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OPTIMAL CONTROL OF KELLER-SEGEL EQUATIONS

Sang-Uk Ryu and Atsushi Yagi

Department of Applied Physics, Graduate School of
Engineering, Osaka University, Suita, Osaka 565-0871, Japan

1. Introduction

This paper is concerned with the optimal control problem:

Minimize
u

J(u) (P)

with the cost functional J(u) of the form

J(u) =

∫ T

0

‖y(u)− yd‖2H1(Ω)dt+ γ

∫ T

0

‖u‖2Hε(Ω)dt, u ∈ L2(0, T ;Hε(Ω)),

where y = y(u) is governed by the Keller-Segel equations



∂y

∂t
= a∆y − b∇{y∇ρ} in Ω× (0, T ],

∂ρ

∂t
= d∆ρ+ fy − gρ+ νu in Ω× (0, T ],

∂y

∂n
=
∂ρ

∂n
= 0 on ∂Ω× (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x) in Ω.

(K–S)

Here, Ω is a bounded region in R2 of C3 class. a, b, d, f, g > 0 are given positive

numbers and γ, ν ≥ 0 are given non negative numbers. u ≥ 0 is a control function

varying in some bounded subset Uad of L2(0, T ;Hε(Ω)), ε being some fixed expo-

nent such that 0 < ε < 1
2 . n = n(x) is the outer normal vector at a boundary point
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x ∈ ∂Ω and ∂
∂n denotes the differentiation along the vector n. y0(x), ρ0(x) ≥ 0

are non negative initial functions in L2(Ω) and in H1+ε(Ω), respectively. y, ρ are

unknown functions of the Cauchy problem (K–S).

The Keller-Segel equations were introduced in [10] to describe the aggregation

process of the cellular slime mold by the chemical attraction. y = y(x, t) denotes

the concentration of amoebae in Ω at the time t, and ρ = ρ(x, t) the concentration

of chemical substance in Ω at the time t. The chemotactic term −b∇ · {y∇ρ}

indicates that the cells are sensitive to chemicals and are attracted by them, and

the production term fy indicates that the chemical substance is itself emitted by

cells. (K–S) is then a strongly coupled reaction diffusion system.

Several authors have already been interested in the equations, the existence and

uniqueness of solution and the asymptotic behavior of solution were studied by

them in the case when (K–S) has no control term, u ≡ 0. The second author of

this paper showed in [12] the existence and uniqueness of C1 local solution with

values in L2(Ω) together with some norm behavior of the solutions. Nagai et al.

[7] showed that, if the norm ‖y0‖L1 is smaller than a specific number, then (K–S)

admits a global solution. On the contrary, Herrero and Verazques [6] proved in

the case where Ω is a disk of R2 that, if y0, ρ0 are radial functions and ‖y0‖L1 is

sufficiently large, then the norm ‖y(t)‖L2 blows up in a finite time, that is, in those

cases (K–S) does not admit any global solution.

Aggregation of cellular slime mold is known as a model of the self organization by

cell interaction mediated by the chemical substance called cAMP. In this paper, we

are concerned with the question of whether one can control the aggregation of cells

by cAMP or not. For simplicity we consider a distributed, optimal control problem

in the region Ω with the cost function above; other kinds of control problems may
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also be very interesting. Our techniques presented below will be useful even for

some other control problems. Not only the existence of an optimal control, but also

the first order necessary condition satisfied by the optimal controls is verified. We

believe that, under suitable assumptions, the second order necessary condition will

also be satisfied, but this will be disscussed in the forthcoming paper.

Many papers have already been published to study the control problems of non-

linear parabolic equations. In the books Ahmed [1] and Barbu [2], some general

frameworks are given for handling the semilinear parabolic equations with mono-

tone perturbations. In [1] the nonlinear terms are monotone functions with linear

growth, and in [2] they are generalized to the multivalued maximal monotone op-

erators determined by lower semicontinuous convex functions. Papageorgiou [11]

and Casas et al. [4] have studied some quasilinear parabolic equations of monotone

type. Since (K–S) is a parabolic system, this is not of monotone type in any sense;

furthermore, as mentioned above, [6] shows that the global existence of solutions

is not true in general. In this sense it seems that there is no general framework of

controls which covers the Keller-Segel equations.

Our techniques are based on the energy estimates and the compact method.

We shall establish various a priori estimates for the solutions of (K–S) in order

to show that the classical compact method described systematically in Lions [8,

Chap. 1] and Lions [9, Chap. III] is available. In section 2, (K–S) is formulated

as a semilinear equation in a product Hilbert space. We have to choose a suitable

Sobolev space to treat the chemotactic term as a lower term. The existence and

uniqueness of local weak solutions to (K–S) are then proved. Section 3 is devoted

to showing the global existence of weak solution provided that the norm ‖y0‖L1

is sufficiently small and the control u is in L2(0, T ;H1(Ω)). In Section 4, the
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control problem (P) is studied. We fix y0, ρ0, and assume that, for every u ∈

Uad, there exists a unique weak solutions to (K–S) on a fixed interval [0, S], S

being independent of u ∈ Uad. The existence of optimal controls to (P) is proved.

Section 5 is devoted to verifying the first order necessary condition. As usual,

differentiability of the state with respect to the control must be observed and the

adjoint equations must be introduced.

Notations. N and R denote the sets of natural numbers and real numbers

respectively, and R+ = {x ∈ R;x ≥ 0}. For a region Ω ⊂ R2, the usual Lp space

of real valued functions in Ω is denoted by Lp(Ω), 1 ≤ p ≤ ∞. The Sobolev

space of real valued functions in Ω with exponent s ≥ 0 is denoted by Hs(Ω). C(Ω)

denotes the space of continuous functions on Ω. Let I be an interval in R. Lp(I;H),

1 ≤ p ≤ ∞, denotes the Lp space of measurable functions in I with values in a

Hilber space H. C(I;H) denotes the space of continuous functions in I with values

in H. Let D(I) denote the space of C∞-functions with compact support on I and

D′(I) denote the space of distributions on I. For simplicity, we shall use a universal

constant C to denote various constants which are determined in each occurrence in

a specific way by Ω, a, b, d, f, g, ε, ν, δ,M , and so forth. In a case when C depends

also on some parameter, say θ, it will be denoted by Cθ.

We shall state some well known results on the Sobolev spaces and on the frac-

tional powers of Laplacian which will be used in this paper. For the proof, we refer

the reader to Triebel [13].

