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Abstract
The objective of this note is to prove an existence result forbrake orbits in clas-

sical Hamiltonian systems (which was first proved by S.V. Bolotin) by using Floer
theory. To this end, we compute an open string analogue of symplectic homology
(so called wrapped Floer homology) of some domains in cotangent bundles, which
appear naturally in the study of classical Hamiltonian systems. The main part of the
computations is to show invariance of wrapped Floer homology under certain handle
attaching to domains.

1. Introduction

First we recall the definition of classical Hamiltonian systems. Let N be a
n-dimensional manifold. Then,T�N carries a symplectic form!N WD

P

1�i�n dpi ^dqi

where (q1, : : : , qn) is a local coordinate inN, and (p1, : : : , pn) is the associated co-
ordinate on fibers.

Assume thatN carries a Riemannian metric. Then, forV 2 C1(T�N), we de-
fine HV 2 C1(T�N) by HV (q, p) D V(q) C jpj2=2. A pair of symplectic manifold
(T�N, !N) and HV 2 C1(T�N) is calledclassical Hamiltonian system. Its Hamilton-
ian vector field XHV is defined byi XHV

!N D �d HV . As is well-known,XHV describes
free motion of a particle onN under potential energy given byV .

The following theorem is first proved by S.V. Bolotin [2].

Theorem 1.1. Let N be a Riemannian manifold, and V2 C1(N). If Sh WD H�1
V (h)

is a compact and regular hypersurface in T�N, then there exists a closed orbit of XHV

on Sh.

When Sh\ N D ;, Theorem 1.1 is easily obtained by the existence of closed geo-
disics on compact Riemannian manifolds, using Maupertuis–Jacobi principle. So diffi-
culty arises whenSh \ N ¤ ;. In this case, Theorem 1.1 is obtained by the following
result ([2]):
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364 K. I RIE

Theorem 1.2. Let N and V are as inTheorem 1.1. If Sh \ N ¤ ;, there exists
a non-trivial orbit of XHV on Sh, which starts from and ends at Sh \ N.

Define I W T�N! T�N by I (q, p)D (q,�p). If xW [0,l ]! Sh satisfiesPx D XHV (x)
and x(0), x(l ) 2 N, then x W [0, 2l ] ! Sh defined by

x(t) D

�

x(t) (0� t � l ),
I (x(2l � t)) (l � t � 2l ),

is a closed orbit ofXHV (closed orbits ofXHV obtained in this way are so-calledbrake
orbits). Hence Theorem 1.2 implies Theorem 1.1.

In this paper, we deduce Theorem 1.2 from computations of certain Floer-theoric
invariant. The invariant we use is an open string analogue ofsymplectic homology,
and often calledwrapped Floer homology. Foundations of wrapped Floer homology
can be found in [1] (they also construct anA1-algebra structure on the chain complex
underlying the homology). Roughly speaking, wrapped Floerhomology is defined for
(M,!, L), where (M,!) is a compact symplectic manifold with contact type boundary,
and L is a Lagrangian of (M,!) (in a precise sense, we need more data and additional
conditions, see Section 2 for details). Let us denote the wrapped Floer homology for
(M, !, L) by WFH

�

(M, !, L).
We explain our main theorem briefly. LetN be a Riemannian manifold, andV 2

C1(N). Assume thatSh D H�1
V (h) is compact. Then, settingDh WD H�1

V ((�1, h]),
(Dh, !N) is a compact symplectic manifold with contact type boundary, and we can
define wrapped Floer homology for (Dh, !N , Dh \ N) (for details, see Section 4). Our
main theorem is Theorem 4.2, which asserts that ifSh \ N ¤ ; and Dh is connected,
then WFH

�

(Dh, !N , Dh \ N) D 0.
Combined with basic results of wrapped Floer homology, Theorem 4.2 implies

Theorem 1.2 (Details are explained in Section 4). Theorem 4.2 is proved as follows.
By “deformation invariance” of wrapped Floer homology (Proposition 2.7), it is easy
to show that WFH

�

(Dh,!N , Dh\N) depends only on diffeomorphism type ofDh\N.
When Dh\N is diffeomorphic to the disk, it is easy to check that WFH

�

(Dh,!N , Dh\

N) D 0. Hence all we have to show is the invariance of WFH
�

(Dh,!N , Dh\N) under
surgery onDh \ N by attaching handles (Lemma 4.10). This is proved by arguments
which are similar to Cieliebak’s arguments in [3], where he proves the invariance of
symplectic homology under subcritical handle attaching.

We explain the structure of this paper. In Section 2, we recall basics of wrapped
Floer homology. We treat somewhat broader class of Hamiltonians than usually con-
sidered in Floer theory for manifolds with boundary, because this is needed to carry
out arguments in Section 5. For this reason, establishingC0 estimate for Floer trajec-
tories becomes harder than usual. The precise statement of the C0 estimate is stated
in Section 2 (Theorem 2.5), and proved in Section 3. The proofgiven in Section 3 is
based on [5]. In Section 4, we explain basics of classical Hamiltonian systems, and
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state the main theorem (Theorem 4.2). We also reduce Theorem4.2 to Lemma 4.10 in
Section 4. Lemma 4.10 is proved in Section 5.

2. Wrapped Floer homology

In this section, we recall basics of wrapped Floer homology,which we will use in
the following of this paper.

2.1. Liouville quadruple. First we define the notion ofLiouville quadruples,
for which we define wrapped Floer homology.

DEFINITION 2.1. Let (M, !) be a 2n dimensional compact symplectic manifold,
X 2 X (M), and L be a Lagrangian ofM. A Liouville quadruple is a quadruple
(M, !, X, L) with the following properties:
(1) L X! D !.
(2) X points strictly outwards on�M.
(3) Xq 2 Tq L for any q 2 L.
(4) L is transverse to�M, and �L D L \ �M.

For a Liouville quadruple (M, !, X, L), let � WD i X!. Then,�jL D 0. (�M, �) is
a contact manifold, and�L is a Legendrean of (�M, �). Recall that theReeb vector
field R on (�M, �) is characterized byi R! D 0, �(R) D 1. Let C (�M, �, �L) be the
set of all Reeb chordsof �L in (�M, �), i.e.

C (�M, �, �L) WD {x W [0, l ] ! �M j l > 0, x(0), x(l ) 2 �L, Px D R(x)}.

For x 2 C (�M, �, �L), let A (x) WD
R l

0 x��. Define theaction spectrumof �L

A (�M, �, �L) WD {A (x) j x 2 C (�M, �, �L)}.

It is easy to verify that infA (�M, �, �L) > 0.
Let OM WD M [ �M � [1,1). We extendX 2 X (M) to OX 2 X ( OM) by OX D ��

�

on �M � [1,1), where� stands for coordinate on [1,1). Moreover, we extend� to
O

� by O� WD �� on �M � [1,1), and! to O! WD dO�. Then, OL WD L [ �L � [1,1) is a
Lagrangian of (OM , O!). We call ( OM , O!, OX, OL) the completionof (M, !, X, L).

Define8 W �M � (0,1)! OM by

8(z, 1)D z, �

�

8(z, �) D ��1
OX(8(z, �)).

Then,8�

O

� D ��. We call Im (8) the cylindrical part of OM , and denote it by Cyl(OM).
We often identify Cyl(OM) with �M � (0,1) via 8. For any� 2 (0,1), we define
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M(�) to be the domain in OM, which is bounded by the hypersurface�M � {�}. I.e.

M(�) WD

�

M [ �M � (1, �] (� � 1),
M n �M � (�, 1] (� < 1).

2.2. Chords and indexes. For H 2 C1( OM), let

C (H ) WD {x W [0, 1]! OM j x(0), x(1) 2 OL, Px D XH (x)},

where XH is the Hamiltonian vector fieldof H , defined byd H D �i XH O!.

For x 2 C (H ) and 0� t � 1, let 8t W Tx(0) OM ! Tx(t) OM be the Poincaré map of

the flow generated byXH . x 2 C (H ) is callednondegenerateif 81 W Tx(0) OM ! Tx(1) OM

satisfies81(Tx(0) OL) \ Tx(1) OL D 0.
For nondegeneratex 2 C (H ), we define its index ind(x). In the following of this

paper, we assume that any Liouville quadruple (M, !, X, L) satisfies

�1(M, L) D �2(M, L) D 0.

This is quite strong assumption, but it is enough to considerthis case for our objective.
ConsiderR2n with coordinate (q1, : : : , qn, p1, : : : , pn) and thestandard symplectic

form !st WD
P

1�i�n dpi ^ dqi . Let L (n) be the space of Lagrangian subspaces of
(R2n, !st). Note that{p D 0} 2 L (n).

Let x 2 C (H ) and assume thatx is nondegenerate. LetDC

WD {z 2 C j jzj �
1, Im z� 0} and takex W DC

!

OM such thatx(ei�� ) D x(�) (0� � � 1) andx(DC

\

R) � OL (suchx exists since�1( OM , OL) D 0). Take arbitrary isomorphism of vector bun-
dles F W x�T OM ! (R2n,!st)�DC over DC, such thatFzW Tx(z) OM ! R

2n preserves sym-

plectic form for anyz 2 DC, and Fz(Tx(z) OL) D {p D 0} for any z 2 DC

\ R. Define

3 W [0, 1]! L (n) by 3(�) WD Fei�� (8
�

(Tx(0) OL)), and let

ind(x) WD
n

2
C �RS(3, {p D 0}),

where�RS is the Robbin–Salamon index introduced in [7]. Note that this definition is
independent of the choice ofx since�2( OM , OL) D 0.

2.3. Hamiltonians. Let K be a compact set inOM which containsM. Then,
H 2 C1( OM) is of contact typeon OM n K , if and only if there exists a smooth positive
function a on �M and b 2 R such that

(z, �) 2 OM n K H) H (z, �) D a(z)� C b.

a and b are uniquely determined byH , and denoted byaH , bH . The set of allH 2
C1( OM) which are of contact type onOM n K is denoted byHK ( OM). H 2 HK ( OM) is
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calledadmissibleif 1 � A (�M,a�1
H �,�L) and all elements ofC (H ) are nondegenerate.

The set of all admissible elements ofHK ( OM) is denoted byHK ,ad( OM). Let H ( OM) WD
S

K HK ( OM) andHad( OM) WD
S

K HK ,ad( OM), whereK runs over all compact sets inOM

which containM. It is easy to verify that ifH 2Had( OM), thenC (H ) is a finite set.
Let H, H 0

2 Had( OM). (H s)s2R, a smooth family of elements ofH ( OM), is called
monotone homotopyfrom H to H 0, if it satisfies the following conditions:
(1) There exists a compact setK such thatH s

2HK (M) for any s.
(2) There existss0 > 0 such that:

(a) H s
D

�

H (s � �s0),
H 0 (s � s0).

(b) For anys 2 (�s0, s0), �saH s(z) > 0 for any z 2 �M.

2.4. Almost complex structures. Let J be an almost complex structure onOM .
J is compatible with O! if and only if

h � , � iJ W T OM � T OM ! RI (v, w) 7! O!(v, Jw)

is a Riemannian metric onOM . We denote the set of almost complex structures onOM
which are compatible withO! by J ( OM , O!). We often abbreviate it asJ ( OM).

For smooth positive functiona on �M, define diffeomorphism

8a W �M � (0,1)! Cyl( OM)I (z, �) 7! (z, a(z)�1
�).

