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Abstract

A theory of Schwarzian is developed based on a curve-theoretic quantity
called the Schwarzian derivative of curves. The relationship between
the Schwarzian and Mébius transformations is made clear. As
application of the theory various injectivity theorems are obtained.

0. Introduction

The Schwarzian derivative of holomorphic functions,

e B (FEY
S1&) = Ty 2(f’(z)]’

has been generalized by several authors from various viewpoints ([1], [3],
[7], [8], [10], [12], [13]). In this paper, we give a framework which unifies
these generalizations. The theory is based on a curve-theoretic

differential operator called the Schwarzian derivative of curves whose
properties are investigated in Section 1. The Schwarzian derivative of a
curve decomposes into two components. Roughly speaking, the 0-part of
the Schwarzian derivative controls the parametrizétion of the curve while
the 2-part controls its shape. A curve with vanishing Schwarzian, which
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336 OSAMU KOBAYASHI and MASAAKI WADA

we call a Mébius circle, is a “projectively parametrized” geodesic circle.

Closely related to the Schwarzian derivative is the notion of Mébius
transformations. In Section 2, we define the Schwarzian for Riemannian
metrics and clarify its relationship to generalized Moébius
transformations. There is a subtle point about the definition of Mébius
transformation. The Schwarzian vanishes for transformations which map
Mébius circles to Mobius circles, whereas the term “Mobius
transformations” has historically been used for those mapping geodesic
circles to geodesic circles. It is shown that these two conditions are
actually equivalent in dimensions greater than or equal to 2.

The approach taken in this paper allows us to define the Schwarzian

of as general a map as an immersion of class C?® between any
Riemannian manifolds. To illustrate the capability of the framework we
prove various injectivity theorems in the last section. In particular, we
prove the differentiable version of Nehari’s univalency theorem.

1. The Schwarzian Derivative of Curves on
Riemannian Manifolds

Let (M, g) be a Riemannian n-manifold. Recall that the Clifford

multiplication on the Grassmann algebra A\T,M is the associative

bilinear operation characterized by the following property:
p-1 p+l p
UG =UAQ—1,0 € /\TxMGB/\TxM wueT M, ae /\TxM,

where 1 denotes the interior product. In particular, for u, v e T, M, we

have
4 1
ut = - u (u=0), (1.1
9(u, u)
uv =uAv-9gu, v, (1.2)
wou = glu, u)v - 29(u, v)e. (1.3)
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The usual convention of omitting the multiplication symbol for the
Clifford product may cause a confusion when two or more Riemannian
metrics are involved. If necessary, we will indicate by words which
Riemannian metric the Clifford multiplication in an expression

corresponds to.

Definition. Let I ¢ R be an interval and x:1I — (M, g) be a

regular curve. We define $3x = sg’x I - TM by

3 . 3 N o—1 .
=ViVex—=(Vex)x  (Vix
5% %Y a¥ 2( )2 (Vs )= 2n(n 1)

and define the Schwarzian derivative s%x = sgz,x of x by

.ﬁ o1 B ooy am1y2 Rg .9
s2x = (3x) &7t = (VVx) % 1 —E((Vxx)x ) ——z-r—LGg_—_T)x ,

where V and R, are respectively the Riemannian connection and the

scalar curvature of g.

For t € I, s%x(t) lies in N TypM © /\2 T,M, and we have a

natural decomposition, s’x =s 2,0 4 s x(z) of the Schwarzian

derivative into its O-part and 2-part. Note that the 0-part and the 2-part

of the Schwarzian derivative correspond to the components of s%x

tangent to * and normal to x, respectively. The auxiliary quantity s3x

will play an important role in the subsequent sections.

When n =1 the term Rg/n(n-1) is indefinite; we adopt the

following convention which proves to be useful later: Ry /n(n - 1)=r2

for the Euclidean circle of radius r, and Ry /n(n —1) = 0 for the Euclidean
line.

In the usual terminology of Riemannian geometry, the quantities
s3x, szx(o) s2x® are expressed as follows; these are obtained by

straightforward calculations using (1.1)-(1.3):
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$3x = VVax - 'gfffﬁg(vﬂ’ X))V ik
N (é?(ixg_x_) 9(V4z, Vo) + ,_2;1(?%_1_)9(3&’ 3&))9& (1.4)
2 - L (gw,& Vi, )= s oVeh 9P
T e I
$2,@) - _ ’g(;, 5 (vx Vi - Ei—gb—)g(vxx, x)v‘x;'cj A%, (16)

In view of the Frénet-Serret formula in the theory of curves, we have the

following useful lemma, which is again obtained by direct calculations.

