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Abstract
For all but finitely many compact orientable surfaces, we show that any super-

injective map from the complex of separating curves into itself is induced by an
element of the extended mapping class group. We apply this result to proving that
any finite index subgroup of the Johnson kernel is co-Hopfian.Analogous properties
are shown for the Torelli complex and the Torelli group.

1. Introduction

Let SD Sg, p be a connected, compact and orientable surface of genusg with p
boundary components. Unless otherwise stated, we assume that a surface satisfies these
conditions. Theextended mapping class groupMod�(S) for S is defined as the group
of isotopy classes of homeomorphisms fromS onto itself, where isotopy may move
points in the boundary ofS. A simple closed curve inS is said to beessentialin S
if it is neither homotopic to a single point ofS nor isotopic to a boundary component
of S. The complex of curvesfor S, denoted byC(S), is defined as the abstract sim-
plicial complex whose vertices are isotopy classes of essential simple closed curves in
S and simplices are non-empty finite sets of such isotopy classes having mutually dis-
joint representatives. This complex was introduced by Harvey [8]. The group Mod�(S)
naturally acts onC(S) as simplicial automorphisms. It is known that any simplicial
automorphism ofC(S) is generally induced by an element of Mod�(S), as proved in
[12], [16] and [17]. This fact is used to describe any isomorphism between finite index
subgroups of Mod�(S).

A superinjective map� W C(S) ! C(S), introduced by Irmak [9], is defined as a
simplicial map� W C(S)! C(S) preserving non-adjacency of two vertices ofC(S). Any
superinjective map fromC(S) into itself is easily seen to be injective. In [1], [2], [9],
[10] and [11], any superinjective map fromC(S) into itself is shown to be surjective
and thus induced by an element of Mod�(S). This leads to the co-Hopfian property of
any finite index subgroup of Mod�(S), where a group0 is said to beco-Hopfian if
any injective homomorphism from0 into itself is surjective.

2010 Mathematics Subject Classification. 20E36, 20F38.
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Several variants of the complex of curves are introduced to follow the same line
as above for some important subgroups of Mod�(S). An essential simple closed curve
in S is said to beseparating in S if its complement inS is not connected. We de-
fine the Johnson kernelK(S) for S as the subgroup of Mod�(S) generated by all Dehn
twists about separating curves inS. Note thatK(S) is a normal subgroup of Mod�(S).
The complex of separating curvesfor S, denoted byCs(S), is defined to be the full
subcomplex ofC(S) spanned by all vertices ofC(S) corresponding to separating curves
in S. It is shown in [3], [4] and [15] that for all but finitely many surfacesS, any
simplicial automorphism ofCs(S) is induced by an element of Mod�(S), as precisely
stated in Theorem 2.4. This result is applied to proving thatthe abstract commensu-
rator of K(S) is naturally isomorphic to Mod�(S). The aim of this paper is to prove
that any superinjective map fromCs(S) into itself is surjective and is thus induced by
an element of Mod�(S). As a result, any finite index subgroup ofK(S) is shown to be
co-Hopfian.

Theorem 1.1. Let SD Sg, p be a surface satisfying one of the following three
conditions: g D 1 and p� 3; g D 2 and p� 2; or g � 3 and p� 0. Then
(i) any superinjective map fromCs(S) into itself is induced by an element ofMod�(S);
(ii) if 0 is a finite index subgroup ofK(S) and if f W 0! K(S) is an injective homo-
morphism, then there exists a unique
0 2 Mod�(S) satisfying the equality f(
 ) D

0
 


�1
0 for any 
 2 0. In particular, 0 is co-Hopfian.

Most of the paper is devoted to the proof of assertion (i). We omit the proof of
assertion (ii) since the process to derive it from assertion(i) is already discussed in
Section 5 of [3] and Section 6.3 of [15]. We obtain similar conclusions for the Torelli
complexT (S) and the Torelli groupI(S) for S, which are defined in Section 2.

Theorem 1.2. Let S be the surface inTheorem 1.1. Then
(i) any superinjective map fromT (S) into itself is induced by an element ofMod�(S);
(ii) if 3 is a finite index subgroup ofI(S) and if hW 3 ! I(S) is an injective homo-
morphism, then there exists a unique�0 2Mod�(S) satisfying the equality h(�)D �0��

�1
0

for any � 2 3. In particular, 3 is co-Hopfian.

The proof of this theorem uses Theorem 1.1 and is presented inSection 9. We
refer to Remark 1.3 in [15] for known facts on the complex of separating curves and
the Torelli complex for a surface which is not dealt with in Theorems 1.1 and 1.2.
Among other things, it is notable thatCs(S2,1) consists of countably infinitely many
�0-regular trees. This is a direct consequence of Theorem 7.1 in [14].

Although the same conclusions as Theorems 1.1 and 1.2 for closed surfaces are
asserted in Theorems 1.6 and 1.8 of Brendle and Margalit’s paper [3], their argument
contains a gap as precisely discussed in Remark 5.4. The present paper fills this gap
by considering not only closed surfaces but also non-closedones, while Brendle and
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Margalit deal with only closed ones. In fact, assertion (i) inTheorem 1.1 is proved by
induction ong and p, whose first step is the case (g, p) D (1, 3).

This paper is organized as follows. In Section 2, we introduce the terminology and
notation employed throughout the paper and review the definition of the complexes and
subgroups of the mapping class group discussed above. In Section 3, we introduce the
simplicial graphD associated withS1,2 and provide basic properties of it, which will
be used in subsequent sections. In Section 4, we obtain the conclusion of Theorem 1.1
for surfaces of genus one. In Section 5, given a surfaceS with its genus at least two
and a superinjective map� W Cs(S)! Cs(S), we explain how to extend� to a simpli-
cial map8 W C(S) ! C(S). Using the map8, we prove surjectivity of� for S2,2 in
Section 6 and prove it for the remainder of surfaces other than S3,0 by induction ong
and p in Section 7. We deal withS3,0 independently in Section 8. Finally, we deduce
Theorem 1.2 from Theorem 1.1 in Section 9.

2. Preliminaries

2.1. Terminology. Let SD Sg, p be a surface of genusg with p boundary com-
ponents. We defineV(S) to be the set of isotopy classes of essential simple closed
curves inS. When there is no confusion, we mean by a curve inS either an essential
simple closed curve inS or the isotopy class of it. An essential simple closed curve
a in S is said to beseparatingin S if Sn a is not connected, and otherwisea is said
to be non-separatingin S. Whether an essential simple closed curve inS is separating
in S or not depends only on its isotopy class. A pair of non-separating curves inS,
{a,b}, is called abounding pair(BP) in S if a andb are disjoint and non-isotopic and
if Sn (a[ b) is not connected. These conditions depend only on the isotopy classes of
a and b.

We mean by ahandlea surface homeomorphic toS1,1 and mean by apair of pants
a surface homeomorphic toS0,3. Let a be a separating curve inS. If a cuts off a
handle fromS, then a is called anh-curve in S. If a cuts off a pair of pants fromS,
then a is called ap-curve in S.

Suppose that�S is non-empty. A simple arcl in S is said to beessentialin S if
• �l consists of two distinct points of�S;
• l meets�S only at its end points; and
• l is not isotopic relative to�l to an arc in�S.
Let A(S) denote the set of isotopy classes of essential simple arcs in S, where isotopy
may move the end points of arcs, keeping them staying in�S. We say that two elem-
ents of V(S) t A(S) are disjoint if they have disjoint representatives. Frequently, we
do not distinguish an element ofA(S) and its representative if there is no confusion.
An essential simple arcl in S is said to beseparatingin S if Sn l is not connected.
Otherwisel is said to benon-separatingin S. Whether an essential simple arc inS is
separating inS or not depends only on its isotopy class. Given two components �1, �2

of �S, we say that an essential simple arcl in S connects�1 and �2 if one of the end
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points of l lies in �1 and another in�2.

2.2. The mapping class group and its subgroups.Let S be a surface. The
mapping class groupMod(S) for S is defined as the subgroup of Mod�(S) consisting of
all isotopy classes of orientation-preserving homeomorphisms from S onto itself. The
pure mapping class groupPMod(S) for S is defined as the subgroup of Mod�(S) con-
sisting of all isotopy classes of orientation-preserving homeomorphisms fromS onto
itself that fix each boundary component ofS as a set. Both Mod(S) and PMod(S) are
normal subgroups of Mod�(S) of finite index.

For eacha 2 V(S), we denote byta 2 PMod(S) the (left) Dehn twist about a.
The Johnson kernelK(S) for S is the subgroup of PMod(S) generated by all Dehn
twists about separating curves inS. The Torelli group I(S) for S is defined as the
subgroup of PMod(S) generated by all Dehn twists about separating curves inS and
all elements of the formtat�1

b with {a, b} a BP in S. Note thatK(S) and I(S) are
normal subgroups of Mod�(S). Originally, the Torelli group are defined in a different
way when the number of boundary components ofS is at most one. Thanks to [13]
and [19], the Torelli group defined originally is equal to theone defined above.