Let �a
WD a�1

� 2 �

1(�M). Then, (8a)�(O�) D ��a. Let �a and Ra be the contact
distribution and the Reeb flow on (�M, �a).

For v 2 T(�M), let

v WD (v, 0) 2 T(�M)� R�
�

D T(�M � (0,1)).

There is a natural decomposition

T(�M � (0,1)) D �a
� RRa

� R�

�

,

where�a
D {v j v 2 �a}.

DEFINITION 2.2. Let K be a compact set inOM which containsM. Then, J 2
J ( OM) is of contact typeon OM n K with respect toa, if 8�

a J satisfies the following:

(1) 8�

a J preserves�a on 8�1
a ( OM n K ).

(2) There existsJ1, an almost complex structure on�a, such thatd� j
�

a Æ 8
�

a Jj
�

a D

J1 Æ d� j
�

a on 8�1
a ( OM n K ). (� denotes the natural projection to�M.)

(3) There existscJ > 0 such that8�

a J(�
�

) D (1=(�cJ))Ra on 8�1
a ( OM n K ).
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We denote the set ofJ 2J ( OM) which are of contact type onOM n K with respect

to a, by Ja,K ( OM). Moreover,Ja( OM) WD
S

K Ja,K ( OM) whereK runs over all compact

sets in OM which containM. Clearly, for two positive functionsa and a0, if a=a0 is a
constant function thenJa,K ( OM) DJa0,K ( OM).

Let J 2 Ja( OM), and J1 be as in (2) in Definition 2.2. Abbreviate the metric
8

�

a(h � , � iJ) on �M � (0,1) by h � , � ia,J . Moreover, define a metrich � , � ia,J,�M on
�M by
• hv, wia,J,�M D (d�a)(v, J1w) on �a,
• hv, Ra

ia,J,�M D 0 for any v 2 �a,

• jRa
ja,J,�M D c1=2

J .
Then, the following properties are verified by simple calculation.

Lemma 2.3. (1) On 8�1
a ( OM n K ), �a, Ra, �

�

are orthogonal to each other with
respect toh � , � ia,J .

(2) For (z, �) 2 8�1
a ( OM n K ) and v 2 T(�M), jv(z, �)ja,J D �

1=2
jvja,J,�M .

(3) For (z, �) 2 8�1
a ( OM n K ), j�

�

(z, �)ja,J D (�cJ)�1=2.

2.5. Floer equation. Let H 2 Had( OM), and (Jt )t2[0,1] be a smooth family of

elements ofJ ( OM). For x
�

, x
C

2 C (H ),

OMH,(Jt )t (x�, x
C

)

WD {u W R � [0, 1]! OM j �su � Jt (�tu � XH (u)) D 0,

u(R � {0, 1}) � OL, u(s)! x
�

(s!�1)}.

OMH,(Jt )t admits a naturalR action. We denote the quotient byMH,(Jt )t .

We also consider cases where Hamiltonians are time-dependent. Let H, H 0

2Had( OM)
and (H s)s2R be a monotone homotopy fromH to H 0. Let (Js

t )s2R,t2[0,1] be a smooth fam-

ily of elements ofJ ( OM). For x
�

2 C (H ) andx
C

2 C (H 0),

OM(H s,Js
t )s,t (x�, x

C

)

WD {u W R � [0, 1]! OM j �su � Js
t (�tu � XH s(u)) D 0,

u(R � {0, 1}) � OL, u(s)! x
�

(s!�1)}.

For x 2 C (H ), we define itsaction by

AH (x) WD
Z 1

0
x� O� � H (x(t)) dt.

The following lemma can be proved by simple calculation.
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Lemma 2.4. For x
�

2 C (H ), x
C

2 C (H 0), and u2 OM(H s,Js
t )s,t (x�, x

C

),

��s(AH s(u(s))) D
Z 1

0
j�su(s, t)j2Js

t
C �sH s(u(s, t)) dt.

In particular, if OM(H s,Js
t )s,t (x�, x

C

) ¤ ;, then AH (x
�

) > AH 0(x
C

).

We sometimes call elements ofOMH,(Jt )t (x�, x
C

) and OM(H s,Js
t )s,t (x�, x

C

) Floer tra-
jectories from x

�

to x
C

. The next theorem asserts the existence ofC0 estimates for
Floer trajectories. This is proved in Section 3.

Theorem 2.5. (1) Let H 2 Had( OM) and (Jt )0�t�1 be a family of elements of

J ( OM). Assume that there exists a compact set K inOM such that Jt 2 JaH ,K ( OM)

for any t. Then, there exists a compact set B� OM such that for any x
�

, x
C

2 C (H )

and u2 OM(H,Jt )t (x�, x
C

), u(R � [0, 1]) � B.

(2) Let H,H 0

2Had( OM) and (H s)s be a monotone homotopy from H to H0. Let (Js
t )s,t

be a family of elements ofJ ( OM) such that for sufficiently large s0 > 0,

Js
t D

�

J�s0
t (s � �s0),

Js0
t (s � s0).

Assume that there exists a compact set K inOM , such that Hs
2 HK ( OM) and Js

t 2

JaHs ,K ( OM) for any s, t . Then, there exists a compact set B� OM, such that for any

x
�

2 C (H ), x
C

2 C (H 0) and u2 OM(H s,Js
t )s,t (x�, x

C

), u(R � [0, 1]) � B.

Finally, we state transversality results.

Lemma 2.6. (1) Let H 2Had( OM), and K be a compact set inOM which contains
M. Assume that H2 HK ( OM) and images of all elements ofC (H ) are contained in
int K. Then, for generic(Jt )t2[0,1], where Jt 2JaH ,K ( OM), MH,(Jt )t (x�,x

C

) is a indx
�

�

ind x
C

� 1 dimensional smooth manifold for any x
�

, x
C

2 C (H ). We denote the set
of such (Jt )t by JH,K ( OM), and JH ( OM) WD

S

K JH,K ( OM), where K runs over all

compact sets in OM with conditions as above.
(2) Let H, H 0

2 Had( OM), (H s)s be a monotone homotopy from H to H0, and K be a
compact set in OM which contains M. Assume that Hs

2 HK ( OM) for any s, and images
of all elements ofC (H ), C (H 0) are contained inint K. Then, for generic(Js

t )s2R,t2[0,1],

where Jst 2JaHs ,K ( OM), OM(H s,Js
t )s,t (x�,x

C

) is a indx
�

� indx
C

dimensional smooth mani-

fold for any x
�

2 C (H ), x
C

2 C (H 0). We denote the set of such(Js
t )s,t by J(H s)s,K ( OM),

andJ(H s)s( OM) WD
S

K J(H s)s,K ( OM), where K runs over all compact sets inOM with con-
ditions as above.
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Proof. First we prove (1). Let (Jt )t be a family of elements ofJaH ,K ( OM). Then, for

any x
�

, x
C

2 C (H ) andu 2 OMH,(Jt )t (x�, x
C

), u�1(int K ) is a non-empty open set inR�
[0, 1], since bothx

�

([0, 1]) andx
C

([0, 1]) are contained in intK . By standard arguments
(see [6]), one can perturb (Jt )t to achieve transversality conditions without violating the
condition Jt 2JaH ,K ( OM). This proves (1). (2) is proved by similar arguments.

2.6. Wrapped Floer homology. In this subsection, we define wrapped Floer
homology for Liouville quadruples. OnceC0 estimate for Floer trajectories is estab-
lished (Theorem 2.5), other arguments are parallel to Lagrangian Floer theory for com-
pact symplectic manifolds ([4]).

Let H 2Had( OM), and k be an integer. Let

Ck(H ) WD {x 2 C (H ) j ind x D k},

and WFCk(H ) be the freeZ2 module generated overCk(H ).
Let (Jt )t 2JH ( OM). For each integerk, define�H,(Jt )t

k W WFCk(H )!WFCk�1(H ) by

�

H,(Jt )t
k [x] WD

X

y2Ck�1(H )

#MH,(Jt )t (x, y) � [y].

Then,
�

WFC
�

(H ), �H,(Jt )t
�

�

is a chain complex, and the resulting homology group
does not depend on choice of (Jt )t . We denote this homology group by WFH

�

(H I
M, !, X, L). We often abbreviate it as WFH

�

(H ).
Let H, H 0

2 Had( OM), and (H s)s be a monotone homotopy fromH to H 0, and

(Js
t )s,t 2J(H s)s( OM). For each integerk, define'

(H s,Js
t )s,t

k W WFCk(H )!WFCk(H 0) by

'

(H s,Js
t )s,t

k [x] WD
X

y2Ck(H 0)

# OM(H s,Js
t )s,t (x, y) � [y].

�

'

(H s,Js
t )s,t

k

�

k is a chain map, hence we can define a morphism WFH
�

(H )!WFH
�

(H 0).

Let H, H 0

2Had( OM). If aH (z) < aH 0 (z) for any z 2 �M, then there exists a mono-
tone homotopy (H s)s from H to H 0, and morphism WFH

�

(H )!WFH
�

(H 0) obtained
as above does not depend on choices of (H s, Js

t )s,t . We call this morphismmono-
tone morphism.

Finally, we define the wrapped Floer homology of (M, !, X, L) by taking dir-
ect limit

WFH
�

(M, !, X, L) WD lim
�!

aH!1

WFH
�

(H ).

One of the important properties of wrapped Floer homology isits invariance under
deformations. The next proposition is proved in Section 3.5.
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Proposition 2.7. Let (M,!s, Xs, L)0�s�1 be a smooth family of Liouville quadruple.
Then there exists a canonical isomorphismWFH

�

(M,!0, X0, L)!WFH
�

(M,!1, X1, L).

If ( M, !, X, L) and (M, !, X0, L) are Liouville quadruples, then (M, !, sXC (1�
s)X0, L)0�s�1 is a smooth family of Liouville quadruples. Hence, by Proposition 2.7,
WFH

�

(M, !, X, L) does not depend onX. We often denote it by WFH
�

(M, !, L).
Next corollary is easily obtained from Proposition 2.7.

Corollary 2.8. Let (M, !, X, L) be a Liouville quadruple, and M0 be a compact
submanifold ofint M, such that(M 0, !jM 0 , XjM 0 , L \ M 0) is also a Liouville quadru-
ple. Assume that there exists H2 C1(M) such that d H(X) > 0 on M n int M 0. Then
WFH

�

(M, !, L) �WFH
�

(M 0, !jM 0 , L \ M 0).

Proof. For anyx 2 M n M 0, an integral curve ofX through x starts from�M 0

and ends at�M. This is because infMnint M 0 d H(X) > 0. Thus there exists a family
(Mt )0�t�1 of submanifolds ofM such that (Mt , !jMt , XjMt , L \ Mt )0�t�1 is a smooth
family of Liouville quadruples andM0 D M 0, M1 D M. Now claim follows from Prop-
osition 2.7.

We show an example of calculation of wrapped Floer homology.ConsiderR2n with
coordinate (q1, : : : ,qn, p1, : : : , pn), and the standard symplectic form!stD

P

1�i�n dpi ^

dqi . Let D2n
WD {(q, p) j jqj2 C jpj2 � 1}, X WD (1=2)

P

1�i�n qi �qi C pi �pi . Then,
(D2n, !st, X, D2n

\ {p D 0}) is a Liouville quadruple.

Proposition 2.9. WFH
�

(D2n, !st, D2n
\ {p D 0}) D 0.

