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Abstract
The uniqueness of invariant measure is one of the most stiegeproblems in
theory of Markov processes. In this paper, we shall prove tiatirreducibility in
the sense of fine topology implies the uniqueness of invapaobability measures.
It is also proven that this irreducibility is strictly weak#han the strong Feller prop-
erty plus irreducibility in the sense of original topologyhich is the usual unique-
ness condition.

1. Introduction

The main purpose of this paper is to give a sufficient condlifar the uniqueness
of stationary distribution of a general Markov process. Thkistence and uniqueness of
invariant measures have been one of the most importanteansbin theory of Markov
processes. LetR) be a transition semigroup of kernels on a measurable sgace)(
i.e., it satisfies

Prs(x, d2) = / Py(x, dy) Pu(y, d2).

yeE

A o-finite measureu is invariant if u P, = p for anyt > 0, where

HP(A) = / W(@X)P(x, A).

For example, a sufficient condition of uniqueness was givef8] for Lévy processes
in strong duality, such as symmetric stable processes, tawds proved in [10] that a
Radon invariant measure of a Lévy process must be a multipleeslsesgue measure if
and only if its Lévy exponent has unique zero. An invariarthability measure is also
called an invariant distribution or stationary distrilauti The existence of an invariant
distribution usually means the positive recurrence andutligueness means ergodicity.
There are numerous papers which discuss invariant measunesrious concrete
models, but not so many general results. It is well-knowre (say. [2], [3], [7]) and
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also very useful that for a nice Markov process on a nice tajcéb space, the strong
Feller property P; takes bounded measurable function to continuous functmggther

with the irreducibility (any point can reach any open setplies the uniqueness of
invariant distribution. Usually the irreducibility is initive and not very hard to check.
However it seems that the strong Feller is really strong imyneases especially in
degenerate cases. Besides, two conditions involve theamgpanuch more than the
invariant measure itself does, and therefore are not sgaiseFor example, in [5],

the authors investigate a class of degenerate diffusion sslwion of a SPDE and
introduce an asymptotic Feller property which is weakemtls&rong Feller property
but can replace it when discussing invariant distribution.

In this paper we are going to introduce another irredudjbivhich is more nat-
ural in some sense. For example it depends on the topologycéndby the process
itself. We shall prove that the irreducibility implies thaiqueness of invariant distri-
bution and also prove that it is really weaker than the strBetler property plus the
irreducibility (in the sense of original topology). We algive some characterizations
which are easy to check.

Though invariant probability measures are discussed sghper, we would like to
say a few words about invariant measures. The uniquenessrafrg invariant mea-
sures is more complicated. It is well-known that a Browniaation has unique in-
variant measure, but a drift Brownian motion has not, alffoboth of them are irre-
ducible. Moreover an example in [10] shows that a Lévy proagsdd have unique
Radon invariant measure but netfinite invariant measure.

2. Main results

Let
x = (Qa fa ]:ty xlv 911 PX)

be a right Markov process orE(E) (say, Polish), with transition semigroupj, where
P* denotes the law of process starting fromRoughly speaking, a right Markov pro-
cess means a right continuous process with strong Markowiapepy. The precise
definition and related properties of right Markov processed probabilistic potential
theory used in this paper, please refer to [1], [9] and [6]isltoo much to explain
notions such as ‘universally measurable’, ‘nearly Boradtéh A right Markov process
is more than what a transition semigroup asks. In other watds still unknown what
makes a transition semigroup be the one of a right Markov gycehich is usually
called a right semigroup. The best result in this directisrthe one known 50 years
ago: a Feller semigroup (on a locally compact space with taile base or LCCB
in short) is a right semigroup. The main difference betweeunsaal semigroup and
a right semigroup is that we can employ powerful probaliiligtotential theory for a
right semigroup as what we do in this paper.
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For ao-finite measurew and a (universally) measurable functidnon E, define

P ;=/M(dx)a(x, SY :=/ P(-, dy) f(y).

We say @) satisfies strong Feller property B, f is continuous for anyt > 0 and
bounded measurable functioh on E. Note that strong Feller property is not actually
stronger than Feller property which means tRatis a map on the space of continuous
functions onE (assumed to be LCCB) vanishing at infinity.

We now introduce fine topology, which is induced from the s and contains
many intrinsic and delicate properties of the process. FRgr(aearly) Borel seB, Tg
always denotes the hitting time @&. A set B is finely open if P*(Tge > 0) = 1 for
any x € B. Note that the above probability is either 0 or 1 due to Bluthahzero-one
law. Intuitively it means that the process starting from anpan B is impossible to
leave B immediately. Clearly any open set is finely open due to thbtrapntinuity of
sample path.

DEFINITION 2.1. X is called irreducible ifP*(Tg < o0) > 0 for anyx € E and
non-trivial openG, finely irreducible ifP*(Tg < o0) > 0 for anyx € E and non-trivial
finely openG.

This definition is intuitive. The fine irreducibility is stnger than the usual irre-
ducibility, but they are surely not equivalent as the follog example shows.

ExampLE 1. Letv be a probability measure charging on all non-zero rationals
and X the compound Poisson process with Lévy measur&@hen any point is finely
open. Since rational numbers are denXejs irreducible, but not finely irreducible
because the process, staring from 0, can only reach rational numbers.

