where each thread indirectly refers to different operands of the original bytecodes
through the constant table c1.

The kernel for the state phase temporally saves the calculated states to an array
nv of temporal values to maintain the consistency of the states. Therefore, another

80

kernel state update is added to copy the new state values from nv to the variable
value array v in line 27.

The TS method exports a data file that contains constant tables in addition
to the source code including kernels. However, exporting the tables prevents op-
timizations of the compiler, because the compiler cannot see the constants in the
tables — although there is a trade-off between the compilation time and compiler
optimization. In experimental evaluations, it was observed that the compiler takes
a long time to compile the generated source code without exporting the tables,
which makes the TS method impractical. Exporting the constant tables enables a
faster compilation by avoiding exhaustive optimizations, such as loop unrolling and
constant folding, although the level of improvement depends on the compiler.

The TS method can also generate a source code of a simulation program that
run on the CPU. For the CPU, we simply generate a series of C++ expressions
corresponding to each bytecode in a phase. The method continuously writes all
phases into a source code. A unified bytecode is translated to a loop that repeats
the number of bytecodes before unifying them as shown in lines 3–4, 6–7, and 11–
15 in Figure 5.9. For the CPU, this method does not use the redundant threads
and parallelized sums. Some bytecodes consist of multiple expressions when we
merge multiple phases. The TS method translates these bytecodes into multiple
C++ expressions within a block like lines 12–15. This method parallelizes the
simulation using OpenMP [31] for a multi-core CPU. It embeds OpenMP directives
to parallelize the loop for unified bytecodes as in lines 2, 5, and 10.

5.6 Experimental Results

The performance of the proposed method was evaluated on a PC with an Intel Core
i7 930 2.8 GHz quad-core CPU, 12GB RAM, and an NVIDIA Tesla C2070 GPU.
Simultaneous multithreading (SMT) and Intel Turbo Boost technology were enabled
on the CPU, because these functions slightly improve the performance of CPU-based
simulations. In this section, CPU-1 and CPU-8 denote simulations using one and
eight CPU threads with SMT on the CPU, respectively, although all the methods use
a single CPU thread to process initialization such as reading the model, scheduling,
and optimizing the bytecodes. The IS method using CPU-1 is corresponding to the
existing interpreter-based simulation of Flint using a single CPU thread. The TS
method using CPU-8 parallelizes the simulation using OpenMP. The implementation
was developed using Visual Studio 2010 and CUDA 4.2 on Windows 7 (64 bit) with
a version 301.32 video driver. For the TS method, the generated source codes were
compiled using Visual C++ 2010 compiler and nvcc [6] with the -O2 optimization
flag.

Table 5.1 presents the number of expressions in physiological models used for the

81

evaluation. The Luo-Rudy model is a PHML model that describes a cardiac cell [52].
The LR-Ring model consists of 80 Luo-Rudy cells in a ring connection [53]. The LR-
100 and LR-1000 – LR-5000 models represent 100 and 1,000 – 5,000 cells connected
in a line, respectively. The Wang [54] and Rybak [55] models are neuron models
having different network connections. The Mix model is a demonstration model for
processing heterogeneous physiological functions. It is a simple concatenated model
of the Wang, Rybak, and LR-100 models. The proposed method is available for
such various physiological models containing thousands of expressions. With the
Luo-Rudy and LR-100 – LR-5000 models, we demonstrate that our methods can
handle models with various scales. It can also accelerate the simulation of various
cell networks containing different dependencies, such as those in the Wang, Rybak,
and LR-Ring models. All the simulations were executed in double precision using
the Euler method both on the CPU and GPU. In addition, all the simulations were
run for 100,000 steps with a time duration l = 1, 000 milliseconds and a time step
s = 0.01 milliseconds, except for the experiments designed to analyze the accuracy
of the method. The duration and time step were selected to be in a range similar
as those values used in the Luo-Rudy [52] and Wang [54] simulations.

5.6.1 Performance Evaluation

Table 5.2 shows the total execution time including the output of the simulation
results. The values of all the variables were sampled every 100 steps, while these
results were readbacked from the GPU every 1,000 steps. A readback means a data
transfer from the global memory on the GPU to the main memory, which has an
overhead for synchronization between the CPU and GPU. The results were directly
written to a file as binary data. Different parts of the methods were evaluated with
respect to the time it took to complete them. The time of the IS method includes
the initialization time as well as the execution time of the simulation itself. For the
TS method, the code generation and compilation time were evaluated in addition
to the initialization time.

With larger models containing thousands of expressions, the IS method is 1.5–24
times faster than the existing method running on CPU-1. In contrast, the GPU
is 12 times slower than the CPU with the Luo-Rudy model because it only has 39
expressions and less parallelism. On the GPU, the TS method is up to 2.4 times
faster than the IS method. Note that the TS method on the CPU shows a lower
performance with the LR-Ring model because the compilation time increases to 250
seconds (Table 5.8).

Table 5.3 shows the global memory usage of the IS method in the same setup
as that of Table 5.2. The LR-1000 model requires 320 MB of the global memory
to buffer the results and reduce the overhead of the readbacks. However, the other
data only occupies approximately 2 MB. Meanwhile, users generally have an interest

82

V C + V * C - =Thread 0 0

V C + V - V * =Thread 2 16

Thread 1 8 V C + V * C - =

V C + =Thread 3 24

index bytecode

V C + =Thread 31

..
.

