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Abstract

The objective of this note is to prove an existence resultofake orbits in clas-
sical Hamiltonian systems (which was first proved by S.V.d&ia) by using Floer
theory. To this end, we compute an open string analogue opkgatic homology
(so called wrapped Floer homology) of some domains in caangundles, which
appear naturally in the study of classical Hamiltonian exyst. The main part of the
computations is to show invariance of wrapped Floer homplagder certain handle
attaching to domains.

1. Introduction

First we recall the definition of classical Hamiltonian ®mss. Let N be a
n-dimensional manifold. Thenl *N carries a symplectic forroy := ), ,dp Adg
where €, ..., qn) is a local coordinate irN, and (o1, ..., pn) is the associated co-
ordinate on fibers.

Assume thatN carries a Riemannian metric. Then, for e C>*(T*N), we de-
fine Hy € C*(T*N) by Hy(q, p) = V(q) + |pl?>/2. A pair of symplectic manifold
(T*N, wn) and Hy € C*(T*N) is calledclassical Hamiltonian systemts Hamilton-
ian vector field X, is defined byi Xp, ON = —dHy. As is well-known, Xy, describes
free motion of a particle oN under potential energy given by.

The following theorem is first proved by S.V. Bolotin [2].

Theorem 1.1. Let N be a Riemannian manifoldnd V € C*(N). If §, := H,*(h)
is a compact and regular hypersurface irf NI, then there exists a closed orbit ofyX

on S,.

When §,N N = @, Theorem 1.1 is easily obtained by the existence of closed ge
disics on compact Riemannian manifolds, using Maupertaisetd principle. So diffi-
culty arises whers, N N # @. In this case, Theorem 1.1 is obtained by the following
result ([2]):
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364 K. IRIE

Theorem 1.2. Let N and V are as infheorem 1.11f S, N N # @, there exists
a non-trivial orbit of Xy, on &, which starts from and ends aft, 8 N.

Definel: T*N — T*N by 1(q, p) = (q,—p). If x: [0,]] — §, satisfiesx = Xy, (X)
and x(0), x(I) € N, thenX: [0, 2] — S, defined by

o x® O<t<lI),
X(t) = {I(x(2| 1) (=t=<2),

is a closed orbit ofXy, (closed orbits ofXy, obtained in this way are so-calldntake
orbits). Hence Theorem 1.2 implies Theorem 1.1.

In this paper, we deduce Theorem 1.2 from computations dhiceFloer-theoric
invariant. The invariant we use is an open string analogusyafiplectic homology,
and often calledwrapped Floer homology Foundations of wrapped Floer homology
can be found in [1] (they also construct #i°-algebra structure on the chain complex
underlying the homology). Roughly speaking, wrapped Flo@mology is defined for
(M, w, L), where M, w) is a compact symplectic manifold with contact type bougdar
andL is a Lagrangian of M1, w) (in a precise sense, we need more data and additional
conditions, see Section 2 for details). Let us denote theppad Floer homology for
(M, w, L) by WFH.(M, w, L).

We explain our main theorem briefly. L& be a Riemannian manifold, and €
C>(N). Assume thatS, = Hy'(h) is compact. Then, settin®@, := Hy*((—oo, h]),
(Dp, wy) is a compact symplectic manifold with contact type bougdand we can
define wrapped Floer homology fobf, wn, Dn N N) (for details, see Section 4). Our
main theorem is Theorem 4.2, which asserts tha,ifi N £ @ and Dy, is connected,
then WFH.(Dy, wn, Dp N N) = 0.

Combined with basic results of wrapped Floer homology, Taeon4.2 implies
Theorem 1.2 (Details are explained in Section 4). Theoreinigtproved as follows.
By “deformation invariance” of wrapped Floer homology (Position 2.7), it is easy
to show that WFH(Dy,, wn, Dn N N) depends only on diffeomorphism type B, N N.
When D, NN is diffeomorphic to the disk, it is easy to check that WEB, wn, DhN
N) = 0. Hence all we have to show is the invariance of WHB}, wn, Dn N N) under
surgery onDy, N N by attaching handles (Lemma 4.10). This is proved by argésnen
which are similar to Cieliebak’s arguments in [3], where heves the invariance of
symplectic homology under subcritical handle attaching.

We explain the structure of this paper. In Section 2, we temasics of wrapped
Floer homology. We treat somewhat broader class of Hanéltenthan usually con-
sidered in Floer theory for manifolds with boundary, beeatisis is needed to carry
out arguments in Section 5. For this reason, establisfifigestimate for Floer trajec-
tories becomes harder than usual. The precise statemehe @ estimate is stated
in Section 2 (Theorem 2.5), and proved in Section 3. The pgdan in Section 3 is
based on [5]. In Section 4, we explain basics of classical iHamean systems, and
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state the main theorem (Theorem 4.2). We also reduce Theér2rno Lemma 4.10 in
Section 4. Lemma 4.10 is proved in Section 5.

2. Wrapped Floer homology

In this section, we recall basics of wrapped Floer homolagyich we will use in
the following of this paper.

2.1. Liouville quadruple. First we define the notion oLiouville quadruples
for which we define wrapped Floer homology.

DEFINITION 2.1. Let (M, ) be a 2 dimensional compact symplectic manifold,
X € Z(M), and L be a Lagrangian oM. A Liouville quadrupleis a quadruple
(M, w, X, L) with the following properties:
1) Lyxw = w.
(2) X points strictly outwards oM.
(3) Xq €Tyl for anyq e L.
(4) L is transverse t&dM, anddL =L NaM.

For a Liouville quadruple M, w, X, L), let A :=ixw. Then,A|L. = 0. M, 1) is
a contact manifold, andL is a Legendrean ofaM, 1). Recall that theReeb vector
field Ron (@M, 1) is characterized bygrw = 0, A(R) = 1. Let ¥(0M, A, dL) be the
set of allReeb chordof dL in (0M, 1), i.e.

€(OM, A, dL) ;== {x:[0,1] = oM || > 0, x(0), x(1) € IL, x = R(X)}.
For x € €(0M, &, dL), let &7 (x) := f(') x*A. Define theaction spectrunof oL
A (OM, A, dL) ;= {F(X) | x € €(OM, A, dL)}.
It is easy to verify that inf7(dM, A, 0L) > 0.

Let M := M U3M x [1, o0). We extendX € 2 (M) to X € 2 (M) by X = pd,
on M x [1, o0), where p stands for coordinate on [&p). Moreover, we extend to
A by A:=pi ondM x[1,00), andw to & := di. Then,L := L UJL x [1, o0) is a
Lagrangian of {1, &). We call M, &, X, L) the completionof (M, w, X, L).

Define ®: M x (0, 00) — M by

D(z, 1) =12 3,9z p) = p X(D(z p)).

Then, ®*i = pi. We call Im @) the cylindrical part of M, and denote it by CyN}).
We often identify CyI(\7l) with aM x (0, c0) via ®. For anyp € (0, o), we define
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M(p) to be the domain inVl, which is bounded by the hypersurfag® x {p}. I.e.

_MUM X (LAl (o= 1),
MO = (Mo sl G 2 2

2.2. Chords and indexes. For H € C®(M), let
F(H) := {x: [0, 1] = M | x(0), x(1) € L, X = X (X)},

where Xy is the Hamiltonian vector fieldof H, defined bydH = —ix,&.

For x € ¥(H) and 0=t < 1, let ®;: TX(O)|\7I — Tx(t)l\7l be the Poincaré map of
the flow generated byXy. x € ¥(H) is callednondegeneratéf @;: TX(O)M — Tx(l)l\7|
satisfiesd)l(TX(o)I:) N Tx(l)I: =0.

For nondegenerate € ¢’ (H), we define its index ind). In the following of this
paper, we assume that any Liouville quadrupié, @, X, L) satisfies

7T1(M, L) = 7T2(M, L) =0.

This is quite strong assumption, but it is enough to consdiisrcase for our objective.
ConsiderR?" with coordinate @, ..., P1, ..., Pn) and thestandard symplectic
form ws := ) 1i-,dp A dg. Let Z(n) be the space of Lagrangian subspaces of

(R?, wg). Note that{p = 0} € .Z(n).

Let x € ¥(H) and assume that is nondegenerate. LeD* := {ze€ C | |z] <
1, Im z > 0} and takex: D* — M such thatx(é?) = x(8) (0 <6 < 1) andX(D* N
R) C L (suchX exists sincer;(M, L) = 0). Take arbitrary isomorphism of vector bun-
dlesF: X*TM — (R?",ws) x D* over D*, such thatF,: Ty»M — R?" preserves sym-
plectic form for anyz € D*, and FZ(Ty(Z)I:) = {p =0} for any ze DT NR. Define
A: [0, 1] = Z(n) by A(6) := Fex(®s(Tx)L)), and let

ind(x) := g + 1rs(A, {p = 0)),

where ugs is the Robbin—Salamon index introduced in [7]. Note thas ithfinition is
independent of the choice & sincen»(M, L) = 0.

2.3. Hamiltonians. Let K be a compact set itM which containsM. Then,
H e C>(M) is of contact typeon M \ K, if and only if there exists a smooth positive
functiona on dM andb € R such that

(z,p) e M\ K = H(z, p) = a(@)p +b.

a and b are uniquely determined bid, and denoted bywy, by. The set of allH €
C>(M) which are of contact type oM \ K is denoted by (M). H € s (M) is
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calledadmissibleif 1 ¢ ;z/(aM,aglk,aL) and all elements o#%(H) are nondegenerate.

The set of all admissible elements ofi (M) is denoted by# .(M). Let (M) :=

Uk #« (M) and #4(M) := |y i« .ad M), whereK runs over all compact sets i

which containM. It is easy to verify that ifH € j‘fad(l\ﬂ), then%'(H) is a finite set.
Let H, H' € J4q(M). (HS)scr, @ smooth family of elements of#(M), is called

monotone homotopfrom H to H’, if it satisfies the following conditions:

(1) There exists a compact skt such thatH® € 77 (M) for any s.