2.3. Simplicial complexes associated to a surface.Let S be a surface. We de-
note by i W V(S) � V(S) ! Z

�0 the geometric intersection number, i.e., the minimal
cardinality of the intersection of representatives for twoelements ofV(S). Let 6(S)
denote the set of non-empty finite subsets� of V(S) with i (�,�)D 0 for any�,� 2 � .
We extendi to the symmetric function on (V(S)t6(S))2 so thati (�,� )D

P

�2�

i (�,�)
and i (� , � ) D

P

�2� ,
2� i (�, 
 ) for any � 2 V(S) and � , � 2 6(S). We say that two
elements� , � of V(S) t 6(S) are disjoint if i (� , � ) D 0, and otherwise we say that
they intersect.

For each� 2 6(S), we denote byS
�

the surface obtained by cuttingS along all
curves in� . When � consists of a single curvea, we denote it bySa for simplic-
ity. We often identify a component ofS

�

with a complementary component of a tubu-
lar neighborhood of a one-dimensional submanifold representing � in S if there is no
confusion. If Q is a component ofS

�

, then V(Q) is naturally identified with a subset
of V(S).

The complex of curvesC(S) for S is the abstract simplicial complex such that the
set of vertices and simplices areV(S) and 6(S), respectively. LetVs(S) denote the
subset ofV(S) consisting of separating curves inS. The complex of separating curves
for S, denoted byCs(S), is defined as the full subcomplex ofC(S) spanned byVs(S).

Let Vbp(S) denote the set of isotopy classes of BPs inS. We often regard an elem-
ent of Vbp(S) as an edge ofC(S). The Torelli complexfor S, denoted byT (S), is de-
fined to be the abstract simplicial complex such that the set of vertices is the disjoint
union Vs(S) t Vbp(S), and a non-empty finite subset� of Vs(S) t Vbp(S) is a simplex
of T (S) if and only if any two elements of� are disjoint. The Torelli complex (with
additional structure and for closed surfaces) were introduced by Farb–Ivanov [5].
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Connectivity of Cs(S) and T (S) is discussed in [5] and [18] whenS is closed.
Applying Putman’s idea in Lemma 2.1 of [20] to prove connectivity of a simplicial
complex on which PMod(S) acts, we obtain the following lemma without effort.

Lemma 2.1. Let SD Sg, p be a surface and assume one of the following three
conditions: g D 1 and p� 3; g D 2 and p� 2; and g� 3 and p� 0. Then both
Cs(S) and T (S) are connected.

The proof of this lemma uses a family of simple closed curves in S, described in
Fig. 7 (a), such that the Dehn twists about them generate PMod(S). A similar argument
to apply Putman’s idea appears in the proof of Lemmas 3.3, 6.1and 7.1.

2.4. Superinjective maps. Let S be a surface, and letX be one of the sim-
plicial complexesC(S), Cs(S) and T (S). We denote byV(X) the set of vertices of
X. Note that a map� W V(X) ! V(X) defines a simplicial map fromX into itself
if and only if i (�(a), �(b)) D 0 for any two verticesa, b 2 V(X) with i (a, b) D 0.
We mean by asuperinjective map� W X ! X a simplicial map� W X ! X satisfying
i (�(a), �(b)) ¤ 0 for any two verticesa, b 2 V(X) with i (a, b) ¤ 0. This property was
introduced by Irmak [9] whenX D C(S).

Any superinjective map� W X! X is injective. For if there were two distinct ver-
ticesa, b 2 V(X) with �(a) D �(b), then superinjectivity of� would imply i (a, b) D 0.
Sincea andb are distinct, we can choosec 2 V(X) with i (a,c)D 0 andi (b,c)¤ 0. By
superinjectivity of�, we havei (�(a), �(c)) D 0 and i (�(b), �(c)) ¤ 0. This contradicts
the equality�(a) D �(b).

We note that for any superinjective map�W X! X, if the induced map fromV(X)
into itself is surjective, then� is a simplicial automorphism ofX.

2.5. Known results. To prove surjectivity of a superinjective map� W Cs(S) !
Cs(S) when Cs(S) is connected, it is enough to show that� sends the link of each
vertex � of Cs(S) onto the link of�(�). We apply induction ong and p to proving
it because the link of a vertex ofCs(S) consists of the complexes of separating curves
for surfaces withg or p smaller than those ofS. The following theorems will be used
to complete this inductive argument.

Theorem 2.2 ([12], [16], [17]). Let SD Sg, p be a surface with3gC p� 4> 0.
If (g, p)¤ (1,2), then any automorphism ofC(S) is induced by an element ofMod�(S).
If (g, p) D (1, 2), then any automorphism ofC(S) that preserves vertices corresponding
to separating curves in S is induced by an element ofMod�(S).

Any superinjective map fromC(S) into itself is shown to be surjective in [1], [2],
[9], [10] and [11]. More generally, the following theorem is obtained.
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Theorem 2.3 ([21]). Let SD Sg, p be a surface with3gC p � 4 > 0. Then any
injective simplicial map fromC(S) into itself is surjective.

The same conclusion as Theorem 2.2 is obtained for the complexes of separating
curves for certain surfaces.

Theorem 2.4([3], [4], [15]). Let SD Sg, p be a surface satisfying one of the follow-
ing three conditions: g D 1 and p� 3; g D 2 and p� 2; or g � 3 and p� 0. Then any
automorphism ofCs(S) is induced by an element ofMod�(S).

3. Graph D

Throughout this section, we putRD S1,2 and focus on the simplicial graphD D
D(R) defined as follows.

Graph D D D(R). The set of vertices ofD is defined to beVs(R) and denoted
by V(D). Two vertices�, � 2 V(D) are connected by an edge ofD if and only if we
have i (�, �) D 4.

The aim of this section is to prove the following:

Proposition 3.1. Any injective simplicial map fromD into itself is surjective.

We fix the notation employed throughout this section. Let�1 and�2 denote the two
boundary components ofR. We note that there is a one-to-one correspondence between
the isotopy classes of separating curves inR and essential simple arcs inR connecting
�1 and �2, where isotopy of essential simple arcs inR may move the end points of
arcs, keeping them staying in�R. Namely, one associates to a separating curve� in
R an arc connecting�1 and �2 and disjoint from�, which is uniquely determined up
to isotopy. This arc is denoted byl

�

(see Fig. 1 (a)). Conversely, for each essential
simple arcl in R connecting�1 and �2, the separating curve inR corresponding tol
is obtained as a boundary component of a regular neighborhood of the unionl [ �R
in R.

Note that if for eachk D 1, 2, l k
1 and l k

2 are essential simple arcs inR such that
• each ofl k

1 and l k
2 connects�1 and �2; and

• l k
1 and l k

2 are disjoint and non-isotopic,
then there exists a homeomorphismF from R onto itself preserving an orientation of
R and satisfyingF(�1) D �1, F(�2) D �2 and F(l 1

j ) D l 2
j for each j D 1, 2. For if

we cut R along l k
1 and l k

2, then we obtain an annulusAk. One can then construct a
homeomorphism fromA1 onto A2 sending arcs in�A1 corresponding tol 1

j to arcs in

�A2 corresponding tol 2
j for each j D 1,2 and inducing a desired homeomorphism from

R onto itself.
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α

β

lα

(b)

c(α, β)

lβ

(a)

Fig. 1.

Lemma 3.2. For any two distinct vertices�, � 2 V(D), we have i(�, �) D 4 if
and only if l

�

and l
�

are disjoint.

Proof. Using the criterion on intersection numbers in Exposé 3, Proposition 10 of
[6], one can check that the curves� and� described in Fig. 1 (a) satisfyi (�, �) D 4.
The “if ” part thus follows from the argument right before thelemma.

Pick two vertices�, � of D with i (�, �) D 4. Let A and B be representatives of
� and �, respectively, withjA \ Bj D 4. We denote byH the handle cut off byA
from R and naturally identifyH with a subset ofR. The intersectionB \ H consists
of two simple arcs inH , denoted byb1 and b2. Neitherb1 nor b2 are isotopic relative
to their end points to an arc in�H becauseA and B intersect minimally. It follows
that b1 and b2 are essential simple arcs inH . The arcsb1 and b2 are isotopic because
otherwise� would be non-separating inR.

We denote byP the pair of pants cut off byA from R and naturally identify it
with a subset ofR. The intersectionB\ P consists of two essential simple arcs inP,
which are isotopic. Letb3 and b4 denote the two components ofB \ P.

Fix an orientation ofA. For each j D 1, 2, we put�b j D {p j , q j } so that p1, q1,
q2 and p2 appear alongA in this order. For eachk D 3, 4, the arcbk connects neither
p1 andq1 nor p2 andq2 because otherwisebk and eitherb1 or b2 would form a simple
closed curve. For eachk D 3, 4, the arcbk connects neitherp1 and q2 nor p2 and q1

becausebk is separating inP. It turns out thatb3 and b4 connect eitherp1 and p2 or
q1 and q2.

