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Abstract 

A theory of Schwarzian is developed based on a curve-theoretic quantity 

called the Schwarzian derivative of curves. The relationship between 

the Schwarzian and Mobius transformations is made clear. As 

application of the theory various injectivity theorems are obtained. 

0. Introduction 

The Schwarzian derivative of holomorphic functions, 

S z = f"'~) _'i(f"(z))2 
r< ) f'(z) 2 f'(z) ' 

has been generalized by several authors from various viewpoints ([1], [3], 

[7], [8], [10], [12], [13]). In this paper, we give a framework which unifies 

these generalizations. The theory is based on a curve-theoretic 

differential operator called the Schwarzian derivative of curves whose 

properties are investigated in Section 1. The Schwarzian derivative of a 

curve decomposes into two components. Roughly speaking, the 0-part of 

the Schwarzian derivative controls the parametrization of the curve while 

the 2-part controls itsshape. A curve with vanishing Schwarzian, which 
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336 OSAMU KOBAYASHI and MASAAKI WADA 

we call a Mobius circle, is a "projectively parametrized" geodesic circle. 

Closely related to the Schwarzian derivative is the notion of Mobius 

transformations. In Section 2, we define the Schwarzian for Riemannian 

metrics and clarify its relationship to generalized Mobius 

transformations. There is a subtle point about the definition of Mobius 

transformation. 'The Schwarzian vanishes for transformations which map 

Mobius circles to Mobius circles, wheTeas , the term "Mobius 

transformations" has historically been used for those mapping geodesic 

circles to geodesic circles. It is shown that these two conditions are 

.actually equivalent in dimensions greater than or equal to 2. 

The approach taken in this paper allows us to define the Schwarzian 

of as general a map as an immersion of class C3 between any 

Riemannian manifolds. To illustrate the capability of the framework we 

prove various injectivity theorems in the last section. In particular, we 

prove the differentiable version of Nehari's univalency theorem. 

1. The Schwarzian Derivative of Curves on 

Riemannian Manifolds 

Let (M, g) be a Riemannian n-manifold. Recall that the Clifford 

multiplication on the Grassmann algebra 1\ TxM is the associative 

bilinear operation characterized by the following property: 

where t denotes the interior product. In particular, for u, v E TxM, we 

have 

u-1 =- 1 u 
g(u, u) 

(u =F O), (1.1) 

uv = u A v- g(u, v), (1.2) 

uvu = g(u, u)v- 2g(u, v)u. (1.3) 



CIRCULAR GEOMETRY AND THE SCHWARZIAN 337 

The usual convention of omitting the multiplication symbol for the 

Clifford product may cause a confusion when two or more Riemannian 

metrics are involved. If necessary, we will indicate by words which 

Riemannian metric the Clifford multiplication in an expression 

corresponds to. 

Definition. Let I c R be an interval and x : I --+ eM, g) be a 

regular curve. We define s3x = sgx : I --+ TM by 

3 n n · 3en ·)·-len.) Rg ·3 
S X = v · v ·X-- v ·X X v ·X - X 

X X 2 X X 2nen - 1) ' 

and define the Schwarzian derivative s2x = s5x of x by 

2 e 3 ) · -1 en n ·) · -1 3 een ·) · -1 )2 Rg . 2 
S X = S X X = v · v ·x X -- v ·X X - X 

X X 2 X 2nen - 1) ' 

where \1 and Rg are respectively the Riemannian connection and the 

scalar curvature of g. 

For t E I, s2x(t) lies in /\0 
Tx(t)M $ f\2 

Tx(t)M, and we have a 

natural decomposition, s2x = s2x(o) + s2x(2), of the Schwarzian 

derivative into its 0-part and 2-part. Note that the 0-part and the 2-part 

of the Schwarzian derivative correspond to the components of s3 x 

tangent to x and normal to x, respectively. The auxiliary quantity s3x 

will play an important role in the subsequent sections. 

When n = 1 the term Rg jnen -1) is indefinite; we adopt the 

following convention which proves to be useful later: Rg jnen -1) = r-2 

for the Euclidean circle of radius r, and Rg jnen -1) = 0 for the Euclidean 

line. 

