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Abstract
Let X be a smooth complex projective variety and letbe a line bundle on it.
We describe the structure of the pre-polarized manifddL() for non integral values
of the invariantr (R) := —Kx-T'/(L-T"), whereTl is a minimal curve of an extremal
ray R:=R,[T'] on X such thatL - R > 0.

Introduction

Let X be a smooth complex projective variety and letbe a line bundle orX.
Assume that the canonical bundie of X is not nef. In classicaadjunction theory
L is assumed to be ample; so by tkawamatés rationality theorenthe invariantr :=
7(X,L) = min{t e R: Kx +tL is nef is a positive rational number, called tnefvalue
of (X,L). By the Kawamata—Shokurov base point free theoiem possible to consider
the morphism defined by a (sufficiently large) multiple of tiigisor Kx + L. Then
the classification of polarized manifoldX,(L) in terms of the values of and based
on the study of the structure of this morphism is a naturalstjoe. The book [8] is
a good reference for adjunction theory.

One main obstruction to extending this study to the case whésn merely nef is
given by the possible existence of cyclBs NE(X) such thatKx-Z <0 andL-Z = 0.
Clearly in this case the invariantis not defined. In [7] we circumvent this problem in
the following way: sinceKy is not nef, it is well-known that there exists (at least) an
extremal rayR := R_[I'] on X, wherel is a rational curve of minimal anticanonical
degree among curves whose numerical class belongg; tior any ray R satisfying
L-T > 0, we define the invariant, (R) := —Kx - T'/(L - T") (see [7, Definition 1.1])
and we call it theL-length of R. This does not requiré to be nef, so we can in fact
work with any line bundleL, i.e. with anypre-polarized manifold(X, L). In [7] we
deal with varieties with extremal rays df-length > n— 2.

However, it is possible to consider non integral values off L is ample, i.e. for
polarized manifolds, we refer to [8, Chapter 7], [12], [20]da[6]. In this paper, we
investigate the general situation when a pre-polarizedetyaadmits an extremal ray
whose L-length is not integer, so that it satisfies— k < 7. (R) < n—k + 1, n # k,
with the technical assumption (cf. [6, Theorem 2.4]F 2k — 3.
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348 C. NOVELLI

The paper is organized as follows: in Section 1 we recall sbagkground mate-
rial, while in Section 2 pre-polarized manifoldX,(L) admitting a nefL-positive ex-
tremal ray of length> n—2 are described; building on these descriptions, in Se@ion
we classify pairs X, L) admitting an extremal ray of non-integratlength; finally, in
Section 4 we apply our results to describe rays-positiveifolals (see Definition 4.1)
and the nefvalue morphism o( L) if in addition we assume thdt is ample.

1. Background material

Let X be a smooth projective variety of dimensiordefined over the field of com-
plex numbers. LeN;(X) be theR-vector space of 1-cycles modulo numerical equiva-
lence. We denote withx its dimension and we call it thBicard numberof X. Inside
Ny(X) we consider th&leiman—Mori coneNE(X) of X, that is the closure of the cone
of the effective 1-cycles oiX. If the negative part oNE(X) (with respect toKy) is
not empty, then a face in this part of the cone is calledeatremal facg and if it
is 1-dimensional it is called aextremal ray By the contraction theoremto any ex-
tremal faceX is associated a proper surjective morphigm X — Y onto a normal
variety which exactly contracts all the curves with numalriclass inZ, whose fibers
are connected and such thaKy is ®-ample. Such a morphism is usually called a
Fano—Mori contraction or anextremal contractionit is said to be arelementarycon-
traction when it is associated with an extremal ray. Moreower say thatd is of fiber
typeif dim X > dimY, otherwise we say that it ibirational. In the last case we say
that @ is divisorial if it contracts an it — 1)-dimensional subvariety oX.

An extremal ray is denoted bR, its contraction bypr and the exceptional locus
of pr by E. If ¢g is of fiber type, we say thaR is nef otherwise we say thaR is
non nef We will write R asR[T"], with T a rational curve such thatKx -I' = [(R),
where | (R) is the length of R (that is the minimum anticanonical degree of rational
curves contracted byg).

We recall that a smooth complex projective varietyis called aFano manifold
if its anticanonical bundle-Kx is an ample Cartier divisor. To a Fano manifold
are associated two invariants, namely ihdex rx, defined as the largest integer di-
viding —Kx in the Picard group ofX, and thepseudoindexiy, defined as the mini-
mum anticanonical degree of rational curves ¥n Since X is smooth, PicX) is tor-
sion free; so the divisoH satisfying—Kyx = rxH is uniquely determined and called
the fundamental divisorof X. It is a classical result thaty < dim X + 1, equal-
ity holding if and only if (X, H) = (P9™X, Opamx(1)); moreover,ry = dim X if and
only if (X, H) = (QYMX, Ogamx(1)). Finally, we define alel Pezzo manifolqresp. a
Mukai manifolg as a pair K, L) where L is an ample line bundle oiX such that
—Kx = (dim X — 1)L (resp.—Kx = (dim X — 2)L).

