Osaka University Knowledge Archive

| Title | THERMODYNAMIC STUDIES ON BIPHENYL AND RELATED <br> SUBSTANCES |
| :---: | :--- |
| Author（s） | 齋藤，一弥 |
| Citation | 大阪大学，1986，博士論文 |
| Version Type | VoR |
| URL | https：／／hdl．handle．net／11094／2497 |
| rights |  |
| Note |  |

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

# THERMODYNAMIC STUDIES ON BIPHENYL AND RELATED SUBSTANCES 

by

Kazuya Saito<br>M.S., Osaka University, 1983

Dissertation
submitted to the Graduate School of Faculty of Science, Osaka University in partial fulfilment of the requirements for the Degree of Doctor of Science

1986

Doctoral Committee:
Professor Hideaki Chihara, Chairman, Professor Hiroshi Suga, Professor Fumikazu Kanamaru.

## Acknowledgments

I wish to express sincere thanks to Professor Hideaki Chihara and Associate Professor Tooru Atake for their kind guidance, encouragement and stimulative discussions filled with deep insight into science, and also for their critical reading of this manuscript.

I would like to thank Professor Yasutoshi Saito for his heartful encouragement.

Thanks are also due to all the members of Chihara Laboratory and of Saito and Atake Laboratory for their useful discussions and encouragement.

I also thank all my friends for their valuable suggestions and encouragement.

## contents

Abstract ..... 1
Chapter I Introduction ..... 3
References to Chapter I ..... 7
Chapter II Molecular symmetry and intramolecular
potential for twisting motion ..... 8
II-1 Molecular symmetry and twisting motion ..... 8
II-2 Intramolecular potential ..... 11
References to Chapter II ..... 20
Chapter III Phase transitions
in $p$-polyphenylenes ..... 21
III-1 Survey of previous studies ..... 21
III-2 Heat capacities of $p$-polyphenylenes ..... 29
III-2-1 Biphenyl and biphenyl-d10 ..... 29
III-2-2 p-Terphenyl and p-terphenyl-d 14 ..... 52
III-2-3 p-Quaterphenyl ..... 67
III-3 Qualitative interpretation of twist phase transitions of p-polyphenylenes ..... 75
III-4 Ising type theory for p-terphenyl crystal ..... 79
References to Chapter III ..... 88
Chapter IV Crossover of low temperature heat capacities of p-polyphenylenes ..... 95
References to Chapter IV ..... 106
Chapter $V$ Possibility of phase transition in p-substituted biphenyls ..... 108
V-1 Introduction ..... 108
V-2 Heat capacities
of the p-substituted biphenyls ..... 114
V-2-1 4,4'-Difluorobiphenyl ..... 114
v-2-2 p,p'-Biphenol ..... 124
v-2-3 p-Phenylphenol ..... 133
V-3 Stability of a planar molecular conformation in 4,4'-difluorobiphenyl and p,p'-biphenol ..... 148
References to Chapter V ..... 153
Chapter VI Twisting motion
in o-substituted biphenyl ..... 156
VI-1 Introduction ..... 156
VI-2 Heat capacities of perfluorobiphenyl and perchlorobiphenyl ..... 157
VI-3 Twisting vibrations of perfluorobiphenyl and perchlorobiphenyl in crystal ..... 167
References to Chapter VI ..... 175
Chapter VII Summary ..... 176
List of publications ..... 180
Appendix Program for
the heat capacity measurements ..... 182

Abstract

Thermodynamic studies were carried out on biphenyl and its related substances; biphenyl, biphenyl-d ${ }_{10}$, p-terphenyl, p-terphenyl-di4, p-quaterphenyl, 4,4'-difluorobiphenyl, p,p'-biphenol, p-phenylphenol, perfluorobiphenyl, and perchlorobiphenyl. The heat capacities were measured by adiabatic calorimetry between 4 and 300 K and some thermodynamic functions were determined. The special attention was paid to correlating the intramolecular twisting degree(s) of freedom with the macroscopic properties.

Thermodynamic properties of the phase transitions associated with molecular conformation change in p-polyphenylenes (biphenyl, biphenyl-d ${ }_{10}$, p-terphenyl, p-terphenyl- $d_{14}$, and p-quaterphenyl) were determined. The values of the transition temperatures and of the entropies of transition were in the order of the molecular size, i.e. biphenyl < p-terphenyl < p-quaterphenyl. The entropies of transition of biphenyl and p-terphenyl are unchanged by deuteration, while the transition temperatures shift to the lower temperatures by deuteration except for the lock-in transition of biphenyl.

The properties of the phase transitions of p-polyphenylenes were compared with one another and discussed in relation to the internal flexibility. The Ising type theory of the transition was developed for
p-terphenyl and compared well with the experimental results.

As the temperature decreased, the heat capacity of biphenyl decreased less steeply than those of p-terphenyl and p-quaterphenyl, and the crossover of the heat capacities occured. The crossover was attributed to the greater twisting flexibility of phenyl rings in biphenyl from lattice dynamics calculation. The role of the incommensurability in the crossover phenomena was pointed out by comparing the low temperature heat capacities of biphenyl with those of 4,4'-difluorobiphenyl.

No phase transition was detected by the heat capacity measurements for 4,4'-difluorobiphenyl, p,p'-biphenol and p-phenylphenol. The reason for the absence of any phase transition was ascertained by comparing their intramolecular potential curves with that of biphenyl, and by calculating the static lattice energies.

The twisting flexibilities of perfluorobiphenyl and perchlorobiphenyl molecules were compared through analyzing their low temperature heat capacities.

Properties of molecular crystals have been investigated extensively. ${ }^{1)}$ There are two limiting types of crystalline phase of interest; plastic crystal ${ }^{2)}$ and liquid crystal.3) These two phases are regarded as the extreme cases in which melting of crystal takes place in a step-wise manner. In plastic crystals, which generally consist of a globular molecule, the orientational order melts before the translational one. On the other hand, the translational order melts before the orientational in liquid crystals, which generally consist of an elongated rod-like molecule. The studies on the thermodynamic nature and the molecular dynamics of these mesophases give us well-resolved informations on the successive excitation of the two types of motional modes in molecular crystals.

In addition to the rotational and the translational degrees of freedom, a molecule has the internal degree(s) of freedom, e.g. intramolecular vibration, internal rotation, inversion, etc. Generally, since internal degrees of freedom have rather large excitation energy compared with lattice modes, they are hardly perturbed by the intermolecular interactions. However, they will be perturbed strongly and coupled with lattice modes, if their excitation
energies lie in the region of low energy comparable to those of lattice modes. In such molecules as ethane and as biphenyl, strong coupling is expected between the intramolecular twisting motion and lattice modes because the intramolecular barrier hindering rotation is of some $\mathrm{kJ} \cdot \mathrm{mol}{ }^{-1}$ and the reduced moment of inertia for the twisting motion amounts to a quarter of that of the whole molecule about the molecular figure axis. If a phase is characterized by melting of only a kind of internal degrees of freedom, it may be regarded as the third phase specific to molecular crystals. It is the purpose of this research to study the thermodynamic property of a group of molecular crystals, p-polyphenylenes and their derivatives, in connection with their intramolecular degrees of freedom. The effects of molecular symmetry and nature of intramolecular potential on the crystal packing, on molecular motion, and on heat capacity will be discussed.

The samples we have chosen are biphenyl and its homologous and substituted molecules; biphenyl( $\mathrm{C}_{12} \mathrm{H}_{10}$ ), biphenyl-d10 ( $\mathrm{C}_{12} \mathrm{D}_{10}$ ), p-terphenyl ( $\mathrm{C}_{18} \mathrm{H}_{14}$ ), p-terphenyl- $d_{14}\left(C_{18} D_{14}\right)$, p-quaterphenyl $\left(C_{24} H_{18}\right)$, 4, 4'-difluorobiphenyl ( $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{2}$ ), p,p'-biphenol $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}\right)$, p-phenylphenol $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}\right)$, perfluorobiphenyl $\left(C_{12} \mathrm{~F}_{10}\right)$, and perchlorobiphenyl ( $\left.\mathrm{C}_{12} \mathrm{Cl}_{10}\right)$. They all have the internal twisting degree(s) of freedom with
rather low excitation energies. The first five molecules belong to a family of compounds so-called p-polyphenylene. They are twisted in the gaseous and the liquid states, and of planar conformation in crystal at room temperature. On cooling, however, they resume a twisted conformation below the phase transition temperature. Although the crystals of the other five compounds do not show any phase transition, studies on them are interesting from the point of view of the relation between thermodynamic properties and the internal twisting degree of freedom.

This thesis is organized as follows. Chapter II describes a simple group theoretical consideration and the classification of the intramolecular twisting modes of the molecules treated in this study. The calculation of the intramolecular potential curves for each twisting motion is also described.

Chapter III describes the results of heat capacity measurements on p-polyphenylenes. The qualitative and the semi-quantitative interpretations of their phase transitions are presented.

Chapter IV describes the lattice dynamics calculation on biphenyl and p-terphenyl crystals. The crossover between their low temperature heat capacities is interpreted.

Chapter $V$ describes the experimental results on 4,4'-difluorobiphenyl, $p, p^{\prime}$-biphenol and p-phenylphenol. The calculation of the static lattice energies
of two possible types of crystal structure throws light on the reason why no phase transition occurs in 4,4'-difluorobiphenyl and p,p'-biphenol crystals.

Chapter VI describes the results of heat capacity measurements on perfluorobiphenyl and perchlorobiphenyl. The relative molecular stiffness for the twisting motion is deduced from their low temperature heat capacities.

The summary of this research is given in Chapter VII.

The program for the heat capacity measurements is given in Appendix.

## References to Chapter I

1. A. I. Kitaigorodsky, "Molecular Crystals and Molecules", Academic Press, New York and London, 1973.
2. J. N. Sherwood (ed.), "The Plastically Crystalline State", John Wiley \& Sons, Ltd., Chichester, 1979.
3. P. G. de Gennes, "The Physics of Liquid Crystals", Clarendon Press, Oxford, 1974.

# Chapter II Molecular symmetry and intramolecular <br> potential for twisting motion 

## II-1 Molecular symmetry and twisting motion

On considering the intramolecular twisting motion, we must pay some attention to molecular symmetries because a molecule has not only one but some degrees of freedom with respect to twisting motion. In biphenyl and biphenyls substituted with structure-less substituents, there exists only one twisting degree of freedom. On the other hand, p-terphenyl has two twisting degrees of freedom and p-quaterphenyl has three such degrees of freedom.

The classification of twisting motions in p-polyphenylenes is given after group theoretical consideration as follows. Suppose that phenyl rings are rigid and the molecular symmetry is of planar molecule, i.e. $D_{2 h}$, for simplicity. Characters of the representations of symmetry $D_{2 h}$ using twist angle of each phenyl ring as basis are tabulated in Table II-1. They are reduced to the irreducible representations by using a character table of irreducible representations of $D_{2 h}\left(T a b l e\right.$ II-2). Modes of $A_{u}$ symmetry are antisymmetric and those of $\mathrm{B}_{1 \mathrm{~g}}$ symmetry are symmetric with respect to the center of the molecule. They are schematically shown in Figure II-1 for p-terphenyl and

Table II-1. Representations of $D_{2 h}$ by using the twisting angles as a basis set.

|  | $E$ | $C_{2 z}$ | $C_{2 y}$ | $C_{2 x}$ | $I$ | $\sigma_{z}$ | $\sigma_{y}$ | $\sigma_{x}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| biphenyl | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | $A_{u}+B_{1 g}$ |
| p-terphenyl | 3 | 3 | -1 | -1 | 1 | 1 | -3 | -3 | $A_{u}+2 B_{1 g}$ |
| $p$-quaterphenyl | 4 | 4 | 0 | 0 | 0 | 0 | -4 | -4 | $2 A_{u}+2 B_{1 g}$ |

Table II-2. Characters of irreducible representations of $D_{2 h}$.

|  | E | $\mathrm{C}_{2 \mathrm{z}}$ | $\mathrm{C}_{2 \mathrm{y}}$ | $\mathrm{C}_{2 \mathrm{x}}$ | I | $\sigma_{z}$ | $\sigma_{\mathrm{y}}$ | $\sigma_{\mathrm{x}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{A}_{\mathrm{g}}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mathrm{~B}_{1 \mathrm{~g}}$ | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
| $\mathrm{~B}_{2 \mathrm{~g}}$ | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
| $\mathrm{~B}_{3 \mathrm{~g}}$ | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
| $\mathrm{~A}_{\mathrm{u}}$ | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| $\mathrm{~B}_{1 \mathrm{u}}$ | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
| $\mathrm{~B}_{2 \mathrm{u}}$ | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
| $\mathrm{~B}_{3 \mathrm{u}}$ | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |

(O) $-(\mathrm{O}\rangle$
$A_{u}++-\infty D_{2 h}: 2 A_{u}+2 B_{1 g}$
$+\quad+\quad-$
$\mathrm{B}_{1 \mathrm{~g}}++++$
$+\quad-\quad+$


$\mathrm{A}_{\mathrm{u}}+0 \rightarrow \longrightarrow$
$\mathrm{B}_{1 \mathrm{~g}}+++$
$+\quad+$


Figure II-1. Possible normal modes of twisting motion, assuming phenyl rings to be rigid and molecular symmetry to be of planar conformation ( $D_{2 h}$ ).
p-quaterphenyl; only one mode in biphenyl is obvious and not shown there. It is natural to expect that a mode with a small number of nodes has a less steep intramolecular potential in the isolated molecule; this will be confirmed in Section II-2 by a simple model calculation. The upper $A_{u}$ mode of p-quaterphenyl in Figure II-1 should have rather small force constant. On the other hand, the two modes of p-terphenyl must oscillate in a steeper potential because of a large number of pairs of interacting ortho-hydrogens and change in $\pi$-conjugation with the twist angle.

The consideration described above is easily extended to the other p-polyphenylenes. p-Polyphenylene consists of an even number of phenyl rings has the $A_{u}$ mode with only one node; its force constant is small. On the other hand, p-polyphenylene with odd number of phenyl rings does not have such a soft mode.

II-2 Intramolecular potential

It is now in order that we examine the intramolecular potential for each twisting mode. The potential for the twisting mode of the isolated molecule is a resultant of two opposite effects; the $\pi$-conjugation favors the planar molecular conformation and the repulsion between ortho atoms prefers the
twisted one. These two effects were treated separately and the overall potential was obtained as the sum of them.

For the calculation of the contribution from $\pi$-conjugation, the simple Hückel molecular orbital method was used. All the resonance integrals between two adjacent carbon atoms was the same as $\beta$, but it was assumed to change as $\beta \cos \theta^{1)}$ between the central $C-C$ bond, where $\theta$ is the twisting angle between the adjacent two phenyl rings. The effects of substituents ( $F$ or $O H$ were taken into account by using the following parameters; the Coulomb integral, $\alpha+3 \beta$ (F), $\alpha+2 \beta(O)$ where $\alpha$ is the Coulomb integral of carbon atom, and the resonance integral $0.7 \beta$ (C-F)and $0.8 \beta$ (C-O).2) By comparing the result of Hückel method with those of experiments of benzene, the magnitude of $\beta$ was deduced to be $-89 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} .{ }^{3)}$

In calculation of the contribution from the ortho atom repulsion, the molecular geometry was fixed: The phenyl rings were assumed as a normal hexagon with the C-C bond length of 0.140 nm . The bond length of the central C-C combining the two phenyl rings was 0.150 nm and the length of $\mathrm{C}-\mathrm{H}$ bond was 0.110 nm . The atom-atom potential of Buckingham type was summed over all atom pairs within the molecule except for the pairs whose interatomic distances do not depend on the twisting angle. The atom-atom parameters of Williams ${ }^{4)}$ were used for the calculation. They are tabulated in Table

Table II-3. Atom-atom parameters used for calculation.

$$
E=-A / r^{6}+B \cdot \exp (-C \cdot r)
$$

|  | $A / \mathrm{kJ} \cdot \mathrm{mol}^{-1} \cdot \AA^{6} \quad B / \mathrm{kJ} \cdot \mathrm{mol}^{-1}$ | $C / \AA^{-1}$ |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}-\mathrm{C}$ | $2.380 \cdot 10^{3}$ | $3.499 \cdot 10^{5}$ | 3.60 |
| $\mathrm{C}-\mathrm{H}$ | $5.230 \cdot 10^{2}$ | $3.668 \cdot 10^{4}$ | 3.67 |
| $\mathrm{H}-\mathrm{H}$ | $1.140 \cdot 10^{2}$ | $1.110 \cdot 10^{4}$ | 3.74 |

II-3.
The intramolecular potential curves calculated as a function of the twist angle about the central $\mathrm{C}-\mathrm{C}$ bond are shown in Figure II-2 for the p-polyphenylenes. For biphenyl, the location of the minimum at about $40^{\circ}$ and the potential barrier height of order $10 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ at $\theta=0^{\circ}$ are in good agreement with the results of experiments.5-8) Two twisting modes of p-terphenyl degenerate in this treatment, but both the modes show steeper gradient than for biphenyl. The upper $A_{u}$ mode of p-quaterphenyl in Figure II-2, which is the upper $A_{u}$ mode shown in Figure II-1, shows a potential curve quite similar to that of biphenyl. This similarity comes from the fact that there are the same number of nodes for the two modes. On the other hand, the potential curve of the lower $A_{u}$ mode of $p$-quaterphenyl is the steepest in the three substances. Thus, the consideration in Section II-1 is now clarified; the harder mode appears in larger molecules as the number of phenyl rings within a molecule increases. However, there still exists the "soft" mode similar to that of biphenyl if the number of phenyl rings is even.

Figure II-3 shows the calculated potential curves for biphenyl, 4,4'-difluorobiphenyl, and p,p'-biphenol. The location of the minimum at about $40^{\circ}$ for 4,4'-difluorobiphenyl is also in good agreement with the experiment. ${ }^{9}$ ) In spite of the difference in


Figure II-2. Calculated intramolecular potential curves for the twisting modes of biphenyl, p-terphenyl and $p$-quaterphenyl.


Figure II-3. Calculated intramolecular potential curves of biphenyl, 4,4'-difluorobiphenyl and p, p'-biphenol.
substitutents, potential curves for 4,4'-difluorobiphenyl and p,p'-biphenol are similar to each other; the barrier height at $\theta=0^{\circ}$ is somewhat lower by about $3 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ than biphenyl, and the barrier at $\theta=90^{\circ}$ is enhanced by about $8 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. Therefore, the difference in the properties between 4,4'-difluorobiphenyl and p,p'-biphenol crystals should come from the difference in the intermolecular interaction.

Calculation was not carried out for p-phenylphenol because the effects of the $O H$ substitution could be deduced from the calculated potential curve for p,p'-biphenol: The OH substitution lowers the barrier at $\theta=0^{\circ}$ by a few $\mathrm{kJ} \cdot m o \mathrm{l}^{-1}$ and it softens the twisting force constant of the isolated molecule.

No such calculation was made either for perfluorobiphenyl and for perchlorobiphenyl. The substitutions not only at para and meta positions but also at ortho positions make the intramolecular potential very steep and the barrier hindering the rotation very high because the interatomic distance between ortho atoms is much shorter compared with the van der Waals radii at all twisting angles (Figure II-4). The motion of phenyl rings, therefore, must be strictly confined within the vicinity of the potential minimum below room temperature. These make it irksome to examine the intramolecular potential curves in the whole range of the twisting angle. The feature of the potential curve in the vicinity of the bottom will be deduced in


Figure II-4. Interatomic distance between ortho atoms as a function of the twist angle. Broken line shows van der Waals radii of ortho atoms.

Chapter VI from their heat capacities at low temperatures.

1. R. G. Parr and B. J. Crawford Jr., J. Chem. Phys., 16(1948), 526.
2. Y. Hirota, "Bunshikidouhou-nyumon", Baifukan, Tokyo, (1969).
3. G. M. Barrow, "Physical Chemistry" (4th ed.), McGraw-Hill Inc., New York, (1979).
4. D. E. Williams, J. Chem. Phys., $47(1967), 4680$.
5. O. Bastiansen, Acta Chem. Scand., 3(1949), 408.
6. H. Suzuki, Bull. Chem. Soc. Jpn., 32(1959), 1340.
7. A. J. Grumadas and P. Poshkus, J. Chem. Soc. Faraday II, 75(1979), 1398.
8. A. J. Grumadas, D. P. Poshkus and A. V. Kiselev, J. Chem. Soc. Faraday II, 78(1982), 2013.
9. O. Bastiansen and L. Smedvik, Acta Chem. Scand., 8(1954), 1593.

Chapter III Phase transitions in p-polyphenylenes

III-1 Survey of previous studies

All the crystals of biphenyl, p-terphenyl and p-quaterphenyl at room temperature belong to the space group $P 2_{1} / a\left(C_{2 h}^{5}\right)$, in which two molecules are in the unit cell1-12) (Figure III-1). The symmetry elements of this space group are identity $\{E \mid O\}$, inversion $\{I \mid 0\}$, two-fold screw axis $\left\{c_{2}^{b} \mid \vec{a} / 2+\vec{b} / 2\right\}$ and glide plane $\left\{\sigma^{a c} \mid \vec{a} / 2+\vec{b} / 2\right\}$, and the point group is $2 / m$. Molecules occupy inversion sites, which fact implies a statistically planar molecular conformation, in contrast to the twisted conformation in the gaseous and the liquid states. ${ }^{13-20)}$

Baudour et al.11) refined the structure for p-terphenyl at room temperature under the assumption that the room temperature phase was a disordered one. They obtained a double peaked probability function for the central phenyl ring. This strongly suggests an order-disorder nature of the transition. For biphenyl and p-quaterphenyl, such kind of analysis has not been made so far.

The structures of low temperature phases of these compounds are not exactly the same but similar to each other; the molecules are twisted. In the case of biphenyl, the structure of the low temperature phase

between about 17 and 40 K is incommensurate in the directions of both the a and $b$ axes ${ }^{21}$ ) and is classified to the five dimensional Bravais lattice of p P $2 / \mathrm{m}$. 22) The mean, approximate structure was obtained neglecting satellite reflections and was classified to Pa.23) An incommensurate-commensurate transition (so-called lock-in transition) in the direction of the a axis occurs at about 17 K .21 ) However, the crystal is still incommensurate along the $b$ axis below the lock-in transition for the a axis. The structure of this phase was determined to be of the super-space group $\left.P^{P 2} 1 / \frac{1}{T} 24,25\right)$ by using the neutron diffraction technique. 26 ) The essential aspect of the incommensurate modulation within a sinusoidal approximation was a torsion around the long molecular axis with an amplitude of $5.5^{\circ}$ for each phenyl ring, the maximum deformation angle being $11^{\circ}$.

On the other hand, the structures of the low temperature phase of both p-terphenyl and $p$-quaterphenyl belong to the space group $P \bar{T}$ and the adjacent phenyl rings in the molecule are twisted alternately ${ }^{27,28)}$ (Figure III-2). In this structure, the symmetry elements except identity and inversion are lost due to twisting of molecules, it is considered as the super structure with the cell constants $2 a, 2 b$ and c in terms of those of the room temperature phase. However, reflecting the molecular symmetry, the


Figure III-2. Crystal structures of the low temperature phases of p-terphenyl and p-quaterphenyl. Broken lines represents the unit cell of the room temperature phase.
molecules of p-terphenyl are at the inversion site but this is not the case in p-quaterphenyl.

Concerning the phase transitions in biphenyl, it is important to note that the soft modes have been found in optical 29-31) and neutron ${ }^{321}$ experiments, which fact is compatible with displacive nature of the transition. The softening occurs at the general point $\left(x^{*}, y^{*}, 0\right)$ near the $B(0,1 / 2,0)$ point in the reciprocal space and the new phase is of two dimensionally incommensurate structure.

Dworkin and Cailleau ${ }^{33)}$ reported the results of heat capacity measurements of biphenyl from 10 K to 50 K , in which they could not detect any anomaly in the heat capacity curve. On the other hand, Cullick and Gerkin ${ }^{34)}$ found the temperature halt in the cooling and the heating curves at 42 K , which strongly suggested that the transition is of the first-order. However, other authors ${ }^{29-32,35-40)}$ have reported by using other experimental techniques that the transition at about 40 K is of higher order.

The lock-in transition at about 17 K has been revealed to be of the first-order transition by optical ${ }^{36)}$ and neutron ${ }^{21)}$ techniques. More conclusive evidence of first-order nature of the transition is the co-existence of two phases observed in neutron experiments.21) Theoretical considerations 41-43) within the Landau's phenomenology support the firstorder nature of the transition. However, no abrupt
change was observed in the Brillouin scattering experiments, 39) and in the electronic spectra of the molecule.38) The lock-in transition in the direction of the b axis has not been observed so far down to $1.4 \mathrm{~K} .44)$

Plakida et al.45) proposed an internal-soft-mode mechanism for the twist transition at about 40 K based on the self-consistent phonon calculations, in which renormalized phonon frequencies were calculated in the lowest order self-consistent approximation. The phonon frequency of the twisting-acoustic coupled mode near the $B$ point showed $\left(T-T_{C}\right)^{1 / 2}$ behavior, which is compatible with the experimental observation. ${ }^{32 \text { ) The }}$ approach made by Busing ${ }^{46}$ ) is essentially static; lattice energies were calculated using the temperaturedependent atom-atom potentials. The instability of the planar molecular conformation was found at about 94 K , which is much higher than the actual transition temperature. The group theoretical considerations made by Ishibashi, 41 ) and Toledano and Toledano ${ }^{43)}$ showed that the phase transition at about 40 K (normalincommensurate) is of higher-order, and that the lock-in transition is of the first-order.

Dynamics in the incommensurate phases of biphenyl were investigated by using some experimental techniques. The dispersion of the phason and the amplitudon branches were determined by neutron 32,47 )
and Brillouin ${ }^{39)}$ scattering experiments. The damping of the phason branch near the zone center was relatively small compared with other incommensurate substances. NMR results by Liu and Conradi ${ }^{48)}$ showed the existence of the slow process $\left(\tau \simeq 10^{3} \mathrm{~s}\right.$ at 4.2 K$)$ in the incommensurate phase. They proposed the term, "incommensurate glass", in biphenyl in the lowest temperature region from their experimental result.

It is worthwhile to note that the pressure dependence of the transition temperature is negative. ${ }^{40)}$ This clearly shows that the transition is connected with a subtle balance between intra- and intermolecular interaction. While the intermolecular interaction, which prefers a planar conformation, is enhanced by the compression, the intramolecular interaction is not. This causes the fact that the transition temperature decreases as pressure increases. In contrast to the case of biphenyl, no soft mode has been observed in p-terphenyl49-51) and p-quaterphenyl.51) Cailleau and Dworkin52) and Chang ${ }^{53)}$ measured heat capacities of p-terphenyl and found the $\lambda$-shaped anomaly at about 194 K with the entropy of transition $\Delta_{t r s} S=1.80 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \operatorname{mol}^{-1} .{ }^{531}$ Many experimental results by using optical, 40,49-51) EPR ${ }^{54}$ ) and the other techniques ${ }^{55-60)}$ showed this transition being continuous. Critical exponents of p-terphenyl for some physical quantities have been reported as follows; $\alpha=0.049,52$ ) $\beta=0.15,61$ ) and
$\nu=0.12 .621$ These values correspond to the two dimensional Ising model. The two dimensionality of the interaction was supported by neutron 63,64 ) and NMR ${ }^{65)}$ experiments. Dynamical aspects of the transition were investigated by using neutron, $32,63,64,66$ ) NMR, 65,67-70) and other ${ }^{71)}$ techniques and the critical phenomenon, the critical slowing down of the order parameter fluctuation, was found, 32,65-69) which implies order-disorder nature of the transition. The pressure dependence ${ }^{40)}$ of the transition temperature is negative as in biphenyl. The theoretical work on the phase transition was reported by Ramdas and Thomas. ${ }^{72}$ They interpreted the transition by calculating static lattice energies and predicted the existence of the other unknown phase.

Only a few reports have been published on the phase transition of p-quaterphenyl. Bolton and Prasad ${ }^{51)}$ reported from their Raman study that there was a transition at about 230 K and that it was continuous. Toudic et al.69) found the behavior of critical slowing down by NMR, which is very similar to p-terphenyl. 65,67-69)

III-2 Heat capacities of p-polyphenylenes

III-2-1 Biphenyl and biphenyl-d 10

## Experimental

Commercially available biphenyl (Nakarai Chemicals, Ltd.) and biphenyl-dio (Merck Sharp \& Dohme Canada Ltd., nominal isotope purity of 99 per cent) were purified by fractional sublimation in vacuum at room temperature. In order to avoid the possible formation of metastable phases and/or the lesscrystallinity, the sublimed specimens were melted under the helium atmosphere ( $10^{5} \mathrm{~Pa}$ ) and cooled gradually down to room temperature for recrystallization. Chemical purity of both the specimens were better than 99.9 moles per cent as confirmed by gas-chromatography, and the isotope purity of the bipheny- $\alpha_{10}$ specimen was 99 per cent as determined by the high resolution NMR spectra of the $\mathrm{CCl}_{4}$ solutions.

The powdered specimens were loaded into the calorimeter vessel and sealed off after addition of a small amount of helium gas for heat exchange ( 3 kPa and 7 kPa at room temperature, respectively). The contribution of helium gas to the total heat capacity was negligibly small. The weights of samples of biphenyl and biphenyl-d 10 used for calorimetry were $17.950 \mathrm{~g}(0.11640 \mathrm{~mol})$ and $14.9825 \mathrm{~g}(0.091206 \mathrm{~mol})$, respectively, after buoyancy correction. The
contribution of the samples to the total heat capacity including that of the calorimeter vessel was larger than 70 per cent below 20 K . It decreased to 46 per cent in biphenyl ( 41 per cent in biphenyl-d10) at 100 K as the temperature increased, however, it increased again to 59 per cent ( 57 per cent) at 300 K .

The apparatus for calorimetry was the same as described elsewhere. ${ }^{73)}$ The operation was automated by the micro computer (model PC-9801, NEC Corp.); the program coded in BASIC language is given in Appendix. A platinum resistance thermometer (model 8164, Leeds \& Northrup Co.) and a germanium resistance thermometer (model CR-1000, CryoCal Inc.) were used. Their temperature scales are based on IPTS-68, helium gas thermometry, and the $1958{ }^{4}$ He scale. 74,75 )

The measurements using the ordinary calorimeter vessel missed the lock-in transition in biphenyl at 16.8 K because of lack of sensitivity of a platinum resistance thermometer ( $0.01 \Omega / \mathrm{K}$ at 17 K ), small amount of the powdered sample in the vessel and less precise adiabatic control. To search for lock-in transitions of biphenyl, therefore, a new calorimeter vessel was constructed. The following aspects were considered; (1) the sensitivity of the thermometer, (2) amount of the sample and its packing in the vessel, (3) the utility of the thermometer through the entire temperature region (3-20 K)..(4) the attainment of
the true adiabatic condition, and (5) the unknown behavior of the helium gas for heat exchange in the vessel below 4 K .