Proof. Let � WD i X!st. Take (an)n, an increasing sequence of positive numbers
such that limn!1

an D1 and an � A (�D2n, �, �D2n
\ {p D 0}) for eachn.

We identify OD2n with R

2n using a flow generated byX, and defineHn 2Had( OD2n)
by Hn(p, q) D an(jpj2C jqj2). Since limn!1

an D1,

WFH
�

(D2n, !st, D2n
\ {p D 0}) D lim

n!1

WFH
�

(Hn).

The only element ofC (Hn) is the constant map to (0,: : : , 0), and its index goes to
1 as n ! 1. Therefore, for anyk, WFHk(Hn) D 0 for sufficiently largen. This
completes the proof.

We conclude this section with a remark on relation between wrapped Floer hom-
ology and Reeb chords. The following theorem can be proved byreduction to the finite
dimensional Morse theory.

Theorem 2.10. Let (M,!, X, L) be a Liouville quadruple. IfC (�M, �, �L) D ;,
then WFH

�

(M, !, X, L) � H
�

(L , �L).
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As a corollary, we get:

Corollary 2.11. Let (M,!,X,L) be a Liouville quadruple. IfWFH
�

(M,!,X,L)D
0, then C (�M, �, �L) ¤ ;.

REMARK 2.12. The Reeb vector fieldR on (�M, �) depends on�, but the char-
acteristic foliationRR on �M depends only on!. Since the characteristic foliation
determines Reeb chords up to reparametrizations, the following assertion makes sense:
if WFH

�

(M, !, L) D 0, thenC (�M, �L) ¤ ;.

3. A C0 estimate

The goal of this section is to prove Theorem 2.5 and Proposition 2.7. Theorem 2.5
is proved in Sections 3.1–3.4. We only prove (2), since proofof (1) is much simpler
than that of (2). In Section 3.1, we reduce Theorem 2.5 to three lemmas. These lemmas
are proved in Sections 3.2–3.4. In Section 3.5, we prove Proposition 2.7. The proof of
Proposition 2.7 is similar to the proof of invariance of symplectic homology under defor-
mations (see, for instance, [8]). The crucial step in the proof of Proposition 2.7 is aC0

estimate for Floer trajectories (Lemma 3.9), and its proof is very similar to the proof of
Theorem 2.5. Hence in Section 3.5, we only mention few pointswhich make difference.

3.1. Reduction of the proof to three lemmas. First, we introduce some abbre-
viations which we will use in the following of this section. We abbreviateaH s by as,
and8as, �as

, �as
, Ras

by 8s, �s, � s, Rs. Moreover, we abbreviateh � , � ias,Js
t

by h � , � is,t ,
h � , � ias,Js

t ,�M by h � , � is,t,�M , and cJs
t

by cs,t (see Section 2.4). Finally, we abbreviate

an almost complex structure (8s)�(Js
t ) on �M � (0,1) by J

s
t .

Take �0 > 0 so large that8s(�M � [�0,1)) � OM n K for any s. Take smooth
function ' W (0,1)! R such that

'

00(�) � 0,

'

0(�) D 1 (� � �0C 1),

'(�) D 0 (� � �0).

Note that'(�) � � � (�0C 1) for any �.
For eachs 2 R, we define's

W

OM ! R by

'

s(x) D

�

'(�) (x D 8s(z, �)),
0 (otherwise).

By definition of �0 and', it is easy to verify that each's is a smooth function onOM ,
and 's

jK � 0.
For x

�

2 C (H ), x
C

2 C (H 0) andu 2M(H s,Js
t )(x�,x

C

), we define�u
W R�[0,1]! R

by �u(s, t) D 's(u(s, t)).
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Lemma 3.1. �t�
u
D 0 on R � {0, 1}.

Proof. If u(s,t) 2 K , then�u
� 0 on some neighborhood of (s,t), hence�t�

u(s,t)D
0. Therefore it is enough to consider the caseu(s, t) � K . Let D WD {(s, t) 2 R � [0, 1] j
u(s, t) � K }. This is an open set inR � [0, 1]. Definev W D ! �M � (0,1) by

v(s, t) WD (8s)
�1(u(s, t))

and zW D ! �M, � W D ! (0,1) by

(z(s, t), �(s, t)) WD v(s, t).

Sinceu satisfies�su � Js
t (�tu � XH s(u)) D 0, by simple calculation we obtain:

(1) �sv � J
s
t �tv � � � (cs,t C �sa

s(z) � as(z)�1)�
�

D 0.

Since�u(s, t) D '(�(s, t)), it is enough to showd�(�tv) D 0. By (1) in Lemma 2.3, it
is equivalent toh�tv, �

�

is,t D 0. By (1), it is enough to check

hJ
s
t �sv, �

�

is,t D 0, hJ
s
t �� , �

�

is,t D 0.

The latter is obvious. Sinceu(R � {0, 1}) � OL, if t 2 {0, 1} then

�sv(s, t) 2 T(�L)� R�
�

� �

s
� R�

�

.

Hence J
s
t �sv 2 �

s
� RRs. ThereforeJ

s
t �sv is orthogonal to�

�

.

The following three lemmas play crucial role in the proof of Theorem 2.5. They
are proved in Sections 3.2–3.4.

Lemma 3.2. For any x
�

2 C (H ) and x
C

2 C (H 0), there exists c0(x
�

, x
C

),
c1(x

�

, x
C

) > 0 such that 1�u
C c0(x

�

, x
C

)�u
C c1(x

�

, x
C

) � 0 for every u 2
M(H s,Js

t )s,t (x�, x
C

).

Lemma 3.3. For any x
�

2 C (H ), x
C

2 C (H 0) andÆ > 0, there exists c(x
�

,x
C

,Æ)>
0 such that: for any u2M(H s,Js

t )s,t (x�, x
C

), there exists a sequence(sk)k2Z with follow-
ing properties:
(1) 0< skC1 � sk < Æ for any k.
(2) supt2[0,1] �

u(sk, t) � c(x
�

, x
C

, Æ) for any k.

Lemma 3.4. Assume that a, b, � � 0 and Æ > 0 are given such thatÆ2
� < �

2.
Then, there exists c(a, b, �, Æ) > 0 such that, if a closed interval I satisfies0< jI j � Æ
and a smooth function� W I � [0, 1]! R satisfies
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(1) �t� D 0 on I � {0, 1},
(2) 1� C �� C a � 0,
(3) sup{�(s, t) j s 2 � I } � b,
then, sup� � c(a, b, �, Æ).

We give a proof of Theorem 2.5 (2) assuming those results. Since C (H ) and
C (H 0) are finite sets, it is enough to show that:

For anyx
�

2 C (H ) andx
C

2 C (H 0), there exists a compact setB(x
�

,x
C

)� OM

such that anyu 2 OM(H s,Js
t )s,t (x�, x

C

) satisfiesu(R � [0, 1]) � B(x
�

, x
C

).

Take Æ > 0 so small thatÆ2c0 < �

2. Then, for anyu 2 OM(H s,Js
t )s,t (x�, x

C

), if we take
(sk)k as in Lemma 3.3,ujI�[sk,skC1] satisfies assumptions of Lemma 3.4 for eachk, with
a D c1, bD c(x

�

, x
C

, Æ), � D c0. (it follows from Lemma 3.1 and Lemma 3.2). Hence
sup�u � c(c1, c(x

�

, x
C

, Æ), c0, Æ). This proves the above claim.

3.2. Proof of Lemma 3.2. Let x
�

2 C (H ) andx
C

2 C (H 0). Our goal is to show

that there existc0, c1 > 0, which are independent ofu 2 OM(H s,Js
t )s,t (x�, x

C

), such that

(2) 1�

u
C c0�

u
C c1 � 0

holds onR � [0, 1]. In the following of this subsection, we fixu and abbreviate�u

by �.
If u(s, t) 2 K , then� � 0 on some neighborhood of (s, t), and (2) holds for any

c0,c1 > 0. Therefore, it is enough to show (2) for (s, t) 2 D (we use notationsD,v,z,�
which are introduced in the proof of Lemma 3.1).

Since�jD D ' Æ �, we get

(3) 1� D '

00(�)((�s�)2
C (�t�)2)C '0(�)1� � '0(�)1�.

Assume for the moment that there existsc2 > 0, which is independent ofu and

(4) 1� C c2� � 0 on D.

Then, combining (3), (4) and'(�) � � � (�0C 1), we get

1� C c2� C c2(�0C 1)� 1� C c2'
0(�)(� C �0C 1)� 1� C c2'

0(�)�

� '

0(�)(1� C c2�) � 0.

I.e. (2) holds forc0 D c2, c1 D c2(�0C 1) on D. Hence our goal is to show the exist-
ence ofc2 > 0 such that (4) holds.
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Applying d� and �s to (1), we get

�s� C cs,t (��
s)(�tv) � � � (cs,t C �sa

s(z) � as(z)�1) D 0,(5)

cs,t (��
s)(�sv) � �t� D 0.(6)

By these two equations, we get

1� D cs,td(��s)(�tv, �sv)C �s� � (cs,t C �sa
s(z) � as(z)�1)

C � � (�s(cs,t C �sa
s(z) � as(z)�1) � cs,t � �s�

s(�t z)C �tcs,t � �
s(�sz)

� �scs,t � �
s(�t z)).

On the other hand, by (1),

d(��s)(�tv, �sv) D j�svj
2
s,t � c�1

s,t � �s� � (cs,t C �sa
s(z) � as(z)�1).

Then, we get

1� D cs,t j�svj
2
s,t C � � (�s(cs,t C �sa

s(z) � as(z)�1)

� cs,t � �s�
s(�t z)C �tcs,t � �

s(�sz) � �scs,t � �
s(�t z)).

For V 2 T(�M�(0,1)), we denote itsT(�M)-part by (V)
�M . On8�1

s ( OM nK ), T(�M)
and �

�

are orthogonal to each other with respect toh � , � is,t . Hencej(V)
�M js,t � jV js,t

for any V . Then, we get (recall Lemma 2.3):

j�szjs,t,�M D �
�1=2
j(�sv)

�M js,t � �
�1=2
j�svjs,t ,

j�t zjs,t,�M D �
�1=2
j(�tv)

�M js,t � �
�1=2
j�tvjs,t

� �

�1=2
j�svjs,t C c�1=2

s,t (cs,t C �sa
s(z) � as(z)�1).

In the last inequality, we use (1) andj�
�

js,t D (�cs,t )�1=2. On the other hand, there
exist constantsc3, c4, c5 > 0, which are independent ofu and satisfy

j�s(�sa
s(z) � as(z)�1)j � c3j�szjs,t,�M C c4, j�s�

s(�t z)j � c5j�t zjs,t,�M .

Hence there exist constantsc6, c7 > 0, which are independent ofu and satisfy

1� � cs,t j�svj
2
s,t � c6�

1=2
j�svjs,t � c7�.

Therefore

1� � cs,t j�svj
2
s,t �

 

cs,t j�svj
2
s,t

2
C

c�1
s,t c2

6�

2

!

� c7� � �

 

c�1
s,t c2

6

2
C c7

!

�.