..
.

..
.

(a) Original thread assignment

V C + V * C - =Thread 0 0

Thread 1 8 V C + V * C - =

index bytecode

..
.

..
.

..
.

V C + V - V * =Thread 32 256

V C + V * C - =Thread 31 248

..
.

V C + V * C - =Thread 2 16
redundant threads

w
ar

p
 0

w
ar

p
 1

(b) Add redundant threads

Figure 5.5: Adding redundant threads to avoid divergent branches.

V:x
0 C:4 + V:y * C:101 - =Thread 0 0

Thread 1 8

Thread 31

index bytecode

V:x
1 C:4 + V:y * C:102 - =

V:x
31C:4 + V:y * C:132 - =

..
.

..
.

..
.

(a) Original

VI:0 C:4 + V:y * CI:32 - =Thread 0 0

Thread 1 0

Thread 31 0

index bytecode

..
.

..
.

constant table

x
0
x
1

... x
31 101 102 ... 132 ...

(b) Unified bytecodes

Figure 5.6: Unifying bytecodes to reduce memory accesses. “VI” and “CI” are
opcodes for the indirect reference of a variable and constant, respectively.

Table 5.1: Number of functions and ODEs in the tested models.

Model Luo-Rudy Wang Rybak LR-Ring LR-100 Mix LR-1000

Functions 31 1,200 1,362 2,647 3,298 5,860 32,998
ODEs 8 400 480 640 800 1,680 8,000

83

1 template<class AssignT>

2 device update(index, codes, consts, in, out) {
3 stack[STACK SIZE]; /* use local memory for the stack */

4 *sp = stack - 1;

5 id = blockIdx.x * blockDim.x + threadIdx.x;

6 lane = laneid; /* the thread’s lane within the warp */

7 pc = index[id];

8 while((inst = read int(pc, codes)) != END) {
9 switch(get opcode(inst)) {

10 case CONSTANT: /* push a constant value */

11 push(sp, read double(pc, codes));

12 case CONSTANT IND: /* push a constant value */

13 adr = read int(pc, codes) + lane * sizeof(double);

14 push(sp, consts[adr]);

15 case VARIABLE: /* push a variable value */

16 push(sp, in[read int(pc, codes)]);

17 case PLUS NARY: /* add or sum (less than 32 operands) */

18 n = read int(pc, codes); /* # of operands */

19 sp -= n-1; v = 0;

20 for(i=0; i<n; i++) v += sp[i];

21 push(sp, v);

22 case ASSIGN: /* assign a value to a variable */

23 AssignT::assign(read int(pc, codes), pop(sp), in, out);

24 . . .

25 } } }
26 global double *delta; /* an array of step sizes */

27 struct AssignFunc {
28 device assign(pos, value, in, out) {
29 out[pos] = value; } }
30 struct AssignEuler {
31 device assign(pos, value, in, out) {
32 out[pos] = in[pos] + value * delta[pos]; } }
33 global update funcs(index, codes, consts, in, out) {
34 update<AssignFunc>(index, codes, consts, in, out); }
35 global update odes euler(index, codes, consts, in, out) {
36 update<AssignEuler>(index, codes, consts, in, out); }

Figure 5.7: Pseudo code for the kernels of the interpreter.

84

1 global void phase1(double *v, double *nv, int *c1) {
2 // v: variables

3 // nv: temporal variables to calculate states

4 // c1: the constant table for phase 1

5 id=blockIdx.x*blockDim.x+threadIdx.x;

6 if (id<3200) { const int i=id-0;

7 v[c1[i+3200]]=(0.001*(v[c1[i+0]]- (-75)))*

8 para sum(i/32,99,c1,12296,v); // parallelized sum

9 } else if (id<3328) { const int i=id-3200;

10 v[c1[i+7040]]=((((9*v[c1[i+6400]])*v[c1[i+6528]])* · · ·
11 } else if (id<3648) { const int i=id-3328;

12 v[c1[i+9408]]=get(c1,i*2+7168)*exp((-(v[c1[i+7808]]+

13 . . .

14 } // end phase 1

15 . . .

16 int main(int argc, char** argv) {
17 . . . // initialization

18 int *c1=NULL; // constant table for phase 1

19 LoadConstants(const file); // load constant tables

20 . . .

21 for(double t=s;t<=l;t+=s) {
22 // s: the simulation time step, l: the time duration

23 . . .

24 phase1<<<nb1,nt1>>>(v,nv,c1);

25 phase2<<<nb2,nt2>>>(v,nv,c1);

26 . . .

27 state update<<<nb5,nt5>>>(v,nv,deltas,state ids);

28 if (is sampling step())

29 cudaMemcpy(h v,v,mem size,cudaMemcpyDeviceToHost);

30 }
31 . . .

32 }

Figure 5.8: Pseudo code for a GPU-enabled simulation generated by the TS method.

1 // Phase 1

2 #pragma omp for

3 for(i=0;i<100;i++)

4 v[c1[i+10000]]=(0.001*(v[c1[i+0]]- (-75)))*(v[c1[i+100]]+· · ·
5 #pragma omp for

6 for(i=0;i<200;i++)

7 v[c1[i+11700]]=((*(double*)&c1[i*2+10100])*· · ·
8 . . .