Lemma 1.1. Put o = || and &= x/c. Let x denote the geodesic

curvature of x. Then

1) s3x = 253[—&’—5“‘/—;@ + —i—(}(z + —]—L—(;?g:ﬁ)j@ + 63(V5V§§ + %),

Jo n(n -1)

This lemma leads to the following geometric interpretation of the

2-part of the Schwarzian derivative, $2x® = 1/g(x, x))x A s3x.

@) s’x = 2@2[5’&/5 + %[Kz + ___Zifi___jJ - 02(V§V§<§ ANE).

Proposition 1.2. Let x denote the geodesic curvature of x, and t the
torsion vector of x. Then s2x®@ () = 0 if and only if «(t) = =(t) = O.

Proof. From the Frénet-Serret formula, we have V¢V:& = —Kz’c; +
(V ;:K) v + 1, where v is the unit normal vector of x. It follows from Lemma
1.1 that szx(z)(t) =0 if and only if ViV, £ = ~x%¢, which then implies

our assertion.
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This result may be found in Yano [14]; it is essentially the classical
observation due to G. Pick [9] on the relationship between the imaginary

part of the Schwarzian derivative and vertices of a planar curve (cf. [2]).
Anyhow a curve x with 2x®) = 0 is a so-called geodesic circle, which is

by definition a curve of constant curvature with vanishing torsion (cf.

[14]).

Definition. We call a regular curve x : I — M satisfying s2x = 0,

or equivalently $3x = 0, a Mébius circle.

Every geodesic circle is a Mébius circle if appropriately parametrized.

In this sense the O-part s2x©) of the Schwarzian derivative may be
considered to control the parametrization of the curve x. One can see from
(1.4) that given X,Y e Ty M (X # 0), there exists a unique Mobius

circle x with .x(0) = xg, £(0) = X and V;x(0) =Y.

We can determine all the Mébius circles in the Euclidean space R" as

follows. Since Mébius circles have zero torsion, it is sufficient to consider

the case of the plane R2. Then, one can easily verify that the curve

@) =2 (@b e deC ad-be = 0)
ct+d

2

provide all the solutions to the equation s%x = 0. Namely, a Mobius circle

in R% = C is the image of a straight line of constant speed by a complex

linear fractional transformation. In any case, a Mobius circle x has a
unique limit point x(+ ®) = x(~ ») in R™ U {}. The limit point can be

expressed as

(o) = x(t) — 22() ¥() 1 £(). (1.7)

In fact we can see that the derivative of the right hand side with respect
to  is zero since ¥ — (3/2)&x 'i = 0. It is then easy to check that the

right hand side of (1.7) equals x().
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A geodesic parametrized by arclength is a Mobius circle if Ry = 0.
However, it is not the case, in general. Let us consider the case of the
Euclidean n-sphere (S”, g), for which Ry /n(n~1)=1. Let x : R —» S"
be a great circle parametrized by ¢, and s be an arclength parameter for x
so that ds/dt >0. Then o =|x|=ds/dt, & =%/c =d[ds, and x =0.
Therefore by Lemma 1.1, the condition s2x(® =0 reads (d/ds)*Vo +

Jo/4 = 0. It follows that o = 2C; cos®(s/2 +Cy) for some constants
Ci, C, and we have Cjy+Cit = tan(s/2+ Cy) for some Cy. In
particular, ¢ = tan(s/2), that is, s = 2arctant (¢ € R), is a solution.
Namely, if ¥ : R > 8" is a great circle parametrized by arclength,
x(t) = ¥(2arctant) is a Mobius circle. It should be noted that by the
stereographic projection from the point x(+ ®) = x(— ), the Mobius

circle x is mapped onto a straight line of constant speed in the Euclidean
n-space. One can sense from this example why the scalar curvature term
enters into our Schwarzian derivative; we will come back to this question

in the next section.

As for the 0-part of the Schwarzian derivative, we have the following

theorem. The formula (1.8) below gives a geometric meaning of s2x(0),

Theorem 1.8. A regular curve x : I — R" in the Euclidean space

satisfying s2x©) <0 is injective.

We will see in the next section that the Euclidean space R" in the

above may be replaced by the Euclidean n-sphere S™. One may compare

this result to the well-known thecrem by Kneser [4] on vertex-free planar
curves stating that a regular carve x : I — R? in the Euclidean plane
satisfying s2x® 2 0 is injective.