The sectional plan of the new calorimeter vessel is shown in Figure III-3. In order to load a sufficient amount of the sample and to avoid the introduction of helium gas for heat exchange into the vessel, the purified biphenyl specimen was loaded and melted under the helium atmosphere ( $10^{5} \mathrm{~Pa}$ ) in the vessel. The vessel was then evacuated and sealed off without any addition of helium gas. The sample thus loaded weighed 24.957 g ( 0.16184 mol$)$ in vacuum.

A germanium resistance thermometer (model N2D, SI Inc.) with commercial calibration was used. The calibration were based on the $1962{ }^{3} \mathrm{He}$ vapor pressure scale below 3.2 K and on the 1965 Provisional Helium Acoustic Scale between 2 and 20 K . The accuracy of the calibration was stated to be better than 0.005 K below 5 K and better than 0.01 K between 5 and 20 K . The 35 calibration points were fitted to the equation,

$$
\ln (R / \Omega)=\sum_{i=1}^{9} A_{i}\{\ln (T / K)\}^{i-2}
$$

using the SALS system. ${ }^{76)}$ The residuals of the fit are shown in Figure III-4. Since the main purpose of the measurements using this vessel is not a determination of absolute values of heat capacities but a search for lock-in transitions, it is not serious that the residuals show rather large deviations from the


Figure III-3. Sectional plan of the newly constructed calorimeter vessel. A, eight vanes to assist in thermal uniformity; $B, A u+0.07 \% \mathrm{Fe}$ vs chromel thermocouples for adiabatic control (diameter 0.1 mm ); $C$, lead wires (diameter 0.1 mm ); $D$, germanium thermometer (model N2D, SI Inc.); E, heater (KARMA); F, hooks for hanging.


Figure III-4. Residuals of the least squares fit of the germanium thermometer.
equation.
The $A u+0.07 \% \mathrm{Fe}$ vs chromel thermocouple 10.1 mm in diameter) was used for a detection of the temperature difference between the vessel and the adiabatic shield wall in order to improve an adiabatic condition. The sensitivity of this thermocouple in the temperature region between 3 and 20 K is as large as ten times of that of chromel vs constantan thermocouple which has been attached to the ordinary vessel.

The new vessel thus constructed has a weight of 39.72 g excluding the sample and has a capacity of $25.06 \mathrm{~cm}^{3}$. Apparatus except the vessel and operation of experiments were the same as described above. The sample contributed by more than 85 per cent to the total heat capacity through the entire temperature region and sufficiently accurate data were obtained.

Results and Discussion
The molar heat capacities measured with the ordinary vessel are shown in Figure III-5 and tabulated in Tables III-1 and III-2 in chronological order. The heat capacities of biphenyl obtained with the new vessel are not shown there because they are compatible with data obtained using the ordinary vessel except for the lock-in transition region. The temperature increment of each measurement can be deduced from the adjacent mean temperatures, which is small enough to


Figure III-5. Measured molar heat capacities of biphenyl (open circle) and biphenyl-d10 (filled circle).

Table III-1. Measured molar heat capacities of biphenyl.


Table III-1. (continued).


Table III-1. (continued).


Table III-2. Measured molar heat capacities of biphenyl-d ${ }_{10^{\circ}}$


Table III-2. (continued).

ignore the curvature correction in comparison with the experimental precision. After each energy input was over, thermal equilibrium within the calorimeter vessel was attained in 1 min below 10 K ; in 5 min at 50 K , and 15 min above 100 K in the measurements on both biphenyl and biphenyl- $\mathrm{d}_{10} 0^{\text {. }}$ Situation was the same also in the measurements on biphenyl using the newly constructed vessel. Concerning thermal equilibration, no anomalous behavior was observed in the transition regions contrary to the observation of Dworkin and Cailleau, 33) and also in the lowest temperature region. ${ }^{48)}$

The comparison with the data on biphenyl reported by Huffman et al. ${ }^{77}$ ) is shown in figure III-6. Although our results are systematically larger by 0.4 per cent than theirs, two sets of data are in satisfactory agreement within experimental accuracy.

Some thermodynamic functions calculated from the present data are given in Tables III-3 and III-4, in which the small contribution below 4 K was estimated by smooth extrapolation from the high temperature side. The third law entropy of the biphenyl ideal gas in the standard state is calculated using the vapor pressure ${ }^{78)}$ and sublimation ${ }^{79)}$ data as summarized in Table III-5.

The anomalies due to the twist transition in both samples are clearly seen by plotting the Debye characteristic temperatures corresponding to the measured heat capacities as given in Figure III-7,


Figure III-6. Comparison between the present data (circle) and the data reported by Huffman et al. 75 ) (triangle) on biphenyl.

Table III-3. Molar thermodynamic functions of biphenyl.

| T | $C_{p}$ | $\{H(T)-H(0)\} / T$ | $S(T)-S(0)$ | $-[G(T)-H(0)] / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\bar{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| 5 | 0.504 | 0.133 | 0.173 | 0.040 |
| 10 | 3.26 | 0.90 | 1.21 | 0.32 |
| 20 | 14.68 | 4.75 | 6.71 | 1.96 |
| 30 | 27.46 | 10.21 | 15.11 | 4.89 |
| 40 | 38.63 | 15.97 | 24.59 | 8.62 |
| 50 | 46.42 | 21.30 | 34.07 | 12.77 |
| 60 | 53.43 | 26.08 | 43.17 | 17.08 |
| 70 | 59.57 | 30.44 | 51.87 | 21.44 |
| 80 | 65.19 | 34.44 | 60.20 | 25.76 |
| 90 | 70.44 | 38.14 | 68.18 | 30.04 |
| 100 | 75.57 | 41.63 | 75.87 | 34.24 |
| 110 | 80.72 | 44.95 | 83.31 | 38.36 |
| 120 | 85.83 | 48.14 | 90.56 | 42.41 |
| 130 | 90.89 | 51.24 | 97.63 | 46.39 |
| 140 | 96. 23 | 54.26 | 104.56 | 50.30 |
| 150 | 101.53 | 57.23 | 111.38 | 54.14 |
| 160 | 107.11 | 60.18 | 118.11 | 57.93 |
| 170 | 112.85 | 63.11 | 124.77 | 61.67 |
| 180 | 118.82 | 66.03 | 137.39 | 65.36 |
| 190 | 124.75 | 68.97 | 137.97 | 69.00 |
| 200 | 130.90 | 71.91 | 144.53 | 72.62 |
| 210 | 137.21 | 74.87 | 151.07 | 76.20 |
| 220 | 143.68 | 77.85 | 157.60 | 79.75 |
| 230 | 150.49 | 80.86 | 164.13 | 83.28 |
| 240 | 157.19 | 83.90 | 170.68 | 86.78 |
| 250 | 163.77 | 86.96 | 177.23 | 90.27 |
| 260 | 170.73 | 90.05 | 183.79 | 93.74 |
| 270 | 177.90 | 93.17 | 190.37 | 97. 20 |
| 280 | 185.10 | 96.33 | 196.97 | 100.64 |
| 290 | 192.30 | 99.51 | 203.59 | 104.08 |
| 300 | 199.50 | 102.72 | 210.23 | 107.50 |
| 298.15 | 198.17 | 102.13 | 209.00 | 106.87 |

Table III-4. Molar thermodynamic functions of biphenyl-d $10^{\circ}$

| $T$ | $C_{p}$ | $[H(T)-H(0)] / T$ | $S(T)-S(0)$ | $-\{G(T)-H(0)] / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{J-R^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\mathrm{J} \cdot \mathrm{X}^{-1} \cdot \mathrm{~mol}^{-1}$ | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\mathrm{J}-\mathrm{K}^{-1}-\mathrm{mol}^{-1}$ |
| 5 | 0.610 | 0.156 | 0.202 | 0.046 |
| 10 | 3.76 | 1.07 | 1.44 | 0.38 |
| 20 | 16.22 | 5.34 | 7.60 | 2.26 |
| 30 | 29.62 | 11.23 | 16.75 | 5.52 |
| 40 | 40.49 | 17.31 | 26.90 | 9.59 |
| 50 | 48.70 | 22.78 | 36.83 | 14.05 |
| 60 | 55.96 | 27.72 | 46.37 | 18.65 |
| 70 | 62.43 | 32.21 | 55.48 | 23.26 |
| 80 | 68.51 | 36.38 | 64.22 | 27.84 |
| 90 | 74.42 | 40.28 | 72.63 | 32.35 |
| 100 | 80.35 | 43.99 | 80.78 | 36.79 |
| 110 | 86.23 | 47.57 | 88.72 | 41.15 |
| 120 | 92.24 | 51.04 | 96.48 | 45.44 |
| 130 | 98.62 | 54.45 | 104.12 | 49.66 |
| 140 | 105.22 | 57.84 | 111.66 | 53.82 |
| 150 | 112.04 | 61.23 | 119.15 | 57.93 |
| 160 | 119.09 | 64.63 | 126.61 | 61.99 |
| 170 | 126.43 | 68.04 | 134.05 | 66.01 |
| 180 | 134.03 | 71.49 | 141.49 | 69.99 |
| 190 | 141.73 | 74.98 | 148.94 | 73.95 |
| 200 | 149.71 | 78.52 | 156.41 | 77.89 |
| 210 | 157.64 | 82.10 | 163.91 | 81.81 |
| 220 | 165.23 | 85.71 | 171.42 | 85.71 |
| 230 | 173.34 | 89.34 | 178.94 | 89.60 |
| 240 | 181.74 | 93.01 | 186.49 | 93.48 |
| 250 | 189.87 | 96.73 | 194.08 | 97.35 |
| 260 | 197.96 | 100.47 | 201.68 | 101.21 |
| 270 | 206.07 | 104.23 | 209.30 | 105.08 |
| 280 | 214.47 | 108.01 | 216.95 | 108.94 |
| 290 | 222.76 | 111.83 | 224.62 | 112.79 |
| 300 | 230.08 | 115.65 | 232.30 | 116.65 |
| 298.15 | 228.86 | 114.95 | 230.88 | 115.93 |

Table III-5. Third law entropy of biphenyl.

|  | $S / J \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| :--- | :---: |
| 0 to 4 K (smooth extrapolation) | 0.089 |
| 4 to 298.15 K (graphical) | 208.9 |
| sublimation ${ }^{\mathrm{a}}$ | 274.2 |
| entropy of real gas at 298.15 K | 483.2 |
| compression $^{\mathrm{b}}$ and correction to ideal gas ${ }^{\mathrm{c}}$ | -93.7 |
| $S^{\circ}($ biphenyl, $298.15 \mathrm{~K}, \mathrm{~g}, \mathrm{P}=100000 \mathrm{~Pa})$ | 389.5 |

$a_{\Delta_{\text {vap }}} H=81760 \mathrm{~J} \cdot$ mol $^{-1}$ at 298.15 K .771
$b_{P}=1.30 \mathrm{~Pa}$ at $298.15 \mathrm{~K} .{ }^{761}$
${ }^{\text {Cusing }}$ Berthelot's equation of state.
where it is arbitrarily assumed that there are 9 degrees of freedom per molecule. By assuming normal portion as shown by the solid lines in Figure III-7, excess heat capacities are separated as shown in Figures III-8 and III-9. The anomaly of biphenyl is very broad extending from 30 K to 47 K with a maximum at 40.4 K ; the shape of the anomaly of biphenyl- $\mathrm{d}_{10}$ is very similar to that of biphenyl and it is from 28 K to 44 K with a maximum at 36.8 K . The entropies of transition of biphenyl and biphenyl- $\mathrm{d}_{10}$ are determined as $0.129 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ and $0.128 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}{ }^{-1}$, respectively. The shape of the anomalies and the smallness of the entropies of transition are consistent with higher-order, displacive nature of the twist transition in both compounds.

In addition to the anomaly at 36.8 K , a very small anomaly due to the lock-in transition is seen at about 20 K in the heat capacity curve of biphenyl-d $\mathrm{d}_{10}$. On the other hand, the corresponding anomaly can not be recognized in the curve of biphenyl; the distortion around 11 K is probably due to some failure in germanium temperature scale. The results of one typical series of measurements on biphenyl using the newly constructed vessel are shown in Figure III-10. In this series the temperature increment of each measurement was about 0.2 K . A broad anomaly due to the lock-in transition is clearly seen. The anomaly


Figure III-7. Debye characteristic temperatures corresponding to measured heat capacities of biphenyl (open circle) and biphenyl-d 10 (filled circle), assuming 9 degrees of freedom per molecule.


Figure III-8. Excess molar heat capacities due to the twist transition of biphenyl.


Figure III-9. Excess molar heat capacities of biphenyl-d ${ }_{10}$.


Figure III-10. Excess molar heat capacities due to the lock-in transition of biphenyl (upper) and the Debye characteristic temperatures corresponding to the heat capacities of a typical run of measurements assuming 9 degrees of freedom per molecule (lower).
due to the lock-in transition is extremely small (0.009 $J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}$ in terms of the entropy of transition, for both compounds), broad and showing a large tail on the high temperature side. Thus, the lock-in transition of biphenyl and biphenyl- $d_{10}$ seems to be of a higher-order transition. However, as described in the last section, some evidences that the lock-in transition was of the first-order have been reported, 21,36 ) and the Landau's phenomenology41-43) also predicts that it is so. Similar situation happened in the case of $\mathrm{K}_{2} \mathrm{SeO}_{4}$. Nomoto et al.80) interpreted that as follows: The lock-in transition of $\mathrm{K}_{2} \mathrm{SeO}_{4}$ is of the first-order in nature; however, the latent heat of the transition is very small and could not be detected experimentally. Such an interpretation should be adapted also in the cases of biphenyl and biphenyl- $\mathrm{d}_{10^{\circ}}$

The large tail on the high temperature side at the lock-in transition has been observed in other substances, 80-82) and it may be accompanied with discommensuration mechanism proposed by McMillan. 83)

Properties of phase transitions are summarized in Table III-12. The entropies of transition in the two compounds are equal to each other, impling the two compounds undergo transitions of the same mechanism. The major difference between the two compounds is that the region of the two dimensionally incommensurate phase is narrower in biphenyl-d10.

No anomaly corresponding to the lock-in transition
in the direction of the $b$ axis was found in both the samples. Two cases are possible; existence of the lock-in transition in the $b$ direction below the lowest temperature reached in the present experiments, and "stability" of incommensurate phase till the absolute zero. If the later was true, the question is open whether the incommensurate phase existing at 0 K is stable in the thermodynamic sense, or a glassy state of new type.

III-2-2 p-Terphenyl and p-terphenyl- $\mathrm{d}_{14}$

Experimental
p-Terphenyl was purchased from Nakarai Chemicals, Ltd., and p-terphenyl-d 14 from Merck Sharp \& Dohme Canada, Ltd. (isotope purity, 98 per cent). They were purified by the method of fractional sublimation in vacuum at about 400 K .

In the case of p-terphenyl, both specimens non-melted and melted under the helium atmosphere $110^{5}$ Pa) were used for the calorimetry for the sake of comparison. In the case of p-terphenyl- $d_{14}$, the measurements were made only on the specimen melted under the helium atmosphere ( $10^{5} \mathrm{~Pa}$ ).

The purity of the specimens used for the calorimetry were better than 99.9 moles per cent as
confirmed by gas-chromatography. The isotope purity of p-terphenyl-d14 was determined to be 98 per cent by using the high resolution proton $N M R$ technique. Each of the powdered specimens was loaded into the calorimeter vessel, which was sealed after addition of a small amount of helium gas $17 \mathrm{kPa}, 7 \mathrm{kPa}$ and 6 kPa for melted, non-melted p-terphenyl and p-terphenyl-di4, respectively) for heat exchange. The contribution of helium to the total heat capacity was negligibly small. The amount of the melted and the non-melted p-terphenyl samples and the $p$-terphenyl- $d_{14}$ sample were 21.0704 g $(0.091488 \mathrm{~mol}), 15.2290 \mathrm{~g}(0.066124 \mathrm{~mol})$ and 8.7131 g (0.035652 mol), respectively. The contribution of the sample to the total heat capacity including that of the calorimeter vessel was, in p-terphenyl, 64 per cent at 10 K, which decreased to 40 per cent at 100 K and then increased to 54 per cent at 300 K as temperature rose; in p-terphenyl-d14 51 per cent at $10 \mathrm{~K}, 27$ per cent at 100 K , and 42 per cent at 300 K .

The working thermometers, and the apparatus and the operation of the adiabatic calorimeter were the same as used in the measurements on biphenyl and biphenyl- $\mathrm{d}_{10}$.

Results and Discussion
The measurements of the heat capacities were made between 3 and 300 K ; the primary data are tabulated in

Tables III-6 and III-7 in chronological order, and shown in figure III-11, where the data of the non-melted p-terphenyl sample are not included. The temperature increment of each measurement may be deduced from the adjacent mean temperatures, which is small enough to neglect the curvature corrections in comparison with the experimental precision. After each energy input was over, thermal equilibrium within the calorimeter vessel was attained within 2 min below 20 K , in 10 min at 80 K ; the time needed for equilibration then increased to 20 min at about the transition temperature as temperature rose, and it abruptly reduced to 10 min above the transition, in all the three samples.

Some thermodynamic functions calculated from the present results are given for rounded temperatures in Tables III-8 and III-9, in which small contributions below 4 K were estimated by smooth extrapolation from the high temperature side.

The $\lambda$-shaped anomaly due to the twist transition is clearly seen in p-terphenyl from 145 K to 225 K with a maximum at 193.5 K , and the very similar one in p-terphenyl-d14 from 130 K to 210 K with a maximum at 180.3 K . In spite of sharp rise in heat capacity, a latent heat was not observed in both cases, which is in agreement with the results reported by Chang 53) and Cailleau and Dworkin. 52 ) By assuming the normal


Figure III-11. Measured molar heat capacities of p-terphenyl (open circle) and p-terphenyl-d 14 (filled circle).

Table III-6. Measured molar heat capacities of p-terpinenyl.


Table III-6. (continued).

| $\frac{T}{\mathrm{~K}}$ | $\frac{c_{p}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K} \quad-$ | $\frac{c_{p}}{K^{-7} \cdot \mathrm{mal}^{-1}}$ | $\frac{T}{K} \quad$ | $\frac{c_{p}}{K^{-1}-\mathrm{mol}^{-1}}$ | $\frac{T}{K} \quad-$ | $\frac{C_{p}}{\cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 185.646 | 182.52 | 209.909 | 196.80 | 3.873 | 0.239 | Series | 19 |
| 186.861 | 184.59 | 211.129 | 197.80 | 3.991 | 0.268 | 6.720 | 0.989 |
| 188.067 | 186.85 | 212.344 | 198.78 | Series | 16 | 7.111 | 1.974 |
| 189.277 | 189.40 | 213.555 | 199.73 | 4.627 | 0.321 | 7.528 | 1.391 |
| Series 12 |  | 214.776 | 200.78 | 5.073 | 0.425 | 7.983 | 1.669 |
| 190.003 | 190.22 | 216.005 | 201.78 | 5.491 | 0.536 | 8.478 | 2.003 |
| 190.250 | 191.46 | 217.224 | 202.87 | 5.882 | 0.635 | 9.019 | 2.419 |
| 190.520 | 191.88 | 218.437 | 203.77 | 6.285 | 0.759 | 9.631 | 2.941 |
| 190.806 | 192.90 | 219.651 | 205.10 | Series | 17 | 10.358 | 3.622 |
| 191.106 | 193.95 | Series | s 14 | 3.843 | 0.207 | 11.218 | 4.456 |
| 191.415 | 194.89 | 51.458 | 61.431 | 4.079 | 0.222 | 12.184 | 5.471 |
| 191.726 | 196.09 | 53.397 | 63.571 | 4.436 | 0.287 | 13.175 | 6.623 |
| 192.042 | 197.26 | 54.967 | 65.232 | 4.838 | 0.369 | Series | 20 |
| 192.358 | 198.77 | 56.523 | 66.812 | 5.235 | 0.467 | 17.163 | 12.094 |
| 192.677 | 200.09 | 58.044 | 68.382 | 5.610 | 0.576 | 18.440 | 14.041 |
| 192.996 | 202. 20 | 59.573 | 69.909 | Series | 18 | 19.654 | 15.946 |
| 193.313 | 205.17 | 61.113 | 71.344 | 4.077 | 0.221 | 20.789 | 17.740 |
| 193.628 | 208.36 | 62.648 | -72.843 | 4.422 | 0.278 | 21.939 | 19.591 |
| 193.943 | 203.25 | 64.185 | 74.331 | 4.790 | 0.363 | 23.105 | 21.503 |
| 194.259 | 199.35 | 65.742 | 75.647 | 5.164 | 0.449 | 24.292 | 23.462 |
| 194.575 | 197.55 | 67.319 | 77.107 | 5.549 | 0.549 | Series | 21 |
| 194.892 | 195.77 | 68.905 | 78.503 | 5.928 | 0.673 | 14.022 | 7.737 |
| Seri | ies 13 | 70.475 | 79.884 | 6.293 | 0.809 | 15.155 | 9.246 |
| 195.549 | 193.55 | 72.029 | 81.161 | 6.650 | 0.946 | 16.338 | 10.899 |
| 196.588 | 191.55 | 73.594 | 82.532 | 7.074 | 1.109 | 17.524 | 12.633 |
| 197.719 | 190.65 | 75.145 | 83.762 | 7.397 | 1.301 | 18.724 | 14.478 |
| 198.921 | 190.32 | 76.688 | 85.031 | 7.811 | 1.548 | 19.920 | 16.375 |
| 200.148 | 190.59 | 78.224 | 86.303 | 8.258 | 1.840 | 21.113 | 18.250 |
| 201.373 | 190.94 | 79.754 | 87.473 | 8.741 | 2.181 | 22.311 | 20.199 |
| 202.595 | 191.68 | 81.303 | 88.765 | 9.279 | 2.619 | 23.517 | 22.186 |
| 203.813 | 192.58 | 82.847 | 89.977 | 9.897 | 3.168 | 24.732 | 24.183 |
| 205.026 | 193.29 | 84.388 | 91.148 | 10.646 | 3.870 | Series | 22 |
| 206.237 | 194.11 | Series | 15 | 11.555 | 4.794 | 21.983 | 19.641 |
| 207.456 | 194.99 | 3.732 | 0.184 | 12.590 | 5.928 | 23.168 | 21.574 |
| 208.685 | 195.91 |  |  | 13.663 | 7.239 | 24.373 | 23.544 |

Table III-6. (continued).


Table III-7. Measured molar heat capacities of p-terphenyl-d ${ }_{14}$.

| $T$ |  |  |  |  |  |  | $C_{p}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\bar{K}$ | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | K J.K | $\mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ | $\bar{K}$ | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| Seri | es 1 | 223.936 | 238.89 | 100.633 | 110.38 | 71.408 | 85.110 |
| 142.267 | 150.48 | 226.839 | 242.18 | 102.585 | 111.84 | 73.158 | 86.590 |
| 144.794 | 153.56 | 229.707 | 245.29 | 104.553 | 114.02 | 74.912 | 88.235 |
| 147.334 | 156.47 | 232.554 | 249.10 | 106.523 | 115.67 | 76.648 | 89.721 |
| 149.665 | 158.99 | 235. 392 | 251.79 | 108.483 | 117.52 | 78.371 | 91.207 |
| 152.056 | 161.76 | 238.209 | 255.00 | 110.439 | 119.24 | 80.105 | 92.711 |
| 154.573 | 164.81 | 241.003 | 257.48 | 112.369 | 121.05 | 81.853 | 94.290 |
| 157.063 | 167.87 | 243.829 | 260.69 | 114.299 | 122.72 | 83.618 | 95.826 |
| 159.418 | 170.97 | Seri | ies 3 | 116.236 | 124.58 | 85.388 | 97.317 |
| 161.791 | 174.03 | 245.835 | 262.31 | Series | 6 | 87.152 | 98.842 |
| 164.181 | 177.40 | 248.683 | 265.60 | 116.432 | 125.01 | 88.910 | 100.47 |
| 166.546 | 180.78 | 251.509 | 268.74 | 118.359 | 126.66 | 90.677 | 101.93 |
| 168.889 | 184.39 | 254.342 | 271.74 | 120.292 | 128.72 | Seri | es 8 |
| 171.228 | 188.13 | 257.182 | 274.92 | 122.253 | 130.46 | 182.115 | 203.82 |
| 173.583 | 192.67 | 260.001 | 278. 28 | 124.224 | 132.27 | 183.211 | 201.27 |
| 175.931 | 197.74 | 262.830 | 281.33 | 126.209 | 134.21 | 184.327 | 200.84 |
| 178.266 | 205.75 | 265.691 | 284.55 | 128.206 | 136.13 | 185.440 | 200.68 |
| 180.605 | 213.00 | 268.533 | 287.87 | 130.215 | 138.23 | 186.551 | 201.29 |
| 182.942 | 203.25 | 271.358 | 291.07 | 132.287 | 140.32 | 187.659 | 201.91 |
| 185.250 | 201.87 | 274.188 | 294.01 | 134.353 | 142.47 | 188.782 | 202.69 |
| 187.531 | 202.89 | 276.997 | 297.81 | 136.368 | 144.67 | 189.925 | 203.43 |
| Series 2 |  | Series 4 |  | 138.399 | 146.73 | 191.065 | 204.32 |
| 187.146 | 201.92 | 279.816 | 299.94 | 140.446 | 148.97 | Series 9 |  |
| 189.571 | 203.70 | 282.655 | 302.99 | 142.509 | 151.18 | 173.981 | 193.16 |
| 192.027 | 205. 25 | 285.502 | 306.32 | 144.589 | 153.51 | 176.192 | 198.38 |
| 194.514 | 207.51 | 288. 352 | 309.64 | Series | 7 | 177.476 | 201.00 |
| 197.057 | 210.10 | 291.174 | 313.32 | 55.803 | 69.701 | 177.849 | 202.93 |
| 199.680 | 212.87 | 294.009 | 315.59 | 57.703 | 71.753 | 178.215 | 205.09 |
| 202.363 | 215.69 | 296.862 | 318.24 | 59.411 | 73.517 | 178.579 | 206.24 |
| 205.077 | 218.47 | 299.698 | 321.16 | 61.058 | 75.264 | 178.942 | 208.32 |
| 207.832 | 221.30 | Series 5 |  | 62.739 | 76.782 | 179.304 | 210.69 |
| 210.595 | 224.50 | 91.195 | 102.03 | 64.447 | 78.554 | 179.663 | 213.16 |
| 213.330 | 227.39 | 93.075 | 103.75 | 66.162 | 80.104 | 180.022 | 215.83 |
| 216.071 | 230.42 | 94.948 | 105.45 | 67.914 | 81.788 | 180.379 | 215.97 |
| 218.647 | 233.40 | 96.816 | 107.06 | 69.660 | 83.441 | 180.737 | 215.33 |
| 221.162 | 236.11 | 98.711 | 108.73 |  |  | 181.096 | 210.46 |

Table III-7. (continued).


Table III-8. Molar thermodynamic functions of p-terphenyl.

| $\frac{T}{R}$ | $\frac{C_{p}}{J-K^{-1} \cdot \operatorname{mol}^{-1}}$ | $\frac{\{H(T)-H(0)\} / T}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{S(T)-S(0)}{J \cdot K^{-7} \cdot \operatorname{mol}^{-1}}$ | $\frac{-\{G(T)-H(0)\} / T}{J-K^{-1}-\operatorname{mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 0.392 | 0.101 | 0.131 | 0.030 |
| 10 | 3.27 | 0.82 | 1.08 | 0.27 |
| 20 | 16.49 | 5.07 | 7.07 | 1.95 |
| 30 | 32.67 | 11.57 | 16.75 | 5.19 |
| 40 | 47.44 | 18.75 | 28.23 | 9.49 |
| 50 | 59.86 | 25.76 | 40.19 | 14.44 |
| 60 | 70.28 | 32.33 | 52.05 | 19.73 |
| 70 | 79.46 | 38.43 | 63.59 | 25.17 |
| 80 | 87.72 | 44.08 | 74.74 | 30.67 |
| 90 | 95.57 | 49.37 | 85.53 | 36.17 |
| 100 | 103.19 | 54.37 | 96.00 | 41.64 |
| 110 | 110.81 | 59.15 | 106.19 | 47.05 |
| 120 | 118.63 | 63.78 | 116.16 | 52.39 |
| 130 | 126.68 | 68.31 | 125.98 | 57.68 |
| 140 | 134.84 | 72.77 | 135.66 | 62.90 |
| 150 | 143.45 | 77.19 | 145.26 | 68.08 |
| 160 | 152.70 | 81.62 | 154.81 | 73.20 |
| 170 | 162.77 | 86.09 | 164.36 | 78.28 |
| 180 | 174.45 | 90.66 | 173.98 | 83.33 |
| 190 | 191.06 | 95.47 | 183.81 | 88.35 |
| 200 | 190.33 | 100.43 | 193.81 | 93.39 |
| 210 | 196.86 | 104.86 | 203.24 | 98.40 |
| 220 | 204.98 | 109.22 | 212.58 | 103.37 |
| 230 | 213.81 | 113.57 | 221.88 | 108.32 |
| 240 | 222.75 | 117.93 | 231.17 | 113.25 |
| 250 | 231.85 | 122.31 | 240.45 | 118.16 |
| 260 | 241.23 | 126.70 | 249.72 | 123.03 |
| 270 | 250.91 | 131.12 | 259.01 | 127.90 |
| 280 | 260.71 | 135.58 | 268.31 | 132.74 |
| 290 | 270.30 | 140.06 | 277.63 | 137.58 |
| 300 | 279.90. | 144.56 | 286.95 | 142.40 |
| 298.15 | 278.12 | 143.72 | 285.23 | 141.52 |

Table III-9. Molar thermodynamic functions of p-terphenyl-d 1 $^{\text {. }}$

| $T$ | $c_{p}$ | \{ $H(T)-H(0)\} / T$ | $S(T)-S(0)$ | $-\{G(T)-H(0)\} / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{\mathrm{J} \cdot \mathrm{R}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{J-K^{-7} \cdot \mathrm{~mol}^{-1}}$ | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| 5 | 0.421 | 0.109 | 0.142 | 0.033 |
| 10 | 3.56 | 0.89 | 1.17 | 0.28 |
| 20 | 18.19 | 5.59 | 7.71 | 2.12 |
| 30 | 35.41 | 12.68 | 18.37 | 5.68 |
| 40 | 50.64 | 20.32 | 30.69 | 10.38 |
| 50 | 63.30 | 27.68 | 43.39 | 15.71 |
| 60 | 74.10 | 34.53 | 55.91 | 21.37 |
| 70 | 83.77 | 40.89 | 68.07 | 27.18 |
| 80 | 92.67 | 46.81 | 79.84 | 33.03 |
| 90 | 101.22 | 52.39 | 91.25 | 38.87 |
| 100 | 109.83 | 57.69 | 102.36 | 44.66 |
| 110 | 118.88 | 62.85 | 113.25 | 50.40 |
| 120 | 128.26 | 67.90 | 123.99 | 56.09 |
| 130 | 137.97 | 72.92 | 134.64 | 61.72 |
| 140 | 148.43 | 77.94 | 145.24 | 67.31 |
| 150 | 159.32 | 82.99 | 155.85 | 72.86 |
| 160 | 171.76 | 88.14 | 166.52 | 78.38 |
| 170 | 185.90 | 93.46 | 177.34 | 83.88 |
| 180 | 215.90 | 99.21 | 188.59 | 89.38 |
| 190 | 203.50 | 104.70 | 199.60 | 94.90 |
| 200 | 213.19 | 109.87 | 210.27 | 100.40 |
| 210 | 223.79 | 115.04 | 220.93 | 105.89 |
| 220 | 234.82 | 120.24 | 231.59 | 111.36 |
| 230 | 245.72 | 125.46 | 242.27 | 116.82 |
| 240 | 256.22 | 130.69 | 252.95 | 122.27 |
| 250 | 266.93 | 135.92 | 263.63 | 127.71 |
| 260 | 278.16 | 141.17 | 274.31 | 133.14 |
| 270 | 289.48 | 146.46 | 285.03 | 138.57 |
| 280 | 300.54 | 151.76 | 295.75 | 143.99 |
| 290 | 311.27 | 157.08 | 306.49 | 149.41 |
| 300 | 321.55 | 162.39 | 317.22 | 154.82 |
| 298.15 | 319.66 | 161.41 | 315.23 | 153.82 |

portion as shown by the solid lines in Figure III-11, the excess heat capacities are separated as shown in Figure III-12. Although the transition temperature shifts to the lower temperature on deuteration as in the twist transition of biphenyl, the shape of the anomalies of the two compounds are very similar and the entropies of transition (1.63 J•K $\mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ ) are equal to each other, which fact suggests the same mechanism of the transition in the two compounds.