Interpolation theorem. Let 0 ≤ s0 < s1 < ∞. For s0 < s < s1, H
s(Ω) =

[Hs0(Ω),Hs1(Ω)]θ with s = (1− θ)s0 + θs1, and the following estimate holds

‖ · ‖Hs ≤ Cs0,s1‖ · ‖
1−θ
Hs0‖ · ‖

θ
Hs1 . (1.1)
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Embedding theorem. When 0 < s < 1, Hs(Ω) ⊂ Lp(Ω) for 1
p = 1−s

2 with the

estimate

‖ · ‖Lp ≤ Cs‖ · ‖Hs . (1.2)

When s = 1, H1(Ω) ⊂ Lq(Ω) for any finite 1 ≤ q <∞ with the estimate

‖ · ‖Lq ≤ Cq,p‖ · ‖1−p/qH1 ‖ · ‖p/qLp , (1.3)

where 1 ≤ p < q. When s > 1, Hs(Ω) ⊂ C(Ω) with the estimate

‖ · ‖C ≤ Cs‖ · ‖Hs . (1.4)

From (1.3) we observe that ‖ · ‖3L3 ≤ C‖ · ‖2H1‖ · ‖L1 . But this can be modified as

follows. For any η > 0,

‖y‖3L3 ≤ η‖y‖2H1‖(y + 1) log(y + 1)‖L1 + p(η−1)‖y‖L1 , 0 ≤ y ∈ H1(Ω), (1.5)

here p(·) denotes some increasing function. For the proof, see [3, p. 1199].

Fractional powers. Let L = −∆ + 1 be the Laplace operator acting in L2(Ω)

with the domain D(L) = {y ∈ H2(Ω); ∂y∂n = 0 on ∂Ω}, L is a positive definite self

adjoint operator. Then, for 0 ≤ θ < 3
4 ,

D(Lθ) = H2θ(Ω) (with norm equivalence). (1.6)

For 3
4 < θ ≤ 3

2 ,

D(Lθ) = H2θ
n (Ω) = {y ∈ H2θ(Ω); ∂y∂n = 0 on ∂Ω} (with norm equivalence). (1.7)

(1.6) and (1.7) are well known for 0 ≤ θ ≤ 1 (even for θ = 3
4 , the characteriza-

tion of D(L3/4) is known). Since it is assumed that Ω is of C3 class, D(L3/2) =
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L−1(H1(Ω)) = H3
n(Ω). Then (1.7) for 1 ≤ θ ≤ 3

2 is verfied from the fact that

D(Lθ) = [D(L),D(L3/2)]µ with θ = 1 + µ
2 .

2. Existence and uniqueness of local weak solutions

Let V and H be two separable real Hilbert spaces with dense and compact

embedding V ↪→ H. Identifying H and its dual H′ and denoting the dual space of

V by V ′, we have: V ↪→ H ↪→ V ′. We denote the scalar product of H by (·, ·) and

the norm by | · |. The duality product between V ′ and V which coincides with the

scalar product of H on H ×H is denoted by 〈·, ·〉, and the norms of V and V ′ by

‖ · ‖ and ‖ · ‖∗, respectively.

In this section, we shall first prove existence and uniqueness of a weak solution

for the Cauchy problem of a semilinear abstract differential equation
dY

dt
+AY = F (Y ) + U(t), 0 < t ≤ T,

Y (0) = Y0

(E)

in the space V ′.

Here, A is the positive definite self adjoint operator of H defined by a symmetric

sesquilinear form a(Y, Ỹ ) on V, 〈AY, Ỹ 〉 = a(Y, Ỹ ), which satisfies:

|a(Y, Ỹ )| ≤M‖Y ‖‖Ỹ ‖, Y, Ỹ ∈ V , (a.i)

a(Y, Y ) ≥ δ‖Y ‖2, Y ∈ V (a.ii)

with some δ and M > 0. A is also a bounded operator from V to V ′. F (·) is a

given continuous function from V to V ′ satisfying :

(f.i) For each η > 0, there exists an increasing continuous function φη : [0,∞) →

[0,∞) such that

‖F (Y )‖∗ ≤ η‖Y ‖+ φη(|Y |), Y ∈ V;
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(f.ii) For each η > 0, there exists an increasing continuous function ψη : [0,∞) →

[0,∞) such that

‖F (Ỹ )−F (Y )‖∗ ≤ η‖Ỹ − Y ‖+ (‖Ỹ ‖+ ‖Y ‖+1)ψη(|Ỹ |+ |Y |)|Ỹ − Y |, Ỹ , Y ∈ V.

U(·) ∈ L2(0, T ;V ′) is a given function and Y0 ∈ H is an initial value.

We then verify the following theorem.

Theorem 2.1. Let (a.i), (a.ii), (f.i) and (f.ii) be satisfied. Then, for any U ∈

L2(0, T ;V ′) and Y0 ∈ H, there exists a unique weak solution

Y ∈ H1(0, T (Y0, U);V ′) ∩ C([0, T (Y0, U)];H) ∩ L2(0, T (Y0, U);V) (2.1)

to (E), the number T (Y0, U) > 0 is determined by the norms ‖U‖L2(0,T ;V′) and |Y0|.

Proof. Let us first prove the uniqueness of the weak solution.

Let Ỹ and Y be two weak solutions of (E) satisfying (2.1) on [0, T (Y0, U)]. Then

it is seen that W = Ỹ − Y satisfies:
dW (t)

dt
+AW (t) = F (Ỹ (t))− F (Y (t)), 0 < t ≤ T (Y0, U),

W (0) = 0.

(2.2)

Taking the scalar product of the equation of (2.2) with W , we have:

1

2

d

dt
|W (t)|2 + 〈AW (t),W (t)〉 = 〈F (Ỹ (t))− F (Y (t)),W (t)〉.

From (a.ii) and (f.ii), it follows that

1

2

d

dt
|W (t)|2 + δ‖W (t)‖2

≤ η‖W (t)‖2 + (‖Ỹ (t)‖+ ‖Y (t)‖+ 1)ψη(|Ỹ (t)|+ |Y (t)|)|W (t)|‖W (t)‖

≤ δ

2
‖W (t)‖2 + C(‖Ỹ (t)‖2 + ‖Y (t)‖2 + 1)ψ δ

4
(|Ỹ (t)|+ |Y (t)|)2|W (t)|2.
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Therefore, by Gronwall’s lemma,

|W (t)|2 ≤ |W (0)|2e
∫ t
0
C(‖Ỹ (s)‖2+‖Y (s)‖2+1)ψ δ

4
(|Ỹ (s)|+|Y (s)|)2ds

.