(2) There existssy > 0 such that:

H (s=-%),
S _
@ = {H’ (5= %),
(b) For anys € (—so, S), dsans(z) > 0 for anyz € M.

2.4. Almost complex structures. Let J be an almost complex structure .
J is compatible witho if and only if

(«, )3: TMxTM > R; (v, w) — &(v, Jw)

is a Riemannian metric oiVi. We denote the set of almost complex structuresibn
which are compatible witli> by _# (M, &). We often abbreviate it agZ (M).
For smooth positive functioa on dM, define diffeomorphism

®,: OM x (0, 00) = Cyl(M);  (z, p) — (z, a(2)2p).
Let 22 := a~tAx € QY(OM). Then, (P.)*(X) = pA?. Let &2 and R?® be the contact
distribution and the Reeb flow ord ¥, A2).
Forv e T(aM), let
v:=(v,0eT(OM)PRI, =T(OM x (0, 00)).
There is a natural decomposition
T(OM x (0,0)) = E2 @ RR2 @ R,

where£d = (v | v € £3}.

DEFINITION 2.2. LetK be a compact set it which containsM. Then, J €
_Z(M) is of contact typeon M \ K with respect toa, if ®%J satisfies the following:
(1) ®:J preservesa on ®,1(M \ K).

(2) There exists]>, an almost complex structure dif, such thatdr |z o ®;J|= =
J®odr|@ on cba‘l(l\7l \ K). (= denotes the natural projection tM.)
(3) There existx; > 0 such thatd:J(3,) = (1/(pc;))RE on d;1(M \ K).
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We denote the set al € /(I\?I) which are of contact type oM \ K with respect
to a, by Zak(M). Moreover, Z,(M):=Jx Zax (M) whereK runs over all compact
sets inM which containM. Clearly, for two positive functions and &, if a/a’ is a
constant function ther;ja,K(M) = /ar,K(M).

Let J € ja(l\7l), and J* be as in (2) in Definition 2.2. Abbreviate the metric
Di((+, - )g) on M x (0,00) by (-, - )as. Moreover, define a metri¢-, - )ajsm On
aM by
e (v, w)asam = (dA¥)(v, I*w) on &2,

e (v, R%,5sw =0 for anyv € &8,
o |Rasom =cy?
Then, the following properties are verified by simple cadtion.

Lemma 2.3. (1) On ®,(M \ K), €3, R, 9, are orthogonal to each other with
respect to(-, -)aJ.
(2) For (z, p) € (M \ K) and v € T(IM), [0(z, p)la,s = pY/?[v]as,0m-
(3) For (z,p) € XM\ K), [9,(2, p)las = (pCs)™2.

2.5. Floer equation. Let H € Jz’gd(l\ﬁ), and @i)tepo,17 be a smooth family of
elements of 7 (M). For x_, x; € €(H),
M3, (X, X4
‘= {U:Rx[0,1] > M | su — J(3u — X (u)) = 0,
UR x {0, 1) C L, u(s) » xo (s > +o0)].

A (3) admits a naturaR action. We denote the quotient by (3,

We also consider cases where Hamiltonians are time-deperidet H, H' € #44(M)
and (H5)scr be @ monotone homotopy frof to H'. Let (38)ser tepo,1) be a smooth fam-
ily of elements of/(l\?l). Forx_ € ¢(H) andx, € €(H’),

M, 395 (X X4)
= {U: R x[0, 1] = M | dsu — J5(Bu — Xps(u)) = O,
U x {0, 1) C L, u(s) — xo (s —> +o0)].

For x € ¥ (H), we define itsaction by

1
i (X) ::/0 X*A — H(x(t)) dt.

The following lemma can be proved by simple calculation.



WRAPPED FLOER HOMOLOGY AND BRAKE ORBITS 369

Lemma 2.4. For x_ € €(H), x; € €(H’), and ue . (ns 3., (x_, X3,
1
) = [ losu(s 0% + dsH(u(s V) dt.
0

In particular, if ///A(HSVJIS)SJ(X,, Xy) # @, then o7y (X)) > @4 (X4).

We sometimes call elements aVAH,(Ji)t(x_, X;) and ///A(Hsyjts)syt(x_, X;) Floer tra-
jectories from x_ to x,. The next theorem asserts the existenceCbfestimates for
Floer trajectories. This is proved in Section 3.

Theorem 2.5. (1) Let H € J%44M) and (J)o<t<1 be a family of elements of
/(I\?I). Assume that there exists a compact set KMnsuch that J e jaH,K(l\ﬁ)
for any t. Thenthere exists a compact set M such that for any x, x, € €(H)
and ue ., 3),(x_, X+), U(R x [0, 1]) C B.

(2) Let H,H’ € s#44M) and (HS)s be a monotone homotopy from H to.Het (J3)s:
be a family of elements ojﬁ(l\?l) such that for sufficiently largegs> 0,

JS . {‘]ISO (S 5 —So),
Y sz

Assume that there exists a compact set KMn such that H € .# (M) and Fe
/aHS,K(IVI) for any s t. Then there exists a compact set B M, such that for any
x_ € €(H), x; € €(H') and ue A (s 39, (x_, X+), U(R x [0, 1]) C B.

Finally, we state transversality results.

Lemma 2.6. (1) Let H e s%4(M), and K be a compact set iN which contains
M. Assume that He . (M) and images of all elements &f(H) are contained in
intK. Then for generic(J)ie,1;, where J € /aH,K(M), M, 3), (X, X4) s aindx_ —
ind x; — 1 dimensional smooth manifold for any xx, € ¥(H). We denote the set
of such(d) by Zux(M), and Zy(M) := Uy Zn.x (M), where K runs over all
compact sets ifM with conditions as above.
(2) Let H, H' € s44(M), (H%)s be a monotone homotopy from H to/,Hnd K be a
compact set inVl which contains M. Assume thatSH %”K(IVI) for any s and images
of all elements ofs'(H), ¢(H") are contained irint K. Then for generic(J)scr,tefo,1,
where J € jaHS,K(IVI), //ZA(HSYJE)SVl (X, x4) is aindx_ —indx, dimensional smooth mani-
fold for any x. € € (H), x4 € €(H’). We denote the set of su¢h®)s: by /(HS)S,K(M),
and _Z(ns). (M) := Uy Zn9)..k (M), where K runs over all compact sets i with con-
ditions as above.
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Proof. First we prove (1). LetX); be a family of elements oyaH,K(IVI). Then, for
anyx_, X; € ¢(H) andu € %\H’(Jt)t(x_, X4), u~Y(int K) is a non-empty open set R x
[0, 1], since bothx_([0, 1]) andx, ([0, 1]) are contained in inK. By standard arguments
(see [6]), one can perturkl; to achieve transversality conditions without violating th
condition J; € /aH,K(IVI). This proves (1). (2) is proved by similar arguments. [

2.6. Wrapped Floer homology. In this subsection, we define wrapped Floer
homology for Liouville quadruples. Onc€® estimate for Floer trajectories is estab-
lished (Theorem 2.5), other arguments are parallel to lragaa Floer theory for com-
pact symplectic manifolds ([4]).

Let H € #44(M), andk be an integer. Let

“(H) :={x e €(H) | indx = k},

and WFG(H) be the freeZ, module generated ovefi(H).
Let (&) € _#1(M). For each integek, defines,™™": WFG(H) — WFG_1(H) by

W] = D #tn (% y) - Iyl
yeGik-1(H)

Then, (WFC*(H), B*H'(J‘)‘) is a chain complex, and the resulting homology group
does not depend on choice od);. We denote this homology group by WEHH;
M, w, X, L). We often abbreviate it as WEKH).

Let H, H' € s44(M), and HS)s be a monotone homotopy frorhl to H’, and

(38)st € Fne.(M). For each integek, defineg” )1 WFG(H) — WFG(H’) by

HS!J[SS‘ A
o X = Y s, g9 (%, ) - Y.
ye6k(H’)

(<p|((HS’J'S)S“)k is a chain map, hence we can define a morphism WFH — WFH,.(H").

Let H,H € %”ad(l\ﬁ). If an(2) < ap (2) for any z € 9M, then there exists a mono-
tone homotopy [i%)s from H to H’, and morphism WFEHH) — WFH,(H’) obtained
as above does not depend on choices H8f,(J7)s:. We call this morphismmono-
tone morphism

Finally, we define the wrapped Floer homology d¥l(w, X, L) by taking dir-
ect limit

WFH.(M, o, X, L) := lim WFH,(H).

ay —00

One of the important properties of wrapped Floer homologigsisnvariance under
deformations. The next proposition is proved in Section 3.5
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Proposition 2.7. Let(M,w?®, X%, L)o<s<1 be a smooth family of Liouville quadruple.
Then there exists a canonical isomorphigffH, (M, »°, X% L) — WFH, (M, !, X%, L).

If (M,w, X,L) and M, w, X', L) are Liouville quadruples, therM, o, sX+ (1 —
S)X’, L)o<s<1 is @ smooth family of Liouville quadruples. Hence, by Prafios 2.7,
WFH,(M, w, X, L) does not depend oX. We often denote it by WFHM, o, L).

Next corollary is easily obtained from Proposition 2.7.

Corollary 2.8. Let (M, w, X, L) be a Liouville quadrupleand M be a compact
submanifold ofint M, such that(M’, |u-, X|m, L N M’) is also a Liouville quadru-
ple. Assume that there exists &€1IC*°(M) such that dHX) > 0 on M\ int M". Then
WFH,(M, o, L) = WFH,(M’, o[, L N M’).

Proof. For anyx € M \ M’, an integral curve ofX throughx starts fromaM’
and ends abM. This is because iffiinem' dH(X) > 0. Thus there exists a family
(Mt)o<t<1 of submanifolds ofM such that ¥, w|m,, XM, L N Mi)o<t<1 IS @ smooth
family of Liouville quadruples andvlp = M’, M; = M. Now claim follows from Prop-
osition 2.7. []

We show an example of calculation of wrapped Floer homol@pnsiderR?" with
coordinate qy, ..., 0, P, -- -, Pn), and the standard symplectic forg; = > ,_;_,dp A
dg. Let D*" :={(q, p) | [a* + [p* = 1}, X := (1/2) Y15« Gidg + Pidp- Then,
(D™, wg, X, D' N {p = 0}) is a Liouville quadruple.