The critical exponent for heat capacity is determined by plotting the excess heat capacities of p-terphenyl measured in the series 26 as shown in Figure III-13, in which the temperature interval between the adjacent points was about 0.1 K . The same value of 0.13 is obtained below and above the transition. The positive value should result in the infinite heat capacity at the transition temperature, but the evidence of that was not found in our experiments. Chang ${ }^{53)}$ reported an apparent rounding of the anomaly near the transition temperature using the higher temperature resolution ( 0.025 K ).

The comparison of the results of the melted and the non-melted samples is shown in Figure III-14. There is no apparent difference between the two samples; it rules out the possibilities of the formation of metastable phases and poor crystallinity that affects the phase transition.

No anomaly was observed at about 8 K in contrast


Figure III-12. Excess molar heat capacities of p-terphenyl (open circle) and p-terphenyl-d 14 (filled circle).


Figure III-13. Determination of the critical exponent at the twist transition of p-terphenyl.


Figure III-14. Comparison of the anomaly due to the twist transition of p-terphenyl between the melted (square) and the non-melted (circle) samples.
to the report by Chen et al.54)
Properties of the phase transitions are summarized in Table III-12. The heat capacity values reported for p-terphenyl by Chang ${ }^{531}$ are in good agreement with ours. The differences in the enthalpy and the entropy of transition reflect the difference in the estimation of the normal portion. The value of the entropy of transition ( $1.63 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ ) is extremely larger than that of biphenyl although it is smaller than Rln2 $\left(\approx 5.76 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$. The transition temperature is also much higher than biphenyl. These are consistent with order-disorder nature of the transition 11,51) of p-terphenyl.

III-2-3 p-Quaterphenyl

Experimental
Commercially available p-quaterphenyl (nominal purity 99.9 moles per cent, Tokyo Kasei Kogyo Co., Ltd.) was purified further by fractional sublimation at about 470 K .

The powdered specimen, which weighed 9.9818 g (0.032577 mol) in vacuum, was loaded into the calorimeter vessel. The calorimeter was evacuated and sealed after the addition of a small amount of helium gas for heat exchange ( 8 kPa at room temperature); the
contribution of the helium to the total heat capacity was negligibly small. The sample contributed about 50 per cent to the total heat capacity including that of the calorimeter vessel below 20 K . As the temperature increased, the contribution of the sample decreased to 29 per cent at 100 K . Above 100 K , however, it increased again up to 43 per cent at room temperature.

The working thermometers, and the apparatus and the operation of the adiabatic calorimeter were the same as used in the measurements on biphenyl and biphenyl- $\mathrm{d}_{10}$.

Results and Discussion
The measured molar heat capacities are shown in Figure III-15 and tabulated in Table III-10 in chronological order. The temperature increment due to each energy input may be deduced from the adjacent mean temperatures; it was small enough to permit the curvature correction to be ignored in comparison with the experimental precision. After each energy input, thermal equilibrium within the vessel was attained in about 2 min below $15 \mathrm{~K}, 10$ min at about $50 \mathrm{~K}, 20 \mathrm{~min}$ at about 150 K , and 10 min above 200 K . Concerning thermal equilibration, no anomalous behavior was observed in the transition region.

Some thermodynamic functions at rounded temperatures were calculated from the primary results and given in Table III-11, in which the small


Figure III-15. Measured molar heat capacities of p-quaterphenyl.

Table III-10. Measured molar heat capacities of p-quaterphenyl.

| $\frac{T}{K} \quad$ | $\frac{c_{p}}{R^{-1} \cdot \text { mol }^{-1}}$ | $\frac{T}{K} \quad$ | $\frac{c_{p}}{\mathrm{k}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{\mathrm{~K}} \quad \overline{\mathrm{~J} \cdot 1}$ | $\frac{c_{p}}{\mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | 1 | 7.767 | 2.099 | 34.290 | 47.842 | 81.930 | 112.57 |
| 4.223 | 0.257 | 8.342 | 2.613 | 35.505 | 49.473 | 83.538 | 114.21 |
| 4.580 | 0.337 | 8.981 | 3.192 | 36.676 | 52.280 | 85.145 | 115.79 |
| 4.976 | 0.474 | 9.698 | 3.958 | 37.818 | 54.304 | 86.755 | 117.35 |
| 5.421 | 0.623 | 10.484 | 4.804 | 38.974 | 56.273 | 88.365 | 118.93 |
| 5.865 | 0.811 | 11.310 | 5.724 | 40.227 | 58.523 | 89.978 | 120.59 |
| 6.295 | 1.036 | 12.131 | 6.861 | 41.524 | 60.687 | 91.592 | 122.27 |
| 6.696 | 1.276 | 12.953 | 7.935 | 42.787 | 62.827 | Seri | ies 8 |
| 7.073 | 1.533 | 13.796 | 9.204 | 44.041 | 64.848 | 93.186 | 123.48 |
| 7.450 | 1.828 | Series | 4 | 45.290 | 66.786 | 94.749 | 125.28 |
| 7.851 | 2.175 | 14.858 | 10.872 | 46.553 | 68.748 | 96.387 | 126.79 |
| 8.288 | 2.556 | 15.902 | 12.476 | 47.833 | 70.748 | Seri | ies 9 |
| 8.776 | 3.011 | 17.071 | 14.474 | 49.116 | 72.754 | 96.237 | 126.25 |
| 9.342 | 3.586 | 18.315 | 16.740 | 50.443 | 74.689 | 97.912 | 128.08 |
| 10.030 | 4.331 | 19.530 | 18.993 | 57.826 | 76.646 | 99.641 | 129.89 |
| 10.829 | 5.233 | 20.694 | 21.232 | 53.210 | 78.655 | 107.401 | 131.53 |
| Series | 2 | Series | 5 | 54.627 | 80.651 | 103.195 | 133.28 |
| 3.884 | 0.161 | 14.186 | 9.795 | 56.077 | 82.579 | 105.008 | 135.23 |
| 4.099 | 0.239 | 15.211 | 11.381 | 57.520 | 84.492 | 106.827 | 137.21 |
| 4.419 | 0.306 | 16.334 | 13.210 | 58.960 | 86.394 | 108.654 | 139.17 |
| 4.804 | 0.407 | 17.511 | 15.267 | 60.398 | 88.285 | 110.488 | 140.98 |
| 5.227 | 0.553 | 18.694 | 17.435 | 61.858 | 89.973 | 112.316 | 142.92 |
| 5.663 | 0.726 | 19.909 | 19.741 | 63.344 | 91.873 | 114.123 | 144.72 |
| 6.093 | 0.921 | 21.126 | 22.046 | 64.834 | 93.651 | Series 10 |  |
| 6.506 | 1.154 | 22.311 | 24.356 | 66.331 | 95.400 | 117.152 | 147.71 |
| Series | 3 | 23.483 | 26.745 | 67.812 | 97.160 | 178.954 | 149.85 |
| 3.951 | 0.190 | Series | 6 | 69.251 | 98.852 | 120.769 | 151.67 |
| 4.210 | 0.222 | 24.567 | 28.868 | Series 7 |  | 122.582 | 153.55 |
| 4.498 | 0.327 | 25.623 | 30.962 | 70.712 | 100.40 | 124.393 | 155.02 |
| 4.887 | 0.429 | 26.749 | 33.223 | 72.247 | 102.25 | 126.203 | 157.17 |
| 5.331 | 0.589 | 27.931 | 35.493 | 73.812 | 103.94 | 128.010 | 159.07 |
| 5.811 | 0.793 | 29.169 * | 37.930 | 75.413 | 105.60 | 129.817 | 161.23 |
| 6.288 | 1.030 | 30.450 | 40.475 | 77.055 | 107.33 | 131.697 | 162.96 |
| 6.754 | 1.323 | 31.746 | 43.027 | 78.689 | 109.14 | 133.697 | 164.97 |
| 7.237 | 1.669 | 33.033 | 45.540 | 80.313 | 110.86 | 135.503 | 167.06 |

Table III-10. (continued).


Table III-it. Molar thermodynamic functions of p-quaterphenyl.

| T | $c_{p}$ | \{ $H(T)-H(0)\} / T$ | $S(T)-S(0)$ | $-\{G(T)-H(0)\} / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{J+K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{J-K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| 5 | 0.469 | 0.114 | 0.146 | 0.032 |
| 10 | 4.28 | 1.09 | 1.41 | 0.33 |
| 20 | 19.94 | 6.23 | 8.67 | 2.44 |
| 30 | 39.63 | 14.07 | 20.46 | 6.39 |
| 40 | 58.08 | 22.82 | 34.45 | 11.63 |
| 50 | 74.02 | 31.50 | 49.17 | 17.66 |
| 60 | 87.70 | 39.75 | 63.90 | 24.14 |
| 70 | 99.67 | 47.47 | 78.33 | 30.86 |
| 80 | 110.52 | 54.69 | 92.36 | 37.67 |
| 90 | 120.63 | 61.46 | 105.97 | 44.51 |
| 100 | 130.19 | 67.85 | 119.17 | 51.32 |
| 110 | 140.49 | 73.98 | 132.06 | 58.08 |
| 120 | 150.82 | 79.96 | 144.73 | 64.77 |
| 130 | 161.14 | 85.80 | 157.20 | 71.40 |
| 140 | 171.80 | 91.56 | 169.54 | 77.97 |
| 150 | 182.84 | 97.28 | 181.76 | 84.48 |
| 160. | 194.41 | 102.98 | 193.93 | 90.94 |
| 170 | 206.24 | 108.71 | 206.07 | 97.36 |
| 180 | 218.48 | 114.46 | 218.20 | 103.74 |
| 190 | 231.27 | 120.27 | 230.35 | 110.08 |
| 200 | 244.74 | 126.16 | 242.56 | 116.40 |
| 210 | 258.86 | 132.14 | 254.83 | 122.70 |
| 220 | 274.72 | 138.25 | 267.23 | 128.99 |
| 230 | 292.98 | 144.57 | 279.84 | 135.27 |
| 240 | 301.70 | 151.00 | 292.55 | 141.56 |
| 250 | 307.23 | 157.10 | 304.95 | 147.85 |
| 260 | 317.50 | 163.07 | 317.20 | 154.13 |
| 270 | 328.80 | 169.00 | 329.39 | 160.39 |
| 280 | 340.74 | 174.92 | 341.56 | 166.64 |
| 290 | 352.80 | 180.84 | 353.73 | 172.89 |
| 300 | 364.74 | 186.78 | 365.89 | 179.12 |
| 298.15 | 362.52 | 185.68 | 363.64 | 177.96 |



Figure III-16. Excess molar heat capacities of
p-quaterphenyl.

Table III-12. Properties of phase transitions of p-polyphenylenes.

|  | biphenyl |  | p-terphenyl | p-quaterphenyl |
| :---: | :---: | :---: | :---: | :---: |
| $T_{\text {trs }} / \mathrm{K}$ | $16.8 \pm 0.1$ | $40.4 \pm 0.2$ | $193.5 \pm 0.1$ | $233.0 \pm 0.5$ |
| region/ K | 15.3-18.3 | 30-47 | 145-225 | 180-270 |
| ${ }^{\mathrm{H}} \mathrm{trs}^{\mathrm{H}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$ | $0.15 \pm 0.02$ | $5.02 \pm 0.08$ | $304 \pm 20$ | $414 \pm 20$ |
| $\Delta_{\text {trs }} \mathrm{S} / \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ | $0.009 \pm 0.001$ | $0.129 \pm 0.003$ | $1.63 \pm 0.10$ | $1.82 \pm 0.10$ |
| $T_{\text {trs }} / \mathrm{K}$ | $20.2 \pm 0.1$ | $36.8 \pm 0.2$ | $180.3 \pm 0.1$ |  |
| region / K | 18.5-22.5 | 28-44 | 130-210 |  |
| $\Delta_{\mathrm{trs}} \mathrm{H} / \mathrm{J} \mathrm{~mol}^{-1}$ | $0.18 \pm 0.004$ | $4.61 \pm 0.08$ | $288 \pm 20$ |  |
| $\Delta_{\text {trs }} S / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ | $0.009 \pm 0.002$ | $0.128 \pm 0.003$ | $1.63 \pm 0.10$ |  |

contributions below 4 K were evaluated by smooth extrapolation to 0 K .

As seen in Figure III-15, the twist transition is observed as a broad anomaly with a heat capacity maximum at 233.0 K . The excess heat capacities due to the phase transition was obtained subtracting the normal portion of the heat capacity by drawing a smooth interpolating curve between the lower and the higher temperature sides as shown by the solid line in Figure III-15. The shape and the magnitude of the anomaly thus determined can be seen in Figure III-16, which extend over a very wide temperature range of about 90 K. The shape of the anomaly indicates that the transition is of higher-order.

Properties of the phase transition is given in Table III-12. The entropy of transition is the largest and the transition temperature is the highest in the first three members of p-polyphenylenes.

III-3 Qualitative interpretation of
twist phase transitions of p-polyphenylenes

It is interesting to compare the three lowest members of the p-polyphenylenes with regard to behavior at the twist transition. In biphenyl, the transition temperature is the lowest of the three and the entropy
value of the transition and the shape of the heat capacity anomaly are consistent with displacive nature of the transition associated with soft modes. 29-32)
p-Quaterphenyl also shows a broad anomaly which extends over a wide temperature range comparable to the case of biphenyl (about 40 per cent of the center temperature of the transition). However, the entropy of transition is larger by a factor of 14 than that of biphenyl although it is smaller than Rln2, which is expected if the mechanism of the transition is of a simple order-disorder type arising from the twisting of the molecule about the central $\mathrm{C}-\mathrm{C}$ bond.
p-Terphenyl is different from the other two in regard to the shape of the heat capacity anomaly, i.e. it is more like an Ising spin transition. The entropy of transition is, on the other hand, close to that in p-quaterphenyl. A critical phenomenon is reported for this transition. 32,63-69)

The reason why the transition temperatures are in the order of increasing molecular size may be understood if we take into account the increasing number of interacting atom pairs between adjacent molecules and within a molecule as the molecular size becomes larger. 84) It is therefore the overall combination of those intermolecular and intramolecular interactions that determines the force constant for the twisting motion.

The twisting of phenyl rings in a molecule is a
result of a subtle balancing of various forces. Inside a molecule, the repulsion between hydrogen atoms at the ortho positions favors the twisted conformation but delocalization of $\pi$-electrons is against it. Therefore, there must be an optimum twisting angle. Usually such a double-minimum potential tends to cause an order-disorder type of transition if there is a mechanism by which the probability of a molecule to assume one of the two minima is strongly dependent on the orientation of the neighboring molecules, i.e. a kind of stochastic effect. However, if dynamical coupling between neighboring molecules is such that there is a dispersion in a branch of the vibrational spectrum dependent on temperature, a soft mode transition would occur. In the intermediate cases, the stochastic and dynamical effects may be present at various ratio.

It probably depends on the distribution of vibrational modes whether the stochastic or the dynamical effects prevails in a particular substance. For biphenyl the dynamical effect plays a more important role while p-terphenyl seems to lie at the other extreme case where the stochastic mechanism is dominant.

Such situation may have a certain relation to the intramolecular twisting modes. As discussed in Chapter II, there are two intramolecular twisting modes in
p-terphenyl and three in p-quaterphenyl if phenyl rings are treated as rigid and the molecular symmetry as $D_{2 h}$. Biphenyl has only one twisting mode. It has been demonstrated that the twisting force-constant in biphenyl is small and that the coupling between the twisting degree of freedom and translational and rotational ones must be taken into account on considering the lattice vibration of biphenyl crystal.45,85-88) It is also shown by a latticedynamics calculation that the small force constant can explain the low temperature heat capacities (see Chapter IV). If one compares the shape of the anomalous portion of the heat capacity in p-quaterphenyl with that in biphenyl, one can infer that there must be twisting mode or modes in the p-quaterphenyl molecule that have small force constants. That is the $A_{u}$ mode, which has only one node as shown in Chapter II, oscillates in the same way as the biphenyl molecule and has a smallforee constant. In contrast to this, the two modes of p-terphenyl oscillate with larger force constant.

It is difficult to make quantitative calculations at this time because of lack of detailed information of the crystal structure, the intra- and intermolecular interactions, etc. However, it is possible qualitatively to understand the behavior of the three substances by using the composite model outlined here, and the isotope effect that the transition temperature
shift to the lower temperature on deuteration will also be rationalized within this model.

III-4 Ising type theory for p-terphenyl crystal

The examination of the crystal structures of p-polyphenylenes makes us to expect that the interaction within the ab plane is much stronger than in the direction of the $c$ axis, because the nearest neighbor distance between the molecular center of mass in the $a b$ plane is 0.49 nm in contrast to 1.35 nm in the c direction in the case of p-terphenyl. Indeed, the two dimensionality has been reported experimentally.52,61-64)

The room temperature phase of p-terphenyl is, as described in section III-1, the disordered one. Therefore, we do the examination based on the low temperature ordered structure. ${ }^{27)}$ The structure viewed along the $c$ axis is schematically shown in Figure III-17, where Roman numerals distinguish translationally inequivalent molecules. The solid line represents the triclinic unit cell, and the broken line shows the cell having the lattice constants 2 a and 2 b in terms of those of the room temperature phase. The intermolecular distances between the centers of mass are $R_{I-I I}=R_{I I-I I I}=R_{I I I-I V}=R_{I V-I}=0.487 \mathrm{~nm}$,


Figure III-17. Crystal structure of the low temperature phase of p-terphenyl viewed along the $c$ axis (schematic). Broken line represents 4 unit cells of the room temperature phase.
$R_{I-I I I}=R_{I I-I V}=0.555 \mathrm{~nm}$ in the $a b$ plane, and $R_{I-I}=R_{I I-I I}=R_{I I I-I I I}=R_{I V-I V}=1.353 \mathrm{~nm}$ in the $c$ direction. Roughly estimated molecular dimension is $1.350 \times 0.423 \mathrm{~nm}^{2}$.

It was assumed that the intermolecular interaction was expressed by the sum of interatomic potentials of Buckingham type, with parameters also used in Chapter II.

Since the "spin" in this case corresponds to the twisting of the central phenyl ring with respect to the plane determined by the two outer phenyl rings, the atomic positions of "wrong" molecules must be calculated first from those of "right" molecules reported experimentally. ${ }^{27}$ ) The atomic positions of "wrong" molecules were calculated under the conditions; no translation of the molecular center of mass and no rotation of the principal axes of the moment of inertia tensor. Summation was made over all the atom pairs within the molecule pair under consideration.

The calculated intermolecular and inter-"spin" interactions are summarized in Table III-13, where the inter-"spin" interaction energy is defined as,

$$
J=\frac{1}{2}\left(E_{r-r}+E_{W-w}\right)-\frac{1}{2}\left(E_{r-w}+E_{w-r}\right)
$$

It is clear that the interaction within the ab plane are much stronger than those perpendicular to the plane, and that the values for the inter-"spin" interaction energies for the I-III and II-IV pairs are

Table III-13. Calculated inter-"spin" interaction energies within the $a b$ plane (upper) and along the $c$ axis (lower). r, "right" molecule; w, "wrong" molecule.

$$
J=\frac{1}{2}\left(E_{\mathrm{r}-\mathrm{r}}+E_{\mathrm{w}-\mathrm{w}}\right)-\frac{1}{2}\left(E_{\mathrm{r}-\mathrm{w}}+E_{\mathrm{w}-\mathrm{r}}\right)
$$

|  | $E_{r-r}$ | $E_{\text {r }}$ W | $E_{\text {w-r }}$ | $E_{\text {W-W }}$ | $J$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ |
| I - II | -39.54 | -39.46 | -39.72 | -39.75 | -0.06 |
| II -III | -39.98 | -39.91 | -37.64 | -39.21 | -1.17 |
| III- IV | -38.75 | -36.86 | -36.59 | -37.97 | -1.64 |
| IV - I | -39.80 | -38.60 | -39.00 | -38.89 | -0.55 |
| I -III | -28.59 | -22.72 | -13.90 | -28.55 | -10.26 |
| II - IV | -28.28 | -20.65 | -25.43 | -28.32 | -5.26 |
| I - I | -7.25 | -7.34 | -7.34 | -7.43 | 0.00 |
| II - II | -7.28 | -7.14 | -7.14 | -6.97 | 0.02 |
| III-III | -7.40 | -7.10 | -7.10 | -6.76 | 0.02 |
| IV - IV | -7.16 | -7.13 | -7.13 | -7.06 | 0.02 |

larger than those for the I-II, II-III, III-IV and IV-I pairs. The later indicates the importance of the colinearlity of the molecular figure axes in the decision of the intermolecular interaction, which suggests the penetrating sublattice model (shown in Figure III-18) for the twist phase transition of p-terphenyl.

The penetrating sublattice model is reduced to the rectangular model neglecting the inter-sublattice interaction because of its small values (Table III-13), where the anisotropy in the ab plane is also neglected for simplicity. The heat capacity of the two dimensional rectangular Ising model is given by ${ }^{89)}$

$$
\begin{aligned}
C / N K_{B} & =\frac{2}{\pi}(L \operatorname{coth} 2 L)^{2}\left\{2 K_{1}-2 E_{1}-\left(1-K_{1}^{\prime \prime}\right)\left(\frac{\pi}{2}+K_{1}^{\prime \prime} K_{1}\right)\right\}, \\
L & =J / 2 K_{B} T, \\
K_{1} & =2 \tanh 2 L / \cosh 2 L, \\
K_{1}^{\prime \prime} & =2 \tanh ^{2} 2 L-1, \\
K_{1} & =\int_{0}^{\pi / 2} \sqrt{1-K_{1}^{2} \sin ^{2} \varphi} \\
E_{1} & =\int_{0}^{\pi / 2} \sqrt{1-K_{1}^{2} \sin ^{2} \varphi} d \varphi .
\end{aligned}
$$

The theoretical heat capacity curve with $T_{C}=193.5 \mathrm{~K}$ is shown in Figure III-19. There exist large tails on both the lower and the higher temperature sides of the transition.


Figure III-18. Penetrating sub-lattice model for the twist phase transition of p-terphenyl.


Figure III-19. Heat capacity of the two-dimensional square lattice of Ising model with the critical temperature of 193.5 K .

The experimental excess heat capacities due to the transition were obtained by subtracting the effective normal portion (Section III-2-2), which was determined by drawing the smooth interpolating curve. Therefore, the "excess" part of the theoretical heat capacity should be separated also in the same manner as the experimental for the sake of consistent comparison. This was done by drawing the smooth interpolating curve in the transition region experimentally determined (145 $K$ to 225 K$)$, and the "excess part" is shadowed in Figure III-19.

The comparison of the experimental and the theoretical excess heat capacities is shown in Figure III-20. The agreement of the curves is satisfactory. It is well known that the heat capacity of the two dimensional Ising model diverges as $\ln \mid T-T_{c}$ at $T_{c}$ and gives the critical exponent $\alpha=0$. On the other hand, the experimental value is not 0 but 0.13 . However, the discrepancy is not crucial because the exact formula of the heat capacity given above gives the slope of about 0.1 at $\left|T-T_{C}\right| / T_{c} \simeq 0.001$, where the experiments were done.


Figure III-20. Comparison between the measured (open circle) and the calculated (solid curve) excess heat capacities due to the twist transition of p-terphenyl.

1. G. L. Clark and L. W. Pickett, J. Am. Chem. Soc., 53(1931), 167.
2. J. Dhar, Indian J. Phys., $7(1932), 43$.
3. J. Trotter, Acta Cryst., 14(1961), 1135.
4. G. B. Robertson, Nature, 191(1961), 593.
5. A. Hargreaves and S. H. Rizvi, Acta Cryst., 15(1962), 365.
6. V. M. Kozhin and K. V. Mirskaya, Sov. Phys. Cryst., 14(1970), 938.
7. G. P. Charboneau and Y. Delugeard, Acta Cryst., B32(1976), 1420.
8. G. P. Charboneau and Y. Delugeard, Acta Cryst., B33(1977), 1586.
9. H. M. Rietveld, E. N. Maslen and C. J. B. Clews, Acta Cryst., B26(1970), 693.
10. P. J. L. Baudour, Acta Cryst., B28(1972), 1649.
11. P. J. L. Baudour, H. Cailleau and W. B. Yelon, Acta Cryst., B33(1977), 1773.
12. Y. Delugeard, J. Desuche and J. L. Baudour, Acta Cryst., B32(1976), 702.
13. O. Bastiansen, Acta Chem. Scand., 3(1949), 408.
14. J. Dale, Acta Chem. Scand., 11(1957), 640; ibid 11(1957), 650.
15. H. Suzuki, Bull: Chem. Soc. Jpn., 32(1959), 1340.
16. V. J. Eaton and D. Steele, J. Chem. Soc. Faraday II, 69(1973), 1601.
17. A. J. Grumadas and P. Poshkus, J. Chem. Soc. Faraday II, 75(1979), 1398.
18. A. J. Grumadas, D. P. Poshkus and A. V. Kiselev, J. Chem. Soc. Fararday II, 78(1982), 2013.
19. H. Kuwata, J. Sci. Hiroshima Univ. Ser A-II, 32(1968), 87.
20. S. Hino, K. Seki and H. Inokuchi, Chem. Phys. Lett., 36(1975), 335.
21. H. Cailleau, F. Moussa and J. Mons, Solid State Commun., 31(1979), 521.
22. A. Janner, T. Janssen and P. M. de Wolfe, Acta Cryst., A39(1983), 671.
23. H. Cailleau, J. L. Baudour and C. M. E. Zeyen, Acta Cryst., B35(1979), 426.
24. V. Heine and S. L. Price, J. Phys. C, 18(1985), 5259.
25. V. Petricek and P. Coppens, Acta Cryst., A41(1985), 478.
26. J. L. Baudour and M. Sanquer, Acta Cryst., B39 (1983), 671.
27. P. J. L. Baudour, Y. Delugeard and H. Cailleau, Acta Cryst., B32(1976), 150.
28. J. L. Baudour, Y. Delugeard and P. Rivet, Acta Cryst., B34(1978), 625.
29. P. S. Friedman, P. Kopelman and P. N. Prasad, Chem. Phys. Lett., 24(1974), 15.
30. A. Bree and M. Edelson, Chem. Phys. Lett., 46(1977), 500.
31. M. Wada, A. Sawada and Y. Ishibashi, J. Phys. Soc. Jpn., 50(1980), 737.
32. H. Cailleau, A. Girard, F. Moussa and C. M. E. Zeyen, Solid State Commun., 29(1979), 259.
33. A. Dworkin and H. Cailleau, J. Phys. (Paris) Lett., 41(1980), L-83.
34. A. S. Cullick and R. E. Gerkin, Chem. Phys., 23(1977), 217.
35. A. S. Cullick and R. E. Gerkin, Chem. Phys. Lett., 42(1976), 589.
36. A. Bree and M. Edelson, Chem. Phys. Lett., 55(1978), 319 .
37. T. Atake and H. Chihara, Solid State Commun., 35(1980), 131.
38. N. I. Wakayama, Chem. Phys. Lett., 83(1981), 413.
39. C. Ecolivet, M. Sanquer, J. Pellegrin and J. DeWitte, J. Chem. Phys., 78(1983), 6317.
40. D. Kirin, S. L. Chaplot, G. A. Mackenzie and G. S. Pawley, Chem. Phys. Lett., 102(1983), 105.
41. Y. Ishibashi, J. Phys. Soc. Jpn., $\underline{50(1981), 1255 .}$
42. P. Toledano and M. Guilluy, Ferroelectrics, 54(1984), 211.
43. J. C. Toledano and P. Toledano, Jpn. J. Appl. Phys., 24(1985); Suppl. 24-2, (in press).
44. H. Cailleau, F. Moussa, C. M. E. Zeyen and J. Bouillot, to be published.
45. N. M. Plakida, A. V. Belushkin, I. Natkaniec and T. Wasintynski, Phys. Status Solidi b, 118(1983), 129.
46. W. R. Busing, Acta Cryst., A39(1983), 340.
47. H. Cailleau, F. Moussa, C. M. E. Zeyen and J. Bouillot, Solid State Commun., 33(1980), 407.
48. S. B. Liu and M. S. Conradi, Phys. Rev. Lett., 54(1985), 1287.
49. B. Wyncke, F. Brehad and A. Hadni, J. Phys. (Paris), 38(1977), 1171.
50. A. Girard, H. Cailleau, Y. Marqueton and C. Ecolivet, Chem. Phys. Lett., 54(1978), 479.
51. B. A. Bolton and P. N. Prasad, Chem. Phys., 35(1981), 331.
52. H. Cailleau and A. Dworkin, Mol. Cryst. Liq. Cryst., 50(1979), 217.
53. S. S. Chang, J. Chem. Phys., 79(1983), 6229.
54. M. C. Chen, A. S. Cullick, R. E. Gerkin and A. P. Lundstedt, Chem. Phys., $\underline{46}(1980), 423$.
55. J. O. Williams, Chem. Phys. Lett., $\underline{42(1976), ~} 171$.
56. N. I. Wakayama, Chem. Phys. Lett., 70(1980), 397.
57. N. I. Wakayama, S. Matsuzaki and M. Mizuno, Chem. Phys. Lett., 74(1980), 37.
58. N. I. Wakayama, S. Matsuzaki and M. Mizuno, Chem. Phys. Lett., 75(1980), 587.
59. Z. Burnstein and D. F. Williams, J. Chem. Phys., 68(1978), 983.
60. J. Funfschilling, L. Altwegg, I. Z. Granacher, M. Chabr and D. F. Williams, J. Chem. Phys., 70(1970), 4622 .
61. H. Cailleau, J. L. Baudour, A. Girard and w. B. Yelon, Solid State Commun., 20(1976), 577.
62. H. Cailleau, J. L. Baudour, W. B. Yelon, A. Girard, Y. Delugeard and J. Desuche, J. Phys. (Paris), 37(1976), c1-233.
63. R. E. Lechner, B. Toudic and H. Cailleau, J. Phys. C, 17(1984), 405.
64. B. Toudic and R. E. Lechner, J. Phys. C, 17(1984), 5503.
65. T. Gullion, M. S. Conradi and A, Rigamonti, Phys. Rev. B, 31(1985), 4388.
66. H. Cailleau, A. Heidemann and C. M. E. Zeyen, J. Phys. C, 12(1979), L411.
67. Z. Pajak, N. Pislewski and J. Wasicki, Proc. XIth Sem. NMR, (1978), 190.
68. K. Kohda, N. Nakamura and H. Chihara, J. Phys. Soc. Jpn., 51(1982), 3936.
69. B. Toudic, J. Gallier, P. Rivet and H. Cailleau, Solid State Commun., 47(1983), 291.
70. T. Gullion and M. S. Conradi, Phys. Rev. B, 30(1984), 1133.
71. C. Ecolivet, B. Toudic and M. Sanquer, J. Chem. Phys., 81(1984), 599.
72. S. Ramdas and J. M. Thomas, J. Chem. Soc. Faraday II, 72(1976), 1251.
73. T. Atake and H. Chihara, J. Chem. Thermodyn., 3(1971), 51.
74. T. Atake and H. Chihara, Bull. Chem. Soc. Jpn., 47(1974), 2126.
75. T. Atake and H. Chihara, (unpublished); see also ref. 80.
76. T. Nakagawa et al., "SALS", Program Library, Computer Center, The University of Tokyo.
77. H. G. Huffman, G. S. Parks and A. C. Daniels, J. Am. Chem. Soc., 52(1930), 1547.
78. R. S. Bradley and T. G. Cleasby, J. Chem. Soc., (1953), 1690.
79. E. Morawetz, J. Chem. Thermodyn., 4 (1972), 455.
80. K. Nomoto, T. Atake, B. K. Chaudhuri and H. Chihara, J. Phys. Soc. Jpn., 52(1983), 3475.
81. T. Atake, K. Nomoto, B. K. Chaudhuri and H. Chihara, J. Chem. Thermodyn., 15(1983), 339.
82. T. Atake, K. Nomoto, B. K. Chaudhuri and H. Chihara, J. Chem. Thermodyn., 15(1983), 383.
83. W. L. McMillan, Phys. Rev. B, 14(1976), 1496.
84. J. C. Raich and E. R. Bermstein, Mol. Phys., 53(1984), 597.
85. E. Burgos, H. Bonadeo and E. D'Alessio, J. Chem. Phys., 65(1976), 2460.
86. I. Natkaniec, A. V. Belushkin and T. Wasiutyhski, Phys. Status Solidi b, 105(1981), 43.
87. H. Takeuchi, S. Suzuki, A. J. Dianoux and G. Allen, Chem. Phys., 55(1981), 153.
88. H. Bonadeo and E. Burgos, Acta Cryst., A38(1982), 29.
89. L. Onsager, Phys. Rev., 65(1944), 117.
```
Chapter IV Crossover of low temperature heat capacities of \(p\)-polyphenylenes
```