Proof. For each te I, take the Mobius circie m:R — R”

approximating the curve x to the second order; ie., m(0)= x(t),

m(0) = x(¢), m(0) = (?).
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Let S(#) denbte the unique hypersphere, or possibly hyperplane,
which intersects x perpendicularly at x() and passes through m(w).
Then using (1.7), we can see that the radius r(t) and the center C(t) of
S(t) are written as

o 1EOP
KREOEOS

Cl) = () - r(t)

x(t)
Tk

| 2@ |

In terms of r(t) and C(t), the O-part of the Schwarzian can be

expressed as

s2xO@) = M

1.8
or(t)? (8

This can be proved as follows. Using the notation of Lemma 1.1, r(t) can

be rewritten as

Hence we have

r=cér
= o - rko.
On the other hand, from
C=(c-7)E- roV &,
we obtain
| C lz =(c - 7")2 + r2c%i2,
and

|C P =72 = - 276 + 6% + rPc®x”

= 21*2(0&,0 - —;—(&,0)2 + %621(2)
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= 27'2[262(§3§ + iKzﬂ

= 202525 (0),

By (1.8), the assumption s2x0) < o implies |C l<|r ]2. Therefore,

we have
| Ct1) - Clta) | < | r(ty) — r(ts) |

for #; < ty. In particular, S(f;) and S(ty) share at most one point. From

this we can conclude that x is injective, since x is a regular curve. This
completes the proof of Theorem 1.3.

2. The Schwarzian for Riemannian Metrics

Let g and ¢ be Riemannian metrics on M. We consider the difference
between the Schwarzian derivatives with respect to the two metrics. For
a regular curve x : I — M, we define

SS(@) = sgx - sgx.

We see from (1.4) that the third order derivatives in this expression

cancel out, and Sg’(g) depends only on X = x and Y = V; x. Thus, it is

reasonable to use the notation Sg’(é )(X, Y) for arbitrary tangent vectors

X,Y e T,M (X #0).

Definition. We define the Schwarzian Sg ( g) of g with respect to ¢
by

N 0 2
SHOX, V)= SHX, V)X e AT, M@ A T,M

for X,Y e T,M (X # 0). The Clifford multiplication on the right hand

side is with respect to the metric g.
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The O-part and the 2-part of the Schwarzian Sg(é) are denoted by
Sg(é)(o) and Sg(f])(z), respectively.

Proposition 2.1. Let g; (i =1, 2, 3) be Riemannian metrics on M,
and 'V be the Riemannian connection of g;. Denote the difference between

1V and 2V by A(X,Y) = 2VxY - VY. Then,
83 (g5)(X, ¥) = 87, (02)(X, Y) + 55, (63)(X, Y + A(X, X)).

In particular, we have

82 (92)(X, V) + 8, (0)(X, ¥ + AWX, X)) = 0.

Proof. Take a curve x such that X = # and Y = 'V %. Then we

have
2v.x =Y + AKX, X),
and
Sg’l (g3)(X, Y) = (six ~ ngx) + (six - sglx)
= 8% (93)(X, Y + AKX, X))+ 5] (92)(X, Y).
Therefore the condition SS (9) =0, or equivalently Sg(g}) =0,
defines an equivalence relation between Riemannian metrics. Note that

the condition ng (é)(z) = 0 also defines an equivalence relation between

metrics because

S2()(X. ¥) = —1— X A 83(§)(X, V).
9y (X, Y) X X) A 85(9)(X, Y)

Proposition 2.2.
¢ ng(é) = 0 if and only if Mobius circles for g are Mébius circles

for g.
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(2) Sg(é)(z) = 0 if and only if geodesic circles for g are geodesic
circles for g.

Proof. The first statement is obvious from the definition. To see (2),
we note that

1l

§(5, £) S5(9)P (&, V44) = % A S3(G) (&, V)

I

g(x, %) sg% x@ - ag(=, x)sé x@.

Then, the assertion follows from Proposition 1.2.

Definition. For Riemannian metrics ¢ and § on M, we say that
(1) g is Mobius equivalent to g if Sg(f]) =0,

(2) g is concircularly equivalent to g if Sg(é)(z) = 0.

Accordingly, we define Mébius and concircular transformations:

Definition. A local diffeomorphism f of a Riemannian manifold
(M, g) is called

(1) a Mébius transformation if f*g is Mcbius equivalent to g,

(2) a concircular transformation if f*g is concircularly equivalent

to g.

Some historical remarks are in order. The notion of a concircular
transformation was introduced by Yano [14] in 1940 as a conformal
transformation which preserves geodesic circles. In 1970, Vogel [11]
showed that the conformality condition in the definition of concircular
transformation is redundant; we will reconsider Vogel's result from the
viewpoint of the Schwarzian. Thereby our definition of concircularity
coincides with Yano’s. The term “Mobius transformation,” on the other
hand, seems to have been used more vaguely. Acéording to a historical
remark by Ahlfors [1], Mobius transformations should be_the same thing
as concircular transformations. Indeed, the generalized “Mdcbius
transformation” introduced by Osgood and Stowe [8] is a synonym of
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“concircular transformation.” Our notion of Mobius transformation

however looks stricter by definition.