Since W (0) = 0, this implies W (t) = 0 for every t ∈ [0, T (Y0, U)].

The existence is proved by several steps.

Step 1. Approximate problem. Let {Vm}m∈N be an increasing family of finite di-

mensional vector subspaces of V such that, for each V ∈ V, there exists a sequence

{Vm} satisfying: Vm ∈ Vm and Vm → V in V as m → ∞. In particular, since V is

dense in H, we can choose for Y0 ∈ H a sequence {Y0m}m∈N such that

Y0m ∈ Vm and Y0m → Y0 in H as m→ ∞, (2.3)

without loss of generality, |Y0m| ≤ |Y0|+ 1.

We take a basis {Wjm, j = 1, ..., dm} of Vm, where dm = dimVm, and define

an approximate solution of (E) by Ym(t) =
dm∑
j=1

gjm(t)Wjm. Here, the gjm(t) are

chosen so that Ym(t) satisfies the system of differential equations


〈dYm
dt

,Wjm〉+ 〈AYm,Wjm〉 = 〈F (Ym),Wjm〉+ 〈U(t),Wjm〉, 1 ≤ j ≤ dm,

Ym(0) = Y0m.
(2.4)

This system is obviously equivalent to


Bm

d−→g m
dt

+Am
−→g m = Fm(−→g m) + Um(t), 0 < t ≤ T,

−→g m(0) =
(
g1m(0), ..., gdmm(0)

)
.

(2.5)

Here, −→g m = −→g m(t) = (g1m(t), ..., gdmm(t)). Bm = (βijm) and Am = (αijm)

are two dm × dm matrices whose elements are given by βijm = 〈Wim,Wjm〉 and
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αijm = 〈AWim,Wjm〉, respectively. Fm(·) : Rdm → Rdm is defined by Fm(−→g m) =(
F1(

−→g m), ..., Fdm(−→g m)
)
with Fj(

−→g m) = 〈F (
dm∑
i=1

gimWim), Wjm〉, j = 1, ..., dm,

and Um(t) =
(
〈U(t),W1m〉, ..., 〈U(t),Wdmm〉

)
. gjm(0) are chosen so that

dm∑
j=1

gjm(0)Wjm =

Y0m. Clearly detBm 6= 0, and Fm(·) is Lipschitz continuous from Rdm to Rdm .

Therefore, by the theory of ordinary differential equations, (2.5) admits a local

solution −→g m(t).

Step 2. A priori estimate. Multiplying the equation of (2.4) by gjm(t) and summing

up the products from 1 to dm, we obtain the equality

1

2

d

dt
|Ym(t)|2 + 〈AYm(t), Ym(t)〉 = 〈F (Ym(t)), Ym(t)〉+ 〈U(t), Ym(t)〉.

Then, from (a.ii) and (f.i),

1

2

d

dt
|Ym(t)|2 + δ‖Ym(t)‖2 ≤ η‖Ym(t)‖2 +

{
φη(|Ym(t)|) + ‖U(t)‖∗

}
‖Ym(t)‖

≤ δ

2
‖Ym(t)‖2 + φ̃(|Ym(t)|2) + 4

δ
‖U(t)‖2∗

with an increasing, locally Lipschitz continuous function φ̃ : [0,∞) → [0,∞). There-

fore,

d

dt
|Ym(t)|2 ≤ 2φ̃(|Ym(t)|2) +G(t),

where G(t) = 8
δ‖U(t)‖2∗. Here, we consider the following differential equation:


dZ

dt
= 2φ̃(Z) +G(t), 0 < t ≤ T,

Z(0) = (|Y0|+ 1)2.

By Caratheodory’s theorem there exists a solution Z(t) on an interval [0, T (Y0, U)],

where T (Y0, U) is determined by the norms |Y0|, ‖U‖L2(0,T ;V ′) and φ̃η. Since

|Y0m|2 ≤ (|Y0| + 1)2, the comparision theorem then yields that the solution Ym(t)
9



exists at least on [0, T (Y0, U)] and the estimate |Ym(t)|2 ≤ Z(t), 0 ≤ t ≤ T (Y0, U),

holds. Therefore,

1

2
|Ym(t)|2 + δ

2

∫ t

0

‖Ym(s)‖2ds

≤ 1

2
|Y0m|2 +

∫ t

0

φ̃(Z(s))ds+
4

δ

∫ t

0

‖U(s)‖2∗ds, 0 < t ≤ T (Y0, U).

In particular, we have:

|Ym(t)|2 ≤ C
[
|Y0|2 +

∫ T (Y0,U)

0

{
φ̃(Z(s)) + ‖U(s)‖2∗

}
ds
]
, 0 < t ≤ T (Y0, U),

and

∫ T (Y0,U)

0

‖Ym(s)‖2ds ≤ C
[
|Y0|2 +

∫ T (Y0,U)

0

{
φ̃(Z(s)) + ‖U(s)‖2∗

}
ds
]
. (2.6)

Since

∥∥∥∥dYm(t)

dt

∥∥∥∥2
∗
≤ C

{
‖AYm(t)‖2∗ + ‖F (Ym(t))‖2∗ + ‖U(t)‖2∗

}
≤ C

{
‖Ym(t)‖2 + φ1(|Ym(t)|)2 + ‖U(t)‖2∗

}
,

it follows from (2.6) that

∫ T (Y0,U)

0

∥∥∥∥dYm(s)

dt

∥∥∥∥2
∗
ds ≤ C

[
|Y0|2 +

∫ T (Y0,U)

0

{
φ̃(Z(s)) + ‖U(s)‖2∗

}
ds
]
.