In the course of thermodynamic studies on phase transitions of p-polyphenylenes, the interesting phenomenon that the heat capacity curve of biphenyl crosses those of p-terphenyl and p-quaterphenyl at low temperature was found. The results of heat capacity measurements on biphenyl, on p-terphenyl, and on p-quaterphenyl are shown in Figure IV-1 in terms of the corresponding Debye characteristic temperatures assuming 6 degrees of freedom per molecule. Below about 20 K , the heat capacity of biphenyl decreases less steeply than that of p-terphenyl as the temperature decreases, and they cross each other at about 12 K. The crossover between biphenyl and p-quaterphenyl is also observed at about 6 K . The situation is the same for the deuterated analogues (biphenyl- $d_{10}$ and $p$-terphenyl- $d_{14}$ ).

Since the three compounds have a similar crystal structure and their intermolecular interactions are also similar, one would expect that the relative values of their heat capacities are primarily determined by the relative molecular mass, i.e. the heavier molecule should show a larger heat capacity in the low temperature region, where only low-lying lattice modes are excited. Therefore, there must be some motional


Figure IV-1. Debye characteristic temperatures corresponding to the measured heat capacities of biphenyl (solid curve), p-terphenyl (broken curve) and p-quaterphenyl (dot-dash curve), assuming 6 degrees of freedom per molecule.
mode or modes in biphenyl for which the force constant is much smaller than for the corresponding mode(s) in p-terphenyl and in p-quaterphenyl. It was suspected that the twisting mode about the central $\mathrm{C}-\mathrm{C}$ bond in biphenyl would be the candidate of such a mode, because (1) the force constant for the twisting vibration in biphenyl would be, as discussed in Chapter II, smaller than those of p-terphenyl and p-quaterphenyl, (2) the coupling of the twisting motion with the lattice vibration has been pointed out in many experimental ${ }^{1-3)}$ and theoretical ${ }^{1,2,4-6)}$ studies of the lattice vibrations of biphenyl crystal, and (3) the twisted conformation in p-terphenyl and in p-quaterphenyl is established below their order-disorder transition ${ }^{7-9)}$ in contrast with biphenyl in which the incommensurate structure in the b direction continues to exist even below the lock-in transition at $16.8 \mathrm{~K} .10,11$ )

It was then tried to rationalize the observed crossover by a simple model calculation of lattice vibration spectra for biphenyl and p-terphenyl crystals; the calculation was not made for p-quaterphenyl because the crossover between biphenyl and p-quaterphenyl must be explained in the same way. For biphenyl the average crystal structure at $22 \mathrm{~K}^{12}$ ) (Figure $I V-2$ ) was adapted, ignoring the incommensurability ${ }^{13)}$ which will play an important role only in the very low temperature region where the


Figure IV-2. Average crystal structure of biphenyl at
22 K. 121
contribution of phason becomes dominant. 14) The structure of p-terphenyl at $113 \mathrm{~K}^{7}$ ) was corrected for thermal expansivity down to 22 K by the method of linear extrapolation using the room temperature data. ${ }^{8)}$

The intermolecular interaction was expressed by the sum of atom-atom pair potentials of Buckingham type, in which the parameters were the same as in Chapters II and III. 15) The interactions were summed over molecules within the radius, 1 nm .

Phenyl rings are assumed to be rigid. Then, the Lagrangian $L$ of the system is written in terms of translational (superscript; $t$ ), rotational (r), and twisting $(\tau)$ coordinates in the harmonic approximation as follows;16)

$$
\begin{aligned}
& L= T-V, \\
& T= \frac{1}{2} \sum_{l} \sum_{k} \sum_{\alpha} m\left[\dot{u}_{\alpha}^{t}(l k)\right]^{2}+\frac{1}{2} \sum_{l} \sum_{k} \sum_{\alpha, \beta} I_{\alpha \beta}(k) \dot{u}_{\alpha}^{r}(l k) \dot{u}_{\beta}^{r}(l k) \\
&+\frac{1}{2} \sum_{l} \sum_{k} I_{\tau}\left[\dot{u}^{\tau}(l k)\right]^{2} \\
& V= V_{0} \\
&+\frac{1}{2} \sum_{l, l^{\prime}} \sum_{k, k^{\prime}} \sum_{\alpha, \beta} \phi_{\alpha \beta}^{t t}\left(l k ; l^{\prime} k^{\prime}\right) u_{\alpha}^{t}(l k) u_{\beta}^{t}\left(l^{\prime} k^{\prime}\right) \\
&+\frac{1}{2} \sum_{l, l^{\prime}} \sum_{k, k^{\prime}} \sum_{\alpha, \beta} \phi_{\alpha \beta}^{t r}\left(l k ; l^{\prime} k^{\prime}\right) u_{\alpha}^{t}(l k) u_{\beta}^{r}\left(l^{\prime} k^{\prime}\right) \\
&+\frac{1}{2} \sum_{l, l^{\prime}} \sum_{k, R^{\prime}} \sum_{\alpha, \beta} \phi_{\alpha \beta}^{r t}\left(l k ; l^{\prime} k^{\prime}\right) u_{\alpha}^{r}(l k) u_{\beta}^{t}\left(l^{\prime} k^{\prime}\right) \\
&+\frac{1}{2} \sum_{l, \ell^{\prime}} \sum_{k, K^{\prime}} \sum_{\alpha, \beta} \phi_{\alpha \beta}^{r r}\left(l k ; l^{\prime} k^{\prime}\right) u_{\alpha}^{r}(l k) u_{\beta}^{r}\left(l^{\prime} k^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \sum_{l, l^{\prime}, K^{\prime}} \sum_{\alpha} \phi_{\alpha}^{t \tau}\left(l k ; l^{\prime} k^{\prime}\right) u_{\alpha}^{t}(l k) u^{\tau}\left(l^{\prime} k^{\prime}\right) \\
& +\frac{1}{2} \sum_{l, l^{\prime}} \sum_{k, K^{\prime}} \sum_{\alpha} \phi_{\alpha}^{\tau \tau}\left(l k ; l^{\prime} k^{\prime}\right) u^{\tau}(l k) u_{\alpha^{t}}^{t}\left(l^{\prime} k^{\prime}\right) \\
& +\frac{1}{2} \sum_{l, l^{\prime}} \sum_{k, K^{\prime}} \sum_{\alpha} \phi_{\alpha}^{r \tau}\left(l k ; l k^{\prime}\right) u_{\alpha}^{r}(l k) u^{\tau}\left(l^{\prime} k^{\prime}\right) \\
& +\frac{1}{2} \sum_{l, l^{\prime}} \sum_{k, K^{\prime}} \sum_{\alpha} \phi_{\alpha}^{\tau r}\left(l k ; l^{\prime} k^{\prime}\right) u^{\tau}(l k) u_{\alpha}^{r}\left(l^{\prime} k^{\prime}\right) \\
& +\frac{1}{2} \sum_{l, l^{\prime}} \sum_{k, K^{\prime}} \phi^{\tau \tau}\left(l k ; l^{\prime} k^{\prime}\right) u^{\tau}(l k) u^{\tau}\left(l^{\prime} k^{\prime}\right),
\end{aligned}
$$

$$
\phi_{\alpha \beta}^{a b}\left(l k ; l^{\prime} k^{\prime}\right)=\frac{\partial^{2} V}{\partial u_{\alpha}^{a}(l k) \partial u_{\beta}^{b}\left(l^{\prime} k^{\prime}\right)},
$$

where $u$ is a displacement from an equilibrium position, "." denotes derivative with respect to time, and $\alpha$ and $\beta$ mean $x, y$, or $z$. A cell in the crystal is labelled by 1 and a molecule in a cell is by $k$. The equations of motion derived from the above Lagrangian were solved numerically for 512 points picked up uniformly in the first Brillouin zone.

The results of calculation are shown in Figures IV-3 and IV-4. On the assumption of the rigid body, where there are no terms involving the twisting coordinates in the Lagrangian, p-terphenyl shows larger heat capacities than biphenyl at all temperatures, as expected from the mass difference. It was then attempted to introduce a much greater flexibility in the biphenyl molecule, as compared with the p-terphenyl


Figure IV-3. Calculated vibration spectra for rigid biphenyl, flexible biphenyl, and rigid p-terphenyl.


Figure IV-4. Calculated Debye characteristic
temperatures for rigid p-terphenyl (solid curve),
flexible biphenyl (broken curve), and rigid biphenyl (dot-dash curve), assuming 6 degrees of freedom per molecule.
molecule, with regard to the twisting of phenyl rings. For the overall twisting force constant in the biphenyl crystal which should include intermolecular part in principle, the same intramolecular contribution, which would lead to a frequency of $60 \mathrm{~cm}^{-1}$, is used as in an isolated molecule. The corresponding force constants for p-terphenyl were assumed to be so large that the twisting modes begin to contribute to its heat capacities only at sufficiently higher temperatures. If it was done, biphenyl comes to show higher density of states in the low frequency region. On the other hand, p-terphenyl has higher density between 25 and 45 $\mathrm{cm}^{-1}$ due to its larger mass. Figure IV-4 shows the Debye temperature curves calculated from the spectra of Figure IV-3 and the greater torsional flexibility in biphenyl is reflected in the crossover in the heat capacities at about 12 K . Thus, it was concluded qualitatively that the crossover can be attributed to the twisting mode contribution of phenyl rings.

The interpretation given above has a certain consequence at still lower temperatures. Molecules having a small force constant for the twisting vibration as biphenyl molecule should show large heat capacities at low temperatures. These points were investigated by comparing the low temperature heat capacities with those of the similar molecule, 4,4'-difluorobiphenyl, on which the experimental details will be described in Section $\mathrm{V}-2-1$. The
crystal structure of 4,4'-difluorobiphenyl at low temperatures is the same as that at room temperature, i.e. it is of the biphenyl type (see Sections V-2-1 and V-3), and the greater $\pi$-conjugation is considered to favor greater softening of the twisting vibration because it will help flatten the potential at $\theta=0^{\circ}$, as discussed in Chapter II.

The behavior of the Debye temperature assuming 6 degrees of freedom per molecule in the low temperature region is shown in Figure $I V-5$. The heat capacity of biphenyl becomes larger than that of 4,4'-difluorobiphenyl below about 11 K in spite of the smaller mass of the former molecule. Thus, it is clear that the heat capacities of biphenyl crystal are much larger at low temperatures than those of the homologous molecules and derivatives. Therefore, the properties of biphenyl is very unique: The competing effect of the intra- and intermolecular interactions is very subtle and it play a critical role in the incommensurate structure of the crystal in such a way that the twisting motion is strongly coupled to the lattice vibration.


Figure IV-5. Debye characteristic temperatures corresponding to the measured heat capacities of biphenyl (solid curve) and 4,4'-difluorobiphenyl (open circle), assuming 6 degrees of freedom per molecule. The arrow indicates the location of the lock-in transition of biphenyl.

1. I. Natkaniec, A. V. Belushkin and T. Wasiutyhski, Phys. Status Solidi b, 105(1981), 413.
2. H. Takeuchi, S. Suzuki, A. J. Dianoux and G. Allen, Chem. Phys., 55(1981), 153.
3. A. V. Belushkin, I. Natkaniec, J. Wasicki and T. Zaleski, Phys. Status Solidi b, 123(1984), K115.
4. E. Burgos, H. Bonadeo and E. D'Alessio, J. Chem. Phys., 65(1976), 2460.
5. H. Bonadeo and E. Burgos, Acta Cryst., A 3 8(1982), 29.
6. N. M. Plakida, A. V. Belushkin, I. Natkaniec and T. Wasiutynski, Phys. Status Solidi b, 118(1983), 129.
7. P. J. L. Baudour, Y. Delugeard and H. Cailleau, Acta Cryst., B32(1976), 150.
8. P. J. L. Baudour, H. Cailleau and W. B. Yelon, Acta Cryst., B33(1977), 1773.
9. P. J. L. Baudour, Y. Delugeard and P. Rivet, Acta Cryst., B34(1978), 625.
10. H. Cailleau, F. Moussa and J. Mons, Solid State Commun., 31(1979), 521.
11. H. Cailleau, F. Moussa, C. M. E. Zeyen and J. Bouillot, to be published.
12. H. Cailleau, J. L. Baudour and C. M. E. Zeyen, Acta Cryst., B35(1979), 426.
13. J. L. Baudour and M. Sanquer, Acta Cryst., B39(1983), 75.
14. M. L. Boriack and A. W. Overhauser, Phys. Rev. B, 18(1978), 6454.
15. G. Taddei, H. Bonadeo, M. P. Marzocchi and S. Califano, J. Chem. Phys., 58(1971), 966.
16. G. Venkataraman and V. C. Sahni, Rev. Mod. Phys., 42(1970), 409.

# Chapter $V$ Possibility of phase transition in p-substituted biphenyls 

## V-1 Introduction

The crystals of the first three members of p-polyphenylene undergo phase transitions associated with a molecular conformation change, 1-13) which is a resultant of delicate balance between the inter- and the intramolecular interactions. However, their behavior around the phase transition is considerably different from one another. Biphenyl shows a phase transition (at 40.4 K ) of a displacive type associated with the soft modes,14-17) while p-terphenyl and p-quaterphenyl crystals undergo an order-disorder type transition ${ }^{11,18)}$ at much higher temperatures compared with biphenyl. Furthermore, the heat capacity anomalies of biphenyl and p-quaterphenyl is very broad but that of p-terphenyl is sharp. 19,20) It is possible qualitatively to understand the behavior of the three substances by considering the molecular symmetry and the potentials for the intramolecular twisting modes, as described in Section III-3.

If any substituents were introduced into the p-polyphenylene molecule, the intramolecular part of the potential curve for a twisting degree of freedom would be affected and the transition, if existed, would
reflect its contribution. Therefore, it is very important to study substituted p-polyphenylenes in order to understand the twist transition.

Information on crystal structures of symmetrically substituted biphenyls is tabulated in Table V-1. We can recognize the following characteristics. (1) Planar conformation may appear in the case that the atoms at the ortho positions are hydrogen. (2) The central C-C bond length does not depend strongly on the torsional angle between the two phenyl rings. (3) There may be a possibility of existence of the twist transition on cooling for the crystals of 4,4'-difluorobiphenyl and p, $\mathrm{p}^{\prime}$-biphenol (4,4'-dihydroxybiphenyl), as they have a planar conformation at room temperature.

The molecule of 4,4'-difluorobiphenyl in the gaseous state is twisted by about $40^{\circ}$. 30 ) The first determination of the structure of this substance by Dhar ${ }^{31)}$ showed that the crystal structure was the same as for the other known 4,4'-dihalogenobiphenyls (dichloro- and dibromobiphenyl); i.e. the molecule was twisted in the crystal.22,23) On the other hand, spectroscopic studies ${ }^{32,33)}$ suggested that the molecule should be planar in the crystal at room temperature. Halstead et al. ${ }^{21)}$ recently reported the space group determination by $x-r a y$ diffraction (given in Table V-1), showing planar conformation, which is compatible with their results of high resolution NMR

Table V-1. Structures of symmetrically substituted biphenyls at room temperature.

|  | space group | $\theta^{\mathrm{a}} /{ }^{\circ}$ | $1^{\text {b }} / \mathrm{nm}$ |
| :---: | :---: | :---: | :---: |
| biphenyl(BP) ${ }^{6)}$ | P2 $1 / \mathrm{a}$ | 0 | 0.1494 |
| 4,4'-difluoro- $\mathrm{BP}^{21)}$ | P2 $1 / \mathrm{a}$ | 0 |  |
| 4,4'-dichloro- $\mathrm{BP}^{22}$ ) | P2 $1_{1} / \mathrm{n}$ | 39,42 | $0.1487,0.1578$ |
| 4,4'-dibromo-BP ${ }^{231}$ | $\mathrm{P} 21 / \mathrm{n}$ | 38,42 |  |
| 4,4'-dimethyl-BP ${ }^{24}$ ) ( $p, p^{\prime}$-bitolyl) | $\mathrm{P} 21 / \mathrm{n}$ | 36,40 | 0.1486,0.1459 |
| 4,4'-dinitro- BP $^{251}$ | Pc | 33 | 0.1499 |
| 4,4'-dihydroxy-BP ${ }^{26}$ ) $\left(p, p^{\prime}\right.$-biphenol) | P2, $/ \mathrm{a}$ | 0 | 0.147 |
| perfluoro- $\mathrm{BP}^{27}$ ) | Fdd2 | 59.6 |  |
| perchloro- $\mathrm{BP}^{281}$ | Pben | 86.6 | 0.1522 |
| 2,2',4,4',6,6'-hexachloro- $\mathrm{BP}^{291}$ | C2/c | 87.3 | 0.1477 |

$\mathrm{a}_{\text {Twisting angle. }}{ }^{\mathrm{b}}$ Central $\mathrm{C}-\mathrm{C}$ bond length.
experiments. 21,34 )
4,4'-Difluorobiphenyl is a substituted biphenyl by fluorine atoms for hydrogen atoms at the 4 and 4' (p and $\left.\mathrm{p}^{\prime}\right)$ positions. The substitution induces greater delocalization of $\pi$-electrons, as discussed in Section II-2. The planar conformation in 4,4'-difluorobiphenyl should be more favored than in biphenyl, and its twist transition might be at a lower temperature.

The crystal structure of $p, p^{\prime}$-biphenol is now well known $26,35,36$; it is of biphenyl-type as shown in Figure V-1. The molecules occupy the inversion sites. Since the molecule has two hydroxyl groups surrounded with the four neighboring molecules, the hydrogen bonds form a two dimensional network and the "ice condition" should be applied to this system. The space group P21/a does not require the symmetric, nor the disordered hydrogen bonds. Therefore, if there exists an order-disorder transition of hydrogen bonds, the space group can remain unchanged (an isomorphous transition).

Taking into consideration the intramolecular potential calculated in Section II-2, the molecule of p,p'-biphenol will be twisted in the gaseous and the liquid states, although no reports have been published on the molecular structure in the isolated state.

Since the intramolecular potential curves for the twisting motion calculated for 4,4'-difluorobiphenyl and p,p'-biphenol are very similar to each other as


Figure v-1. Crystal structure of p, p'-biphenol at room temperature. Broken line represents hydrogen-bond.
described in Section II-2, a similar twist transition might be observed if the property of the transition was primarily determined by the intramolecular interaction. However, there exists a rather strong intermolecular interaction in $p, p^{\prime}-b i p h e n o l$ crystal, i.e. hydrogen bond. Therefore, it is very interesting to compare the properties of 4,4'-difluorobiphenyl and p,p'-biphenol.

In addition to the two substances described above, studies on p-phenylphenol (4-hydroxybiphenyl) were made as Brock and Haller ${ }^{37}$ ) recently reported the possibility of existence of the phase transition similar to that of biphenyl. They made structure refinements on two polymorphs. The crystal grown from solution was reported to belong to the space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$ with cell constants $\mathrm{a}=1.5472 \mathrm{~nm}, \mathrm{~b}=0.5469$ $\mathrm{nm}, \mathrm{c}=2.0600 \mathrm{~nm}$, and $\mathrm{z}=8$ at room temperature. There were two independent, nearly planar molecules $\left(\theta=2.3^{\circ}\right.$ and $2.0^{\circ}$ ) in an asymmetric unit (primitive unit cell). On the other hand, the crystal grown by sublimation under reduced pressure was reported to belong to the space group $\mathrm{P} 2_{1} / \mathrm{a}$ with cell constants $a=0.8067 \mathrm{~nm}$, $\mathrm{b}=0.5449 \mathrm{~nm}, \mathrm{c}=2.0022 \mathrm{~nm}, \quad \beta=95.14^{\circ}$, and $\mathrm{z}=4$ at room temperature. There was only one independent, nearly planar molecule in an asymmetric unit. In both polymorphs, the hydrogen bonds form one dimensional chain in contrast to the two dimensional network in crystalline p, p'-biphenol.26,35,36) From the
consideration on the densities of two polymorphs, they suggested that the orthorhombic $\left(P 21_{1} 1_{1}\right)$ form was more stable at low temperatures. Satellite reflections were observed in the experiments on the monoclinic ( $\mathrm{P} 2_{1} / \mathrm{a}$ ) form at room temperature, which could be related to a structural modulation involving rotation about the long molecular axis. Thus, heat capacity measurements were made on the sublimed and the sublimed-melted specimens for the sake of comparison. The powder X-ray diffraction patterns and the Raman spectra of lattice modes were also recorded for both the specimens.

In this chapter, experimental results on the three substances, 4,4'-difluorobiphenyl, p,p'-biphenol and p-phenylphenol, are described in detail and discussed in the connection with the intra- and the intermolecular interactions.

V-2 Heat capacities of the p-substituted biphenyls

V-2-1 4,4'-Difluorobiphenyl

Experimental
4,4'-Difluorobiphenyl was purchased from ICN Pharmaceuticals, Inc. and purified by the method of fractional sublimation in vacuum at room temperature. In order to avoid possible formation of any metastable phases and to improve crystallinity, the specimen was
melted under a helium atmosphere (105 Pa), cooled gradually down to room temperature for recrystallization, and pulverized gently. The purity of the specimen used for the calorimetry was better than 99.9 moles per cent as confirmed by gaschromatography. The powdered specimen was loaded into the calorimeter vessel, which was sealed after addition of a small amount of helium gas (6 kPa at room temperature) for heat exchange. The contribution of the helium to the heat capacity was negligibly small. The amount of the sample was $14.7851 \mathrm{~g}(0.0777378 \mathrm{~mol})$ after the buoyancy correction had been applied. The contribution of the sample to the total heat capacity including that of the calorimeter vessel was 67 per cent at 10 K , which decreased to 39 per cent at 100 K and then increased to 52 per cent at 300 K as the temperature rose.

The working thermometers, and the apparatus and the operation of the adiabatic calorimeter were the same as described in Chapter III.

Results and Discussion
The measurements of the heat capacities were made between 3 and 300 K ; the primary results are shown in Figure V-2 and tabulated in Table V-2 in chronological order. The temperature increment of each measurement may be deduced from the adjacent mean temperatures,


Figure $V-2$. Measured molar heat capacities of 4, $4^{\prime}$-difluorobiphenyl.

Table V-2. Measured molar heat capacities of 4,4'-difluorobiphenyl.


Table V-2. (continued).


Table v-3. Molar thermodynamic functions of 4,4'-difluorobiphenyl.

| $T$ | $C_{p}$ | $(H(T)-H(0)) / T$ | $S(T)-S(0)$ | $-\{G(T)-H(0)\} / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{J \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1}-\mathrm{mol}^{-1}}$ | $\mathrm{J} \cdot \mathrm{K}^{-7} \cdot \mathrm{~mol}^{-1}$ |
| 5 | 0.329 | 0.077 | 0.098 | 0.021 |
| 10 | 3.16 | 0.76 | 0.99 | 0.22 |
| 20 | 16.02 | 4.93 | 6.78 | 1.85 |
| 30 | 30.28 | 11.05 | 16.02 | 4.97 |
| 40 | 42.32 | 17.42 | 26.45 | 9.03 |
| 50 | 52.06 | 23.40 | 36.97 | 13.57 |
| 60 | 60.13 | 28.87 | 47.20 | 18.33 |
| 70 | 67.27 | 33.86 | 57.01 | 23.16 |
| 80 | 73.78 | 38.44 | 66.42 | 27.98 |
| 90 | 80.02 | 42.72 | 75.48 | 32.76 |
| 100 | 86.21 | 46.76 | 84.23 | 37.47 |
| 110 | 92.49 | 50.63 | 92.74 | 42.11 |
| 120 | 98.82 | 54.38 | 101.06 | 46.68 |
| 130 | 105.12 | 58.04 | 109.21 | 51.17 |
| 140 | 111.59 | 61.64 | 117.24 | 55.61 |
| 150 | 118.09 | 65. 18 | 125.16 | 59.98 |
| 160 | 124.95 | 68.70 | 133.00 | 64.30 |
| 170 | 131.53 | 72.20 | 140.77 | 68.57 |
| 180 | 138.34 | 75.69 | 148.48 | 72.79 |
| 190 | 145.16 | 79.16 | 156.14 | 76.98 |
| 200 | 152.11 | 82.64 | 163.76 | 81.13 |
| 210 | 159.21 | B6. 11 | 171.36 | 85. 24 |
| 220 | 166.21 | 89.60 | 178.93 | 89.33 |
| 230 | 173.30 | 93.08 | 186.47 | 93.39 |
| 240 | 180.52 | 96.57 | 194.00 | 97.43 |
| 250 | 187.74 | 100.07 | 201.51 | 101.44 |
| 260 | 195.04 | 103.59 | 209.02 | 105.43 |
| 270 | 202.38 | 107.11 | 216.52 | 109.41 |
| 280 | 209.73 | 110.64 | 224.01 | 113.37 |
| 290 | 216.95 | 114.19 | 231.50 | 117.31 |
| 300 | 224.10 | 117.73 | 238.97 | 121.24 |
| 298.15 | 222.77 | 117.07 | 237.59 | 120.52 |

Table v-4. Third law entropy of 4,4'-difluorobiphenyl.

|  | $s / J \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| :---: | :---: |
| 0 to 3 K (smooth extrapolation) | 0.019 |
| 3 to 298.15 K (graphical) | 273.59 |
| sublimation ${ }^{\text {a }}$ | 305. |
| entropy of real gas at 298.15 K | 543. |
| compression and correction to ideal gas ${ }^{\text {a,b }}$ | -101.3 |
| $S^{\circ}\left(4,4^{\prime}\right.$-difluorobiphenyl, $\left.298.15 \mathrm{~K}, \mathrm{~g}, \mathrm{P}=100000 \mathrm{~Pa}\right)$ | 441. |
| ${ }^{a} \Delta_{\text {vap }} H=91200 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \text { and } P=0.5092 \mathrm{~Pa} \text { at } 298.1 .5 \mathrm{~K} .{ }^{38)}$ |  |
| Using Berthelot's equation of state. |  |

which is small enough to neglect the curvature correction in comparison with the experimental precision. After each energy input was over, thermal equilibrium within the calorimeter vessel was attained within 1 min below 30 k , in 5 min at 50 K , 15 min at 70 $\mathrm{K}, 25 \mathrm{~min}$ between 80 and 180 K , and 20 min above 200 K . Some thermodynamic functions calculated from the present results are given for rounded temperatures in Table v-3, in which small contributions below 4 K were estimated by smooth extrapolation from the higher temperature side. The third law entropy of ideal-gas 4,4'-difluorobiphenyl, which involved previous vapor pressure data, ${ }^{38)}$ was calculated as summarized in Table V -4.