Throughout the paper we will denote I6y" (resp.Q") the smooth (resp. singular
irreducible and reduced) hyperquadricI®#*+?, unless otherwise stated.
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2. Contractions of extremal rays of non-integral L-length

DEerINITION 2.1 ([7, cf. Section 1]). LetX be a smooth complex projective va-
riety of dimensionn > 3 and letL be a line bundle onX. An extremal rayR :=
R_[I'] of NE(X) is said L-positiveif L-I" > 0. To such a ray we associate the (posi-
tive) rational number

W)= 2

that we callL-length of R.
We will work in the following setup.

2.2. Let X be a smooth complex projective variety of dimensior 3 and letL
be a line bundle orX. Let R:=R_[I"] be an L-positive extremal ray and denote by

7. (R) its L-length.

We will describe all possible pairsX( L) under the assumption that (R) ¢ Z. Notice
that, sincer (R) < n+ 1, there exists a nonnegative intedesuch that

(2.2.1) n—k<t(R)<n—-k+ 1.

Moreover, beingr, (R) a positive number, we have < n. We will make use of these
general facts: sincé - I' > 2, the length ofR is bounded as

(2.2.2) I(R) = 1, (R)(L - T') = 27, (R) > 2(n — k),
hence
(2.2.3) k>n- I(R)T_l(z g) so that k = 2.

Furthermore, ifn > k, the bounds in (2.2.1) imply

R IR

(22.4) n—-k+1 n—k

We will make use of the following result.

Lemma 2.3. Let X, L, R:=R,[I'] and 7 (R) be as in2.2. Assume thad #
n—k <t (R) <n—k+1and that n> 2k —3. If X is a Fano manifold withox = 1,
then rk = I(R) and L is ample.
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Proof. IfI(R) =n+1, the assertion follows from [9]; so we can assurffe) < n.
Denote byH the fundamental divisor oK. Since—Kyx = 7L, wheret := 7 (R), we
see thatL is ample; thenL = mH for some positive integem and we have

(2.3.1) rxH-I'=—Kyx-I'=7L-I =tmH-T,

from which we getrx = tm, whencem > 2. We have to prove thdil -T" = 1. Assume,
to get a contradiction, thatl - T" > 2. From (2.3.1) we derive

(2.3.2) >ryx =tm=> 2t > 2(n—Kk),

NS

which gives & > 3n+1. So we have 2(+ 3) > 4k > 3n+1, yieldingn < 5. However,
taking into account (2.3.2), this gives a contradictionrgds an integer. ]

There are recurrent situations in our proofs; the easiest,dae. whenX admits
an L-positive extremal ray of length(R) = n+ 1, is settled in the following

Proposition 2.4. Let X, L, R:=R,[I'] and 7. (R) be as in2.2. Assume that
0O#n—-k<7(R)y<n—k+1 If I((R)=n+ 1, then one of the following holds
(1) k> 2 and (X, L) = (P%, Opx(2));

(2) k=2and (X, L) = (P3 0ps(3));
(3) k=3 and
(31) (X, L) = (P*, Op(3));
(3-2) (X, L) = (P*, Ops(4));
(4) k=4 and

(41) (X, L) = (P°, Ops(3));

(4-2) (X, L) = (P, Ops(4));

(4-3) (X, L) = (P, Ops(5));

(5) k=5and (X, L) = (P’, Op7(3));
(6) k=6 and (X, L) = (P% Ops(3));
(7) k+1<n=<2k—4 (so k>=5)and (X, L) = (P", Opn(m)), with m:= L -T.