Step 3. Convergence. We can now extract a subsequence {Ym′} of {Ym} such that

Ym′ → Y weakly in L2(0, T (Y0, U);V),

dYm′

dt
→ dY

dt
weakly in L2(0, T (Y0, U);V ′),

Ym′ → Y in weak star topology of L∞(0, T (Y0, U);H),

AYm′ → AY weakly in L2(0, T (Y0, U);V ′).
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Moreover, by [8, Chap. 1, Theorem 5.1] it is shown that

Ym′ → Y strongly in L2(0, T (Y0, U);H). (2.7)

Let us verify that this Y is a solution to (E). Let ξ ∈ D(0, T (Y0, U)) and

V ∈ V, and put Φm = ξ(t)Vm and Φ = ξ(t)V , where Vm ∈ Vm and Vm → V in

V as m → ∞. We have particularly Φm → Φ strongly in L2(0, T (Y0, U);V) and

Φ′
m = dΦm

dt → Φ′ strongly in L2(0, T (Y0, U);H). From (2.4), we obtain that

∫ T (Y0,U)

0

〈Y ′
m′(t), Φm′(t)〉dt+

∫ T (Y0,U)

0

〈AYm′(t), Φm′(t)〉dt

=

∫ T (Y0,U)

0

〈F (Ym′(t)), Φm′(t)〉dt+
∫ T (Y0,U)

0

〈U(t), Φm′(t)〉dt (2.8)

On the other hand, (f.ii) implies that, for each Z ∈ C([0, T (Y0, U)];V),

∫ T (Y0,U)

0

∣∣〈F (Ym′(t))− F (Y (t)), Z(t)〉
∣∣dt

≤
∫ T (Y0,U)

0

{
(‖Ym′(t)‖+ ‖Y (t)‖+ 1)ψη(|Ym′(t)|+ |Y (t)|)|Ym′(t)− Y (t)|‖Z(t)‖

+ η‖Ym′(t)− Y (t)‖‖Z(t)‖
}
dt = I1m′ + I2m′ . (2.9)

Then, it follows from (2.7) that lim
m′→∞

I1m′ = 0. Similarly, lim
m′→∞

I2m′ ≤ Cη‖Z‖L2(0,T (Y0,U);V).

Since η > 0 is arbitrary, this shows that F (Ym′) is weakly convergent to F (Y ) in

L2(0, T (Y0, U);V ′). Letting m′ → ∞ in (2.8), we see that

∫ T (Y0,U)

0

〈Y ′(t), V 〉ξ(t)dt+
∫ T (Y0,U)

0

〈AY (t), V 〉ξ(t)dt

=

∫ T (Y0,U)

0

〈F (Y (t), V 〉ξ(t)dt+
∫ T (Y0,U)

0

〈U(t), V 〉ξ(t)dt,

therefore

〈dY (·)
dt

, V 〉+ 〈AY (·), V 〉 = 〈F (Y (·)), V 〉+ 〈U(·), V 〉 (2.10)
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in the sense of D′(0, T (Y0, U)). From [5, Chap. XVIII, Theorem 1], it is known

that Y ∈ H1(0, T (Y0, U);V ′) ∩ L2(0, T (Y0, U);V) ⊂ C([0, T (Y0, U)];H).

Finally, we verify that Y satisfies the initial condition. Let ξ be a real valued C∞

function on [0, T (Y0, U)] such that ξ(0) = 1 and that ξ(t) = 0 in a neighbourhood

of T (Y0, U). Multiplying (2.10) by ξ(t) and integrating the product by parts, we

have:

−
∫ T (Y0,U)

0

〈Y (t), V 〉ξ′(t)dt+
∫ T (Y0,U)

0

〈AY (t), V 〉ξ(t)dt

=
(
Y (0), V

)
+

∫ T (Y0,U)

0

〈F (Y (t)), V 〉ξ(t)dt+
∫ T (Y0,U)

0

〈U(t), V 〉ξ(t)dt. (2.11)

On the other hand, integrating the first term of (2.8) by parts and letting m′ → ∞,

we see that

−
∫ T (Y0,U)

0

〈Y (t), V 〉ξ′(t)dt+
∫ T (Y0,U)

0

〈AY (t), V 〉ξ(t)dt

=
(
Y0, V

)
+

∫ T (Y0,U)

0

〈F (Y (t)), V 〉ξ(t)dt+
∫ T (Y0,U)

0

〈U(t), V 〉ξ(t)dt.

Comparing this with (2.11), we see that
(
Y (0), V

)
=

(
Y0, V

)
for all V ∈ V; hence,

Y (0) = Y0. Thus, Y (·) has been shown to be the desired weak solution. �

We shall now construct a local weak solution to (K–S) by applying Theorem 2.1.

Let A1 = −a∆ + a and A2 = −d∆ + g with the same domain D(Ai) = {z ∈

H2(Ω); ∂z∂n = 0 on ∂Ω} (i = 1, 2). Then, Ai are two positive definite self adjoint

operators in L2(Ω). As noticed in (1.6) and (1.7), D(Aθi ) = H2θ(Ω) for 0 ≤ θ < 3
4 ,

and D(Aθi ) = H2θ
n (Ω) for 3

4 < θ ≤ 3
2 . We set two product Hilbert spaces V ⊂ H

as V = H1(Ω)×D(A
1+ε/2
2 ) and H = L2(Ω)×D(A

(1+ε)/2
2 ), respectively, with some

fixed 0 < ε < 1
2 . By identifying H with its dual space, we consider V ⊂ H =
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H′ ⊂ V ′. It is then seen that V ′ = (H1(Ω))′ × D(A
ε/2
2 ) with the duality product

〈Φ, Y 〉V′×V = 〈ζ, y〉(H1)′×H1 +
(
A
ε/2
2 ϕ,A

1+ε/2
2 ρ

)
L2 , Φ =

(
ζ
ϕ

)
, Y =

(
y
ρ

)
. We set also

a symmetric sesquilinear form on V × V:

a(Y, Ỹ ) =
(
A

1/2
1 y,A

1/2
1 ỹ

)
L2 +

(
A

1+ε/2
2 ρ,A

1+ε/2
2 ρ̃

)
L2 , Y =

(
y

ρ

)
, Ỹ =

(
ỹ

ρ̃

)
∈ V.

Clearly, a(·, ·) satisfies (a.i) and (a.ii). This form in fact defines a linear isomorphism

A =

(
A1 0
0 A2

)
from V to V ′, and A becomes a positive definite self adjoint

operator in H.

(K–S) is, then, formulated as an abstract equation


dY

dt
+AY = F (Y ) + U(t), 0 < t ≤ T,

Y (0) = Y0

(2.12)

in the space V ′. Here, F (·) : V → V ′ is the mapping

F (Y ) =

(
−b∇{y∇ρ}+ ay

fy

)
, Y =

(
y

ρ

)
∈ V. (2.13)

U(t) and Y0 are defined by U(t) =
(

0
νu(t)

)
and Y0 =

(
y0
ρ0

)
, respectively.