In the usual terminology of Riemannian geometry, the quantities 

s3x, s2x(o), s2x(2) are expressed as follows; these are obtained by 

straightforward calculations using (1.1)-(1.3): 
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+ ( ( ~ . ) g(V x x, V x x) + tg ) g(x, x )) x (1.4) 
2g x, x 2n n -1 

? (0) 1 ( ( . . ) 3 ( . . )? 
s·x = g V · V ~x x - g V · x x • 

( • ·) X X ' (" ·) X ' g X, X . g X, X 

3 ( . " . ) R9 ( . . ) 2 ) 
+-gVxx,vxX+ ( gx,x 

2 2n n -1) 
(1.5) 

2 (2) - - . 1 (" . " .. - 3 ( . . . ) .. ) . 
s X - ( .. ) vx vxX ( . . )9Vxx, x Vxx 1\X. 

g X, X g X, X 
(1.6) 

In view of the Frenet-Serret formula in the theory of curves, we have the 

following useful lemma, which is again obtained by direct calculations. 

Lemma 1.1. Put () = I X I and s = x/a. Let K denote the geodesic 

curvature of x. Then 

This lemma leads to the following geometric interpretation of the 

2-part of the Schwarzian derivative, s2x(2
) = (1/ g(x, x )) x 1\ s3x. 

Proposition 1.2. Let K denote the geodesic curvature of x, and -r the 

torsion vector of x. Then s2x(2)(t) = 0 if and only if 1c(t) = -r(t) 0. 

Proof. From the Frenet-Serret f01·mula, we have Ve v\E. = -K
21' + 

s " - -, 

(v c, K) v + -r, where v is the unit normal vector of x. It follows from Lemma 

1.1 that s 2x(2)(t) = 0 if and only if Vc,Vc,s = -K21;, which then implies 

our assertion. 
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This result may be found in Yano [14]; it is essentially the classical 

observation due to G. Pick [9] on the relationship between the imaginary 

part of the Schwarzian derivative and vertices of a planar curve (cf. [2]). 

Anyhow a curve x with s2x(2) = 0 is a so-called geodesic circle, which is 

by definition a curve of constant curvature with vanishing torsion (cf. 

[14]). 

Definition. We call a regular curve x : I ~ M satisfying s 2x = 0, 

or equivalently s3x = 0, a Mobius circle. 

Every geodesic circle is a Mobius circle if appropriately parametrized. 

In this sense the 0-part s2x(o) of the Schwarzian derivative may be 

considered to control the parametrization of the curve x. One can see from 

(1.4) that given X, Y E Tx
0

M (X * 0), there exists a unique Mobius 

circle X with x(O) = Xo, x(O) = X and 'V .xx(O) = Y. 

We can determine all the Mobius circles in the Euclidean space Rn as 

follows. Since Mobius circles have zero torsion, it is sufficient to consider 

the case of the plane R2 . Then, one can easily verify that the curve 

x(t) = at+ b 
ct + d 

(a, b, c, dEC, ad-be* 0) 

provide all the solutions to the equation s2x = 0. Namely, a Mobius circle 

in R2 = C is the image of a straight line of constant speed by a complex 

linear fractional transformation. In any case, a Mobius circle x has a 

unique limit point x( + cc) = x(- cc) in Rn U {cc}. The limit point can be 

expressed as 

x(cc) = x(t)- 2x(t)x(tr1x(t). (1.7) 

In fact we can see that the derivative of the right hand side with respect 

to t is zero since x· - (3/2) .x.x-1x = 0. It is then easy to check that the 

right hand side of (1. 7) equals x( cc). 
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A geodesic parametrized by arclength is a Mobius circle if R9 = 0. 

However, it is not the case, in general. Let us consider the case of the 

Euclidean n-sphere (sn, g), for which Rg jn(n- 1) = 1. Let X : R ~ sn 

be a great circle parametrized by t, and s be an arclength parameter for x 

so that ds/dt > 0. Then cr = I X I = ds/dt, s = x/cr = d/ds, and K = 0. 

Therefore by Lemma 1.1, the condition s2x(O) = 0 reads (d/ds)2Fcr + 

Fcr/4 = 0. It follows that cr = 2Cl cos2(s/2 + C2) for some constants 

C1, C2, and we have Co + C1t = tan(s/2 + C2) for some C0 . In 

particular, t = tan(s/2), that is, s = 2 arctan t (t E R), is a solution. 

Namely, if x : R ~ sn is a g1·eat circle parametrized by arclength, 

x(t) = x(2 arctan t) is a Mobius circle. It should be noted that by the 

stereo graphic projection from the point x( + oo) = x(- oo), the Mobius 

circle x is mapped onto a straight line of constant speed in the Euclidean 

n-space. One can sense from this example why the scalar curvature term 

enters into our Schwarzian derivative; we will come back to this question 

in the next section. 

As for the 0-part of the Schwarzian derivative, we have the following 

theorem. The formula (1.8) below gives a geometric meaning of s2x(o). 

Theorem 1.3. A regular curve x : I ~ Rn in the Euclidean space 

satisfying s2x(o) :::; 0 is injective. 