As seen in Figure V-2, no apparent thermal anomaly exists in the temperature range covered in this study. The measured heat capacities in the low temperature region were converted to the equivalent Debye characteristic temperatures as shown in Figure $v-3$, assuming that there are 6 degrees of freedom per molecule. The Debye temperature curve does not show any anomaly either, in contrast to the case of solid biphenyl in which there is a broad, shallow minimum in the Debye temperatures centered at 16.8 K (see Section III-2-1). Therefore, it is concluded that there is no phase transition in 4,4'-difluorobiphenyl crystal between 4 and 300 K ; if there were any, its entropy of transition would be smaller than about


Figure V-3. Debye characteristic temperatures corresponding to the measured heat capacities of biphenyl (solid curve) and 4,4'-difluorobiphenyl (open circle), assuming $6^{*}$ degrees of freedom per molecule. The arrow indicates the location of the lock-in transition of biphenyl.
$0.005 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$.
It was anticipated that the fluorine substitution would enhance the $\pi$-conjugation across the central $\mathrm{C}-\mathrm{C}$ bond, and displacing the twist transition to a lower temperature than for biphenyl. Now, as no phase transition was found in 4,4'-difluorobiphenyl, there remain several possibilities as to what occurs in 4,4'-difluorobiphenyl. It is improbable to believe that the twist transition in 4,4'-difluorobiphenyl exists below the lowest temperature of the present study for the following reason. Figure V-3 shows that the heat capacity of 4,4'-difluorobiphenyl becomes smaller than that of biphenyl below about 11 K in spite of the greater mass. This means that, in the crystal, the molecule of 4,4'-difluorobiphenyl is harder and therefore the potential barrier hindering the twisting motion is steeper than that of biphenyl in contrast to isolated states (see Section II-2).

The question then remains as to whether the potential in the crystal has a double or a single minimum. The double-minimum potential model is not consistent with experimental results and the argument given above; double-minimum potential would give rise to a phase transition.

We are therefore led to the conclusion that the molecule of 4,4'-difluorobiphenyl in the crystal has a single, steep minimum in the potential that hinders
twisting of the central $C-C$ bond all the way from 0 K through room temperature. The structure shown in Table V-1 for this molecule may not be then the result of a statistical average but may be a fixed conformation, although there still remains the possibility that the molecule is twisted ${ }^{31)}$ at all temperatures as in other 4,4'-dihalogenobiphenyls.22,23) This point will be analyzed in detail in Section $\mathrm{V}-3$.
v-2-2 p,p'-Biphenol

Experimental
A sample of $p, p^{\prime}$-biphenol was purchased from Tokyo Kasei Kogyo Co., Ltd., and purified by fractional sublimation at about 450 K in vacuum. The mass percentages of $C$ and $H$ were 77.41 (calculated 77.40) and 5.41 (5.41), respectively for the purified sample as determined by chemical analysis. The amount of the sample used for heat capacity measurements was 13.5333 $g(0.0726776$ mol) after buoyancy correction, which contributed 52 per cent to the total heat capacity including that of the calorimeter vessel at $10 \mathrm{~K}, 36$ per cent at $100 \mathrm{~K}, 43$ per cent at 200 K , and 51 per cent at 300 K . A small amount of helium gas (7 kPa at room temperature) was also put into the calorimeter vessel for heat exchange, and its contribution to the total heat capacity was negligibly small.

The working thermometers, and the apparatus and the operation of the adiabatic calorimeter were the same as described in Chapter III.

Results and Discussion
The measured heat capacities of p,p'-biphenol from 3 K to 310 K are shown in Figure $\mathrm{V}-4$ and tabulated in Table V-5 in chronological order. After each heat input was over, thermal equilibrium within the calorimeter vessel was attained within 1 min between 7 and 30 K , in 7 min at $50 \mathrm{~K}, 25 \mathrm{~min}$ at 100 K , and 15 min above 200 K . However, below 6 K the time needed for equilibration was long as 7 min; it will be described in detail in the following.

Some thermodynamic functions obtained through manipulation of the measured values are tabulated in Table V-6, where the small contributions below 4 K were estimated by smooth extrapolation from the higher temperature side.

The Debye characteristic temperatures corresponding to the measured heat capacities in the low temperature region are shown in Figure $\mathrm{V}-5$ assuming 9 degrees of freedom per molecule. As seen in Figures V-4 and V-5, no anomalous behavior of heat capacity was observed in the temperature region covered in this study. Therefore, it is concluded that there is no phase transition in $p, p^{\prime}-$ biphenol crystal between 4 and


Figure V-4. Measured molar heat capacities of p, p'-biphenol.

Table v-5. Measured molar heat capacities of p,p'-biphenol.

| $\frac{T}{\mathrm{~K}}$ | $\frac{C_{D}}{J \cdot K^{-1} \cdot \text { mol }^{-1}}$ | $\frac{T}{X} \quad-$ | $\frac{c_{Q}}{J-K^{-1} \cdot \operatorname{mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1}-\operatorname{mol}^{-1}}$ | $\frac{T}{X}$ | $\frac{c_{0}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | 1 | 9.332 | 1.409 | 52.637 | 45.994 | 26.392 | 18.049 |
| 90.126 | 73.610 | 10.180 | 1.896 | 54.121 | 47.310 | 27.499 | 19.355 |
| 91.474 | 74.643 | Series | 7 | 55.667 | 48.622 | 28.596 | 20.652 |
| 93.191 | 75.806 | 10.659 | 2.179 | 57.252 | 49.996 | 29.678 | 21.937 |
| 94.987 | 77.011 | 12.112 | 3.185 | 58.884 | 51.348 | 30.738 | 23.207 |
| 96.875 | 78.266 | 13.359 | 4.145 | 60.564 | 52.698 | Seri | ies 12 |
| 98.832 | 79.567 | Series | 8 | 62.248 | 53.990 | 101.657 | 81.274 |
| 100.826 | 80.878 | 14.987 | 5.562 | 63.913 | 55.315 | 103.711 | 82.605 |
| Series | 2 | 16.827 | 7.253 | 65.581 | 56.600 | 105.805 | 84.177 |
| 3.641 | 0.038 | 18.453 | 8.935 | 67.265 | 57.847 | 107.944 | 85.619 |
| 4.001 | 0.054 | 20.018 | 10.631 | 68.969 | 59.125 | 110.089 | 87.109 |
| 4.412 | 0.071 | Series | 9 | 70.677 | 60.372 | 112.197 | 88.588 |
| 4.786 | 0.095 | 14.455 | 5.083 | 72.403 | 61.638 | 114.293 | 90.000 |
| 5.219 | 0.146 | 16.120 | 6.578 | 74.156 | 62.871 | 116.384 | 91.422 |
| 5.768 | 0.258 | 17.721 | 8.151 | 75.921 | 64.118 | 118.464 | 92.885 |
| Series | 3 | 19.163 | 9.693 | 77.702 | 65.367 | 120.565 | 94.373 |
| 7.249 | 0.584 | 20.527 | 11.187 | 79.486 | 66.600 | 122.666 | 95.809 |
| 8.077 | 0.890 | 21.865 | 12.699 | 81.261 | 67.788 | 124.752 | 97.236 |
| Series | 4 | 23.219 | 14.285 | 83.026 | 69.025 | 126.833 | 98.692 |
| 3.937 | 0.045 | 24.608 | 15.929 | 84.785 | 70.212 | 128.911 | 100. 12 |
| 4.290 | 0.057 | Series | 10 | 86.540 | 71.371 | 131.006 | 101.64 |
| 4.656 | 0.102 | 25.748 | 17.279 | 88.292 | 72.575 | 133.091 | 103.13 |
| 5.156 | 0.164 | 27.294 | 19.106 | 90.048 | 73.780 | 135.172 | 104.64 |
| 5.762 | 0.263 | 29.655 | 21.921 | Series | 11 | 137.272 | 106.22 |
| 6.451 | 0.409 | 32.090 | 24.810 | 12.733 | 3.576 | 139.392 | 107.73 |
| 7.255 | 0.601 | 33.765 | 26.748 | 13.698 | 4.385 | 141.521 | 109.27 |
| 8.081 | 0.868 | 35.432 | 28.647 | 14.594 | 5.169 | 143.651 | 110.76 |
| Series | 5 | 37.106 | 30.538 | 15.497 | 5.994 | 145.803 | 132.37 |
| 4.104 | 0.052 | 38.753 | 32.321 | 16.456 | 6.863 | 147.960 | 113.89 |
| 4.519 | 0.101 | 40.372 | 34.062 | 17.469 | 7.877 | 150.119 | 115.40 |
| Series | 6 | 41.967 | 35.708 | 18.559 | 9.031 | 152.269 | 117.02 |
| - 5.241 | 0.130 | 43.558 | 37.394 | 19.710 | 10.279 | 154.402 | 118.32 |
| 5.693 | 0.226 | 45.107 | 38.901 | 20.858 | 11.553 | 156.515 | 119.92 |
| 6.248 | 0.352 | 46.622 | 40.358 | 21.976 | 12.826 | 158.597 | 121.47 |
| 6.943 | 0.519 | 48.151 | 41.877 | 23.077 | 14.116 | 160.690 | 122.96 |
| 7.716 | 0.748 | 49.664 | 43.326 | 24.174 | 15.421 | 162.817 | 124.50 |
| 8.514 | 1.041 | 51.161 | 44.675 | 25.279 | 16.726 | 164.944 | 126.06 |

Table V-5. (continued).

| $\frac{T}{K}$ | $\frac{C_{p}}{J-K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J-K^{-1} \cdot \text { mol }^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1} \cdot \operatorname{mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 167.051 | 127.58 | 230.988 | 174.40 | 295.904 | 222.64 | 29.075 | 21.227 |
| 169.168 | 129.08 | 233.125 | 176.24 | 298.140 | 224.33 | 29:789 | 22.062 |
| 171.285 | 130.52 | 235.246 | 177.47 | 300.383 | 225.97 | Ser | ies 16 |
| 173.384 | 132.00 | 237.377 | 179.06 | 302.616 | 227.59 | 14.258 | 4.919 |
| 175.496 | 133.44 | 239.519 | 180.66 | 304.832 | 229.23 | 14.885 | 5.469 |
| 177.613 | 135.06 | 241.647 | 182.10 | 307.051 | 230.89 | 15.504 | 6.005 |
| Series 13 |  | 243.783 | 183.81 | 309.279 | 232.52 | 16.097 | 6.547 |
| 179.581 | 135.56 | 245.937 | 185.43 | 311.517 | 234.07 | 16.671 | 7.084 |
| 181.681 | 137.21 | 248.074 | 187.04 | 313.762 | 235.76 | 17.243 | 7.630 |
| 183.108 | 139.03 | 250.188 | 188.58 | 315.995 | 237.53 | 17.832 | 8.251 |
| 185.955 | 140.55 | 252.314 | 190.03 | Series 15 |  | 18.424 | 8.874 |
| 188.803 | 142.16 | 254.450 | 191.72 | 14.332 | 4.979 | 19.006 | 9.493 |
| 190.251 | 143.75 | 256.591 | 193.38 | 15.126 | 5.674 | 19.580 | 10.120 |
| 192.401 | 145.30 | 258.738 | 195.06 | 15.886 | 6.358 | 20.145 | 10.742 |
| 194.561 | 146.98 | 260.874 | 196.70 | 16.606 | 7.030 | 20.703 | 11.378 |
| 196.730 | 148.50 | 262.946 | 198.29 | 17.315 | 7.730 | 21-253 | 11.967 |
| 198.883 | 150.17 | 265.025 | 199.89 | 18.039 | 8.523 | 21.797 | 12.617 |
| 201.023 | 151.79 | 267.168 | 201.48 | 18.782 | 9.274 | 22.337 | 13.249 |
| 203.166 | 153.40 | 269.299 | 202.93 | 19.531 | 10.093 | 22.873 | 13.880 |
| 205.301 | 155.07 | Series 14 |  | 20.272 | 10.914 | 23.412 | 14.522 |
| 207.444 | 156.72 | 271.476 | 204.36 | 21.007 | 11.721 | 23.955 | 15.175 |
| 209.596 | 158.24 | 273.634 | 206.13 | 21.739 | 12.554 | 24.504 | 15.815 |
| 211.746 | 159.78 | 275.818 | 207.51 | 22.479 | 13.413 | 25.059 | 16.475 |
| 213.914 | 161.34 | 278.034 | 209.67 | 23.232 | 14.293 | 25.622 | 17.138 |
| 216.077 | 163.05 | 280.258 | 211.28 | 23.976 | 15.219 | 26.177 | 17.803 |
| 218.222 | 164.76 | 282.488 | 212.94 | 24.710 | 16.056 | 26.727 | 18.449 |
| 220.351 | 166.35 | 284.727 | 213.98 | 25.442 | 16.933 | 27.292 | 19.131 |
| 222.470 | 167.84 | 286.957 | 216.53 | 26.171 | 17.784 | 27.866 | 19.797 |
| 224.600 | 169.50 | 289.194 | 218.42 | 26.897 | 18.656 | 28.447 | 20.485 |
| 226.735 | 171.09 | 291.440 | 219.77 | 27.626 | 19.506 | 29.036 | 21.209 |
| 228.858 | 172.76 | 293.677 | 221.00 | 28.354 | 20.372 | 29.628 | 21.898 |
| - |  |  |  |  |  | 30.208 | 22.576 |

Table V-6. Molar thermodynamic functions of p.p'-biphenol.

| $T$ | $C_{p}$ | $(H(T)-H(0)\} / T$ | $S(T)-S(0)$ | $-\{G(T)-H(0)\} / T$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{K}$ | $\overline{J \cdot K^{-1} \cdot \operatorname{mol}^{-1}}$ | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{J-K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\mathrm{J}-\mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| 5 | 0.134 | 0.026 | 0.032 | 0.006 |
| 10 | 1.78 | 0.403 | 0.507 | 0.104 |
| 20 | 10.60 | 3.09 | 4.15 | 1.07 |
| 30 | 22.32 | 7.53 | 10.65 | 3.12 |
| 40 | 33.66 | 12.68 | 18.65 | 5.98 |
| 50 | 43.62 | 17.89 | 27.26 | 9.37 |
| 60 | 52.24 | 22.92 | 35.99 | 13.08 |
| 70 | 59.87 | 27.66 | 44.63 | 16.97 |
| 80 | 66.93 | 32.13 | 53.09 | 20.96 |
| 90 | 73.70 | 36.38 | 61.36 | 24.99 |
| 100 | 80.31 | 40.44 | 69.47 | 29.03 |
| 110 | 87.03 | 44.36 | 77.44 | 33.07 |
| 120 | 93.95 | 48.21 | 85.31 | 37.10 |
| 130 | 100.93 | 51.99 | 93.10 | 41.11 |
| 140 | 108.13 | 55.75 | 100.85 | 45.10 |
| 150 | 115.29 | 59.48 | 108.55 | 49.07 |
| 160 | 122.37 | 63.19 | 116.22 | 53.03 |
| 170 | 129.45 | 66.88 | 123.85 | 56.97 |
| 180 | 136.32 | 70.54 | 131.44 | 60.90 |
| 190 | 143.56 | 74.19 | 139.01 | 64.81 |
| 200 | 151.03 | 77.85 | 146.56 | 68.71 |
| 210 | 158.53 | 81.51 | 154.11 | 72.60 |
| 220 | 166.03 | 85.19 | 161.66 | 76.47 |
| 230 | 173.61 | 88.87 | 169.20 | 80.34 |
| 240 | 181.02 | 92.55 | 176.75 | 84.20 |
| 250 | 188.44 | 96.24 | 184.29 | 88.05 |
| 260 | 196.02 | 99.93 | 191.83 | 91.90 |
| 270 | 203.46 | 103.63 | 199.37 | 95.74 |
| 280 | 211.09 | 107.33 | 206.90 | 99.58 |
| 290 | 218.33 | 111.03 | 214.44 | 103.41 |
| 300 | 225.68 | 114.73 | 229.96 | 107.23 |
| 310 | 233.02 | 118.43 | 229.40 | 111.05 |
| 298.15 | 224.31 | 114.05 | 220.57 | 106.52 |



Figure v-5. Debye characteristic temperatures corresponding to measured heat capacities of p,p'-biphenol assuming 9 degrees of freedom per molecule.

315 K ; if there were any, its entropy of transition would be smaller than about $0.005 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$.

It was expected that the substitution with hydroxyl groups would enhance the $\pi$-conjugation across the central C-C bond, thus displacing the twist transition to a lower temperature than for biphenyl. Now, since no phase transition was found in p,p'-biphenol as in 4,4'-difluorobiphenyl, the same discussion about the twist transition should be applied to the case of $\mathrm{p}, \mathrm{p}$ '-biphenol and the same conclusion is drawn concerning the molecular structure and the potential hindering the twisting motion in the crystal.

Although there was nothing unusual in the heat capacity measurements above 10 K , slow thermal relaxation was encountered in the lower temperature region. The approach of the thermometer reading to a steady drift is shown in Figure V-6. As the thermal equilibrium is usually attained within a few tens of seconds, it seems that there may be some slow mechanism of the heat flow in this crystal lattice. It can be considered that the crystal consists of sub-systems, the "lattice" and the other systems. A few min is needed for the heat flow between the "lattice" and the other sub-system, or for the thermal equilibration within the sub-system. It is interesting that the Debye characteristic temperature decreases rapidly in this temperature region as the temperature increases (see Figure V-5). In view that such a


Figure V-6. Temperature drift under adiabatic conditions after each energy input in p,p'-biphenol.
phenomenon is not observed in the other substances without hydrogen-bond but in p-phenylphenol (see the next section), the hydrogen-bond may play an important role in this slow process.

V-2-3 p-Phenylphenol

Experimental
The sample of p-phenylphenol was purchased from Tokyo Kasei Kogyo Co., Ltd., nominal purity; better than 99 moles per cent and purified by fractional sublimation at about 360 K in vacuum. Gaschromatographic analysis showed no detectable impurities. A part of the sublimed specimen weighed 18.9334 g ( 0.111235 mol$)$ in vacuum was used for the adiabatic calorimetry without any further sample treatment, and this sample is denominated the sample $A$ here after. The rest of the sublimed specimen was melted under the helium atmosphere (105 Pa), and gradually cooled down to room temperature for recrystallization. The sample was then pulverized gently. The amount of the melted-pulverized sample used for the calorimetry was 15.2147 g ( 0.089388 mol$)$ after buoyancy correction; this sample is denominated the sample $B$. Each of the samples was put into the calorimeter vessel with a small amount of helium gas (7
kPa at room temperature) for heat exchange; its contribution to the total heat capacity was negligibly small. The contribution of the sample to the total heat capacity including that of the calorimeter vessel was 70 per cent in the case of the sample $A(65$ per cent in the case of the sample B) at 20 K. It decreased to 46 per cent ( 40 per cent) at 100 K as the temperature increased, however, it recovered again to 60 per cent (54 per cent) at 300 K .

The working thermometers, and the apparatus and the operation of the adiabatic calorimeter were the same as described in Chapter III.

The Raman spectra in the lattice vibration region were recorded for both the samples at liquid nitrogen and room temperatures. The laser Raman spectrometer (model R750, Japan spectroscopic Co., Ltd.) was used with the laser excitation of argon ion of 514.5 nm .

Results and Discussion
Measured molar heat capacities of the sample $A$ are shown in Figure $V$-7. The measured values of the samples $A$ and $B$, are tabulated in chronological order in Tables $V-7$ and $V-8$. The temperature increment due to each measurement may be deduced from the adjacent mean temperatures, which is small enough to ignore the curvature correction in comparison with the experimental precision. The heat capacities of the


Figure V-7. Measured molar heat capacities of sublimed p-phenylphenol (sample A).

Table V-7. Measured molar heat capacities of sublimed p-phenylphenol. (sample A).

| $\frac{T}{T} \quad$ | $\frac{c_{p}}{\mathrm{x}^{-1} \cdot \text { mol }^{-1}}$ | $\frac{T}{K} \quad$ | $\frac{c_{p}}{\mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K} \quad$ | $\frac{c_{p}}{-1 \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1} \cdot \text { mol }^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series 1 |  | Series 5 |  | 53.864 | 48.096 | 107.454 | 82.616 |
| 3.856 | 0.118 | 15.085 | 6.995 | 55.305 | 49.269 | 109.169 | 83.590 |
| 4.172 | 0.159 | 16.264 | 8.241 | 56.780 | 50.404 | 110.886 | 84.617 |
| 4.533 | 0.216 | 17.473 | 9.565 | 58.258 | 51.524 | 112.637 | 85.641 |
| 4.947 | 0.298 | 18.704 | 10.955 | 59.743 | 52.679 | 114.409 | 86.705 |
| 5.431 | 0.415 | 19.919 | 12.382 | 61.372 | 53.876 | 116.190 | 87.692 |
| 5.992 | 0.571 | 21.106 | 13.773 | 63.048 | 55.067 | 117.965 | 88.807 |
| 6.618 | 0.784 | 22.280 | 15.186 | 64.610 | 56.138 | 119.737 | 89.864 |
| 7.314 | 1.064 | 23.476 | 16.640 | 66.144 | 57.182 | 121.518 | 90.912 |
| 8.051 | 1.471 | 24.699 | 18.108 | 67.664 | 58.216 | 123.311 | 91.981 |
| Series | 2 | Series | 6 | 69.184 | 59.279 | 125.115 | 93.030 |
| 3.500 | 0.084 | 22.523 | 15.501 | 70.711 | 60.250 | 126.947 | 94.151 |
| 3.824 | 0.116 | 23.740 | 16.980 | 72.227 | 61.265 | 128.790 | 95.260 |
| 4.217 | 0.165 | 24.970 | 18.453 | 73.737 | 62.242 | 130.616 | 96.377 |
| 4.646 | 0.237 | 26.212 | 19.965 | 75.256 | 63.215 | 132.424 | 97.476 |
| 5.130 | 0.338 | 27.463 | 21.456 | 76.783 | 64.171 | 134.214 | 98.559 |
| 5.652 | 0.472 | 28.721 | 22.976 | 78.291 | 65.186 | 136.035 | 99.634 |
| 6.229 | 0.645 | 29.976 | 24.431 | 79.818 | 66.113 | 137.887 | 100.75 |
| 6.889 | 0.884 | 31.224 | 25.904 | 81.391 | 67.106 | 139.720 | 101.83 |
| 7.619 | 1.200 | 32.459 | 27.314 | 82.975 | 68.066 | 141.536 | 102.96 |
| 8.357 | 1.580 | 33.684 | 28.770 | 84.571 | 69.037 | 143.338 | 104.04 |
| 9.096 | 2.013 | 34.908 | 30.113 | 86.166 | 69.991 | 145.126 | 105.18 |
| Series | 3 | 36.136 | 31.489 | 87.763 | 70.904 | 146.944 | 106.37 |
| 10.006 | 2.609 | 37.380 | 32.761 | 89.362 | 71.916 | 148.791 | 107.47 |
| 10.873 | 3.237 | 38.640 | 34.137 | 90.951 | 72.874 | 150.638 | 108.59 |
| 11.741 | 3.910 | 39.910 | 35.422 | 92.544 | 73.830 | $152.500$ | 109.78 |
| 12.635 | 4.660 | 41.216 | 36.770 | 94.142 | 74.816 | 154.378 | 110.94 |
| 13.532 | 5.383 | 42.587 | 38.124 | 95.771 | 75.795 | 156.272 | 112.14 |
| Series | 4 | 43.980 | 39.449 | Series | 7 | 158.166 | 113.33 |
| 14.512 | 6.428 | 45.376 | 40.767 | 97.219 | 76.597 | 160.045 | 114.56 |
| 15.608 | 7.539 | 46.798 | 42.053 | 98.913 | 77.608 | 161.926 | 115.71 |
| 16.684 | 8.683 | 48.225 | 43.365 | 100.609 | 78.574 | 163.808 | 116.92 |
| 17.748 | 9.874 | 49.640 | 44.602 | 102.311 | 79.603 | 165.676 | 118.11 |
| 18.813 | 11.068 | 51.051 | 45.784 | 104.018 | 80.606 | 167.544 | 119.39 |
| 19.902 | 12.342 | 52.458 | 46.935 | 105.732 | 81.556 |  |  |

Table v-7. (continued).

| $\frac{T}{K}$ | $\frac{c_{p}}{J \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1} \cdot \operatorname{mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{c_{p}}{\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{c_{p}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Seri | ies 8 | 199.632 | 140.72 | 231.803 | 162.85 | 265.175 | 186.73 |
| 169.418 | 120.57 | 201.514 | 141.92 | 233.855 | 164.38 | 267.347 | 188.29 |
| 171.291 | 121.72 | 203.383 | 143.17 | Seri | ies 9 | 269.505 | 189.96 |
| 173.167 | 122.99 | 205. 239 | 144.56 | 235.914 | 165.79 | 271.650 | 191.50 |
| 175.045 | 124.26 | 207.085 | 145.78 | 238.010 | 167.24 | 273.780 | 192.95 |
| 176.926 | 125.51 | 208.919 | 146.92 | 240.129 | 168.81 | 275.898 | 194.45 |
| 178.811 | 126.76 | 210.774 | 148.30 | 242.236 | 170.32 | 278.003 | 195.96 |
| 180.699 | 127.97 | 212.667 | 149.60 | 244.330 | 171.79 | 280.097 | 197.47 |
| 182.573 | 129.17 | 214.565 | 150.87 | 246.410 | 173.23 | 282.177 | 198.94 |
| 184.450 | 130.39 | 216.468 | 152.20 | 248.479 | 174.73 | 284.245 | 200.46 |
| 186.331 | 131.63 | 218.376 | 153.51 | 250.535 | 176.20 | 286.336 | 201.98 |
| 188.199 | 132.98 | 220.290 | 154.78 | 252.578 | 177.65 | 288.454 | 203.47 |
| 190.072 | 134.20 | 222.208 | 156.07 | 254.643 | 179.21 | 290.557 | 205.06 |
| 191.982 | 135.49 | 224.115 | 157.52 | 256.732 | 180.65 | 292.665 | 206.53 |
| 193.914 | 136.75 | 226.013 | 158.87 | 258.826 | 182.13 | 294.779 | 208.05 |
| 195.822 | 138.04 | 227.915 | 160.21 | 260.925 | 183.83 | 296.880 | 209.62 |
| 197.739 | 139.41 | 229.823 | 161.46 | 263.029 | 185.24 | 298.986 | 211.13 |

Table V-B. Measured molar heat capacities of melt-frozen p-phenylphenol (sample B).

| $\frac{T}{K} \quad \overline{J \cdot K}$ | $\frac{c_{p}}{\mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{c_{p}}{-1 \cdot \operatorname{mol}^{-1}}$ | $\frac{T}{K} \quad$ | $\frac{c_{p}}{\mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1} \cdot \operatorname{mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series |  | 23.842 | 17.353 | 66.745 | 57.598 | 122.403 | 91.330 |
| 4.313 | 0.099 | 25.044 | 18.806 | 68.345 | 58.727 | 124.255 | 92.368 |
| 4.476 | 0.225 | 26.259 | 20.294 | 69.931 | 59.775 | 126.169 | 93.461 |
| Series | 2 | 27.556 | 21.848 | 71.527 | 60.783 | 128.063 | 94.648 |
| 4.897 | 0.158 | 28.869 | 23.402 | 73.739 | 61.798 | 129.939 | 95.800 |
| 5.186 | 0.248 | 30.142 | 24.911 | 74.755 | 62.831 | 131.798 | 96.947 |
| Series | 3 | 31.429 | 26.379 | 76.364 | 63.843 | 133.639 | 98.027 |
| 6.232 | 0.703 | 32.709 | 27.892 | 77.967 | 64.826 | 135.464 | 99.172 |
| 6.674 | 0.867 | 33.972 | 29.315 | 79.566 | 65.798 | 137.272 | 100.25 |
| 7.249 | 1.110 | 35.192 | 30.713 | 81.162 | 66.829 | 139.063 | 101.35 |
| 7.958 | 1.461 | 36.393 | 31.980 | 82.756 | 67.823 | 140.839 | 102.48 |
| Series | 4 | 37.634 | 33.353 | 84.364 | 68.787 | 142.679 | 103.45 |
| 4.920 | 0.193 | 38.902 | 34.580 | 85.986 | 69.771 | 144.460 | 104.67 |
| 5.251 | 0.254 | 40.175 | 35.944 | 87.609 | 70.692 | 146.362 | 105.89 |
| 5.601 | 0.474 | 41.471 | 37.210 | 89.233 | 71.753 | 148.264 | 107.09 |
| 6.020 | 0.622 | 42.760 | 38.464 | Series | 9 | 150.152 | 108.10 |
| 6.504 | 0.802 | 44.045 | 39.712 | 89.594 | 72.076 | 152.034 | 109.24 |
| 7.071 | 1.038 | 45.393 | 40.916 | 91.255 | 73.087 | 153.919 | 110.52 |
| Series | 5 | 46.733 | 42.208 | 92.945 | 74.087 | 155.793 | 111.74 |
| 8.334 | 1.683 | 48.009 | 43.353 | 94.652 | 75.080 | 157.668 | 112.88 |
| 9.060 | 2.133 | 49.274 | 44.427 | 96.362 | 76.082 | 159.545 | 114.10 |
| 9.786 | 2.655 | 50.587 | 45.543 | 98.076 | 77.021 | 161.425 | 115.25 |
| 10.550 | 3.227 | Series | 7 | 99.794 | 78.058 | 163.324 | 116.46 |
| 11.412 | 3.899 | 51.955 | 46.642 | 107.519 | 79.075 | Series 10 |  |
| 12.338 | 4.701 | 53.336 | 47.778 | 103.236 | 80.021 | 165.246 | 117.67 |
| 13.278 | 5.515 | 54.712 | 48.861 | 104.994 | 81.084 | 167.184 | 118.92 |
| Series | 6 | Series | 8 | 106.792 | 82.118 | 169.125 | 120.14 |
| 14.360 | 6.561 | 54.517 | 48.742 | 108.567 | 83.144 | 171.052 | 121.35 |
| 15.493 | 7.700 | 55.946 | 49.876 | 110.321 | 84.189 | 172.964 | 122.68 |
| 16.621 | 8.860 | 57.417 | 51.021 | 112.054 | 85.201 | 174.864 | 123.90 |
| 17.769 | 10.147 | 58.938 | 52.156 | 113.769 | 86.183 | 176.767 | 125.13 |
| 18.966 | 11.530 | 60.485 | 53.276 | 115.465 | 87.184 | 178.674 | 126.39 |
| 20.193 | 12.973 | 62.034 | 54.374 | 117.150 | 88.247 | 180.586 | 127.60 |
| 21.422 | 14.452 | 63.591 | 55.444 | 118.869 | 89.260 | 182.502 | 128.95 |
| 22.639 | 15.901 | 65.154 | 56.537 | 120.629 | 90.242 | 184.430 | 130.14 |