Verification of (f.i) is direct. Indeed, since Y =
(
y
ρ

)
∈ V implies that ∂ρ

∂n = 0 on

∂Ω, we have:

‖∇{y∇ρ}‖(H1)′ = sup
‖v‖H1≤1

∣∣〈∇{y∇ρ}, v〉(H1(Ω))′×H1(Ω)

∣∣
= sup

‖v‖H1≤1

∣∣ ∫
Ω

{y∇ρ} · ∇vdx
∣∣ ≤ C‖y‖L4‖∇ρ‖L4

≤ C‖y‖1/2L2 ‖y‖1/2H1 ‖ρ‖1/2H1 ‖ρ‖1/2H2 (by (1.3))

≤ C‖y‖1/2L2 ‖y‖1/2H1 ‖ρ‖(1+ε)/2H1+ε ‖ρ‖(1−ε)/2H2+ε (by (1.1))

≤ C|Y |1+ε/2‖Y ‖1−ε/2, Y =

(
y

ρ

)
∈ V.
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In addition,

‖y‖Hε ≤ C‖y‖εH1‖y‖1−εL2 ≤ C‖Y ‖ε|Y |1−ε.

Hence, the condition (f.i) is fulfilled.

By using (1.2) and (1.4), we obtain that

∣∣∣ ∫
Ω

{(ỹ − y)∇ρ̃} · ∇vdx
∣∣∣ ≤ C‖ỹ − y‖L2‖ρ̃‖H2+ε‖v‖H1 ,∣∣∣ ∫

Ω

{y∇(ρ̃− ρ)} · ∇vdx
∣∣∣ ≤ C‖y‖H1‖ρ̃− ρ‖H1+ε‖v‖H1 .

In addition,

‖ỹ − y‖Hε ≤ C‖Ỹ − Y ‖ε|Ỹ − Y |1−ε ≤ η‖Ỹ − Y ‖+ Cη|Ỹ − Y |,

where η > 0 is arbitrary. Hence, F (·) fulfills (f.ii) also.

We can now state the main result of this section.

Theorem 2.2. Let 0 ≤ y0 ∈ L2(Ω), 0 ≤ ρ0 ∈ H1+ε(Ω), and let 0 ≤ u ∈

L2(0, T ;Hε(Ω)). Then, (K–S) possesses a unique non negative local solution

0 ≤ y ∈ H1(0, S; (H1(Ω))′) ∩ C([0, S];L2(Ω)) ∩ L2(0, S;H1(Ω)),

0 ≤ ρ ∈ H1(0, S;Hε(Ω)) ∩ C([0, S];H1+ε(Ω)) ∩ L2(0, S;H2+ε
n (Ω)),

the time S ∈ (0, T ] is determined by the norms ‖u‖L2(0,T );Hε(Ω)), ‖y0‖L2(Ω) and

‖ρ0‖H1+ε(Ω).

Proof. The existence and uniqueness of a local solution y, ρ to (K–S) is an imme-

diate consequence of Theorem 2.1. Therefore, the only thing to be proved here is

that the solution y, ρ is non negative.

According to the result in [12, Sec. 4], it is known that, for 0 ≤ u ∈ Cσ([0, T ];Hε(Ω)),

(K–S) admits a non negative solution. Then, as in the proof of Theorem 2.1, the
14



non negativity of the solution y, ρ for the general 0 ≤ u ∈ L2(0, T ;Hε(Ω)) is ver-

ified by considering a sequence 0 ≤ un ∈ Cσ([0, T ];Hε(Ω)) such that un → u in

L2(0, T ;Hε(Ω)). �

3. Global existence

In the case when the initial function y0 is sufficiently small, we can obtain some

a priori estimates for the weak solution and show the global existence.

Theorem 3.1. There exists some constant ` > 0 such that, if ‖y0‖L1(Ω) ≤ `, then,

for any 0 ≤ u ∈ L2(0, T ;H1(Ω)), the weak solution y, ρ in Theorem 2.2 can be

extended as weak solution on the whole interval [0, T ].

Proof. Let y, ρ be any weak solution as in Theorem 2.2 on an interval [0, S]. We

shall establish a priori estimates by three steps.

Step 1. It is easy to see that

d

dt

∫
Ω

ydx = 〈dy
dt
, 1〉(H1)′×H1 = a〈∆y, 1〉(H1)′×H1

− b〈∇{y∇ρ}, 1〉(H1)′×H1 = 0 a. e. t ∈ (0, S).

Since y ≥ 0,

‖y(t)‖L1(Ω) = ‖y0‖L1(Ω) for all t ∈ [0, S]. (3.1)

Step 2. We consider the function log(y + 1); since ∇ log(y + 1) = ∇y
y+1 , it follows

that log(y + 1) ∈ L2(0, S;H1(Ω)). Noting that

d

dt

∫
Ω

{(y(t) + 1) log(y(t) + 1)− y(t)}dx = 〈dy
dt

(t), log(y(t) + 1)〉(H1)′×H1 ,
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we obtain from the first equation in (K–S) that

d

dt

∫
Ω

{(y(t) + 1) log(y(t) + 1)− y(t)}dx

+ 4a

∫
Ω

|∇
√
y(t) + 1|2dx = b

∫
Ω

{log(y(t) + 1)− y(t)}∆ρ(t)dx.

Therefore,

d

dt
‖(y(t) + 1) log(y(t) + 1)‖L1 + 4a‖∇

√
y(t) + 1‖2L2

≤ η‖∆ρ(t)‖2L2 + Cη−1‖y(t)‖2L2 (3.2)

with an arbitrary η > 0.

On the other hand, from the second equation of (K–S), we obtain the following

energy equalities

1

2

d

dt

∫
Ω

ρ(t)2dx+ d

∫
Ω

|∇ρ(t)|2dx+ g

∫
Ω

ρ(t)2dx

= f

∫
Ω

y(t)ρ(t)dx+ ν

∫
Ω

u(t)ρ(t)dx

and

1

2

d

dt

∫
Ω

|∇ρ(t)|2dx+ d

∫
Ω

|∆ρ(t)|2dx+ g

∫
Ω

|∇ρ(t)|2dx

= f

∫
Ω

y(t)∆ρ(t)dx+ ν

∫
Ω

u(t)∆ρ(t)dx.

Therefore, it follows that

1

2

d

dt
‖ρ(t)‖2L2 + d‖∇ρ(t)‖2L2 +

g

2
‖ρ(t)‖2L2 ≤ C

{
‖y(t)‖2L2 + ‖u(t)‖2L2

}
and

1

2

d

dt
‖∇ρ(t)‖2L2 +

d

2
‖∆ρ(t)‖2L2 + g‖∇ρ(t)‖2L2 ≤ C

{
‖y(t)‖2L2 + ‖u(t)‖2L2

}
,
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respectively. By addition,

d

dt
‖ρ(t)‖2H1 + c‖ρ(t)‖2H2 ≤ C

{
‖y(t)‖2L2 + ‖u(t)‖2L2

}
, (3.3)

where c = min{d, g}. Here, we notice, applying (1.3) with p = 2, q = 8, that

‖y‖L2 ≤ ‖y‖1/3L1 ‖y‖2/3L4 ≤ ‖y‖1/3L1 ‖
√
y + 1‖4/3L8

≤ C‖y‖1/3L1 ‖
√
y + 1‖1/3L2

(
‖∇

√
y + 1‖L2 + ‖

√
y + 1‖L2

)
, 0 ≤ y ∈ H1(Ω).

