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QUASILINEAR DEGENERATE EVOLUTION EQUATIONS

IN BANACH SPACES

ANGELO FAVINI (∗) AND ATSUSHI YAGI (∗∗)

Abstract. The quasilinear degenerate evolution equation of parabolic type
d(Mv)

dt
+ L(Mv)v = F (Mv), 0 < t ≤ T considered in a Banach space X is

written, putting Mv = u, in the form du
dt

+ A(u)u 3 F (u), 0 < t ≤ T , where

A(u) = L(u)M−1 are multivalued linear operators in X for u ∈ K, K being
a bounded ball ‖u‖Z < R in another Banach space Z continuously embedded

in X. Existence and uniqueness of the local solution for the related Cauchy
problem are given. The results are applied to quasilinear elliptic-parabolic
equations and systems.

1. Introduction

We are concerned with the Cauchy problem of a degenerate abstract evolution
equation of parabolic type

(D.E)


dMv

dt
+ L(Mv)v = F (Mv), 0 < t ≤ T,

Mv(0) = u0

in a Banach space X. Here, L(u) are closed linear operators in X with some
constant domain D(L(u)) ≡ DL for u ∈ K = {u ∈ Z; ‖u‖Z ≤ R}, R > 0, where
Z is another Banach space such that Z ⊂ X with continuous embedding. M is a
closed linear operator in X with the domain D(M) ⊃ DL such that M(DL) ⊂ Z.
F (·) is a nonlinear operator from K into X. u0 ∈ K is an initial value. v = v(t)
is an unknown function.

Cauchy problems of many concrete equations are formulated as those of abstract
equations of the form (D.E), such as elliptic-parabolic equations, elliptic-parabolic
systems, nonlinear equations of Sobolev type [14], semiconductor equations [15],
and so on.

Like in our previous paper [3] (cf. also [11]) for linear problems, we rewrite
the degenerate equation in (D.E) in the form du

dt + A(u)u 3 F (u) by changing
unknown functions from v = v(t) to u = Mv(t) and introducing multivalued
linear operators A(u) = L(u)M−1, u ∈ K, which act in X with a constant domain
D(A(u)) = M(DL). In this way we have the Cauchy problem for a quasilinear
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multivalued equation but of nondegenerate type

(E)


du

dt
+A(u)u 3 F (u), 0 < t ≤ T,

u(0) = u0.

Sobolevskii [8] (cf. also [12, Part 2] and [17]) has first studied such an abstract
problem in the case where the coefficient operators A(u) are all single valued and
are the generators of analytic semigroups, that is A(u) satisfy

(1.1) ‖(λ−A(u))−1‖L(X) ≤
C

(|λ|+ 1)1−κ
, λ 6∈ Σ, u ∈ K

with the optimal exponent κ = 0 and with some sectorial domain Σ = {λ ∈
C; | arg λ| < φ}, 0 < φ < π

2 . He in fact constructed, under suitable assumptions

on A(u), F (u) and u0, a unique X-valued C1 local solution. We remark however
that even if L(u) are the generator of analytic semigroups, A(u) = L(u)M−1 do
not necessarily satisfy (1.1) with κ = 0.

The first half of this paper is then devoted to studying the problem (E) with
multivalued operators satisfying (1.1). We shall prove existence and uniqueness of
X-valued C1 local solution by generalizing Sobolevskii’s results on the basis of the
previous works on multivalued linear evolution equations in [3].

In the second half we shall apply our abstract results to elliptic-parabolic equa-
tions and elliptic-parabolic systems. There is an enormous literature on the sub-
ject. We refer to the recent monograph by Showalter [16], see also [10]. In fact,
most available results until now develop the basic approach by Brezis [2], where
one sees the left hand side of (D.E) as the sum of two operators, the former being
linear, the latter being (possibly nonlinear) monotone, and further assumptions
allow to apply the theory by Bardos and Brezis [1]. On the other hand, such an
approach forces to study the equations in some particular functional setting as
Lp′

(0, T ; W ), where W is either the dual space of a reflexive Banach space or a
weighted space (depending on the operator M), 1

p + 1
p′ = 1, p ≥ 2.

The most recent main results on quasilinear degenerate evolution equations in
[16, pp. 134-149] (see in particular Corollary 6.2 and Corollary 6.3) are concerned
with the equation

(S)
d

dt
(Bu) +A(t, u) = f(t), a. e. t ∈ (0, T ).

It is supposed that B is a continuous, linear, symmetric and monotone operator
from the reflexive separable Banach space V to its dual V ′ and A : [0, T ]×V → V ′

satisfies some appropriate continuity, monotonicity and coercivity assumptions
([16, p. 129]). The application of these results to quasilinear elliptic-parabolic
equation is detailed in [16, Example 6.3]. For other results, we quote Kuttler [5]
and [6], too.

Here it will be shown that our approach allows to consider problems of this type
having a nonlinearity (in u) in the right hand side of (S), too, with a bit more
restrictive assumptions on the data, due to the greater regularity in time of our
solutions.
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The plan of the paper is as follows. In Section 2 we recall basic results on
multivalued linear operators depending on time from [3] and [11], and prove new
estimates for the evolution operators to be used in the subsequent sections. Section
3 is devoted to the problem (E). Some conditions given there are inspired by [8]
and [9] too, and they guarantee the existence and uniqueness of the solutions to
(E). In section 4 we apply such results to solve (D.E). Of course, if L(u) ≡ L
is independent of u, we can solve a semilinear degenerate differential equation.
Sections 5 and 6 contain examples from partial differential equations of elliptic-
parabolic type to which our abstract theory applies. It is to be observed that unlike
all previous literature, where the ambient space is a Sobolev space of negative
exponent, here we can take X = L2(Ω) (or, as shown in [4], Lp(Ω), 1 < p < ∞),
when Ω is a bounded region in Rn with a smooth boundary.

Notation. Throughout the paper, X denotes a complex Banach space whose
norm is denoted by ‖·‖X . If Y is another Banach space, L(X,Y ) is the space of all
bounded linear operators from X to Y and ‖·‖L(X,Y ) denotes the uniform operator

norm. L(X) is used for instead of L(X,X). An operator A : X → 2Y having the
two properties: Au + Av ⊂ A(u + v), u, v ∈ X and λAu ⊂ A(λu), λ ∈ C, u ∈ X
is called a multivalued linear operator from D(A) = {u ∈ X; Au 6= ∅} to Y . For
u ∈ D(A), ‖Au‖X = inf{‖f‖Y ; f ∈ Au}. If A : D(A) → Y is a multivalued
linear operator, a single valued operator A◦ : D(A) → Y such that A◦ ⊂ A in the
graph sense is called a section of A. With an arbitrary section A◦, it holds that
Au = A0 +A◦u, u ∈ D(A).

If I is a nonempty interval in R and k is a nonnegative integer, Ck(I; X) denotes
the space of all k-times continuously differentiable functions with values in X
defined on I, where C0(I; X) = C(I; X). For 0 < µ < 1, Cµ(I; X) is the space
of µ-Hölder continuous functions with values in X defined on I. B(I; X) denotes
the space of all bounded functions on I with values in X.

2. Multivalued linear equations

We consider a family of multivalued linear operators A(t), 0 ≤ t ≤ T , acting
in a Banach space X which have a domain D(A(t)) ≡ D independent of t. In
the previous paper [3], we have already constructed the evolution operator U(t, s)
under the Assumptions (L.A.i,ii) and (L.Ex) below. The purpose of this section is
then to review the basic properties of U(t, s) and verify more refined ones which
will be required in studying the multivalued quasilinear equation.

We make the following assumptions. For every 0 ≤ t ≤ T , the spectral set
σ(A(t)) of A(t) is contained in a fixed open sectorial domain Σ,

σ(A(t)) ⊂ Σ = {λ ∈ C; | arg λ| < φ},

where 0 < φ < π
2 . And the resolvent satisfies the estimate

(L.A.i) ‖(λ−A(t))−1‖L(X) ≤
M

(|λ|+ 1)1−κ
, λ 6∈ Σ, 0 ≤ t ≤ T,
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with some exponent 0 ≤ κ < 1 and a constant M > 0. A(·) satisfies a Hölder
condition of the form

(L.A.ii) ‖A(t){A(t)−1 −A(s)−1}f‖X ≤ N |t− s|µ‖f‖X , f ∈ X, 0 ≤ s, t ≤ T

with some exponent 0 < µ ≤ 1 and a constant N > 0. The exponents satisfy the
relation

(L.Ex) 0 ≤ 3κ < µ ≤ 1.

Before introducing the evolution operator, let us first notice that (L.A.i) and
(L.A.ii) imply the estimate

(2.1) ‖A(t)◦(λ−A(t))−1{A(t)−1 −A(s)−1}f‖X

≤ MN |t− s|µ

(|λ|+ 1)1−κ
‖f‖X , λ 6∈ Σ, f ∈ X.