Proof. First of all note that, since (R) > 0 andn — k # 0, we haven > k.
On the other handy < 2k by (2.2.2). Moreover, the assumptidfR) = n + 1 implies
X =P" by [9]. Since, according (2.2.3k > 2, it is now easy to show the assertion
by using the inequalities in (2.2.4). O

If X admits anL-positive extremal ray of length(R) = n, we have following
Proposition 2.5. Let X, L, R:=R,[I'] and 7. (R) be as inSubsection 2.2As-

sume thatd #n—k < 7. (R) < n—k + 1 and that n> 2k — 3. If I(R) = n, then one
of the following holds
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(i) px =1 and one of the following holds
(1) k=2and (X, L) = (Q*71, Ogz1(2));
(2) k=3 and (X, L) = (Q* Og:(3));
(3) k=4 and
(31) (X, L) = (Q° Ogs(4));
(3-2) (X, L) = (Q° Oqgs(3));
(4) k=5 andX, L) = (Q7, O¢:(3));
(i) px =2, pr(X) is a smooth curve and one of the following holds
(5) k> 2, and (F, Lg) = (P*2, Opa2(2)) for any fiber F ofgg;
(6) k=3 and(F, Lg) = (P2, Ops(3)) for any fiber F ofgpg;
(7) k=4 and
(71) (F, Lg) = (P*, Op4(3)) for any fiber F ofpg;
(7-2) (F, Lg) = (P%, Ops(4)) for any fiber F ofgg;
(8) k=5, and (F, Lg) = (P®, Ops(3)) for any fiber F ofgr.

Proof. The assumptio{ R) = n together with equation (2.2.2) implies< 2k—1,

moreover, [17, Proposition 2.4] gives the following podgibs:

(i) X is a Fano manifold withox = 1;

(i) px =2 andgpr: X — Y is a morphism onto a smooth curvé whose general
fiber F is a smooth variety of dimension— 1 and Picard numbepr = 1 admitting
an extremal rayR) := R4 [C] of length dimF + 1 = n.

Assume first thatX is as in case (i) so that, by Lemma 2X2,is a Fano manifold
with rx = dim X; it follows that (X, H) = (Q", Ogn(1)). Recall that, by (2.2.3% > 2.
If k=2, thenn = 3; hence taking into account the inequalities in (2.2.4) g€ apse
(1) (with k = 2) of the statement; ik = 3, then 4<n <5, so, using (2.2.4), we derive
the cases (2) and (1) (witk = 3); as tok > 4, recall that R—3<n < 2k—1, so, by
(2.2.4), we obtain cases (1) (with> 4), (3) and (4).

Assume now thatX is as in case (ii) and considd¥, the general fiber ofpg.
Since Kx + 7 (R)L is trivial on F, we haver) := 7. (Rr)) = 7.(R), so dimF —
Ky < ry < dimF —kery + 1, wherekFy := k—1. If k=2, thenn = 3; soLg-C = 2,
in view of the bounds in (2.2.4). It follows that the restiget of 2Ky + 3L to F is
trivial, hence it is immediate to deriveF( Lg) = (P?, Op2(2)). Moreover, all fibers
of gr are irreducible and reduced, so by semicontinuity we find, tf@ any fiber
G of ¢r, 0 < A(G, Lg) < A(F, Lg) = 0, whence G, Lg) = (P?, Op2(2)) by [11,
Theorems 5.10 and 5.15]. This leads to case (5) (kith 2) of the statement. As to
k > 3, we apply Proposition 2.4 t&. Therefore F,Lg) = (P"1,Opn1(a)), Wherea is
known. If (F,Lg) # (P* 0Op4(3)), the line bundleN := —Kx —(n—K)L is pr-ample and
N-TI' = 1. Since, for some ample line bundfeon Y, the line bundleM := N + g A
is ample onX and Kx + nM is trivial on R, we derive £, Mg) = (P"1, Opn1(1)).
Since ¢r is equidimensional, K, Mg) = (P"%, Opn1(1)) for any fiber ofpr by [10,
Lemma 2.12]. It is now immediate to see th&, () = (P"%, Opn-1(a)) for any fiber
F of gr. If (F, Lg) = (P4 Op:«(3)), we consider the line bundll := Ky + 2L and
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we conclude with the same argument. [l
If X admits anL-positive extremal ray of length(R) = n—1, we have following

Proposition 2.6. Let X, L, R:= R [I'] and 7 (R) be as in2.2. Assume that
0#n—k <t (R)<n—k+1and that n> 2k—3. If R is nef and (R) = n—1, then
one of the following holds
() px =1 and one of the following holds

(1) k=3, (X, H) is a del Pezzd2k — 2)-fold and L= 2H;

(2) k=4, (X, H) is a del Pezzdb-fold and L= 3H;

(i) px =2, pr(X) is a smooth variety and one of the following holds

(3) k=3,n=2k—-2and
(31) (F, Lg) = (P4, Opa4(2)) for any fiber F
(3-2) (F, L) = (Q%* 3, Oga3(2)) for all smooth fibers F (G, Lg) = (Q* 3,
Oqz-3(2)) for the singular fibers G(if any);

4) k=4,n=5and
(41) (F, Lg) = (P2, Ops(3)) for any fiber F
(4-2) (F,Lg) = (Q% Ogs(3)) for all smooth fibers F (G, Lg) = Q% O0x#(3))
for the singular fibers G(if any);

Proof. By assumption(R) = n—1, son < 2k — 2 from equation (2.2.2). Note
thatk > 3, sincen > 3. Moreover, by (2.2.4), ih = 2k—3 thenL -T' = 3 andk = 4,
while if n=2k—2 thenL-T" = 2.