9 // Phase 2

10 #pragma omp for

11 for(i=0;i<100;i++) {
12 { // concatenated expressions for merging phases

13 v[c2[i+300]]=v[c2[i+0]]/(v[c2[i+100]]+· · ·
14 v[c2[i+900]]=((((35*v[c2[i+400]])*v[c2[i+500]])*· · ·
15 } }
16 . . .

Figure 5.9: Pseudo code for an OpenMP-enabled simulation generated by the TS
method.

85

in specific variables. They also execute simulations with smaller time steps than
the required time resolution to improve the accuracy of the results. Therefore, our
methods can simulate larger models in a typical use case, because the memory usage
for buffering results can be reduced by selecting the variables to output and using a
larger sampling interval.

We next investigate the computational performance of each method. Table 5.4
and Table 5.5 present the computation time and effective bandwidth, respectively.
The time of the IS method is the computation time of the simulations without the
initialization and output of the results. The time of the TS method is the execution
time of the generated simulation program without the output. For simulations
running on the GPU, the readback of the results was omitted. We also measure
the amount of memory accesses by counting the push and pop operations in the
bytecodes to calculate the effective bandwidth.

In Table 5.4, the TS method using CPU-1 is 6.1–26 times faster than the IS
method using CPU-1. Using CPU-8, the factor increases to 95 with the LR-5000
model. Comparing CPU-8 and GPU, the TS method does not reduce the time as
much as the IS method. However, the TS method using the GPU is up to 2.4 times
faster than the IS method using the GPU.

It should be noted that the simulation has relatively few calculations per variable
reference, because the simulation only contains scalar expressions. Therefore, the
memory bandwidth bounds the performance. The TS method for the GPU achieves
the highest bandwidth of 30 GB/s with the LR-5000 model (Table 5.5), although the
efficiency remains low at 21% compared with the peak global memory bandwidth of
the GPU, which is 144 GB/s.

The main cause of the low efficiency is the low number of threads on the GPU.
Table 5.6 shows the number of bytecodes in each phase before unifying the bytecodes,
which is equivalent to the number of threads in each phase, except for redundant
threads and threads for parallelizing the sums. With smaller models, each phase
launch few threads per CUDA core, which prevents the GPU from achieving a
higher efficiency. For these models, a kernel launch has a relatively large overhead
compared with the calculation. Consequently, the overhead bounds the performance.

5.6.2 Performance Analysis of Interpreter-based Simulation

Figure 5.10 shows the performance improvement of the six optimizations applied
to the IS method. Base in Figure 5.10 is the naive GPU implementation and the
others are incrementally applied optimizations: reordering the bytecodes (Reorder),
remapping the variable IDs (Remap), adding redundant threads (Redundant), uni-
fying the bytecodes (Unify), merging the phases (Merge), and parallelizing the sums
(Sum).

86

Table 5.2: Total execution time with output of the results. Results are presented in
seconds.

Model
Interpreter Translator

CPU-1 GPU CPU-1 CPU-8 GPU

Luo-Rudy 1.14 13.5 0.324 0.759 9.25
Wang 42.1 17.6 17.8 4.70 11.3
Rybak 45.4 30.6 29.1 5.18 12.7
LR-Ring 73.0 19.5 252 34.9 12.3
LR-100 92.0 21.4 34.5 6.20 12.5
Mix 190 38.4 294 30.8 17.9
LR-1000 1550 65.8 113 42.1 39.1

Table 5.3: Global memory footprint for the IS method (KB).
Model Luo-Rudy Wang Rybak LR-Ring LR-100 Mix LR-1000

Bytecodes 3.05 49.2 13.3 12.9 14.6 76.9 123
Constant table 2.38 37.8 82.6 77.0 96.4 221 851
Others 3.35 56.2 50.7 90.3 112 219 1100
Results 313 12,500 14,400 25,700 32,000 58,900 320,000
(1 step) 0.313 12.5 14.4 25.7 32.0 58.9 320
Total 322 12,600 14,500 25,900 32,200 59,400 322,000

Table 5.4: Computation time without output of the results. Results are presented
in seconds.

Model
Interpreter Translator

CPU-1 GPU CPU-1 CPU-8 GPU

Luo-Rudy 1.03 7.04 0.169 0.596 6.88
Wang 40.0 6.00 2.73 1.77 7.02
Rybak 44.1 18.0 2.50 2.39 7.91
LR-Ring 71.9 8.10 4.86 3.31 8.14
LR-100 90.4 7.45 6.08 3.56 7.57
Mix 186 20.4 11.3 6.76 9.58
LR-1000 1570 18.2 64.2 19.5 11.4
LR-2000 3390 33.8 134 37.5 20.0
LR-3000 5250 50.2 204 55.8 26.4
LR-4000 7120 66.8 279 75.5 30.8
LR-5000 8990 83.6 355 95.0 35.4

87

Reorder increases the computation time by 48% with the Wang model because of
the load imbalance between the warps. This optimization assigns the bytecodes to
the threads in descending order of the length of the opcode sequences. Consequently,
it assigns longer bytecodes to threads with smaller thread indices, resulting in a
load imbalance between the warps. On the other hand, the GPU can hide the
imbalance with the LR-1000 model because there are dozens of warps per streaming
multiprocessor (SM) with this model.