Here,

A(t)◦(λ−A(t))−1 = λ(λ−A(t))−1 − 1 ⊂ A(t)(λ−A(t))−1

denotes the linear section of A(t)(λ − A(t))−1 introduced in [3, Theorem 2.7]. It
is known that

A(t)◦(λ−A(t))−1 = (λ−A(t))−1A(t)◦ on D,

where A(t)◦ in the right hand side denotes an arbitrary section of A(t) not neces-
sarily linear. In fact, (2.1) is verified as follows. For f ∈ X,

A(t)◦(λ−A(t))−1{A(t)−1 −A(s)−1}f = (λ−A(t))−1A(t)◦{A(t)−1 −A(s)−1}f.
In addition, since

(λ−A(t))−1A(t)◦{A(t)−1 −A(s)−1}f = (λ−A(t))−1g

with any g ∈ A(t){A(t)−1 −A(s)−1}f , it follows that

(2.2) ‖(λ−A(t))−1A(t)◦{A(t)−1 −A(s)−1}f‖X
≤ ‖(λ−A(t))−1‖L(X)‖A(t){A(t)−1 −A(s)−1}f‖X , f ∈ X.

Therefore, (L.A.i) and (L.A.ii) imply (2.1).
In this theory we shall make an essential use of the Yosida approximation

An(t) = A(t)◦Jn(t) = n{1− Jn(t)}, n = 1, 2, 3, . . . ,

Jn(t) = (1 + n−1A(t))−1

of A(t). An(t) are single valued bounded linear operators onX with ‖An(t)‖L(X) ≤
Cn1+κ. Since An(t)

−1 = A(t)−1 + n−1, we have

An(t){An(t)
−1 −An(s)

−1}f = Jn(t)A(t)◦{A(t)−1 −A(s)−1}f.
Therefore, by (2.2),

‖An(t){An(t)
−1 −An(s)

−1}f‖X ≤ N‖Jn(t)‖L(X)|t− s|µ‖f‖X , f ∈ X.

This shows that, as ‖Jn(t)‖L(X) ≤ Cnκ, the Hölder condition (L.A.ii) may not
imply that of the Yosida approximation in any uniform sense. Such a difficulty is
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however overcome by the fact that (2.1) implies the same one for An(t). In fact,
since

An(t)(λ−An(t))
−1{An(t)

−1 −An(s)
−1}f

=
n

n− λ

(
n

n− λ
−A(t)

)−1

A(t)◦{A(t)−1 −A(s)−1}f,

(2.1) yields that

(2.3) ‖An(t)(λ−An(t))
−1{An(t)

−1 −An(s)
−1}‖L(X) ≤

C|t− s|µ

(|λ|+ 1)1−κ
, λ 6∈ Σ,

see also [3, (4.8)].
We shall also use the fractional powers of A(t). For θ > κ, the fractional power

A(t)−θ is defined by the Dunford integral

A(t)−θ =
1

2πi

∫
Γ

λ−θ(λ−A(t))−1dλ

in L(X), where Γ is an integral contour lying in C − σ(A(t)). A(t)θ, θ > κ, is
then a multivalued linear operator in X. In particular, A(t)1 = A(t). As n → ∞,
An(t)

−θ converges to A(t)−θ in L(X).
(L.A.i) yields that for each 0 ≤ t ≤ T , A(t) generates an infinitely differential

semigroup e−τA(t), τ ≥ 0, on X, see [3, Section 3]. For θ ≥ 0, a bounded linear
operator on X given by the integral

{A(t)θ}◦e−τA(t) =
1

2πi

∫
Γ

λθe−τλ(λ−A(t))−1dλ, τ > 0,

is introduced. Obviously, this operator is also obtained as a limit of An(t)
θe−τAn(t)

also. The following estimates

‖An(t)
θe−τAn(t)Jn(t)

k‖L(X) ≤ Cθτ
−θ−κ, τ > 0, k = 0, 1,(2.4)

‖{A(t)θ}◦e−τA(t)‖L(X) ≤ Cθτ
−θ−κ, τ > 0,

are verified. If θ > κ, {A(t)θ}◦e−τA(t) is really a linear section of the multivalued
operator A(t)θe−τA(t). For θ > κ,

(2.5) ‖{e−τA(t) − 1}A(t)−θ‖L(X) =

∥∥∥∥∫ τ

0

A(t)◦e−σA(t)dσA(t)−θ

∥∥∥∥
L(X)

=

∥∥∥∥∫ τ

0

{A(t)1−θ}◦e−σA(t)dσ

∥∥∥∥
L(X)

≤ Cθτ
θ−κ, τ > 0.

According to [3, Theorem 4.1] (cf. also [11, Section 4.1]), under (L.A.i), (2.1),
and (L.Ex), there exists an evolution operator U(t, s), 0 ≤ s ≤ t ≤ T , for A(t).
U(t, s) is in fact obtained as a limit of Un(t, s), where Un(t, s) is an evolution
operator for An(t). Moreover, Un(t, s)Jn(s) has the same limit as Un(t, s), that is,
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Un(t, s)Jn(s) also converges to U(t, s). The estimates

‖Un(t, s)Jn(s)
k‖L(X) ≤ C(t− s)−κ, 0 ≤ s < t ≤ T, k = 0, 1,

‖U(t, s)‖L(X) ≤ C(t− s)−κ, 0 ≤ s < t ≤ T

hold. The convergence of An(t)Un(t, s) is also established, its limit being denoted
by A(t)◦U(t, s). A(t)◦U(t, s) is a linear section of A(t)U(t, s). The estimates

‖An(t)Un(t, s)‖L(X) ≤ C(t− s)−1−κ, 0 ≤ s < t ≤ T,

‖A(t)◦U(t, s)‖L(X) ≤ C(t− s)−1−κ, 0 ≤ s < t ≤ T

hold. Similarly, for 0 < θ < 1, a bounded linear operator {A(t)θ}◦U(t, s) is defined
as a limit of An(t)

θUn(t, s). The estimates

‖An(t)
θUn(t, s)‖L(X) ≤ C(t− s)−θ−κ, 0 ≤ s < t ≤ T, 0 ≤ θ ≤ 1,

‖{A(t)θ}◦U(t, s)‖L(X) ≤ C(t− s)−θ−κ, 0 ≤ s < t ≤ T, 0 ≤ θ ≤ 1(2.6)

are verified by the moment inequality of the fractional powers. In addition, it is
verified that

(2.7) ‖An(t)
θUn(t, s)Jn(s)‖L(X) ≤ ‖An(t)

θUn(t,
t+s
2 )‖L(X)

× ‖Un(
t+s
2 , s)Jn(s)‖L(X) ≤ C(t− s)−θ−2κ, 0 ≤ s < t ≤ T, 0 < θ ≤ 1.

To obtain (2.8) below, we notice from [3, (4.10)] that

Un(t, s)An(s)
θ = An(s)

θe−(t−s)An(s)

+

∫ t

s

Un(t, τ)An(τ){An(τ)
−1 −An(s)

−1}An(s)
θ+1e−(τ−s)An(s)dτ.

By the same argument as for (2.2), we observe that

‖Un(t, τ)An(τ){An(τ)
−1 −An(s)

−1}f‖X
= ‖Un(t, τ)Jn(τ)A(τ)◦{A(τ)−1 −A(s)−1}f‖X
≤ ‖Un(t, τ)Jn(τ)‖L(X)‖A(τ){A(τ)−1 −A(s)−1}f‖X , f ∈ X.

Hence, for 0 ≤ θ < µ− κ,

(2.8) ‖Un(t, s)An(s)
θ‖L(X) ≤ C(t− s)−θ−κ

+ C

∫ t

s

(t− τ)−κ(τ − s)−θ−1−κ+µdτ ≤ Cθ(t− s)−θ−κ, 0 ≤ s < t ≤ T.

We now prove some new estimates of Un(t, s) and U(t, s).

Proposition 2.1. For κ < ϕ ≤ 1,

‖An(t)Un(t, s)An(s)
−ϕ‖L(X) ≤ Cϕ(t− s)ϕ−1−κ, 0 ≤ s < t ≤ T,(2.9)

‖A(t)◦U(t, s)A(s)−ϕ‖L(X) ≤ Cϕ(t− s)ϕ−1−κ, 0 ≤ s < t ≤ T.



QUASILINEAR DEGENERATE EVOLUTION EQUATIONS IN BANACH SPACES 7

Proof. From

Un(t, s) = e−(t−s)An(t)

−
∫ t

s

e−(t−τ)An(t)An(t){An(t)
−1 −An(τ)

−1}An(τ)Un(τ, s)dτ,

it follows that

(2.10) An(t)Un(t, s)An(s)
−ϕ = An(t)e

−(t−s)An(t)An(s)
−ϕ

−
∫ t

s

An(t)e
−(t−τ)An(t)Jn(t)A(t)◦{A(t)−1 −A(τ)−1}An(τ)Un(τ, s)An(s)

−ϕdτ

with any section A(t)◦ ⊂ A(t).
We here show the following lemma.