Proposition 2.9. WFH,(D?", wg, D" N {p = 0}) = 0.

Proof. Let) := ixws. Take @,)n, an increasing sequence of positive numbers
such that lim_ . a, = co anda, ¢ «7/(dD?", A, 8D N {p = 0}) for eachn.

We identify D with R2" using a flow generated b), and defineH, € s#4(D?")
by Hn(p, @) = an(Ipl* + [q]?). Since lim_.. a = oo,

WFH, (D?, wg, D" N {p = 0}) = lim WFH, (Hy).

The only element of¢’(Hy) is the constant map to (0, ., 0), and its index goes to
oo asn — oo. Therefore, for anyk, WFHc(H,) = 0 for sufficiently largen. This
completes the proof. ]

We conclude this section with a remark on relation betweeapped Floer hom-
ology and Reeb chords. The following theorem can be proverkbyiction to the finite
dimensional Morse theory.

Theorem 2.10. Let (M, w, X, L) be a Liouville quadruple. If£(dM, A, dL) = @,
then WFH,.(M, w, X, L) = H,(L, dL).
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As a corollary, we get:

Corollary 2.11. Let(M,w,X,L) be a Liouville quadruple. IWFH,.(M,w,X,L) =
0, then 4 (dM, A, dL) # 0.

REMARK 2.12. The Reeb vector fielR on (M, 1) depends on, but the char-
acteristic foliationRR on dM depends only orw. Since the characteristic foliation
determines Reeb chords up to reparametrizations, thesMoljpassertion makes sense:
if WFH.(M, o, L) = 0, then€(dM, L) # 0.

3. A CY estimate

The goal of this section is to prove Theorem 2.5 and Propwosii.7. Theorem 2.5
is proved in Sections 3.1-3.4. We only prove (2), since pafofl) is much simpler
than that of (2). In Section 3.1, we reduce Theorem 2.5 tcetlemmas. These lemmas
are proved in Sections 3.2—3.4. In Section 3.5, we provedgitipn 2.7. The proof of
Proposition 2.7 is similar to the proof of invariance of syegtic homology under defor-
mations (see, for instance, [8]). The crucial step in theopad Proposition 2.7 is &°
estimate for Floer trajectories (Lemma 3.9), and its preofary similar to the proof of
Theorem 2.5. Hence in Section 3.5, we only mention few poiiteeh make difference.

3.1. Reduction of the proof to three lemmas. First, we introduce some abbre-
viations which we will use in the following of this section.&Aabbreviateays by as,
and @4, A%, %, R¥ by ®g, A5, £5, RS. Moreover, we abbreviaté, -)as 3 by (-, -)st,
(-1 *)as,3s.0m DY (-, -)stam, andcys by sy (see Section 2.4). Finally, we abbreviate
an almost complex structureb)*(J%) on aM x (0, oco) by jf.

Take po > 0 so large thatbs(dM x [po, 00)) C M \ K for any s. Take smooth
function ¢: (0, c0) — R such that

¢"(p) = 0,
P'(P)=1 (0p=po+1),
@(p) =0 (o = po).

Note thatp(p) > p — (0o + 1) for any p.
For eachs € R, we definegS: M — R by

(/JS(X) — {(P(,O) (X = (DS(Z! IO))!

0 (otherwise).

By definition of oo and ¢, it is easy to verify that each® is a smooth function oM,
and ¢%|x = 0.

Forx_ € €(H), x4 € €(H’) andu € #(ns,35(X—,X1), we definea": Rx[0,1] - R
by (s, t) = ¢3(u(s, t)).
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Lemma 3.1. %" =0o0nR x {0, 1.

Proof. Ifu(s,t) € K, thena" = 0 on some neighborhood df,{), henced.a"(s,t) =
0. Therefore it is enough to consider the cagg t) ¢ K. Let D := {(s,t) e R x [0, 1] |
u(s, t) ¢ K}. This is an open set iR x [0, 1]. Definev: D — dM x (0, c0) by

v(s, 1) := (Ps) H(u(s 1))
andz: D — dM, p: D — (0, c0) by

(z(s, 1), p(s, 1)) := v(s, t).
Sinceu satisfiesdsu — J3(9:u — Xus(u)) = 0, by simple calculation we obtain:
€ dsv — Jpow — p - (s + 852%(2) - %(2) )3, = 0.

Sincea(s, t) = ¢(p(s, 1)), it is enough to showdp(d;v) = 0. By (1) in Lemma 2.3, it
is equivalent to(dyv, d,)st = 0. By (1), it is enough to check

(35950, 3p)st =0, (370, 8p)s = O.
The latter is obvious. Since(R x {0, 1}) C L,ifte {0, 1} then
dsu(s, t) € T(AL) @RI, C £° ® RI,.
Hence J;0sv € &5 @ RRS. Therefored;dsv is orthogonal tod,. O

The following three lemmas play crucial role in the proof dfiebrem 2.5. They
are proved in Sections 3.2-3.4.

Lemma 3.2. For any x € ¥(H) and x. € ¥(H’), there exists @x_, Xy),
Ci(X-, X4+) > 0 such that Ae" + co(X-, X4 )" + ci(X_, X4) = O for every ue
A3, 395, (X X1)-

Lemma 3.3. Forany x € ¥(H), x, € ¢(H’) ands > 0, there exists (_,X,,3) >
0 such that for any ue .Zus, 3)., (X_, X4), there exists a sequen¢s)kez With follow-
ing properties
(1) 0< 51— < 6 for any k.
(2) SURepo,1y @"(S t) = c(X-, X4, §) for any k.

Lemma 3.4. Assume that g@b, A > 0 and § > 0 are given such that?is < 72,
Then there exists @, b, A, §) > 0 such that if a closed interval | satisfie® < [I| <§
and a smooth functiow: | x [0, 1] — R satisfies
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(1) da=0on I x{0, 1},
2) A+ rx+a=>0,

(3) sudu(s,t)|seal} <b,
then supa < c(a, b, 4, §).

We give a proof of Theorem 2.5 (2) assuming those results.ceS#i(H) and
%(H’) are finite sets, it is enough to show that:

For anyx_ € ¥(H) andx, € ¢ (H’), there exists a compact sB{x_,x,) C M
such that anyu € .4 s 39)., (X_, X;) satisfiesu(R x [0, 1]) € B(x_, x;).

Take § > 0 so small thats?cy < 72. Then, for anyu € .Zus 3., (x_, X3), if we take
() as in Lemma 3.3y (5.5, Satisfies assumptions of Lemma 3.4 for e&glwith
a=cy, b=c(x_, X4,8), L = . (it follows from Lemma 3.1 and Lemma 3.2). Hence
supay < c(cy, c(x_, X4, 8), Co, 8). This proves the above claim.

3.2. Proof of Lemma 3.2. Letx_ € ¥ (H) andx, € €(H’). Our goal is to show
that there existy, ¢; > 0, which are independent of € .Z (s, 5s)., (X=, X4), such that

2 Aa" + coa +¢1 >0
holds onR x [0, 1]. In the following of this subsection, we fix and abbreviatex"
by «.

If u(s,t) € K, thena = 0 on some neighborhood o§,(t), and (2) holds for any
Co,C1 > 0. Therefore, it is enough to show (2) fa,{) € D (we use notation®,v,z, p

which are introduced in the proof of Lemma 3.1).
Sincea|p = ¢ o p, we get

3 Aa = ¢"(p)(3sp)* + (%p)?) + ¢'(0)Ap = ¢ (p)Ap.

Assume for the moment that there exists> 0, which is independent af and
4) Ap+cp >0 on D.

Then, combining (3), (4) ang(p) > p — (0o + 1), we get

Aa + Gt + Co(po + 1) = Aa + 29/ (p)( + po + 1) = Aa + C2¢'(0) 0
> ¢'(p)(Ap + C2p) = 0.

l.e. (2) holds forcy = ¢, ¢ = C2(po + 1) on D. Hence our goal is to show the exist-
ence ofc, > 0 such that (4) holds.
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Applying dp and A° to (1), we get
®) 3sp + Cst(02°)(Brv) — p - (st + 3s2%(2) - 2%(2) ™) = O,
(6) Cst(p2%)(3sv) — dp = 0.
By these two equations, we get

Ap = Cs1d(pA®)(3hv, sv) + dsp - (Cs¢ + 352°(2) - @%(2) )
+ 0+ (9s(Cst + 052°(2) - @%(2) 1) — Cst - 0sA3(B42) + DiCst - 1%(3s2)
— 0sCst - A°(3r2)).
On the other hand, by (1),
d(p2°)(3v, dsv) = |9sv[3; — C5¢ - sp - (Csx + 352°(2) - @°(2) 7).
Then, we get
Ap = Cs¢|dsvl3, + o - (3s(Csr + 352°(2) - @%(2) )

— Cs,t - 0sA%(0tZ) + Cst - A3(0sZ) — DsCst + A°(3;2)).

For V € T(9M x (0,00)), we denote itsT (dM)-part by /)ym. On ;1M\ K), T(9M)
andd, are orthogonal to each other with respect(tg - )s:. Hence|(V)omlst < |V]st
for any V. Then, we get (recall Lemma 2.3):

19sZ]s.t,5m = 0~ 2|(3s0)amlst < 072 dsv]st,
10:Zlst.om = o 2|3 v)amlst < p 2 Bcvlsy

< p71/2|83v|Syt + C;S/Z(Cs't + asaS(Z) . aS(Z)fl).

In the last inequality, we use (1) and,|s: = (0Cs:)"Y2. On the other hand, there
exist constantgs, ¢4, s > 0, which are independent af and satisfy

|95(8s2°(2) - @%(2) )| < CaldsZls,t,om + Car  [3sA°(82)| < C5]32Zs1,0m-
Hence there exist constants, c; > 0, which are independent af and satisfy
Ap = Cst|dsv]3; — Cop™?|9sv]st — Crp.

