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CHEMOTAXIS AND GROWTH SYSTEM
WITH SINGULAR SENSITIVITY FUNCTION

MASASHI AIDA, KOICHI OSAKI, TOHRU TSUJIKAWA,
ATSUSHI YAGI, MASAYASU MIMURA

Abstract. This paper continues the study of the initial value problem of a chemotaxis-
growth system. In the previous paper [13], we have handled the case when the sensitivity
function χ(ρ) is regular. In this paper we are concerned with the case when the function
has singularity at ρ = 0 like χ(ρ) = log ρ or − 1

ρ . We verify global existence of solutions

and discuss some asymptotic behaviour of solutions.

Quasilinear system; Chemotaxis-growth; Singular sensitivity function; Global existence

1. Introduction

We study the initial value problem of a quasilinear parabolic system

∂u

∂t
= a∆u−∇{u∇χ(ρ)}+ f(u) in Ω× (0,∞),

∂ρ

∂t
= b∆ρ− cρ+ du in Ω× (0,∞),

∂u

∂n
=

∂ρ

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω

(CG)

in a bounded domain Ω ⊂ R2. Here, u(x, t) and ρ(x, t) denote the population density of
biological individuals and the concentration of chemical substance at a position x ∈ Ω and
time t ∈ [0,∞), respectively. The mobility of individuals consists of two effects, namely
random walking and chemotaxis, the latter means the directed movement in a sense that
they have a tendency to move toward higher concentration of the chemical substance with
the rate ∇χ(ρ), we refer to [1, 3, 6]. χ(ρ) is called the sensitivity function of chemotaxis.
a > 0 and b > 0 are the diffusion rates of u and ρ, respectively. c > 0 and d > 0 are the
degradation and production rates of ρ, respectively. f(u) is a growth term of u.

Burdrene and Berg [5] experimentally observed that bacteria called E. coli form complex
spatio-temporal colony patterns. In order to study theoretically such chemotactic pattern,
several models have been proposed by [2, 7, 8, 9, 11, 15, 18]. Among them, Mimura and
Tsujikawa [10] presented the model (CG) above in which they incorporate three elemental
effects, diffusion, chemotaxis, and growth of bacteria.

Our interest is to investigate a mathematical aspect of the system (CG) which is also
very important for performing numerical computations. In the previous paper [13], we
have studied the case where the sensitivity function is a smooth function of ρ ∈ [0,∞)
without singularity at ρ = 0 and has uniformly bounded derivatives up to the third
order (see the condition (χ) of [13]). Under these assumptions we have constructed an
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exponential attractor for the dynamical system determined by (CG) in the phase space

{
(
u
ρ

)
; u ∈ L2(Ω), ρ ∈ H1(Ω)} by using the squeezing method due to Eden, Foias,

Nicolaenko, and Temam [16] and [20].
In this paper we intend to handle the left but very interesting case where χ(ρ) has

singularity at ρ = 0 such as log ρ, −ρ−1 and so on. χ(ρ) is actually assumed to be a
smooth function of ρ ∈ (0,∞) satisfying∣∣∣∣ sup

δ≤ρ<∞

diχ

dρi
(ρ)

∣∣∣∣ ≤ Cδ for δ > 0, i = 1, 2, 3 (χ)

with some constant Cδ > 0 which is allowed to depend on δ.
For the others we make the similar assumptions as in [13]. That is, Ω ⊂ R2 is a bounded

domain of C3 class. a, b, c and d are positive constants. f(u) is a real smooth function of
u ∈ [0,∞) with f(0) = 0 and f ′(0) 6= 0 satisfying the condition

f(u) = (−µu+ ν)u for sufficiently large u (f)

with some µ > 0 and −∞ < ν < ∞.
The initial functions are also taken as before. That is, u0 ∈ L2(Ω) and ρ0 ∈ H1+ε0(Ω),

where ε0 is an arbitrarily fixed exponent in such a way that 0 < ε0 < 1
2
. u0 ≥ 0 is

nonnegative in Ω, and in view of the singularity of χ(ρ) we impose on ρ0 the condition

inf
x∈Ω

ρ0(x) > 0.