Assume first thatox = 1; then, according to Lemma 2.¥ is a Fano manifold
with rx =n—1; so (X, H) is a del Pezzo manifold. Sinde = 3H if n = 2k—3, and
L =2H if n= 2k -2, it is straightforward to get case (i) of the statement.

We can thus assume thak > 2. By [19, Theorem 1.1] the target of the contrac-
tion pr: X = Y is a variety of dimension 1 or 2; hendéis smooth andpr is equidi-
mensional by [2, cf. Proposition 1.4.1]. Sink&e + 7. (R)L is trivial on general fibers
F of ¢g, these fibers are Fano manifolds of pseudoindex dimF; so pr = 1 by
[18, Theorem A]. MoreoverF admits an extremal raRkr) such that (RF)) =n—1,
hencerry := 7. (RF)) = 1.(R), so dimF — k) < 7ry < dimF — k) + 1, where
Ky :=k—dimY. Recall thatn = 2k—3 or X —2. If dimY = 1, then dimF = [(R))
andke) := k—1(> 2). So Proposition 2.5 applies an8,(Lr) is either Q% Ogs(3)) if
k=4, or @Q*3, Oga=s(2)) if k> 3. In the first case, the line bundk := —Kx — L
is pr-ample andN - I' = 1. Sincegg is equidimensional and, for some ample line
bundle AonY, M := N + ¢4A is ample andKx + (n — 1)M is nef and it is triv-
ial only on R, by [3, Theorem B] we have thaf := ¢r.M is a locally free sheaf
of rank n + 1 and X embeds intoPy(£) as a divisor of relative degree 2. Then we
derive case (4-2) of the statement. In the last case, the sagenent applied to
N := Kx + (k — 1)L give case (3-2). If din¥ = 2, then dimF = I(Rf)) — 1 and
kFy :=k—=2(=1). If k=3, thenn =4 and, since Kx + 3L is trivial on F, it is



EXTREMAL RAYS OF NON-INTEGRAL L-LENGTH 353

immediate to derive R, Lg) = (P2, Op2(2)); if k > 4, then Proposition 2.4 applies, so
(F, Lg) can be P3, Ops(3)) if k =4 and P4, Opx-4(2)) for k > 4. If the first two
cases, the line bundlsl := —Kyx — L is gr-ample andN -T" = 1. Since, for some am-
ple line bundleA on Y, the line bundleM := N +¢:A is ample andKx + (n—1)M is
trivial on R, we derive that F, Mg) = (P"2, Opn2(1)). Sincegr is equidimensional,
(F, Mg) = (P"2, Opn2(1)) for any fiber ofpr by [10, Lemma 2.12]. It is immediate
to see that, for any fibeF of ¢gr, (F,Lg) = (P" %, Opn2(a)), with a = 2 and 3, resp.
In the last case, we can apply the same argumerd te= Kx + (k— 1)L. So we get
cases (4-1) and (3-1). []

If X admits anL-positive extremal ray of length(R) = n— 2, we have following

Proposition 2.7. Let X, L, R:= R,[I'] and . (R) be as in2.2. Assume that
0#n—k <7 (R)<n—k+1and that n> 2k—3. If R is nef and (R) = n— 2, then
one of the following holds
) prx=1,

(1) k>4, (X, H) is a Mukai (2k — 3)-fold and L= 2H;

(i) px > 2 and one of the following holds

(2) k=4, gr(X) is a smooth curve an(F, Lg) = (P2 x P?, Op2,p2(2, 2)) for the

general fiber F ofpg;

3) k=4,

(3-1) ¢r(X) is a smooth curve(F, H(r)) is del Pezzq2k—4)-fold with pr =1
and Lr = 2H(ry for the general fiber F ofpg;

(3-2) pr(X) is a smooth surface(F, Lr) = (Q%5, Oga-s(2)) for all smooth
fibers F ofgr and (G, Lg) = (Q%°, Oqa-s(2)) for singular fibers G(if any);
(3-3) pr(X) is a 3-fold with at most isolated rational Gorenstein singul&g
(F, Lg) = (P%8, Opas(2)) for any fiber F over the smooth locus @&k(X)
and dimG = 2k — 5 for all fibers G over the singular locus afr (if any).