Therefore

Cstldsv|2,  coic? cic?
Ap ch,tlasvli,t—< Poovlae | Si%0) s (%SG,

2 2

Hence (4) holds where, > (sup, c;{ - ¢§)/2 + c7. This completes the proof of
Lemma 3.2.
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3.3. Proof of Lemma 3.3. First note that we may repladd® with H® + C(s),
whereC is an arbitrary smooth function as This is becauseys = Xusc(s) for any
s. Therefore, we may assume thef satisfiesdsHS(x) > O for anys € R, x € M.

Let u € s, 35 (%=, X4). Recall Lemma 2.4:

1
ds(hs(u(s))) = —/0 |asu(s, t)13: + 8sH(u(s, ) dt < 0.

In particular,
(X)) = s(U(S)) < o (x-)

for any s. Hence, for any interval C R, there existss € | such that

1
[1] / [dsu(s, t)|‘2][s + dsHS(u(s, 1)) dt < oy (X2) — o (X4).
0
Hence, we can conclude:

Lemma 3.5. For any§ > 0 and ue %(Hs,ls)(x_, X;), there exists a sequence
(Sk)kez With the following properties
(1) 0< 11— < 8 for any k.
2 f01|8su(s, t)]2s + dsHS(u(s, 1)) dt < 2(ah (X_) — o/(X4))/8 for any K.

Note that|dsu| s = |0iu— Xpsou|ss. Therefore, to prove Lemma 3.3, it is sufficient
to prove the following:

Lemma 3.6. For any c> O, there exists Mc) > 0 such that if s € R and
x: [0, 1] = M satisfy X0), x(1) € L and

1
| 160x = X ) + asHx) dt <
0
then sup<;<; ¢*(X(t)) = M(c).

Proof. If this lemma does not hold, there exist sequensgg &nd i)k such that

1
™) | 05— X ) + 25 ) dt <

(8) lim sup ¢*(x¢(t)) = oo.

k—o00 Oftfl
Recall that in the statement of Theorem 2.5, we take 0 such that

3= {Jt:’ (s < —%),
3 (5= %)
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H (s=—%),
H (s > ).
Then, we may assume thsat € [—Sy, S] for all k. Note that (7) implies

By replacings, if necessary, we may assume tlsgialso satisfiedH® = {

1
(9) /0 |8 Xk — stK(xk(t))ﬁs‘ dt <c,
1
(20) / 0sHS(s¢, Xk(t)) dt < c.
0

First we show that I info<t<1 % (Xk(t)) = co. If this does not hold, by replac-
ing (s)x and )k to their subsequences, we may assume thatisfip:<; o (X(t)) <
oco. Then, for sufficiently largek, there existay, bk € [0, 1] such that

sgpﬁ(xk(ak)) < 00,
Jim (X (b)) = oo,
0<6<1= xa+@-0)b)c M\K.

Without loss of generality, we may assume thaat< by. Define yi: [a, bi] — dM x
(0, 00), z: [ak, b] — IM, pk: [ak, b] — (0, 00) by

Ye(®) = (@)1 0(), (), ox(D)) = (D)

Then

by by by

18X — Xnac (@) dt = [ 3y — REWD)I5, At = | 1(3cyia, I3 dt
A A =S

b
> inf c;}/ (ok(t) "2 - 3 pr)? dit
st a

> inf g} - (o0 — pil@) )P - (b —a)

Since px(ax) is bounded and ligL pk(bk) = oo, we get

by
lim |8 X — stK(xk(t))ﬁlsK dt = oco.

k—o00 a

This contradicts (9), and we have shown thatylim, info<t<1 *(Xk(t)) = co. In par-
ticular, %([0, 1]) € M \ K for sufficiently largek. For suchk, defineyy: [0, 1] —
aM x (0, 00), z: [0, 1] = aM, pk: [0, 1] — (0, c0) by

Yi(t) 1= (D) (), (@(), k(D)) == ().
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Then, by (9) and (10)yx satisfies
1
(11) [ oy~ REGOE ot <
1
(12) [ e 20 2% @) - ) de+ asblsg <

Since iMoo iNfo<t<1 % (Xk(t)) = oo, we get lim_ info<t<1 pk(t) = oco.
By replacing &)k and &)k to their subsequences, we may assume that con-
verges to some,, € [—Sy, S]. Since

|3k — RE(W)IZ ¢ = 10V — RE(®)am |2 ¢ = 18tz — R*(z(0)3 ¢ om * £K(D),

we get from (11) and lig, » info<t<1 pk(t) = oo that

1
im [ oz~ RGO on dt =
0

k—o00

Then, by taking limit of certain subsequence Bf)(, we getz,.: [0,1] — dM such that
25(0), Zxo(1) € L,  3Zw(t) = R™>(z(1)).

Therefore 1€ o/(0M, A%, dL), hences,, € (—S, S). By the definition of monotone
homotopy, infcym 9sa%(Sx,2) > 0. Hence, there exists> 0 such that inf.yv 0sa3(S¢,2) >
e for sufficiently largek. Let A := SURs ,crxam @°(2). Then,

1 1
/0 8:8%(S, 2(1) - 2% (Z(t)) " pilt) dt > e A /O pilt) dit

for sufficiently largek. Since lim_ o info<t<1 pk(t) = oo, the right hand side of the
above inequality goes too ask — co. Hence the left hand side of the above inequal-
ity also goes toco as k — oo. This contradicts (12). This completes the proof of
Lemma 3.6. ]

3.4. Proof of Lemma 3.4. We use the following result, which is exactly the
same as Proposition 8 in [5].

Lemma 3.7. Assume that gb, » > 0 and § > 0 are given such that?s < 72,
Then there exists @a, b, A, ) > 0 such that if a closed interval | satisfie® < |1 <$§
and a smooth functiow: | x R/Z — R satisfies

Ao + rx +a >0,
supa(s, t) |seal} <b,

then supa < C(a, b, 2, §).
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REMARK 3.8. For anyr > 0, Lemma 3.7 holds if we replad®/Z with R/tZ
in the statement.

Proof of Lemma 3.4. For any > 0, there exists§ > 0 andg: | x [0, 1] - R
such that:

sup o — B[, sup|Afe—B)| =,
1x[0,1]

1 x[0,1]
2 (t—1y
1-6<t<1 = B(st)=a(s, 1)+ da(s 1) >
t2
0<t<8 = B(s,t) = als 0)+ d2a(s, 0)-5.

Define 8: | xR/2Z — R by

_ (Bt (0<t<1),
’B(S’t)_{ﬂ(S,Z—t) 1<t<2)

Then, 8 € C®(I x R/2Z). Moreover, satisfies
AB+AB+ @+ (1+1)e)>0, sudB(s,t)|sedl} <b+e.

Then, if we takeC = C(a+ (1+1)e,b+¢,1,8) as in Lemma 3.7, sup = supp < C.
Hence supr < C + ¢. []

3.5. Proof of Proposition 2.7. First, we may assume thaby, X5) = («°, X°)
if s is sufficiently close to 0, andef, X5) = (0?, X?) if s is sufficiently close to 1.
Then, extend ¢§®, X%)g<s<1 t0 (@°, X%)scr by

S Sy _ (wor XO) (s<0),
(@ X7 = {(a)l, X1) (s> 1).

The crucial step in the proof of Proposition 2.7 is:

Lemma 3.9. Let H, H' € jﬁd(l\ﬂ) and (H%)s be a monotone homotopy from H
to H’, such that s is a constant function od@M for any s (ays =: a(s)). Let (J%)s:

be a family of almost complex structures th such that

35— 3 (s=<0),
t 3 (s=1).

Assume that there exists a compact setcMK C M, such that B € (M), J3 €
/LK(I\?I;&F) for any s and t(here 1 denotes the constant function 6M). Then there
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exist constants; c; > 0, which depend only oifw®, X®)s and (J%)st, with following
property. if coa + ¢; < dsa on [0, 1], there exists a compact set 8 M such that
u(R x [0, 1]) ¢ B for any x. € ¥(H), x; € ¥(H’), u e =%A(HS'JF)(X_, X4).

Once Lemma 3.9 is established, we can define a chain qu'aspJ‘s)s": WFC(H;
M, 0°, X° L) = WFG(H"; M, o, X*, L) by

o = Y Ele () TV,

ye6k(H')

given a monotone homotopyHE)s which satisfies assumptions in Lemma 3.9. Hence
we get a morphism WFHH: M, «°, X° L) — WFH(H’; M, o', X1, L). By taking
direct limit, we obtain a morphism

WFH, (M, «°, X° L) = WFH,(M, o*, X!, L).

We can also define a morphism in invert direction, and show tiiey are inverse to
each other. This completes the proof of Proposition 2.7.cdeadl we have to show is
Lemma 3.9.

The proof of Lemma 3.9 is very similar to the proof of Theorerb.2First we
take pg > 1 so thatK C int M(pg), take smooth functiorp: [1, o©) — R such that

¢"(p) = 0,
P'(p)=1 (p=po+1),
@(p) =0 (o = po),

and definex, € C*(R x [0, 1]) for u ///A(HS,J;)(X_, X4) by

_ Jo(o(s, 1)) (u(s, t) € IM x [po, o0)),
(s 1) = {0 (otherwise).

Once we establish properties which correspond to Lemmas331for «,, the proof

completes. The first two properties can be proved in conmlgleteme way. But to
establish the property which corresponds to Lemma 3.3, vesl ®mewhat different
arguments. In the following, we prove the property whichresponds to Lemma 3.3.
First we spell out what we have to prove.

Lemma 3.10. Let H, H’, (H®)s and (J%)s: are as inLemma 3.9 Then there
exist constantsggc; > 0, which depend only ofwS, X%)s and (J8)st, with the follow-

ing property
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Assume ga(s) +c; < a'(s) for s € [0, 1]. Thenfor any x. € ¥(H), x; € €(H’)
ands > 0, there exists (_, X, §) > 0 such that for any u //Z(HS,JE)(X,, X4 ),
there exists a sequen€®)kez with:

(1) 0< s¢11— % < 6 for any k.