The space of initial values is therefore set as

K =

{
U =

(
u
ρ

)
; 0 ≤ u ∈ L2(Ω), 0 < ρ0 ∈ H1+ε0(Ω), inf

x∈Ω
ρ0(x) > 0

}
. (In)

K is equipped with the distance induced by the product norm

dK(U1, U2) = ‖u1 − u2‖L2 + ‖ρ1 − ρ2‖H1+ε0 , U1, U2 ∈ K. (1.1)

In this way K can not contain a pair O =

(
0
0

)
of the null function of Ω. We, however,

observe that there exists a solution which converges to this boundary point O as t → ∞.
In fact, let for example f(u) = −u(u− 1)(u− 2) for 0 ≤ u ≤ 2 and u0 ≡ 1

2
, ρ0 ≡ 1. Then

(CG) reduces to a simple system of ordinary differential equations
du

dt
= −u(u− 1)(u− 2), 0 < t < ∞,

dρ

dt
= −cρ+ du, 0 < t < ∞,

u(0) = 1
2
, ρ(0) = 1.

And the solution of this system clearly converges to 0 as t → ∞. By this consideration,
we notice that the dynamical system determined by (CG) in the phase space K no longer
admits a global attractor in general. This is a great difference from the case where χ(ρ)
has no singularity at ρ = 0.

So we shall first verify in this paper that (CG) admits a unique global solution for
each initial value from K. (In the case when f(u) ≡ 0, (CG) is called the Keller-Segel
equations; some results on global existence and blow-up are obtained in [4, 12].) Second,
we shall investigate asymptotic behavior of global solutions as t → ∞. Some are shown to
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stay away from the point O and possess their nonempty ω-limit sets in K, and the others
are shown to approach to the boundary point O in a suitable sense. This alternative is
determined by the condition whether inf0≤t<∞ ‖u(t)‖L1 > 0 or inf0≤t<∞ ‖u(t)‖L1 = 0. In
the case when the solution approaches to O, namely inf0≤t<∞ ‖u(t)‖L1 = 0, if f ′(0) < 0,
then the solution can converge to O in a strong topology, and if f ′(0) > 0, then some
Sobolev norm of u(t) grows up as t → ∞.

Notations. n(x) denotes the outer normal vector at a boundary point x ∈ ∂Ω. For
1 ≤ p ≤ ∞, Lp(Ω) is the Lp space of real valued measurable functions in Ω, its norm
is denoted by ‖ · ‖Lp . Hk(Ω), k = 0, 1, 2, . . ., denotes the real Sobolev space in Ω, its
norm is denoted by ‖ · ‖Hk . More generally, the fractional Sobolev space is denoted by
Hs(Ω), s > 0, its norm is denoted by ‖ · ‖Hs . For s > 3

2
, Hs

N(Ω) is the closed subspace
of Hs(Ω) consisting of functions which satisfy the Neumann boundary conditions on ∂Ω.
C(Ω) denotes the space of real valued continuous functions on Ω, its norm is denoted by
‖ · ‖C.

Let H be a Hilbert space and let I be an interval of R. L2(I;H) denotes the space of
H valued L2 functions defined in I. H1(I;H) denotes the space of functions in L2(I;H)
whose first derivatives are also in L2(I;H). C(I;H) and Cm(I;H), m = 1, 2, 3, . . ., de-
note the space of H valued continuous functions and of H valued m-times continuously
differentiable functions, respectively.

For simplicity, we shall use a universal notation C to denote various constants which
are determined in each occurrence by Ω, a, b, c, d, χ(·), f(·) and so on in a specific way.
In a case where C depends also on some parameter, say ζ, it will be denoted by Cζ .

2. Global solutions

For each pair of initial functions u0, ρ0 in K, we shall prove that (CG) admits a unique
global solution. Since ρ0(x) does not vanish in Ω, we can repeat the same arguments as
in [13, Section 3] to construct a local solution by using the theory of abstract evolution
equations (see [14, 17, 19]).

In order to extend such local solutions globally, however, we have to notice an a priori
estimate of ρ from below.