Lemma 2.1. For 0 ≤ θ ≤ 1 and κ < ϕ ≤ 1,

‖{An(t)
θe−τAn(t) −An(s)

θe−τAn(s)}An(s)
−ϕ‖L(X)

≤


CΓ(θ − ϕ+ 2κ)τϕ−θ−2κ|t− s|µ, if ϕ < θ + 2κ,

C{log(τ−1 + 1) + 1}|t− s|µ, if ϕ = θ + 2κ,

C(ϕ− θ − 2κ)−1|t− s|µ, if ϕ > θ + 2κ,

where Γ(·) denotes the gamma function.
Letting n → ∞, the same estimates are verified for the family A(t), too.

Proof. We see that

{An(t)
θe−τAn(t) −An(s)

θe−τAn(s)}An(s)
−ϕ

=
1

2πi

∫
Γ

λθe−τλ{(λ−An(t))
−1 − (λ−An(s))

−1}An(s)
−ϕdλ

= − 1

2πi

∫
Γ

λθe−τλAn(t)(λ−An(t))
−1{An(t)

−1 −An(s))
−1}

×An(s)
1−ϕ(λ−An(s))

−1dλ,

where Γ is an integral contour: λ = ρe±φi, 0 ≤ ρ < ∞. Therefore, by (2.3), it
follows that

‖{An(t)
θe−τAn(t) −An(s)

θe−τAn(s)}An(s)
−ϕ‖L(X)

≤ C

∫
Γ

(|λ|+ 1)θ−ϕ+2κ−1e−τ<eλ|dλ||t− s|µ.

If ϕ < θ + 2κ, then∫
Γ

(|λ|+ 1)θ−ϕ+2κ−1e−τ<eλ|dλ|

≤ C

∫ ∞

0

ρθ−ϕ+2κ−1e−τρ cosφdρ ≤ Cτϕ−θ−2κ

∫ ∞

0

ρθ−ϕ+2κ−1e−ρdρ.
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If ϕ = θ + 2κ, then∫
Γ

(|λ|+ 1)θ−ϕ+2κ−1e−τ<eλ|dλ| ≤ C

∫ ∞

0

(ρ+ 1)−1e−τρ cosφdρ

≤ C

∫ τ−1

0

(ρ+ 1)−1dρ+ C

∫ ∞

τ−1

ρ−1e−τρ cosφdρ.

Hence the desired estimate is obtained. Similarly, if ϕ > θ + 2κ, then∫
Γ

(|λ|+ 1)θ−ϕ+2κ−1e−τ<eλ|dλ| ≤ C

∫ ∞

0

(ρ+ 1)θ−ϕ+2κ−1dρ.

�

Using this lemma with θ = 1, we have

‖An(t)e
−(t−s)An(t)An(s)

−ϕ‖L(X) ≤ ‖An(s)
1−ϕe−(t−s)An(s)‖L(X)

+ ‖{An(t)e
−(t−s)An(t) −An(s)e

−(t−s)An(s)}An(s)
−ϕ‖L(X)

≤ Cϕ[(t− s)ϕ−κ−1 + log{(t− s)−1 + 1}(t− s)ϕ−2κ+µ−1] ≤ Cϕ(t− s)ϕ−κ−1.

Then, from (2.10), the following integral inequality

‖An(t)Un(t, s)An(s)
−ϕ‖L(X) ≤ Cϕ(t− s)ϕ−1−κ

+ C

∫ t

s

(t− τ)µ−1−κ‖An(τ)Un(τ, s)An(s)
−ϕ‖L(X)dτ

is obtained, which implies the first estimate (2.9).
Obviously the second estimate is an immediate consequence of the first one.

Hence the proof of the proposition has been accomplished. �

Proposition 2.2. For 0 ≤ θ < 1− κ and θ + κ < ϕ ≤ 1,

‖An(t)
θUn(t, s)An(s)

−ϕ‖L(X) ≤ Cθ,ϕ, 0 ≤ s < t ≤ T,

‖{A(t)θ}◦U(t, s)A(s)−ϕ‖L(X) ≤ Cθ,ϕ, 0 ≤ s < t ≤ T.

Proof. From (2.10) we can write that

An(t)
θUn(t, s)An(s)

−ϕ = An(t)
θe−(t−s)An(t)An(s)

−ϕ

−
∫ t

s

An(t)
θe−(t−τ)An(t)Jn(t)A(t)

◦{A(t)−1 −A(τ)−1}An(τ)Un(τ, s)An(s)
−ϕdτ.

In addition, by (L.Ex), (2.5) and Lemma 2.1, we can observe that

‖An(t)
θe−(t−s)An(t)An(s)

−ϕ‖L(X)

≤ ‖{An(t)
θe−(t−s)An(t) −An(s)

θe−(t−s)An(s)}An(s)
−ϕ‖L(X)

+ ‖{e−(t−s)An(s) − 1}An(s)
θ−ϕ‖L(X) + ‖An(s)

θ−ϕ‖L(X) ≤ Cθ,ϕ.
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Therefore, in view of (L.Ex), (2.4) and (2.9), we obtain that

‖An(t)
θUn(t, s)An(s)

−ϕ‖L(X)

≤ Cθ,ϕ

{
1 +

∫ t

s

(t− τ)µ−θ−κ(τ − s)ϕ−κ−1dτ
}

≤ Cθ,ϕ{1 + (t− s)ϕ−θ−2κ+µ} ≤ Cθ,ϕ.

The second estimate is an immediate consequence of this. �

As to the difference of the evolution operator and the semigroup, we verify the
following results.

Proposition 2.3. For 0 ≤ θ < 1− 2κ and κ < ϕ ≤ 1,

‖An(t)
θ{Un(t, s)− e−(t−s)An(s)}An(s)

−ϕ‖L(X)

≤ Cθ,ϕ(t− s)ϕ−θ−3κ+µ, 0 ≤ s < t ≤ T.

For κ < θ < 1− 2κ and κ < ϕ ≤ 1,

‖A(t)θ{U(t, s)− e−(t−s)A(s)}A(s)−ϕf‖X
≤ Cθ,ϕ(t− s)ϕ−θ−3κ+µ‖f‖X , 0 ≤ s < t ≤ T, f ∈ X.

Proof. Using [3, (4.10)] with ρ = 1, we see that

(2.11) An(t)
θ{Un(t, s)− e−(t−s)An(s)}An(s)

−ϕ

=

∫ t

s

An(t)
θUn(t, τ)Jn(τ)A(τ)

◦{A(τ)−1 −A(s)−1}An(s)
1−ϕe−(t−s)An(s)dτ.

Then, by (2.7) and (2.9), the norm of the right hand side is estimated by

Cθ,ϕ

∫ t

s

(t− τ)−θ−2κ(τ − s)ϕ−1−κ+µdτ ≤ Cθ,ϕ(t− s)ϕ−θ−3κ+µ.

Let κ < θ < 1 − 2κ. Operating An(t)
−θ to (2.11) and letting n → ∞ in the

resulting equality, we obtain that

{U(t, s)− e−(t−s)A(s)}A(s)−ϕ

= A(t)−θ

∫ t

s

{A(t)θ}◦U(t, τ)A(τ)◦{A(τ)−1 −A(s)−1}A(s)1−ϕe−(t−s)A(s)dτ.

From this the second estimate of the proposition is obtained. �

We finally show a formula which gives a solution to the Cauchy problem of a
multivalued linear equation

(L.Es)


du

dt
+A(t)u 3 F (t), s < t ≤ T,

u(s) = us
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in X. s ∈ [0, T ) is a fixed initial time. F is a given Hölder continuous function on
[s, T ] such that

(L.F) F ∈ Cσ([s, T ]; X), σ > κ.

us is an initial value in X such that

(L.In) us ∈ D(A(s)γ), κ < γ ≤ 1.

As proved by [3, Theorem 4.1], there exists a unique solution to (L.Es) in the
function space:

u ∈ C([s, T ]; X) ∩ C1((s, T ]; X), (t− s)1+κ−γ du
dt ∈ B((s, T ]; X).

u is in fact given by

u(t) = U(t, s)us +

∫ t

s

U(t, τ)F (τ)dτ, s ≤ t ≤ T.

Moreover, we can verify the following estimates∥∥∥∥An(t)

∫ t

s

Un(t, τ)F (τ)dτ

∥∥∥∥
X

≤ Cσ(t− s)−κ‖F‖Cσ([s,T ];X), s < t ≤ T,(2.12) ∥∥∥∥A(t)

∫ t

s

U(t, τ)F (τ)dτ

∥∥∥∥
X

≤ Cσ(t− s)−κ‖F‖Cσ([s,T ];X), s < t ≤ T.(2.13)

Indeed,

(2.14) An(t)

∫ t

s

Un(t, τ)F (τ)dτ =

∫ t

s

An(t)Un(t, τ){F (τ)− F (t)}dτ

+

∫ t

s

{An(t)Un(t, τ)−An(t)e
−(t−τ)An(t)}F (t)dτ + {1− e−(t−s)An(t)}F (t).