We will see in the next section that the Euclidean space Rn in the 

above may be replaced by the Euclidean n-sphere sn. One may compare 

this result to the well-known theorem by Kneser [4] on vertex-free planar 

curves stating that a regular curve x : I ~ R 2 in the Euclidean plane 

satisfying s 2x(2) -::f:. 0 is injective. 

Proof. For each t E I, take the Mobius circle m : R ~ Rn 

approximating the curve x to the second order; i.e., m(O) = x(t), 

ni(o) = x(t), m(o) = x(t). 
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Let S(t) denote the unique hypersphere, or possibly hyperplane, 

which intersects x perpendicularly at x(t) and passes through m(co). 

Then using (1.7), we can see that the radius r(t) and the center C(t) of 

S(t) are written as 

I x(t) 13 
r( t) :::: ---'(.i-(t )_;_:_, x-'--.. (t-)) ' 

x(t) 
C(t) :::: x(t)- r(t) I x(t) I . 

In terms of r(t) and C(t), the 0-part of the Schwarzian can be 

expressed as 

(1.8) 

This can be proved as follows. Using the notation of Lemma 1.1, r(t) can 

be rewritten as 

Hence we have 

On the other hand, from 

c = (cr-r)s-rcr'V~s, 

we obtain 

and 
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By (1.8), the assumption s2x(O) ~ 0 implies I C I ~ I 1·12
. TherefoTe, 

we have 

for t1 < t2. In particular, S(t1) and S(t2 ) share at most one point. From 

this we can conclude that x is injective, since x is a regular curve. This 
completes the proof of Theorem 1.3. 

2. The Schwarzian for Riemannian Metrics 

Let g and g be Riemannian metrics on M. We consider the difference 

between the Schwarzian derivatives with respect to the two metrics. For 
a regular curve x : I ---* M, we define 

We see from (1.4) that the third order derivatives 111 this expression 

cancel out, and sg(g) depends only on X = x and Y = \1 xi. Thus, it is 

reasonable to use the notation sg(g)(X, Y) for arbitrary tangent vectors 

X, y E TpM (X :;t 0). 

Definition. We define the Schwarzian sg(g) of g with respect to g 

by 

for X, Y E TPM (X -:F 0). The Clifford multiplication on the right hand 

side is with respect to the metric g. 



CIRCULAR GEOMETRY AND THE ·scHWARZIAN 343 

2 A 

The 0-part and the 2-part of the Schwarzian S 9 (g) are denoted by 

s5(§)(0) and s5(§)(2), respectively. 

Proposition 2.1. Let gi (i = 1, 2, 3) be Riemannian metrics on M, 

and iv be the Riemannian connection of gi. Denote the difference between 

1v and 2V by A(X, Y) = 2VxY- 1VxY. Then, 

S3 (g3 )(X, Y) = 8
9
3 (g2 )(X, Y) + 8

9
3 (g3)(X, Y + A(X, X)). 

91 1 2 

In particular, we have 

S3 (g2 )(X, Y) + 8
9
3 (g1 )(X, Y + A(X, X))= 0. 

91 2 

Proof. Take a curve x such that X = x and Y = 1V .xx. Then we 

have 

2 V.xx = Y + A(X, X), 

and 

Therefore the condition sg(g) = 0, or equivalently S5(§) = 0, 

defines an equivalence relation between Riemannian metrics. Note that 

the condition S5(§)<2) = 0 also defines an equivalence relation between 

metrics because 

8 2( A)(2)(T- ) 1 3( A)' ) 
g g .A, y = A( ) X 1\ 89 g (X, y . 

gX,X 

Proposition 2.2. 

2 A 

(1) S 9 (g) = 0 if and only if Mobius circles for g are Mobius circles 

for g. 
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(2) s5 (g )(2) = 0 if and only if geodesic circles for g are geodesic 

circles for g. 

Proof. The first statement is obvious from the definition. To see (2), 

we note that 

9(x, x) s§(fJ)C2)(x, v xx) = x" s2(9)(x, v xx) 

= g(x, x) s~ x(2) - g(x, x) s5 x(2). 
g 

Then, the assertion follows from Proposition 1.2. 

Definition. For Riemannian metrics g and g on M, we say that 

(1) g is Mobius equivalent to g if s§(g) = 0, 

(2) g is concirculal'ly equivalent to g if s5(9)(2) = 0. 

Accordingly, we define Mobius and concircular transformations: 

Definition. A local diffeomorphism f of a Riemannian manifold 

(M, g) is called 

(1) a Mobius transformation if f*g is Mobius equivalent to g, 

(2) a concircular transformation if f* g is concircularly equivalent 

to g. 