Redundant decreases the computation time by 45% with the Luo-Rudy model.
This model has few similar expressions and a relatively high ratio of divergent
branches. Redundant reduces the ratio from 13% to 0.2% for the first 100 time
steps measured by the CUDA Visual Profiler [6]. Redundant has no significant
effect with the other models, which have many similar expressions.

Unify reduces the computation time by 46–60% compared with that of Redun-
dant, except for the Luo-Rudy and LR-Ring models, because Unify reduces the
number of memory access instances. In fact, it decreases the global memory read
requests by 61% for the first 100 time steps with the LR-1000 model. On the other
hand, the number of instructions to load from the global memory increases by 2,000%
with the Luo-Rudy model and 19–61% with the other models compared with that of
Base because of the redundant threads. However, the redundant threads run in the
same way and access the same data as essential threads in the same warp. Therefore,
redundant threads do not increase the memory requests and transactions, because
the GPU coalesces contiguous or duplicated memory accesses from a warp.

Merge decreases the computation time by up to 20%. Table 5.7 gives the number
of variations of the opcode sequences. Merge decreases one or two of the phases
compared with those in Base, which leads to the speed up. However, Merge adds to
the variation of the bytecodes in a phase because it concatenates multiple bytecodes.
For instance, the number of different opcode sequences increases from 14 to 16 in
the first phase of the Luo-Rudy model. Note that the PHML specification allows
special functions that are evaluated after the evaluation of states. The Rybak model
uses this type of functions and has a special function phase after the state phase.
Consequently, the Mix model in Base has six phases that is more than the maximum
number of phases of models that compose the Mix model.

Sum improves the performance by approximately 60% with the Wang and LR-
Ring models that contain the sums of dozens of variables. With the other models,
this optimization has no effect because they have no sums of many variables.

5.6.3 Performance Analysis of Translator-based Simulation

Figure 5.11 shows the computation time of the TS method with large coupled Luo-
Rudy models. Comparing the total execution time, which is the sum of the transla-
tion, compilation, and simulation times, the TS method using the GPU is 1.1 times

88

Table 5.5: Effective memory bandwidth (GB/s).

Model
Interpreter Translator

CPU-1 GPU CPU-1 CPU-8 GPU

Luo-Rudy 0.20 0.030 1.3 0.35 0.031
Wang 0.40 2.6 5.8 9.0 2.3
Rybak 0.28 0.69 4.9 5.2 1.6
LR-Ring 0.24 2.1 3.5 5.2 2.1
LR-100 0.23 2.8 3.5 6.0 2.8
Mix 0.27 2.4 4.4 7.3 5.2
LR-1000 0.14 12.0 3.3 11 19
LR-5000 0.12 13.0 3.0 11 30

Table 5.6: Number of bytecodes before unifying them. Each item shows the series
of the number of bytecodes in each phase separated by right arrows.

Model Number of threads

Luo-Rudy 22 →3 →8
Wang 1,000 →100 →400
Rybak 842 →40 →480 →200
LR-Ring 1,924 →322 →1 →640
LR-100 2,399 →399 →800
Mix 4,241 →539 →1,680 →200
LR-1000 23,999 →3,999 →8,000

0

10

20

30

40

50

60

70

80

90

Base +Reorder +Remap +Redundant +Unify +Merge +Sum

C
o
m

p
u
ta

ti
o
n
 t

im
e

in
 s

ec
o
n
d
s Luo-Rudy

Wang

Rybak

LR-Ring

LR-100

Mixed

LR-1000

Figure 5.10: Computation time of the IS method with each optimization. Results
are presented in seconds.

89

faster than that using CPU-8 with the LR-5000 model. With the LR-5000 model,
the translation of the model takes approximately 290 seconds, which is a bottleneck
for the TS method. Therefore, further improvement of this process is required, but
this discussion is beyond the scope of this thesis.

However, with the LR-5000 model, the simulation program using the GPU is
250 times faster than the IS method on CPU-1 presented in Table 5.4. Moreover,
the generated source code can be reused to simulate the model with different initial
values of the ODEs without translating the model again. Therefore, the TS method
is beneficial for a parameter sweep experiment on a model that repeatedly simulates
the same model while varying the initial values.

Table 5.8 shows the compilation time of the generated source codes. Base shows
the time of the simulation programs generated using a naive translation method
without the bytecode unification and export of the constant tables to a file. Unify is
the time with the bytecode unification, and Export is the time with both improve-
ments. The compiler failed to compile the Base source code for the GPU with the
Mix and LR-1000 models. With Base, the compiler took 4.4 hours to compile the
source code for the CPU-1 with the LR-1000 model. The compilation time increased
to 10 hours with the bytecode unification because of the folding of the constants and
the unrolling of the loops for processing the unified bytecodes. On the other hand,
Export reduced the time to 27 seconds, because it prevents the compiler optimiza-
tions described above. The compilation time of the GPU-enabled codes is typically
shorter than that of the CPU-based codes. This result is due to the difference of
the compilers for the CPU and GPU.

Figure 5.12 illustrates the execution time of each kernel in the simulation program
for LR-5000 generated by the TS method, with varying the TB size in the multiple
of the warp size of 32. The computation time is almost convex downward for phase 1
with the TB size, while execution time of other phases show no significant changes.
The proposed method properly selects 160, 96, 32, and 128 as the TB size of the
kernel for phase 1, 2, 3, and updating states, respectively.