Hence (4) holds whenc2 �
�

sups,t c�1
s,t � c2

6

�Æ

2 C c7. This completes the proof of
Lemma 3.2.
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3.3. Proof of Lemma 3.3. First note that we may replaceH s with H s
CC(s),

whereC is an arbitrary smooth function ons. This is becauseXH s
� XH s

CC(s) for any

s. Therefore, we may assume thatH s satisfies�sH s(x) � 0 for any s 2 R, x 2 OM .
Let u 2M(H s,Js

t )(x�, x
C

). Recall Lemma 2.4:

�s(AH s(u(s))) D �
Z 1

0
j�su(s, t)j2Js

t
C �sH s(u(s, t)) dt � 0.

In particular,

AH 0 (x
C

) � AH s(u(s)) � AH (x
�

)

for any s. Hence, for any intervalI � R, there existss 2 I such that

jI j �
Z 1

0
j�su(s, t)j2Js

t
C �sH s(u(s, t)) dt � AH (x

�

) �AH 0(x
C

).

Hence, we can conclude:

Lemma 3.5. For any Æ > 0 and u 2 OM(H s,Js
t )(x�, x

C

), there exists a sequence
(sk)k2Z with the following properties:
(1) 0< skC1 � sk < Æ for any k.

(2)
R 1

0 j�su(s, t)j2Js
t
C �sH s(u(s, t)) dt � 2(AH (x

�

) �AH 0(x
C

))=Æ for any k.

Note thatj�sujJs
t
D j�tu�XH s

ÆujJs
t
. Therefore, to prove Lemma 3.3, it is sufficient

to prove the following:

Lemma 3.6. For any c> 0, there exists M(c) > 0 such that: if s 2 R and
x W [0, 1]! OM satisfy x(0), x(1) 2 OL and

Z 1

0
j�t x � XH s(x(t))j2Js

t
C �sH s(x(t)) dt � c,

then sup0�t�1 '
s(x(t)) � M(c).

Proof. If this lemma does not hold, there exist sequences (sk)k and (xk)k such that
Z 1

0
j�t xk � XH sk (xk(t))j2

J
sk
t
C �sH s(sk, xk(t)) dt � c,(7)

lim
k!1

sup
0�t�1

'

sk (xk(t)) D1.(8)

Recall that in the statement of Theorem 2.5, we takes0 > 0 such that

Js
t D

�

J�s0
t (s� �s0),

Js0
t (s� s0).
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By replacings0 if necessary, we may assume thats0 also satisfiesH s
D

�

H (s � �s0),
H 0 (s � s0).

Then, we may assume thatsk 2 [�s0, s0] for all k. Note that (7) implies

Z 1

0
j�t xk � XH sk (xk(t))j2

J
sk
t

dt � c,(9)

Z 1

0
�sH s(sk, xk(t)) dt � c.(10)

First we show that limk!1

inf0�t�1'
sk(xk(t))D1. If this does not hold, by replac-

ing (sk)k and (xk)k to their subsequences, we may assume that supk inf0�t�1'
sk (xk(t)) <

1. Then, for sufficiently largek, there existak, bk 2 [0, 1] such that

sup
k
'

sk (xk(ak)) <1,

lim
k!1

'

sk (xk(bk)) D1,

0� � � 1 H) xk(�ak C (1� �)bk) � OM n K .

Without loss of generality, we may assume thatak � bk. Define yk W [ak, bk] ! �M �
(0,1), zk W [ak, bk] ! �M, �k W [ak, bk] ! (0,1) by

yk(t) WD (8sk )
�1(xk(t)), (zk(t), �k(t)) WD yk(t).

Then
Z bk

ak

j�t xk � XH sk (xk(t))j2
J

sk
t

dt D
Z bk

ak

j�t yk � Rsk (yk(t))j2sk,t dt �
Z bk

ak

j(�t yk)
�

�

j

2
sk,t dt

� inf
s,t

c�1
s,t

Z bk

ak

(�k(t)�1=2
� �t�k)2 dt

� inf
s,t

c�1
s,t � 4(�k(bk)1=2

� �k(ak)1=2)2
� (bk � ak)�1.

Since�k(ak) is bounded and limk!1

�k(bk) D 1, we get

lim
k!1

Z bk

ak

j�t xk � XH sk (xk(t))j2
J

sk
t

dt D1.

This contradicts (9), and we have shown that limk!1

inf0�t�1 '
sk (xk(t)) D 1. In par-

ticular, xk([0, 1]) � OM n K for sufficiently largek. For suchk, define yk W [0, 1] !
�M � (0,1), zk W [0, 1]! �M, �k W [0, 1]! (0,1) by

yk(t) WD (8sk )
�1(xk(t)), (zk(t), �k(t)) WD yk(t).
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Then, by (9) and (10),yk satisfies
Z 1

0
j�t yk � Rsk (yk(t))j2sk,t dt � c,(11)

Z 1

0
�sa

s(sk, zk(t)) � ask (zk(t))�1
� �k(t) dt C �sb(sk) � c.(12)

Since limk!1

inf0�t�1 '
sk (xk(t)) D1, we get limk!1

inf0�t�1 �k(t) D1.
By replacing (xk)k and (sk)k to their subsequences, we may assume that (sk)k con-

verges to somes
1

2 [�s0, s0]. Since

j�t yk � Rsk (yk(t))j2sk,t � j(�t yk � Rsk (yk(t)))
�M j

2
sk,t D j�t zk � Rsk (zk(t))j2sk,t,�M � �k(t),

we get from (11) and limk!1

inf0�t�1 �k(t) D1 that

lim
k!1

Z 1

0
j�t zk � Rsk (zk(t))j2sk,t,�M dt D 0.

Then, by taking limit of certain subsequence of (zk)k, we getz
1

W [0,1]! �M such that

z
1

(0), z
1

(1) 2 �L, �t z1(t) D Rs
1(z

1

(t)).

Therefore 12 A (�M, �s
1 , �L), hences

1

2 (�s0, s0). By the definition of monotone
homotopy, infz2�M �sas(s

1

,z)> 0. Hence, there exists" > 0 such that infz2�M �sas(sk,z)�
" for sufficiently largek. Let A WD sup(s,z)2R��M as(z). Then,

Z 1

0
�sa

s(sk, zk(t)) � ask (zk(t))�1
� �k(t) dt � "A�1

Z 1

0
�k(t) dt

for sufficiently largek. Since limk!1

inf0�t�1 �k(t) D 1, the right hand side of the
above inequality goes to1 as k!1. Hence the left hand side of the above inequal-
ity also goes to1 as k ! 1. This contradicts (12). This completes the proof of
Lemma 3.6.

3.4. Proof of Lemma 3.4. We use the following result, which is exactly the
same as Proposition 8 in [5].

Lemma 3.7. Assume that a, b, � � 0 and Æ > 0 are given such thatÆ2
� < �

2.
Then, there exists C(a, b,�, Æ) > 0 such that, if a closed interval I satisfies0< jI j � Æ
and a smooth function� W I � R=Z! R satisfies

1� C �� C a � 0,

sup{�(s, t) j s 2 � I } � b,

then, sup� � C(a, b, �, Æ).
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REMARK 3.8. For any� > 0, Lemma 3.7 holds if we replaceR=Z with R=�Z

in the statement.

Proof of Lemma 3.4. For any" > 0, there existsÆ > 0 and� W I � [0, 1]! R

such that:

sup
I�[0,1]

j� � �j, sup
I�[0,1]

j1(� � �)j � ",

1� Æ � t � 1 H) �(s, t) D �(s, 1)C �2
t �(s, 1) �

(t � 1)2

2
,

0� t � Æ H) �(s, t) D �(s, 0)C �2
t �(s, 0) �

t2

2
.

Define � W I � R=2Z! R by

�(s, t) D

�

�(s, t) (0� t � 1),
�(s, 2� t) (1� t � 2).

Then,� 2 C1(I � R=2Z). Moreover,� satisfies

1� C �� C (aC (1C �)") � 0, sup{�(s, t) j s 2 � I } � bC ".

Then, if we takeC D C(aC (1C�)", bC ",�, Æ) as in Lemma 3.7, sup� D sup� � C.
Hence sup� � C C ".

3.5. Proof of Proposition 2.7. First, we may assume that (!s, Xs) D (!0, X0)
if s is sufficiently close to 0, and (!s, Xs) D (!1, X1) if s is sufficiently close to 1.
Then, extend (!s, Xs)0�s�1 to (!s, Xs)s2R by

(!s, Xs) D

�

(!0, X0) (s � 0),
(!1, X1) (s � 1).

The crucial step in the proof of Proposition 2.7 is:

Lemma 3.9. Let H, H 0

2 Had( OM) and (H s)s be a monotone homotopy from H
to H0, such that aH s is a constant function on�M for any s (aH s

�W a(s)). Let (Js
t )s,t

be a family of almost complex structures onOM such that

Js
t D

�

J0
t (s � 0),

J1
t (s � 1).

Assume that there exists a compact set M� K � OM , such that Hs
2 HK ( OM), Js

t 2

J1,K ( OM I O!s) for any s and t(here1 denotes the constant function on�M). Then, there
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exist constants c0, c1 > 0, which depend only on(!s, Xs)s and (Js
t )s,t , with following

property: if c0a C c1 � �sa on [0, 1], there exists a compact set B� OM such that

u(R � [0, 1]) � B for any x
�

2 C (H ), x
C

2 C (H 0), u 2 OM(H s,Js
t )(x�, x

C

).

Once Lemma 3.9 is established, we can define a chain map'

(H s,Js
t )s,t

k W WFCk(H I
M, !0, X0, L)!WFCk(H 0

I M, !1, X1, L) by

'

(H s,Js
t )s,t

k [x] D
X

y2Ck(H 0)

# OM(H s,Js
t )(x, y) � [y],

given a monotone homotopy (H s)s which satisfies assumptions in Lemma 3.9. Hence
we get a morphism WFHk(H I M, !0, X0, L) ! WFHk(H 0

I M, !1, X1, L). By taking
direct limit, we obtain a morphism

WFH
�

(M, !0, X0, L)!WFH
�

(M, !1, X1, L).

We can also define a morphism in invert direction, and show that they are inverse to
each other. This completes the proof of Proposition 2.7. Hence all we have to show is
Lemma 3.9.

The proof of Lemma 3.9 is very similar to the proof of Theorem 2.5. First we
take �0 > 1 so thatK � int M(�0), take smooth function' W [1,1)! R such that

'

00(�) � 0,

'

0(�) D 1 (� � �0C 1),

'(�) D 0 (� � �0),

and define�u 2 C1(R � [0, 1]) for u 2 OM(H s,Js
t )(x�, x

C

) by

�u(s, t) D

�

'(�(s, t)) (u(s, t) 2 �M � [�0,1)),
0 (otherwise).

Once we establish properties which correspond to Lemmas 3.1–3.3 for �u, the proof
completes. The first two properties can be proved in completely same way. But to
establish the property which corresponds to Lemma 3.3, we need somewhat different
arguments. In the following, we prove the property which corresponds to Lemma 3.3.
First we spell out what we have to prove.

Lemma 3.10. Let H, H 0, (H s)s and (Js
t )s,t are as in Lemma 3.9. Then, there

exist constants c0, c1 > 0, which depend only on(!s, Xs)s and (Js
t )s,t , with the follow-

ing property:
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Assume c0a(s)Cc1 � a0(s) for s 2 [0, 1]. Then, for any x
�

2 C (H ), x
C

2 C (H 0)

and Æ > 0, there exists c(x
�

, x
C

, Æ) > 0 such that for any u2 OM(H s,Js
t )(x�, x

C

),
there exists a sequence(sk)k2Z with:

(1) 0< skC1 � sk < Æ for any k.
(2) sup0�t�1 �u(sk, t) � c(x

�

, x
C

, Æ) for any k.