Using the integral equation [3, (4.12)], it is seen that

‖An(t)Un(t, s)−An(t)e
−(t−s)An(t)‖L(X) ≤ C(t− s)−1−3κ+µ, 0 ≤ s < t ≤ T.

Then (2.12) is obtained directly from (2.14). Operating An(t)
−1 to (2.14) and

letting n → ∞ in the resulting equation, we obtain that∫ t

s

U(t, τ)F (τ)dτ = A(t)−1
[ ∫ t

s

A(t)◦U(t, τ){F (τ)− F (t)}dτ

+

∫ t

s

{A(t)◦U(t, τ)−A(t)◦e−(t−τ)A(t)}F (t)dτ + {1− e−(t−s)A(t)}F (t)
]
.

From this the estimate (2.13) is verified.
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3. Quasilinear evolution equations

Let X be a Banach space. We consider the Cauchy problem of a multivalued
abstract evolution equation

(E)


du

dt
+A(u)u 3 F (u), 0 < t ≤ T,

u(0) = u0

in X. Let Z be a second Banach space continuously embedded in X and let K be
an open ball of Z such that

K = {u ∈ Z; ‖u‖Z < R}, 0 < R < ∞.

For each u ∈ K, A(u) is a multivalued linear operator ofX with domainD(A(u)) ≡
D which is constant in u. F is a nonlinear operator from K to X. u0 is an initial
value in K.

We make the following assumptions. The spectral set σ(A(u)) is contained in
a fixed open sectorial region

σ(A(u)) ⊂ Σ = {λ ∈ C; | arg λ| < φ},

where 0 < φ < π
2 , and the resolvent satisfies

(A.i) ‖(λ−A(u))−1‖L(X) ≤
M

(|λ|+ 1)1−κ
, λ 6∈ Σ, u ∈ K

with some exponent 0 ≤ κ < 1 and a constant M > 0 which are independent of
u. A(·) satisfies a Lipschitz condition of the form

(Aii) ‖A(u){A(u)−1 −A(v)−1}f‖X ≤ N‖u− v‖Z‖f‖X , f ∈ X, u, v ∈ K

with a constant N > 0. F satisfies the Lipschitz condition

(F) ‖F (u)− F (v)‖X ≤ L‖u− v‖Z , u, v ∈ K

with a constant L > 0. The spaces X and Z are as follows

(Sp.i) Z ⊂ X with continuous embedding.

There is some exponent β ∈ (κ, 1) such that, for every u ∈ K, D(A(u)β) ⊂ Z with
the estimate

(Sp.ii) ‖ũ‖Z ≤ D‖A(u)βũ‖X , ũ ∈ D(A(u)β), u ∈ K,

D > 0 being some constant. u0 ∈ K satisfies a compatibility condition of the form

(In) u0 ∈ D(A(u0)
γ)

with some exponent γ such that β < γ ≤ 1. Finally, the exponents satisfy the
relations

(Ex) 0 ≤ κ < β < γ ≤ 1 and 5κ+ β < γ.

As a matter of fact, (Ex) shows that κ must be less than 1
6 .

Then, the following result is proved.
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Theorem 3.1. Under (A.i,ii), (F), (Sp.i,ii), (In), and (Ex), there exists a unique
local solution to (E) in the function space:

(3.1)

{
u(t) ∈ D(A(u(t)) for 0 < t ≤ Tu0 and u ∈ C([0, Tu0 ]; Z),

u ∈ C1((0, Tu0 ]; X) and t1+κ−γ du
dt ∈ B((0, Tu0 ]; X),

where Tu0 > 0 is determined by the norms ‖u0‖Z and ‖A(u0)
γu0‖X .

Proof. The proof consists of several steps. C denotes a universal constant which is
determined by the exponents and the initial constants. f0 stands for an arbitrary
element in A(u0)

γu0.

Step 1. For S such that 0 < S ≤ T , we set a Banach space Z(S) = C([0, S]; Z)
and a subset of Z(S) such that

K(S) = {u ∈ Cµ([0, S]; Z); u(0) = u0,

sup
0≤s<t≤S

‖u(t)−u(s)‖Z

|t−s|µ ≤ 1 and sup
0≤t≤S

‖u(t)‖Z ≤ Du0
}.

Here, µ is some fixed exponent so that 3κ < µ < γ−β− 2κ, (Ex) shows that such
a µ really exists. The constant Du0 is fixed so that

(3.2) ‖u0‖Z < Du0 < R.

Clearly, K(S) is a nonempty closed subset of Z(S).

Step 2. For each v ∈ K(S), let us consider a linear problem

(3.3)


du

dt
+Av(t)u 3 Fv(t), 0 < t ≤ S,

u(0) = u0,

where Av(t) = A(v(t)) and Fv(t) = F (v(t)) for 0 ≤ t ≤ S. It is easy to observe
that Av(t) satisfies (L.A.i,ii) and (L.Ex) in Section 2 and that Fv ∈ Cµ([0, S]; X)
and u0 satisfy (L.F) and (L.In), respectively. Therefore, there exists a unique
solution to (3.3) in the space

u ∈ C([0, S]; X) ∩ C1((0, S]; X), t1+κ−γ du
dt ∈ B((0, S]; X),

and the solution u is given by

u(t) = Uv(t, 0)u0 +

∫ t

0

Uv(t, s)Fv(s)ds, 0 ≤ t ≤ S,

where Uv(t, s) denotes the evolution operator for the family of multivalued linear
operators Av(t) = A(v(t)).

We then arrive at defining a correspondence Φ from K(S) to Z(S) by setting
Φ(v)(t) = u(t), 0 ≤ t ≤ S, for each v ∈ K(S).

Step 3. If S > 0 is sufficiently small, then Φ maps the set K(S) into itself.
Indeed, for u = Φ(v), we write that

u(t) = u0 + {e−tA(u0) − 1}u0 + {Uv(t, 0)− e−tAv(0)}u0 +

∫ t

0

Uv(t, s)Fv(s)ds.
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Then, since u0 = A(u0)
−γf0, it is seen by (2,5) that

‖{e−tA(u0) − 1}u0‖Z ≤ D‖A(u0)
β{e−tA(u0) − 1}A(u0)

−γf0‖X
≤ C‖{e−tA(u0) − 1}A(u0)

β−γf0‖X ≤ Ctγ−β−κ‖f0‖X .

Similarly, by Proposition 2.3,

‖{Uv(t, 0)− e−tAv(0)}u0‖Z ≤ D‖Av(t)
β{Uv(t, 0)− e−tAv(0)}

×Av(0)
−γf0‖X ≤ Ctγ−β−3κ+µ‖f0‖X .

Finally, by (2.6),∥∥∥∥∫ t

0

Uv(t, s)Fv(s)ds

∥∥∥∥
Z

≤ D

∥∥∥∥∫ t

0

{Av(t)
β}◦Uv(t, s)Fv(s)ds

∥∥∥∥
X

≤ Ct1−β−κ.

Therefore we obtain by definition (3.2) that

‖u(t)‖Z ≤ ‖u0‖Z + C(Sγ−β−3κ+µ + S1−β−κ)(‖A(u0)
γu0‖X + 1) ≤ Du0 ,

provided that S > 0 is sufficiently small. Note that f0 denotes an arbitrary element
of A(u0)

γu0.
We next fix an exponent ϕ so that

β + 3κ < β + κ+ µ < ϕ < γ − κ ≤ 1− κ,

and notice that

Av(t)
ϕu(t) 3 {Av(t)

ϕ}◦Uv(t, 0)Av(0)
−γf0 +

∫ t

0

{Av(t)
ϕ}◦Uv(t, s)Fv(s)ds = gv(t).

By (2.6) and Proposition 2.2, gv(t) is shown to be uniformly bounded with

(3.4) ‖gv(t)‖X ≤ Cϕ(‖A(u0)
γu0‖X + 1), 0 ≤ t ≤ S.

Using gv(s), we can write that

u(t)− u(s) = {Uv(t, s)− 1}u(s) +
∫ t

s

Uv(t, τ)Fv(τ)dτ

=
[
{Uv(t, s)− e−(t−s)Av(s)}Av(s)

−ϕ + {e−(t−s)Av(s) − 1}Av(s)
−ϕ

]
gv(s)

+

∫ t

s

Uv(t, τ)Fv(τ)dτ, 0 ≤ s < t ≤ S.

Then, by Proposition 2.3, it is seen that

‖{Av(t)
β}◦{Uv(t, s)− e−(t−s)Av(s)}Av(s)

−ϕ‖L(X) ≤ Cϕ(t− s)ϕ−β−3κ+µ.