Proof. Notice that our assumptions together with condit{@m®.2) imply n =
2k — 3, so thatk > 4. Moreover, by (2.2.4) we have - T' = 2.

Assume first thatox = 1; then, according to Lemma 2.X is a Fano manifold
with rx =n—2, so X, H) is a Mukai manifold and we get case (i) of the statement.

We can thus assume that > 2. By [19, Theorem 1.1] the target of the con-
traction pr: X — Y is a variety of dimension 1, or 2, or 3. If dim= 1 or 2,
then Y is smooth andygr is equidimensional by [2, cf. Proposition 1.4.1], while, if
dimY = 3, then it is well-known thal¥ has rational, Gorenstein singularities (cf. [13,
Corollary 7.4]). Moreover, they are also isolated: take aegaindivisorD € |p5Oyv(1)];
since ¢0y(1) is base point free an& is smooth, by Bertini’'s theorem alsD is
smooth; thenpg restricted toD is an elementary contraction onto a surfe&gewhich
is smooth by [2, cf. Proposition 1.4.1]; s6 has isolated singularities. K = 4, then
n=>5 andl(R) = 3. Moreover, the general fibéf is a Fano manifold such that 2
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dimF <4 andir = 3. Therefore, unles§ = P2 xP?, pr = 1 (see [14, Theorem 3]).
In this last case, leH) be the fundamental divisor df. SinceKx 4 (3/2)L is trivial
on F, then F, He) is one of the following: a del Pezzo 4-foldQ¢, Og:(1)) (by [17,
Corollary 2.6]) or P2, Op2(1)). Therefore we get cases (2) and (3) (witk= 4) of the
statement. As tk > 5, since the general fibdf of g admits an extremal raiRr) of
lengthn—2, we have dinF —kFy < 7(ry < dimF —kr) 41, wherergy := 7 (Rp)) =
7L (R) and ki := k—dimY. SinceKx + 7 (R)L is trivial on F, suchF is a Fano
manifold with i > dimF — 1; so, recalling that dinkr > n — 3 > 4, by using [18,
Theorem A] and [15, Theorem 1], we deriyg = 1 unlessF = P? x P2, However, in
this last casek = 5 andn = 7, so F cannot have extremal rays of length- 2 = 5.
Thenpr = 1. If dimY = 1, then, for a suitable ample line bundigr) on F, (F, Hiry)
is a del Pezzo @— 4)-fold andLr = 2H(r) by Proposition 2.6; so we get case (3-1)
(with k > 5) of the statement. If ditf = 2, then §,Lg) = (Q%5, Oga-s(2)) by Prop-
osition 2.5, while if dimY = 3, then §, Lg) = (P%~%, Opzs(2)) by Proposition 2.4.
To complete the proof, note that in both cases the line buhdle- Ky + (k — 2)L is
pr-ample andN -T" = 1. Moreover, for some ample line bundfeon Y, the line bun-
dle M := N + @5 A is ample andKx + (n—2)M is nef and it is trivial only onR. If
dimY = 2, sincegg is equidimensional, by [3, Theorem B] we have tlat= ¢r.M
is a locally free sheaf of rank and X embeds intdPy(£) as a divisor of relative de-
gree 2, so we get case (3-2) (wikh> 5). If dimY = 3, following the proof of [10,
Lemma 2.12] we see thair(F) is a smooth point if dinF = n — 3 sincegpr cannot
have divisorial fibers by [1, Lemma 1.2] and the argument callo Therefore the di-
mension of any fiber over the singular locus Yfis n — 2. Moreover, there does not
exist any fiber over the smooth locus ¥fwhose dimension im—2, since otherwise
would be equal to 4 by [5, Theorem 4.1], contradicting- k. Thereforepg is equidi-
mensional over the smooth locus ¥f so that ¥, M) is a scroll here (cf. the proof
of [10, Lemma 2.12]). It is now immediate to see that, for arbefiF of gpr over
the smooth locus,R, Lg) = (P" 1, Opn2(2)). Then we get case (3-3) (with> 5) of
the statement. O

3. \Varieties with an extremal ray of non-integral L-length

In this section we apply the results of the previous sectmuolassify pairs X, L),
whereX, L are as in 2.2 and (2.2.1) holds. In particular, accordingotaddion (2.2.3),
k > 2. Casek = 2 is already settled in [7, Proposition 1.4], so we confin&kte 3.
The following proposition takes care of the cdse= 3.