Some historical remarks are in order. The notion of a concircular 

transformation was introduced by Yano [14] in 1940 as a conformal 

transformation which preserves geodesic circles. In 1970, Vogel [11] 

showed that the conformality condition in the definition of concircular 

transformation is redundant; we will reconsider Vogel's result from the 

viewpoint of the Schwarzian. Thereby our definition of concircularity 

coincides with Yano's. The term "Mobius transformation," on the other 

hand, seems to have been used more vaguely. According to a historical 

remark by Ahlfors [1], Mobius transformations should be_the same thing 

as concircular transformations. Indeed, the generalized "Mobius 

transformation" introduced by Osgood and Stowe [8] is a synonym of 
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"concircular transformation." Our notion of Mobius transformation 

however looks stricter by definition. 

In what follows, we show that the two notions are, in fact, equivalent 

if dim M ;:: 2. It thus proves a conjecture posed by the second author in 

[12]. 

We begin by rewriting sg(g) and S5(g) without using auxiliary 

curves. First note for a vector field X that 

VxX = VxX + A(X, X), 

VxVxX = VxVxX + 3A(VxX, X) 

+ ((VxA)(X, X)+ A(X, A(X, X))), 

where A(X, Y) = V x Y - V x Y. We define formal expressions Dl> D2 , 

and D3 ofthe variables X, Y, Z E TPM by 

D1(X, Y, Z) = Z, 

D2 (X, Y, Z) = Y + A(X, X), 

D3 (X, Y, Z) = Z + 3A(X, Y) + ((V xA) (X, X)+ A(X, A(X, X))), 

and define ~~(g) and ~~(g) by 

"2( A) "3( A)n-1 D n-1 3 (D n-1)2 Rg D') L-g g = L-g g 1 = 3 1 - - 2 1 - r, 
2 2n(n -1) 

where the Clifford multiplication is with respect to g. We then have 

sg(g)(X, Y) = ~~(g)(x, Y, ~ yx-1Y + t9 ) x 3
), (2.1) 

2 2n n -1 

S5(g)(X, Y) = ~~(g)(x, Y, ~ YX-1Y + tg ) x 3 ). (2.2) 
2 2n n -1 
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This time, the Clifford multiplication in the third arguments of the right 

hand sides is with respect to g. 

From this it follows that sg(g)(X, Y) and S5(§)(X, Y) are 

polynomials of degree at most 2 in Y. Let us write sg(§)(X, Y) as 

where Q3 (X, Y) and T 3 (X, Y) are respectively the quadratic part and 

the linear part, with respect to Y, of sg(g)(X, Y). The following is 

immediate from Proposition 2.1. 

Proposition 2.3. Denote by Qij and Tij, the Q-part and the T-part of 

S~i (g j), respectively, and by Aij = j'V - iv the difference between the 

connections. Then, we have 

(1) Qik(X, Y) = Qij(X, Y) + Qjk(X, Y), 

(2) 1ik(X, Y) = T;_j(X, Y) + Tjk(X, Y) + Qjk(X, Y + Aij(X, X)) 

-Qjk(X, Aij(X, X))-Qjk(X, Y). 

In the same way as in (2.3), we have the following decompositions of 

S5(§)(o) and s5(§)<2): 

s5(§)<o) = Q2<0)(x, Y) + r 2<0)(x, Y) + s5(§/0)(x, o), 

s5(§)<2) = Q2(2)(x, Y) + r 2<2>(x, Y) + s5(§)<2)(x, o). 

Here we write dovm these terms explicitly: 

Lemma2.4. 

Q3(X, Y) = ~( ?(Y, Y) _ g(Y, Y))x _ 3(~(X, Y) _ g(X, Y))y 
2 g(X, X) g(X, X) g(X, X) g(X, X) 

Q2(o)(X Y) = ~( g(Y, Y) _ g(Y, Y)) _ 3( g(X, Y) _ g(X, Y)) g(X, Y) 
' 2 g(X, X) g(X, X) g(X, X) g(X, X) g(X, X) 
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Qz(z)cx Y) = _ , 3 ( ?Cx, Y) _ g(X, Y)) x 1\ Y 
' g(X, X) g(X, X) g(X, X) 

T3(X Y) = 3(A(X Y) g(A(X, X), Y) X_ g(A(X, X), X) y 
' ' + g(X, X) g(X, X) 

- g(X, Y) A(X X)) 
g(X, X) ' 

Tz(o)(X, Y) = 3 g(A~X, Y), X)+ 3 g(Z~X, X), Y) 
g(X, X) g(X, X) 