Similarly, by (2.5) and (2.6),

‖Av(s)
β{e−(t−s)Av(s) − 1}Av(s)

−ϕ‖L(X) ≤ Cϕ(t− s)ϕ−β−κ,∥∥∥∥∫ t

s

{Av(t)
β}◦Uv(t, τ)Fv(τ)dτ

∥∥∥∥
X

≤ C(t− s)1−β−κ.
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Therefore, in view of (3.4), we observe that

‖u(t)− u(s)‖Z ≤ Cϕ(S
ϕ−β−3κ + Sϕ−β−κ−µ

+ S1−β−κ−µ)(‖A(u0)
γu0)‖X + 1)(t− s)µ.

Therefore, in view of the definition of ϕ, we conclude that ‖u(t)−u(s)‖Z ≤ (t−s)µ,
provided S > 0 is sufficiently small.

Step 4. If S > 0 is sufficiently small, then the mapping Φ : K(S) → K(S)
is a contraction with respect to the norm ‖ · ‖Z(S). Indeed, for ui = Φ(vi), vi ∈
K(S), i = 1, 2, we have

u1(t)− u2(t) = {Uv1(t, 0)− Uv2(t, 0)}u0

+

∫ t

0

{Uv1(t, s)− Uv2(t, s)}Fv2(s)ds+

∫ t

0

Uv1(t, s){Fv1(s)− Fv2(s)}ds.

Here we establish the following lemma.

Lemma 3.1. We have

‖Av1(t)
β{Uv1(t, 0)− Uv2(t, 0)}u0‖X

≤ Ctγ−β−3κ‖A(u0)
γu0‖X‖v1 − v2‖Z(S), 0 ≤ t ≤ S,

and∥∥∥∥Av1(t)
β

∫ t

0

{Uv1(t, s)− Uv2(t, s)}Fv2(s)ds

∥∥∥∥
X

≤ Ct1−β−3κ‖Fv2‖Cµ([0,t];X)‖v1 − v2‖Z(S), 0 ≤ t ≤ S.

Proof. In order to verify these fundamental results, we have to employ the evo-
lution operators Uvi,n(t, s) (i = 1, 2) for the families of the Yosida approximation
Avi,n(t) (i = 1, 2) of Avi(t). Indeed we observe that

(3.5) Av1,n(t)
β{Uv1,n(t, 0)− Uv2,n(t, 0)}Av2,n(0)

−γ =

∫ t

0

Av1,n(t)
βUv1,n(t, s)

×Av1,n(s){Av1,n(s)
−1 −Av2,n(s)

−1}Av2,n(s)Uv2,n(s, 0)Av2,n(0)
−γds.

By the same argument as for (2.2), we can show by (2.7) that

‖Av1,n(t)
βUv1,n(t, s)Jv1,n(s)Av1(s)

◦{Av1(s)
−1 −Av2(s)

−1}f‖X
≤ C‖Av1,n(t)

βUv1,n(t, s)Jv1,n(s)‖L(X)‖Av1(s){Av1(s)
−1 −Av2(s)

−1f‖X
≤ C(t− s)−β−2κ‖v1(s)− v2(s)‖Z‖f‖X , f ∈ X.

where Av1(s)
◦ ⊂ Av1(s) is an arbitrary section. Therefore,

(3.6) ‖{Av1(t)
β}◦Uv1(t, s)Av1(s)

◦{Av1(s)
−1 −Av2(s)

−1}f‖X
≤ C(t− s)−β−2κ‖v1(s)− v2(s)‖Z‖f‖X , f ∈ X.
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Operating Av1,n(t)
−β to (3.5) and letting n → ∞ in the resulting equality, we

obtain that

{Uv1(t, 0)− Uv2(t, 0)}u0 = Av1(t)
−β

∫ t

0

{Av1(t)
β}◦Uv1(t, s)

×Av1(s)
◦{Av1(s)

−1 −Av2(s)
−1}Av2(s)Uv2(s, 0)Av2(0)

−γf0ds.

This yields that

‖Av1(t)
β{Uv1(t, 0)− Uv2(t, 0)}u0‖X

≤ C

∫ t

0

(t− s)−β−2κsγ−1−κds ‖v1 − v2‖Z(S)‖f0‖X .

Since f0 ∈ A(u0)
γu0 is arbitrary, we obtain the first estimation.

Next, we can write that

Av1,n(t)
β

∫ t

0

{Uv1,n(t, s)− Uv2,n(t, s)}Fv2(s)ds =

∫ t

0

∫ t

s

Av1,n(t)
βUv1,n(t, τ)

×Av1,n(τ){Av1,n(τ)
−1 −Av2,n(τ)

−1}Av2,n(τ)Uv2,n(τ, s)Fv2(s)dτds

=

∫ t

0

Av1,n(t)
βUv1,n(t, τ)Av1,n(τ){Av1,n(τ)

−1 −Av2,n(τ)
−1}

×Av2,n(τ)

∫ τ

0

Uv2,n(τ, s)Fv2
(s)dsdτ.

From (2.12), Av2,n(τ)
∫ τ

0
Uv2,n(τ, s)Fv2(s)ds satisfies the uniform estimate∥∥∥∥Av2,n(τ)

∫ τ

0

Uv2,n(τ, s)Fv2(s)ds

∥∥∥∥
X

≤ Cτ−κ‖Fv2‖Cµ([0,S];X),

and converges as n → ∞ to a continuous function g(τ) on (0, S]. Then, we obtain
in the same way as above that∫ t

0

{Uv1(t, s)− Uv2(t, s)}Fv2(s)ds

= Av1(t)
−β

∫ t

0

{Av1(t)
β}◦Uv1(t, τ)Av1(τ)

◦{Av1(τ)
−1 −Av2(τ)

−1}g(τ)dτ.

Therefore,∥∥∥∥Av1(t)
β

∫ t

0

{Uv1(t, s)− Uv2(t, s)}Fv2(s)ds

∥∥∥∥
X

≤ C

∫ t

0

(t− τ)−β−2κτ−κdτ‖Fv2‖Cµ([0,S];X)‖v1 − v2‖Z(S).

Hence we verify the second estimate of the lemma. �
Let us now complete the proof of this Step. It is easy to see that∥∥∥∥Av1

(t)β
∫ t

0

Uv1(t, s){Fv1
(s)− Fv2(s)}ds

∥∥∥∥
X

≤ Ct1−β−κ‖v1 − v2‖Z(S).
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This together with the lemma then yields that

‖u1(t)− u2(t)‖Z ≤ CSγ−β−3κ(‖A(u0)
γu0‖X + 1)‖v1 − v2‖Z(S), 0 ≤ t ≤ S.

Hence, we have verified that Φ is a contraction, provided S > 0 is sufficiently
small.

Step 5. Take a Tu0 = S > 0 in such a way that the results of Steps 3 and 4 are
valid. Then, there exist a unique fixed point u ∈ K(S) of Φ. Since u satisfies the
formula

u(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)Fu(s)ds, 0 ≤ t ≤ S,

u is shown to be a solution to (E) which belongs to the space (3.1).

Step 6. Finally we verify the uniqueness of solution. Let u be the solution
constructed above. We consider the Yosida approximation Au,n(t) of the operator
Au(t) and the evolution operator Uu,n(t, s) corresponding to Au,n(t). Let ũ be any
other solution to (E) in the space (3.1). Then, for 0 < t < S (≤ Tu0),

∂

∂s
Uu,n(t, s)ũ(s) = Uu,n(t, s){Au,n(s)ũ(s)− g̃(s)}+ Uu,n(t, s)Fũ(s), 0 < s < t,

where g̃(s) ∈ Aũ(s)ũ(s) with dũ
ds + g̃(s) = Fũ(s). Integrating this identity in

s ∈ (0, t) and operating Au,n(t)
β to the resulting one yield that

Au,n(t)
β{ũ(t)− un(t)} =

∫ t

0

Au,n(t)
βUu,n(t, s)

×Au,n(s){Aũ(s)
−1 −Au,n(s)

−1}g̃(s)ds

+

∫ t

0

Au,n(t)
βUu,n(t, s){Fũ(s)− Fu(s)}ds,

where un(t) = Uu,n(t, 0)u0 +
∫ t

0
Uu,n(t, s)Fu(s)ds.

We are concerned with the limit as n → ∞. By the same method as in Step 4,
it is in fact verified that

(3.7) ũ(t)− u(t) = Au(t)
−β

[ ∫ t

0

{Au(t)
β}◦Uu(t, s)Au(s)

◦{Aũ(s)
−1 −Au(s)

−1}

× g̃(s)ds+

∫ t

0

{Au(t)
β}◦Uu(t, s){Fũ(s)− Fu(s)}ds

]
− lim

n→∞
n−1

∫ t

0

Uu,n(t, s)Au,n(s)g̃(s)ds.

Moreover, we observe the following fact.

Lemma 3.2.

lim
n→∞

n−1

∫ t

0

Uu,n(t, s)Au,n(s)g̃(s)ds = 0.
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Proof. For any ρ ∈ (0, µ− κ), we have by (2.8) that

‖Uu,n(t, s)Au,n(s)‖L(X) ≤ ‖Uu,n(t, s)Au,n(s)
ρ‖L(X)‖Au,n(s)

1−ρ‖L(X)

≤ Cρ(t− s)−ρ−κ‖Au,n(s)‖1−ρ
L(X) ≤ Cρn

(1+κ)(1−ρ)(t− s)−ρ−κ.