(2) sup<i<1 ow(sk, t) = c(x, x4, 8) for any k.

Proof. At first, by same arguments as what we have done in thentiag of
Section 3.3, we may assume thgHS(x) > 0 for anyx € M ands € R.
Let A5 := i@. By simple calculation, we get

1
(13)  —os(hs(u(s))) = /0 |3u(s, )13 + dsH3(U(s, 1)) — 3sA°(3u(s, 1)) dit.

Existence of the third term in integrand requires more argnisithan proof of Lemma 3.3.
In the following, we prove that: there exists, ¢c; > 0 such that, ifcga 4+ ¢; < dsa holds
on [0, 1], then there exists > 0 (which may depend or{®)s) such that

|3su(s, 1)[5: + dsH(uU(s, 1) — dsA(du(s, 1)) + ¢
(14) 1 2
> §(|8su(s, t)5s + dsH(u(s, 1))

Once this is established, Lemma 3.10 is proved by same argerag proof of Lemma 3.3.
Since K is compact, to prove (14) it is enough to show that there &xist> 0
such that

us, t) € M\ K = [3sX3(au(s, 1))
(15) 1 2
<c3+ §(|asu(s, t)|3s + 9sH3(u(s, t))).

First notice that, sincel?® € /LK(I\?I;aSS, X9), (-, -) 3¢ satisfies the following properties
(see Lemma 2.3):
(1) On M \ K, a natural decompositiofﬁl\?l =T(0M)@®R3, is an orthogonal decom-
position with respect td -, -)js.
(2) There exists a metri¢-, - )35 5m 0n dM such that|v(z, p)|s = pY?|v(2)|33,9m for
anyv e T(OM) and &, p) € M \ K.
(3) There existgs; such that|d,(z, p)lss = (pCst)™¥2 on M\ K.

We return to the proof of (15). Sinckl\ K C 9M x[1,00), we can writeu(s,t) =
(z(s, 1), p(s, 1)). Let cq:=sup, s;|3sr%(2)[35,0m-. Then,

9s15(Bu)| = p(s, 1)|3sA3(32)| < Cap(S, 1)]3Z|35,0m < Cap(s, t)2]Beulss.
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Since|diulgs < 9sul g5 + |[VEHS|3s and [VHS(z, p)|3s < SUR, Cs; -a(s)p™/?, There exist
Cs, Cg > 0 such that

N 1
|9sA3(3eu)| = §|8su|i5 + (csa(s) + Gs)o(s, 1)

On the other handysH3(z, p) = dsa- p + dsb on M \ K. Hence, if Zsa + 2c5 < 9sa
and 0< 2c3 + dsb on [0, 1], (15) holds fors € [0, 1]. Whens ¢ [0, 1], the left hand
side of (15) is zero. Hence, &; +infasb > 0, (15) holds fors ¢ [0, 1]. This completes
the proof of Lemma 3.10. ]

4. Classical Hamiltonian systems

First we recall notations which are introduced in Sectiohdt N be an-dimensional
manifold. Then,T*N carries a natural symplectic formy := >, dp A dg.

Assume thatN carries a Riemannian metric. Then, for € C*(N), we define
Hy € C*(T*N) by Hy(q, p) = V(q) + | p|>/2. Note that CritHy) = Crit(V).

For & € X(N), We defineF; € C*(T*N) and & € ¥(T*N) by F:(q, p) := p(&q)
and & := Xg. Then,L;w = 0 and§qo) = &. Fora € R, defineY, € X(T*N) by
Ya:=F +aVV, wheref := Y\, pidp-

Lemma 4.1. Let K be a compact set in*IN such that KN Crit(V) = @. Then
dHy(Ya) > 0 on K for sufficiently small a 0.

Proof. SinceV~V(q, 0)= VV(q) and K NCrit(V) =@, d HV(VNV) >0 onKNN.
Let Ko be a subset oK defined byd HV(W) < 0. SinceKy is compact and disjoint
from N, m := ming,|p|? is positive. TakeM > 0 so thatM > maxc, —d HV(V~V), and
take 0< a < m/M. Then,dHy(Yy) > m—aM > 0 on Ky,. On the other hand, since
dHy(VV) > 0 anddHy () > 0 on K \ Ko, dHy(Ya) > 0 on K \ Ko for anya > 0. [

As in Section 1, we abbreviatel,((—oo, h]) by Dy, and Hyi(h) by . If his
a regular value ofHy and S, is compact, then Iy, wy, Ya, Dh N N) is a Liouville
quadruple for sufficiently smalak > 0. This is verified by applying Lemma 4.1 for
K = &. The main result of this paper is the following:

Theorem 4.2. Let N be a Riemannian manifgldnd V € C*(N). Assume that
h is a regular value of Vand § is compact. If §1 N # @ and D, is connected
then WFH, (Dy, @n, Dn N N) = 0.

By Remark 2.12, Theorem 4.2 implies:

Corollary 4.3. Let N and V are as iifTheorem 4.2 Then (S, S N N) # @.
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Since elements o%'(S,, Sy N N) correspond to orbits oKy, on & which start
from and end atS, N N, Corollary 4.3 implies Theorem 1.2.

In the remainder of this section, we reduce Theorem 4.2 torham.10. First, we
prove the following lemma:

Lemma 4.4. WFH,(Dy, wyn, Dy N N) depends only on diffeomorphism type of
Dn N N.

Proof. LetK := DpNN andK := KU3K x[0,1]. Take any Riemannian metrig
on K andW e C®(K) so that 0 is a regular value & and K = W=((—o0, 0]). For
such @, W), defineHgw € C*(T*K) by Hgw(q, p) = |p|§/2+W(q), and letDgw :=

Hg&v((—oo, 0]). ForaeR, let Yqwa:=T7 + a/V?V_\?. Then, Ogw, @i, Ygw,a, K) is a
Liouville quadruple for sufficiently smala > 0.

We claim that WFH(Dg w, wg, K) does not depend on choice gfandW. In par-
ticular, WFH.(Dg,w, g, K) depends only on diffeomorphism type Kf. This is proved
as follows. Take two choicegd, Wo) and @1, W1). Let g; :=tg; + (1 —t)go andW; :=
tWy 4+ (1-t)Wo. Then, when we takea > 0 sufficiently small, Dg, w;, @i Yo, wi,a, K) is
a smooth family of Liouville quadruples. Then, the claimidals from Proposition 2.7.

Extend the inclusion map: K — N to an embedding: K — N. Let g be the
pullback of the Riemannian metric dd by i, andW := V oi —h. Then, On,wn, DpN
N) in Theorem 4.2 can be identified witlDgw, g, K). So, the above claim proves
the lemma. O

We return to the proof of Theorem 4.2. We may assime 0, and by Lemma 4.4,
we may assume that is Morse. Then, Cril{)NV ~1((—o0,0]) consists of finitely many
points. We denote it byPy, ..., B}. Moreover, we may assume the following.

1) V(P) <---<V(R) <O.

2) 1<indPy<n—-1for2<m<=<I and indP, = 0.

Note that we can eliminate critical points of index since D, N N is connected and
its boundary is non-empty.

If he(V(P),V(P)), DpN N is diffefomorphic toD". Hence, by Lemma 4.4 and
Proposition 2.9, WFK(Dy,, wn, Dn N N) = 0.

By Lemma 4.4, if h,h’] contains no critical value of/, then WFH.(Dy,, wn, DN
N) =~ WFH, (Dy, wn, Dy N N). Therefore, if we prove the following Theorem 4.5, we
can prove Theorem 4.2 by applying Theorem 4.5 to each driticants P, ..., Pn.

Theorem 4.5. Let N be a n-dimensional Riemannian manifo\dd be a Morse
function on N and P e Crit(V) with 1 <ind P < n—1. Assume that there exists> 0

such thatCrit(V) N V=YV (P) — ¢, V(P) + ¢]) = {P}, and Dy(p)+ is compact. Then

WFH, (Dv(p)—¢, @n, Dy(p)—e N N) = WFH,(Dv(p)+¢, @n, Dy(py+e N N).
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In the remainder of this section, we reduce Theorem 4.5 torhan4.10. By
Morse lemma, there exists a coordinate neighborhtodround P and local chart
((CTPIN gn) on U such thatP corresponds to (Q,.., 0) and

—(@+- -+ )+ @+ D)
> .

V(@) =V(P)+

Herek = ind P. Denote byry the natural projectiom *N — N. In the following of
this paper, we often considery}(U) as a subset oR*" using the coordinateq( p).

We introduce some notations which we use in the following lo$ fpaper. First,
we abbreviatedy, ..., qn) by q, (p1,---, pPn) by p, and @1, ---, Px)s (Pks1s-- -+ Pn)s
(G2, - -5 Gk)s (Ok+1, - - -, 0n) BY P-, P+, O-, 0+. Moreover, we set

D([a, b]) :={(a, p) | p=0, a < |ql* < b},
D_([a, b]) :={(a. p) | p=0, g+ =0, a<|g_|* < b}.

D((a, b]) etc. are defined in the same manner.
By Lemma 4.4, we may assume that Riemannian metricUoris >, _;_, dg?.

Take b > 0 sufficiently small so thaD([0, 2b]) c U and Crit(/) N V-1V (P) — b,
V(P) + b]) = {P}.

Lemma 4.6. For sufficiently small a> 0, dHy(Ya) > 0 on H;}([V(P) — b,
V(P)+b]) \ {P}.

Proof. Onmyl(U), we can write explicitly:
pI* —la-* + |9 ?

2 L
Ya(d, p) = —ag-9q + (1 + a)p-dp. + adydg, + (1 —a)p+ap, .

dHy(q, p) = pdp—q-dg- +q,dqg,,

Hv (g, p) =

Then,
dHy(Ya) = (1 —a)lps >+ (1 + @)l p_|* + alg|*.