_ 
6 

g(A(X, X), X) g(X, Y) 

g(X, X)2 

T2(2)(X Y) = 3 X 1\ (A(X Y)- g(A(X, X), X) 
' g(X, X) ' g(X, X) 

- §(~, Y) A(X x)). 
g(X, X) ' 

Proof. The expressions for Q3 (X, Y) and T 3 (X, Y) are obtained by 

a straightforward computation from (2.1). The others are also easily 

obtained by using 

~~ - 1 • 
Q (X, Y) - g(X, X) g(Q(X, Y), X), 

2(0)( ) - 1 '( ( ) T X, Y - '( ) g T X, Y , X), 
gX,X 

T 2(2)( ) - 1 ( ) X, Y - '( ) X A T X, Y . 
gX,X 

From Lemma 2.4, we immediately have 
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Proposition 2.5. The following are equivalent: 
. i > 

(I) g is conformal to g, 

(2) Q3 = 0, 

(3) Q2(0) = 0. 

If dim M 2 2, these conditions are also equivalent to 

(4) Q2(2) = 0. 

The second statement is the Vogel's argument [11] for showing that 
concircularity implies conformality. Kiihnel [5] gives a proof of the same 
result from a slightly different viewpoint. Our approach is in line with the 
original proof by Vogel. 

Proposition 2.6. The following are equivalent: 

(1) V is a conformal connection of g; i.e., there exists a I-form A such 

that V x9 = A( X) g, 

(2) T 3 = 0, 

(3) T 2(o) = o, 

(4) T 2(2 ) = o. 

Proof. Under the condition (1), the difference between the 
connections is written as 

A(X, Y) = l(A(X)Y + A(Y)X- g(X, Y)A# ), 
2 

where A# is the vector field satisfying §(A#, Z) = A(Z) for any z. Using 

this, one can easily verify by Lemma 2.4 that the conditions (2), (3) and 
( 4) hold. We leave the proof of the other implications as an exercise for 
the reader. 

Corollary 2.7. If g is conformal tog, S2(§)(X, Y) and S5(§)(X, Y) 

do not depend on Y. 
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Thus we may use the notation S2(g)(X) and B~(g)(X) when g is 

conformal to g. 

It is clear from Propositions 2.5 and 2.6 that conformal 

transformations are of special importance to the Schwarzian. Let us 

assume that g is conformal to g, and is written as g = e2
<p g. The 

difference between the connections, A<p = \7- \7, is then explicitly 

written as 

We define P<p by 

1 
A<p(X, Y) = --(X(V<p)Y + Y(V<p)X). 

2 

Note that if n = dim M = 1, P<p has a form analogous to the classical 

Schwarzian, 

If n :2: 3, we have 

1 P =--(L,-L) 
<p n-2 9 9 ' 

where 

. R9 Lg = RICg - ( ) g. 
2n-1 

In particular, 

P o 1 (R· o R" o ) = --- lC'- lC 
<p n-2 g 9 ' 

(2.4) 
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where o stands for the traceless part of symmetric 2-tensor. We note that 

the last equality holds even if n = 2. 

Theorem 2.8. Suppose that n :::0: 2 and g is conformal to :g. Then, 

using the notation as above, we have 

(2) sg(g)(X) =- g(X, X)P; ·X. 

Proof. Let x :I ~ M be a regular curve such that x =X. Since g 

is conformal to g, we have 

As in Lemma 1.1, let cr, C,, K respectively be the speed, the unit tangent 

vector, and the geodesic curvature of x with respect to g, and &, ~' K: 

those with respect to g. Then, we have & = e<!lcr and ~ = e-<p C,. As for the 

geodesic curvature, we have 

This formula is given in [14], in which Yano also gives 

Hence by Lemma 1.1, we obtain 

The computation for the 0-part is as follows. Note that the second 

equality holds only if n ::?: 2. 
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? (o) '2[~~J& 1 '2] ,2 R9 s':: x = 2cr -- + - K + cr 
g J& 4 2n(n - 1) 

2 (0) 2po(~ ~) 
= Sg X + 0" c:p ':>> ':> • 

Thus we obtain 

This completes the proof of (1). The assertion (2) follows immediately 

from (1). 

Yano [14] shows that two conformal metrics g and g are 

concircularly equivalent if and only if P; = 0. 

Osgood and Stowe [8] consider P; to be the generalized Schwarzian 

derivative, while Carne [3] regards Pc:p as a generalization of the 

Schwarzian derivative. As is seen from the above proof, the 2-part of the 

Schwarzian S~(g)(X) involves P; whether or not we put the scalar 

curvature term in our definition of the Schwarzian derivative of curves. 

On the other hand, the 0-part of the Schwarzian would be Pc:p(X, X) 

rather than P;(x, X) if we omitted the scalar curvature compensation 

term. 