Proposition 2.1. Let u, ρ be any local solution to (CG) such that{
0 ≤ u ∈ C([0, Tu,ρ]; L

2(Ω)) ∩ C1((0, Tu,ρ]; L
2(Ω)) ∩ C((0, Tu,ρ]; H

2
N(Ω)),

0 < ρ ∈ C([0, Tu,ρ]; H
1+ε0(Ω)) ∩ C1((0, Tu,ρ]; H

1(Ω)) ∩ C((0, Tu,ρ]; H
3
N(Ω))

with initial functions u0, ρ0 in K. Then, ρ satisfies

inf
x∈Ω

ρ(x, t) ≥ δ0e
−ct for every 0 ≤ t ≤ Tu,ρ, (2.1)

where δ0 = infx∈Ω ρ0(x) > 0.

Proof. We introduce a decreasing convex C2 function H(ρ) of ρ ∈ (−∞,∞) such that
H(ρ) = 0 for ρ ≥ 0 and H(ρ) > 0 for ρ < 0. Consider a continuous function

ϕ(t) =

∫
Ω

H(ρ(x, t)− δ0e
−ct)dx, 0 ≤ t ≤ Tu,ρ.
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It is observed that

dϕ

dt
(t) =

∫
Ω

H ′(ρ(t)− δ0e
−ct)

(
∂ρ

∂t
+ cδ0e

−ct

)
dx

= −b

∫
Ω

H ′′(ρ− δ0e
−ct)|∇ρ|2dx+ d

∫
Ω

H ′(ρ− δ0e
−ct)u dx

− c

∫
Ω

H ′(ρ− δ0e
−ct)(ρ− δ0e

−ct)dx.

Since H ′(ρ) ≤ 0, H ′(ρ)ρ ≥ 0, and H ′′(ρ) ≥ 0, it follows that ϕ′(t) ≤ 0 for every 0 <
t ≤ Tu,ρ. Therefore, 0 ≤ ϕ(t) ≤ ϕ(0) = 0. This means that ρ(t) − δ0e

−ct ≥ 0 for every
0 ≤ t ≤ Tu,ρ. �

This proposition jointed with [13, Theorem 4.5] then yields the global existence of
solution.

Theorem 2.1. For each pair of initial functions u0, ρ0 in K, there exists a unique global
solution to (CG) in the function space{

0 ≤ u ∈ C([0,∞); L2(Ω)) ∩ C1((0,∞); L2(Ω)) ∩ C((0,∞); H2
N(Ω)),

0 < ρ ∈ C([0,∞); H1+ε0(Ω)) ∩ C1((0,∞); H1(Ω)) ∩ C((0,∞); H3
N(Ω)).

(2.2)

Proof. Let T > 0 be arbitrary positive time, and set δ = δ0e
−cT with δ0 = infx∈Ω ρ0(x).

We consider a smooth sensitivity function χδ(ρ) of ρ ∈ [0,∞) such that χδ(ρ) = χ(ρ)
for ρ ∈ [δ,∞); obviously, χδ(ρ) satisfies the condition (χ) of [13]. And we consider an
auxiliary initial value problem (CGδ) by substituting χδ(ρ) for χ(ρ). Then, by virtue of
[13, Theorem 4.5], there exists a global solution uδ, ρδ to the problem (CGδ). Set, further,
that Tδ = sup{τ ; inf0≤t≤τ, x∈Ω ρδ(x, t) ≥ δ}. By definition, ρδ(t) ≥ δ on the interval [0, Tδ];
this in turn means that uδ, ρδ is also a local solution of the original problem (CG) on the
interval [0, Tδ]. Meanwhile we see that Tδ ≥ T . Indeed, if Tδ < T , then by Proposition
2.1 we have ρδ(Tδ) ≥ δ0e

−cTδ > δ. But this contradicts to the maximality of Tδ since ρδ is
a function belonging to C([0,∞); H1+ε0(Ω)) ⊂ C([0,∞); C(Ω)).