Table v-8. (continued).

| $\frac{T}{\mathbf{K}}$ | $\frac{c_{p}}{J \cdot K^{-1}-\text { mol }^{-1}}$ | $\frac{T}{K}$ | $\frac{c_{p}}{J-K^{-1}-\text { mol }^{-1}}$ | $\frac{T}{K} \quad$ | $\frac{C_{p}}{J-K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{P}}{\mathrm{~J}-\mathrm{K}^{-1}-\mathrm{mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 186.370 | 131.37 | 229.006 | 160.28 | 269.643 | 189.33 | 7.166 | 1.097 |
| 188.299 | 132.70 | 230.910 | 161.88 | 271.604 | 190.68 | 7.943 | 1.482 |
| 190.266 | 133.93 | Seri | es 11 | 273.554 | 192.07 | Ser | ies 13 |
| 192.269 | 135.32 | 232.829 | 163.16 | 275.495 | 193.49 | 3.716 | 0.135 |
| 194.258 | 136.74 | 234.781 | 164.58 | 277.426 | 194.78 | 4.189 | 0.151 |
| 196.234 | 138.03 | 236.758 | 166.04 | 279.347 | 196.09 | Ser | ies 14 |
| 198.196 | 139.38 | 238.724 | 167.51 | 281.257 | 197.59 | 4.333 | 0.168 |
| 200.147 | 140.72 | 240.679 | 168.86 | 283.159 | 199.10 | 4.976 | 0.306 |
| 202.086 | 142.05 | 242.623 | 170.21 | 285.051 | 200.50 | 5.556 | 0.524 |
| 204.013 | 143.40 | 244.558 | 171.58 | 286.968 | 201.75 | 6.151 | 0.713 |
| 205.928 | 144.63 | 246.482 | 172.90 | 288.908 | 203.22 | 6.776 | 0.932 |
| 207.832 | 145.89 | 248.395 | 174.13 | 290.838 | 204.71 | 7.411 | 1.207 |
| 209.739 | 147.14 | 250.266 | 175.49 | 292.792 | 205.88 | 8.108 | 1.572 |
| 211.651 | 148.50 | 252.145 | 176.67 | 294.773 | 207.32 | 8.838 | 2.004 |
| 213.572 | 149.80 | 254.062 | 178.14 | 296.745 | 208.70 | 9.633 | 2. 556 |
| 215.514 | 151.15 | 255.985 | 179.60 | 298.706 | 210.26 | 10.496 | 3.195 |
| 217.462 | 152.46 | 257.916 | 180.89 | 300.656 | 211.56 | 11.400 | 3.909 |
| 219.400 | 153.82 | 259.836 | 182.34 | Series | es 12 | 12.385 | 4.729 |
| 221.326 | 155.21 | 261.745 | 183.65 | 4.695 | 0.334 | 13.513 | 5.725 |
| 223.240 | 156.50 | 263.697 | 185.00 | 5.136 | 0.515 |  |  |
| 225.163 | 157.835 | 265.689 | 186.40 | 5.707 | 0.559 |  |  |
| 227.089 | 159.11 | 267.671 | 187.82 | 6.404 | 0.792 |  |  |

Table v-9. Molar thermodynamic functions of
sublimed p-phenylphenol (sample A).

| $\frac{T}{K}$ | $\frac{c_{p}}{J \cdot K^{-1}-\mathrm{mol}^{-1}}$ | $\frac{\{H(T)-H(0)\} / T}{J \cdot \mathrm{~K}^{-7} \cdot \mathrm{~mol}^{-1}}$ | $\frac{S(T)-S(0)}{J-R^{-1}-\mathrm{mol}^{-1}}$ | $\frac{-\{G(T)-H(0)\} / T}{J \cdot K^{-1} \cdot \operatorname{mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 0.310 | 0.071 | 0.091 | 0.019 |
| 10 | 2.60 | 0.666 | 0.871 | 0.205 |
| 20 | 12.46 | 3.90 | 5.41 | 1.52 |
| 30 | 24.45 | 8.74 | 12.73 | 3.98 |
| 40 | 35.54 | 14.09 | 21.32 | 7.23 |
| 50 | 44.89 | 19.35 | 30.29 | 10.94 |
| 60 | 52.85 | 24.28 | 39.19 | 14.91 |
| 70 | 59.79 | 28.87 | 47.87 | 19.00 |
| 80 | 66.23 | 33.14 | 56.28 | 23.14 |
| 90 | 72.32 | 37.16 | 64.44 | 27.28 |
| 100 | 78.24 | 40.97 | 72.36 | 31.39 |
| 110 | 84.17 | 44.63 | 80.09 | 35.47 |
| 120 | 90.01 | 48.16 | 87.67 | 39.50 |
| 130 | 96.01 | 51.61 | 95.11 | 43.49 |
| 140 | 102.02 | 55.00 | 102.44 | 47.44 |
| 150 | 108.23 | 58.34 | 109.69 | 51.35 |
| 160 | 114.50 | 61.65 | 116.88 | 55.22 |
| 170 | 120.97 | 64.95 | 124.01 | 59.06 |
| 180 | 127.49 | 68.24 | 131.11 | 62.87 |
| 190 | 134.13 | 71.54 | 138.18 | 66.64 |
| 200 | 140.92 | 74.83 | 145.23 | 70.40 |
| 210 | 147.70 | 78.14 | 152.27 | 74.13 |
| 220 | 154.65 | 81.46 | 159.30 | 77.84 |
| 230 | 161.62 | 84.79 | 166.33 | 81.54 |
| 240 | 168.71 | 88.15 | 173.36 | 85.21 |
| 250 | 175.82 | 91.51 | 180.39 | 88.88 |
| 260 | 183.05 | 94.89 | 187.43 | 92.54 |
| 270 | 190.24 | 98.29 | 194.47 | 96.18 |
| 280 | 197.40 | 101.70 | 201.51 | 99.81 |
| 290 | 204.63 | 105.13 | 208.57 | 103.44 |
| 300 | 217.87 | 108.57 | 215.63 | 107.06 |
| 298.15 | 210.54 | 107.93 | 214.32 | 106.39 |


| $T$ | $c_{p}$ | \{H(T)-H(0) \}/T | $S(T)-S(0)$ | $-\{G(T)-H(0)\} / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{J-K^{-1} \cdot \operatorname{mol}^{-1}}$ | $\overline{J-K^{-1} \cdot \operatorname{mol}^{-1}}$ | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| 5 | 0.378 | 0.097 | 0.126 | 0.029 |
| 10 | 2.82 | 0.739 | 0.985 | 0.246 |
| 20 | 12.74 | 4.06 | 5.71 | 1.65 |
| 30 | 24.74 | 8.96 | 13.14 | 4.19 |
| 40 | 35.72 | 14.31 | 21.80 | 7.49 |
| 50 | 45.02 | 19.55 | 30.81 | 11.25 |
| 60 | 52.89 | 24.47 | 39.73 | 15.26 |
| 70 | 59.79 | 29.03 | 48.41 | 19.38 |
| 80 | 66.13 | 33.28 | 56.81 | 23.54 |
| 90 | 72.23 | 37.27 | 64.95 | 27.69 |
| 100 | 78.17 | 41.06 | 72.87 | 31.81 |
| 110 | 84.00 | 44.70 | 80.60 | 35.90 |
| 120 | 89.91 | 48.22 | 88.16 | 39.94 |
| 130 | 95.86 | 51.65 | 95.59 | 43.93 |
| 140 | 101.92 | 55.03 | 102.91 | 47.89 |
| 150 | 108.05 | 58.36 | 110.15 | 51.80 |
| 160 | 114.36 | 61.66 | 117.33 | 55.67 |
| 170 | 120.72 | 64.95 | 124.45 | 59.50 |
| 180 | 127.21 | 68.23 | 131.54 | 63.31 |
| 190 | 133.81 | 71.50 | 138.59 | 67.09 |
| 200 | 140.63 | 74.79 | 145.63 | 70.84 |
| 210 | 147.41 | 78.09 | 152.65 | 74.57 |
| 220 | 154.28 | 81.39 | 159.67 | 78.28 |
| 230 | 161.26 | 84.71 | 166.68 | 81.97 |
| 240 | 168.34 | 88.05 | 173.69 | 85.64 |
| 250 | 175.34 | 91.40 | 180.71 | 89.30 |
| 260 | 182.37 | 94.76 | 187.72 | 92.95 |
| 270 | 189.52 | 98.14 | 194.74 | 96.59 |
| 280 | 196.66 | $101.53{ }^{\text {. }}$ | 201.76 | 100.22 |
| 290 | 203.96 | 104.94 | 208.79 | 103.85 |
| 300 | 211.14 | 108.36 | 215.82 | 107.46 |
| 298.15 | 209.79 | 107.73 | 214.52 | 106.79 |

sample $B$ is not shown in Figure $V-7$. Although the general feature of the heat capacities of both samples was similar, the small difference at the lowest and at room temperatures was observed. After each energy input was over, thermal equilibrium within the calorimeter vessel was attained within 2 min below 30 K , in 12 min at $50 \mathrm{~K}, 18 \mathrm{~min}$ at 100 K , 10 min at 200 K and 7 min at 300 K in measurements on the sample $A$. However, in the sample $B$, it took as long as 10 min at 4 K , decreased to 30 s at 14 K , then increased to 20 min at 100 K and decreased again to 7 min above 250 K as the temperature rose.

Some thermodynamic functions at rounded temperatures were calculated from the primary results and are given in Tables $V-9$ and $V-10$, in which small contributions below 5 K were evaluated by smooth extrapolation to 0 K .

The difference between the low temperature heat capacities of the two samples is shown in Figure V-8. The Debye characteristic temperatures of the two samples are also shown there. For the sample $B$, the reliable data could not be obtained below 5 K . The heat capacity of the sample $B$ is larger than that of the sample A below 65 K . The fact that there is no apparent maximum in the difference curve suggests that the origin of the difference may be in the difference in crystal lattice itself or in the crystallinity. On


Figure V-8. Debye characteristic temperatures of sublimed (sample A, open circle) and melt-frozen (sample $B$, square) p-phenylphenol, assuming 6 degrees of freedom per molecule, and the heat capacity difference between the samples A and B. The filled squares correspond to the instantaneous heat capacities of the sample $B$.
the other hand, the higher temperature values of heat capacity of the sample A is slightly larger than that of the sample $B$ ( 0.4 per cent at 300 K ).

No anomalous heat capacity is seen in Figures V-7 and $V-8$. The powder X-ray diffraction patterns showed that both the samples were of $\mathrm{P} 2_{1} / \mathrm{a}$ polymorph. Thus, it is concluded that there is no phase transition between 4 and 300 K in contrast to the suggestion given by Brock and Haller. ${ }^{37)}$

Slow relaxation observed at the lowest temperature region in the sample $B$ is similar to that in p,p'-biphenol described in the preceding section. In view that such a phenomenon was not observed in the crystals without hydrogen bond, it may have some connection with hydrogen bond network and chain. The sample $B$ was prepared by melting under helium atmosphere and gradual cooling for recrystallization, while the sample A by sublimation only. Thus, it is likely that the crystallinity of the samples is considerably different each other. The $X$-ray powder diffraction patterns of both samples, indeed, showed differences in intensity of diffraction lines but their locations agreed with each other within the experimental precision and they could be indexed by assuming the $\mathrm{P} 2_{1} / \mathrm{a}$ polymorph.

The Raman spectra of both the samples are shown in Figure V-9. The spectra of both samples become wellresolved on cooling, and there are no anomalous


Figure V-9. Raman spectra of sublimed (sample A) and melt-frozen (sample B) p-phenylphenol at room temperature (solid curve) and at liquid nitrogen temperature (broken curve).
behavior in agreement with the results of heat capacity measurements. Taking into consideration the results of the $X-r a y$ diffraction experiments, the difference in the spectra between the samples $A$ and $B$ should be attributed to the different crystallinity of the samples.

Finally, the comparison of the heat capacities of biphenyl, p-phenylphenol and p,p'-biphenol is shown in Figure $\mathrm{V}-10$. In spite of the smallest mass, below 100 K, biphenyl shows the largest value of the heat capacities, and p-phenylphenol shows larger heat capacities than $p, p$-biphenol. On the other hand, the order of the heat capacity values at room temperature is reversed, i.e. biphenyl < p-phenylphenol < p,p'-biphenol. Their heat capacity values are , at low temperatures, primarily determined by the lattice stiffness; the hydrogen-bond makes the crystal lattice stiffer. At higher temperatures, the order of the heat capacity values can not be explained by the lattice properties such as its stiffness or mass effect since their lattice heat capacities already saturate to the classical value at room temperature. Thus, the order of the heat capacity values at room temperature must be determined by the difference of the number of degrees of freedom. The number of freedom per molecule increases by 3 per substitution with a hydroxyl group. The difference of about $13 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ between biphenyl


Figure V-10. Molar heat capacities of biphenyl (broken curve), p-phenylphenol (solid curve), and p,p'-biphenol (dotted curve).
and p-phenylphenol and between p-phenylphenol and p,p'-biphenol may be attributed to the C - O vibrations (bending and stretching) if the simple localized scheme of intramolecular vibration could be applied.

V-3 Stability of a planar molecular conformation in 4,4'-difluorobiphenyl and p, $\mathrm{p}^{\prime}$-biphenol crystals

As no anomaly was found in the heat capacity curve of 4,4'-difluorobiphenyl crystal in the temperature region where thermal motion plays an important role, it is meaningful to compare the static cohesive energy (i.e. lattice energy) of a crystal consisting of planar molecules with that of a crystal consisting of twisted molecules in order to discuss the stability of a planar conformation in the crystalline state.

Two probable crystal structures were considered. The structure of a crystal consisting of planar molecules was taken to be the same as that of biphenyl ${ }^{21)}$; $P 2$ $1 / a, Z=2$ (there is a half molecule in an asymmetric unit). ${ }^{6)}$ The structure consisting of twisted molecules was assumed to be the same as that of the other 4,4'-dihalogenobiphenyls ${ }^{31 \text { ) (dichloro- and }}$ dibromobiphenyl); $\mathrm{P} 2 \mathrm{q}^{\prime} / \mathrm{n}, \mathrm{Z}=8$ (there are two independent moleculès in an asymmetric unit). 22,23 )

The molecular geometry was fixed; the phenyl rings were assumed as a normal hexagon with the $C-C$ bond
length of 0.140 nm . The central $\mathrm{C}-\mathrm{C}$ bond length was 0.150 nm . The length of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{F}$ bonds were 0.110 nm and 0.149 nm , respectively. The twist angle of the phenyl rings was $40^{\circ}$ for 4,4'-dihalogenobiphenyl-type structure. Since this value of twist angle is observed in other crystalline 4,4'-dihalogenobiphenyls 22,23 ) and it is the same as for an isolated 4,4'-difluorobiphenyl molecule within the error of the experimental value ${ }^{30}$ ), the first derivative of the intramolecular potential curve could be neglected in the minimization of the lattice energies. The twist angle for biphenyl-type structure was $0^{\circ}$.

Intermolecular interaction was represented by a sum of interatomic potentials of Buckigham type. Their parameters were taken from literature. 39,40)

Lattice energies of two crystal structures were calculated using the accelerated convergence method ${ }^{41)}$ and minimized with respect to the size and the shape of the unit cells, i.e. 7 and 16 variables for biphenyltype and 4,4'-dohalogenobiphenyl-type structures, respectively, using the DAFLEP. ${ }^{42)}$

Crystal structural parameters and lattice energies obtained are given in Table v-11 with probable experimental data for the sake of comparison. The discrepancies between the calculated and the "experimental" values in both cases are of the same order of magnitude as that reported for biphenyl

Table v-11. Calculated and "observed" lattice parameters of 4,4'-difluorobiphenyl.

|  |  | $a / \mathrm{nm}$ | b / nm | c / nm | $\beta / 0$ | $(V / z) / \mathrm{nm}^{3}$ | $E / \mathrm{kJ} \cdot \mathrm{mol}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P2, 1 a . | calc. | 0.7541 | 0.5535 | 0.9930 | 88.66 | 0.2072 | -113 |
| $2=2$ | obs. ${ }^{311}$ | 0.776 | 0.581 | 0.996 | 92.6 | 0.2243 | - |
| planar | $\Delta^{\text {a } / 8}$ | -2.8 | -4.7 | -0.3 | -4.3 | -7.6 | - |
| $\mathrm{P} 21 / \mathrm{n}$ | calc. | 1.500 | 1.270 | 0.948 | 94.91 | 0.2249 | -96 |
| $Z=8$ | obs. ${ }^{21)}$ | 1.483 | 1.330 | 0.945 | 96.8 | 0.2313 | - |
| twisted | $\Delta^{\text {a } / \text { \% }}$ | 1.1 | -4.5 | 0.4 | -2.0 | -2.8 | - |

${ }^{a_{\Delta}}=100 \cdot($ calc. - obs.)/obs.
crystal.43) However, the purpose of the calculation is to elucidate the relative stability of two crystal structures.

The final values of lattice energy was -96 kJ mol ${ }^{-1}$ for the 4,4'-dihalogenobiphenyl-type of structure and $-113 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ for the biphenyl-type of structure. These values must be corrected further for the intramolecular energy difference between the planar and the twisted conformations. This difference is about 10 $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ in the case of biphenyl, 44) and it is smaller in 4,4'-difluorobiphenyl than in biphenyl due to greater $\pi$-conjugation through the central C-C bond; this was confirmed by the simple calculation by the Hückel model described in Section II-2. The difference in the resultant lattice energy between the two structures was thus derived as about $7 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. Therefore, the biphenyl-type structure is stable even at 0 K in contrast to the case of biphenyl crystal because of the stabilization of a planar conformation due to greater $\pi$-conjugation in 4,4'-difluorobiphenyl molecule.

A similar interpretation should be applied to the absence of the twist transition in p, p'-biphenol because of the following reasons. First, it must be pointed out that the intramolecular potential of p, $\mathrm{p}^{\prime}$-biphenol is very similar to that of 4,4'-difluorobiphenyl in spite of the different substituents as shown in Section II-2. Second, the intermolecular
interaction favoring a planar conformation has a two dimensional character as discussed in Section III-4 because the interatomic distance between 4 (4') position and the other positions of the neighboring molecule changes little on the twisting of the neighboring molecule. Thus, the part favoring a planar conformation in the interaction is expected to be similar in 4,4'-difluorobiphenyl and in p,p'-biphenol.

References to Chapter V

1. J. Trotter, Acta Cryst., 14(1961), 1135.
2. G. B. Robertson, Nature, 191(1961), 593.
3. A. Hargreaves and S. H. Rizvi, Acta Cryst., 15(1962), 365.
4. V. M. Kozhin and K. V. Mirskaya, Sov. Phys. Cryst., 14(1970), 938.
5. G. P. Charboneau and Y. Delugeard, Acta Cryst., B32(1976), 1420 .
6. G. P. Charboneau and Y. Delugeard, Acta Cryst., B33(1977), 1586.
7. H. Cailleau, J. L. Baudour and C. M. E. Zeyen, Acta Cryst., B35(1979), 426.
8. J. L. Baudour and M. Sanquer, Acta Cryst., B39(1983), 75.
9. H. M. Rietvelt, E. N. Maslen and C. J. B. Clews, Acta Cryst., B26(1970), 693.
10. P. J. L. Baudour, Y. Delugeard and H. Cailleau, Acta Cryst., B32(1976), 150.
11. P. J. L. Baudour, H. Cailleau and W. B. Yelon., Acta Cryst., B33(1977), 1773.
12. Y. Delugeard, J. Desuche and J. L. Baudour, Acta Cryst., B32(1976), 702.
13. J. L. Baudour, Y. Delugeard and P. Rivet, Acta Cryst., B34(1978), 625.
14. A. Bree and M. Edelson, Chem. Phys. Lett., 46(1977), 500.
15. H. Cailleau, A. Girard, F. Moussa and C. M. E. Zeyen, Solid State Commun., 29(1979), 259.
16. M. Wada, A. Sawada and Y. Ishibashi, J. Phys. Soc. Jpn., $50(1981), 737$.
17. N. M. Plakida, A. V. Belushkin, I. Natkaniec and T. Wasiutynski, Phys. Status Solidi b, 118(1983), 129.
18. B. A. Bolton and P. N. Prasad, Chem. Phys., 35(1978), 331.
19. H. Cailleau and A. Dworkin, Mol. Cryst. Liq. Cryst., 50(1979), 217.
20. S. S. Chang, J. Chem. Phys., 79(1983), 6229.
21. T. K. Halstead, H. W. Spiess and U. Haeberlen, Mol, Phys., 31(1976), 1569.
22. C. P. Brock, M. S. Kuo and H. A. Levy, Acta Cryst., B34(1978), 981.
23. P. Cronebusch, W. B. Gleason and D. Britton, Cryst. Struct. Commun., 5(1976), 839.
24. G. Casalone, C. Mariani, A. Mugnoli and M. Simonetta, Acta Cryst., B25(1969), 1741.
25. E. B. Boonstra, Acta Cryst., 16(1963), 816.
26. N. A. Akhmed, M. S. Farag and A. Amin, Zh. Strukt. Khim., 12(1971), 738.
27. W. B. Gleason and D. Britton, Cryst. Struct. Commun., ${ }^{5}(1976), 483$.
28. B. F. Pedersen, Acta Cryst., B31(1975), 2931.
29. P. Singh and J. D. Mckinney, Acta Cryst., B35(1979), 259.
30. O. Bastiansen and L. Smedvik, Acta Chem. Scand., 8(1954), 1593.
31. J. Dhar, Indian J. Phys., 20(1946), 154.
32. R. M. Barrett and D. Steele, J. Mol. Struct., 11(1972), 105.
33. H. Michelsen, P. Kraeboe, G. Hagen and T. S. Hansen, Acta Chem. Scand., 26(1972), 1576.
34. T. K. Halstead, J. Tagenfeldt and U. Haeberlen, J. Chem. Soc. Faraday II, 77(1981), 1817.
35. S. C. Wallwork and H. M. Powell, Nature, 167 (1951), 1072.
36. M. S. Farag and N. A. Kader, J. Chem. U. A. R., 3(1960), 1.
37. C. P. Brock and K. L. Haller, J. Phys. Chem., 88(1984), 3570 .
38. N. K. Smith, G. Gorin, W. D. Good and J. P. McCullough, J. Phys. Chem., 68(1964), 940.
39. A. Gavezzotti and M. Simonetta, Acta Cryst., A32(1976), 645.
40. D. E. Williams, J. Chem. Phys., $47(1967), 4680$.
41. D. E. Williams, Acta Cryst., A27(1971), 452.
42. "DAFLEP", the Program Library, Computer Center, Osaka University.
43. C. P. Brock, Mol. Cryst. Liq. Cryst., 52(1979), 157.
44. A. J. Grumadas, D. P. Poshkus and A. V. Kiselev, J. Chem. Soc. Faraday II, 75(1979), 1398.

Chapter VI Twisting motion in o-substituted biphenyls

VI-1 Introduction

Since the intramolecular potential for the twisting is a resultant of two opposite effects, delocalization of $\pi$-electrons and steric repulsion between ortho atoms, the twist angle of a free molecule increases from $42^{\circ}$ in biphenyl ${ }^{1,2)}$ to $70^{\circ}$ in perfluorobiphenyl (PFB) ${ }^{3)}$ as the atomic size at the ortho positions increases. In crystalline state, molecules of $P F B$ and perchlorobiphenyl (PCB) are twisted about $60^{\circ} 4-7$ ) and $\left.87^{\circ}, 8\right)$ respectively. These values can be interpreted with the van der Waals radii of fluorine and chlorine atoms. The crystal packing force is balanced with repulsion between ortho atoms. This situation shows that in PFB and PCB crystals molecules are tightly packed and that the twisting degree of freedom is strongly suppressed.

Although the idealized symmetry $D_{2}$ of a twisted molecule gives non vanishing probability of the Raman process for the twisting vibration in contrast to the symmetry $D_{2 h}$ of a planar molecule, no direct observation has been reported so far.9,10) Therefore, it was attempted to obtain some information about a twisting motion from low temperature heat capacities of PFB and PCB as in the case of biphenyl and p-terphenyl
(see Chapter III).

VI-2 Heat capacities
of perfluorobiphenyl and perchlorobiphenyl

Experimental
Commercially available PFB (Alfa Division, Ventron Corporation) was purified by fractional sublimation in vacuum at room temperature. The powdered specimen (13.5159 g, 0.0404524 mol) was loaded into the calorimeter vessel. The calorimeter was evacuated and sealed after the addition of a small amount of helium gas for heat exchange ( 8 kPa at room temperature). The purity of the sample used for the calorimetry was better than 99.9 moles per cent as determined by gaschromatography.

The PCB standard reagent (nominal purity; better than 99.0 moles per cent, gas-chromatography) for quantitative analysis of polychlorinated-biphenyls was purchased from Wako Pure Chemical Industries, Ltd., and purified further by fractional sublimation in vacuum at about $450 \mathrm{~K} . \quad$ The powdered specimen (13.0809 g, 0.0262322 mol was loaded into the calorimeter vessel with a small amount of helium gas (5 kPa at room temperature). The contribution of the sample to the total heat capacity including that of the calorimeter
vessel was 70 per cent in the measurements on PFB 173 per cent in PCB) at $10 \mathrm{~K}, 41$ (37) per cent at $50 \mathrm{~K}, 36$ (31) per cent at 100 K , and 45 (36) per cent at 300 K . The heat capacity of helium gas in the vessel was negligibly small with respect to both the total and the sample heat capacities.

The working thermometers, and the apparatus and the operation of the adiabatic calorimeter were the same as described in Chapter III.

Results and Discussion
Measured molar heat capacities of PFB and PCB are shown in Figure VI-1 and tabulated in Tables VI-1 and VI-2 in chronological order. The scatter of the present data is slightly larger than those of the other sample described previous chapters because of the smaller amount of the samples. No thermal anomaly is seen in both heat capacity curves. The temperature increment of each individual measurement, which may be deduced from the adjacent mean temperatures, is small enough to permit the curvature correction to be ignored in comparison with the experimental precision. After each heat input, thermal equilibration was reached within 2 min below 20 K , in 15 min at 60 K , 25 min at $100 \mathrm{~K}, 30 \mathrm{~min}$ at 150 K , and within 20 min above 200 K in the measurements on $P C B$. Almost the same was in PFB.

The comparison of the present results with the


Figure VI-1. Measured molar heat capacities of perfluorobiphenyl (open circle) and perchlorobiphenyl (filled circle).

Table VI-I. Measured molar heat capacities of perfluorobiphenyl.

| $\frac{T}{K} \quad$ | $\frac{C_{p}}{\mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K} \quad \frac{}{J-1}$ | $\frac{C_{p}}{\mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J-K^{-1} \cdot \text { mol }^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{P}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series 1 |  | Series | 3 | 47.791 | 74.080 | 100.103 | 141.92 |
| 2.641 | 0.127 | 14.133 | 15.152 | 49.125 | 75.971 | Series 6 |  |
| 3.102 | 0.215 | 15.242 | 17.617 | 50.483 | 77.705 | 101.723 | 144.21 |
| 3.484 | 0.317 | 16.358 | 20.147 | 51.848 | 79.360 | 103.339 | 146.07 |
| 3.846 | 0.429 | 17.487 | 22.703 | 53.203 | 81.339 | 105.003 | 148.07 |
| 4.233 | 0.584 | 18.628 | 25.236 | 54.596 | 83.369 | 106.696 | 150.05 |
| 4.621 | 0.786 | 19.770 | 27.825 | 56.004 | 85.227 | 108.419 | 152.15 |
| 5.046 | 1.053 | Series | 4 | 57.386 | 87.048 | 110.160 | 154.01 |
| 5.516 | 1.377 | 15.786 | 18.835 | 58.769 | 88.871 | 111.892 | 156.15 |
| 6.042 | 1.806 | 16.912 | 21.395 | 60.141 | 90.732 | 113.618 | 158.05 |
| 6.660 | 2.376 | 18.091 | 24.044 | 61.522 | 92.531 | 115.337 | 160.12 |
| 7.418 | 3.219 | 19.322 | 26.858 | 62.942 | 94.478 | 197.052 | 162.11 |
| 8.276 | 4.269 | 20.586 | 29.547 | 64.384 | 96.360 | 178.774 | 164.09 |
| 9.111 | 5.552 | 21.844 | 32.207 | 65.829 | 98.228 | 120.521 | 166.04 |
| 9.920 | 6.909 | 23.059 | 34.705 | 67.281 | 100.10 | 122.278 | 167.97 |
| 10.757 | 8.283 | 24.266 | 37.121 | 68.741 | 101.96 | 124.018 | 169.96 |
| 11.705 | 10.057 | 25.486 | 39.464 | 70.188 | 103.94 | 125.742 | 171.88 |
| 12.706 | 12.038 | Series | 5 | 71.647 | 105.90 | 127.463 | 173.81 |
| Series | 2 | 26.700 | 41.728 | 73.140 | 107.81 | 129.183 | 175.66 |
| 3.116 | 0.219 | 27.911 | 43.821 | 74.609 | 109.91 | 130.902 | 177.65 |
| 3.454 | 0.302 | 29.135 | 46.114 | 76.075 | 111.79 | 132.650 | 179.56 |
| 3.820 | 0.425 | 30.365 | 48.002 | 77.550 | 113.66 | 134.440 | 181.41 |
| 4.189 | 0.573 | 31.587 | 50.149 | 79.038 | 115.50 | 136.270 | 183.51 |
| 4.596 | 0.787 | 32.806 | 52.092 | 80.560 | 117.33 | 138.112 | 185.35 |
| 5.071 | 1.075 | 34.028 | 54.103 | 82.120 | 119.44 | 139.940 | 187.27 |
| 5.583 | 1.432 | 35.252 | 56.037 | 83.718 | 121.47 | 141.753 | 189.09 |
| 6.142 | 1.890 | 36.475 | 57.871 | 85.332 | 123.78 | 143.611 | 193.11 |
| 6.792 | 2.505 | 37.701 | 59.775 | 86.965 | 125.83 | 145.512 | 193.17 |
| 7.536 | 3.350 | 38.935 | 61.449 | 88.635 | 127.84 | 147.399 | 195.08 |
| 8.352 | 4.393 | 40.177 | 63.382 | 90.315 | 130.03 | 149.271 | 196.80 |
| 9.200 | 5.624 | 41.436 | 65.074 | 91.966 | 132.12 | 151.128 | 198.76 |
| 10.083 | 7.115 | 42.698 | 66.940 | 93.605 | 134.12 | 152.974 | 200.54 |
| 11.002 | 8.747 | 43.945 | 68.563 | 95.245 | 136.14 | 154.851 | 202.42 |
| 11.987 | 10.627 | 45.194 | 70.472 | 96.874 | 138.04 | 156.761 | 204.31 |
| 13.049 | 12.802 | 46.477 | 72.224 | 98.492 | 140.00 | 158.657 | 206.19 |

Table VI-1. (continued).