In what follows, we show that the two notions are, in fact, equivalent
if dim M = 2. It thus proves a conjecture posed by the second author in

[12].

We begin by rewriting SS (9) and Sg(é) without using auxiliary

curves. First note for a vector field X that
VX = VyX + AKX, X),
VxVxX = VyVxX +34(VxX, X)
+(Vx4) (X, X) + AKX, A(X, X)),

where A(X,Y)=VxY -VxY. We define formal expressions Dy, Dy,
and Ds of the variables X, Y, Z € TpM by

Di(X,Y,2)=2,

Do(X, Y, Z) =Y + A(X, X),

D3y(X,Y,2)=2Z+3AX,Y)+ (VxA) (X, X) + AX, A(X, X)),
and define Eg(é) and 252](97) by

RQ 3

- 3 1
23(9) = Dy - = DyDi'Dy - ——2— D},
g(g) 375 2 Ve 2n(n — 1) 1

Rg 2

$2(6) = 23(§) D = DDt - 3 (DD 2 - —2 D2,
2 2n(n - 1)

where the Clifford multiplication is with respect to §. We then have

S3(9)(X, Y) = zg(é)(x, Y, %YX‘ly + %%EX3J’ (2.1)

. . R
S2(9)(X,Y) = 22 (X v, 3yxly+—9 _x3| ..
(X, Y) = 25(9) 5 + A (2.2)
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This time, the Clifford multiplication in the third arguments of the right
hand sides is with respect to g.

From this it follows that SZ(@)(X, Y) and ng(é)(X, Y) are

polynomials of degree at most 2 in Y. Let us write S_g’ (9)(X,Y) as
S3(9X, ¥) = (X, V)+ T*(X, V) + S5(9)(X, 0),  (23)

where Q3(X, Y) and T3(X, Y) are respectively the quadratic part and

the linear part, with respect to Y, of SS(@)(X, Y). The following is

immediate from Proposition 2.1.

Proposition 2.3. Denote by @;; and Tj;, the Q-part and the T-part of
Sgi(g j), respectively, and by A;; = IV -V the difference between the
connections. Then, we have

(D) (X, Y) = @(X, V) + Qp(X, Y),

@ Tip(X,Y) = Ty(X, V) + Tp (X, V) + @i (X, Y + 4;(X, X))

- Qir(X, A;(X, X)) - Q;(X, Y).

In the same way as in (2.3), we have the following decompositions of
$3(9)® and 85(5)®:

3§ = "V, V) + 720X, v) + s3(9)V(x, 0),

S2(5)® = @®A(x, v)+ 72X, V) + S2(§)P(X, 0).

Here we write down these terms explicitly:

Lemma 2.4.

5w o 3(4Y) oW, V), J(HXY) oXY)
CXY) = Z[Q(X, X)) olX, X))X 3[9‘7(& %) X, X))

O o 3(4E.Y) a¥.Y)) (iKY X V)X Y)
X, Y)_2(Q(X, %) 9x X)) [é(X, X) " oX, X)j 3%, X)
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3 (ﬁXﬂﬁ_dXYWXAY
9(X, X)\9(X, X) 9(X, X)

QZ(Z)(X, Y) =

AX, X)Y) ,  JAKX X) X),
9(X, X) 9(X, X)

T3(X,Y) = S(A(X, Y)+ o

49X, Y)

A(X, X)j

S AW Y), X) | 92X, X), V)

720)(X, V) = a A
X, ¥) =375 %) 3(X, X)

_ g JAX, X) X)X, ¥)
5(x, X)*

JAX, X), X)
9(X, X)

T2 (X, Y) = X A [A(X, Y)-

3
9(X, X)

_IXY) 4ix X)).
9(X, X)
Proof. The expressions for @3(X, Y) and T3(X, Y) are obtained by

a straightforward computation from (2.1). The others are also easily

obtained by using

R*0(X,v) = QX Y), X),

1

2@2)(X,Y) = =
(X, Y) XX

X AQX,Y),

9(T(X, Y) X),

720)(x ) = -2
X, 7) (X, X)

1
9(X, X)

From Lemma 2.4, we immediately have

T2@)(X, ¥) = X ATX,Y).
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Proposition 2.5. The following are equivalent:
Q) g is conformal )téo‘ g,
@ Q° =0,
®) @2 - .
If dim M > 2, these conditions are also equivalent to
@ @@ - 0.