Let I and J denote the components ofA n {p1, p2} and A n {q1, q2}, respectively,
that contain no point ofA\B. Note thatI and J lie in the same component ofH nB.
We may assume thatI and �1 (resp. J and �2) lie in the same component ofP n B.
Pick essential simple arcsr1 and r2 in P such that
• r1 connects a point of�1 with a point of I , and r2 connects a point of�2 with a
point of J; and
• both r1 and r2 are disjoint fromB \ P.
Since I and J lie in the same component ofH n B, we can find an essential simple
arc r3 in H disjoint from B \ H and connecting the point ofr1 \ I with the point
of r2 \ J. We definer as the unionr1 [ r2 [ r3, which is an essential simple arc
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in R connecting�1 and �2 and disjoint fromB. Pick an essential simple arcl in P
connecting�1 and �2 and disjoint fromr1 and r2. Sincel is an essential simple arc in
R disjoint from A and r , the “only if ” part of the lemma follows.

The last lemma and the observation right before the lemma imply that for any two
edges{�1, �1}, {�2, �2} of D, there exists an elementf of PMod(R) with f (�1) D
�2 and f (�1) D �2. For any edge{�, �} of D, we can find a non-separating curve
in R disjoint from � and �, which is uniquely determined up to isotopy, because the
surface obtained by cuttingR along l

�

and l
�

is an annulus. This non-separating curve
is denoted byc(�, �) 2 V(R) (see Fig. 1 (a)).

3.1. Geometric properties ofD. The following basic property ofD is shown
by applying Putman’s idea in Lemma 2.1 of [20].

Lemma 3.3. The graphD is connected.

Proof. Let � be the curve in Fig. 1 (a). We pick a vertex
 2 V(D) and show
that � and 
 can be connected by a path inD. We defineT as the set consisting
of the Dehn twists about the curves in Fig. 1 (b) and their inverses. It is known that
PMod(R) is generated byT (see [7]). Since� and 
 are sent to each other by an
element of PMod(R), we can find elementsh1, : : : , hn of T with 
 D h1 � � � hn�. We
note that for eachh 2 T , either h� D � or h� and � are connected by an edge ofD.
The sequence of vertices ofD,

�, h1�, h1h2�, : : : , h1 � � � hn� D 
 ,

therefore forms a path inD.

We make observation on a fibered structure in the link of each vertex of D. To
describe it, we recall simplicial graphs associated toS1,1 and to S0,4.

Graph F (X). Let X be a surface homeomorphic toS1,1 or S0,4. We defineF (X)
as the simplicial graph such that the set of vertices ofF (X) is V(X) and two vertices
�, � 2 V(X) are connected by an edge ofF (X) if and only if we havei (�, �) D 1
when X is homeomorphic toS1,1, and we havei (�, �) D 2 when X is homeomorphic
to S0,4.

It is known thatF (X) is isomorphic to the Farey graph (see Section 3.2 in [17]).
We mean by atriangle of a simplicial graphG a subgraph ofG consisting of three
vertices and three edges. Let us say that two triangles1, 10 in a simplicial graphG
are chain-connectedin G if there exists a sequence of triangles ofG, 11, : : : ,1n, with
11 D 1 and1n D 1

0 and with1 j \1 jC1 an edge ofG for each j D 1, : : : , n � 1.
The following properties of the Farey graphF are notable:
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• Any vertex ofF is contained in a triangle ofF .
• Any two triangles ofF are chain-connected inF .
• For any edgee of F , there exist exactly two triangles ofF containinge.
Using these facts, one can show that any injective simplicial map from F into itself
is surjective.

In the rest of this subsection, we fix a vertex� 2 V(D). We defineL to be the
link of � in D and defineV(L) to be the set of vertices ofL. We denote byH the
handle cut off by� from R and denote byF the graphF (H ) defined above.

Let �W L! F be the simplicial map defined by�(�)D c(�,�) for each� 2 V(L).
Simpliciality of � is proved as follows. If{�, 
 } is an edge ofL, then one can find
essential simple arcsl

�

, l
�

and l



in R such that
• for eachÆ 2 {�, �, 
 }, l

Æ

connects�1 and �2 and is disjoint from a representative
of Æ; and
• l

�

, l
�

and l



are pairwise disjoint.
Let Q denote the surface obtained by cuttingR along l

�

, which is a handle. Note that
�(�) (resp.�(
 )) is the only curve inQ disjoint from l

�

(resp. l



). Since l
�

and l



are disjoint, we obtain either�(�) D �(
 ) or i (�(�), �(
 )) D 1.
Let h 2 Mod(R) be the half twist about� exchanging�1 and �2 and being the

identity on H , which satisfiesh2
D t

�

. We now describe the fiber of� over a triangle
of F .

Lemma 3.4. Pick two curves b, c in H with i(b, c) D 1. We set

B D {� 2 V(L) j �(�) D b}, 0 D {
 2 V(L) j �(
 ) D c}.

Then we have a numbering of elements, B D {�n}n2Z and 0 D {
m}m2Z, such that
• h(�n) D �nC1 and h(
m) D 
mC1 for any n, m 2 Z; and
• the full subgraph ofD spanned by B[ 0 is the bi-infinite line with�n adjacent
to 
n and 
nC1 for each n2 Z.

Proof. We describe the curvesb andc as in Fig. 2 (a) and define�0 as the curve
in R described in Fig. 2 (b). Note that�0 belongs toB. We say that two verticesu,
v of a simplicial graphG lie in a diagonal position of two adjacent triangles ofG if
there exist two triangles11, 12 of G such thatu 2 11, v 2 12 and11 \ 12 is an
edge ofG containing neitheru nor v. One can check that the two vertices�, �0 of
F (Rb) lie in a diagonal position of two adjacent triangles ofF (Rb). It follows that for
each vertex� of B, � and � lie in a diagonal position of two adjacent triangles of
F (Rb) because any two edges ofD are sent to each other by an element of PMod(R).
Since the cyclic group generated byh acts transitively on the set of triangles ofF (Rb)
containing�, it also acts transitively on the set of vertices ofB. We thus have the
equality B D {hn(�0)}n2Z.
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α

b

c

(a) (b)

β0

γ0 γ1

Fig. 2.

Let 
0 and 
1 D h(
0) be the curves inR described in Fig. 2 (b). Note that
0

and 
1 belong to0. The argument in the previous paragraph implies the equality 0 D
{hn(
0)}n2Z. We put�n D hn(�0) and 
m D hm(
0) for any n, m 2 Z.

Using the criterion on intersection numbers in Exposé 3, Proposition 10 of [6], one
can check the equalityi (�n, �m) D 8jn�mj for any n, m 2 Z. It follows that any two
distinct elements ofB are not adjacent inD. The same property holds for elements of
0 in place of those ofB. For eachn 2 Z, we obtain the equalityi (�0, 
n) D 4j2n� 1j
by using the same criterion in [6]. It follows that
0 and 
1 are exactly the elements
of 0 adjacent to�0 in D. Applying h, we see that the full subgraph ofD spanned by
B [ 0 is the bi-infinite line with�n adjacent to
n and 
nC1 for eachn 2 Z.

Lemma 3.4 shows that for any edge{b, c} of F and any vertex� in ��1(b), there
exists a vertex
 in �

�1(c) with {�, 
 } an edge ofL. Connectivity ofF and of the
fiber of � over any edge ofF therefore implies connectivity ofL.

Choose three vertices�, 
 and Æ of D so that the three arcsl
�

, l



and l
Æ

are
described as in Fig. 3 (a). Note that each ofl

�

, l



and l
Æ

is disjoint from l
�

. Setting
�n D hn(�), 
n D hn(
 ) and Æn D hn(Æ) for eachn 2 Z, we obtain the equalities

�

�1(�(�)) D {�n}n2Z, �

�1(�(
 )) D {
n}n2Z, �

�1(�(Æ)) D {Æn}n2Z

by Lemma 3.4. The fiber of the map�W L! F over the triangle ofF consisting of the
three vertices�(�), �(
 ) and�(Æ) is the sequence of triangles described in Fig. 3 (b).

3.2. Proof of Proposition 3.1. Let  W D ! D be an injective simplicial map.
For each� 2 V(D), we denote byL

�

the link of � in D. To prove surjectivity of ,
it is enough to show that for each� 2 V(D), the map 

�

W L
�

! L
 (�) defined as the

restriction of is surjective sinceD is connected as proved in Lemma 3.3.
In what follows, we fix� 2 V(D) and put L D L

�

. We denote byV(L) the set
of vertices ofL. To prove surjectivity of 

�

, we show the following two lemmas.