5.6.4 Precision Analysis of Simulation Results

Finally, we analyze the accuracy of simulation results of the proposed method. The
parallelization can change the order of floating-point calculations, which can gener-
ate some errors including loss of trailing digits, loss of significance, and round-off
errors. In particular, parallelizing sums can cause these errors. In addition, the
implementation of floating-point calculations might differr between the CPU and
the GPU. Therefore, we compare the simulation results of the CPU-based method
and that of the GPU-based method.

Table 5.9 shows the relative root mean square errors (RRMSEs) between results
of the proposed method and that of the interpreter of Flint running on CPU-1. In

90

Table 5.7: Number of different opcode sequences in each phase. Each item shows
the series of numbers separated by right arrows.

Model Base Merge

Luo-Rudy 14 →6 →2 →1 →3 16 →3 →3
Wang 7 →1 →1 →3 7 →1 →3
Rybak 8 →5 →1 →5 →4 11 →2 →5 →4
LR-Ring 16 →9 →2 →1 →4 19 →6 →1 →4
LR-100 15 →7 →1 →1 →3 18 →4 →3
Mix 26 →12 →3 →1 →11 →4 33 →7 →11 →4
LR-1000 15 →7 →1 →1 →3 18 →4 →3

0

100

200

300

400

500

600

700

800

C
P

U
-1

C
P

U
-8

G
P

U

C
P

U
-1

C
P

U
-8

G
P

U

C
P

U
-1

C
P

U
-8

G
P

U

C
P

U
-1

C
P

U
-8

G
P

U

C
P

U
-1

C
P

U
-8

G
P

U

LR-1000 LR-2000 LR-3000 LR-4000 LR-5000

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

Simulation

Compilation

Translation

Figure 5.11: Computation time of the TS method using coupled Luo-Rudy models
with varying numbers of cells.

Table 5.8: Compilation time for the source codes generated using the TS method.
Results are presented in seconds.

Model
CPU-1 GPU

Base Unify Export Base Unify Export

Luo-Rudy 0.49 0.12 0.13 3.2 3.1 2.6
Wang 13 120 13 72 3.6 2.3
Rybak 35 68 25 66 3.8 2.5
LR-Ring 28 100 250 630 5.1 2.8
LR-100 49 140 27 1,100 5.8 2.7
Mix 230 2,200 280 — 11 3.2
LR-1000 16,000 36,000 27 — 290 2.7

91

this experiment, each simulation runs 10,000 steps with l = 100 milliseconds and
s = 0.01 milliseconds using the Euler method.

The IS method on the GPU has errors with Wang, LR-100, Mix, and LR-1000,
although they are sufficiently small. With Luo-Rudy based models, the TS method
has larger errors than the errors of the IS method on the GPU. The constant folding
by the compilers may cause these errors.

On the other hand, the TS method has a significant error with Wang on the
GPU. This error is caused by the parallelization of the sums because the error is
eliminated without parallelizing the sums. The error firstly occurs at a particular
time step and is accumulated during the simulation.

5.7 Conclusion

In this chapter, we describe two acceleration methods for the general physiological
simulator Flint using a GPU. Our interpreter-based method speeds up the simulation
of Flint by running its interpreter on the GPU. We use a level scheduling algorithm
to automatically parallelize the evaluation of many expressions in a physiological
model. The GPU calculates all the expressions in each phase using a kernel launch.
To achieve a higher performance, we unify similar bytecodes of different expressions,
because there are many similar expressions in a model that contains thousands
of modules connected to each other. This optimization decreases the number of
divergent branches and the global memory accesses.

The proposed translator-based method generates a source code from the byte-
codes of our interpreter-based method. The bytecode unification reduces the gen-
erated code size, which speeds up code compilation. These methods enable a fast
simulation of large, general, and heterogeneous models using a GPU. Moreover, it
allows physiologists to easily accelerate a simulation using their own workstation
with a GPU.

The experimental result shows that our interpreter-based method is up to 24
times faster than the existing method running on a core of a CPU. The program
generated by our translator-based method accomplishes simulations 2.4 times faster
than the interpreter-based method running on the GPU.

92

0

5

10

15

20

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

C
o
m

p
u
ta

ti
o
n
 t

im
e

in
 s

ec
o
n
d
s

Thread block size

Phase 1 Phase 2 Phase 3 Updating states

Figure 5.12: Execution time of each kernel in the simulation program for LR-5000
generated by the TS method.

Table 5.9: Relative root mean square errors.

Model
Interpreter Translator

GPU CPU-1 GPU

Luo-Rudy 0.0 9.4 × 10−4 9.4 × 10−4

Wang 1.4 × 10−13 0.0 3.2 × 10−1

Rybak 0.0 0.0 0.0
LR-Ring 0.0 8.9 × 10−7 8.9 × 10−7

LR-100 9.3 × 10−20 1.3 × 10−2 1.3 × 10−2

Mix 4.8 × 10−20 6.5 × 10−3 2.9 × 10−2

LR-1000 4.1 × 10−20 5.6 × 10−3 5.6 × 10−3

93

Chapter 6

Conclusion

6.1 Summary of This Thesis

In this thesis, we discussed techniques for efficient computation of irregular programs
on the graphics processing unit (GPU). Our approach is to statically rearrange
thread assignment to gather similar threads on a single instruction, multiple data
(SIMD) core before executing kernels on the GPU, aiming at reducing the number
of irregular control flow and memory access. In particular, we have focused on the
all-pairs shortest path (APSP) problem and a general biophysical simulator.