Thus (CG) has been shown to possess a local solution on an arbitrarily finite interval
[0, T ]. In other words, (CG) admits a global solution. �

We conclude this section by noting some estimates u, ρ which hold independently of
δ0 = infx∈Ω ρ0(x). From f(0) = 0 and (f), we can take two positive constants µ′ and ν ′ in
such a way that

f(u) ≤ (−µ′u+ ν ′)u, u ≥ 0. (2.3)

Then, by integrating the first equation of (CG) in Ω, we have

d

dt

∫
Ω

u dx =

∫
Ω

f(u)dx ≤
∫
Ω

(ν ′u− µ′u2)dx,

therefore

‖u(t)‖L1 ≤ C(e−t‖u0‖L1 + 1), 0 ≤ t < ∞ (2.4)

(see Step 1 of the proof of [13, Proposition 4.1]). As well it is observed that∣∣∣∣∫ t

0

∫
Ω

f(u)dxds

∣∣∣∣ ≤ C(‖u0‖L1 + 1), 0 ≤ t < ∞. (2.5)
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Multiplying the second equation of (CG) by ρ and integrating the product in Ω, we
have

1

2

d

dt

∫
Ω

ρ2dx+ b

∫
Ω

|∇ρ|2dx+ c

∫
Ω

ρ2dx = d

∫
Ω

uρ dx ≤ c

2
‖ρ‖2L2 +

d2

2c
‖u‖2L2 .

Here, it holds that

u2 ≤ −(µ′)−1f(u) + (µ′)−1ν ′u, u ≥ 0.

Therefore,∫
Ω

ρ2dx ≤ e−ct‖ρ0‖2L2 +

∫ t

0

e−c(t−s)

{
C‖u(s)‖L1 − C

∫
Ω

f(u(s))dx

}
ds.

Applying the second mean value theorem of integration in view of (2.4) and (2.5), we
obtain that

‖ρ(t)‖2L2 ≤ C(e−ct‖ρ0‖2L2 + ‖u0‖L1 + 1), 0 ≤ t < ∞.

Next we multiply the second equation of (CG) by ∆ρ and integrate the product in Ω.
Then,

1

2

d

dt

∫
Ω

|∇ρ|2dx+ b

∫
Ω

|∆ρ|2dx+ c

∫
Ω

|∇ρ|2dx = −d

∫
Ω

u∆ρ dx ≤ b

2
‖∆ρ‖2L2 +

d2

2b
‖u‖2L2 .

Repeating the same argument as above, we obtain that

‖∇ρ(t)‖2L2 ≤ C(e−2ct‖ρ0‖2H1 + ‖u0‖L1 + 1), 0 ≤ t < ∞.

Finally we conclude that

‖ρ(t)‖2H1 ≤ C(e−ct‖ρ0‖2H1 + ‖u0‖L1 + 1), 0 ≤ t < ∞. (2.6)

3. Continuous dependence in initial values

As shown in the preceding section, for each U0 =

(
u0

ρ0

)
∈ K, there exists a unique global

solution U =

(
u
ρ

)
to (CG) in the solution space (2.2). This section is then devoted to

noting continuous dependence of solutions with respect to initial values.

Theorem 3.1. Let U0 ∈ K and let U(t) be the solution to (CG) with an initial value
U0. Let {U0,n}n=1,2,3,... be a sequence of initial values in K and let {Un}n=1,2,3,... be the
sequence of corresponding solutions. If U0,n → U0 in K as n → ∞, then Un(t) → U(t) in
K for each fixed time 0 ≤ t < ∞.

Proof. Since ρ0,n → ρ0 in H1+ε0(Ω) ⊂ C(Ω). There exists some positive constant δ0 > 0
such that infx∈Ω ρ0,n(x) ≥ δ0 for all n. For fixed time 0 ≤ t < ∞, set δ = δ0e

−ct > 0.
Then, by virtue of Proposition 2.1, Un are all local solutions on an interval [0, t] to the
auxiliary problem (CGδ) where the sensitivity function is substituted with χδ(ρ) which is
a smooth function of ρ ∈ [0,∞) coinciding with χ(ρ) for ρ ∈ [δ,∞). Therefore, we obtain
the desired result, see [13, Theorem 3.2]. �
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4. asymptotic behavior of global solutions

For each 0 ≤ t < ∞, define a transform S(t) on K by the formula S(t)U0 =

(
u(t)
ρ(t)

)
,

U0 ∈ K, where u, ρ denotes the global solution to the problem (CG) with the initial value
U0. By Theorems 2.1 and 3.1, {S(t)}t≥0 defines a nonlinear semigroup on K, namely
S(·)U0 is a continuous function of t ∈ [0,∞) with values in K and S(t) is a continuous
mapping from K into itself.