Lemma 3.5. For each edge e of L, there exist exactly three triangles of L
containing e.
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(a)

∂2∂1

lα
lγ

lβ lδ

lβ1

lδ1lγ1

(b)

· · · · · ·

β0
γ0

δ0 β1
γ1

δ1δ
−1

β
−1

lǫ

Fig. 3.

Lemma 3.6. Any two triangles of L are chain-connected in L.

Using Lemmas 3.5 and 3.6, we can show surjectivity of the map 

�

W L
�

! L
 (�)

as follows. Lemma 3.5 and injectivity of 
�

imply that if 1 is a triangle ofL
�

, then
 

�

(L
�

) contains any triangle ofL
 (�) containing an edge of the triangle 

�

(1). By
Lemma 3.6, 

�

(L
�

) contains any triangle ofL
 (�). Surjectivity of 

�

follows because
any vertex ofL

 (�) is contained in a triangle ofL
 (�).

We now prove Lemmas 3.5 and 3.6. LetH denote the handle cut off by� from
R, and letF denote the graphF (H ) introduced in Section 3.1.

Proof of Lemma 3.5. We note that any two edges ofL are sent to each other by
an element of the stabilizer of� in Mod(R). This fact follows from Lemma 3.4 and
transitivity of the action of Mod(H ) on the set of edges ofF . Let {�,
 } be an edge of
L. We define separating curvesÆ and � in R so that the arcsl

Æ

and l
�

are described in
Fig. 3 (a), respectively. Leth 2Mod(R) be the half twist about� exchanging�1 and�2

and being the identity onH . Each of the three sets of vertices,{�,
 , Æ}, {�,
 ,h�1(�)}
and {�, 
 , �}, forms a triangle ofL.

We show that there exist at most three triangles ofL containing {�, 
 }. If we
cut R along the arcsl

�

and l
�

, then we obtain the annulusA whose boundary can
be described as in Fig. 4 (a) becauseR is orientable. The arcl




is then given by
an arc in A connecting a point of an arc corresponding to�1 with a point of an arc
corresponding to�2. This arc in A connects two points in distinct components of�A
because otherwisel




would be isotopic to eitherl
�

or l
�

. If we cut A along l



, then
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(a) (b)
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∂1

∂2

∂2

∂1

∂1

∂1

∂2

∂2

∂2

lα

lβ

lα

lβ

lβ

lβ

lα

lα

lγ

lγ

Fig. 4.

we obtain the diskD in Fig. 4 (b), where the order of the symbols on�D,

�1, l
�

, �2, l
�

, �1, l



, �2, : : : ,

may be reversed. This depends on the orientations ofA and D and on arcs in�A
corresponding to�1 and �2 in which the end points ofl




lie. There exist exactly three
arcs in D connecting a point of an arc corresponding to�1 with a point of an arc
corresponding to�2, up to isotopy, as described in Fig. 4 (b). It turns out that there
exist at most three triangles ofL containing the edge{�, 
 }.

Recall that we have the simplicial map� W L ! F defined by�(�) D c(�, �) for
each� 2 V(L), wherec(�, �) is the curve in Fig. 1 (a).

Proof of Lemma 3.6. Let1 and10 be triangles ofL. The argument in the first
paragraph of the proof of Lemma 3.5 shows that if we pick an edge of L and the
three triangles ofL containing it, then the image of them via� consists of two tri-
angles ofF sharing an edge. Since any two triangles ofF are chain-connected inF ,
there exists a triangle100 of ��1(�(10)) such that1 and100 are chain-connected in
L. We conclude that1 and10 are chain-connected inL because any two triangles in
�

�1(�(10)) are chain-connected in��1(�(10)) as described in Fig. 3 (b).

4. S1,p with p � 3

When S D S1,p is a surface withp � 3, we show that any superinjective map
� from Cs(S) into itself is induced by an element of Mod�(S). The proof relies on
induction on p.

4.1. The casep D 3. We put SD S1,3. In this subsection, we show that any
superinjective map� W Cs(S)! Cs(S) is surjective. Theorem 2.4 then implies that� is
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α1 α1

α2

α2

α3

α3

β1

β1

β2

β2

β3 β3

Fig. 5. A hexagon inCs(S1,3)

induced by an element of Mod�(S). We first review several facts onCs(S) discussed
in [15].

We mean by ahexagonin Cs(S) the full subgraph ofCs(S) spanned by exactly six
verticesv1, : : : , v6 with i (v j , v jC1) D 0, i (v j , v jC2) ¤ 0 and i (v j , v jC3) ¤ 0 for each
j mod 6 (see Fig. 5). Any superinjective map� W Cs(S) ! Cs(S) preserves hexagons
in Cs(S). Fundamental properties of hexagons inCs(S) and superinjective maps from
Cs(S) into itself are stated in the following two propositions.

Proposition 4.1 ([15, Theorem 5.2]). Let SD S1,3 be a surface. Then for any two
hexagons51, 52 in Cs(S), there exists an element f ofPMod(S) with f (51) D 52.

Proposition 4.2 ([15, Lemma 5.6]). Let SD S1,3 be a surface. Then any super-
injective map fromCs(S) into itself preserves vertices corresponding to h-curves and
p-curves in S, respectively.

We note that each separating curve inS is either an h-curve or a p-curve inS and
that for each h-curve (resp. p-curve)� in S, any separating curve inS disjoint from �

and non-isotopic to� is a p-curve (resp. an h-curve) inS.

Theorem 4.3. Let SD S1,3 be a surface. Then any superinjective map fromCs(S)
into itself is surjective.

Proof. PutSD S1,3 and let�W Cs(S)! Cs(S) be a superinjective map. SinceCs(S)
is connected, it is enough to show that for each� 2 Vs(S), the map�

�

W Lks(�) !
Lks(�(�)) defined as the restriction of� is surjective, where for each� 2 Vs(S), we
denote by Lks(�) the link of � in Cs(S).

We first assume that� is an h-curve inS. Let Q1 and Q2 denote the components
of S

�

and S
�(�), respectively, that are homeomorphic toS0,4. For any two vertices�1,

�2 of Lks(�) with i (�1,�2)D 2, we obtaini (�(�1),�(�2))D 2 by using Proposition 4.1
and the fact that� preserves hexagons inCs(S). It follows that �

�

induces an injective
simplicial map from the graphF (Q1) into the graphF (Q2) and is thus surjective.
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We next assume that� is a p-curve inS. Let R1 and R2 denote the components
of S

�

and S
�(�), respectively, that are homeomorphic toS1,2. Similarly, Proposition 4.1

implies that�
�

induces an injective simplicial map from the graphD(R1) into D(R2)
and is thus surjective by Proposition 3.1.

Combining the last theorem with Theorem 2.4, we obtain the following:

Corollary 4.4. Let SD S1,3 be a surface. Then any superinjective map from
Cs(S) into itself is induced by an element ofMod�(S).

4.2. The casep � 4. Let SD S1,p be a surface withp � 4 and fix a super-
injective map� W Cs(S) ! Cs(S). By induction on p, we show that� is induced by
an element of Mod�(S). For each integerq with 2 � q � p, we mean by aq-HBC
(hole-bounding curve) in S a separating curve� in S such that the component ofS

�

of genus zero contains exactlyq components of�S. Note that each separating curve
in S is a q-HBC for some integerq with 2 � q � p. By Lemma 3.19 of [15], for
each integerq with 2� q � p, the map� preservesq-HBCs in S.

Lemma 4.5. Let � be a q-HBC in S with2� q � p. Then the map

�

�

W Lks(�)! Lks(�(�))

defined as the restriction of� is surjective, where for each� 2 Vs(S), we denote by
Lks(�) the link of � in Cs(S).

Proof. If q D 2, then Lks(�) is identified withCs(S1,p�1), and�
�

is surjective by
the hypothesis of the induction. Ifq D p, then Lks(�) is identified withC(S0,pC1), and
�

�

is surjective by Theorem 2.3.
We assume 3� q � p� 1. Let Q and R denote the two components ofS

�

with
R of genus one, and letQ1 and R1 denote the two components ofS

�(�) with R1 of
genus one. As proved in Lemma 3.19 of [15], we have the inclusions

�(V(Q)) � V(Q1) and �(Vs(R)) � Vs(R1).

Choosing an h-curve� in S disjoint from � and applying Theorem 2.3 to the compo-
nent of S

�

of genus zero, we obtain the equality�(V(Q)) D V(Q1). Choosing a sepa-
rating curve
 in Q and applying the hypothesis of the induction to the component of
S



of genus one, we obtain the equality�(Vs(R)) D Vs(R1).

Lemma 4.5 implies that� is surjective becauseCs(S) is connected. Combining
Theorem 2.4, we obtain the following:
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Theorem 4.6. Let SD S1,p be a surface with p� 4. Then any superinjective
map fromCs(S) into itself is induced by an element ofMod�(S).