It is known that for one-dimensional Brownian motion, theefitopology is the
same as the Euclidean topology and for higher-dimensidnial,strictly finer. However
in many cases it is hard to characterize finely open sets. Hiris usually difficult to
use the above definition. The following lemma gives a ci@rwhich use the resol-
vent to characterize the fine irreducibility. For amy> 0, the a-resolvent (or potential
operator)U¢ is defined to be

[e.¢]

o0
Ua(X, A) = [ gt Pt(X, A) dt = EX / e““l{x[eA} dt,
0 0
which is the (weighted) average time of, starting atx, staying in A. Another vital
notion in potential analysis is ‘excessive’ (measures amtttions). Givenae > 0. A
o-finite measureu is called a-excessive, ife P, < u for all t > 0 or equivalently
BuUeth < 1 for all B > 0. Similarly, a (universally) measurable functiodn> 0 is
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called a-excessive ife *'P, f < f for all t > 0. Any excessive function is finely con-
tinuous (continuous in fine topology). Actually the fine tapyy is generated by all
a-excessive functions.

Theorem 2.1. The following statements are equivalent.
1. X is finely irreducible
For any Ae &, U%1, is eitherO identically or positive everywhere
3. All non-trivial excessive measures are equivalent.

n

As we have seen, the fine topology, which is not easy to ctexiaet is not shown
superficially in the condition 2.

Proof of Theorem 2.1. The approach we use here is the clagsaaabilistic po-
tential theory. The most useful concept is so-called Hgttirstribution, P%, defined to be

PR(x, dy) := P*(€ ™ LxTuedy: Ta < 00).

Px is also called sweeping-out operator which describes hovesitipe charge aix
makes a distribution of negative charge on surface of a m&tah useful assertion is
Pxh < h for any a-excessive functiorh (see Chapter IlI, [1]), where the left side is
called the reduit oth, a notion originated from H. Poincaré. We may assume 0.
Suppose (1) is true. 101, is not identically zero, then there exisis> 0 such that
D :={U1a > 8} is non-empty. SincéJ1, is excessive and thus finely continuou3,
is finely open and the fine closure &F is contained infU1s > §}. Then by Propos-
ition 11.2.8 and Theorem 1.11.4 [1],

UlA(X) > PpU 1A(X) = EX(U lA(XTD)) > (SPX(TD < OO) > 0.

Conversely suppose (2) is true. Then for any finely openDselby the right continuity
of X, Ulp(x) > 0 for anyx € D. ThereforeU1p is positive everywhere oik.

Let & be a non-trivial excessive measure. Singd)* < &, £(A) = 0 implies that
gU*(A) = 0. However& is non-trivial. Thus it follows from (2) thal“1, = 0, i.e.,
A is potential zero. Conversely A is potential zero, theg(A) = 0 for any excessive
measures. Therefore (2) and (3) are equivalent. ]

It is well-known that the strong Feller property and irreihility together imply
the unigueness of invariant distribution, which implie targodicity. By the strong
Feller property, we mean tha®, takes bounded measurable functions to continuous
functions. A condition obviously weaker than strong Feitecalled LSC, which means
that for any measurable s&, U“(-, B) is lower semi-continuous. The Brownian mo-
tion is strong Feller, but compound Poisson process is mohgtFeller.

Lemma 2.1. If X satisfies LSC and irreducibilitythen it is finely irreducible.
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Proof. LetAe &. U1, # 0O identically. There i > 0 such thatG = {U%*1, >
b} # @ and is open due to the property LSC. Sindé&1, is x-excessive, we have by
Proposition 11.2.8 [1] for anyx € E,

U“1a(x) = PEU“La(X) = P*(€7*T - U*1a(X(To)))-

But X(Tg) € G by Theorem 1.11.4[1] and theX(Tg) > b. Hence by the irreducibility,
we have

U%1a(x) > bEX(e™Te, Tg < 00) > 0. O

ExAMPLE 2. LetN = (N;) be a Poisson process with parameter 0 and X; =
N; —t. Then X does not satisfy strong Feller but satisfies LSC. Hence itnislyfi ir-
reducible. SinceX jumps forward and drifts backward, any set such a%] is finely
open. It may be shown that it satisfies a stronger irredutilor pointwise irreducibil-
ity: P*(Ty < 00) >0 for anyx, y € R.

The strong Feller property is certainly too much and henceads essential for
uniqueness of stationary distribution as indicated in tlking very simple example.

ExAMPLE 3. Consider the uniform translatio on unit circle. ThenX is not
strong Fellerian. However the uniform distribution on @rés the only stationary dis-
tribution of X.

It seems that in dealing with uniqueness problems, the fireglucibility is more
natural than the irreducibility under the original topojogHere we shall prove the
uniqueness of invariant distribution under irreducililit

Theorem 2.2. The fine irreducibility of X implies the uniqueness of inaati
distribution.

Proof. It is stated in ([3], Theorem 3.2.4) that if a prob@biimeasureu is in-
variant, thenu is ergodic if and only if for anyA € £ andt > 0, P1a = 1a, u-
a.s. implies thaf(A) = 0 or 1.

We claim that if @) is finely irreducible, then any invariant distribution iggedic.
In fact for any A € € andt > 0, P,1ao = 15, u-a.s. Then for anyB € &,

(1g, P1a), = (1B, 1a)s
for any t > 0. It follows by Fubini’s theorem that

(lB, OanlA>M = (lB, 1A>H
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for anya > 0. HenceaU%1a = 14, n-a.s. The fine irreducibility is equivalent td% 1,
is either O identically or positive everywhere. This imglithat x(A) = 0 or 1.

Now if u andv are two different invariant distributions, then they argaalic. By
Theorem 3.2.5 in [3], they are singular to each other. Howeke fine irreducibil-
ity implies that all excessive measures are equivalent th edher and this leads to
a contradiction. 0J

After reading the theorem above, Pat Fitzsimmons giveshanaimple proof using
ratio ergodic theorem.
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