With the APSP problem, we examine the memory access pattern to find threads
that show similar behavior. This technique can be also applied to a problem that
includes the same type of multiple subproblem instances that can be computed in
parallel, for instance, the single source shortest path (SSSP) problems for the APSP
problem. Our technique will improve the throughput of computing subproblems if
the subproblems have the similar memory access pattern, even if there are irregular
and uncoalesced memory accesses in each subproblems. Note that this technique can
be applied when developing a GPU program from a sequential program by carefully
analyzing the control flow and data dependencies, in addition to improving the
efficiency of existing parallel programs for the GPU.

The biophysical simulator varies its computation depending on mathematical
expressions in the input model. For this application, we automatically rearrange
thread assignment at runtime, examining the data dependency and similarity of
the mathematical expressions. The simulation techniques will be applied to other
ODE-based simulations. In addition, this technique can be applied to an application
that significantly varies the behavior of threads for each thread, but the behavior is
statically determined.

In addition, we described another acceleration method for the APSP problem
based on the Floyd-Warshall (FW) algorithm on the GPU. The contribution for

95

each application is summarized as follows.

Task Parallel Algorithm for Finding APSPs Using the GPU We have pre-
sented a fast algorithm for finding APSPs using the compute unified device architec-
ture (CUDA). This algorithm exploited the coarse-grained task parallelism among
different single source shortest path (SSSP) problems, in addition to the fine-grained
data parallelism in each SSSP problem. This combined parallelism allows threads to
share data using the on-chip shared memory. It also allows us to run more threads
with less kernel launches, leading to efficient use of the highly multithreaded archi-
tecture of the GPU. The experimental results show that the proposed method is
2.8–13 times faster than the iterative SSSP-based method. This technique can be
also applied to a batch execution of single source based algorithms with varying the
source vertex for a large sparse graph, such as SSSP and breadth first search.

Iterative Blocked FW Algorithm Using the GPU We have described two
acceleration methods of the iterative Blocked FW (BFW) algorithm using CUDA.
The first method applies a fast matrix multiplication routine to the computation,
which improved the computational efficiency by reducing shared memory accesses.
This method also has an auto-tuning technique that automatically determines a
suitable calculation area size of thread block by estimating the number of instruc-
tions executed on an SM. The second method uses two-level blocking to cache a
tile on the shared memory. As a result, the former method showed slightly higher
performance and reduced the computation time by 17–45% compared to that of an
existing recursive BFW method for graphs with 256–1024 vertices.

GPU-based Fast Simulation of General Biophysical Models We have pre-
sented two fast general physiological simulation techniques using the GPU. We use
a level scheduling algorithm to automatically parallelize the evaluation of many
expressions in a physiological model. In addition, we unify similar bytecodes of
different expressions, to decreases the number of divergent branches and memory
accesses. The first method interprets the bytecodes on the GPU and the other
method generates a source code from the bytecodes. The experimental results show
that the first method is up to 24 times faster than the existing method using a CPU.
The second method accomplishes simulations 2.4 times faster than the first method.
These methods enable a fast simulation of large, general, and heterogeneous mod-
els using a GPU. Moreover, it allows physiologists to easily accelerate a simulation
using their own workstation with a GPU.

96

6.2 Future Work

In this work, we focus on APSP problems with a graph that can be stored on the
device memory of the GPU. However, there are real-world graphs that are too large
to be stored entirely on the memory. For example, there is a large graph that
represents road networks in the United States of America [2]. This graph includes
approximately 24,000,000 vertices and 58,000,000 edges, which has approximately
750 times as many vertices as the graph evaluated in Chapter 3. Other examples
are social networks and web graphs [56], the analysis of which recently attracts the
attention of researchers as a data-intensive application. Such large graphs involve
data decomposition due to the lack of memory capacity of the GPU. In addition, the
implementations should be developed using more high computational environments
such as multiple GPUs and the cluster of GPUs. Meanwhile, the task parallel
scheme used for the APSP problem can improve the throughput of computation
that includes the same type of independent subproblems such as parameter sweep
applications.

The GPU-based biophysical simulator described in Chapter 5 can be extended
and improved in several ways. First, the bytecode optimizations are possible to
improve the performance. The basic compiler data-flow optimization techniques
can be applied to this process, such as common subexpression elimination among
bytecodes, constant folding and dead store elimination. To process larger models, it
might be required to improve the accuracy of simulation results and to use clusters
of GPUs. This simulator can be extended to process other ODE-based simulations.
In addition, the bytecode reordering and unification techniques can be applied to
applications that statically assign different operations to each thread.

97

Bibliography

[1] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in Proc. 14th Int’l Conf. High Performance Computing
(HiPC’07), Dec. 2007, pp. 197–208.

[2] “9th DIMACS implementation challenge - Shortest paths,” http://www.dis.
uniroma1.it/∼challenge9/download.shtml.

[3] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide,
5th ed. Reading, MA: Addison-Wesley, Aug. 2005.

[4] Microsoft Corporation, “DirectX,” 2007. [Online]. Available: http://www.
microsoft.com/directx/

[5] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May
2008.