Proposition 3.1. Let X, L, R:=R,[I'] and 7 (R) be as in2.2. Assume that
0#n-3< 1 (R) <n-2. Then one of the following holds
() px =1 and one of the following holds

(1) n=6, 7. (R) = 7/2 and (X, L) = (P®, Ops(2));

(2) n=5, 7. (R) =5/2 and (X, L) = (Q°, Ogs(2));
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(3) n=4,
(3-1) 7. (R) = 5/4 and (X, L) = (P*, Ops(4));
(3-2) 7.(R) = 5/3 and (X, L) = (P4, Op4(3));
(3-3) 7.(R) = 4/3 and (X, L) = (Q* Op«(3));
(3-4) . (R) = 3/2, (X, H) is a del Pezzo manifold and £ 2H;

(i) px = 2, pr(X) is a smooth variety and one of the following holds

(4) n=5, 7. (R)=5/2 and (F, Lg) = (P*, Op«(2)) for any fiber F ofyg;

(5) n=4,
(5-1) . (R) = 4/3 and (F, L) = (P2, Ops(3)) for any fiber F ofgg;
(5-2) 7. (R) = 3/2 and (F, Lr) = (Q3, Og:(2)) for all smooth fiber F ofpr
and (G, Lg) = (Q3, Oq:(2)) for singular fibers G(if any);
(5-3) 7.(R) = 3/2 and (F, Lg) = (P?, Op2(2)) for any fiber F ofgpg;
(5-4) t.(R) = 3/2 and ¢R is the blow-up of Y at one point.

Proof. Assume first thaR is a non nef extremal ray. Then the bound in (2.2.2)
combined with [19, Theorem 1.1] yields = 4 andl(R) = 3. Therefore, by [4, The-
orem 1.1],pr: X — Y is the blow-up of a smooth 4-foldf at one point. By computing
L -T" with (2.2.4), we get case (5-4) in the statement.

Suppose now thaR is nef. Then the bound in (2.2.2) implies< 6. If n = 6,
thenl(R) = 7, so we get case (1) of the statement by Proposition 2.4. 35, then
6 > I(R) > 5, so we get cases (2) and (4) by Propositions 2.4 and 2.5.4f4, then
5>1(R) > 3, so we get cases (3) and (5-1)—(5-3) by Propositions 2x4ad 2.6. []

Now, we can assumk > 4. We obtain the following

Proposition 3.2. Let X, L, R:= R,[I'] and 7. (R) be as in2.2. Assume that
0#n—-k<7t(R)y<n—k+1,k=>4and n>2k—3. Then one of the following holds
(i) px =1 and one of the following holds

1) n=2k, 7. (R) = (n+ 1)/2 and (X, L) = (P", Op~(2));

(2) n=2k—1, 7 (R) =n/2 and (X, L) = (Q", Ogn(2));

(3) n=2k-2,

(3-1) 7. (R) = 7/3 and (X, L) = (P5, Ops(3));
(3-2) . (R) = (n—1)/2, (X, H) is a del Pezzo manifold and £ 2H;

4) n=2k-3,

(4-1) 7. (R) = 10/3 and (X, L) = (P°, Ops(3));
(4-2) 7. (R) = 8/3 and (X, L) = (P, Op1(3));
(4-3) . (R) = 6/5 and (X, L) = (P°, Ops(5));
(4-4) . (R) = 3/2 and (X, L) = (P°, Ops(4));
(4-5) 7 (R) = 7/3 and (X, L) = (Q', Og7(3));
(4-6) ©.(R) = 5/4 and (X, L) = (Q°, Oqgs(4));
(4-7) 7.(R) = 5/3 and (X, L) = (Q° Ogs(3));
(4-8) 7. (R) = 4/3, (X, H) is a del Pezzdb-fold and L= 3H;
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(4-9) 1. (R) = (n—=2)/2, (X, H) is a Mukai manifold and L= 2H;
(i) px =2 and one of the following holds

(5) n=2k—1, 7. (R) = n/2, pr(X) is a smooth curve andF, L) = (P" 1,

Opn-1(2)) for any fiber F ofgg;

(6) n=2k—-2,
(6-1) . (R) = (n — 1)/2, ¢r(X) is a smooth surface an@F, Lg) = (P"2,
Opn-2(2)) for any fiber F ofgg;
(6-2) . (R) = (n—1)/2, pr(X) is a smooth curve(F, Lg) = (Q"1, Ogn1(2))
for all smooth fibers F ofr and (G, Lg) = (Q"*, Ogn-1(2)) for the singular
fibers G (if any);
(6-3) 7. (R) = (n —1)/2 and ¢R is the blow-up of Y at one point