Let us consider the stereographic projection 

of the Euclidean sphere (Sn, 9r) of radius r to the Euclidean space 

(Rn, g0 ). By Theorem 2.8, we have S~r (f* g0 ) = 0. This holds even if 

n = 1. Therefore, the Euclidean space in Theorem 1.3 may be replaced by 

the Euclidean sphere of radius r. 
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Theorem 2.8, together with Proposition 2.5, implies: 

Theorem 2.9. If n;;::: 2, two metrics g and g are Mobius equivalent if 

and only if they are concircularly equivalent. 

In the level of definition, the relationship between Mobius geometry 

and concircular geometry is analogous to that between affine geometry 

and projective geometry. In reality, however, there is no such difference 

between the two circular geometries if n ;;::: 2; therefore Mobius 

transformations and concircular transformations are the same thing. 

In the Euclidean space Rn (n ;;::: 3), Mobius and concircular 

transformations also coincide with conformal transformations by (2.4) and 

Theorem 2.8; they are nothing but Mobius transformations in the usual 

sense. 

Let us consider the 2-dimensional case. We equip the complex plane C 

with the Euclidean metric g = I dz 1
2

, and consider a complex analytic 

function f defined on some domain on which f'(z) * 0. The function f is 

conformal, and we can write g = f* g = e2
<fl g, where <p = logl !' I· Put 

ro 9 = -2~ Oz 1\ 8-z, and ffig = /*ro 9 = e-2<f>ro9 . Then, we have 

s8(§)(X) = Re S1(X, X) X+ Im s 1(X, X)JX, 

s5(§)(X) = Re Sr(X, X)+ Im Sr(X, X)ro9, 

where J is the almost complex structure of C, and 

( !'" 3 (1")2
] Sr = f-Z f dz®dz 

is the classical Schwarzian differential. A proof of this will be given in the 

next section (also see [8]). 

So far we are mainly concerned with the case where n ;;::: 2. In 

dimension 1, every transformation is clearly concircular. On the other 

hand, Mobius transformations are restricted to some extent. Recall that 
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we put Rg j n(n - 1) = r - 2 for the Euclidean circle of radius r, and 

Rg jn(n -1) = 0 for the Euclidean line. Under this convention, Mobius 

transformations are linear fractional' trimsformations. 

The proof of Theorem 2.8 • actually shows the following. 

, 2m 
Corollary 2.10~ Suppose that n ~ 2 and g = e "'g. Then, we have 

( ) 3 3 Po( • ·) · (Po(· ·) · I · 12po ·) 3 S gX = SgX + <p X, X X + <p X, X X - X <p • X . 

Corollary 2.11. The quantities s5x(o), s5~(2) ® g, js5x(2) j and s3x 

are conci1·cular invariants; 

This is a generalization of the observation by Yano [15] that the 

orthogonal component of s3x to x, which is equivalent to s5x(2) ® g, is 

concircularly invariant. 

We now consider a modification of the scalar curvature term in the 
definition of the Schwarzian derivative of curves. Namely, for a regular 
curve x : I -* M, we define 

~3 · n n · 3 (n ·) ·-l(n ·) . 1 . '(·L· ·)·· Sg X = v x v xX - - v xX X v xX - --X g · X X, 
2 n-2 

~ 2 _ (n n ·) · -1 3 ((" ·) · -1)2 . F. .. · (L ·) Sg X - v x v xX X - - v xX X - --X g · X . 
2 n'- 2 

Corollary 2.12. Suppose that n ~ 3 and g = e2<f>g. Then, we have 

(2) ~3 ~3 
Sg X= Sg X. 



354 

and 

OSAMU KOBAYASHI and MASAAKI WADA 

Proof. Note that 

~2 2 1 · (R. o • ) 
Sg X = SgX ---X lCg · X 

n-2 

= s~x--1 -(Ricg(x, x)+(Ricg ·x)Ax), 
n-2 

~3 3 1 ( (. . ) R. o • 2R. o ( • ·) • ) 
Sg X = SgX - -- g X, X lCg · X - lCg X, X X . 

n-2 

Then, apply Corollary 2.10. 

Corollary 2.13. The quantities sf'x(o), sf'x(Z) ® g, I sjx(Z) I and sffx 

are conformal invariants. 