In this section we shall be concerned with asymptotic behavior of S(t)U0 as t → ∞.
We begin with noting the following proposition.

Proposition 4.1. Let u, ρ be any global solution to (CG) in the space (2.2). Then the
following two assertions

inf
0≤t<∞

‖u(t)‖L1 > 0 (4.1)

and

inf
0≤t<∞,x∈Ω

ρ(x, t) > 0 (4.2)

are equivalent.

Proof. I) Let us first verify that (4.1) implies (4.2). Put inf0≤t<∞ ‖u(t)‖L1 = ` > 0. We
here introduce the realization L of the Laplace operator −b∆ in L2(Ω) under the Neumann
boundary conditions on ∂Ω. L is a nonnegative self-adjoint operator in L2(Ω). From the
second equation of (CG), ρ(t) is written as

ρ(t) = e−t(L+c)ρ0 + d

∫ t

0

e−(t−s)(L+c)u(s)ds. (4.3)

Set a time t0 ≥ 2. For every t ≥ 2t0, we have

ρ(t) ≥ d

∫ t−t0

0

e−(t−s)(L+c){u(s) + um(s)}ds.

Here, u = u + um denotes the orthogonal decomposition of u ∈ L2(Ω) such that u =
|Ω|−1

∫
Ω
u dx and

um ∈ L2
m(Ω) =

{
u ∈ L2(Ω);

∫
Ω

u dx = 0

}
.

Since u(t) ≥ |Ω|−1` and e−(t−s)Lu(s) = u(s), it is seen that∫ t−t0

0

e−(t−s)(L+c)u(s)ds ≥ `

|Ω|

∫ t−t0

0

e−c(t−s)ds

=
`

c|Ω|
{e−ct0 − e−ct} ≥ `e−ct0

c|Ω|
{1− e−ct0}, t ≥ 2t0. (4.4)

On the other hand, the part Lm of L in the component L2
m(Ω) is a positive definite self-

adjoint operator in L2
m(Ω). Therefore, there exists some λm > 0 such that Lm ≥ λm.

Then, using the fact that

e−L ∈ L(L2(Ω), C(Ω)) ∩ L(L1(Ω), L2(Ω)),
6



we can observe that∥∥∥∥∫ t−t0

0

e−(t−s)(L+c)um(s)ds

∥∥∥∥
C

≤ ‖e−L‖L(L2,C)

∥∥∥∥∫ t−t0

0

e−(t−s−2)Le−c(t−s)e−Lum(s)ds

∥∥∥∥
L2

≤ ‖e−L‖L(L2,C)

∫ t−t0

0

e−(t−s−2)λme−c(t−s)‖e−Lum(s)‖L2ds

≤ ‖e−L‖L(L2,C)‖e−L‖L(L1,L2)e
2λm

∫ t−t0

0

e(c+λm)(s−t)‖um(s)‖L1ds. (4.5)

Since ‖um(s)‖L1 ≤ 2‖u(s)‖L1 and since (2.4) holds, the norm is furthermore estimated by

≤ C(‖u0‖L1 + 1)e−(c+λm)t0 , t ≥ 2t0.

From (4.4) and (4.5) it is therefore verified that

ρ(t) ≥ d`e−ct0

c|Ω|
{1− e−ct0 − C(‖u0‖L1 + 1)e−λmt0}, t ≥ 2t0.

This obviously shows that, if t0 is taken sufficiently large, then

inf
2t0≤t<∞,x∈Ω

ρ(x, t) > 0.

Since (2.1) has been verified, we conclude (4.2).