Table VI-2. Measured molar heat capacities of perchlorobiphenyl.

| $\frac{T}{K}$ | $\frac{C_{p}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{C_{p}}{J-K^{-1} \cdot \operatorname{mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{c_{p}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K}$ | $\frac{c_{p}}{J \cdot K^{-1} \cdot \operatorname{mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Seri | ies 1 | 142.608 | 226. 19 | 211.085 | 286.65 | 283.241 | 334.77 |
| 81.037 | 149.96 | 144.545 | 228.13 | 213.153 | 288.39 | 285.389 | 336.32 |
| 82.825 | 152.68 | 146.468 | 230.13 | 215.213 | 289.62 | 287.533 | 337.87 |
| 84.605 | 155.31 | 148.407 | 231.98 | 217.267 | 291.12 | 289.687 | 339.85 |
| 86.350 | 157.78 | 150.363 | 233.89 | 219.312 | 292.81 | 291.848 | 340.60 |
| 88.064 | 160.35 | Serie | es 2 | 221.349 | 294.38 | 294.005 | 340.77 |
| 89.775 | 162.69 | 152.268 | 235.42 | 223.335 | 295.75 | 296.156 | 342.60 |
| 91.484 | 165.04 | 154.228 | 237.50 | 225.328 | 297.07 | 298. 301 | 344.08 |
| 93.192 | 167.28 | 156.207 | 239.69 | 227.404 | 298. 52 | 300.439 | 345.43 |
| 94.927 | 169.78 | 158.173 | 241.45 | 229.535 | 299.94 | Seri | es 4 |
| 96.663 | 172.08 | 160.129 | 243.28 | 231.689 | 302.09 | 5.868 | 3.532 |
| 98.402 | 174.46 | 162.073 | 245.17 | 233.836 | 303.47 | 6.354 | 4.392 |
| 100.144 | 176.68 | 164.036 | 247.02 | Seri | es 3 | 6.946 | 5.465 |
| 101.888 | 178.68 | 166.048 | 248.77 | 235.927 | 304.09 | 7.620 | 6.776 |
| 103.663 | 181.04 | 168.078 | 250.62 | 238.057 | 305.88 | B. 313 | 8.255 |
| 105.470 | 183.57 | 170.097 | 252.35 | 240.179 | 307.76 | 9.017 | 9.843 |
| 107.280 | 185.86 | 172.136 | 253.89 | 242.326 | 309.60 | 9.733 | 11.491 |
| 109.096 | 188.23 | 174.194 | 255.87 | 244.498 | 311.25 | Seri | ies 5 |
| 110.918 | 190.37 | 176.242 | 257.57 | 246.662 | 312.40 | 4.068 | 1.019 |
| 112.749 | 192.75 | 178.278 | 259.36 | 248.819 | 313.01 | 4.366 | 1.323 |
| 174.587 | 194.95 | 180.303 | 261. 25 | 250.970 | 314.62 | 4.729 | 1.825 |
| 116.406 | 197.20 | 182.351 | 263.00 | 253.115 | 315.72 | 5.163 | 2.432 |
| 118.235 | 199.42 | 184.420 | 264.91 | 255.253 | 317.26 | 5.646 | 3.208 |
| 120.074 | 201.05 | 186.478 | 266.55 | 257.401 | 318.77 | 6.203 | 4.131 |
| 121.895 | 203.68 | 188.527 | 268.21 | 259.559 | 320.05 | 6.807 | 5.205 |
| 123.728 | 205.66 | 190.566 | 269.96 | 261.710 | 321.78 | Seri | ies 6 |
| 125.574 | 207.54 | 192.595 | 271.75 | 263.855 | 322.85 | 3.938 | 0.930 |
| 127.405 | 209.86 | 194.646 | 273.27 | 265.993 | 324.17 | 4.219 | 1.166 |
| 129.217 | 211.72 | 196.719 | 274.91 | 268.142 | 325.53 | 4.538 | 1.568 |
| 131.050 | 213.87 | 198.783 | 276.64 | 270.301 | 327.17 | 4.975 | 2.175 |
| 132.934 | 216.02 | 200.838 | 278.57 | 272.453 | 328.13 | 5.562 | 3.064 |
| 134.859 | 218.09 | 202.885 | 280.35 | 274.599 | 329.32 | 6.284 | 4.262 |
| 136.797 | 220.30 | 204.924 | 281.82 | 276.757 | 330.67 | 7.048 | 5.670 |
| 138.719 | 222.21 | 206.954 | 283.51 | 278.925 | 332.27 | 7.808 | 7.204 |
| 140.656 | 224.17 | 209.008 | 285.17 | 281.086 | 333.57 | 8.551 | 8.769 |

Table VI-2. (continued).

| $\frac{T}{K} \quad \frac{}{J \cdot K}$ | $\frac{c_{p}}{\mathrm{R}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\frac{T}{K} \quad$ | $\frac{c_{p}}{\mathrm{~K}^{-1}-\operatorname{mol}^{-1}}$ | $\frac{T}{\mathrm{~K}}$ | $\frac{c_{p}}{J \cdot K^{-1} \cdot \text { mol }^{-1}}$ | $\frac{T}{\mathrm{~K}}$ | $\frac{c_{p}}{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9.284 | 10.312 | 20.316 | 38.076 | 32.829 | 67.372 | 57.680 | 113.39 |
| 10.036 | 12.215 | Series | 10 | 34.047 | 69.909 | 59.017 | 115.65 |
| Series | 7 | 14.133 | 22.371 | 35.269 | 72.412 | 60.373 | 117.89 |
| 8.659 | 9.047 | 15.298 | 25.313 | 36.494 | 74.976 | 61.765 | 120.09 |
| 9.534 | 11.048 | 16.481 | 28.233 | 37.733 | 77.446 | 63.194 | 122.54 |
| 10.432 | 13.141 | 17.677 | 31.305 | 38.971 | 79.781 | 64.643 | 124.85 |
| 11.399 | 15.497 | 18.866 | 34.325 | 40.229 | 82.261 | 66.097 | 127.17 |
| 12.497 | 18.109 | 20.055 | 37.333 | 41.540 | 84.736 | 67.555 | 129.51 |
| 13.744 | 21.279 | 21. 259 | 40.280 | 42.865 | 87.285 | 68.999 | 131.79 |
| Series | 8 | Series | 11 | 44.196 | 89.572 | 70.430 | 134.18 |
| 10.593 | 13.559 | 21.739 | 41.567 | 45.532 | 92.022 | 71.890 | 136.28 |
| 11.623 | 16.056 | 22.963 | 44.650 | 46.873 | 94.448 | 73.416 | 138.73 |
| 12.719 | 18.664 | 24.207 | 47.737 | 48.228 | 96.941 | 75.071 | 141.11 |
| 13.872 | 21.575 | 25.446 | 50.714 | 49.582 | 99.418 | 76.615 | 143.62 |
| Series | 9 | 26.664 | 53.658 | 50.940 | 101.78 | 78.206 | 146.08 |
| 15.147 | 25.047 | 27.888 | 56.361 | 52.304 | 104.14 | 79.787 | 148.38 |
| 16.438 | 28.275 | 29.129 | 59.204 | 53.657 | 106.60 |  |  |
| 17.665 | 31.352 | 30.364 | 61.983 | 55.003 | 108.81 |  |  |
| 18.962 | 34.681 | 31.601 | 64.667 | 56.344 | 111.05 |  |  |

Table VI-3. Molar thermodynamic functions of perfluorobiphenyl.

| T | $c_{p}$ | \{ $H(T)-H(0)\} / T$ | $S(T)-S(0)$ | $-\{G(T)-H(0)\} / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\mathrm{J} \cdot \mathrm{K}^{-7} \cdot \mathrm{~mol}^{-1}$ |
| 5 | 1.03 | 0.251 | 0.322 | 0.071 |
| 10 | 6.95 | 1.90 | 2.54 | 0.64 |
| 20 | 28.31 | 9.59 | 13.64 | 4.06 |
| 30 | 47.52 | 19.13 | 28.87 | 9.74 |
| 40 | 63.25 | 28.23 | 44.74 | 16.51 |
| 50 | 77.09 | 36.62 | 60.34 | 23.72 |
| 60 | 90.49 | 44.49 | 75.59 | 31.10 |
| 70 | 103.77 | 52.01 | 90.53 | 38.53 |
| 80 | 116.78 | 59.30 | 105.24 | 45.95 |
| 90 | 129.61 | 66.40 | 119.74 | 53.34 |
| 100 | 141.94 | 73.34 | 134.04 | 60.70 |
| 110 | 154.00 | 80.13 | 148.14 | 68.01 |
| 120 | 165.44 | 86.76 | 162.03 | 75.27 |
| 130 | 176.63 | 93.25 | 175.72 | 82.47 |
| 140 | 187.38 | 99.59 | 189.20 | 89.61 |
| 150 | 197.63 | 105.79 | 202.48 | 96.70 |
| 160 | 207.38 | 111.84 | 215.55 | 103.72 |
| 170 | 217.06 | 117.74 | 228.41 | 110.68 |
| 180 | 226.32 | 123.52 | 241.09 | 117.57 |
| 190 | 235.14 | 129.16 | 253.56 | 124.40 |
| 200 | 243.73 | 134.68 | 265.84 | 131.17 |
| 210 | 252.06 | 140.07 | 277.94 | 137.87 |
| 220 | 260.22 | 145.35 | 289.85 | 144.51 |
| 230 | 267.94 | 150.51 | 301.59 | 151.08 |
| 240 | 275.63 | 155.56 | 313.16 | 157.59 |
| 250 | 283.04 | 160.51 | 324.56 | 164.04 |
| 260 | 290.37 | 165.37 | 335.80 | 170.43 |
| 270 | 297.74 | 170.13 | 346.90 | 176.77 |
| 280 | 304.81 | 174.82 | 357.86 | 183.04 |
| 290 | 311.78 | - 179.42 | 368.67 | 189.25 |
| 300 | 318.67 | 183.95 | 379.36 | 195.41 |
| 298.15 | 317.43 | 183.12 | 377.39 | 194.28 |

Table VI-4. Molar thermodynamic functions of perchlorobiphenyl.

| $T$ | $C_{p}$ | $\{H(T)-H(0)\} / T$ | $S(T)-S(0)$ | $-[G(T)-H(0)] / T$ |
| :---: | :---: | :---: | :---: | :---: |
| K | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{J \cdot K^{-1} \cdot \mathrm{~mol}^{-1}}$ | $\overline{J \cdot K^{-1} \cdot \text { mol }^{-1}}$ | $\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| 5 | 2.21 | 0.506 | 0.638 | 0.133 |
| 10 | 12.13 | 3.65 | 4.93 | 1.29 |
| 20 | 37.26 | 14.11 | 20.94 | 6.84 |
| 30 | 61.21 | 25.90 | 40.68 | 14.78 |
| 40 | 81.81 | 37.36 | 61.18 | 23.82 |
| 50 | 100.12 | 48.10 | 81.42 | 33.32 |
| 60 | 117.26 | 58.20 | 101.19 | 42.99 |
| 70 | 133.42 | 67.80 | 120.49 | 52.69 |
| 80 | 148.54 | 76.96 | 139.31 | 62.35 |
| 90 | 162.95 | 85.73 | 157.65 | 71.92 |
| 100 | 176.47 | 94.14 | 175.53 | 81.39 |
| 110 | 189.27 | 102.21 | 192.95 | 90.75 |
| 120 | 201.45 | 109.98 | 209.95 | 99.97 |
| 130 | 212.72 | 117.45 | 226.52 | 109.07 |
| 140 | 223.56 | 124.65 | 242.69 | 118.04 |
| 150 | 233.55 | 131.58 | 258.46 | 126.83 |
| 160 | 243.19 | 138.25 | 273.84 | 135.59 |
| 170 | 252.25 | 144.70 | 288.86 | 144.16 |
| 180 | 260.96 | 150.91 | 303.52 | 152.61 |
| 190 | 269.51 | 156.93 | 317.86 | 160.93 |
| 200 | 277.81 | 162.77 | 331.90 | 169.13 |
| 210 | 285.84 | 168.44 | 345.65 | 177.21 |
| 220 | 293.29 | 173.95 | 359.12 | 185.17 |
| 230 | 300.63 | 179.30 | 372.32 | 193.02 |
| 240 | 307.36 | 184.50 | 385.26 | 200.77 |
| 250 | 313.83 | 189.54 | 397.94 | 208.40 |
| 260 | 320.40 | 194.45 | 410.38 | 215.93 |
| 270 | 326.61 | 199.23 | 422.59 | 223.36 |
| 280 | 332.87 | 203.89 | 434.58 | 230.69 |
| 290 | 338.85 | 208.44 | 446.36 | 237.92 |
| 300 | 345.16 | 212.89 | 457.95 | 245.06 |
| 298.15 | 343.96 | 212.07 | 455.82 | 243.75 |



Figure VI-2. Comparison between the present data (solid curve) and the data reported by Paukov and Rakhmenkulov ${ }^{11 \text { ) (square). }}$
previous data on PFB by Paukov and Pakhmenkulov ${ }^{11)}$ is shown in Figure VI-2. The present data is smaller than theirs by about 1 per cent in entire temperature region.

Some thermodynamic functions were calculated from the primary data and they are given for rounded temperatures in Tables VI-3 and VI-4, in which small contributions below 4 K were estimated by smooth extrapolation to 0 K (see also Figure VI-3).

The third law entropy may be calculated using the vapor pressure data of PFB. 12,13) Normal modes calculation and the assignment of Raman and IR spectra of the intramolecular vibration of PFB molecule were made by Steele.10) However, the calculation of the third law and the statistical entropies and the comparison of them were not carried out because Steele assumed molecular symmetry to be $D_{2 h}$ of a planar conformation and did not take into account any steric effects. His assumption is unrealistic; the distance between two ortho fluorine atoms, 0.16 nm , is extremely shorter than the sum of van der Waals radii, 0.27 nm .

VI-3 Twisting vibration in crystal

In general, heat capacity of molecular crystal at low temperature comprises the relatively independent
three parts. The first part is the contribution of translational and librational lattice vibrations. Translational lattice heat capacity of three degrees of freedom per molecule is the largest in all the contributions at low temperatures because they vary as $T^{3}$ in contrast to exponential dependence on temperature of other contributions. The Debye theory is well applicable to translational lattice heat capacity and the characteristic temperature (Debye temperature) is proportional to $(k / M)^{1 / 2}$, where $k$ is a isotropic intermolecular force-constant and $M$ is molar mass. Therefore, the mass effect can be reduced by multiplying the Debye temperature by a square root of molar mass, and the information about the intermolecular force can be obtained also from such a plot. Librational lattice vibrations of three degrees of freedom give the second largest contribution at low temperatures. Their frequencies lie in the range from about 20 to about $100 \mathrm{~cm}^{-1}$. They are well described by the Einstein theory or a quantum statistical formulation of $a$ heat capacity of a harmonic oscillator, at low temperatures where anharmonicity does not play an important role. The characteristic temperature (Einstein temperature) is proportional to ( $\left.k^{\prime} / I\right)^{1 / 2}$, where $k^{\prime}$ is a intermolecular force-constant for librational motion and $I$ is a molecular moment of inertia.

The second part of low temperature heat capacity
of molecular crystal is the contribution of intramolecular vibrations, 60 degrees of freedom per molecule in both cases of PFB and PCB. They are also well described by the Einstein theory. The contributions of intramolecular vibrations can usually be neglected at sufficiently low temperatures because their frequencies are rather high above those of lattice vibrations. However, since the frequency of the twisting vibration is expected to be in the lattice-vibration frequency range, 14) it is the only intramolecular vibration that should be taken into account in the analysis of the low temperature heat capacities of PFB and PCB . The Einstein temperature of the twisting vibration is proportional to (k"/I') ${ }^{1 / 2}$, where $\mathrm{k}^{\prime \prime}$ is the force-constant for the twisting motion and $I^{\prime}$ is the molecular reduced moment of inertia, which is a quarter of the moment of inertia of a whole molecule around the molecular figure axis.

The last part of low temperature heat capacity is the contribution of the work of volume expansion. However, this part can be neglected at sufficiently low temperatures because volume expansion comes from the anharmonicity of lattice vibrations.

Now, the heat capacities of PFB and PCB below 15 K is analyzed based on the discussion given above. The comparison between the heat capacities of PFB and PCB crystals is given in Figure VI-3 in terms of Debye


Figure VI-3. Debye characteristic temperatures multiplied with square roots of molar mass of perfluorobiphenyl (open circle) and perchlorobiphenyl (filled circle), assuming 6 degrees of freedom per molecule.
temperature multiplied by a square root of the molar mass assuming 6 degrees of freedom per molecule, where the value of the molarmass, $M$, was $334.12 \mathrm{~g} \cdot \mathrm{~mol}{ }^{-1}$ for $P F B$ and $498.66 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ for PCB. Smooth extrapolation to 0 K was made as shown in the figure by solid and broken curves. That both the extrapolation curves intersect the 0 K vertical line at the same point means that isotropic intermolecular forceconstant is the same in both crystals. Obtained Debye temperatures at 0 K of the PFB and PCB crystals assuming 3 degrees of freedom per molecule are 68.35 K and 55.95 K , respectively. Thus, translational lattice heat capacities were subtracted from the measured heat capacities by using these Debye temperatures.

The remaining heat capacities is the sum of the contributions of librational lattice vibrations and the intramolecular twisting vibration. The contribution of volume expansion can be neglected because the temperature region considered here is sufficiently low compared with the Debye temperatures. The dependence of characteristic temperatures of librational and twisting vibrations on molecular parameters is the same, proportional to a square root of a molecular moment of inertia. Therefore, the effects of the differences of a moment of inertia can be corrected by multiplying Einstein temperatures by a square root of a moment of inertia. Moreover, since the isotropic intermolecular force-constants are the same in the PFB
and PCB crystals, the force-constant for librational motion is likely the same in both crystals. In this approximation, the correction for the difference in molecular moment of inertia makes it possible to compare immediately the twisting force-constants. Although, strictly speaking, Einstein temperature is defined to each vibrational mode and a moment of inertia relevant to each mode may be different to each other, a single Einstein temperature averaged over the librational and twisting vibrations through a heat capacity value of each crystal and a single value of a molecular moment of inertia defined by geometrical mean of three principal moments of inertia, $33.97 \mathrm{~g} \cdot \mathrm{~nm}^{2}$. $\mathrm{mol}^{-1}$ for $P$ FB molecule and $65.38 \mathrm{~g} \cdot \mathrm{~nm}^{2} \cdot \mathrm{~mol}^{-1}$ for $P C B$ molecule, were used.

The difference in the sum of the librational and twisting heat capacities between crystalline PFB and PCB after the correction for the value of the moment of inertia of $P C B$ to that of $P F B$ is shown in Figure VI-4, where the corrected heat capacity of $P C B$ were subtracted from the uncorrected one of PFB. The difference has a plus sign and shows a maximum at about 14 K. Therefore, it is concluded that crystalline PFB shows relatively larger heat capacity of the intramolecular twisting vibration than PCB crystal. Namely, PFB molecules are softer than PCB molecules for the twisting motion and, therefore, molecular stiffness


Figure VI-4. Difference between twisting heat capacities of perfluorobiphenyl and perchlorobiphenyl.
for the twisting motion increases as the size of ortho atoms becomes larger in biphenyl and its derivatives.

1. O. Bastiansen, Acta Chem. Scand., 3(1949), 408.
2. H. Suzuki, Bull. Chem. Soc. Jpn., 32(1959), 1340 .
3. A. Almenningen, A. O. Hartman and H. M. Seip, Acta Chem. Scand., 22(1968), 1013.
4. N. N. Neronova, Zh. Strukt. Khim., g(1968), 147 .
5. V. M. Kozhin and L. F. Kon'shina, Krystallografiya, 16(1971), 642.
6. G. A. Mackenzie, G. S. Pawley and O. W. Dietrich, Acta Cryst. A31(1975), 851.
7. W. B. Gleason and D. Britton, Cryst. Struct. Commun., 5 (1976), 483.
8. B. F. Pedersen, Acta Cryst., B31(1975), 2931.
9. D. Steele, T. R. Nanney and E. R. Lippincott, Spectrochim. Acta, 22(1966), 849.
10. D. Steele, Spectrochim. Acta, 25A(1969), 959.
11. I. E. Paukov and F. S. Rakhmenkulov, Zh. Fiz. Khim., 45(1971), 1296.
12. L. G. Radchenko and A. I. Kitaigorodski, Zh. Fiz. Khim., 48(1974), 2702.
13. S. J. W. Price and H. J. Sapiano, Can. J. Chem., 57(1979), 1468 .
14. J. W. Arthur and G.A. Mckenzie, J. Raman Spectrosc., $4(1976), 353$.

Thermodynamic studies were carried out on the series of compounds having the intramolecular twisting degree(s) of freedom, i.e. biphenyl and its related substances. The special attention was paid to correlation of the intramolecular twisting degree(s) of freedom with the macroscopic properties. The heat capacities were measured by adiabatic calorimetry between 4 and 300 K and some thermodynamic functions were determined.

The twist transition of biphenyl was observed as a broad anomaly with the maximum at 40.4 K , and the entropy and the enthalpy of transition were determined to be $0.129 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ and $5.02 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$, respectively; these values are consistent with the displacive nature of the transition associated with the soft modes. The lock-in transition was detected at 16.8 K by using the improved calorimeter vessel; the entropy and the enthalpy of transition were $0.009 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ and 0.15 $J \cdot$ mol $^{-1}$, respectively. The results on biphenyl- $\mathrm{d}_{10}$ were similar to those on biphenyl, but the temperature region of the two-dimensional incommensurate phase was narrower than biphenyl, i.e. between 20.2 and 36.8 K . The entropies of the corresponding phase transitions were the same as those of biphenyl, which implied the same mechanism of the transitions in the two compounds.

The twist phase transition of p-terphenyl was observed as a sharp $\lambda$-shaped anomaly with the maximum at 193.5 K ; the entropy and the enthalpy of transition were $1.63 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ and $304 \mathrm{~J} \cdot \mathrm{~mol}{ }^{-1}$, respectively. The critical exponent $\alpha$ of the heat capacity was determined as 0.13 for both the higher and the lower temperature sides of the transition. The results on p-terphenyl-d ${ }_{14}$ were similar to those on p-terphenyl, but the transition temperature was 180.3 K . The entropy of transition was the same as that of p-terphenyl, which implied the same mechanism of the transition in the two compounds.

The twist phase transition of p-quaterphenyl was observed as a broad anomaly with the maximum at 233.0 $k$; the entropy and the enthalpy of transition were 1.82 $J \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ and $414 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$, respectively.

The properties of the twist phase transitions of the p-polyphenylenes were compared with one another and discussed in relation to the internal flexibility. The change of the nature of the transition from a displacive type to an order-disorder type was attributed to the increase in barrier height hindering rotation of the phenyl rings. On the other hand, the broad anomaly in p-quaterphenyl was interpreted in terms of molecular symmetry, i.e. the existence of the softer twisting $A_{u}$ mode.
The two-dimensionality in the inter-"spin"
interaction in p-terphenyl crystal was demonstrated by calculating the interaction using the atom-atom potentials of Buckingham type. The Ising type theory was developed and compared well with the experimental results on p-terphenyl.

As the temperature decreased, the heat capacity of biphenyl decreased less steeply than those of p-terphenyl and p-quaterphenyl, and the heat capacity curve of biphenyl crossed that of p-terphenyl at 12 K and that of $p$-quaterphenyl at 6 K . The crossover was attributed to the greater twisting flexibility of phenyl rings in biphenyl by lattice dynamics calculation. The role of the incommensurability in the crossover phenomena was pointed out by comparing the low temperature heat capacities of biphenyl and 4,4'-difluorobiphenyl.

No phase transition was observed in 4, 4'-difluorobiphenyl, $p, p^{\prime}$-biphenol and p-phenylphenol. The reason of the absence of any phase transition was interpreted through comparison between their intramolecular potential curves and that of biphenyl. The calculation of static lattice energies showed that the twist phase transition of 4, $4^{\prime}$-difluorobiphenyl and p,p'-biphenol shifted below 0 K and a planar conformation was stable above 0 K because of the stabilization of a planar molecular conformation due to the greater $\pi$-conjugation.

No thermal anomaly was observed in
perfluorobiphenyl and perchlorobiphenyl. The analysis of their low temperature heat capacities showed that perfluorobiphenyl molecule was softer than perchlorobiphenyl in terms of the force-constant for the twisting motion.

1. T. Atake, K. Saito and H. Chihara,
"Low Temperature Heat Capacities of Biphenyl and Biphenyl- $\mathrm{d}_{10}{ }^{\prime \prime}$

Chem. Lett., 1983, 493-496.
2. K. Saito, T. Atake and H. Chihara,
"Crossover of the Low Temperature Heat Capacities of Biphenyl and p-Terphenyl"

Chem. Lett., 1984, 521-524.
3. K. Saito, T. Atake and H. Chihara,
"Molar Heat Capacity and Thermodynamic Properties of p-Quaterphenyl"
J. Chem. Thermodyn., 17(1985), 539-548.
4. K. Saito, H. Chihara, T. Atake and Y. Saito,
"Thermodynamic Studies on Incommensurate Biphenyl and Related Substances"

Jpn. J. Appl. Phys., 24(1985), Suppl. 24-2, 772-774.
5. K. Saito, T. Atake and H. Chihara,
"Thermodynamic Studies of p-Polyphenyls:
Heat Capacity of 4,4'-Difluorobiphenyl"
J. Chem. Thermodyn., 18(1986), in press.
6. K. Saito, T. Atake and H. Chihara,
"Stability of a Planar Molecular Conformation in 4,4'-Difluorobiphenyl"
(in preparation)
7. K. Saito, T. Atake and H. Chihara,
"Perfluorobiphenyl and Perchlorobiphenyl: Heat Capacities and Intramolecular Twisting Vibrations" (in preparation)
8. K. Saito, T. Atake and H. Chihara;
"Incommensurate Phase Transitions and Anomalous Lattice Heat Capacity of Biphenyl"
(in preparation)
9. T. Atake, K. Saito and H. Chihara,
"Thermodynamic Studies on Successive Phase Transitions of Crystalline Biphenyl- $\mathrm{d}_{10}{ }^{\prime \prime}$
(in preparation)
10. K. Saito, T. Atake and H. Chihara,
"Thermodynamic Studies on an Order-Disorder Phase Transition of p-Terphenyl at $193.5 \mathrm{~K} "$
(in preparation)
11. T. Atake, K. Saito and H. Chihara,
"Molar Heat Capacities and Thermodynamic Properties of Crystalline p-Terphenyl-d14" (in preparation)
12. K. Saito, T. Atake and H. Chihara, "Thermodynamic Studies of p-Polyphenyls: Heat Capacity of p,p'-Biphenol"
(in preparation)
13. K. Saito, T. Atake and H. Chihara,
"Molar Heat Capacities of p-Phenylphenol"
(in preparation)