Similarly,

‖(y + 1) log(y + 1)‖L1 ≤ ‖
√
y + 1‖4L4

≤ C‖
√
y + 1‖2L2(‖∇

√
y + 1‖2L2 + ‖

√
y + 1‖2L2), 0 ≤ y ∈ H1(Ω).

Therefore, from (3.1),

‖y(t)‖2L2 ≤ C
{
‖y0‖2/3L1 (‖y0‖L1 + 1)1/3‖∇

√
y(t) + 1‖2L2 + ‖y0‖2L1 + 1

}
(3.4)

and

‖(y(t)+1) log(y(t)+1)‖L1 ≤ C{(‖y0‖L1 +1)‖∇
√
y(t) + 1‖2L2 +‖y0‖2L1 +1}. (3.5)

We now sum up (3.2) and (3.3) and use (3.4). Then,

d

dt
{‖(y(t) + 1) log(y(t) + 1)‖L1 + ‖ρ(t)‖2H1}

+ {4a− Cη−1‖y0‖2/3L1 (‖y0‖L1 + 1)1/3}‖∇
√
y(t) + 1‖2L2 + {c− η}‖ρ(t)‖2H2

≤ C
{
η−1(‖y0‖2L1 + 1) + ‖u(t)‖2L2

}
.
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Take η, ` so that η = c
2 , `

2/3(`+ 1)1/3 = 2aη
C , respectively, and use (3.5). Then, if

‖y0‖L1 ≤ `, the estimate

d

dt
{‖(y(t) + 1) log(y(t) + 1)‖L1 + ‖ρ(t)‖2H1}

+
2a

C(`+ 1)
‖(y(t) + 1) log(y(t) + 1)‖L1 +

c

2
‖ρ(t)‖2H1

≤ C
{
`2 + 1 + ‖u(t)‖2L2

}

holds for a. e. t ∈ (0, S). Hence,

‖(y(t) + 1) log(y(t) + 1)‖L1 + ‖ρ(t)‖2H1

≤ ‖(y0 + 1) log(y0 + 1)‖L1 + ‖ρ0‖2H1 + C
{
‖u‖2L2(0,T ;L2(Ω)) + `2 + 1

}
(3.6)

holds for all t ∈ [0, S], C being independent of S.

Step 3. Take t1 ∈ (0, S) so that ρ(t1) ∈ D(A
1+ε/2
2 ), and set y1 = y(t1), ρ1 = ρ(t1).

In this step, t varies in [t1, S]. From the first equation in (K–S),

1

2

d

dt

∫
Ω

y(t)2dx+ a

∫
Ω

|∇y(t)|2dx =
b

2

∫
Ω

y(t)2∆ρ(t)dx,

so that

1

2

d

dt
‖y(t)‖2L2 + a‖∇y(t)‖2L2 ≤ η‖∆ρ(t)‖3L3 + Cη−1/2‖y(t)‖3L3 (3.7)

with an arbitrary η > 0.

On the other hand, we consider ρ as solution of the Cauchy problem


d

dt
ρ = −A2ρ+ fy + νu, t1 < t < S,

ρ(t1) = ρ1
18



in the space D(A
1/2
2 ) = H1(Ω). Since fy + νu ∈ L2(t1, S;H

1(Ω)) and ρ1 ∈

D(A
1+ε/2
2 ), it follows that ρ ∈ L2(t1, S;D(A

3/2
2 )) ∩H1(t1, S;D(A

1/2
2 )) and

d

dt
A

1/2
2 ρ = −A3/2

2 ρ+ fA
1/2
2 y + νA

1/2
2 u.

Therefore,

1

2

d

dt
‖A2ρ(t)‖2L2 +

1

2
‖A3/2

2 ρ(t)‖2L2 ≤ C{‖A1/2
2 y(t)‖2L2 + ‖A1/2

2 u(t)‖2L2},

or, since D(A
3/2
2 ) ⊂ H3(Ω) (from (1.7)),

d

dt
‖A2ρ(t)‖2L2 + δ‖ρ(t)‖2H3 ≤ C{‖y(t)‖2H1 + ‖u(t)‖2H1} (3.8)

with some δ > 0.

From (1.1) and (1.3) it is verified that

‖∆ρ‖L3 ≤ C‖ρ‖1/3H3 ‖ρ‖2/3H2 ≤ C‖ρ‖2/3H3 ‖ρ‖1/3H1 , ρ ∈ H3(Ω).

Therefore, (3.6) together with this yields that

‖∆ρ(t)‖3L3 ≤ C‖ρ(t)‖2H3 .

In addition, using (1.5), we verify from (3.6) that

‖y(t)‖3L3 ≤ Cu,`ζ‖y(t)‖2H1 + p(ζ−1)`,

where ζ > 0 is an arbitrary number. Similarly, from

‖y‖L2 ≤ 1
2‖∇y‖L2 + C‖y‖L1 , y ∈ H1(Ω),
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it follows that

‖y(t)‖2H1 ≤ 2‖∇y(t)‖2L2 + C`2.

We now sum up (3.7) which is multipled by a constant 4C
a , where this C > 0

denotes the constant appearing in (3.8), and (3.8). Then, it follows that

d

dt

{
2C

a
‖y(t)‖2L2 + ‖A2ρ(t)‖2L2

}
+ {2C − Cu,`ζη

−1/2}‖y(t)‖2H1

+ (δ − Cη)‖ρ(t)‖2H3 ≤ C{‖u(t)‖2H1 + η−1/2p(ζ−1) + 1}.

Hence we conclude that

∫ S

t1

{‖y(t)‖2H1 + ‖ρ(t)‖2H3}dt ≤ Cu,`{‖y1‖2L2 + ‖ρ1‖2H2 +

∫ T

0

‖u(t)‖2H1dt+ 1}

with some constant Cu,` independent of S.