Proof. At first, by same arguments as what we have done in the beginning of
Section 3.3, we may assume that�sH s(x) � 0 for any x 2 OM and s 2 R.

Let O�s
WD i

OXs O!
s. By simple calculation, we get

(13) ��s(AH s(u(s))) D
Z 1

0
j�su(s, t)j2Js

t
C �sH s(u(s, t)) � �sO�

s(�tu(s, t)) dt.

Existence of the third term in integrand requires more arguments than proof of Lemma 3.3.
In the following, we prove that: there existsc0, c1 > 0 such that, ifc0aC c1 � �sa holds
on [0, 1], then there existsc2 > 0 (which may depend on (H s)s) such that

(14)
j�su(s, t)j2Js

t
C �sH s(u(s, t)) � �sO�

s(�tu(s, t))C c2

�

1

2
(j�su(s, t)j2Js

t
C �sH s(u(s, t))).

Once this is established, Lemma 3.10 is proved by same arguments as proof of Lemma 3.3.
Since K is compact, to prove (14) it is enough to show that there exists c3 > 0

such that

(15)
u(s, t) 2 OM n K H) j�s O�

s(�tu(s, t))j

� c3C
1

2
(j�su(s, t)j2Js

t
C �sH s(u(s, t))).

First notice that, sinceJs
t 2J1,K ( OM I O!s, OXs), h � , � iJs

t
satisfies the following properties

(see Lemma 2.3):
(1) On OM n K , a natural decompositionT OM D T(�M)�R�

�

is an orthogonal decom-
position with respect toh � , � iJs

t
.

(2) There exists a metrich � , � iJs
t ,�M on �M such thatjv(z, �)jJs

t
D �

1=2
jv(z)jJs

t ,�M for

any v 2 T(�M) and (z, �) 2 OM n K .
(3) There existscs,t such thatj�

�

(z, �)jJs
t
D (�cs,t )�1=2 on OM n K .

We return to the proof of (15). SinceOM nK � �M� [1,1), we can writeu(s, t)D
(z(s, t), �(s, t)). Let c4 WD supz,s,t j�s�

s(z)jJs
t ,�M . Then,

j�s O�
s(�tu)j D �(s, t)j�s�

s(�t z)j � c4�(s, t)j�t zjJs
t ,�M � c4�(s, t)1=2

j�tujJs
t
.
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Since j�tujJs
t
� j�sujJs

t
C jr

s
t H s
jJs

t
and jrH s(z, �)jJs

t
� sups,t cs,t � a(s)�1=2, There exist

c5, c6 > 0 such that

j�s O�
s(�tu)j �

1

2
j�suj

2
Js

t
C (c5a(s)C c6)�(s, t).

On the other hand,�sH s(z, �) D �sa � � C �sb on OM n K . Hence, if 2c5aC 2c6 � �sa
and 0� 2c3 C �sb on [0, 1], (15) holds fors 2 [0, 1]. When s � [0, 1], the left hand
side of (15) is zero. Hence, ifc3C inf �sb� 0, (15) holds fors � [0, 1]. This completes
the proof of Lemma 3.10.

4. Classical Hamiltonian systems

First we recall notations which are introduced in Section 1.Let N be an-dimensional
manifold. Then,T�N carries a natural symplectic form!N WD

P

1�i�n dpi ^ dqi .
Assume thatN carries a Riemannian metric. Then, forV 2 C1(N), we define

HV 2 C1(T�N) by HV (q, p) D V(q)C jpj2=2. Note that Crit(HV ) D Crit(V).
For � 2 X(N), We defineF

�

2 C1(T�N) and Q� 2 X(T�N) by F
�

(q, p) WD p(�q)

and Q� WD XF
�

. Then, L
Q

�

! D 0 and Q�(q,0) D �q. For a 2 R, define Ya 2 X(T�N) by

Ya WD Er C aerV , whereEr WD
P

1�i�n pi �pi .

Lemma 4.1. Let K be a compact set in T�N such that K\Crit(V) D ;. Then,
d HV (Ya) > 0 on K for sufficiently small a> 0.

Proof. SinceerV(q, 0)D rV(q) and K \Crit(V) D ;, d HV (erV) > 0 on K \ N.
Let K0 be a subset ofK defined byd HV (erV) � 0. SinceK0 is compact and disjoint

from N, m WD minK0jpj
2 is positive. TakeM > 0 so thatM > maxK0 �d HV (erV), and

take 0< a < m=M. Then, d HV (Ya) > m� aM > 0 on K0. On the other hand, since
d HV (erV) > 0 andd HV (Er ) � 0 on K nK0, d HV (Ya) > 0 on K nK0 for any a > 0.

As in Section 1, we abbreviateH�1
V ((�1, h]) by Dh, and H�1

V (h) by Sh. If h is
a regular value ofHV and Sh is compact, then (Dh, !N , Ya, Dh \ N) is a Liouville
quadruple for sufficiently smalla > 0. This is verified by applying Lemma 4.1 for
K D Sh. The main result of this paper is the following:

Theorem 4.2. Let N be a Riemannian manifold, and V 2 C1(N). Assume that
h is a regular value of V, and Sh is compact. If Sh \ N ¤ ; and Dh is connected,
then WFH

�

(Dh, !N , Dh \ N) D 0.

By Remark 2.12, Theorem 4.2 implies:

Corollary 4.3. Let N and V are as inTheorem 4.2. Then, C (Sh, Sh \ N) ¤ ;.
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Since elements ofC (Sh, Sh \ N) correspond to orbits ofXHV on Sh which start
from and end atSh \ N, Corollary 4.3 implies Theorem 1.2.

In the remainder of this section, we reduce Theorem 4.2 to Lemma 4.10. First, we
prove the following lemma:

Lemma 4.4. WFH
�

(Dh, !N , Dh \ N) depends only on diffeomorphism type of
Dh \ N.

Proof. Let K WD Dh\N and K WD K[�K �[0,1]. Take any Riemannian metricg
on K and W 2 C1(K ) so that 0 is a regular value ofW and K DW�1((�1, 0]). For
such (g,W), defineHg,W 2 C1(T�K ) by Hg,W(q, p)D jpj2g=2CW(q), and letDg,W WD

H�1
g,W((�1, 0]). For a 2 R, let Yg,W,a WD Er C aArgW. Then, (Dg,W, !K , Yg,W,a, K ) is a

Liouville quadruple for sufficiently smalla > 0.
We claim that WFH

�

(Dg,W,!K , K ) does not depend on choice ofg andW. In par-
ticular, WFH

�

(Dg,W,!K , K ) depends only on diffeomorphism type ofK . This is proved
as follows. Take two choices (g0, W0) and (g1, W1). Let gt WD tg1C (1� t)g0 andWt WD

tW1C (1� t)W0. Then, when we takea > 0 sufficiently small, (Dgt ,Wt ,!K ,Ygt ,Wt ,a, K ) is
a smooth family of Liouville quadruples. Then, the claim follows from Proposition 2.7.

Extend the inclusion mapi W K ! N to an embeddingi W K ! N. Let g be the
pullback of the Riemannian metric onN by i , andW WD V Æ i �h. Then, (Dh,!N , Dh\

N) in Theorem 4.2 can be identified with (Dg,W, !K , K ). So, the above claim proves
the lemma.

We return to the proof of Theorem 4.2. We may assumehD 0, and by Lemma 4.4,
we may assume thatV is Morse. Then, Crit(V)\V�1((�1,0]) consists of finitely many
points. We denote it by{P1, : : : , Pl }. Moreover, we may assume the following.
(1) V(P1) < � � � < V(Pl ) < 0.
(2) 1� ind Pm � n� 1 for 2� m� l and indP1 D 0.
Note that we can eliminate critical points of indexn, since Dh \ N is connected and
its boundary is non-empty.

If h 2 (V(P1), V(P2)), Dh \ N is diffeomorphic toDn. Hence, by Lemma 4.4 and
Proposition 2.9, WFH

�

(Dh, !N , Dh \ N) D 0.
By Lemma 4.4, if [h,h0] contains no critical value ofV , then WFH

�

(Dh,!N , Dh\

N) �WFH
�

(Dh0 ,!N , Dh0 \ N). Therefore, if we prove the following Theorem 4.5, we
can prove Theorem 4.2 by applying Theorem 4.5 to each critical points P2, : : : , Pm.

Theorem 4.5. Let N be a n-dimensional Riemannian manifold, V be a Morse
function on N, and P2 Crit(V) with 1� ind P � n� 1. Assume that there exists" > 0
such thatCrit(V) \ V�1([V(P) � ", V(P)C "]) D {P}, and DV (P)C" is compact. Then,

WFH
�

(DV (P)�", !N , DV (P)�" \ N) �WFH
�

(DV (P)C", !N , DV(P)C" \ N).
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In the remainder of this section, we reduce Theorem 4.5 to Lemma 4.10. By
Morse lemma, there exists a coordinate neighborhoodU around P and local chart
(q1, : : : , qn) on U such thatP corresponds to (0,: : : , 0) and

V(q) D V(P)C
�(q2

1 C � � � C q2
k )C (q2

kC1C � � � C q2
n)

2
.

Here k D ind P. Denote by�N the natural projectionT�N ! N. In the following of
this paper, we often consider��1

N (U ) as a subset ofR2n using the coordinate (q, p).
We introduce some notations which we use in the following of this paper. First,

we abbreviate (q1, : : : , qn) by q, (p1, : : : , pn) by p, and (p1, : : : , pk), (pkC1, : : : , pn),
(q1, : : : , qk), (qkC1, : : : , qn) by p

�

, p
C

, q
�

, q
C

. Moreover, we set

D([a, b]) WD {(q, p) j p D 0, a � jqj2 � b},

D
�

([a, b]) WD {(q, p) j p D 0, q
C

D 0, a � jq
�

j

2
� b}.

D((a, b]) etc. are defined in the same manner.
By Lemma 4.4, we may assume that Riemannian metric onU is

P

1�i�n dq2
i .

Take b > 0 sufficiently small so thatD([0, 2b]) � U and Crit(V) \ V�1([V(P) � b,
V(P)C b]) D {P}.

Lemma 4.6. For sufficiently small a> 0, d HV (Ya) > 0 on H�1
V ([V(P) � b,

V(P)C b]) n {P}.

Proof. On��1
N (U ), we can write explicitly:

HV (q, p) D
jpj2 � jq

�

j

2
C jq

C

j

2

2
, d HV (q, p) D pdp� q

�

dq
�

C q
C

dq
C

,

Ya(q, p) D �aq
�

�q
�

C (1C a)p
�

�p
�

C aq
C

�q
C

C (1� a)p
C

�p
C

.

Then,

d HV (Ya) D (1� a)jp
C

j

2
C (1C a)jp

�

j

2
C ajqj2.

Hence if a 2 (0, 1), d HV (Ya) > 0 on ��1
N (U ) n {P}. Therefore, to prove the claim, it is

enough to show thatd HV (Ya) > 0 on H�1
V ([V(P) � b, V(P)C b]) n ��1

N (U ) for suffi-
ciently smalla > 0. This follows from Lemma 4.1, sinceH�1

V ([V(P)�b, V(P)Cb]) n
�

�1
N (U ) is compact and disjoint from Crit(V).