5. Construction of � and its simpliciality

In [3], for a closed surfaceS with its genus at least three and a superinjective map
� W Cs(S)! Cs(S), Brendle and Margalit construct a map8 W V(S)! V(S) which co-
incides with� on Vs(S). They prove that8 defines an automorphism ofC(S) if � is
an automorphism ofCs(S). Their construction can also be applied to the caseSD Sg, p

with g � 2 and j�(S)j D 2gC p� 2 � 4 as discussed in [15]. In this section, we re-
view the construction of8 and prove simpliciality of8 without assuming that� is an
automorphism. Sharing pairs defined below play an importantrole in the construction
of 8.

If S D Sg, p is a surface withg � 2 and j�(S)j � 3, then for each h-curve (or
its isotopy class)� in S, we denote byH

�

the handle cut off by� from S, which is
naturally identified with a subsurface ofS.

DEFINITION 5.1. Let S D Sg, p be a surface withg � 2 and j�(S)j � 3. Let
�, � 2 Vs(S) be h-curves inS and c 2 V(S) a non-separating curve inS. We say that
� and� share c if there exist representativesA, B and C of �, � and c, respectively,
such that we havejA \ Bj D i (�, �), HA \ HB is an annulus with its core curveC,
and Sn (HA[ HB) is connected. In this case, we also say that{�, �} is a sharing pair
for c.

It is shown that any two sharing pairs inS are sent to each other by an element
of PMod(S). Note that whenS is a surface of genus less than two, there exists no pair
{�, �} of h-curves inS satisfying the condition in Definition 5.1.

Given a sharing pair{�, �} for a non-separating curvec in S, one can associate a
BP b(�, �) in S as follows. Choosing representativesA, B of �, �, respectively, with
jA\Bj D i (�,�)D 4 and choosing a regular neighborhoodN of A[B in S, we define
b(�, �) 2 6(S) as the set of isotopy classes of boundary components ofN which are
essential inS and whose isotopy classes are not equal toc. The setb(�, �) is in fact
a BP in S which cuts off a surface homeomorphic toS1,2 and containing�, � and c.

The following is a summary of properties of superinjective maps fromCs(S) into
itself which will be needed to construct8.

Lemma 5.2 ([15, Lemmas 3.18 and 3.19]). Let SD Sg, p be a surface with g� 2
and j�(S)j � 4, and let � W Cs(S)! Cs(S) be a superinjective map. Then� preserves
the topological type of each vertex ofCs(S). Namely, for each separating curve� in S,
if Q1 and Q2 denote the components of S

�

and if R1 and R2 denote the components
of S

�(�), then for each jD 1, 2,
• the inclusion�(Vs(Q j )) � Vs(Rj ) holds; and
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• Q j and Rj are homeomorphic
after exchanging the indices if necessary.

The following proposition is essentially due to [3], where closed surfaces are dealt
with (see Section 5.3 in [15] for the case where a surface has non-empty boundary).

Proposition 5.3. Let SD Sg, p be a surface with g� 2 and j�(S)j � 4, and let
� W Cs(S)! Cs(S) be a superinjective map. Then the following assertions hold:
(i) The map� preserves sharing pairs.
(ii) Pick a non-separating curve c in S and let{�1, �1} and {�2, �2} be sharing pairs
for c. Then{�(�1), �(�1)} and {�(�2), �(�2)} are sharing pairs for the same non-
separating curve in S.

Given a superinjective map� W Cs(S)! Cs(S), we define a map8 W V(S)! V(S)
as follows. Pick� 2 V(S). If � is separating inS, then we set8(�) D �(�). If � is
non-separating inS, then we choose a sharing pair{�, 
 } for � and define8(�) to be
the non-separating curve shared by the pair{�(�), �(
 )}. This is well-defined thanks
to Proposition 5.3.

REMARK 5.4. In Section 4.3 of [3], Brendle and Margalit assert that ifS is a
closed surface of genus more than three and if� W Cs(S) ! Cs(S) is a superinjective
map, then the map8 W V(S) ! V(S) constructed above defines a superinjective map
from C(S) into itself. We point out gaps in their argument to prove superinjectivity of
8. (We notice that� and8 are denoted by�

?

and O�
?

, respectively, in [3].) To prove
that for any�,� 2 V(S), we havei (�,�)D 0 if and only if i (8(�),8(�))D 0, Brendle
and Margalit make the following three steps:
(1) When both� and � are separating inS, the desired equivalence for� and � fol-
lows because we have8 D � on Vs(S) and � is superinjective.
(2) When both� and � are non-separating inS, Brendle and Margalit claim that�
and � are disjoint if and only if there exist sharing pairs{a1, a2} for � and {b1, b2}

for � with i (a j , bk) D 0 for any j , k D 1, 2. They assert that the desired equivalence
for � and � follows from this claim.
(3) When � is separating inS and � is non-separating inS, Brendle and Margalit
claim that� and� are disjoint if and only if either� is a part of a sharing pair for�
or there exists a sharing pair for� whose curves are disjoint from�. They assert that
the desired equivalence for� and � follows from this claim.

First, we point out that the claim in (2) is not correct. This is because if� and�
are non-separating curves inS and if a and b are disjoint and non-isotopic h-curves in
S with � 2 V(Ha) and� 2 V(Hb), then the surface obtained by cuttingS along� and
� is connected and thus{�, �} is not a BP inS. It follows that if {�, �} is a BP in
S, then there exist no sharing pairs{a1, a2} for � and {b1, b2} for � with i (a j , bk) D 0
for any j , k D 1, 2. The claim in (2) can be modified as follows.
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Lemma 5.5. Let SD Sg, p be a surface with g� 2 and j�(S)j � 3. Let � and �
be non-separating curves in S which are non-isotopic. Then we have i(�, �) D 0 and
{�, �} is not a BP in S if and only if there exist non-isotopic and disjoint h-curves a,
b in S with� 2 V(Ha) and � 2 V(Hb).

Proof. The “if ” part follows becauseHa and Hb are disjoint when they are iden-
tified with their image via the natural inclusion intoS. If i (�,�) D 0 and{�,�} is not
a BP in S, then the surfaceQ obtained by cuttingS along � and � is homeomorphic
to Sg�2,pC4. Choose p-curvesa, b in Q such thati (a, b) D 0 and the pair of pants
cut off by a (resp.b) from Q contains the two components of�Q corresponding to�
(resp.�). The curvesa and b are h-curves inS via the inclusion ofV(Q) into V(S),
which cut off handles fromS containing� and �, respectively.

By the definition of8, if 
 is a non-separating curve inS and c is an h-curve
in S with 
 2 V(Hc), then we have8(
 ) 2 V(H

�(c)). Using this fact and Lemma 5.5,
one can directly show that if� and� are disjoint non-separating curves inS such that
{�, �} is not a BP inS, then8(�) and8(�) are disjoint.

Second, the claim in (3) does not immediately imply that for any separating curve
� in S and any non-separating curve� in S with i (8(�),8(�))D 0, we havei (�,�)D
0. This is because we do not assume surjectivity of�.

In conclusion, to fill these gaps, we need to show that
(a) if {�, �} is a BP in S, then i (8(�), 8(�)) D 0; and
(b) if � and � are curves inS with i (8(�), 8(�)) D 0 and if � is non-separating in
S, then i (�, �) D 0.
We will prove assertion (a) in Lemma 5.6 and also prove that{8(�),8(�)} is a BP in
S for each BP{�,�} in S by using facts on the graphD shown in Section 3. Although
we do not prove assertion (b) directly, we show that8 is induced by an element of
Mod�(S) by proving surjectivity of�.

If � is an automorphism ofCs(S), then8 is a bijection fromV(S) into itself and
the map fromV(S) into itself associated to��1 is equal to8�1. In this case, we can
show simpliciality of8 (and thus that of8�1) without effort as precisely discussed in
the proof of Theorem 5.18 of [15]. Brendle and Margalit’s proof of their Main The-
orem 1 in [3] and Theorem 1 in [4], stating the natural isomorphism between Mod�(S)
and the abstract commensurator ofK(S) when S is a closed surface of genus at least
three, is therefore valid.

We now prove simpliciality of8 in the following:

Lemma 5.6. Let SD Sg, p be a surface with g� 2 and j�(S)j � 4, and let
�W Cs(S)! Cs(S) be a superinjective map. Then the map8W V(S)! V(S) constructed
right after Proposition 5.3defines a simplicial map fromC(S) into itself.
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Before proving this lemma, we make a brief observation on theset A(H ) of iso-
topy classes of essential simple arcs in a handleH , defined in Section 3. For each
l 2 A(H ) and eacha 2 V(H ), we definei (l , a) to be the minimal cardinality of the
intersection of representatives forl and a.

Lemma 5.7. Let H be a handle and choose two curves a, c in H with i(a,c)D 1.
Then for each l2 A(H ), we have either i(l , a) D 0 or i (l , c) D 0 if and only if we have
i (l , tc(a)) D i (l , t�1

c (a)) D 1.