3. The Schwarzian of Immersions and Injectivity Theorems 

Let (M, 9M) and (N, 9N) be Riemannian manifolds, and 

f:M--'1-N 

an immersion of class C3 . For a regular curve x : I __,. M, we have 

s3x(t) E Tx(t)M. The image of x under f is again a regular curve, 

y = fox : I __,. N, and we also have s3y(t) E Ty(t)N· 

Definition. We define S 3f by 

where f* : TxM __,. TyN is the tangential map of f. The Schwarzian off is 

then defined to be 

As before, S3f and S2f depend only on the first derivative X = x 

and the second derivative Y = V xX ofx, and may be denoted respectively 
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If dim M = dim N so that f is a local diffeomorphism, S 3 f and S 2 f 

can be expressed in terms of the Schwarzian of metrics defined in the 

last section as t*( s;M(t*gN )) '~nd t{ s;M(t*gN )), respectively. In 

particular, S 2 f generalizes the classical Schwarzian differential of 

holomorphic functions in the following sense. Let us identify the complex 

numbers C with 1\eu R2 =REB Re1e 2 , where e1, ez denote the 

canonical basis for R 2 . In order to apply our framework to a holomorphic 

function f, we also need to identify C with R2 = /\1R2 . This 

identification may be given by multiplication by e1 from the right: 

eu 
2 

1 
2 

Re1 : C = 1\ R ~ f\ R . 

Now, let z, w be regular curves in C with w(t) = f(z(t)). Then a 

straightforward computation shows 

and 

3 ... 3 ( .. ) ( . )-1 (. .. ) s w = we1 - - we1 we1 we1 2 

Therefore, 

and 
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where 

z - f"'(z) _l(f"(z))2 
Sr( ) - f'(z) 2 f'(z) 

is the classical Schwarzian derivative of f. 

Before stating the injectivity theorems, we need to introduce two new 

notions about Riemannian manifolds. Let (M, g) be a Riemannian 

manifold. 

Definition. A function a : M ~ R is called a connectivity function 

for M if every pair of points in M can be joined by a regular curve 

x : I ~ M satisfying 

for all t E I. A constant connectivity function is called a connectivity 

constant. 

Definition. A function 13 : M ~ R is called an injectivity function 

forM if a regular curve x : I ~ M is injective whenever 

for all t E I. A constant injectivity function is called an injectivity 

constant. 

Theorem 1.3 states that 0 is an injectivity constant for the Euclidean 

space Rn. By the remark of Theorem 2.8, 0 is also an injectivity constant 

for the Euclidean sphere sn. Using the following lemma together with 

Lemma 1.1, one can show that - 1/ 2r2 but no values larger than that is 

an injectivity constant for the cylinder of radius r. 

Lemma 3.1. A (open) curve x of length l can be reparametrized so that 

where K is the geodesic curvatw·e of x. 
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Proof. Take an arclength parameter s for x so that - l/2 < s < l/2. 

h . h 1tS 
Then replace t e parameter s w1t t = tan-. 

l 

Let us first consider the case of a conformal immersion f : M ~ N. 

By the conformality assumption, we have 

(3.1) 

for regular curves x : I ~ M and y : I ~ N with y = f o x. In 

particular, we have 

(3.2) 

in this case. 

Proposition 3.2. Let f : M ~ N be a conformal immersion. Then, 

S 2 j(0 )(X, Y) does not depend on Y. 

Proof. Since S 2 f(o) is a local quantity, we may assume that f is an 

embedding, and maps M conformally onto a submanifold V of N. Let g 
denote the restriction of the metric gN to V. For regular curves 

x : I ~ M and y : I ~ V c N satisfying y = f o x, we have 

(3.3) 

Note that the last term of (3.3} does not depend on Y by Corollary 2.7. 

Put cr = JgN(Y, y) and ~ = yjcr. Write the decomposition of 9Nv~~ 

into its tangential and normal components to Vas 

Then, the geodesic curvatures KgN and Kg of y in N and in V 

respectively satisfy 
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Kg2 = K~ +I h(~, ~) ,2. 
N g 

Therefore applying Lemma 1.1 to (3.3), we have 

where n =dim N and m =dim M. In particular, S 2 f(o) does not 

depend on Y. 

Therefore, we can use the notation S 2 f(O)(X). On the contrary, the 

2-part 8 2 /
2) of the Schwarzian depends on Y as well as on X, in general. 

We now state the main theorem. 

Theorem 3.3. Let (M, 9M) and (N, 9N) be Riemannian manifolds, 

a be a connectivity function forM, and 13 be an injectivity function for N. If 

a conformal immersion 

f:M~N 

of class C3 satisfies 

for all tangent vectors X E TxM at each point x E M, then f is injective. 