[6] NVIDIA Corporation, “CUDA Programming Guide Version 4.2,” Apr. 2012.
[Online]. Available: http://developer.nvidia.com/cuda/

[7] M.-Y. Wu and W. Shu, “Mimd programs on simd architectures,” in 6th Symp.
Frontiers of Massively Parallel Computing (Frontiers ’96), oct 1996, pp. 162–
170.

[8] W. SHU and M.-Y. Wu, “Solving dynamic and irregular problems on simd
architectures with runtime support,” in Int’l Conf. Parallel Processing (ICPP
1993), vol. 2, aug 1993, pp. 167–174.

[9] A. Di Blas and R. Hughey, “Explicit simd programming for asynchronous appli-
cations,” in IEEE Int’l Conf. Application-Specific Systems, Architectures, and
Processors, 2000, pp. 258–267.

[10] A. Nakaya, S. Goto, and M. Kanehisa, “Extraction of correlated gene clusters
by multiple graph comparison,” Genome Informatics, vol. 12, pp. 34–43, Dec.
2001.

99

[11] N. Shenoy, “Retiming: theory and practice,” Integration, the VLSI J., vol. 22,
no. 1/2, pp. 1–21, Aug. 1997.

[12] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM,
vol. 5, no. 6, p. 345, 1962.

[13] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM, vol. 9,
no. 1, pp. 11–12, 1962.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 1959.

[15] G. J. Katz and J. T. Kider, “All-pairs shortest-paths for large graphs on the
GPU,” in Proc. 23rd ACM SIGGRAPH/EUROGRAPHICS Symp. Graphics
Hardware (GH’08), Jun. 2008, pp. 47–55.

[16] P. Micikevicius, “General parallel computation on commodity graphics hard-
ware: Case study with the all-pairs shortest paths problem,” in Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications (PDPTA’04),
vol. 3, Jun. 2004, pp. 1359–1365.

[17] U. Bondhugula, A. Devulapalli, J. Dinan, J. Fernando, P. Wyckoff,
E. Stahlberg, and P. Sadayappan, “Hardware/software integration for FPGA-
based all-pairs shortest-paths,” in Proc. 14th IEEE Symp. Field-Programmable
Custom Computing Machines (FCCM’06), Apr. 2006, pp. 152–164.

[18] T. Srinivasan, R. Balakrishnan, S. A. Gangadharan, and V. Hayawardh, “A
scalable parallelization of all-pairs shortest path algorithm for a high perfor-
mance cluster environment,” in Proc. 13th Int’l Conf. Parallel and Distributed
Systems (ICPADS’07), vol. 1, Sep. 2006, cD-ROM (8 pages).

[19] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16,
no. 1, pp. 87–90, 1958.

[20] J. Lester Randolph Ford and D. R. Fulkerson, Flows in Networks. Princeton
University Press, 1962.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, Sep. 2001.

[22] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A blocked all-pairs
shortest-path algorithm,” in Proc. 7th Scandinavian Workshop Algorithm The-
ory (SWAT’07), Jul. 2000, pp. 419–432.

100

[23] A. Buluç, J. R. Gilbert, and C. Budak, “Gaussian elimination based algorithms
on the GPU,” University of California, Tech. Rep. UCSB/CS-2008-15, Nov.
2008.

[24] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear alge-
bra,” in Proc. Int’l Conf. High Performance Computing, Networking, Storage
and Analysis (SC’08), Nov. 2008, 11 pages (CD-ROM).

[25] A. Bleiweiss, “GPU accelerated pathfinding,” in Proc. 23rd ACM SIG-
GRAPH/EUROGRAPHICS Symp. Graphics Hardware (GH’08), Jun. 2008,
pp. 65–74.

[26] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determi-
nation of minimum cost paths,” IEEE Trans. Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, Jul. 1968.

[27] P. Harish, V. Vineet, and P. J. Narayanan, “Large graph algorithms for
massively multithreaded architectures,” International Institute of Information
Technology Hyderabad, Tech. Rep. IIIT/TR/2009/74, Feb. 2009.

[28] S.-C. Han, F. Franchetti, and M. Püshel, “Program generation for the all-pairs
shortest path problem,” in Proc. 15th Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT’07), Sep. 2006, pp. 222–232.

[29] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel
Computing, 2nd ed. Reading, MA: Addison-Wesley, Jan. 2003.

[30] A. Klimovitski, “Using SSE and SSE2: Misconceptions and reality,” in Intel
Developer Update Magazine, Mar. 2001.

[31] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon,
Parallel Programming in OpenMP. San Mateo, CA: Morgan Kaufmann, Oct.
2000.

[32] D. A. Bader and K. Madduri, “GTgraph,” http://www.cc.gatech.edu/
∼kamesh/GTgraph/.

[33] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for
graph mining,” in Proc. 4th SIAM Int’l Conf. Data Mining (SDM’04), Apr.
2004, pp. 442–446.

[34] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,” in Proc. Int’l Conf. High Performance
Computing, Networking, Storage and Analysis (SC’08), Nov. 2008, pp. 1–12.

101

[35] A. Nukada and S. Matsuoka, “Auto-tuning 3-d FFT library for CUDA GPUs,”
in Proc. Int’l Conf. High Performance Computing, Networking, Storage and
Analysis (SC’09), Nov. 2009, 10 pages (CD-ROM).