Proof. There is a one-to-one correspondence between elements of V(H ) and of
A(H ). Namely, for eachl 2 A(H ), there exists a unique elementc(l ) 2 V(H ) with
i (l , c(l )) D 0, and vice versa. A representative ofc(l ) is obtained as a boundary com-
ponent of a regular neighborhood of the union of�H and a representative ofl in H .
Note that for eachl 2 A(H ) and eachc 2 V(H ), we havei (l , c) D 1 if and only if we
have i (c(l ), c) D 1.

Each of{a, c, tc(a)} and {a, c, t�1
c (a)} forms a triangle in the graphF (H ). Since

a and c are the only vertices adjacent to bothtc(a) and t�1
c (a) in F (H ), for eachb 2

V(H ), we havei (b, tc(a)) D i (b, t�1
c (a)) D 1 if and only if b is equal to eithera or c.

The claim thus follows.

Proof of Lemma 5.6. It follows from the definition of8 that in general, if� is
an h-curve inS and c is a non-separating curve inH

�

, then8(�) is also an h-curve
in S, and8(c) is a curve in the handleH

8(�).
Let � and � be disjoint curves inS. If both � and � are separating inS, then

8(�) and8(�) are disjoint because� is simplicial. If � is separating inS and � is
non-separating inS, then there exists an h-curve
 in S with i (
 , �) D 0 and � 2
V(H




). Since� is either equal to
 or in the component ofS



that is not a handle,
the curves8(�) and8(�) are disjoint.

Finally, we suppose that� and � are both non-separating inS and non-isotopic.
If there exist non-isotopic and disjoint h-curves
 and Æ in S with � 2 V(H




) and
� 2 V(H

Æ

), then8(�) and8(�) are disjoint becauseH
�(
 ) and H

�(Æ) are disjoint and
we have8(�) 2 V(H

�(
 )) and8(�) 2 V(H
�(Æ)). Otherwise� and � form a BP in S

by Lemma 5.5. After proving the following two claims, we showthat8(�) and8(�)
are disjoint in this case.

Claim 5.8. Let {�,�} be a sharing pair in S. We denote by R the surface cut off
by the BP b(�, �) from S and containing� and �. Similarly, we denote by�(R) the
surface cut off by the BP b(�(�), �(�)) from S and containing�(�) and �(�). Then
we have the inclusion�(Vs(R)) � Vs(�(R)).

Proof. Note that each ofR and �(R) is homeomorphic toS1,2. Choose a sepa-
rating curve
 in S cutting off a surface which containsR and is homeomorphic to
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S2,1. We pick a separating curveÆ in S with i (�, Æ) D i (�, Æ) D 0 and i (
 , Æ) ¤ 0.
By Lemma 5.2,�(
 ) cuts off from S a surface homeomorphic toS2,1 and containing
�(R). Superinjectivity of� implies that�(Æ) is disjoint from�(�) and�(�) and inter-
sects�(
 ). It follows that if C and D are representatives of�(
 ) and �(Æ), respect-
ively, with jC\ Dj D i (�(
 ), �(Æ)), then the two curves inb(�(�), �(�)) are boundary
components of a regular neighborhood ofC [ D in S. If a separating curve� in S
satisfiesi (�(
 ), �) D i (�(Æ), �) D 0 and eitheri (�(�), �) ¤ 0 or i (�(�), �) ¤ 0, then�
is a curve in�(R). The claim thus follows.

Claim 5.9. For each h-curve� in S, the restriction of8 to V(H
�

) induces an
isomorphism between the graphsF (H

�

) and F (H
�(�)).

Proof. Choose an h-curve�0 in S such that{�, �0} is a sharing pair inS. To
prove the claim, we may assume�(�) D � and �(�0) D �0. Let R denote the sur-
face cut off by the BPb(�, �0) from S and containing� and �0. Proposition 5.3 and
Claim 5.8 show that� induces an injective simplicial map fromD D D(R) into it-
self, which is an automorphism ofD by Proposition 3.1. In particular,� induces an
automorphism ofL, the link of � in D. Put F D F (H

�

) and let� W L ! F be the
simplicial map defined in Section 3.1.

We now show that for any two curvesb, c 2 V(H
�

) with i (b, c) D 1, the equality
i (8(b), 8(c)) D 1 holds, that is,8 preserves edges ofF . We choose an edge{�, 
 }

of L with �(�) D b and �(
 ) D c. Since� induces an automorphism ofL, the two
vertices�(�) and�(
 ) form an edge ofL. Since the fiber of� over each vertex ofF
is zero-dimensional by Lemma 3.4, the two vertices�(�(�)) and �(�(
 )) are distinct
and thus form an edge ofF . Since we have�(�(�)) D 8(b) and �(�(
 )) D 8(c) by
the definition of8, we obtaini (8(b), 8(c)) D 1.

Proposition 5.3 shows that for each vertexd of F , the inclusion�(��1(d)) �
�

�1(8(d)) holds. Since the fiber of� over an edge ofF is a bi-infinite line by
Lemma 3.4 and since� is injective, the equality�(��1({b,c}))D ��1(8({b,c})) holds
for each edge{b, c} of F . We thus have�(��1(d)) D �

�1(8(d)) for each vertexd
of F . Injectivity of � again implies that8 induces an injective simplicial map from
F into itself and thus an automorphism ofF .

Claim 5.10. If a and b are non-separating curves in S with{a, b} a BP in S,
then we have8(a) ¤ 8(b) and i(8(a), 8(b)) D 0.

Proof. When two non-separating curvesd ande in S satisfy the equalityi (d,e)D
1, let us writed ? e for simplicity.

Choose a non-separating curvec in S with a ? c and b? c. We denote byH the
handle filled bya and c. If A and C are representatives ofa and c, respectively, with
jA\Cj D i (a, c) D 1, then H is obtained as a regular neighborhood ofA[C. Let �
denote the boundary curve ofH . Similarly, we denote byK the handle filled byb and
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c and denote by� the boundary curve ofK . Let �(H ) and �(K ) denote the handles
cut off by �(�) and �(�) from S, respectively. The handle�(H ) is filled by 8(a)
and8(c) because we have8(a) ? 8(c) by Claim 5.9. Similarly, the handle�(K ) is
filled by 8(b) and8(c) because we have8(b) ? 8(c) by Claim 5.9. It follows from
�(�) ¤ �(�) that we have8(a) ¤ 8(b).

We set

U D {d 2 V(H ) j d ? c} D {tn
c (a) j n 2 Z}.

By Claim 5.9, we have

8(U ) D {d 2 V(�(H )) j d ? 8(c)} D {tn
8(c)(8(a)) j n 2 Z}.

The two equalities

{t�1
c (a)} D {d 2 U j d ? a}, {t�1

8(c)(8(a))} D {e2 8(U ) j e? 8(a)}

imply the equality{8(t�1
c (a))} D {t�1

8(c)(8(a))}. Claim 5.9 then implies

8(a) ? 8(c), 8(b) ? 8(c), 8(b) ? t�1
8(c)(8(a)),

where the third relation follows fromb ? t�1
c (a). The first and second relations show

that8(b) \ �(H ) consists of an essential simple arcl in �(H ) intersecting8(c) once
and essential simple arcs in�(H ) which are disjoint from8(c) and mutually isotopic.
If there were a componentr of 8(b) \ �(H ) disjoint from 8(c), then r would inter-
sect t�1

8(c)(8(a)) once, respectively, because we have8(c) ? t�1
8(c)(8(a)). The third re-

lation then implies thatl does not intersectt�1
8(c)(8(a)). This is impossible because

a curve in�(H ) disjoint from l uniquely exists up to isotopy. We thus proved that
8(b) \ �(H ) consists of onlyl . Since l intersects8(c) and t�1

8(c)(8(a)) once, respect-
ively, Lemma 5.7 implies thatl is disjoint from8(a). We therefore conclude that8(b)
is disjoint from8(a).

As discussed before Claim 5.8, Claim 5.10 completes the proof of Lemma 5.6.

The following fact will be used in Section 8.

Lemma 5.11. In the notation of Lemma5.6, the map8 preserves BPs in S. That
is, if {a, b} is a BP in S, then so is{8(a), 8(b)}.

Proof. Suppose that there exists a BP{a, b} in S such that{8(a), 8(b)} is not
a BP in S. By Claim 5.10, the surfaceQ obtained by cuttingS along8(a) and8(b)
is homeomorphic toSg�2,pC4. On the other hand, there exists a simplex� of Cs(S)
consisting ofg � 1 h-curves inS disjoint from a and b. Choose h-curvesÆ and �
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in S with a 2 V(H
Æ

), b 2 V(H
�

) and i (Æ, � ) D i (�, � ) D 0. For each
 2 � , both
8(a) and 8(b) are curves in the component ofS

�(
 ) that is not a handle since we
have8(a) 2 V(H

�(Æ)) and8(b) 2 V(H
�(�)). It follows that �(
 ) is an h-curve inQ

for each
 2 � . This is a contradiction because any collection of pairwisenon-isotopic
and disjoint h-curves inQ consists of at mostg� 2 curves.