For H 2 C1(T�N), let S(H ) be the set ofxW I ! T�N with jI j > 0, Px D XH (x),
x(� I ) � N and x(� I ) \ D

�

((0, b)) ¤ ;.
We will show that for genericH , which is obtained by perturbingHV , S(H ) is

a countable set. To put it more rigorously, we first explain the setting for perturb-
ation. LetH be an affine space consists ofH 2 C1(T�N) such that supp(H � HV ) �
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{jpj2 � 2b} n ��1
N (D([0, 2b))). We equipH with usualC1 topology, i.e. the topology

induced by distance

dC1(H, H 0) WD
1

X

mD0

2�m jH � H 0

jCm

1C jH � H 0

jCm
.

Then, the following lemma holds. The proof is postponed until the end of this section.

Lemma 4.7. There existsH 0

� H , such thatH 0 is of second category inH
and S(H ) is a countable set for any H2H 0.

Takea > 0 sufficiently small so thatd HV (Ya) > 0 on H�1
V ([V(P)�b, V(P)Cb]) n

{P}. Then, there existsc > 0 such that if H 2 HU satisfiesdC1(H, HV ) � c, then
d H(Ya) > 0 on H�1([V(P) � b, V(P)C b]) n {P}.

By Lemma 4.7, there existsH 2HU such thatdC1(H,HV ) � c and S(H ) is count-
able. Moreover, there exists" 2 (0,b=2) such thatH (x) ¤ V(P)� " for any x 2 S(H ),
since S(H ) is a countable set.

Let D
�

WD H�1((�1, V(P)� "]), and

6 WD �D
�

\ D
�

((0, b)) D {(q, p) j p D q
C

D 0, jq
�

j

2
D 2"}.

We summarize their properties:

Lemma 4.8. (1) (D
�

, !N , Ya, D
�

\ N) are Liouville quadruples.
(2) WFH

�

(D
�

, !N , D
�

\ N) �WFH
�

(DV (P)�", !N , DV (P)�" \ N).
(3) For any xW I ! �D

�

in C (�D
�

, �D
�

\ N), x(� I ) \6 D ;.

Proof. Sinced H(Ya) > 0 on H�1([V(P)�b,V(P)Cb]) n{P}, Ya points outwards
on �D

�

. This proves (1). To prove (2), for 0� t � 1 define

H t
WD (1� t)H C t HV , Dt

�

WD (H t )�1((�1, V(P)� "]).

Since H t
2 HU and dC1(H, Ht ) � c, (Dt

�

, !N , Ya, Dt
�

\ N)0�t�1 is a smooth fam-
ily of Liouville quadruples. Hence (2) follows from Proposition 2.7. Finally we prove
(3). If there existsx W I ! �D

�

in C (�D
�

, �D
�

\ N) such thatx(� I ) \ 6 ¤ ;, by
reparametrizingx we get an element ofS(H ). This contradicts the choice of".

By (1) and (2) in Lemma 4.8, to prove Theorem 4.5 it is enough toshow

(16) WFH
�

(D
C

, !N , D
C

\ N) �WFH
�

(D
�

, !N , D
�

\ N).

Take� 2 C1(R) such that
(1) �0(t) � 0.
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(2) �(t) D

�

0 (t � 0),
t � 1=2 (t � 1).

For Æ > 0, define�
Æ

2 C1(R) by �
Æ

(t) D Æ=2C Æ � �((t � 2")=Æ), and let

D
Æ

WD D
�

[ {(q, p) j jq
�

j

2
� 2" � jq

C

j

2
C jpj2 � �

Æ

(jq
�

j

2)}.

Then, D
�

� D
Æ

� D
C

for sufficiently smallÆ > 0.

Lemma 4.9. For sufficiently small a> 0, (D
Æ

, !N , Ya, D
Æ

\ N) is a Liouville
quadruple. Moreover, WFH

�

(D
Æ

, !N , D
Æ

\ N) �WFH
�

(D
C

, !N , D
C

\ N).

Proof. To prove the first assertion, it is enough to show thatYa points strictly
outwards on�D

Æ

. On ��1
N (U ),

Ya(q, p) D �aq
�

�q
�

C (1C a)p
�

�p
�

C aq
C

�q
C

C (1� a)p
C

�p
C

.

If a 2 (0, 1), then�a < 0 and 1Ca, a, 1�a > 0. ThereforeYa points strictly outwards
on �D

Æ

\ �

�1
N (U ), since�0

Æ

(t) � 0. On the other hand, since�D
Æ

n �

�1
N (U ) D �D

�

n

�

�1
N (U ), Ya points outwards on�D

Æ

n �

�1
N (U ) for sufficiently smalla > 0.

The latter assertion follows from Corollary 2.8, sinced H(Ya) > 0 on D
C

n D
Æ

for
sufficiently smalla > 0.

By Lemma 4.9, (16) is reduced to:

Lemma 4.10. WFH
�

(D
�

, !N , D
�

\ N) �WFH
�

(D
Æ

, !N , D
Æ

\ N).

Lemma 4.10 is proved in the next section. In the remainder of this section, we
prove Lemma 4.7.

Proof of Lemma 4.7. DefineS�(H ) and SC(H ) by

S�(H ) D {x W [0, l ] ! T�N j l > 0, Px D XH (x), x(0) 2 D
�

((0, b)), x(l ) 2 N},

SC(H ) D {x W [0, l ] ! T�N j l > 0, Px D XH (x), x(0) 2 N, x(l ) 2 D
�

((0, b))}.

In the following, we prove that there existsH �

� H which is of second category
in H and for any H 2 H �, S�(H ) is countable. By parallel arguments, we can
also show that there existsH C

�H which is of second category inH and for any
H 2H C, SC(H ) is countable. Then,H 0

WDH �

\H C satisfies the requirements of
Lemma 4.7.

In the following, we prove that there existsH � as above. The proof consists of
9 steps.

STEP 1: By definition of H , any H 2H satisfiesH � HV on ��1
N (D([0, 2b])).

Hence, following (1), (2) holds for anyH 2H .
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(1) If x W [0, t ] ! �

�1
N (D([0, 2b])) satisfiest > 0, Px D XH (x) and x(0) 2 D

�

((0, 2b]),
then x(t) � N.
(2) There existsc > 0, which is independent ofH and such that: ifx W R ! T�N
satisfies Px D XH (x) and x(0) 2 D

�

([0, b]) then x([0, c]) � ��1
N (D([0, 2b])).

STEP 2: Let B be the set of (l ,x) wherel > 0 andx 2 L1,2([0,1],T�N), such that:
(1) x(0) 2 D

�

((0, b)), x(1) 2 N.
(2) If 1=2� t � 1� c=l , then x(t) ¤ x(0).
It is easily verified thatB is a Banach submanifold of (0,1)� L1,2([0, 1], T�N). Let
E be a Banach vector bundle overB defined byE(x,l ) D L2(x�T(T�N)). For H 2H ,
define sH 2 0(E ) by sH (x, l ) D Px(t) � l � XH (x(t)). If sH (x, l ) D 0, then x satisfies
following conditions:
(a) x([0, 1])\ {jpj2 < 2b} n ��1

N (D([0, 2b])) ¤ ;.
(b) xj[0,1) is injective.
By (1) in step 1 andx(1) 2 N, x([0, 1]) is not contained in��1

N (D([0, 2b])). Moreover,
if x(t) D (q(t), p(t)) 2 ��1

N (D([0, 2b])),

jp(t)j2 D 2(H (x(t)) � V(q(t))) D 2(V(q(0))� V(q(t))) � 2b� jq(0)j2.

(a) follows form this at once.
To prove (b), first notice that if there exists 1� c=l < t < 1 with x(t) D x(0), then

x(1) � N by (1), (2) in Step 1. Hencex(t) ¤ x(0) for 1� c=l < t < 1. Hence, ifxj[0,1)

is not injective, there exists largest 0< t < 1 such thatx(t) D x(0), and t � 1� c=l .
Moreover, if t < 1=2, then x(2t) D x(0) but this contradicts maximality oft . Hence
1=2� t � 1� c=l , but this contradicts (2) in definition ofB.

STEP 3: Take any almost complex structureJ on T�N, which is compatible with
!N . J induces the associated metric and its Levi-Civita connection on T�N, and also
on E ! B. Then, (rsH )(x,l ) W T(x,l )B ! E(x,l ) is a Fredholm operator. In particular,
CokerrsH D (Im rsH )? � E(x,l ) is finite dimensional. Note that the index of this op-
erator is

dim D
�

((0, b))C dim N C 1� dim T�N D kC 1� n.

Let � 2 CokerrsH , i.e. � is orthogonal to

r

�

(sH ) D �t� � l (r
�

J � rH C J � r
�

(rH )) DW �t� � l A(t) � � (t),

for any � 2 L1,2(x�(T(T�N))) with � (0) 2 Tx(0)D�

((0,b)) and � (1) 2 Tx(1)N. Hence we
obtain (A�(t) is the adjoint operator ofA(t)):

(�t C l A�(t))� (t) D 0, � (0) 2 (Tx(0)D�

((0, b)))?, � (1) 2 (Tx(1)N)?.

STEP 4: We claim that ifsH (x, l ) D 0, then (�t C l A�(t))(rH Æ x) D 0. This is
verified as follows. If (y, l ) 2B satisfiesy(0)D x(0) and y(1)D x(1), then (rH Æ y) �
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sH (y, l ) D H (y(1))� H (y(0)) D (rH Æ x) � sH (x, l ). Hence, if � 2 L1,2(x�(T(T�N)))
satisfies� (0) D 0 and � (1) D 0, thenr

�

(rH � sH ) D 0 at (x, l ). SincesH (x, l ) D 0,
it follows that rH � r

�

(sH ) D 0. Since this holds for any� 2 L1,2(x�(T(T�N))) such
that � (0)D 0 and� (1)D 0, the claim follows.

STEP 5: Let m 2 Z
�2, and letH m be an affine space consists ofH 2 Cm(T�N)

such that supp(H�HV ) � {jpj2 � 2b}n��1
N (D([0,2b))). H m is an affine Banach space

with Cm norm. Consider Banach vector bundleH m
� E ! H m

� B, and define a
section of this bundlesW (H, x, l ) 7! sH (x, l ). XH is Cm�1 class vector field, hence
s is a Cm�1 class section. We prove that ifs(H, x, l ) D 0, thenrs is surjective at
(H, x, l ). If this is not true, there exists� 2 CokerrsH (x, l ), such that� ¤ 0 and
� � (Jrh) Æ x D 0 for any h 2H m

� HV . By (a) in Step 2, there exists 0< t0 < t1 < 1
such thatx([t0, t1]) � {jpj2 < 2b} n ��1(D([0, 2b])). Moreover, xj[t0,t1] is embedding
by (b). If a section� of x�(T(T�N))j[t0,t1] satisfies

R t1
t0
�(t) � Px(t) dt D 0 and supp� �

(t0, t1), there existsh 2 H m
� HV such that�(t) D rh(x(t)). Hence� D arH Æ x

on (t0, t1) for some constanta. Since� andrH Æ x both vanishes by the differential
operator�t C l A�(t), � D arH Æ x on [0, 1]. In particular,� (0)D arH (x(0)). Hence
arH (x(0)) 2 (Tx(0)D�

((0, b)))?. On the other hand,d HjTx(0)D�

((0,b)) ¤ 0. Hence we
obtain a D 0, contradicting� ¤ 0.