(7) n=2k-3,
(7-1) 7. (R) = 7/3, ¢r(X) is a smooth curve and@F, Lg) = (P8, Op4(3)) for
any fiber F ofgg;
(7-2) 7. (R) = 5/4, ¢r(X) is a smooth curve andF, Lg) = (P4, Op4(4)) for
any fiber F ofgg;
(7-3) .(R) = 5/3, ¢r(X) is a smooth curve andF, Lg) = (P4, Op«(3)) for
any fiber F ofgg;
(7-4) 1. (R) = 4/3, ¢r(X) is a smooth surface angF, Lg) = (P2, O3(3)) for
any fiber F ofgg;
(7-5) 7. (R) = 4/3, r(X) is a smooth curve angF, Lg) = (Q*, Og«(3)) for
all smooth fibers F ofpg and (G, Lg) = (Q%, 0q4(3)) for the singular fibers
G (if any);
(7-6) . (R) = 3/2, ¢r(X) is a smooth curve andF, L) = (P? x P?,
Op2,p2(2, 2)) for the general fiber F ofpg;
(7-7) 1L (R) = (n—=2)/2, ¢r(X) is a smooth curve(F, Hr)) is del Pezzqn—
1)-fold with pr = 1 and Lr = 2Hr) for the general fiber F ofpg;
(7-8) ©L.(R) = (n—2)/2, pr(X) is a smooth surfaggF,Lg) = (Q"2,Ogn-2(2))
for all smooth fibers F ofpg and (G, Lg) = (Q"2, Ogn-2(2)) for singular
fibers G (if any);
(7-9) 7L (R) = (n — 2)/2, ¢r(X) is a 3-fold with at most isolated rational
Gorenstein singularities(F, L) = (P"3, Opn2(2)) for any fiber F over the
smooth locus ofr(X) and dimG = n — 2 for all fibers G over the singular
locus ofpgr (if any);
(7-10) t.(R) = 4/3 and ¢R is the blow-up of a smooth-fold Y at one point
(7-11) . (R) = (n — 2)/2 and ¢ is the blow-up of a smooth variety Y along
a smooth curve
(712) 7. (R) = (n — 2)/2, ¢r(E) is a point and(E, —Eg) is either (P"2,
Opn-1(2)), or (Q"1, Ogn-1(1)), whereQ" 1 is a possibly singular hyperquadric.

Proof. Assume first thaR is a non nef extremal ray. Sind¢R) < n — 1, the
bound in (2.2.2) yieldsr = 2k —2 or X — 3. In the former case, by [4, Theorem 1.1],
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we get case (6-3) of the statement, while in the latter, takimo account (2.2.4), we
get cases (7-10)—(7-12) by [4, Theorems 1.1 and 5.2].

Assume now thaR is nef. Then the bound in (2.2.2) givek23 <n <2k. If n=
2k, thenl(R) = n+ 1, so we get case (1) of the statement by Proposition 2.4.=H
2k—1, then, recalling (2.2.4)(R) = n, so we get cases (2) and (5) by Proposition 2.5.
If n =2k — 2, then, recalling (2.2.4), eithd(R) = n + 1, or [(R) = n — 1; in the
former case we get case (3-1) by Proposition 2.4, while inlditter we get cases (3-
2), (6-1) and (6-2) by Proposition 2.6. if =2k — 3, thenn -2 <I(R) <n+ 1; if
[(R)=n+1, we get cases (4-1)—(4-4) by Proposition 2.4t(R) = n, we get cases
(4-5)—(4-7) and (7-1)—(7-3) by Proposition 2.5;IfR) = n — 1, we get cases (4-8),
(7-4) and (7-5) by Proposition 2.6; i{R) = n—2, we get cases (4-9) and (7-6)—(7-9)
by Proposition 2.7. []

4. Application to semi-polarized varieties

In this section we will use the previous results to descrénes-positive manifolds
(see Definition (4.1)) and to describe the nefvalue morphignpolarized manifolds.
We first recall the notion ofays-positive manifoldntroduced in [7, Section 2].

Let (X,L) be asemi-polarized manifold.e. a pair consisting of a smooth complex
projective varietyX of dimensionn > 3 and a nef line bundlé on X. Assume that
K is not nef, or, equivalently, thaX is not minimal in the sense of thminimal model
program We can define the numerical invariant given by

(4.0.1) o:=o0(X,L)=supt e R: tKx 4+ L is nef.

By the Kawamatés rationality theoremo is a (non-negative) rational number and there
exists an extremal rayR in NE(X) such that §Kx + L)- R= 0. Clearlyo > 0 if L
is ample. We refer to [7, Section 2] for examples with= 0.