6. S2,2

We put SD S2,2 and fix a superinjective map� W Cs(S) ! Cs(S) throughout this
section. We denote by8 W C(S) ! C(S) the simplicial map extending�, constructed
right after Proposition 5.3. For each non-separating curvec in S, let

8c W Lk(c) \ Cs(S)! Lk(8(c)) \ Cs(S)

be the simplicial map defined as the restriction of8, where for each� 2 V(S), we de-
note by Lk(�) the link of � in C(S). In Lemma 6.4, we will prove that8c is surjective
for eachc. Once this lemma is shown, we can readily prove that8 is injective and is
therefore an automorphism ofC(S) by Theorem 2.3 (see the proof of Theorem 6.5 for
a precise argument). A large part of this section is thus devoted to proving surjectivity
of 8c.

We fix a non-separating curvec in S and may assume8(c) D c until Lemma 6.4
to prove surjectivity of8c. Let �1 and �2 denote the boundary components ofSc cor-
responding toc. We first introduce a simplicial graph associated toc.

Graph E . We define the simplicial graphE as follows. The set of vertices ofE ,
denoted byV(E), is defined as the set of all elements ofVs(S) corresponding to an
h-curve� in S such thatc is a curve in the handle cut off by� from S. Two vertices
of E are connected by an edge ofE if and only if the two h-curves corresponding to
them form a sharing pair forc in S.

For each� 2 V(E), we denote by LkE (�) the link of� in E and denote byV(LkE (�))
the set of vertices of LkE (�).

Lemma 6.1. The graphE is connected.

Proof. We note thatV(E) is naturally identified with the subset ofV(Sc) consist-
ing of all elements corresponding to a p-curve inSc cutting off a pair of pants con-
taining �1 and �2. Let � be the curve in Fig. 6 (a). We defineT as the set consist-
ing of the Dehn twists about the curves in Fig. 6 (b) and their inverses. The group
PMod(Sc) is generated byT (see [7]). Since for eachh 2 T , either h� D � or h�
and� are connected by an edge ofE and since any two vertices ofE are sent to each
other by an element of PMod(Sc), connectivity ofE can be proved as in the proof of
Lemma 3.3.
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(c)(a) (b)

α
β

∂1

∂2

α α r
srα(β)

Fig. 6. The surface obtained by cuttingS along c is described.
The pair{�, �} is an edge of the graphE .

We next introduce a set of arcs as follows.

Set A
�

. Pick � 2 V(E) and let6
�

denote the component ofS
�

that is not a
handle. We defineA

�

to be the subset ofA(6
�

) consisting of all elements whose rep-
resentatives are non-separating in6

�

and connect two distinct points of the boundary
component of6

�

corresponding to�.
For each edge{�, �} of E , we define an elementr

�

(�) of A
�

as follows. Let
b(�, �) be the BP inS associated with the sharing pair{�, �} in S, defined right after
Definition 5.1. Sinceb(�, �) cuts off a pair of pants from6

�

, we have an essen-
tial simple arc in6

�

disjoint from b(�, �) and connecting two distinct points of the
boundary component of6

�

corresponding to�, which uniquely exists up to isotopy.
Let r

�

(�) denote the isotopy class of that essential simple arc in6

�

.
The elementr

�

(�) can also be characterized in the following way. Let{�,�} be an
edge ofE , and choose representativesA and B of � and�, respectively, withjA\Bj D
i (�,�). We denote by6A the component of the surface obtained by cuttingS along A
that is not a handle. The intersectionB \ 6A consists of exactly two essential simple
arcs in6A whose isotopy classes are equal tor

�

(�).

Lemma 6.2. For each curve� 2 V(E) and each arc r2 A
�(�), there exists a

curve � 2 V(LkE (�)) satisfying the equality r
�(�)(�(�)) D r .

Proof. Let �
�

W Cs(6�) ! Cs(6�(�)) be the map defined as the restriction of�.
Corollary 4.4 shows that�

�

is induced by a homeomorphism from6
�

into 6
�(�), which

sends� to �(�). Let W be the set of all elements ofVs(6�(�)) disjoint from r . Note that
r is the only element ofA

�(�) disjoint from all elements ofW. There exists a unique
elementq 2 A

�

such that��1
�

(W) is equal to the set of all elements ofVs(6�) dis-
joint from q. Choose� 2 V(LkE (�)) with r

�

(�) D q. Since each element of��1
�

(W)
is disjoint from�, each element ofW is disjoint from�(�). We then have the equality
r
�(�)(�(�)) D r .
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By Corollary 4.4, for each� 2 V(E), the restriction of� to Cs(6�) is induced by
a homeomorphism from6

�

onto 6
�(�) sending� to �(�). We thus have the induced

bijection8
�

W A
�

! A
�(�).

Lemma 6.3. Pick � 2 V(E) and r 2 A
�

, and set

B D {� 2 V(LkE (�)) j r
�

(�) D r }.

Then we have the equality

�(B) D {Æ 2 V(LkE (�(�))) j r
�(�)(Æ) D 8�

(r )}.

Proof. By using the set of all elements ofVs(6�) disjoint from r as in the proof
of Lemma 6.2, we can show that the left hand side is contained in the right hand side
in the desired equality.

Let s be an element ofA
�

such thats is disjoint and distinct fromr , and the end
points of disjoint representatives ofr ands appear alternatively along� (see Fig. 6 (c)).
Let h 2 Mod(Sc) be the half twist about� exchanging�1 and �2 and being the identity
on 6

�

. We set

0 D {
 2 V(LkE (�)) j r
�

(
 ) D s}.

Applying the argument in the proof of Lemma 3.4, we have a numbering of elements,
B D {�n}n2Z and0 D {
m}m2Z, such that
• h(�n) D �nC1 and h(
m) D 
mC1 for any n, m 2 Z; and
• the full subgraph ofE spanned byB[0 is the bi-infinite line with�n adjacent to

n and 
nC1 for eachn 2 Z.
We also have the inclusions

�(B) � {Æ 2 V(LkE (�(�))) j r
�(�)(Æ) D 8�

(r )},

�(0) � {� 2 V(LkE (�(�))) j r
�(�)(�) D 8�

(s)}.

Since the map8
�

W A
�

! A
�(�) is induced by a homeomorphism from6

�

onto 6
�(�)

sending� to �(�), the two elements8
�

(r ) and8
�

(s) are disjoint and distinct, and the
end points of disjoint representatives of8

�

(r ) and8
�

(s) appear alternatively along�(�).
The argument in the proof of Lemma 3.4 shows that the subgraphof E spanned by the
union of the right hand sides of the above two inclusions is thus a bi-infinite line. In-
jectivity of � implies that both of the converse inclusions hold. The lemmafollows.

Lemma 6.4. If 8(c) D c, then the map

8c W Lk(c) \ Cs(S)! Lk(c) \ Cs(S)

defined as the restriction of8 is surjective.
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Proof. Since� preserves sharing pairs forc, � induces a simplicial map�cW E ! E .
Lemmas 6.2 and 6.3 show that for each� 2 V(E), the map from LkE (�) into LkE (�(�))
induced by�c is surjective. It follows from Lemma 6.1 that the map�c W E ! E is a
simplicial automorphism. In particular, the image of8c contains all h-curves� in S with
8(c) D c 2 V(H

�

).
Let � 2 V(Sc)\Vs(S) be a curve which is not an h-curve inS cutting off a handle

containingc. There then exists an h-curve
 in S with c 2 V(H



) and i (
 , �) D 0.
The argument in the previous paragraph shows that there exists a curve� 2 V(E) with
8c(�) D 
 . Theorem 4.3 implies that the map�

�

W Cs(6�) ! Cs(6
 ) defined as the
restriction of� is surjective. In particular, the image of�

�

contains�, and so does8c.

Using the last lemma, we conclude the following:

Theorem 6.5. Let SD S2,2 be a surface. Then any superinjective map fromCs(S)
into itself is induced by an element ofMod�(S).

Proof. Letc and d be non-separating curves inS with 8(c) D 8(d). Lemma 6.4
shows that the two maps

8c W Lk(c) \ Cs(S)! Lk(8(c)) \ Cs(S),

8d W Lk(d) \ Cs(S)! Lk(8(d)) \ Cs(S)

defined as the restriction of8 are surjective, and their images are equal. Since these
two maps are restrictions of the injective map�, we obtain the equalityc D d. It
follows that 8 is injective and is thus induced by an element of Mod�(S) by The-
orems 2.2 and 2.3.