Proof. Let p, q be any distinct points in M. It suffices to show that 

f(p) ::F f(q). By the definition of connectivity function, we can take a 

regular curve x : [a, b] ~ M with x(a) = p, x(b) = q satisfying 

(3.5) 

Denote the image of x under f by y = fox : [a, b] -~ N. Then (3.5) 

together with (3.4) for X = x implies 
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s2y(O) = S2X(O) + S2f(O)(x) 

It then follows from the definition of injectivity function that the curve y 

is injective. In particular, 

f(p) = y(a) =F y(b) = f(q). 

This completes the proof of Theorem 3.3. 

Combining Theorem 3.3 with Lemma 3.1 one obtains the following: 

Corollary 3.4. Let (M, g) be a Riemannian manifold, and C some 

fixed real number. Suppose that every pair of points of M can be joined by 

a curve whose geodesic curvature K and length l satisfy 

If a conformal immersion 

f : M --+ Rn (or sn) 

of class C3 satisfies 

S2f(O)(X) Rg 
_:....___.:.._.:... < c - ----"'---
g(X, X) - 2n(n - 1) 

for all tangent vectors X at each point x E M, then f is injective. 

Let us consider a holomorphic function of the unit disc 

D 2 = {z E C II z I < 1}. For the Euclidean metric ds = I dz I, the 

hyperbolic metric ds = 21 dz 12' 
1-l z I 

and the spherical metric 

ds = 
2

1 dz I we have respectively Rg = 0, - 1, + 1. These metrics are 
1 + 1 z !2 

' 2 

Mobius equivalent to each other and we have S 2f = S1(z)z 2 in all the 

three cases. 
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Corollary 3.5. A lwlomorphic function of the unit disc f : D2 ~ C is 

univalent if any one of the following holds: 

7t2 
(1).jSr(z) I::; 2 for z E D2

, 

(2) ISr(z)j::; . 2 
2 2 

for z E D2
, 

(1-l z I ) 

(3) IB1(z}j::; . . 6 
2 2 

for z E D2 . 

(1 + l:z L ) 

The conditions 0). and: (2)• are the Nehari~s sufficient conditions foi' 

univalency [6]; Another application ofCorollluy 3.4 is: 

Corollary 3.6. If a holomorphic function f : U ~ C d'efined1 on a 

neighborhood tloftlie unit circle 8 1 = {z E C II z I'= 1} satisfies 

ISr(z)l < ~. for Z E 8 1
, 

2 

then f is injective on the wtit circle, lienee is univalent on some 

neighbor:hood1ofthe unit circle: 

The bound 3/2 in the aoove is the best possible, for the function 

f(z) = z2 satisfies IBf(z) I = 3/2. 

Corollary 3. 7. Let (M; g) be a complete Riemannian manifold of 

dimension n with n ~ 3. If' 

R 
Ric9 (X, X)- ( 9 

) g(X, X)::; 0 
2n-1 

for all tangent vectors X e: TxM at each point x E M, then any 

conformal' map of M!to the sphere sn is injective. 

Proof .. One can apply Theorem 3.3 using the connectivity function 

R 
u(x) = ( 9 ·forM and the injectivity constant 13 = 0 for sn. Note in 

2n n -1) 

this case that 
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by Theorem 2.8 and (2.4). 

Finally, let us consider the case of nonconformal immersions. We 

must be careful in this case since (3.1) and (3.2) do not hold. 

Theorem 3.8. Let (M, 9M) be a Riemannian manifold of which any 

two points can be joined by a geodesic. Let (N, 9N) be a Riemannian 

manifold, and I) be an injectivity function for N. If an immersion of class 

c3 
f:M-7N 

satisfies 

for all tangent vectors X at each point x of M, then f is injective. 

Proof. Given a pair of distinct points in M, we take a geodesic 

x : I -7 M passing through the two points. Denote the image of x unde: 

fby y =fox : I -7 N. It suffices to show thaty is injective. We have 

Since xis a geodesic, we have V xX = 0, and 

R 
3 9M ( · ") · 

S X = ( ) 9M X, X X 
2n n-1 

is parallel to x. Therefore 

This together with the condition (3.6) for X = x implies 

and hence y is injective. 
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Let us consider a local diffeomorphism of the complex plane 
f : C -+ C . In this case, we have 

S2f(X, 0) = NDum' 
en 

where 

and 

( 
3 2) 4 Num = fzzzfz - 2 fzz X 

-s 
+ (3fzzzfz + fzzzfz - 6fzzfzz) XX 

( 
3 2 ) -4 + fzzzfz - 2 fzz X ' 

2 2 - 2-2 Den= fz X + 2fzfzXX + fzX . 

The following is a generalization of Nehari's univalency theorem to 
local diffeomorphisms. 

Corollary 3.9. If a local diffeomorphism of the unit disc 

of class C3 satisfies 

for all X E C and z E D 2
, then f is injective. 
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