The second statement is the Vogel's argument [11] for showing that
concircularity implies conformality. Kithnel [5] gives a proof of the same
result from a slightly different viewpoint. Qur approach is in line with the
original proof by Vogel.

Proposition 2.6. The following are equivalent:

(1) V is a conformal connection of g; i.e., there exists a 1-form A such

that Vg = MX) 4,

@ T3 =0,
3) 720 = o,
@ T2@ = 0.

Proof. Under the condition (1), the difference between the

connections is written as

AKX, Y) = %(x(X)Y + MY) X - (X, Y)A¥),

where A is the vector field satisfying 6(¥*, Z) = M2) for any Z. Using

this, one can easily verify by Lemma 2.4 that the conditions (2), (3) and
(4) hold. We leave the proof of the other implications as an exercise for
the reader.

Corollary 2.7. If g is conformal to g, S3(§)(X, Y) and SZ(3)(X, Y)
do not depend on Y.
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Thus we may use the notation SS(g)(X) and S;,“)(g)(X) when ¢ is
conformal to g.

It is clear from Propositions 2.5 and 2.6 that conformal
transformations are of special importance to the Schwarzian. Let us

assume that ¢ is conformal to g, and is written as ¢ = e2“’g. The

difference between the connections, A, = V-V, is then explicitly

written as
Ay(X, V) = - % (X(Vo)Y + Y(Vo) X).
We define P, by
P, = Vch—dw®d<p+%| do|*g

de™® 2

e ?

vZe™® 1
—_— + —_—

e ® 7

Note that if n =dim M =1, P(p has a form analogous to the classical

Schwarzian,
2
V2%® 3| de®
Pyp=——ee|—
e? 2 ¢
If n > 3, we have
Py =-—1 (1,-1,),
M n-2" 9 g
where
L Ri R
= Ric, — .
g 9 2n-1) g

In particular,

Py = -1 (Ric‘é - Ric°g), @4
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(tryP,) g = - ————(R;G - Ryg)
gre 2(n — 1) [4) g ’

where o stands for the traceless part Qf symmetric 2-tensor. We note that
the last gQuality holds even if n = 2.

Theorem 2.8. Suppose that n = 2 and g is conformal to 'g. Then,

using the notation as above, we have

M) S2(H)(X) = Py(X, X)+ (P - X) A X,
@ S3(9)(X) = -9(X, X) Py - X.

Proof. Let x : I - M be a regular curve such that % = X. Since g

is conformal to g, we have

S2E)O(x) = 62 - 5327,

Sg(é)(z)(X) = sgx(z) - e'z‘psgx(z).

As in Lemma 1.1, let o, &, x respectively be the speed, the unit tangent

N
~

vector, and the geodesic curvature of x with respect to g, and G, &, &

those with respect to J. Then, we have & = e¥c and £ = ¢ ®. As for the

geodesic curvature, we have
&2 = e 2«2 - (50) + 9(do, do) - 2V¢Ee)-
This formula is given in [14], in which Yano also gives
\“7&\3%5_, AE = e R (VeViE - Py - E)AE.
Hence by Lemma 1.1, we obtain
S2(H)P(X) = 2Py - X) A X.

The computation for the O-part is as follows. Note that the second
equality holds only if n = 2.
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[ B
s2x©@ = Z&Z[F’é‘/g + %fc‘?] + 62 g
g

Js 2n(n - 1)

- 202(&‘2‘/5 + —1—K2 + —l—P (E’, &)J 4 0‘2( Rg _ tI‘gP(p)
n(n —

Jo 4 27 °
= sgx(O) + cqu‘,’(&, £).
Thus we obtain
S2(9)9(x) = Py(X, X).

This completes the proof of (1). The assertion (2) follows immediately
from (1).

Yano [14] shows that two conformal metrics g and g are

concircularly equivalent if and only if P, = 0.

Osgood and Stowe [8] consider P(; to be the generalized Schwarzian
derivative, while Carne [3] regards F, as a generalization of the

Schwarzian derivative. As is seen from the above proof, the 2-part of the

Schwarzian Sg(é)(X) involves P, whether or not we put the scalar

curvature term in our definition of the Schwarzian derivative of curves.
On the other hand, the 0-part of the Schwarzian would be P(p(X, X)

rather than Py(X, X) if we omitted the scalar curvature compensation
term.

Let us consider the stereographic projection
f:S8"\{p} > R"
of the Euclidean sphere (S", g,) of radius r to the Euclidean space

(R", 9p). By Theorem 2.8, we have Sgr (f*9¢) = 0. This holds even if

n = 1. Therefore, the Euclidean space in Theorem 1.3 may be replaced by

the Euclidean sphere of radius r.
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Theorem 2.8, together with Proposition 2.5, implies:

Theorem 2.9. If n > 2, two metrics g and § are Mébius equivalent if
and only if they are concircularly equivalent.