STEP 6: By Step 4,s�1(0) is a Cm�1 class Banach submanifold ofH m
� B.

Consider�H m
W s�1(0)!H m

I (H, x, l ) 7! H . This is aCm�1 class Fredholm map of
index kC1�n � 0 (recallk � n�1). Hence by Sard–Smale theorem, the set of regular
value of �H m (denote byH m

reg) is of second category inH m. Note thatH 2H m
reg if

and only if sH W B ! E is transversal to 0.
STEP 7: For anyÆ > 0, let

B(Æ) WD

�

(x, l ) 2 B x(0) 2 D
�

([Æ, b� Æ]), Æ � l �
1

Æ

�

,

H m
reg,Æ WDH m

n �H m(Crit(�H m) \B(Æ)).

Obviously,H m
regD

T

Æ>0 H m
reg,Æ. We show thatH m

reg,Æ is open inH m. If ( Hn, xn, ln)n is
a sequence on Crit(�H m)\B(Æ) and (Hn)n converges to someH

1

in H m, then certain
subsequence of (xn, ln) converges to some (x

1

, l
1

), hence (H
1

, x
1

, l
1

) 2 Crit(�H m)\
B(Æ). ThereforeH m

nH m
reg,Æ is closed inH m.

STEP 8: For anyÆ > 0, let Hreg,Æ WD H m
reg,Æ \H (this does not depend onm).

We show thatHreg,Æ is open dense set inH . Openness is clear sinceH m
reg,Æ is open

in H m and the inclusion mapH !H m is continuous.
To show thatHreg,Æ is dense inH , first notice thatH m

reg,Æ is dense inH m by
Step 6. Hence for anyH 2H , there existsHm 2H m

reg,Æ such thatjH � HmjCm
� 2�m.

SinceH m
reg,Æ is open inH m, there exists 0< c< 2�m such thatc-neighborhood ofHk

with respect toj�jCm is contained inH m
reg,Æ. Then, takeH 0

m 2H so thatjHm�H 0

mjCm
<

c, then H 0

m 2 Hreg,Æ and jH � H 0

mjCm
< 21�m, hence limm!1

H 0

m D H in H . This
shows thatHreg,Æ is dense inH .
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STEP 9: Let Hreg WD
T

Æ>0 Hreg,Æ. Hreg is of second category inH by Step 8.
Note thatH 2Hreg if and only if sH W B! E is transversal to 0. Since virtual dimen-
sion of s�1

H (0) is 1C k� n � 0, s�1
H (0) is a countable set for anyH 2Hreg. Therefore

it is enough to show that ifs�1
H (0) is countable, thenS�(H ) is countable.

Let S�0 (H ) WD {x 2 S�(H ) j x is injective}, and S�1 (H ) WD S�(H ) n S�0 (H ). S�0 (H )
is countable, since there exists injectionS�0 (H )! s�1

H (0) which mapsx W [0, l ]! T�N
to [0, 1]! T�N; t 7! x(tl ). Hence it is enough to show thatS�1 (H ) is countable.
Take x 2 S�1 (H ). Since x is not constant, there exists smallest 0< t < l such that
x(t) D x(0). Then (y, t) 2 s�1

H (0) wherey W [0, 1]! T�N; � 7! x(t� ). Moreover, there
are only countably many� > 0 such thatx(�) 2 N. Hence we obtain mapS�1 (H )!
s�1

H (0), such that preimage of each element ofs�1
H (0) is countable. Therefore,S�1 (H )

is countable. This completes the proof.

5. Handle attaching

In this section, we prove Lemma 4.10. In Subsection 5.1, we prove a prelimi-
nary lemma on Floer trajectories (Lemma 5.1). In Subsection5.2, we give a proof of
Lemma 4.10.

5.1. Lemma on Floer trajectories.

Lemma 5.1. Let (M, !, X, L) be a Liouville quadruple, and � WD i X!. Let Min

be a compact submanifold of M such that(M in, !jM in , XjM in , L \ M in) is a Liouville
quadruple. We denote the Reeb vector field and the contact distribution on (�M in, �)
by Rin, � in.

Let H, H 0

2Had( OM), and (H s)s be a monotone homotopy from H to H0 such that
�sH (x) � 0 for any s2 R, x 2 OM. Let (Js

t )s,t be a family of elements ofJ ( OM).
Assume that there exists a2 C1(R) and 0< � < 1 with the following properties:

(1) H s(z, �) D a(s)(� � �) on Min
n M in(�1=2).

(2) For any s2R and t2 [0,1], Js
t preserves� in and Js

t (�
�

)D ��1Rin on Min
nM in(�1=2).

Assume that x
�

2 C (H ), x
C

2 C (H 0) satisfy x
�

([0, 1]), x
C

([0, 1])� M in. Then, for any

u 2 OM(H s,Js
t )s,t (x�, x

C

), u(R � [0, 1]) � M in.

The following proof is based on [1], Section 7.

Proof. Takes0 > 0 so that H s
D

�

H�s0 (s � �s0),
H s0 (s � s0).

Since H, H 0

2 Had( OM),

a(�s0), a(s0) � A (�M in, �in, �L in). Hencex
�

([0, 1]), x
C

([0, 1]) � M in(�1=2). We claim

that u(R � [0, 1]) � M in(�1=2) for any u 2 OM(H s,Js
t )s,t (x�, x

C

). First notice that for any
� 2 (�1=2,1], D

�

WD R� [0,1]nu�1(int M in(�)) is a compact set. If the claim is not true,
there exists� 2 (�1=2, 1] such thatD

�

¤ ;. For generic�, u and uj
R�{0,1} is transverse

to �M in
� {�}, hence we may assume thatD

�

is a compact surface with boundaries
and corners.
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Let

�H D
�

WD �D
�

\ R � {0, 1}, �V D
�

WD �D
�

\ R � (0, 1).

It is easily verified that�su is not constantly 0 onD
�

. This implies

Z

D
�

j�suj
2
Js

t
ds dt> 0.

Sinceu satisfies the Floer equation�su � Js
t �tu � rs

t H s
D 0,

Z

D
�

j�suj
2
Js

t
C �sH s(u(s, t)) ds dt

D

Z

D
�

O!(�tu, �su)C d Hs(�su)C �sH s(u(s, t)) ds dt

D

Z

�D
�

�u� O�C H s(u(s, t)) dt.

We calculate the last term. First we calculate the integration on �H D
�

:

Z

�H D
�

�u� O�C H s(u(s, t)) dt D
Z

�H D
�

�u�O� D 0.

The first equality follows fromdtj
�H D�

D 0, and the second equality follows from

u(�H D
�

) � OL and O�j
OL D 0. On the other hand, sinceu(�V D

�

) � �M in
� {�}, we get

(s, t) 2 �V D
�

H) H s(u(s, t)) D a(s)(� � �), O�(XH s(u(s, t))) D a(s)�.

Therefore
Z

�V D
�

�u� O�C H s(u(s, t)) dt D
Z

�V D
�

O

�(XH s

 dt � du) � �

Z

�V D
�

a(s) dt.

On the other hand, Floer equation is equivalent to

Js
t Æ (XH s


 dt � du) D (du� XH s

 dt) Æ j ,

where j is a complex structure onR � [0, 1], defined by j (�s) D �t . Therefore

Z

�V D
�

O

�(XH s

 dt � du) D �

Z

�V D
�

O

�(Js
t Æ (du� XH s


 dt) Æ j ).

O

�(Js
t Æ XH s) D �O�(rs

t H s) D 0 on �M in
� {�}. Moreover, if V is a vector tangent to

�V D
�

, and positive with respect to the boundary orientation, then jV points inwards,
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henced�( jV ) � 0. HenceO�(Js
t Æ du Æ j )(V ) � 0. Therefore,

Z

�V D
�

O

�(XH s

 dt � du) � 0.

Finally,

Z

D
�

j�suj
2
Js

t
C �sH s(u(s, t)) ds dt� ��

Z

�V D
�

a(s) dt D ��
Z

D
�

�sa(s, t) ds dt.

Since�sH s
� 0 and�sa � 0(this follows from (1) and�sH s

� 0), this implies

Z

D
�

j�suj
2
Js

t
ds dt� 0.

This is a contradiction.

5.2. Handle attaching. In this subsection, we give a proof of Lemma 4.10. At
first, we need the following lemma, which is easily proved by Moser’s trick.

Lemma 5.2. Let X be a manifold and Y be a submanifold of X. Let(�t )0�t�1

be a smooth family of contact forms on X such that�t jY D 0 and d�t D d�0 for any t.
Then, for any compact set K in Y, there exists V, a neighborhood of K in X, and

( t )0�t�1, a smooth family of embeddings from V to X with the following properties:
(1)  0 is the inclusion map V! X.
(2)  �

t �0 D �t .
(3)  �1

t (Y) D V \ Y .
(4)  t jV\Y is the inclusion map V\ Y! X.

Proof. First we show that there existsW, a neighborhood ofK in X, and (�t )t ,
a family of vector fields onW such thatL

�t�t C �t�t D 0 and�t D 0 on W \ Y.
Take W, a neighborhood ofK in X so that the restriction morphismH�

dR(W)!
H�

dR(W \ Y) is an isomorphism. Sinced�t D d�0 for any t , �t�t is a closed form.
Moreover, �t�t jY D 0 since�t jY D 0 for any t . Hence (�t�t )t is a smooth family of
exact one forms onW. Hence there exists (ft )t , a family of C1 functions onW such
that d ft D �t�t . We may assume thatft vanishes onY, since�t�t vanishes onY and
H0

dR(W)! H0
dR(W \ Y) is an isomorphism.

Let Rt be the Reeb vector field of (X, �t ) and �t WD � ft Rt . Then, �t vanishes on
Y and

L
�t�t D i

�t (d�t )C d(i
�t�t ) D �d ft D ��t�t .

Integrating (�t )t , we obtain ('t )t , a family of embeddings from certain neighbor-
hood of K to X. Then, '�t �t D �0. Finally, if we take V sufficiently small, t WD

('t )�1
jV can be defined for all 0� t � 1 and satisfies the condition of the lemma.
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From now on, we start the proof of Lemma 4.10, and we continue to use notations
introduced in Section 4. For sufficiently smallÆ > 0, we define subsets of��1

N (U ), A�
Æ

,
AC
Æ

, B
Æ

, C
Æ

by

A�
Æ

D {(q, p) j jpj2C jq
C

j

2
D jq

�

j

2
� 2" < Æ},

AC
Æ

D {(q, p) j jpj2C jq
C

j

2
D �

Æ

(jq
�

j

2) < Æ},

B
Æ

D {(q, p) j jpj2C jq
C

j

2
D jq

�

j

2
� 2" D Æ},

C
Æ

D {(q, p) j jq
�

j

2
� 2" � jpj2C jq

C

j

2
< �

Æ

(jq
�

j

2)} [ AC
Æ

.

Recall that we have considered��1
N (U ) as a subset ofR2n using coordinate (q, p).

Hence we consider these sets also as subsets ofR

2n.
We have shown in Lemma 4.9 that (D

Æ

, !N , Ya, D
Æ

\ N) is a Liouville quadruple
for sufficiently smalla. In the following of this paper, we fix sucha and denote it
by a0.