Hence ifa € (0, 1), dHy(Ya) > 0 on 7y1(U) \ {P}. Therefore, to prove the claim, it is
enough to show that Hy(Ya) > 0 on Hy*([V(P) — b, V(P) + b)) \ =x(U) for suffi-
ciently smalla > 0. This follows from Lemma 4.1, sincel,*([V(P)—b, V(P) + b]) \
7yt(U) is compact and disjoint from Cri). ]

For H € C*(T*N), let S(H) be the set ofk: | — T*N with |I| > 0, X = Xy(X),
x(@1) € N andx(d1) N D_((0, b)) # 2.

We will show that for genericH, which is obtained by perturbingdy, S(H) is
a countable set. To put it more rigorously, we first explaie #etting for perturb-
ation. Lets# be an affine space consists df e C*°(T*N) such that supp{ — Hy) C



WRAPPED FLOER HOMOLOGY AND BRAKE ORBITS 385

{Ip|? < 2b} \ 7 X(D([0, 2b))). We equip# with usualC> topology, i.e. the topology
induced by distance

[o¢]
i IH—Hen
d ) H, H/ = 2 m .
o~ (H, HY) r; T+ |H—H'cn

Then, the following lemma holds. The proof is postponedIuhg end of this section.

Lemma 4.7. There exists’#’ C s, such that7” is of second category in?’
and §H) is a countable set for any K 7.

Takea > 0 sufficiently small so thatiHy(Ya) > 0 on H,*([V(P)—b, V(P)+b]) \
{P}. Then, there existe > 0 such that ifH € 4, satisfiesdc~(H, Hy) < c, then
dH(Y,) > 0 on H7Y([V(P) — b, V(P) + b)) \ {P}.

By Lemma 4.7, there existsl € .54, such thatdc~(H,Hy) < ¢ and S(H) is count-
able. Moreover, there existse (0,b/2) such thatH(x) # V(P)—¢ for any x € S(H),
since S(H) is a countable set.

Let Dy := HY((—o0, V(P) £ ¢]), and

% :=9D_ND_((0,b) ={(@ p) | p=0: =0, |[g|* = 2¢}.
We summarize their properties:

Lemma 4.8. (1) (D4, wn, Ya, D+ N N) are Liouville quadruples.
(2) WFH*(Di, wn, D+ N N) = WFH*(Dv(p)iS, WN, DV(P):ES N N)
(3) Forany x: | - aD_ in ¥(0D_, dD_N N), x(@1)N X = @.

Proof. SincedH(Y,) > 0 on H1([V(P)—b,V(P)+Db])\{P}, Ya points outwards
on dD.. This proves (1). To prove (2), for 8 t < 1 define

H':= (1—t)H +tHy, D} :=(H")*(—o0, V(P) % &)).

Since H' € 74, and dc~(H, H) < ¢, (D', wn, Ya, D} N N)o<t=1 is a smooth fam-
ily of Liouville quadruples. Hence (2) follows from Proptish 2.7. Finally we prove
(3). If there existsx: | — 9aD_ in €(@D_, aD_ N N) such thatx(dl) N X # @, by
reparametrizingk we get an element o§(H). This contradicts the choice af []

By (1) and (2) in Lemma 4.8, to prove Theorem 4.5 it is enouglshiow
(16) WFH, (D, wn, Dy N N) = WFH,(D_, wn, D_ N N).

Take u € C*°(R) such that
(1) w'(t)=0.
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_Jo t=0),
(@) n®) = {t —1/2 ¢ > 1).
For § > 0, defineus € C*(R) by us(t) =38/24 8 - u((t —2¢)/8), and let

Ds:= D_U{(@, p) | l0-1*—2¢ < |a. > + | p* < ws(|a-1)}.

Then, D_ C Ds C D, for sufficiently smalls > 0.

Lemma 4.9. For sufficiently small a> 0, (Ds, wn, Ya, Ds N N) is a Liouville
quadruple. MoreoverWFH, (Ds, wn, Ds N N) = WFH, (D, wn, D+ N N).

Proof. To prove the first assertion, it is enough to show thatpoints strictly
outwards ondD;. On wy(U),

Ya(d, p) = —agq-0q. + (1 + a)p-dp_ +ag,dq, + (1 —a)p,dp,.

If a€(0,1), then—a <0 and 1+a,a,1—a > 0. ThereforeY, points strictly outwards
on 8D; N} (U), sinceuj(t) = 0. On the other hand, sindeDs \ 7 }(U) = aD_ \
7H(U), Ya points outwards o@D \ 7y1(U) for sufficiently smalla > 0.

The latter assertion follows from Corollary 2.8, sindél(Y,;) > 0 on D, \ D; for
sufficiently smalla > 0. ]

By Lemma 4.9, (16) is reduced to:
Lemma 4.10. WFH,(D_, wn, D_ N N) = WFH,(Ds, wn, Ds N N).

Lemma 4.10 is proved in the next section. In the remainderhisf $ection, we
prove Lemma 4.7.

Proof of Lemma 4.7. Defin& (H) and St(H) by
S(H)={x:[0,1]=>T*N |l >0, x = Xy(x), x(0) € D_((0, b)), x(I) € N},
ST(H) = {x:[0,1] = T*N || >0, x = Xu(x), x(0) € N, x(I) € D_((0, b))}.

In the following, we prove that there exist®’~ C . which is of second category
in # and for anyH € »#~, S (H) is countable. By parallel arguments, we can
also show that there exist#’* C # which is of second category i and for any
H € 2#*, St(H) is countable. Then#' := J#~ N " satisfies the requirements of
Lemma 4.7.

In the following, we prove that there exist®’~ as above. The proof consists of
9 steps.

STEP 1: By definition of 7#, any H € . satisfiesH = Hy on ngl(D([O, 2b])).
Hence, following (1), (2) holds for any € 7.
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(1) If x: [0,t] — 7X(D([0, 2h))) satisfiest > 0, x = Xy (x) and x(0) € D_((0, 20]),
then x(t) ¢ N.
(2) There existsc > 0, which is independent oH and such that: ifx: R — T*N
satisfiesx = Xy (x) and x(0) € D_ ([0, b]) then x([O, c]) C n;,l(D([O, 20))).

STEP 2: Let % be the set ofl(x) wherel > 0 andx € L¥([0,1], T*N), such that:
(1) x(0) e D_((0, b)), x(1) € N.
(2) If1/2 <t <1-—c/l, thenx(t) # x(0).
It is easily verified that#Z is a Banach submanifold of (8o) x LYZ([0, 1], T*N). Let
& be a Banach vector bundle ovéf defined by& ) = LA(x*T(T*N)). For H € .7,
definesy € I'(&) by su(x, 1) = x(t) = I - Xu(X(t)). If su(x,1) = 0, thenx satisfies
following conditions:
(@ x(10, 1)) N {|pl* < 2b} \ 7*(D([0, 20])) # @.
(b) Xlpo,1) is injective.
By (1) in step 1 andk(1) € N, x([0, 1]) is not contained inty*(D([0, 2b])). Moreover,
if x(t) = (a(t), p(t)) € 7y*(D([0, 2b])),

[P()I* = 2(H (x(1)) — V(a(t))) = 2(V(a(0)) - V(a(t))) < 2b— |q(0)*.

(a) follows form this at once.

To prove (b), first notice that if there exists—Ic/l <t < 1 with x(t) = x(0), then
X(1) ¢ N by (1), (2) in Step 1. Hencg(t) # x(0) for 1—c/l <t < 1. Hence, ifX|p 1
is not injective, there exists largest<0t < 1 such thatx(t) = x(0), andt <1 —c/I.
Moreover, ift < 1/2, thenx(2t) = x(0) but this contradicts maximality of. Hence
1/2 <t < 1—c/l, but this contradicts (2) in definition of8.

SteP 3: Take any almost complex structudeon T*N, which is compatible with
wy. J induces the associated metric and its Levi-Civita connactin T*N, and also
on & — %. Then, Vsy)xi): Tu)#B — Sy is a Fredholm operator. In particular,
CokerVsy = (Im Vsy)*t C &x,) is finite dimensional. Note that the index of this op-
erator is

dimD_((0,b)) +dmN+1—dmT*N=k+1—n.
Let ¢ € CokerVsy, i.e. ¢ is orthogonal to
Ve(sn) = 0 —1(Ved - VH 4+ J - Ve(VH)) =: 9§ —1A(t) - §(1),

for any & € LY2(x*(T(T*N))) with £(0) € Tx0)D-((0,b)) and&(1) € TyyN. Hence we
obtain (A*(t) is the adjoint operator ofA(t)):

@ + 1A @) () =0, £(0) € (Tuo)D-((0. b)), £(1) € (TywN)*.

STEP 4: We claim that ifsy(x, ) = 0, then ¢; + IA*())(VH o x) = 0. This is
verified as follows. If §,1) € # satisfiesy(0) = x(0) andy(1) = x(1), then YHoy)-
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su(y, 1) = H(y(1)) — H(y(0)) = (VH o Xx) - sy(x, ). Hence, ifé € LY2(x*(T(T*N)))
satisfies£(0) = 0 and£(1) = 0, thenVe(VH -sy) =0 at , ). Sincesy(x, ) =0,
it follows that VH - V:(sy) = 0. Since this holds for ang € L12(x*(T(T*N))) such
that £(0) = 0 and&(1) = O, the claim follows.

STEP 5: Let m € Z=,, and lets#™ be an affine space consists Hf € C™(T*N)
such that supp — Hy) C {|p|? < 2b} \ 7 }(D([0, 2b))). s#™ is an affine Banach space
with C™ norm. Consider Banach vector bundig™ x & — 7™ x %, and define a
section of this bundles: (H, x,1) — sy(x,1). Xy is C™ class vector field, hence
s is a C™?! class section. We prove that §(H, x, 1) = 0, then Vs is surjective at
(H, x, 1). If this is not true, there exists € CokerVsy(x, 1), such thatt # 0 and
¢-(IJVh)ox =0 for anyh € 2#™— Hy. By (a) in Step 2, there exists Oty <t; <1
such thatx([to, t1]) C {|p|* < 2b} \ #=X(D([0, 2b])). Moreover, X|(;,«,] is embedding
by (b). If a sectionn of Xx*(T(T*N))lt,t sattisfiesft;l n(t) - X(t) dt = 0 and supp C
(to, t1), there existsh € ™ — Hy such thatn(t) = Vh(x(t)). Hence¢ = aVH o x
on (to, t1) for some constanad. Since¢ and VH o x both vanishes by the differential
operatord; + |A*(t), ¢ = aVH ox on [0, 1]. In particular,¢(0) = aVH(x(0)). Hence
avVH(x(0)) € (TxoD-((0, b)))t. On the other handdH|r,,p_(ok) # 0. Hence we
obtaina = 0, contradicting; # 0.