II) Let us next verify that (4.2) implies (4.1). We assume that

inf
0≤t<∞,x∈Ω

ρ(x, t) = δ > 0. (4.6)

As done above, we consider an auxiliary initial value problem (CGδ) in which a sensitivity
function χδ(ρ) is substituted for χ(ρ), χδ(ρ) is a smooth function of ρ ∈ [0,∞) coinciding
with χ(ρ) for all ρ ∈ [δ,∞). Then, u, ρ is clearly a global solution to the problem (CGδ).
Therefore, as a global solution to (CGδ), all the results obtained in [13] are available.

We now apply the a priori estimates established by [13, Proposition 4.1] to u, ρ on the
interval [1,∞). Then there must exist some constant Cu > 0 such that

‖u(t)‖H2 ≤ Cu, t ≥ 1.

In addition, we note that for any 0 < ε ≤ 1 it holds that

‖u‖C ≤ C‖u‖
H1+ ε

2
≤ C‖u‖

2+ε
2(1+ε)

H1+ε ‖u‖
ε

4(1+ε)

H1 ‖u‖
ε

4(1+ε)

L1 , u ∈ H1+ε(Ω) (4.7)

(from [13, (2.1∼4)]). Using this estimate with ε = 1, we observe that

‖u(t)‖C ≤ Cu‖u(t)‖
1
8

L1 , t ≥ 1. (4.8)

To prove (4.1), we first notice that u(s) can not vanish in any finite time s. Indeed,
suppose that u(s) = 0 at some time s. Then, by the uniqueness of solution, u(t) = 0 for
every t ∈ [s,∞). On the other hand, ρ(t) must be determined by

∂ρ

∂t
= b∆ρ− cρ in Ω× (s,∞).

Therefore, ρ(t) must converge to 0 as t → ∞. But this contradicts to (4.6).
7



To verify that u(t) does not vanish as t → ∞, neither, we shall use the condition
f ′(0) 6= 0. First, let f ′(0) < 0, then there are some constants ν̃ > 0 and ` > 0 such that

f(u) ≤ −ν̃u holds for all u ∈ [0, `]. (4.9)

We shall then verify that ‖u(t)‖L1 ≥ (`C−1
u )8 for every t ≥ 1, where Cu is the constant

appearing in (4.8). Indeed, if once ‖u(s)‖L1 < (`C−1
u )8 for some s ≥ 1, then ‖u(s)‖C < `

and therefore
d

ds
‖u(s)‖L1 =

∫
Ω

f(u(s))dx ≤ −ν̃‖u(s)‖L1 .

Hence, ‖u(s)‖L1 is decreasing at s, and this implies that ‖u(t)‖L1 is less than (`C−1
u )8 for

any t ≥ s. In this way, d
dt
‖u(t)‖L1 ≤ −ν̃‖u(t)‖L1 and ‖u(t)‖L1 ≤ e−ν̃(t−s)‖u(s)‖L1 for all

t ≥ s. Thus, we conclude that ‖u(t)‖L1 → 0 as t → ∞.
While, integrating the second equation of (CG) in Ω, we see that

d

dt
‖ρ(t)‖L1 = −c‖ρ(t)‖L1 + d‖u(t)‖L1 ,

as a consequence

‖ρ(t)‖L1 = e−ct‖ρ0‖L1 + d

∫ t

0

e−c(t−τ)‖u(τ)‖L1dτ. (4.10)

This together with the vanishing of ‖u(t)‖L1 implies that ‖ρ(t)‖L1 also vanishes as t → ∞.
But this again contradicts to (4.6).

Let now f ′(0) > 0. In this case there exist two positive numbers µ′′ and ν ′′ such that

f(u) ≥ −µ′′u2 + ν ′′u, u ≥ 0. (4.11)

From (4.8) we have

d

dt
‖u(t)‖L1 =

∫
Ω

f(u(t))dx ≥ (ν ′′ − µ′′‖u(t)‖C)‖u(t)‖L1

≥ (ν ′′ − µ′′Cu‖u(t)‖
1
8

L1)‖u(t)‖L1 , t ≥ 1.