In addition, from (3.1), g̃ satisfies that ‖g̃(s)‖X ≤ Cũs
γ−κ−1. Therefore,∥∥∥∥∫ t

0

Uu,n(t, s)Au,n(s)g̃(s)ds

∥∥∥∥
X

≤ CρCũn
(1+κ)(1−ρ)

×
∫ t

0

(t− s)−ρ−κsγ−κ−1ds ≤ CρCũn
(1+κ)(1−ρ)tγ−ρ−2κ.

It then suffices to take a ρ so that κ
1+κ < ρ < µ− κ. Since κ

1+κ + κ ≤ 3κ (< µ) for

0 ≤ κ < 1
6 , it is clearly possible to take such a ρ. �

In view of (3.6), we verify from (3.7) that

‖Au(t)
β{ũ(t)− u(t)}‖X ≤ CũS

γ−β−3κ‖ũ− u‖Z(S), 0 ≤ t ≤ S.

This in turn shows that ũ(t) = u(t) for all t ∈ [0, S] if S > 0 is sufficiently small. As
a matter of fact, we have shown by this argument that the set {S ∈ (0, TU0 ]; ũ(t) =
u(t) for all t ∈ [0, S]} is nonempty and open in (0, TU0 ]. On the other hand, it is
clear that the set is closed. Therefore, ũ(t) = u(t) for all t ∈ [0, TU0 ]. �

Remark 3.1. As shown in the proof, Tu0 is determined by the norm

‖A(u0)
γu0‖X = inf{‖f0‖X ; f0 ∈ A(u0)

γu0}.

This then means that the global existence of solution to (E) will be established if
we can verify a priori estimates ‖u(t)‖Z < R and ‖A(u(t))γu(t)‖X ≤ C for every
local solution.

4. Degenerate Abstract Evolution Equations

We consider the Cauchy problem of a degenerate abstract evolution equation

(D.E)


dMv

dt
+ L(Mv)v = F (Mv), 0 < t ≤ T,

Mv(0) = u0

in a Banach space X. Let Z ⊂ X be the second Banach space continuously
embedded in X and K be a bounded subset of Z such that

K = {u ∈ Z; ‖u‖Z < R}, 0 < R < ∞.

For each u ∈ K, L(u) is a densely defined closed linear operator of X with constant
domain D(L(u)) ≡ DL. M is a closed linear operator of X with domain D(M) ⊃
DL, and M maps DL into Z. F is a nonlinear operator from K into X. u0 ∈ K
is an initial value of the problem. v = v(t) is the unknown function.
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We make the following assumptions. For every u ∈ K, the M -modified spectral
set σM (L(u)) is contained in a fixed open sectorial region

σM (L(u)) ⊂ Σ = {λ ∈ C; | arg λ| < φ},
where 0 < φ < π

2 , and the M -modified resolvent satisfies

(D.A.i) ‖M(λM − L(u))−1‖L(X) ≤
C

(|λ|+ 1)1−κ
, λ 6∈ Σ, u ∈ K

with some exponent 0 ≤ κ < 1 and a constant C > 0 which are independent of u.
The M -modified resolvent also satisfies

(D.A.ii) ‖M(λM − L(u))−1‖L(X,Z) ≤
C

(|λ|+ 1)1−ρ
, λ ≤ 0, u ∈ K

with some exponent κ ≤ ρ < 1 and a constant C > 0 independent of u. L(u)
satisfies the Lipschitz condition

(D.A.iii) ‖L(u){L(u)−1 − L(ũ)−1}‖L(X) ≤ C‖u− ũ‖Z , u, ũ ∈ K

with some constant C > 0. F also satisfies the Lipschitz condition

(D.F) ‖F (u)− F (ũ)‖X ≤ C‖u− ũ‖Z , u, ũ ∈ K

with some constant C > 0.
We set u(t) = Mv(t) and rewrite (D.E) in the form

(4.1)


du

dt
+ L(u)M−1u 3 F (u), 0 < t ≤ T,

u(0) = u0.

Here, L(u)M−1 = A(u) is a multivalued linear operator defined for u ∈ K with
the constant domain D(A(u)) = M(DL). Our goal is then to apply the Theorem
3.1 to the present Cauchy problem.

According to [3, Theorem1.14], if λ 6∈ σM (L(u)), then λ 6∈ σ(A(u)), and it holds
that

M(λM − L(u))−1 = (λ−A(u))−1, λ 6∈ σM (L(u)).

Therefore, (D.A.i) yields that

‖(λ−A(u))−1‖L(X) ≤
C

(|λ|+ 1)1−κ
, λ 6∈ Σ.

For u, ũ ∈ K,

{A(u)−1 −A(ũ)−1}f = M{L(u)−1 − L(ũ)−1}f ∈ D(A(u)), f ∈ X.

In addition,

L(u){L(u)−1 − L(ũ)−1}f ∈ A(u){A(u)−1 −A(ũ)−1}f.
Therefore, it follows from (D.A.iii) that

‖A(u){A(u)−1 −A(ũ)−1}f‖X
≤ ‖L(u){L(u)−1 − L(ũ)−1}f‖X ≤ C‖u− ũ‖Z‖f‖X , f ∈ X.

Hence, (A.i,ii) in the preceding section have been verified.
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For κ < β < 1 it is known that

A(u)−βf =
sinπβ

π

∫ ∞

0

λ−β(λ+A(u))−1fdλ, f ∈ X.

From (D.A.ii) it is seen that

‖(λ+A(u))−1‖L(X,Z) ≤
C

(λ+ 1)1−ρ
, λ ≥ 0.

Therefore, for any β such that ρ < β < 1,

‖A(u)−βf‖Z ≤ 1

π

∫ ∞

0

λ−β(λ+ 1)ρ−1dλ‖f‖X ≤ C‖f‖X .

Setting ũ = A(u)−βf , we observe that

‖ũ‖Z ≤ C‖f‖X .

For a given ũ ∈ D(A(u)β), this is true for any f ∈ A(u)β ũ. Hence, (Sp.ii) is
fulfilled with any β ∈ (ρ, 1).

For (In), we assume that u0 ∈ K and u0 satisfies a compatibility condition of
the form

(D.In) u0 ∈ D({L(u0)M
−1}γ)

with some exponent 0 < γ ≤ 1. For the exponents we assume the relations

(D.Ex) 0 ≤ κ ≤ ρ < γ ≤ 1 and 5κ+ ρ < γ.

It is then possible to take the exponent β in such a way that (Sp.ii) and (Ex) hold.
We have thus found out the conditions to be assumed to apply Theorem 3.1

and obtained the main result of the paper.

Theorem 4.1. Under (D.A.i,ii,iii), (D.F), (D.Ex), and (D.In), there exists a
unique local solution to (D.E) in the function space{

Mv ∈ C([0, Tu0 ]; Z) ∩ C1((0, Tu0 ]; X),

v ∈ C((0, Tu0 ]; DL), t1+κ−γL(Mv)v ∈ B((0, Tu0 ]; X),

where Tu0 > 0 is determined by the norms ‖u0‖Z and ‖{L(u0)M
−1}γu0‖X .

5. Quasilinear elliptic-parabolic equations

As an application of our abstract results, we shall consider the Cauchy problem
of a quasilinear elliptic-parabolic equation of the form

(5.1)


∂

∂t
m(x)v = ∇ · {a(x,m(x)v)∇v}+ f(x,m(x)v) in (0, T ]× Ω,

v = 0 on (0, T ]× ∂Ω,

m(x)v(x, 0) = u0(x) in Ω
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in a bounded region Ω ⊂ Rn of C2 class. In this paper we handle the cases where
n = 1, 2, and 3. m(x) ≥ 0 is a nonnegative function such that

(5.2) m(x) ∈ C1(Ω) when n = 1, m(x) ∈ C2(Ω) when n = 2, 3.

a(x, u) is a real valued smooth function defined for (x, u) ∈ Ω × (R + iR), and it
is assumed for each 0 < R < ∞ to satisfy

(5.3) a(x, u) ≥ δR > 0

for all x ∈ Ω and u such that |u| ≤ R with some positive constant δR. f(x, u) is a
smooth function of (x, u) ∈ Ω× (R+ iR). For the initial function, we assume that

(5.4) u0 = m(x)v0 with some v0 ∈

{
H1

0 (Ω) when n = 1,

H2(Ω) ∩H1
0 (Ω) when n = 2, 3.

Case when n = 1. In this case we formulate (5.1) in the space X = H−1(Ω).