In the level of definition, the relationship between Mdébius geometry
and concircular geometry is analogous to that between affine geometry

and projective geometry. In reality, however, there is no such difference
between the two circular geometries if n > 2; therefore Mobius

transformations and concircular transformations are the same thing.

In the Euclidean space R”" (n 23), Mobius and concircular

transformations also coincide with conformal transformations by (2.4) and
Theorem 2.8; they are nothing but Mébius transformations in the usual

sense.
Let us consider the 2-dimensional case. We equip the complex plane C
12

with the Euclidean metric g = |dz|”, and consider a complex analytic

function f defined on some domain on which f(z) # 0. The function f is
conformal, and we can write § = f'g = e?®g where ¢ = log| f'|. Put

wg = —2¥-19, A0z, and 04 = ffog = e_zq’cog. Then, we have
S3(6)(X) = Re S¢(X, X)X + Im Sy(X, X)JX,
S2(3)(X) = Re S4(X, X)+ Im S7(X, X) oy,

where o is the almost complex structure of C, and

1 1" 2
S; = L—i[-’i—) dz ® dz
o2\ f
is the classical Schwarzian differential. A proof of this will be given in the

next section (also see [8]).

So far we are mainly concerned with the case where n 2> 2. In
dimension 1, every transformation is clearly concircular. On the other
hand, Mobius transformations are restricted to some extent. Recall that
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we put Ry / nn ~1) = r~2 for thé' Euclidean circle of radius r, and
Ry /n(n=1) = 0 for the Euclidean line. Under this convention, Mobius
transformations are linear fractional transformations:

The proof of Theorem: 2.8 actually shows the following::

Corollary 2.10. Suppose that n > 2 and § = 20 g. Then, we have

® 55 = 220 4 P2, 2),
(2)Vs§x(2) = e”2¢(sgbc(2)}+ (Py -2 A %),

(3) sSx’ = shx + Po(x, %)% + (Py(%, 2)% — |2 PP - 2).
Corollary 2.11. The quantities sgx(o) , sgix(zf)@) g, |3s§x(z) ! and s'gb&f
are concircular invarianis.

This is a generalization of the observation by Yano [15] that the
orthogonal component of sg’x to’ x, which' is equivalent to sg‘x(z) ®g, is
concircularly invariant.

We now consider a' modification of the scalar curvature term in the
definition of the Schwarzian derivative of curves. Namely, for a regular

curve x ;' I = M, we define

5x = ViVik - 2 (Ve) 7 (7,) - (L )%,

~ N LI LR T N 1:; )
ngx = (VpVex)xt = —2—((Vxx)x 2 ’i;';jz'iVx(‘Lg Sx).

Corollary 2.12. Suppose that n 2 8 and g = e‘zcbg. Then, we have

1) §g2x = Egzx(o) + e”z‘pgg,zx(z),

2) E';’x = §g3x;
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Proof. Note that

~2 2 1 ipio .
X = 85X — x(Ricy - x
2 = shx - —L_i(Ricy - %)

2 1
= 85X —
g n-—2

(Ricg (&, %) + (Ricy - x) A %),

and

5 = sfx ——1— (g0, £) Ricj - & - 2Ricy(&, £)).
Then, apply Corollary 2.10.
Corollary 2.13. The quantities '59;2x(0), E';x(z) ® g, ‘ ng(z) \ and Egsx
are conformal invariants.

3. The Schwarzian of Immersions and Injectivity Theorems

Let (M, gs) and (N, gpn) be Riemannian manifolds, and
f:M —> N
an immersion of class C3. For a regular curve x:I — M, we have
s3x(t) € Tx(t)M. The image of x under f is again a regular curve,

y=fox:I — N, and we also have s3y(t) e Tye)N.

Definition. We define S3f by
S8f =%y - f*(s3x) e T,N,

where f, : T,M — T,N is the tangential map of f. The Schwarzian of f is
then defined to be