Completion of the proof. By the a priori estimates established above, we have ver-

ified that the norms ‖y‖L2(t1,S;H1) and ‖ρ‖L2(t1,S;H3) do not depend on S. As a

consequence, the norms ‖y‖H1(t1,S;(H1)′) and ‖ρ‖H1(t1,S;H1), and hence those of

‖y‖C([t1,S];L2) and ‖ρ‖C([t1,S];H2), do not depend on S. In particular, this shows

that the solution y, ρ can be extended as weak solution beyond the S. By the stan-

dard argument on the extension of weak solutions, we can then prove the desired

result. �

4. Existence of optimal control

In this section, we shall deal with the Problem (P) described in Introduction. If

we set U = L2(0, T ;V ′) and

Uad =
{(

0

u

)
∈ U ;u ∈ L2(0, T ;Hε(Ω)), u ≥ 0, ‖u‖L2(0,T ;Hε) ≤ C

}
,
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then Uad is closed, bounded and convex subset of U . The problem (P) is obviously

formulated as follows:

Minimize J(U), (P )

where the cost functional J(U) is of the form

J(U) =

∫ S

0

‖Y (U)− Yd‖2dt+ γ

∫ S

0

‖U‖2∗dt, U ∈ Uad.

Here, Y (U), U ∈ Uad, is the weak solution to (2.12) and is assumed to exist

on a fixed interval [0, S]. Yd =
(
yd
0

)
is a fixed element of L2(0, S;V) with yd ∈

L2(0, T ;H1(Ω)). γ is a non negative constant.

Remark. Let Y0 ∈ H be fixed. By Theorem 2.1, for U ∈ Uad, Y (U) exists on the

interval [0, T (U)] with T (U) > 0 depending on ‖U‖L2(0,T ;V′). Hence, 0 < S ≤

inf{T (U);U ∈ Uad}. Furthermore, by Theorem 3.1, if ‖y0‖L1 is sufficiently small

and u is in L2(0, T ;H1(Ω)), Y (U) exists on the whole interval [0,T]; hence, S = T .

We prove the following theorem.

Theorem 4.1. There exists an optimal control U ∈ Uad for (P ) such that

J(U) = min
U∈Uad

J(U).

Proof. The proof is quite standard, so it will be only sketched (cf. [2, Chap. 5,

Proposition 1.1] and [9, Chap. III, Theorem 15.1]). Let {Un} ⊂ Uad be a minimizing

sequence such that lim
n→∞

J(Un) = min
U∈Uad

J(U). Since {Un} is bounded, we can

assume that Un → U weakly in L2(0, S;V ′). For simplicity, we will write Yn instead

of the solution Y (Un) of (2.12) corresponding to Un. Using the similar estimate of
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the solution Yn, we see as in the proof of Theorem 2.1 that

Yn → Y weakly in L2(0, S;V),

dYn
dt

→ dY

dt
weakly in L2(0, S;V ′).

Since V is compactly embedded in H, we can conclude that Yn → Y strongly in

L2(0, S;H). Hence, by the uniqueness, Y is the weak solution of (2.12) correspond-

ing to U (i.e. Y = Y (U)). Since Y (Un) − Yd is weakly convergent to Y (U)− Yd

in L2(0, S;V), we have: min
V ∈Uad

J(V ) ≤ J(U) ≤ lim
n→∞

J(Un) = min
V ∈Uad

J(V ). Hence,

min
V ∈Uad

J(V ) = J(U). �

5. First order necessary condition

In this section, we show the first order necessary condition for the Problem (P).

We denote the scalar products in V and V ′ by 〈·, ·〉V and 〈·, ·〉V′ , respectively. In

order to derive the necessary condition satisfied by an optimal control U =
(

0
νu

)
,

the mapping F (·) : V → V ′ defined by (2.13) must be Fréchet differentiable and

some estimate for the derivative F ′(Y )(·) is necessary. It is indeed observed by a

direct calculation that F (Y ) is Fréchet differentiable with the derivative

F ′(Y )Z =

(
−b∇{y∇w} − b∇{z∇ρ}+ az

fz

)
, Y =

(
y

ρ

)
, Z =

(
z

w

)
∈ V.

Lemma 5.1. For each η > 0, there exists constant Cη > 0 such that

|〈F ′(Y )Z,P 〉| ≤


η‖Z‖‖P‖+ Cη(‖Y ‖+ 1)|Z|‖P‖, Y, Z, P ∈ V, (5.1)

η‖Z‖‖P‖+ Cη(‖Y ‖+ 1)‖Z‖|P |, Y, Z, P ∈ V. (5.2)

In addition, there exists a constant C > 0 such that

‖F ′(Ỹ )Z − F ′(Y )Z‖∗ ≤ C‖Z‖|Ỹ − Y |, Ỹ , Y, Z ∈ V. (5.3)
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Proof. Verification of (5.1) and (5.3) is immediate if we use the same estimates as

in the verification of (f.ii). To prove (5.2) we notice that

〈∇{y∇w}, p〉(H1)′×H1 ≤ C‖∇{y∇w}‖L2‖p‖L2 ≤ C‖y‖H1‖w‖H2+ε‖p‖L2

and

|
(
A
ε/2
2 z,A

1+ε/2
2 p2

)
L2 | = |

(
A

1/2
2 z,A

1/2+ε
2 p2

)
L2 | ≤ ‖A1/2

2 z‖L2‖A1/2+ε
2 p2‖L2

≤ ‖z‖H1

{
Cη‖A(1+ε)/2

2 p2‖L2 + η‖A1+ε/2
2 p2‖L2

}

with an arbitrary η > 0. Then (5.2) is an immediate consequence of these esti-

mates. �

Proposition 5.2. The mapping Y : Uad → H1(0, S;V ′)∩C([0, S];H)∩L2(0, S;V)

is Gâteaux differentiable with respect to U . For V ∈ Uad, Y ′(U)V = Z is the unique

solution in H1(0, S;V ′) ∩ C([0, S];H) ∩ L2(0, S;V) of the problem


d

dt
Z +AZ + F ′(Y )Z = V (t), 0 < t ≤ S,

Z(0) = 0.

(5.4)

Proof. Let U, V ∈ Uad and 0 ≤ h ≤ 1. Let Yh and Y be the solutions of (2.12)

corresponding to U + hV and U , respectively.

Step 1. Yh → Y strongly in C([0, S];H) as h→ 0. Let W = Yh− Y . Obviously, W

satisfies:


d

dt
W +AW + F (Yh(t))− F (Y (t)) = hV (t), 0 < t ≤ S,

W (0) = 0.