We take as Z the Sobolev space H
1
2+ε(Ω), where ε is an exponent arbitrarily

fixed so that ε ∈ (0, 1
2 ). Let u0 ∈ Z and ‖u0‖Z < R < ∞, then K is taken as

K = {u ∈ Z; ‖u‖Z < R}. By the embedding theorem, K is a bounded set of
C(Ω). For u ∈ K, the sesquilinear form

a(u;w1, w2) =

∫
Ω

a(x, u(x))∇w1(x) · ∇w2(x) dx, w1, w2 ∈ H1
0 (Ω)

is defined. According to the Lax-Milgram theorem (see e. g. [13, Chap. 2,Thm.
9.1]), this sesquilinear form determines under (5.3) a closed linear operator L(u) in
H−1(Ω) with the domain D(L(u)) = H1

0 (Ω) = DL which is in fact an isomorphism
from DL to X. Implicitly, L(u) is the differential operator −∇ · {a(x, u)∇w}. We
define M as the multiplication operator of the function m(x), in view of (5.2), M
is a bounded linear operator on both X and H1(Ω), that is M ∈ L(X)∩L(H1(Ω)).
F (u) is defined by

F (u) = f(x, u(x)), u ∈ K.

In this way, (5.1) is written as the Cauchy problem of an abstract equation of
the form (D.E) in X. Let us now verify all the assumptions (D.Ai,ii,iii) and (D.F)
in Section 4. It is already known by [3, Example 6.3, (6.7)] that (D.A.i) is fulfilled
with a suitable sectorial domain Σ and κ = 0.

In order to verify (D.A.ii), we use the interpolation property that H
1
2+ε(Ω) =

[L2(Ω), H1(Ω)] 1
2+ε. Then,

‖M(λM − L(u))−1‖L(X,Z)

≤ C‖M(λM − L(u))−1‖
1
2+ε

L(X,H1)‖M(λM − L(u))−1‖
1
2−ε

L(X,L2).

But, from [3, (6.6) and (6.8)] it is known that

‖(λM − L(u))−1‖L(X,H1) ≤ C, λ 6∈ Σ, u ∈ K,

‖M(λM − L(u))−1‖L(X,L2) ≤
C

(|λ|+ 1)
1
2

, λ 6∈ Σ, u ∈ K,
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therefore we obtain that

(5.5) ‖M(λM − L(u))−1‖L(X,Z) ≤ C(|λ|+ 1)
ε
2−

1
4 , λ 6∈ Σ, u ∈ K.

This shows that (D.A.ii) is valid with ρ = 3
4 + ε

2 .
Verification of (D.A.iii) is very easy. Indeed, we have

〈L(u){L(u)−1 − L(ũ)−1}f, w〉H−1×H1
0
= 〈{L(ũ)− L(u)}L(ũ)−1f, w〉H−1×H1

0

=

∫
Ω

{a(x, ũ(x))− a(x, u(x))}∇L(ũ)−1f · ∇w dx, f ∈ X, w ∈ DL.

Therefore, since

‖a(x, ũ)− a(x, u)‖C ≤ C‖ũ− u‖C ≤ C‖ũ− u‖Z , ũ, u ∈ K,

(D.A.iii) follows immediately.
Verification of (D.F) is also very easy. Finally, (5.4) implies that u0 belongs to

D(L(u0)M
−1), that is u0 satisfies (D.In) with γ = 1. (D.Ex) is then fulfilled with

κ = 0, ρ = 3
4 + ε

2 , and γ = 1.
We have thus shown that, under (5.2), (5.3) and (5.4), we can apply the Theo-

rem 4.1 to the problem (5.1).

Case when n = 2, 3. In this case, we take as X the space L2(Ω) and as Z the
Sobolev space H

n
2 +ε(Ω), where ε is an exponent arbitrarily fixed so that ε ∈ (0, 1

2 ).
Let u0 ∈ Z and ‖u0‖Z < R < ∞. Then K is taken as K = {u ∈ Z; ‖u‖Z < R}.
K is a bounded set of C(Ω). For u ∈ K, the linear operator L(u) is defined by
L(u)w = −∇ · {a(x, u(x))∇w} + cw with D(L(u)) = H2(Ω) ∩H1

0 (Ω), where c is
some sufficiently large constant for which all the arguments below are true. L(u)
is a positive definite self-adjoint operator of X, the domain D(L(u)) ≡ DL being
independent of u. The following estimate also holds

‖w‖H2 ≤ C‖L(u)w‖L2 , w ∈ DL, u ∈ K.

M is a multiplication operator of m(x); in view of (5.2), M is seen to be a bounded
linear operator on both X and H2(Ω). F (u) is defined by F (u) = cu+f(x, u), u ∈
K. Then (5.1) is formulated as the Cauchy problem of an abstract equation of the
form (D.E) in X.

In the present case we have to assume in addition to (5.2) the following order
condition

(5.6) |∇m(x)| ≤ Cm(x)ζ , x ∈ Ω

with some suitable exponent ζ ∈ [0, 1) which will be specified below. As shown in
[3, Example 6.3], condition (5.6) yields that

‖M(λM − L(u))−1‖L(X) ≤ C(|λ|+ 1)−
1

2−ζ , λ 6∈ Σ, u ∈ K

with some suitable sectorial domain Σ, 0 < φ < π
2 . Therefore, with κ = 1−ζ

2−ζ ,

‖M(λM − L(U))−1‖L(X) ≤ C(|λ|+ 1)κ−1, λ 6∈ Σ, u ∈ K,(5.7)

‖(λM − L(u))−1‖L(X,H2) ≤ C(|λ|+ 1)κ, λ 6∈ Σ, u ∈ K.(5.8)
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By the interpolation property that Z = H
n
2 +ε(Ω) = [L2(Ω), H2(Ω)]n

4 + ε
2
, it

follows that

‖M(λM − L(u))−1‖L(X,Z)

≤ C‖M(λM − L(u))−1‖1−
n
4 − ε

2

L(X,X)‖M(λM − L(u))−1‖
n
4 + ε

2

L(X,H2).

(5.7) and (5.8) yield that

‖M(λM − L(u))−1‖L(X,Z) ≤ C(|λ|+ 1)−1+n
4 + ε

2+κ, λ ∈ Σ, u ∈ K.

Therefore, (D.A.ii) is fulfilled with ρ = n
4 + ε

2 + κ.
(D.A.iii) is verified directly from

L(u){L(u)−1 − L(ũ)−1}f = {L(ũ)− L(u)}L(ũ)−1f

= {a(x, u)− a(x, ũ)}∆L(ũ)−1f +∇{a(x, u)− a(x, ũ)} · ∇L(ũ)−1f.

Note that the following estimate

‖a(x, u)− a(x, ũ)‖Z ≤ C‖u− ũ‖Z , u, ũ ∈ K

is verified by using the theory of Sobolev spaces (cf. [7]).
(D.F) is also verified immediately. (5.4) implies that u0 ∈ D(L(u0)M

−1), that
is (D.In) is valid with γ = 1. Therefore, by simple calculations, (D.Ex) is shown
to be valid, provided that

(5.9) 16+2n+4ε
20+n+2ε < ζ < 1, n = 2, 3.

Thus, under (5.2), (5.3), (5.4), (5.6), and (5.9), Theorem 4.1 is applicable to
the problem (5.1).

Remark 5.1. According to Favini et al. [4], (D.A.i) is valid even in the space
Lp(Ω), 1 < p < ∞. If we utilize these results, it is equally possible to handle the
problem (5.1) in Lp spaces.

6. Quasilinear Elliptic-Parabolic Systems

In this section let us consider an elliptic-parabolic system of the form

(6.1)



∂u

∂t
=

∂

∂x

{
a(x, u)

∂

∂x
u+ b(x, u)

∂

∂x
v

}
+ f(x, u) in (0, T ]× Ω,

0 =
∂

∂x

{
c(x, u)

∂

∂x
u+ d(x, u)

∂

∂x
v

}
+ g(x, u) in (0, T ]× Ω,

u = v = 0 on (0, T ]× ∂Ω,

u(x, 0) = u0(x) in Ω

in a bounded open interval Ω = (0, `).
a(x, u), b(x, u), c(x, u), and d(x, u) are all real valued smooth functions of vari-

ables (x, u) ∈ Ω× (R+ iR). It is assumed that, for each 0 < R < ∞, there exists
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some positive constant δR > 0 dependent on R such that the following estimate
holds:

(6.2) a(x, u)ξ2 + (b(x, u) + c(x, u))ξη + d(x, u)η2 ≥ δR(ξ
2 + η2), ∀ξ, ∀η ∈ R

for all x ∈ Ω and u such that |u| ≤ R.
f(x, u) and g(x, u) are given smooth functions of variable (x, u) ∈ Ω× (R+ iR).

Initial value u0 is assumed to satisfy

(6.3) u0 ∈ H1
0 (Ω).

We intend to formulate the problem (6.1) in a product space

X =

{(
f
g

)
; f, g ∈ H−1(Ω)

}
.