2 3 -—1 0 2
S = (S%)5 e ATN O A TN

As before, S3f and S2f depend only on the first derivative X =

and the second derivative Y = V.x of x, and may be denoted respectively

by S3f(X, Y) and S%/(X, Y).
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If dim M = dim N so that f is a local diffeomorphism, S3f and S%f

can be expressed in terms of the Schwarzian of metrics defined in the

last section as f*(SSM(f*gNDl énd f*(ngM(f*gND, respectively. In

particular, S2f generalizes the classical Schwarzian differential of

holomorphic functions in the following sense. Let us identify the complex

numbers C with A% R%Z = R @ Rejes, where e, e; denote the

canonical basis for RZ. In order to apply our framework to a holomorphic

function f, we also need to identify C with R? = A'R2. This

identification may be given by multiplication by e; from the right:

ev 9 1 9
R, :C= AR? > AR
Now, let z, w be regular curves in C with w() = f(2(t)). Then a
straightforward computation shows
Li)el = f,(Z)E.Iel,
we; = ["(z) 2% + f(2)Zeq,

ey = f"(z) 3¢ + 3f"(z)22e; + ['(2) ey,

and
P = ey ~ 2 (ivey) e irer)
- (1) -2 1P rE™ ) e 4 £16)s%,
Therefore,
S = (176 -2 PP )™ e e /1\ R?,
and

€ev
S%f = S;(z)2% € C = /\Rz,
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where

535

is the classical Schwarzian derivative of f.

S¢(z) =

Before stating the injectivity theorems, we need to introduce two new
notions about Riemannian manifolds. Let (M, g) be a Riemannian

manifold.

Definition. A function o : M — R is called a connectivity function
for M if every pair of points in M can be joined by a regular curve
x: I - M satisfying

s2x© ¢ afx) g(x, x)
for all ¢t € I. A constant connectivity function is called a connectivity
constant.

Definition. A function B : M — R is called an injectivity function

for M if a regular curve x : I — M is injective whenever

*x®) < B(x) g%, %)
for all t e I. A constant injectivity function is called an injectivity
constant.

Theorem 1.3 states that 0 is an injectivity constant for the Euclidean
space R™. By the remark of Theorem 2.8, 0 is also an injectivity constant
for the Euclidean sphere S”. Using the following lemma together with
Lemma 1.1, one can show that — 1/ 2r2 but no values larger than that is
an injectivity constant for the cylinder of radius r.

Lemma 3.1. A (open) curve x of length 1 can be reparametrized so that

szx(o) 1 <2 4n® N Ry
¢ 12 n(n-1)

where x 1s the geodesic curvature of x.
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Proof. Take an arclength parameter s for x so that —1/2 < s < /2.

. s
Then replace the parameter s with ¢ = tan -Tcl—

Let us first consider the case of a conformal immersion f : M — N.
By the conformality assumption, we have
S2f = sy - fus®x (3.1)

for regular curves x:I > M and y:I > N with y=fox. In

particular, we have
Szf(o) = szy(o) — s2©) (3.2)
in this case.

Proposition 8.2. Let f : M — N be a conformal immersion. Then,

S?‘f(o)(X, Y) does not depend on Y.

Proof. Since Szf ©) is a local quantity, we may assume that f is an

embedding, and maps M conformally onto a submanifold V of N. Let g
denote the restriction of the metric gn to V. For regular curves

x:I > Mandy:I -V c N satisfying y = f o x, we have
2 (3 o _ o341 3, 3 -1
S°f = (sgNy séy)y + (séy f*(ngny
2 2 2 [
=52 -s2y+ 1S, (Fow ) )

Note that the last term of (3.3) does not depend on Y by Corollary 2.7.

Put ¢ = Jgn (¥, ¥) and & = y/o. Write the decomposition of IN Veg
into its tangential and normal components to V as

INVeE = IVt + e, 8).

Then, the geodesic curvatures Kgy and K5 of vy in N and in V

respectively satisfy
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x, =+ hE OF.

Therefore applying Lemma 1.1 to (3.3), we have

R R;
200 _1 2 2 _ 2 IN g (0)
5% 2° (KQN R nn-1) mlm - 1)) (f 9n)

(\h(a p +—on__ T J 82 (Faw ),

- 2 1) m(m -1) Im

where n=dim /N and m = dim M. In particular, Szf ©  does not
depend on Y.

Therefore, we can use the notation 52 f (0)(X). On the contrary, the
2-part S2f @) of the Schwarzian depends on Y as well as on X, in general.
We now state the main theorem.

Theorem 3.3. Let (M, g7) and (N, gn) be Riemannian manifolds,

a be a connectivity function for M, and B be an injectivity function for N. If

a conformal immersion
f: M —> N

of class c3 satisfies
S2O(X) < B(f() oy (A(X), LX) - al®)ou (X, X) 34
for all tangent vectors X € TyM at each point x € M, then fis injective.