[36] K. Matsumoto and S. G. Sedukhin, “A solution of the all-pairs shortest paths
problem on the cell broadband engine processor,” IEICE Trans. Information
and Systems, vol. E92-D, no. 6, pp. 1225–1231, Jun. 2009.

[37] W. J. van der Laan, “decuda,” http://wiki.github.com/laanwj/decuda.

[38] T. Okuyama, F. Ino, and K. Hagihara, “A task parallel algorithm for find-
ing all-pairs shortest paths using the gpu,” Int’l Journal of High Performance
Computing and Networking, vol. 7, no. 2, pp. 87–98, Apr. 2012.

[39] D. Sato, Y. Xie, J. N. Weiss, Z. Qu, A. Garfinkel, and A. R. Sanderson, “Ac-
celeration of cardiac tissue simulation with graphic processing units,” Medical
and Biological Engineering and Computing, vol. 47, no. 9, pp. 1011–1015, Aug.
2009.

[40] Z. Taylor, O. Comas, M. Cheng, J. Passenger, D. Hawkes, D. Atkinson, and
S. Ourselin, “On modelling of anisotropic viscoelasticity for soft tissue simula-
tion: Numerical solution and GPU execution,” Medical Image Analysis, vol. 13,
no. 2, pp. 234–244, May 2009.

[41] F. V. Lionetti, A. D. McCulloch, and S. B. Baden, “Source-to-source optimiza-
tion of CUDA C for GPU accelerated cardiac cell modeling,” in Proc. 16th Int’l
Euro-Par Conf. Parallel processing (EuroPar’10), 2010, pp. 38–49.

[42] V. Garcia, A. Liberos, A. Climent, A. Vidal, J. Millet, and A. González, “An
adaptive step size GPU ODE solver for simulating the electric cardiac activity,”
in Computing in Cardiology, Sep. 2011, pp. 233–236.

[43] J. Ackermann, P. Baecher, T. Franzel, M. Goesele, and K. Hamacher,
“Massively-parallel simulation of biochemical systems,” in Proc. Massively Par-
allel Computational Biology on GPUs, Sep. 2009, 12 pages.

[44] Y. Asai, T. Abe, M. Okita, T. Okuyama, N. Yoshioka, M. N. Shige-
toshi Yokoyama, K. Hagihara, and H. Kitano, “Spatiotemporal multilevel mod-
eling of physiological systems and simulation platform: Physiodesigner, flint
and flint k3 service,” in Proc. 12th IEEE/IPSJ Int’l Symp. Applications and
the Internet (SAINT 2012), Jul. 2012, 5 pages.

[45] E. M. Heien, M. Okita, Y. Asai, T. Nomura, and K. Hagihara, “insilicosim: an
extendable engine for parallel heterogeneous biophysical simulations,” in Proc.

102

3rd Int’l Conf. Simulation Tools and Techniques (SIMUTools ’10), 2010, pp.
78:1–78:10.

[46] H. El-Rewini, T. G. Lewis, and H. H. Ali, Task Scheduling in Parallel and
Distributed Systems. Englewood Cliffs, NJ: PTR Prentice Hall, 1994.

[47] L. Dematté and D. Prandi, “GPU computing for system biology,” Brief Bioin-
form, vol. 11, no. 3, pp. 323–333, May 2010.

[48] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P.
Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov,
E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman,
J.-H. S. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. L. Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D.
Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C.
Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi,
M. Tomita, J. M. Wagner, J. Wang, and the rest of the SBML Forum, “The
systems biology markup language (SBML): a medium for representation and
exchange of biochemical network models,” Bioinformatics, vol. 19, no. 4, pp.
524–531, Mar. 2003.

[49] Message Passing Interface Forum, MPI: A Message-Passing Interface Stan-
dard, Version 2.2. Stuttgart, Germany: High Performance Computing Center
Stuttgart (HLRS), 2009.

[50] “Physiodesigner,” http://physiodesigner.org/, 2012, accessed July 20, 2012.

[51] Y. Asai, Y. Suzuki, Y. Kido, H. Oka, E. Heien, M. Nakanishi, T. Urai, K. Hag-
ihara, Y. Kurachi, and T. Nomura, “Specifications of insilicoml 1.0: A multi-
level biophysical model description language,” J. Physiological Sciences, vol. 58,
no. 7, pp. 447–458, Dec. 2008.

[52] C.-H. Luo and Y. Rudy, “A model of the ventricular cardiac action poten-
tial. depolarization, repolarization, and their interaction,” Circulation Research,
vol. 68, no. 6, pp. 1501–1526, Jun. 1991.

[53] F. Mahmud, N. Shiozawa, M. Makikawa, and T. Nomura, “Reentrant excita-
tion in an analog-digital hybrid circuit model of cardiac tissue,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 21, no. 2, Jun. 2011, 14
pages.

[54] X.-J. Wang and G. Buzsáki, “Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model,” J. Neuroscience, vol. 16, no. 20,
pp. 6402–6413, Oct. 1996.

103

[55] I. A. Rybak, N. A. Shevtsova, M. Lafreniere-Roula, and D. A. McCrea, “Mod-
elling spinal circuitry involved in locomotor pattern generation: insights from
deletions during fictive locomotion,” J. Physiology, vol. 577, no. 2, pp. 617–639,
Dec. 2006.

[56] “Stanford Large Network Dataset Collection,” http://http://snap.stanford.
edu/data/index.html, 2012, accessed November 30, 2012.

104