As Z we take the space

Z =

{(
u
0

)
; u ∈ H

1
2+ε(Ω)

}
,

where ε is an arbitrarily fixed exponent so that ε ∈ (0, 1
2 ), in view of the fact that

H
1
2+ε(Ω) ⊂ C(Ω). Then K is taken as

K =

{(
u
0

)
∈ Z; ‖u‖

H
1
2
+ε < R

}
with some fixed 0 < R < ∞ such that ‖u0‖

H
1
2
+ε < R, K being a bounded subset

of C(Ω). For U =

(
u
0

)
∈ K, a linear operator L(U) acting in X is defined by

L(U)V = −
(
Dx{a(x, u)Dx·} Dx{b(x, u)Dx·}
Dx{c(x, u)Dx·} Dx{d(x, u)Dx·}

)(
ũ
ṽ

)
, V =

(
ũ
ṽ

)
,

where Dx = ∂
∂x , with the domain

D(L(U)) ≡ DL =

{(
ũ
ṽ

)
; ũ, ṽ ∈ H1

0 (Ω)

}
.

F (U) : K → X is defined by

F (U) =

(
f(x, u)
g(x, u)

)
, U =

(
u
0

)
∈ K.

Finally, M is defined as the projection on X such that

(6.4) M

(
f
g

)
=

(
f
0

)
,

(
f
g

)
∈ X.

Obviously, M maps DL into Z.
In this way we are led to the following abstract formulation of (6.1)

(6.5)


dMV

dt
+ L(MV )V = F (MV ), 0 < t ≤ T,

MV (0) = U0 =

(
u0

0

)
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in the space X. Let us show that the Theorem 4.1 is applicable to this Cauchy
problem.

In order to verify (D.A.i) we have to consider sesquilinear forms on DL:

Aλ(U ;V1, V2) =

∫
Ω

{
a(x, u)Dxũ1 ·Dxũ2 + b(x, u)Dxṽ1 ·Dxũ2

+ c(x, u)Dxũ1 ·Dxṽ2 + d(x, u)Dxṽ1 ·Dxṽ2
}
dx

− λ

∫
Ω

ũ1ũ2dx, V1 =

(
ũ1

ṽ1

)
, V2 =

(
ũ2

ṽ2

)
∈ DL,

where U =

(
u
0

)
∈ K and λ ∈ C. It is immediate to see that

(6.6) |Aλ(U ;V1, V2)| ≤ C(|λ|+ 1)‖V1‖DL
‖V2‖DL

, V1, V2 ∈ DL.

In addition, we verify that

<eAλ(U ;V, V ) = −<eλ
∫
Ω

|ũ|2dx+

∫
Ω

{
a(x, u)|Dxũ|2 + d(x, u)|Dxṽ|2

+ (b(x, u) + c(x, u))(<eDxũ · <eDxṽ + =mDxũ · =mDxṽ)
}
dx

and

=mAλ(U, V, V ) = −=mλ

∫
Ω

|ũ|2dx

+

∫
Ω

(b(x, u)− c(x, u))(<eDxũ · =mDxṽ −=mDxũ · <eDxṽ)dx.

Then, by (6.2) there exists δ > 0 such that

<eAλ(U ;V, V ) ≥
∫
Ω

{
δ(|Dxũ|2 + |Dxṽ|2)−<eλ|ũ|2

}
dx, V ∈ DL,

|=mAλ(U ;V, V )| ≥
∫
Ω

{
|=mλ||ũ|2 − CR(|Dxũ|2 + |Dxṽ|2)

}
dx, V ∈ DL,

here CR denotes a constant

CR = sup
x∈Ω, U∈K

|b(x, u(x))− c(x, u(x))|.

Let us introduce a parameter 0 < θ < 1, and observe that

|Aλ(U ;V, V )| ≥ (1− θ)<eAλ(U ;V, V ) + θ|=mAλ(U ;V, V )|
≥ ((1− θ)δ − θCR)(‖Dxũ‖2L2 + ‖Dxṽ‖2L2 + (θ|=mλ| − (1− θ)<eλ)‖ũ‖2L2 .

Then, if θ > 0 is sufficiently small so that (1− θ)δ− θCR ≥ δ
2 , and if λ is taken in

such a way that

λ 6∈ Σ = {λ ∈ C; | arg λ| < φ}, Tan−1 1− θ

θ
< φ <

π

2
,

then

(6.7) |Aλ(U ;V, V )| ≥ δ′(‖V ‖2DL
+ |λ|‖MV ‖2L2), V ∈ DL, U ∈ K
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with some positive constant δ′ > 0. Here we used the Poincaré inequality

‖ũ‖L2 ≤ C‖Dxũ‖L2 , ũ ∈ H1
0 (Ω).

In view of (6.6) and (6.7), we can now apply the Lax-Milgram theorem (see
e. g. [13, Chap. 2,Thm. 9.1,Rem. 9.3]). Let λ 6∈ Σ, then for a given F ∈ X, the
problem

Aλ(U ;V,W ) = 〈F,W 〉X×DL
, ∀W ∈ DL

has a unique solution V ∈ DL with the estimates

‖V ‖DL
≤ (1/δ′)‖F‖X ,(6.8)

|λ| 12 ‖MV ‖L2 ≤ (1/δ′)‖F‖X .(6.9)

Since

Aλ(U ;V,W ) = −〈(λM − L(U))V,W 〉X×DL
, ∀W ∈ DL,

it follows that for a given F ∈ X, the problem

−(λM − L(U))V = F

has a unique solution with the estimates (6.8) and (6.9). This then means that
λ ∈ ρM (L(U)) and the resolvent satisfies the estimates

‖(λM − L(U))−1F‖DL
≤ (1/δ′)‖F‖X , F ∈ X,(6.10)

|λ| 12 ‖(λM − L(U))−1F‖L2 ≤ (1/δ′)‖F‖X , F ∈ X.(6.11)

In this way we have verified that

σM (L(U)) ⊂ Σ, U ∈ K.

Therefore it suffices to verify the estimate (D.A.i). But by (6.10) it is now seen
that

‖λM(λM − L(U))−1F‖X = ‖F + L(U)(λM − L(U))−1F‖X
≤ ‖F‖X + C‖(λM − L(U))−1F‖DL ≤ C(1 + (1/δ′))‖F‖X , F ∈ X.

Hence, (D.A.i) is fulfilled with the domain Σ determined above and κ = 0.

To verify (D.A.ii) we use the interpolation property that H
1
2+ε(Ω) = [L2(Ω),

H1(Ω)] 1
2+ε. Then, by the same argument as for (5.5), (6.10) and (6.11) yield that

‖(λM − L(U))−1‖L(X,Z) ≤ C(|λ|+ 1)
ε
2−

1
4 , λ 6∈ Σ.

Hence, (D.A.ii) is valid with ρ = 3
4 + ε

2 .
(D.A.iii) is verified directly as in the previous section by using the expression

L(U1){L(U1)
−1 − L(U2)

−1} = {L(U2)− L(U1)}L(U2)
−1

=

(
Dx{[a(x, u1)− a(x, u2)]Dx·} Dx{[b(x, u1)− b(x, u2)]Dx·}
Dx{[c(x, u1)− c(x, u2)]Dx·} Dx{[d(x, u1)− d(x, u2)]Dx·}

)
L(U2)

−1,

Ui =

(
ui

0

)
∈ K (i = 1, 2).
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(D.F) is also verified directly. Since D(L(U0)M
−1) = M(DL), (6.3) together

with (6.4) implies that the initial value U0 in (6.5) belongs to D(L(U0)M
−1).

Hence, (D.In) is valid with γ = 1. (D.Ex) is also fulfilled as well.
In this way we conclude that, under (6.2) and (6.3), Theorem 4.1 is applied to

(6.5) to obtain the existence and uniqueness of local solution.
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6, 1969, 345-394.

[2] H. Brezis, On some degenerate nonlinear parabolic equations , Nonlinear Functional Anal-
ysis, Proc. Symp. Pure Math. 18, 1970, 28-38.

[3] A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations ,
Ann. Mat. Pura. Appl. (IV) 163, 1993, 353–384.

[4] A.Favini, A. Lorenzi, H. Tanabe and A. Yagi, An Lp-approach to singular linear parabolic
equations in bounded domains , Preprint.

[5] A. Kuttler, A degenerate nonlinear Cauchy problem , Applicable Analysis 13, 1982, 307-322.
[6] A. Kuttler, Implicit evolution equations , Appl. An. 16, 1983, 91-99.
[7] K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-

growth system of equations , Nonlinear Analysis 51, 2002, 119-144.

[8] P. E. Sobolevskii, Equations of parabolic type in Banach space , Amer. Math. Soc. Trans.
Ser. 2 49, 1966, 1–62.

[9] A. Yagi, Abstract quasilinear evolution equations of parabolic type in Banach spaces,

Boll. Un. Mat. Ital. 5-B, 1991, 341–368.
[10] R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems , 1976,

Academic Press, London, New York.
[11] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces , 1999, Marcel

Dekker, New York.
[12] A. Friedman, Partial Differential Equations , 1969, Holt, Rinehart and Winston, New York.
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