7. Sg,p with g � 2 and j� j � 5

Let SD Sg, p be a surface withg � 2 and j�(S)j D 2g C p � 2 � 5. For each
superinjective map� W Cs(S) ! Cs(S), we prove that the simplicial map8 W C(S) !
C(S) constructed right after Proposition 5.3 is induced by an element of Mod�(S), by
induction on the lexicographic order of (g, p). The following lemma will be used to
complete the inductive argument. We mean by anhp-curvein S a curve inS which is
either an h-curve or a p-curve inS.

Lemma 7.1. Let X be a surface with its genus at least two andj�(X)j � 4. Then
the full subcomplex ofCs(X) spanned by all vertices corresponding to hp-curves in X
is connected.

Proof. The idea to prove this lemma is based on Lemma 2.1 of [20] as in Lem-
mas 3.3 and 6.1. It suffices to show that any two vertices ofCs(X) corresponding to
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(a) (b)

· · ·

...

Fig. 7. If S is a surface of positive genus, then PMod(S) is gen-
erated by the Dehn twists about the curves in (a) (see [7]).

h-curves inX can be connected by a path inCs(X) consisting of vertices correspond-
ing to hp-curves inX because for any p-curvea in X, there exists an h-curve inX
disjoint from a.

We defineT to be the set consisting of the Dehn twists about the curves inFig. 7 (a)
and their inverses. It is known that PMod(X) is generated byT (see [7]). Let� denote
the h-curve in Fig. 7 (b). One can check that for eachh 2 T , either h� D � or there
exists an hp-curve� in X with i (h�, �) D i (�, �) D 0. Since any two h-curves inX
are sent to each other by an element of PMod(X), the same argument as in Lemma 3.3
concludes the lemma.

Theorem 7.2. Let SD Sg, p be a surface with g� 2 and j�(S)j � 5. Then any
superinjective map fromCs(S) into itself is induced by an element ofMod�(S).

Proof. If � is an h-curve inS, then the component ofS
�

that is not a han-
dle is homeomorphic toSg�1,pC1. If � is a p-curve inS, then p � 2 and the com-
ponent of S

�

that is not a pair of pants is homeomorphic toSg, p�1. Since we as-
sume (g, p) ¤ (2, 2), (3, 0), Theorems 4.6 and 6.5 and the hypothesis of the induction
imply that the map�

�

W Lks(�)! Lks(�(�)) defined as the restriction of� is an iso-
morphism for each hp-curve� in S, where Lks(�) denotes the link of� in Cs(S) for
each� 2 Vs(S). Lemma 7.1 implies that� is surjective. Applying Theorem 2.4, we
conclude the theorem.

8. S3,0

We put S D S3,0 throughout this section. This case is dealt with independently
because the component of the surface obtained by cuttingS along an h-curve inS is
homeomorphic toS2,1 and inductive argument as in Section 7 cannot be applied. We
first prove that any superinjective map from the Torelli complexT (S) into itself is
induced by an element of Mod�(S).
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b1

b2α1

α2

β1

β2

Fig. 8.

Proposition 8.1. Any superinjective map W T (S)! T (S) is induced by an elem-
ent of Mod�(S).

Proof. By Lemma 3.7 in [15], we know that preserves vertices which corres-
pond to separating curves and BPs inS, respectively. Applying the construction of a
simplicial map fromC(S) into itself, discussed right after Proposition 5.3, to there-
striction of  to Cs(S), we obtain a simplicial map9 W C(S)! C(S).

Claim 8.2. The equality

{9(b1), 9(b2)} D  ({b1, b2})

holds for each BP{b1, b2} in S.

Proof. Pick a BP{b1, b2} in S. Let �1 and �2 be the curves inS described in
Fig. 8. We note that{�1,�2} is a sharing pair inS with b(�1,�2)D {b1,b2}. In general,
for each sharing pair{�,�} in S, b(�,�) is the only BP inS disjoint from � and�. By
Lemma 5.11,{9(b1),9(b2)} is a BP inS. Since{9(b1),9(b2)} and ({b1,b2}) are BPs
in S disjoint from the sharing pair{ (�1),  (�2)}, we have the desired equality.

Let c be a non-separating curve inS. We define a simplicial map c W Cs(Sc) !
Cs(S9(c)) as follows. Pick� 2 Vs(Sc). If the curve� is separating inS, then we set
 c(�) D  (�). Otherwise{�, c} is a BP in S and we have the equality ({�, c}) D
{9(�), 9(c)} by Claim 8.2. In this case, we set c(�) D 9(�). Since W T (S) !
T (S) is superinjective, so is c. Theorem 6.5 shows that c W Cs(Sc) ! Cs(S9(c)) is
an isomorphism.

If c and d are non-separating curves inS with 9(c) D 9(d), then the images of
the two maps c and d are equal. Since is injective, the equalityCs(Sc) D Cs(Sd)
holds, and we thus havec D d. It follows that 9 is injective. Theorems 2.2 and 2.3
show that9 is induced by an element of Mod�(S).
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Let � W Cs(S) ! Cs(S) be a superinjective map, and let8 W C(S) ! C(S) be the
simplicial map constructed right after Proposition 5.3. Inthe rest of this section, we
prove that8 is an automorphism by using Proposition 8.1. We note that8 induces a
simplicial map fromT (S) into itself by Lemma 5.11. This induced map is also denoted
by the same symbol8.

Lemma 8.3. Let b be a BP in S, and let R1 and R2 denote the two compo-
nents of Sb. We suppose that the equality8(b) D b holds and that for each jD 1, 2,
the inclusion

8(C(Rj ) \ Cs(S)) � C(Rj ) \ Cs(S)

holds. Then for each jD 1, 2, the map

8 j W C(Rj ) \ Cs(S)! C(Rj ) \ Cs(S)

defined as the restriction of8 is surjective.

Proof. For eachj D 1, 2, the map8 j preserves two separating curves inRj

whose intersection number is equal to four since� preserves sharing pairs inS. It fol-
lows that8 j induces an injective simplicial map from the graphD D D(Rj ), defined
in Section 3, into itself. Proposition 3.1 then shows that8 j is surjective.

Lemma 8.4. The simplicial map8 W T (S)! T (S) is superinjective.

Proof. We first prove that ifa is a separating curve inS andbD {b1,b2} is a BP
in S with i (a, b) ¤ 0, theni (8(a),8(b)) ¤ 0. Choose separating curves�1, �2, �1 and
�2 in S as described in Fig. 8. It follows fromi (a, b) ¤ 0 that there existj , k 2 {1, 2}
with i (a,� j ) ¤ 0 and i (a,�k) ¤ 0. Superinjectivity of� implies i (�(a),�(� j )) ¤ 0 and
i (�(a), �(�k)) ¤ 0. Since�(� j ) and �(�k) are curves in distinct components ofS

8(b),
we havei (8(a), 8(b)) ¤ 0.

We next prove that8 is injective on Vbp(S), the set of vertices ofT (S) corres-
ponding to BPs inS. Let b and c be BPs inS with 8(b) D 8(c). Lemma 8.3 shows
that both of the maps

8b W Lkt (b) \ Cs(S)! Lkt (8(b)) \ Cs(S),

8c W Lkt (c) \ Cs(S)! Lkt (8(c)) \ Cs(S)

defined as the restriction of8 are surjective, where Lkt (d) denotes the link ofd in
T (S) for each BPd in S. The images of8b and8c are then equal. Since the map
� W Cs(S)! Cs(S) is injective, we obtain the equalitybD c.

Note that for anyb,c 2 Vbp(S), we haveb¤ c if and only if i (b,c)¤ 0. Injectivity
of 8 on Vbp(S) implies i (8(b), 8(c)) ¤ 0 for any b, c 2 Vbp(S) with i (b, c) ¤ 0. The
lemma then follows.
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The last lemma and Proposition 8.1 imply the following:

Theorem 8.5. Let SD S3,0 be a surface. Then any superinjective map fromCs(S)
into itself is induced by an element ofMod�(S).

9. Proof of Theorem 1.2

Let S be the surface in Theorem 1.2, and let� W T (S)! T (S) be a superinjective
map. We now prove that� is induced by an element of Mod�(S). It is shown in
Lemma 3.7 and Proposition 3.16 of [15] that� preserves vertices corresponding to sep-
arating curves and BPs inS, respectively. Applying Theorem 1.1 (i) to the restriction
of � to Cs(S), we can find
 2 Mod�(S) such that the equality�(a) D 
a holds for
any a 2 Vs(S).

We define a simplicial map�0W T (S)! T (S) by setting�0(a) D 
 �1
�(a) for each

vertex a of T (S). For each BPb in S, one can find a collectionF of finitely many
separating curves inS such thatb is the only BP inS disjoint from any curve inF
(see Fig. 8 for example). Since�0 is the identity onF , it also fixesb. It follows that
�0 is the identity and that� is induced by
 .

We have proved assertion (i) of Theorem 1.2. We omit the proofof assertion (ii) of
Theorem 1.2 because assertion (ii) can be derived from assertion (i) along the argument
in Section 5 of [3] and Section 6.3 of [15].
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