If ‖u(s)‖L1 < (ν ′′/µ′′Cu)
8 at some s ≥ 1, then ‖u(s)‖L1 is increasing at the time. Then,

if once ‖u(s′)‖L1 ≥ (ν ′′/µ′′Cu)
8 at some time s′ ≥ 1, then this differential inequality shows

that ‖u(t)‖L1 is never less than (ν ′′/µ′′Cu)
8 for any t ≥ s′. �

We can now prove the main results of the paper.

Theorem 4.1. For each U0 ∈ K, let S(·)U0 =

(
u
ρ

)
. If inf0≤t<∞ ‖u(t)‖L1 > 0 or equiv-

alently inf0≤t<∞,x∈Ω ρ(x, t) > 0, then its ω-limit set ω(U0) =
∩

t≥0

∪
τ≥t S(τ)U0 in K is

nonempty and is actually contained in the product space {
(
u
ρ

)
; u ∈ H2(Ω), ρ ∈ H3(Ω)}.

Proof. From the assumption there exists some positive constant δ > 0 for which (4.6)
holds. As above, introducing a smooth function χδ(ρ) of ρ ∈ [0,∞) which coincides with
χ(ρ) for ρ ∈ [δ,∞), we regard S(t)U0 as the global solution to the initial value problem
(CGδ) in which χδ(ρ) substitutes for χ(ρ). Then [13, Theorem 4.6] is available for u, ρ
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to conclude that there exists some constant CU0 such that ‖u(t)‖H2 + ‖ρ(t)‖H3 ≤ CU0 for
1 ≤ t < ∞. Since the set{(

u
ρ

)
; ‖u‖H2 + ‖ρ‖H3 ≤ CU0 , u ≥ 0, inf

x∈Ω
ρ(x) ≥ δ

}
is a compact set of K, we verify that the solution S(t)U0 admits a nonempty ω-limit set
in the topology (1.1) of K. �

In the case when inf0≤t<∞ ‖u(t)‖L1 = 0, we prove the following theorem.

Theorem 4.2. Let U0 ∈ K and S(·)U0 =

(
u
ρ

)
. Assume that inf0≤t<∞ ‖u(t)‖L1 = 0 or

equivalently inf0≤t<∞,x∈Ω ρ(x, t) = 0. Then there exists a sequence tn tending to ∞ such

that S(tn)U0 converges to the boundary point O =

(
0
0

)
of K in the norm ‖u‖L1 + ‖ρ‖Lp

with any 1 ≤ p < ∞.
Furthermore, when f ′(0) > 0, ‖u0‖L1 6= 0 implies that sup1≤t<∞ ‖u(t)‖H1+ε = ∞ with

an arbitrary ε > 0. On the other hand, when f ′(0) < 0, sup1≤t<∞ ‖u(t)‖H1+ε < ∞ with
some ε > 0 implies that S(t)U0 converges to O in the distance (1.1).

Proof. If u(s) = 0 at some finite time s, then u(t) = 0 for every t ≥ s and ρ(t) → 0 as
t → ∞; therefore, S(t)U0 converges to O in the distance (1.1).

So let us consider the case when ‖u(t)‖L1 > 0 for every t and inf0≤t<∞ ‖u(t)‖L1 = 0.
Then there exists an increasing sequence {sn}n=1,2,3,... tending to ∞ such that limn→∞
‖u(sn)‖L1 = 0 and 0 < ‖u(sn)‖L1 < 1. We here set another increasing sequence
{tn}n=1,2,3,... by the formula

tn = sn −
1

2ν ′ log ‖u(sn)‖L1 , n = 1, 2, 3, . . . ,

where ν ′ is the positive constant appearing in (2.3). Since

d

dt
‖u(t)‖L1 =

∫
Ω

f(u(t))dx ≤ ν ′‖u(t)‖L1 ,

it follows that

‖u(t)‖L1 ≤ eν
′(t−sn)‖u(sn)‖L1 , sn ≤ t < ∞. (4.12)

Therefore,

‖u(tn)‖L1 ≤ eν
′(tn−sn)‖u(sn)‖L1 =

√
‖u(sn)‖L1 ,

and hence limn→∞ ‖u(tn)‖L1 = 0.
Next we notice from (4.10) that

‖ρ(tn)‖L1 = e−ctn‖ρ0‖L1 + d

∫ sn

0

e−c(tn−s)‖u(s)‖L1ds+ d

∫ tn

sn

e−c(tn−s)‖u(s)‖L1ds.