Proof. Let p, ¢ be any distinct points in M. It suffices to show that
f(p) # f(q). By the definition of connectivity function, we can take a
regular curve x : [a, b] > M with x(a) = p, x(b) = q satisfying

s22© < a(x) gy (5, %). (3.5)

Denote the image of x under f by y = fox:[a, b]-> N. Then (3.5)
together with (3.4) for X = x implies
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2y = 52,0 4 $270)(z)

< B 9n (> ¥)-

It then follows from the definition of injectivity function that the curve y

is injective. In particular,
f(p) = ¥(@) = y() = f(a).
This completes the proof of Theorem 3.3.
Combining Theorem 3.3 with Lemma 3.1 one obtains the following:

Corollary 3.4. Let (M, g) be a Riemannian manifold, and C some

fixed real number. Suppose that every pair of points of M can be joined by
a curve whose geodesic curvature x and length I satisfy

2
—-1—[1(2 ——@-j < -C.
2 12

If a conformal immersion
f:M - R" (or S™)
of class c? satisfies

sHOX) . _ By
gX, X) 2n(n - 1)

for all tangent vectors X at each point x € M, then fis injective.

Let us consider a holomorphic function of the wunit disc

D?={zeCl||z|<1}. For the FEuclidean metric ds = |dz|, the

. , 2l d )
hyperbolic metric ds = —l—l———z—%é—, and the spherical metric
1-1z
2| d : R
ds = ——l—li]l—’ we have respectively ?g =0, -1, + 1. These metrics are
1+]2!

Mbbius equivalent to each other and we have S 2f = S (=) 4% in all the

three cases.
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Corollary 3.5. A holomorphic function of the unit disc f D% 5 C s

univalent if any one of the following holds:
B 1 n27 9
W) | 87()| < 5 for z € D7,

@) ‘Sf(z)' forze D?,

22
| | b
6 o THE
=22
The: conditions: (1) and! (2) are the Nehari’s' sufficient conditions for
univalency [6].-Another application of Corollary 3.4 is:
Corollary 3.6. If a holomorphic function f:U — C defined on' a
neighborhood U of the unit circle St = {z e Cl|z| =1} satisfies
N3 T
lgSf(z)/‘i<v 5 for ze S,
then f is injective on the unit circle, hence is univalent on’ sonie
neighborhood of the unit circle:
The bound' 3/2 in' the above is' the best possible, for the function’
f(z)= 2% satisfies ISf(z)I: 3/2.

Corollary 3.7. Let' (M, g) be a complete’ Riemannian manifold of

dimension nwith n'= 3. If

Ricy (X, X) - aX, X)<0

Rg
2(n—1)
for all’ tangent vectors' X e TyM' at each point x € M, then any
conformal/ map of M'to the sphere S™ isinjective.

Proof.. One can apply Theorem 3:3' using' the connectivity function:

Ry
afx) = 9 for M and the injectivity constant p = 0 for S™. Note in’

2n(n—1)

this case that
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52 O(x) = — - Ricj(X, X)

n

by Theorem 2.8 and (2.4).

Finally, let us consider the case of nonconformal immersions. We
must be careful in this case since (3.1) and (3.2) do not hold.

Theorem 3.8. Let (M, gpy) bea Riemannian manifold of which any
two points can be joined by a geodesic. Let (N, gy) be a Riemannian
manifold, and B be an injectivity function for N. If an immersion of class
C3

f:M >N

satisfies

SEAOK, 0) < B o 060 £, 5o s (X, X) @8

for all tangent vectors X at each point x of M, then f is injective.

Proof. Given a pair of distinct points in M, we take a geodesit
x : I — M passing through the two points. Denote the image of x unde:
fby y=fox:I > N. It suffices to show that y is injective. We have

s2y = fu(sx) fu®) " + SPF(E, Vi%).

Since x is a geodesic, we have V;x = 0, and

3 RQM

is parallel to x. Therefore

R
2,(0) _ IM . 2 £(0)¢,
s%y ——.__Zn(n—l) gpr(x, x)+ S°f (x, 0).

This together with the condition (3.6) for X = x implies

2y < B(y) an (. 9),

and hence y is injective.
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Let us consider a local diffeomorphism of the complex plane
f : C - C. In this case, we have

2 _ Num
S*f(X, 0) = Do’
where
Num = (fzzzfz - 'g' fzzz)X4

+ (fzzzfé“ + 3fzzEfz - szzsz)X3X—

+ (3fecets + 3fuzf. ~ 8fucfez - 6/% ) XX

+ (8f.z5fs + fzzfs — 6fuzfsz) XX°

+ (fzzzfz - %f‘z“zg) X4,
and

Den = f2X? + 2f,f; XX + f2X2.
The following is a generalization of Nehari’s univalency theorem to
local diffeomorphisms.
Corollary 3.9. If a local diffeomorphism of the unit disc
f:D*>C
of class C3 satisfies
2.£(0) 2 - 12
STFUX, 0) s ————| X|
1-1z[")
forall X € C and z € D?, then [ is injective.
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