STEP 6. By Step 4,s7(0) is aC™ ! class Banach submanifold o™ x 4.
Considerm yn: s71(0) — 4™ (H, x,1) = H. This is aC™ ! class Fredholm map of
indexk+1—n <0 (recallk < n—1). Hence by Sard—Smale theorem, the set of regular
value of zm (denote by 7y is of second category iZ’™. Note thatH € JZg; if
and only ifsy: 8 — & is transversal to 0.

STEP 7: For anys$ > 0, let

HB(8) = {(X,I)e%’ =3

x(0) e D_([8,b—35]), s <I < 3},

m
e

5 1= AN\ 7 (Crit(m em) N HB(5)).
Obviously, 7#7gy = (5.0 Hregs- We show thatz;gy s is open insZ”™. If (Hn, Xn,In)n is

a sequence on Crit(»m) N Z(8) and H,), converges to somel,, in s#™, then certain
subsequence ofk{, ) converges to somex{,,l), hence Hu, Xoo, loo) € Crit(m som) N

HB(8). Therefores’™ \ A0, is closed inz7™.

re

SteEP 8: For any§ > (g){s let Hegs 1= %’;;”M N 2 (this does not depend om).
We show that#eqs is open dense set i”. Openness is clear sincﬁﬁrg“glS is open
in 2™ and the inclusion map? — J#™ is continuous.

To show that7eys is dense insZ, first notice that%’;gzhS is dense inZ™ by
Step 6. Hence for anyi € J7, there existsHy, € gy s such thatiH — Hplem <27,
Sincee%”rgéﬁ is open ins#™, there exists B< ¢ < 2~™ such thatc-neighborhood ofHy
with respect tg-|cm is contained in}fjgg,{;. Then, takeH;, € 7 so that|Hn—Hy|cn <
c, then H}, € Hegs and [H — H/ lcm < 2™, hence limyo Hjy = H in JZ. This
shows that/#eg; is dense inz.
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STEP 9. Let Heg:= (5.0 Hregs- “reg IS Of second category i’ by Step 8.
Note thatH € J#q if and only if sy: % — & is transversal to 0. Since virtual dimen-
sion of sgl(O) is1+k—n=<0, sgl(O) is a countable set for anil € %y Therefore
it is enough to show that i§,(0) is countable, ther® (H) is countable.

Let §(H) :={x € S(H) | x is injectivg}, and S;(H) := S (H)\ §(H). §(H)
is countable, since there exists injecti§p(H) — s;*(0) which mapsx: [0,1] — T*N
to [0, 1] = T*N; t — x(tl). Hence it is enough to show th& (H) is countable.
Take x € S/ (H). Sincex is not constant, there exists smallesict < | such that
x(t) = x(0). Then §, 1) € sgl(O) wherey: [0, 1] = T*N; v — x(tr). Moreover, there
are only countably many > 0 such thatx(¢) € N. Hence we obtain mag (H) —
s;1(0), such that preimage of each elementsgt(0) is countable. ThereforeS (H)
is countable. This completes the proof. O

5. Handle attaching

In this section, we prove Lemma 4.10. In Subsection 5.1, wevgra prelimi-
nary lemma on Floer trajectories (Lemma 5.1). In Subsechi@) we give a proof of
Lemma 4.10.

5.1. Lemma on Floer trajectories.

Lemma 5.1. Let (M, w, X, L) be a Liouville quadrupleand A := ixw. Let M"
be a compact submanifold of M such th@™, w|yn, X|mn, L N M) is a Liouville
quadruple. We denote the Reeb vector field and the contartbdison on (3M™, 1)
by Rjn’ %-in.

Let H, H' € s44(M), and (HS)s be a monotone homotopy from H to’ such that
dsH(x) > 0 for any se R, x € M. Let (J5)s: be a family of elements o (M).

Assume that there existsaC*(R) and 0 < v < 1 with the following properties
(1) Hz p) = a(s)(p —v) on M\ MP(v1/?).

(2) Forany seR and te[0,1], J° preserveg™ and F(9,) = p~'R on MM\ M"(v1/2),
Assume that xe €(H), x, € €(H’) satisfy x ([0, 1]), x, ([0, 1]) € M™. Then for any
U € M (ns 39, (X, X1), UR x [0, 1]) € M".

The following proof is based on [1], Section 7.
H™ (s = —%),
H® (s= s).
a(—s0), a(so) ¢ < (OMM, A", 9L"). Hencex_([0, 1]), x4([0, 1]) ¢ M"(»¥/2). We claim
that u(R x [0, 1]) € M"(v¥/?) for any u € .#(s 35, (X_, X ). First notice that for any
p € (W¥21], D, :=Rx[0,1]\u~X(intM™M(p)) is a compact set. If the claim is not true,
there existso € (v/2, 1] such thatD, # @. For generico, U and u|rxo,1y is transverse
to 9M™ x {p}, hence we may assume thet, is a compact surface with boundaries
and corners.

Proof. Takesy > 0 so thatH® = { Since H, H' € %ﬂad(l\?I),
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Let
oD, :=0D,NRx{0,1}, dyD,:=9D, R x (0, 1).

It is easily verified thaisu is not constantly O orD,. This implies

/ |asu|2s ds dt> 0.

»

Sinceu satisfies the Floer equatiolu — J3du — ViH® = 0,
/ |0sul3s + dsH(u(s, t)) ds dt
D/’

= / @(3tu, dsu) + dH3(dsu) + dsH3(u(s, t)) ds dt

1

= / —U*A + HS(u(s, 1)) dt.
4D,
We calculate the last term. First we calculate the integnatin oy D,,:
/ —u*A + H3(U(s, t)) dt = / —u*i =0.
BH D/; BH D/;

The first equality follows fromdt|,,p» = 0, and the second equality follows from
u(ou D,) C L and 5»|,A_ = 0. On the other hand, sinagdyD,) C IM™ x {p}, we get

(s,t) € dvD, = HU(s 1) = a(s)(p —v), A(Xns(u(s 1) = a(s)p.

Therefore

/SVDﬂ —u*h + H(u(s, t))dt:/ A(XHs®dt—du)—v/ a(s) dt.

BV D,, aV Dn

On the other hand, Floer equation is equivalent to
JP o (Xps @ dt —du) = (du— Xps @ dt) o |,

where j is a complex structure oR x [0, 1], defined byj(ds) = 9;. Therefore

/ i(st®dt—du)=—/ A% o (du— Xps @ dt) o j).
avDﬂ aVD/>

A3 0 Xps) = —A(VEHS) = 0 on dM™ x {p}. Moreover, ifV is a vector tangent to
dvD,, and positive with respect to the boundary orientationnti€ points inwards,
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hencedp(jV) > 0. Hencei(.]tS oduo j)(V) > 0. Therefore,
f A(Xps @ dt —du) < 0.
3\/ D,,
Finally,

/ |9su|2s 4+ dsH3(u(s, t)) ds dt < —v[ a(s)dt = —v[ dsa(s, t) ds dt
D, ovD, D

P

SincedsH® > 0 anddsa > O(this follows from (1) anddsH® > 0), this implies

/ |0sul3s ds dt< 0.
D

P

This is a contradiction. O

5.2. Handle attaching. In this subsection, we give a proof of Lemma 4.10. At
first, we need the following lemma, which is easily proved bys¥ics trick.

Lemma 5.2. Let X be a manifold and Y be a submanifold of X. Uado<i<1
be a smooth family of contact forms on X such thay = 0 and di; = diq for any t.
Then for any compact set K in \Ythere exists Va neighborhood of K in Xand
(¥)o<t<1, @ smooth family of embeddings from V to X with the followingpprties
(1) o is the inclusion map V> X.
2 W‘ko = At
@) vy =vny.
(4) Yilvny is the inclusion map VY — X.

Proof. First we show that there exist¥, a neighborhood oK in X, and &),
a family of vector fields oW such thatLgA; + dAr = 0 and& =0 onWN'Y.

Take W, a neighborhood oK in X so that the restriction morphisi (W) —
Hir(W NY) is an isomorphism. Sincedl; = dig for any t, g is a closed form.
Moreover, diAtly = 0 sincei¢|ly = 0 for anyt. Hence §;1;); is a smooth family of
exact one forms oW. Hence there existsf();, a family of C* functions onW such
thatdf, = dA. We may assume thafl; vanishes onY, sinced;A; vanishes onY and
HSR(W) — HO%(W NY) is an isomorphism.

Let R, be the Reeb vector field ofX( A;) and & := — fiR.. Then,& vanishes on
Y and

Lél)‘t = IEI(d)‘-I) + d(|$1)‘-t) = —d f'[ = —Btkt.

Integrating &):, we obtain {);, a family of embeddings from certain neighbor-
hood of K to X. Then, /A = Xo. Finally, if we takeV sufficiently small, ¢ :=
(p)tv can be defined for all &t < 1 and satisfies the condition of the lemma.]
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From now on, we start the proof of Lemma 4.10, and we contiougse notations
introduced in Section 4. For sufficiently smdlb- 0, we define subsets afy'(U), A;,
Aj, Bs, C; by

As =1{(@, ) PP+ 1041? = [g-1* — 2¢ < 5},
Ay ={(@, P) | [pI* + 10+1? = us(ja- %) < 8},
Bs = {(@, p) | IPI* + |4 |* = 0| — 2¢ = 8},
Cs = {(a, p) | [9->—2¢ < [p> + [a+ > < ws(la-1D)} U AL

Recall that we have consideredql(U) as a subset oR?" using coordinate ¢, p).
Hence we consider these sets also as subseof

We have shown in Lemma 4.9 thaDg, wn, Ya, Ds N N) is a Liouville quadruple
for sufficiently smalla. In the following of this paper, we fix such and denote it
by ap.