Here, by (2.4),∫ sn

0

e−c(tn−s)‖u(s)‖L1ds ≤ C(‖u0‖L1 + 1)

∫ sn

0

e−c(tn−s)ds

≤ C(‖u0‖L1 + 1)e−c(tn−sn) = C(‖u0‖L1 + 1)‖u(sn)‖
c

2ν′
L1 .
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In addition, by (4.12),∫ tn

sn

e−c(tn−s)‖u(s)‖L1ds ≤
∫ tn

sn

eν
′(s−sn)ds ‖u(sn)‖L1 ≤ 1

ν ′

√
‖u(sn)‖L1 .

Hence, we conclude that limn→∞ ‖ρ(tn)‖L1 = 0.
Furthermore, in view of (2.6), we verify by using [13, (2.3)] that

‖ρ(tn)‖Lp ≤ Cp‖ρ(tn)‖
1
p

L1

for any 1 ≤ p < ∞. Therefore, limn→∞ ‖ρ(tn)‖Lp = 0.
Thus we have proved the first assertion of the theorem.

Consider now the case when f ′(0) > 0. We suppose that ‖u0‖L1 6= 0 and sup1≤t<∞
‖u(t)‖H1+ε = Cu < ∞ with some ε > 0. Then, in view of (4.7) and (4.11), we have

d

dt
‖u(t)‖L1 ≥ (ν ′′ − µ′′Cu‖u(t)‖

ε
4(1+ε)

L1 )‖u(t)‖L1 , 1 ≤ t < ∞.

This, however, shows that

lim inf
t→∞

‖u(t)‖L1 ≥
(

ν ′′

Cuµ′′

) 4(1+ε)
ε

> 0,

which contradicts to the assumption.
When f ′(0) < 0, we have (4.9). Then sup1≤t<∞ ‖u(t)‖H1+ε = Cu < ∞ jointed with

(4.7) implies that

‖u(t)‖C ≤ Cu‖u(t)‖
ε

4(1+ε)

L1 , 1 ≤ t < ∞.

Therefore, at sufficiently large tn, we have[
d

dt
‖u(t)‖L1

]
|t=tn

≤ −ν̃‖u(tn)‖L1 .

This means that ‖u(t)‖L1 is decreasing for every t ≥ tn; and as a consequence, it follows
that limt→∞ ‖u(t)‖L1 = 0. Noting again (4.7), we have limt→∞ ‖u(t)‖C = 0. From the
formula (4.3), it is also verified that limt→∞ ‖ρ(t)‖H1+ε0 = 0. �

5. Numerical Simulation

In view of Theorem 4.2, extremely interesting is the question of whether there exists

a solution to (CG) which tends to O =

(
0
0

)
as t → ∞ or not, if f ′(0) > 0. We shall

present here some numerical results concerning this question.
Let Ω = (0, 4) be an open interval. The coefficients are fixed as a = 0.25, b = 1, c =

6.25, except that d is a parameter. The sensitivity function and the growth function are
taken as

χ(ρ) = −0.125
ρ

, f(u) = u(1− u).

The spatial variable is discretized by the finite element method with the step size
∆x = 2−10 and the time variable by the implicit Runge-Kutta method (two-stage Radau
IIA) with the step size ∆t = 2−12.
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For d ≥ 0.8, we found a numerically stable stationary solution Ud =

(
ud

ρd

)
, Fig. 1 and

2. When d = 0.7, we computed the solution U0.7 =

(
u0.7

ρ0.7

)
which starts from U0.8. U0.7

are seen to approach to O for a while with L1-norm of u0.7 decaying as t, cf. Fig. 3. But
when t is about 79.4, our computation of U0.7 had lost its stability.

This may not be satisfactory evidence to draw the conclusion that no stable stationary
solution Ud exists for d = 0.7 and the solution U0.7 tends to O as t → ∞. But, we could
say at least that U0.7 does get close to O and that U0.7 → O as t → ∞ if and only if the
stable stationary solution Ud does not exist for d = 0.7.
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