(5.5)
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Taking the scalar product of the equation (5.5) with W , we obtain that

1

2

d

dt
|W (t)|2 + 〈AW (t),W (t)〉 = 〈F (Yh(t))− F (Y (t)),W (t)〉+ 〈hV (t),W (t)〉.

Using (a.ii) and (f.ii), we have:

1

2

d

dt
|W (t)|2 + δ‖W (t)‖2

≤ δ

2
‖W (t)‖2 +

(
‖Yh(t)‖2 + ‖Y (t)‖2 + 1

)
ψ δ

4

(
|Yh(t)|+ |Y (t)|

)2|W (t)|2

+ 4h2δ−1‖V (t)‖2∗.

Therefore,

1

2
|W (t)|2 + δ

2

∫ t

0

‖W (s)‖2ds

≤
∫ t

0

(
‖Yh(s)‖2 + ‖Y (s)‖2 + 1

)
ψ δ

4

(
|Yh(s)|+ |Y (s)|

)2|W (s)|2ds

+ 4h2δ−1

∫ S

0

‖V (s)‖2∗ds.

Using Gronwall’s lemma, we obtain that

|W (t)|2 ≤ Ch2‖V ‖2L2(0,S;V′)e
∫ S
0
(‖Yh(s)‖2+‖Y (s)‖2+1)ψ δ

4
(|Yh(s)|+|Y (s)|)2ds

for all t ∈ [0, S]. Hence, Yh → Y strongly in C([0, S];H) as h→ 0.

Step 2. Yh−Y
h → Z strongly in H1(0, S;V ′)∩C([0, S];H)∩L2(0, S;V) as h→ 0. We

rewrite the problem (5.5) in the form


d

dt

Yh − Y

h
+A

Yh − Y

h
+
F (Yh)− F (Y )

h
= V (t), 0 < t ≤ S,

Yh − Y

h
(0) = 0.

(5.6)
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On the other hand, we consider the linear problem (5.4). From (a.i), (a.ii), (f.i),

(f.ii) and (5.1), we can easily verify that (5.4) possesses a unique weak solution

Z ∈ H1(0, S;V ′)∩C([0, S];H)∩L2(0, S;V) on [0,S] (cf. [5, Chap. XVIII, Theorem

2]). Then W̃ = Yh−Y
h − Z satisfies:



d

dt
W̃ (t) +AW̃ (t) +

∫ 1

0

F ′(Y + θ(Yh − Y )
)
W̃ (t)dθ

=

∫ 1

0

{
F ′(Y + θ(Yh − Y )

)
− F ′(Y )

}
Z(t)dθ, 0 < t ≤ S,

W̃ (0) = 0.

(5.7)

Taking the scalar product of the equation of (5.7) with W̃ , we obtain that

1

2

d

dt
|W̃ (t)|2 + 〈AW̃ (t), W̃ (t)〉 = 〈

∫ 1

0

F ′(Y + θ(Yh − Y )
)
W̃ (t)dθ, W̃ (t)〉

+ 〈
∫ 1

0

{
F ′(Y + θ(Yh − Y )

)
− F ′(Y )

}
Z(t)dθ, W̃ (t)〉.

From (5.3), we have:

1

2

d

dt
|W̃ (t)|2+δ‖W̃ (t)‖2 ≤ δ

2
‖W̃ (t)‖2+C

{
(‖Y (t)‖2+‖Yh(t)−Y (t)‖2+1)|W̃ (t)|2

+ |Yh(t)− Y (t)|2‖Z(t)‖2
}
.

Therefore,

1

2
|W̃ (t)|2 + δ

2

∫ t

0

‖W̃ (s)‖2ds ≤ C
{∫ t

0

(‖Y (s)‖2 + ‖Yh(s)‖2 + 1)|W̃ (s)|2ds

+ |Yh − Y |2C([0,S];H)

∫ S

0

‖Z(s)‖2ds
}
.

Using Gronwall’s lemma, we obtain that

|W̃ (t)|2 +
∫ t

0

‖W̃ (s)‖2ds

≤ C|Yh − Y |2C([0,S];H)‖Z‖
2
L2(0,S;V)e

∫ S
0
C(‖Y (s)‖2+‖Yh(s)‖2+1)ds
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for all t ∈ [0, S]. Since Yh → Y in C([0, S];H), we conclude that Yh−Y
h is strongly

convergent to Z in H1(0, S;V ′) ∩ C([0, S];H) ∩ L2(0, S;V). �

With the aid of this proposition, we can easily show the first order necessary

condition.

Theorem 5.3. Let U be an optimal control of (P ) and let Y ∈ L2(0, S;V) ∩

C([0, S];H)∩H1(0, S;V ′) be the optimal state, that is Y is the solution to (2.12) with

the control U(t). Then, there exists a unique solution P ∈ L2(0, S;V)∩C([0, S];H)∩

H1(0, S;V ′) to the linear problem


− dP

dt
+AP + F ′(Y )

∗
P = Λ(Y − Yd), 0 ≤ t < S,

P (S) = 0

(5.8)

in V ′, where Λ : V → V ′ is a canonical isomorphism; moreover,

∫ S

0

〈ΛP + γU, V − U〉V′dt ≥ 0 for all V ∈ Uad.

Proof. Since J is Gâteaux differentiable at U and Uad is convex, it is seen that

J ′(U)(V − U) ≥ 0 for all V ∈ Uad.

On the other hand, we verify that

J ′(U)(V − U) =

∫ S

0

〈Y (U)− Yd, Z〉Vdt + γ

∫ S

0

〈U, V − U〉V′dt (5.9)

with Z = Y ′(U)(V − U). Let P be the unique solution of (5.8) in H1(0, S;V ′) ∩

C([0, S];H) ∩ L2(0, S;V). From (a.i), (a.ii), (f.i), (f.ii) and (5.2), we can guarantee
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that such a solution P exists (cf. [5, Chap. XVIII, Theorem 2]). Thus, in view of

Proposition 5.2 the first intergal in the right hand side of (5.9) is shown to be

∫ S

0

〈Y (U)− Yd, Z〉Vdt =
∫ S

0

〈Λ(Y (U)− Yd), Z〉dt

=

∫ S

0

〈−dP
dt

+AP + F ′(Y )
∗
P,Z〉dt =

∫ S

0

〈P, dZ
dt

+AZ + F ′(Y )Z〉dt

=

∫ S

0

〈ΛP, V − U〉V′dt.

Hence, ∫ S

0

〈ΛP + γU, V − U〉V′dt ≥ 0, for all V ∈ Uad. �
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