Take arbitrary smooth functiona on [0, 1] such thata(0) D a0 and a(1) D 1=2.
By Lemma 5.2, there existsV , a neighborhood of6 in �D

�

, and ( t )t , a family of
embeddings fromV to �D

�

with the following properties:
(1)  0 is the inclusion mapV ! �D

�

.
(2)  �

t �a0 D �a(t). (�a denotesiYa!N .)
(3)  �1

t (�D
�

\ N) D V \ N.
(4)  t jV\N is the inclusion mapV \ N ! �D

�

.
Since

T

Æ>0 A�
Æ

D 6, A�
Æ

� V for sufficiently smallÆ > 0. If A�
Æ

� V , (C
Æ

, !st,
Ya(t), C

Æ

\ N) is glued to (D
�

, !N , Ya0, D
�

\ N) by  t jC
Æ

\�D
�

. As a result, we get a
Liouville quadruple. We denote it by (C

Æ

[

 t D
�

, !t , Zt , L t ).
We make two remarks which are clear from constructions:

REMARK 5.3. (1) �(C
Æ

[

 t D
�

) D (�D
�

n  t (A�
Æ

)) [ AC
Æ

.

(2) For anyÆ, Æ0 > 0,4C
Æ

[

 t D
�

and4C
Æ

0

[

 t D
�

can be identified naturally.

It is clear from construction that (C
Æ

[

 0 D
�

,!0, Z0, L0) is isomorphic to (D
Æ

,!N ,
Ya0, D

Æ

\ N) as Liouville quadruple. Hence, by Proposition 2.7, to prove Lemma 4.10
it is enough to show that

(17) WFH
�

(C
Æ

[

 1 D
�

, !1, L1) �WFH
�

(D
�

, !N , D
�

\ N).

Let (�i )i be an increasing sequence of positive numbers, such that limi!1

�i D1

and �i � A (�D
�

, �a0, �D
�

\ N). Let � 2 (0, 1), and takeFi 2Had( OD�

) such that:

F-(1): F1(x) < F2(x) < � � � for any x 2 OD
�

.
F-(2): Fi (z, �) D �i (� � �) on �D

�

� [�1=2,1).
SinceaFi D �i !1 as i !1,

(18) WFH
�

(D
�

, !N , D
�

\ N) D lim
i!1

WFH
�

(Fi ).
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Hence to prove (17), it is enough to show

(19) WFH
�m(C

Æ

[

 1 D
�

, !1, L1) � lim
i!1

WFH
�m(Fi )

for each positive integerm. In the following, we fixÆ and denote it byÆ0.
Denote the Reeb vector field on (�D

�

, �a0) by R.

Lemma 5.4. For any � > 0, there existsÆ(�) > 0 such that anyÆ 2 (0, Æ(�))
satisfies following:

Assume that xW I ! �D
�

satisfies Px D R(x), x(� I ) �  1(B
Æ

) [ (�D
�

\ N),
x(� I ) \  1(B

Æ

) ¤ ; and x(I ) is not contained in 1(A�
Æ0

). Then, jI j > �.

Proof. Assume the assertion is not true. Then, there existsyW J! �D
�

such that
Py D R(y), y(� J) �

T

Æ>0 1(A�
Æ

)[ (�D
�

\ N), y(� J)\
T

Æ>0 1(A�
Æ

) ¤ ;, and y(J) is
not contained in 1(A�

Æ0
) (we useB

Æ

� A�
Æ

). On the other hand,

\

Æ>0

 1(A�
Æ

) D  1

 

\

Æ>0

A�
Æ

!

D  1(6) D 6.

In the last equality, we use property (4) of t . Hencey(� J) � �D
�

\ N, and y(� J) \
6 ¤ ;. Since6 �  1(A�

Æ0
), y is not constant andjJj> 0. Hencey 2 C (�D

�

,�a0,�D
�

\

N). But this contradicts (3) in Lemma 4.8.

We can take sequences (Æi )i and (Gi )i , whereÆi 2 R>0 and Gi 2Had(4CÆ0 [ 1 D
�

),
such that (Æi )i satisfies the following properties:
Æ-(1): 0< Æi < min{Æ0, Æ(�i )}.
Æ-(2): Æ1 > Æ2 > � � �.
Æ-(3): limi!1

Æi D 0.
and (Gi )i satisfies the following properties:
G-(1): Gi jD

�

D Fi jD
�

.
G-(2): aGi !1 as i !1.
G-(3): There exists a sequencei1 < i2 < � � � such thatGi1(x) < Gi2(x) < � � � for any

x 24C
Æ0 [ 1 D

�

.
G-(4): By Remark 5.3, there exists an embedding (�D

�

n  1(A�
Æ

)) � [1, 1) !
4C
Æ0 [ 1 D

�

, and we identify (�D
�

n 1(A�
Æ

))� [1,1) with its image. Then,Gi (z, �) D
�i (� � �) on (�D

�

n  1(A�
Æ

)) � [1,1).
G-(5): Let 9 W C

Æ0 [ AC
Æ0
� [1,1)! R

2n be the embedding such that9jC
Æ0

is the in-

clusion mapC
Æ0 ! R

2n, and �
�

9(z, �) D ��1Y1=2 on AC
Æ0
� [1,1). We identify C

Æ0 [

AC
Æ0
� [1,1) with its image via9 (note that9�

!stD !1). Then, onC
Æ0[ AC

Æ0
� [1,1),

Gi satisfies the following properties (a)–(c), with respect tothe coordinates onR2n:
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(a) There existsgi 2 C1(R
�0), such thatGi (q, p) D gi (jqCj2 C jpCj2) if jq

�

j D

jp
�

j D 0. Moreover,g0i (t) � (�=2)Z for any t 2 R
�0.

(b) For 1� j � k, �p j Gi =p j > 0 if p j ¤ 0, and�q j Gi =q j < 0 if q j ¤ 0.
(c) There existAi > ((mC k)�)=2, Bi > 0 andCi < 0 such that

Gi (q, p) D Gi (0, : : : , 0)C Ai (jpCj
2
C jq

C

j

2)C Bi jp�j
2
C Ci jq�j

2

on some neighborhood of (0,: : : , 0).

REMARK 5.5. The idea for construction of (Gi )i is as follows: first, we define

G0

i W
4C
Æ0 [ 1 D

�

! R by

G0

i (x) D

8

<

:

Fi (x) (x 2 D
�

),
�i (1� �) (x 2 C

Æi ),
�i (� � �) (x D (z, �) 2 �(C

Æi [ 1 D
�

) � [1,1)).

Then, (G0

i )i satisfiesG-(1) to (4) though it is not smooth. The idea is to replaceG0

i

with Gi , which is smooth and satisfiesG-(5), without violating G-(1) to (4). This is
achieved by elementary arguments, but we do not try to spell out details.

The properties (a)–(c) inG-(5) look complicated, but they are necessary to show:

Lemma 5.6. If x 2 C (Gi ) satisfies x([0, 1]) � C
Æ0 [ AC

Æ0
� [1,1), then x is the

constant map to(0, : : : , 0) and ind x > m.

Proof. First we show thatx([0, 1]) � {p
�

D q
�

D 0}. Denotex(t) D (q(t), p(t))
and considerE(t) D q

�

(t) � p
�

(t). Then�t E D
P

1� j�k �p j Gi � p j � �q j Gi �q j . By (b) in
G-(5), for eacht 2 [0, 1], �t E(t) � 0 and equality holds if and only ifp

�

(t) D q
�

(t) D
0. On the other hand,E(0) D E(1) D 0 since x(0), x(1) 2 {p D 0}. Hence p

�

(t) D
q
�

(t) D 0 for any t 2 [0, 1]. By (a) in G-(5), XGi (q, p) D 2g0i (jpCj
2
C jq

C

j

2)(p
C

�q
C

�

q
C

�p
C

) on {p
�

D q
�

D 0}. Since 2g0i (t) � �Z for any t , x must be the constant map
to (0,: : : , 0). By (c) in G-(5), XGi (q, p) D 2Ai (p

C

�q
C

�q
C

�p
C

)C2Bi p
�

�q
�

�2Ci q��p
�

on some neighborhood of (0,: : : , 0). Then, indx > m follows from Ai > (mC k)�=2,
Bi > 0 andCi < 0.

By G-(1), D
�

is an invariant set ofXGi . HenceC (Gi ) is divided into two subsets:

C
�

(Gi ) D {x 2 C (Gi ) j x([0, 1]) � D
�

},

C
C

(Gi ) D {x 2 C (Gi ) j x([0, 1])\ D
�

D ;}.

By G-(1), C
�

(Gi ) can be identified withC (Fi ).

Lemma 5.7. If x 2 C
C

(Gi ), then x([0, 1]) � C
Æ0 [ AC

Æ0
� [1,1).
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Proof. Assume that there exists� 2 [0, 1] such thatx(� ) � C
Æ0 [ AC

Æ0
� (1,1),

hencex(� ) 2 (�D
�

n  1(A�
Æ0

)) � [1,1). Let I be the largest closed interval which
contains� and x(I ) � (�D

�

n 1(A�
Æi

))� [1,1). Then jI j > 0, andx(� I ) is contained
in ( 1(B

Æi ) [ (�D
�

\ N)) � [1,1).
By G-(4), XGi D �i � (R, 0) on (�D

�

n  1(A�
Æi

)) � [1,1). Define y W I ! �D
�

by
y D � Æ x, where� is the projection to�D

�

n  1(A�
Æi

). Then Py D �i R(y), y(� I ) �
 1(B

Æi )[ (�D
�

\N) and y(� ) �  1(A�
Æ0

). SinceÆi < Æ(�i ), y(� I )\ 1(B
Æi ) D ;. Hence

y(� I ) � �D
�

\ N and I D [0, 1], but this contradicts�i � A (�D
�

, �a0, �D
�

\ N).

By Lemmas 5.6 and 5.7,C
C

(Gi ) consists only of the constant map to (0,:::,0) and
its index is larger thanm. Hence WFC

�m(Gi ) is generated by elements ofC
�

(Gi ). On
the other hand, sinceC

�

(Gi ) can be identified withC (Fi ), there is an isomorphism of
Z2 modules WFC

�m(Fi )!WFC
�m(Gi ). By Lemma 5.1, if almost complex structures

(which are used to define differential on WFC
�

(Fi ) and WFC
�

(Gi )) satisfy assump-
tion (2) in Lemma 5.1 withM in

D D
�

, this is an isomorphism of chain complexes.
Denote this isomorphism by8i .

Take (ik)k as in G-(3), and consider following diagram:

WFC
�m(Fik ) K

8ik
K

WFC
�m(FikC1)

8ikC1
K

WFC
�m(Gik ) KWFC

�m(GikC1).

Horizontal arrows are monotone morphisms induced by monotone homotopies.
By F-(1) and G-(3), Fik (x) < FikC1(x) for any x 2 OD

�

, and Gik (x) < GikC1(x) for

any x 24C
Æ0 [ 1 D

�

. Again by Lemma 5.1, if almost complex structures (which are
used to define monotone morphisms) satisfy assumption (2) inLemma 5.1 withM in

D

D
�

, the above diagram commutes. Taking homology of this diagram and lettingi !
1, we get (last equality follows fromG-(2))

lim
i!1

WFH
�m(Fi ) � lim

i!1

WFH
�m(Gi ) DWFH

�m(C
Æ

[

 1 D
�

, !1, L1).

Hence we have proved (19).
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