Take arbitrary smooth functioa on [0, 1] such that@(0) = a; and a(1) = 1/2.
By Lemma 5.2, there exist¥, a neighborhood o in dD_, and @/¢);, a family of
embeddings fronV to dD_ with the following properties:

(1) o is the inclusion mapy — oD_.

(2) ¥{'Aay = Xag). (La denotesiv,wn.)

() ¥, Y(dD_NN)=V NN.

(4) Yt|vnn is the inclusion map/ NN — aD_.

Since (.o Ay = X, Ay C V for sufficiently smalls > 0. If A; CV, (Cs, wst,
Yat), Cs N N) is glued to O_, wn, Ya,, D— N N) by ¥it|c,nap_. As a result, we get a
Liouville quadruple. We denote it byC§ Uy, D_, wy, Z, Ly).

We make two remarks which are clear from constructions:

REMARK 5.3. (1) 9(Cs Uy, D_) = (aD_ \ ¥ (Ay)) U A
(2) For anys, s’ >0, C; Uy, D_ and Cy U,, D_ can be identified naturally.

It is clear from construction thaCs Uy, D_, wo, Zo, Lo) is isomorphic to Ds, wn,
Ya,» Ds N N) as Liouville quadruple. Hence, by Proposition 2.7, to pr&demma 4.10
it is enough to show that

(17) WFH,(Cs Uy, D_, @3, L1) = WFH,(D_, y, D_ N N).

Let ()i be an increasing sequence of positive numbers, such that Jim = oo
anda; ¢ .@7(0D_, s, dD_ N N). Let v € (0, 1), and takeF € {%ﬂad(li) such that:
F-(1): Fy(X) < Fo(x) < --- for any x € D_.

F-(2): Fi(z, p) = ai(p —v) on aD_ x [v'/?, o).

Sincear, = o — 00 asi — oo,

(18) WFH,(D_, wn, D_ N N) = lim WFH,(F).
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Hence to prove (17), it is enough to show

(19) WFHSm(C(g U]/,l D_, w1, Ll) =~ ||m WFHSm(FI)
I —00

for each positive integem. In the following, we fixs and denote it bys,.
Denote the Reeb vector field od[_, A4,) by R.

Lemma 5.4. For any a > 0, there existsé(a) > 0 such that anys € (0, §(«))
satisfies following

Assume that x| — dD_ satisfiesx = R(x), x(d1) C ¥1(Bs) U (dD_ N N),
x(1) N ¢r1(Bs) # 0 and X(1) is not contained imyr1(A;). Then |1 > «.

Proof. Assume the assertion is not true. Then, there exislks— 9D_ such that
y = R(Y), ¥(03) C 5.0 ¥1(A;) U(@D-NN), ¥(3I) N[ 5.0 ¥2(A;) # 0, andy(J) is
not contained imy1(A;) (we useBs C Ay). On the other hand,

() va(A) = m(ﬂ A_a) = Y1(2) = =.
§>0 §>0

In the last equality, we use property (4) ¢f. Hencey(dJ) C aD_ N N, andy(dJ) N
X # 0. SinceX C ¥1(A;), Y is not constant anfl]| > 0. Hencey € ¢’ (3D_,14,dD_N
N). But this contradicts (3) in Lemma 4.8. []

We can take sequence$)( and Gj)i, whered; € R.g andG; € %ﬁd(cm),
such that §); satisfies the following properties:
3-(1): 0<§ < min{éo, 3(0{i)}.
8-(2): 81> 682> -
3-(3): Iimi_,oo 8 = 0.
and G;i); satisfies the following properties:
G-(1): Gilp_ = Filo_-
G-(2): ag, — o0 asi — oo.
G-(3): There exists a sequente< iz < --- such thatG;,(x) < Gj,(x) < --- for any
x € Cy, Uy, D_.
G-(4): By Remark 5.3, there exists an embeddirtP( \ v¥1(Ay)) x [1, o0) —
Cs, Uy, D_, and we identify §D_ \ ¥1(A;)) x [1, 00) with its image. ThenG;(z, p) =
ai(p —v) on @D-\ ¥1(Ay)) x [1, 00).
G-(5): Let W: Cs, U Af x[1, 00) — R*" be the embedding such that|c, is the in-
clusion mapCs, — R?", and 3, ¥(z, p) = p~1Y1,2 on A(;Z x [1, 00). We identify Cs, U
A(;; x [1, 00) with its image via¥ (note that¥*ws = w1). Then, onCs, U A(;z x[1, 00),
G; satisfies the following properties (a)—(c), with respecthe coordinates oiR?":
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() There existmy € C*(Rx), such thatGi(q, p) = gi(|d.+|* + |p1?) if |o-| =
|p_| = 0. Moreover,g/(t) ¢ (w/2)Z for anyt € Rxo.

(b) For 1<j <Kk, 9p,Gi/p; >0 if p; #0, anddy G;/q; < 0 if g; # 0.

(c) There existA; > ((m+ K)7)/2, B > 0 andC; < 0 such that

Gi(@, p)=Gi(O,...,0)+ A(p:+1?+19:+19) + Bi|p-I* + Cila_|?

on some neighborhood of (0, ., 0).

REMARK 5.5. The idea for construction ofX); is as follows: first, we define
G!: Cs, Uy, D_ — R by

RO (xeD),
G/(x) = {ai (1-1) (xeCy),
a(p—v) (x= (2 p)€d(Cs Uy, Do) x[L, ).

Then, Gj); satisfiesG-(1) to (4) though it is not smooth. The idea is to repldgg
with G;, which is smooth and satisfigs-(5), without violating G-(1) to (4). This is
achieved by elementary arguments, but we do not try to spetlidetails.

The properties (a)—(c) iG-(5) look complicated, but they are necessary to show:

Lemma 5.6. If x € €(G;) satisfies [0, 1]) C Cs, U A] x [1, 00), then x is the
constant map td0, ..., 0) andindx > m.

Proof. First we show thax([0, 1]) C {p- = g_ = 0}. Denotex(t) = (q(t), p(t))
and consideE(t) =g _(t)- p_(t). ThendE = Zlijsk dp, Gi - pj —q; Gi -q;. By (b) in
G-(5), for eacht € [0, 1], 9; E(t) > 0 and equality holds if and only ip_(t) = g_(t) =
0. On the other handgE(0) = E(1) = 0 sincex(0), x(1) € {p = 0}. Hencep_(t) =
q-(t) = 0 for anyt € [0, 1]. By (a) in G-(5), X, (@, P) = 25/(|p+|* + [+ |*)(P+3q, —
0+9p,) on {p- = g = 0}. Since Zj(t) ¢ #Z for any t, x must be the constant map
to (0,...,0). By (c) in G-(5), Xg (0, p) = 2Ai (P+9q, —0+9p,) +2Bi p_-dq —2Ciq-9d,
on some neighborhood of (0,., 0). Then, indk > m follows from A > (m+ k)x/2,

B >0andCi < 0. ]

By G-(1), D_ is an invariant set oXg,. Hence%(G;) is divided into two subsets:

7(Gi) = {x e ¢(Gi) | x([0, 1]) c D_},
71(Gi) = {x € €(Gi) | x([0, 1) N D_ = @}.

By G-(1), ¥.(Gj) can be identified withs'(F).

Lemma 5.7. If x € €,(G;), then X[0, 1]) C Cs, U AJ x [1, 00).
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Proof. Assume that there existse [0, 1] such thatx(z) ¢ Cs, U A(;z x (1, 00),
hencex(r) € (0D- \ ¥1(A;,)) x [1, 00). Let | be the largest closed interval which
containst and x(l) C (3D_\ ¥1(A;)) x [1, o). Then|l| > 0, andx(dl) is contained
in (Y1(Bs) U (9D N N)) x [1, 00).

By G-(4), Xg, = «ai-(R,0) on @D_ \ y1(Ay)) x [1, 00). Definey: | — aD_ by
y = m o X, wherer is the projection todD_ \ y1(A;). Theny = i R(y), y(dl) C
Y1(B5) U (0D-NN) and y(7) ¢ ¥1(A;). Sincesi < &(ei), y(dl)Nya(Bs) = 0. Hence
y(@1)caD_NN and | = [0, 1], but this contradicts; ¢ <7 (dD_, Ao,, dD_NN). [

By Lemmas 5.6 and 5.74, (G;) consists only of the constant map to.(0,0) and
its index is larger tham. Hence WFC(G;) is generated by elements @t (G;). On
the other hand, sinc®_(G;) can be identified withg'(F), there is an isomorphism of
Z, modules WFC(F) - WFC1(Gi). By Lemma 5.1, if almost complex structures
(which are used to define differential on WHE;) and WFC(G;)) satisfy assump-
tion (2) in Lemma 5.1 withM™ = D_, this is an isomorphism of chain complexes.
Denote this isomorphism bp;.

Take {x)x as in G-(3), and consider following diagram:

WFCm(Fi,) —— WFC<n(Fi,.,)

¢ikl lq)ik+1

WFC<m(Gj,) —— WFC<i(Gi, ,,)-

Horizontal arrows are monotone morphisms induced by mamottomotopies.

By F-(1) andG-(3), F (x) < Fi,,,(x) for any x D_, and Gi (X) < Gj,,(x) for
any x € Cm Again by Lemma 5.1, if almost complex structures (which are
used to define monotone morphisms) satisfy assumption (Rpinma 5.1 withM™™ =
D_, the above diagram commutes. Taking homology of this dragaad lettingi —

oo, we get (last equality follows fron@-(2))

1im WFH-n(Fi) 2 lim WFH-n(Gi) = WFH<(Cs Uy, D_, w1, L1).
| —00

I —>00

Hence we have proved (19).
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