Appendix Program for the heat capacity measurements

```
5 CpMaIN Ver. 1.03 08/08/84
10 WIDTH 80,25
20 CONSOLE O,25,0,0
30 ON KEY GOSUB *ENDING,*HEATOPF,*EQUILIBRIUM,*RESTART,*NLSCHANGE,*NTIMEMAXCHANGE,*IN
TERVALOFHEATINGCHANGE
40 REY(1) ON:KEY(2) ON:XEY(3) OFF:XEY(4) OFF:KEY(5) OFF:KEY(6) OFF:KEY(7) OFF
50 CLS }
60 IENDING=0
70 LPRINT DATE$:LPRINT
80 PRINT "Welcome to the Calorimeter II"
90 LPRINT "Welcome to the Calorimeter II"
100 THERMOMETER$="Gamma Pt thermometer"
110 LPRINT "Thermometer : ";THERMOMETER$
120 PRINT "Thermometer : ";THERMOMETER$
130 DEFDBL A-H,O-Z
140 DEFINT I-N
150 DIM TL$(14),DAT$(11),DA$(6),CDAT$(5),RMAP(150),RR(33),TEMP(200),CE$(16),CC(33),R$
(16),T1(100),T2(100)
160 PRINT
170 LPRINT
180 INPUT "SAMPLE NAME ";SAMPLES
190 LPRINT " Sample : ";SAMPLE$
200 SNAME$=LEFT$(SAMPLE$+" ",6)
210 OPEN "2:TITLE" AS #5
220 FIELD #5,18AS TL$(1),18AS TL$(2),18AS TL$(3),18AS TL$(4),18AS TL$(5),18AS TL$(6),
18AS TL$(7),18AS TL$(8),18AS TL$(9),18AS TL$(10),18AS TLS(11),18AS TL$(12),18AS TL$(1
3),18AS TL$(14),4AS DUMMY1$
230 ILO=LOF(5)
240 IF ILO=0 THEN 320
250 FOR I=1 TO ILO
260 GET #5.I
270 FOR J=1 TO 14
280 IF SNAME$=LEFT$(TL$(J),6) THEN 420
290 IF SNAME$=MID$(TL$(J), 10,6) THEN }42
300 NEXT J
310 NEXT I
320 NUMBEROFSERIES=I:NUMBEROFDATA=0
330 GOSUB *FILEINITIALIZE
340 PRINT USING "The heat capacity of & & has";LEFT$(SAMPLE$,10);
350 PRINT " not been measured yet."
360 LSET TL$(1)=SNAME$+"DAT
370 FOR I=2 T0 14
380 LSET TL$(I)="" "
390 NEXT I
400 PUT #5,1
40 GOTO 800
420 OPEN "2:"+SNAME$+"DAT" AS #2
430 FIELD #2,48AS DAT$(1),48AS DAT$(2),48AS DAT$(3),48AS DAT$(4),48 AS DAT$(5),16AS D
UMMY2$
440 IEND=LOF(2)
450 GET #2,IEND
4 6 0 ~ F O R ~ I = 5 ~ T O ~ 1 ~ S T E P ~ - 1 ~
470 IF CVI(LEFT$(DAT$(I),2))>0 THEN }49
4 8 0 ~ N E X T ~ I ~
490 NUMBEROFSERIES=1+CVI(LEFT$(DAT$(I),2))
500 NUMBEROFDATA=CVI(MID$(DAT$(I),3,2))
510 T2(CVI(LEFT$(DAT$(I),2)))=CVD(MID$(DAT$(I),21,8))
520 IF IEND=2 THEN 540
530 GET #2,2
540 T1(1)=CVD(MID$(DAT$(1),9,8))
550 II=1
560 FOR I=2 TO IEND
570 GET #2,I
580 FOR J=1 TO 5
590 DA$(J)=DAT$(J)
600 NEXT J
610 IF I=IEND THEN 640
620 GET #2,I+1
630 DA$(6)=DAT$(1)
640 FOR J=2 TO 6
650 IJ=CVI(LEFT$(DA$(J),2))
660 IF IJ=0 AND I=IEND THEN }73
```

```
670 IF IJ=II OR IJ=0 OR IJ>99 THEN 710
680 Tl(IJ)=CVD(MID$(DA$(J),9,8))
690 T2(IJ-1)=CVD(MID$(DA$(J-1),21,8))
700 II=IJ
710 NEXT J
720 NEXT I
730 CLOSE #2
740 PRINT USING "The heat capacity of & & has";LEFT$(SAMPLE$,10);
750 PRINT " been already measured ;"
760 FOR I=1 TO NUMBEROFSERIES-1
770 PRINT USING "
- ###### K";T1(I),T2(I)
780 NEXT I
790 GOSUB *FILEINITIALIZE
800 PRINT:INPUT "Platinum region or Germanium region ";REGION$
810 LPRINT USING " #.######## mol";AMOUNTOFSAMPLE
820 LPRINT COMMENT1$
830 LPRINT :LPRINT USING " series number ###";NUMBEROFSERIES
840 LPRINT " ";COMMENT2$
850 IF LEFT$(REGION$,1)="G" THEN *GERMANIUM ELSE IF LEFT$(REGION$,1)="g" THEN *GERMAN
IUM
860 OPEN "TableP" AS #6
870 FIELD #6,248 AS DUMMY 3$,8AS RM$
800 IEOFTABLEP=LOF (6)
890 FOR I=2 TO IEOFTABLEP-1
900 GET #6,I
910 RMAP(I-1)=CVD(RM$)
920 NEXT I
930 CLOSE #6
940 GET #5,LOF(5)
950 FOR I=1 TO 14
960 LF LEFT$(TL$(I),9)=" " THEN LSET TL$(I)=NEWTITLE$+" " GOTO 1030
970 IF RIGHT$(TL$(I),9)=" " THEN RSET TL$(I)=NEWTITLE$:GOTO 1030
9 8 0 ~ N E X T ~ I ~ I
990 LSET TL$(1)=NEWTITLE$+"
1000 NF=LOF(5)+1
1010 I=1
1020 GOTO 1040
1030 NF=LOF(5)
1040 FOR J=I+1 TO 14
1050 LSET TL$(J)="
1060 NEXT J
1070 PUT #5,NF
1080 CLOSE #5
1090 INPUT "Automatic or Manual ";MODE$
1100 D$=LEFT$(MODE$,1)
1110 IF D$="A" THEN *AUTOMATIC ELSE IF D$="a" THEN *AUTOMATIC
1120 IF D$="M" THEN *MANUAL ELSE IF D$="m" THEN *MANUAL
1130 PRINT "AGAIN !":BEEP:GOTO 1090
1140 *AUTOMATIC
1150 PRINT
1160 INPUT "Rref / ohm for Heater ";RREF
1170 LPRINT :LPRINT USING "Rref for Heater m ###.##### ohm";RREF
1180 INPUT "Final temperature / K of this series ";TMAX
1190 'INPUT "delta T / K %ure N of this series ;DELTAT
1200 INPUT "Maximum time / min for temperature measurement ";AMIN
1210 NTIMEMIN=FIX(AMIN*2)
1220 INPUT "Initial interval / min for Least Square fit ";ALS
1230 LPRINT USING "Minimum time / min for Least Square ## min";ALS
1240 NLS=FIX(ALS*2)
1250 INPUT "Initial time / min for temperature measurement ";AMAX
1260 NTIMEMAX=FIX(AMAX*2)
1270 INPUT "Initial heating interval / min ";AHI
1280 INTERVALOFHEATING=FIX(AHI*60)
1290 'INPUT "Maximum heating interval / min ";AHMAX
1300 'INTERVALOFHEATINGMAX=FIX(AHMAX*2)
1310 ISET IFC
1320 ISET REN
1330 SRQ OFF
1340 ON SRQ GOSUB *GPIB
1350 PRTNT E4;"MO1,TR2,SIOO3T1,RNO,SO"
1360 PRINT e4;"MOO,18G"
1370 PRINT @4;"MOl,19G"
1380 PRINT E4;"FPOO,LPO1,RIO30T1"
1390 PRINT O5;"F5,G0,S1"
1400 PRINT @6;"F1,RO,AC1,RE1,M2,SO"
```

```
1410 PRINT @4;"DI,00G"
1420 CMD DELIM=1
1430 PRINT @3;"AUTO"
1440 PRINT E3;"Il.0"
1450 CMD DELIM=0
1460 POLL 4,SP4
1470 POLL 6,SP6
1480 TMO=0%
1490 NUMBERINSERIES=0
1500 INPUT "Initial data number ";ND
1510 IF ND<>O THEN NUMBEROFDATA=ND-1
1520 *MAINLOOP
1530 REY(6) ON
1540 GOSUB *TEMPERATUREMEASUREMENT
1550 IF NUMBERINSERIES=1 THEN TI=AF*(NTIME+(10#+INTERVALOFHEATING)/60#)+BF:AI=AF
1560 IF NUMBERINSERIES>1 THEN GOSUB *CP
1570 IF TF>=TMAX THEN *ENDING
1580 IF INTERVALOFHEATING=0 THEN *ENDING
1590 GOSUB *HEATER
1600 KEY(6) OFF
1610 GOTO *MAINLOOP
1620 *FILEINITIALIZE
1630 IF NUMBEROFSERIES=1 THEN INPUT "Comment on this sample (<l70 Bite) ";COMMENTl$
1640 INPUT "Amount of sample / mol
1650 IF AMOUNTOFSAMPLE<>0 THEN }173
1660 OPEN "2:"+SNAME$+RIGHT$("00"+STR$(NUMBEROFSERIES-1),3) AS #l
1670 FIELD EI,18AS DUMMY1$,8AS AM$,230 AS DUMMY12$
1680 GET #1,1
1690 AMOUNT $=AM$
1700 CLOSE #1
1710 AMOUNTOFSAMPLE=CVD(AMOUNT$)
1720 GOTO 1740
1730 AMOUNT $=MKD$(AMOUNTOFSAMPLE)
1740 INPUT "Comment on this series (<l70 Bite) ":COMMENT2$
1750 OPEN "TableP" AS #3
1760 FIELD #, 20AS THERMS,8AS TO$,8AS DT$,220AS DUMMY3$
1770 GET *3.1
1780 TOP=CVD(TO$):DTP=CVD(DT$)
1790 THERMOMETER1$=THERM$
1800 CLOSE #3
1810 OPEN "TableG" AS #3
1820 FIELD #3,20AS THERM$,8AS TO$,8AS DT$,220AS DUMMY3$
1830 GET #3,1
1840 TOG=CVD(TO$):DTG=CVD(DT$)
1850 THERMOMETER2$=THERM$
1860 CLOSE #3
1870 NEWTITLE$=SNAMES+RIGHT$("O0"+STR$(NUMBEROFSERIES),3)
1880 OPEN "2:"+NEWTITLE$ AS #1
1890 FIELD #1,10AS SAN$,8AS DATD$,8AS AMS $, 20AS TH1$, 20AS TH2$,170AS COMM$
1900 LSET SAN $=LEFT$(SAMPLE$,10)
1910 LSET DATD$=DATES
1920 LSET AMS$=AMOUNT$
1930 LSET TH1$=THERMOMETERI$
1940 LSET TH2$=THERMOMETER2$
1950 LSET COMM$=COMMENT2$
1960 PUT #1.1
1970 CLOSE #1
1980 IF NUMBEROFSERIES >1 THEN 2090
1990 OPEN "2:"+SNAMES+"DAT" AS #l
2000 FIELD 1,10AS SAN$,8AS DATD$,8AS AMS$,20AS THI$,20AS TH2$,170AS COMM$
2010 LSET SAN$=LEFT$(SAMPLE$,10)
2020 LSET TH1$=THERMOMETER1$
2030 LSET DATD$=DATE$
2040 LSET AMS$=AMOUNT$
2050 LSET TH2$=THERMOMETER2$
2060 LSET COMM$=COMMENTI $
2070 PUT $1,1
2080 CLOSE #1
2090 OPEN "2:"+SNAME$+"DAT" AS #1
2100 FIELD #1,48AS CDAT$(1),48AS CDAT$(2),48AS CDAT$(3),48AS CDAT$(4),48AS CDAT$(0),6
AS DUMMY1$
2110 OPEN "2:"+NEWTITLE$ AS #2
2120 FIELD #2, 2AS ND$,23AS DAT$(1),23AS DAT$(2), 23AS DAT$(3),23AS DAT$(4), 23AS DAT$(5
),23AS DAT$(6),23AS DAT$(7),23AS DATS(8),23AS DAT$(9),23AS DAT$(10),23AS DAT$(0),1AS
DUMMY2S
2130 OPEN "TableP" AS #3
```

```
2140 FIELD #3,16AS R$(1),16AS R$(2),16AS R$(3),16AS R$(4),16AS R$(5),16AS R$(6),16AS
R$(7),16AS R$(8),16AS R$(9),16AS R$(10),16AS R$(11),16AS R$(12),16AS R$(13),16AS R$(1
4),16AS R$(15),16AS R$(16)
2150 OPEN "Cceli" AS #4
2160 FIELD #4,16AS CE$(1),16AS CE$(2),16AS CE$(3),16AS CE$(4),16AS CE$(5),16AS CE$(6)
,16AS CE$(7),16AS CE$(8),16AS CE$(9),16AS CE$(10),16AS CE$(11),16AS CE$(12),16AS CE$(
13),16AS CE$(14),16AS CE$(15),16AS CE$(16)
2170 RETURN
2180 *TEMPERATUREMEASUREMENT
2190 NDATAFILE=0:LPRINT
2200 CLS 3:SCREEN 2,,0,1
2210 VIEW (0,40)-(639,399)
2220 WINDOW (0,0)-(NTIMEMAX,.05)
2230 LINE (0,.05)-(NTIMEMAX,.05)
2240 LINE (0,0)-(0,.05)
2250 FOR JIKU=10 TO NTIMEMAX STEP 10
2260 LINE (JIKU,.049)-(JIKU,.05)
2270 NEXT JIKU
2280 LINE (NTIMEMAX*.7,.01)-(NTIMEMAX*.7,.02)
2290 LOCATE 58,9:PRINT "0.01 K"
2300 NUMBEROFDATA = NUMBEROFDATA +1
2310 NUMBERINSERIES=NUMBERINSERIES+1
2320 KEY(4) ON
2330 NTIME=-1
2340 CMD DELIM=1
2350 IBRIDGE=1
2360 GOSUB *BRIDGE
2370 IH=0:IM=0:IS=30
2380 GOSUB *TIME
2390 ON TIME$=TT$ GOSUB *BRIDGE
2400 TIMES ON
2410 IBRIDGE=0
2420 SUMR=R
2430 FOR ITEMP=1 TO 50 :NEXT ITEMP
2440 GOSUB *BRIDGE
2450 SUMR=SUMR+R
2460 FOR ITEMP=1 TO 100:NEXT ITEMP
2470 GOSUB *BRIDGE
2480 R=(SUMR+R)/3*
2490 NTIME=NTIME+1
2500 GOSUB *TEMPERATURE
2510 IF NTIME=0 THEN TORIGIN=T+.1#
2520 CIRCLE (NTIME,.0001*((TORIGIN-T)*10000 MOD 500)),.004*NTIMEMAX
2530 LOCATE 0,0:PRINT USING "T # ###.##### K
            ### ### ####;T,INTERVALOFHEATING`60,NTIMEMAXY2,NLS`2
```



```
    ###.###### K";DATATIME$,R,T:GOTO 2560
2550 LPRINT USING
.##### K";DATATIME$,R,T;
2560 IEQUILIBRATION=0
2570 IDENT$ = "T"
2580 GOSUB *DATAFILE
2590 FOR IT=1 TO NTIMEMIN-1
2600 TEMP (IT) =TEMP (IT +1)
2610 NEXT IT
2620 TEMP(NTIMEMIN)=T
2630 IF NTIME>=NLS THEN GOSUB *EQUILIBRATION
2640 IF NTIME=NTIMEMAX THEN IEQUILIBRATION=1
2650 IF IEQUILIBRATION=1 THEN 2700
2660 IRES=0
2670 IBRIDGE=1
2680 KEY(3) ON:KEY(5) ON:KEY(7) ON
2690 IF IBRIDGE=2 THEN 2370 ELSE IF IRES=1 THEN 2200 ELSE IF IEQUILIBRATION<>1 THEN 2
690
2700 CMD DELIM=0
2710 KEY(3) OFF:KEY(4) OFF:KEY(5) OFF:KEY(7) OFF
2720 RETURN
2730 *BRIDGE
2740 INPUT @3;RO$
2750 IF IBRIDGE=1 THEN DATATIME$=TIME$:IBRIDGE=2
2760 R=VAL(LEFT$(RIGHT$(R0$,12),9))
2770 RETURN
2780 *TEMPERATURE
2790 FOR I=1 TO IEOFTABLEP-1
2800 IF R<RMAP(I) THEN 2830
2810 NEXT I
```

```
2820 I=IEOFTABLEP
2830 IF I=ITABLE THEN 2900
2840 GET #3,I+1
2850 FOR K=1 TO 16
2860 RR(2*K)=CVD(LEFT$(R$(K).8))
2870 RR(2*K+1)=CVD(RIGHT$(R$(K),8))
2880 NEXT K
2890 RR(1)=RMAP(I-1)
2900 FOR J=2 TO 33
2910 IF R<RR(J) THEN 2930
2920 NEXT J
2930 TD=(R-RR(J-1))/(RR(J)-RR(J-1))*DTP
2940 T=TD+DTP*(J-2)+TOP+(I-1)*DTP*32#
2950 ITABLE=I
2960 RETURN
2970 *TIME
2980 TIMET$=TIME $
2990 IHH=VAL(LEFT$(TIMET$,2))
3000 IMM=VAL(MID$(TIMET$,4,2))
3010 ISS=VAL(RIGHT$(TIMET$,2))
3020 ISS=ISS+IS:IMM=IMM+IM:IHH=IHH+IH
3030 FOR ITIME=1 TO 2
3040 IMM=IMM+ISS`60:ISS=ISS MOD 60
3050 IHH=IHH+IMM¥60:IMM=IMM MOD 60
3060 IDD=IDD+IHH\forall24:IHH=IHH MOD 24
3070 NEXT ITIME
3080 IF IHH>9 THEN HT$=RIGHT$(STR$(IHH),2) ELSE HT$="O"+RIGHT$(STR$(IHH),1)
3090 IF IMM>9 THEN MT$=RIGHT$(STR$(IMM),2) ELSE MT$="0"+RIGHT$(STR$(IMM),1)
3100 IF ISS>9 THEN ST$=RIGHT$(STR$(ISS),2) ELSE ST$="O"+RIGHT$(STR$(ISS),1)
3110 TT$=HT$+":"+MT$+":"+ST$
3120 RETURN
3130 *CP
3140 TIMES OFF
3150 DT=TF-TI
3160 C=DE/DT
3170 TM=(TI+TF)*.5*
3180 GOSUB *EMPTYCELL
3190 CP=(DE-CELL)/DT/AMOUNTOFSAMPLE
3200 PRINT USING "data number ### T1 = ###.###### T2 = ###.###### K delta T = #.
##### K";NUMBEROFDATA-1,TI,TF,DT
3210 PRINT USING "
;DE,C
3220 PRINT USING *
P
3230 LPRINT:IF NTIME MOD 2=0 THEN LPRINT
3240 LPRINT USING "data number ### T1 m ###.###### K T2 = ###.##### K delta T = #.###
## K delta E=#.######^"an J Tm=###.### K Cp=####,#### J/(K.mol)";NUMBEROFDATA-
1,TI,TF,DT,DE,TM,CP
3250 GOSUB *CPDATAFILE
3260 IF NUMBERINSERIES=2 THEN CO=C
3270 'INTERVALOFHEATING=INTERVALOFHEATING*(.5#*(C-CO)*(DT+DELTAT)/(TM-TMO)+C)*DELTAT/
DE
3280 'IF INTERVALOFHEATING>INTERVALOFHEATINGMAX THEN INTERVALOFHEATING=INTERVALOFHEAT
INGMAX
3290 CO=C
3300 TMO=TM
3310 TI=AF*(NTIME+(10#+INTERVALOFHEATING)/60#)+BF
3320 AI=AF
3330 RETURN
3340 *EMPTYCELL
3350 TEM=TI
3360 GOSUB *ENTHALPY
3370 ECELL=CELL
3380 TEM=TF
3390 GOSUB *ENTHALPY
3400 CELL=CELL-ECELL
3410 RETURN
3420 *ENTHALPY
3430 IF TEM<1.9# THEN 3550 ELSE IF TEM<24.9# THEN 3590 ELSE IF TEM<149.75# THEN 3670
ELSE IF TEM>=315.5# THEN 3550 *
3440 KTM=FIX((TEM-149.5#)/32#)
3450 GET #4,KTM+13
3460 GOSUB 3750
3470 IF KTM<4 THEN 3500
3480 CC(33)=0#
3490 GOTO 3520
```

```
3500 GET #4,KTM+14
3510 CC(33)=CVD(LEFT$(CE$(1),8))
3520 LTM=FIX(TEM-149.5#-KTM*32#)
3530 CELL=CC(LTM+1)+(TEM-KTM*32#-149.5#-LTM)*(CC(LTM+2)-CC(LTM+1))
3540 RETURN
3550 BEEP
3560 LPRINT "Temperature is out of renge !"
3570 CELL=0#
3580 RETURN
3590 KTM=FIX((TEM-1.9#)/6.4#)
3600 GET #4,RTM+1
3610 GOSUB 3750
3620 GET #4,KTM+2
3630 CC(33)=CVD(LEFT$(CE$(1),8))
3640 LTMM=FIX(5#*(TEM-KTM*6.4#-1.9#))
3650 CELL=CC(LTM+1)+5#*(TEM-KTM*6.4#-1.9#-LTM*.2#)*(CC(LTM+2)-CC(LTM+1))
3660 RETURN
3670 KTM=FIX((TEM-24.75#)/16#)
3680 GET #4,RTM+5
3690 GOSUB 3750
3700 GET #4,KTM+6
3710 CC(33)=CVD(LEFT$(CE$(1).8))
3720 LTM=FIX(2#*(TEM-KTM*16#-24.75#))
3730 CELL=CC(LTM+1)+2#*(TEM-KTM*16#-24.75#-LTM*.5#)*(CC(LTM+2)-CC(LTM+1))
3740 RETURN
3750 FOR L=1 TO 16
3760 CC(2*L-1)=CVD(LEFT$(CE$(L),8))
3770 CC(2*L) =CVD(RIGHT$(CE$(L),8))
3780 NEXT L
3790 RETURN
3800 *HEATER
3810 CLS 3
3820 LPRINT
3830 IF NTIME MOD 2=1 THEN LPRINT
3840 LPRINT USING "data number ### ";NUMBEROFDATA
3850 IH=0:IM=0
3860 ISCAN=INTERVALOFHEATING$30
3870 IS=(INTERVALOFHEATING-(ISCAN-1)*30)Y2
3880 SRQ OFF
3890 DE=0#
3900 THEATON$=TIMES
3910 PRINT @4;"DI,01G"
3920 ISCANING=0
3930 GOSUB *TIME
3940 ON TIME $=TT$ GOSUB *SCAN
3950 TIME$ OFF
3960 PRINT USING "heating now started at &
    & ";THEATON$:IDVM=0
3970 CONSOLE 1,24
3980 POLL 4,SP4
3990 POLL 6,SP6
4000 IIS=INTERVALOFHEATING-IS
4010 IS=IIS MOD 60
4 0 2 0 ~ I M = ( I I S Y 6 0 ) ~ M O D ~ 6 0 ~
4030 IH=((IIS %60)Y60) MOD 24
4 0 4 0 ~ I D U M M Y = 0 ~
4 0 5 0 ~ T I M E S ~ O N ~
4060 IF IDUMMY =0 THEN }406
4070 GOSUB *TIME
4080 ON TIME$=TT$ GOSUB *HEATOFF
4 0 9 0 ~ T I M E \$ ~ O N ~
4100 SRQ ON
4110 IDUMMY =0
4120 IF IDUMMY=0 THEN 4120
4130 DE=ABS(DE)*HEATINGINTERVAL/ISCANING/RREF
4140 PRINT USING "Heating interval=#####.### sec delta E= #.#######.... J";HEATIN
GINTERVAL,DE
4150 IF ISCANING MOD 4<>O THEN LPRINT
4160 LPRINT USING n 4<>0 THEN LPRINT
4160 LPRINT USING ""
4170 LPRINT USING*"
E = #.#######an`. J";HEATINGINTERVAL,DE
4180 POLL 4,SP4
4190 GOSUB *DATAFILE
4 2 0 0 ~ R E T U R N
4210 *SCAN
```

```
4 2 2 0 ~ I P O W E R = 1 ~
4230 IDVM=0
4240 SRQ OFF
4250 PRINT @4:"E"
4260 IDUMMY=1
4 2 7 0 ~ R E T U R N ~
4280 *HEATOFF
4 2 9 0 ~ S R O ~ O F F
4300 PRINT 04; "H"
4310 PRINT E4;"DI,OOG"
4320 THEATOFF$=TIME $
4 3 3 0 ~ I P O W E R = 0 ~
4 3 4 0 ~ P O L L ~ 4 , S P 4 ~
4350 GOSUB *COUNTER
4 3 6 0 ~ C O N S O L E ~ 0 , 2 5 ~
4 3 7 0 ~ I D U M M Y = 1 ~
4 3 8 0 ~ R E T U R N
4390 *GPIB
4400 POLL 6,SP6;4,SP4
4 4 1 0 ~ I F ~ I E E E ( 4 ) < > 6 5 ~ T H E N ~ * G P I B E R R O R ~
4420 ON IEEE(5)-3 GOTO *SCANNER,*COUNTER,*DMM
4430 *GPIBERROR
4440 LPRINT "ERROR in GP-IB":BEEP
4 4 5 0 ~ P R I N T ~ @ 4 ; " H " ~
4 4 6 0 ~ P R I N T ~ @ 4 ; " D I , O O G " ~
4470 RETURN 1540
4480 *SCANNER
4490 IF IPOWER<>1 THEN SRQ ON:RETURN
4500 IDVM=IDVM+1
4510 PRINT @6;"E":TE$(IDVM MOD 2)=TIMES
4520 POLL 4,SP4
4530 SRQ ON
4540 RETURN
4550 *DMM
4560 IF IPOWER<>1 THEN 4790
4570 IF IDVM=0 THEN 4790
4580 INPUT @6;ES
4 5 9 0 ~ I F ~ L E F T \$ ( E \$ , 3 ) < > " D V ~ " ~ T H E N ~ P R I N T ~ 0 6 ; " E " ~ E L S E ~ G O T O ~ 4 6 2 0 ~
4600 FOR ID=1 TO 100 :NEXT ID
4610 INPUT @G;E$:GOTO 4590
4 6 2 0 ~ P O L L ~ 6 , S P 6 ~
4630 IF SP6=65 THEN PRINT @6;"E":INPUT @6;E$;POLL 6,SP6:GOTO 4630
4640 MID$(E$,14,1)="D"
4650 E(IDVM MOD 2)=VAL(RIGHT$(E$.13))
4660 IDENT$="D"
4670 GOSUB *DATAFILE
4680 IF IDVM MOD 2=1 THEN SRQ ON:RETURN
```



```
E(0)
4700 IF IDVM MOD 4=2 THEN LPRINT USING " & & & #.###
```



```
,E(0)
4720 DE=DE+E(1)*E(0)
4730 ISCANING=ISCANING+1
4740 IF ISCANING=ISCAN THEN PRINT O4;"H"
4750 FOR ISC=1 TO 100 :NEXT ISC
4760 POLL 4,SP4
4 7 7 0 ~ S R O ~ O N
4780 RETURN
4790 INPUT @6;DUMMYE$:SRQ ON:RETURN
4800 *COUNTER
4810 IF IPOWER<>0 THEN *COUNTERERROR
4820 INPUT @5;HEATING$
4830 IF LEFT$(HEATING$,1)<>"S" THEN *GPIBERROR
4840 MID$(HEATING$,13,i)="D"
4850 HEATINGINTERVAL=VAL(MID$(HEATING$,3,14))
4 8 6 0 ~ I D E N T \$ = " E " ~
4870 HEATINGINTERVAL=1000#*CINT((INTERVALOFHEATING-HEATINGINTERVAL)/1000#)+HEATINGINT
ERVAL
4880 RETURN
4890 *COUNTERERROR
4900 THEATOFF$=TIME$
4910 PRINT @4;"DI,OOG"
4920 HON=VAL(LEFT$(THEATON$,2))
4930 HOF=VAL(LEFT$(THEATOFF$,2))
```

```
4940 IF HOF<HON THEN HOF=HOF+24#
4950 MON=VAL(MID$(THEATON$,4,2))
4960 MOF=VAL(MID$(THEATOFF$,4,2))
4970 SON=VAL(RIGHT$(THEATON$,2))
4980 SOF=VAL(RIGHT$(THEATOFF$,2))
4990 HEATINGINTERVAL=3600#*(HOF-HON) +60#*(MOF-MON)+SOF-SON
5000 IDENT$="CE"
5010 RETURN
5020 * DATAFILE
5030 NDATAFILE=NDATAFILE+1
5040 NMOIl=NDATAFILE MOD 11
5050 IF NMO11=1 THEN LSET ND$=MKI $(NUMBEROFDATA)
5060 IF IDENT$="E" THEN LSET DAT$(NMOII)=IDENT$+" "+MKD$(HEATINGINTERVAL)+MRD$(D
E):GOTO 5110
5070 IF IDENT$="CE" THEN LSET DAT$(NMO11)=IDENT$+"RROR "+MKD$(HEATINGINTERVAL)+MRDS(D
E):GOTO 5110
5080 IF IDENT$="T" THEN LSET DAT$(NMOIl)=IDENT$+LEFT$(DATATIME$,2)+MID$(DATATIME$,4,2
)+RIGHT$(DATATIME$,2)+MKD$(R)+MKD$(T)
5090 IF IDENT$="D" THEN LSET DAT$(NMOI1)=IDENT$+LEFT$(TE$(1),2)+MID$(TE$(1),4,2)+RIGH
T$(TE$(1),2)+MKD$(E(1))+MKD$(E(0))
5100 IF NMOIl<>0 THEN RETURN
5110 PUT #2,LOF(2)+1
5120 RETURN
5130 *CPDATAFILE
5140 IF IENDING=1 THEN 5240
5150 NMO5=(NUMBEROFDATA-1) MOD 5
5160 IF NMOS=1 THEN 5180 ELSE IF NUMBERINSERIES<<>2 THEN 5180
5170 GET #1,LOF(1)
5180 LSET CDAT$(NMO5)=MKI$(NUMBEROFSERIES)+MKI$(NUMBEROFDATA-1)+MKS$(CP)+MKD$(TI)+MKS
$(AI*2!)+MKD$(TF)+MKS$(AF*2!)+MKD$(HEATINGINTERVAL)+MKD$(DE)
5190 IF NMO5=0 THEN 5240
5200 FOR ICP=NMOS+1 TO 5
5210 LSET CDAT$(ICP MOD S)=MKI$(0)+MKI$(0)+"
5220 NEXT ICP
5230 RETURN
5240 NFCP=FIX((NUMBEROFDATA-2)/5)+2
5250 PUT #1,NFCP
5260 RETURN
5270 *EQUILIBRATION
5280 SN=0音
5290 SNN=O#
5300 SNT=0#
5310 STT=0年
5320 ST=0%
5330 NTIMEO=NTIME-NLS
5340 FOR IIS=NTIMEMIN-NLS+1 TO NTIMEMIN
5350 ST=ST+TEMP(IIS)
5360 SNT=SNT+TEMP(IIS)*(IIS+NTIME-NTIMEMIN)
5370 STT=STT+TEMP(IIS)^2
5380 NEXT IIS
5390 SN=(NTIME*(NTIME+1#)-NTIMEO*(NTIMEO+1#))*.5#
5400 SNN=(NTIME*(NTIME+1#)*(2#*NTIME+I#)-NTIMEO*(NTIMEO+1#)*(2#*NTIMEO+1#))*.16666666
66666667#
5410 SXX=SNN-SN*2/NLS
5420 AMEANN = (NTIME+NTIMEO+1#)*.5#
5430 AMEANT=ST/NLS
5440 SXY=SNT-NLS*AMEANN*AMEANT
5450 AF=SXY/SXX
5460 BF=AMEANT-AF*AMEANN
5470 TF=AF*(6#-HEATINGINTERVAL)/60#+BF
5480 LOCATE 0,1:PRINT USING "Drift = #.##^"a^ K/min";2*AF
5490 RETURN
5500 *ENDING
5510 SRQ OFF
5520 PRINT @4;"H"
5530 PRINT @4;"DI,02G"
5540 IF NDATAFILE MOD 11=0 THEN }558
5550 NDATAFILE=-1
5560 IDENT$=""
5570 GOSUB *DATAFILE
5580 IF (NUMBEROFDATA-1) MOD 5=0 THEN 5610
5590 IENDING=1
5600 GOSUB *CPDATAFILE
5610 CLOSE
5620 KEY OFF:TIME$ OFF
```

5640 *EQUILIBRIUM
5650 IEQUILIBRATION=1
5660 RETURN
5670 *RESTART
5680 NUMBEROFDATA=NUMBEROFDATA-1
5690 NUMBERINSERIES=NUMBERINSERIES-1
5700 IRES=1
5710 RETURN
5720 *NLSCHANGE
5730 INPUT "fitting interval / min for Least Square ";ALS
5740 NLS=FIX(ALS*2)
5750 IF NLS $>$ NTIMEMIN THEN NLS $=$ NTIMEMIN
5760 RETURN
5770 *NTIMEMAXCHANGE
5780 LPRINT
5790 INPUT "Maximum time / min for temperature measurement ";AMAX
5800 LPRINT USING "Maximum time for temperature measurement \#\# min";AMAX
5810 NTIMEMAX $=$ FIX (AMAX*2)
5820 RETURN
5830 *INTERVALOFHEATINGCHANGE
5840 INPUT "Heating interval / min ";AHI
5850 INTERVALOFHEATING=FIX (60*AHI)
5860 RETURN