For our purpose, we will use the following slight modificatiof [7, Definition 2.3]:

DEFINITION 4.1 (cf. [7, Definition 2.3 and Lemma 2.5]). LeK(L) be a semi-
polarized manifold such thaky is not nef. We say thatX, L) is rays-positiveand
that L is rays-positiveif o(X, L) > 0.

REMARK 4.2. |If L is ample or numerically positive, thefX(L) is rays-positive.
The converses are not true and we refer to [7, Section 2] fothdéu discussion
and examples.

Notice that, for any extremal raRR orthogonal too (X,L)Kx +L, we haver, (R) =
1/0(X,L). Moreover, sincen > 3 and we are interested in non-integral valuesdiR),
in view of [7, Proposition 1.2], we have/&(X, L) <n—1.

The following proposition deals with rays-positive marif® such thatn — 2 <
1/0(X,L) <n-1.
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Proposition 4.3. Let (X, L) be a rays-positive manifold of dimension n. Assume
that n—2 < 1/0(X,L) < n—1. Then(X, L) admits exactly one extremal ray satisfying
(0(X, L)Kx + L)- R=0 and is described ifj7, Proposition 1.4].

Proof. LetR be an extremal ray satisfying (X, L)Kx + L)-R = 0; then we are
in the assumptions of [7, Proposition 1.4]. Since fibers dfedént extremal rays can
meet only at points, it is immediate to see thatadmits only one of such rays. []

In the following proposition we take care of rays-positivamifolds such that
n—3<1/c(X,L)<n-2.

Proposition 4.4, Let (X, L) be a rays-positive manifold of dimension n. Assume
that0 #n—3 < 1/0(X,L) < n—2. Then(X,L) admits exactly one extremal ray satisfy-
ing (6(X,L)Kx+L)-R=0and it is described irProposition 3.1unlesso (X,L) = 2/3
and one of the following holds
(1) X =P?xP? and L restricts asOp2(2) on any fiber of each projection
(2) X is the blow-up of the smooth variety Y at a finite number aftgand(E;,Lg ) =
(P2, Ops(2)) for all exceptional divisors E

Proof. Let{R :=R,[I]}ie; be the set of all the extremal rays ME(X) satis-
fying (o(X, L)Kx + L) - R = 0 and denote by := 7 (R) = 1/0(X, L). Then each
R satisfies the assumptions of Proposition 3.1, so we can eotdimssume that there
exists at least two such rays.

Assume first that there existp € | such thatR; is nef. Since, by [19, The-
orem 1.1], the general fiber of any contractipr,, j € I, of fiber type has dimen-
sion > 2(n — 3), we derive that we can have at most two such contractionsedwer,
in this casen = 4. It follows that both the contractions are as in case (5f3pPmp-
osition 3.1; soX = P? x P? by [16, Theorem A], hence we are in case (1). We claim
that there cannot be ariye | such thatR is non nef. Indeed, if this is not the case,
then the general fiber of the contractipp, has dimensior® 2(n—3)+ 1 by [19, The-
orem 1.1]; then, recalling that fibers of different extremafs can meet only at points,
we get a contradiction.

Assume now that all theR;, i e |, are birational. Then eachr is as in case
(5-4) of Proposition 3.1 and the exceptional loci of tRgs are disjoint. Furthermore,
(Ei, Lg) = (P2, Ops(2)) for any exceptional divisolE;. So we are in case (2) of
the statement. O

In the following proposition we consider lower values ofo1X, L).

Proposition 4.5. Let (X, L) be a rays-positive manifold of dimension n. Assume
that 0 #n—k < 1/o(X,L) <n—k+1, k>4 and n> 2k — 3. Then(X, L) admits
exactly one extremal ray satisfying (X, L)Kx + L)+ R =0 and it is described in
Proposition 3.2unless one of the following holds
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(1) n=5, o(X, L) =2/3 and there exist extremal rays;R.., R, i €{2,..., m},
such that(2Kx + 3L) - R = 0; moreoverone of the following holds

(1-1) m = 2 and eachgg is as in case(7-9) of Proposition 3.2;

(1-2) m= 2, g, is as in casg7-8) of Proposition3.2 with gg, (X) = P? and g,

is as in casg(7-9) of Proposition 3.2;

(1-3) @R, is as in case(7-9) of Proposition3.2 and eachgg, with i > 2, is the

blow-up of a smooth variety along a smooth curve such thahEx =@ if ] #k

(j, k= 2);
(2) n=5,0(X,L)=3/4 and X is the blow-up of a smooth variety at a finite set of
points
B) n=2k—2, 0(X,L)=2/(n—1) and X is the blow-up of a smooth variety at a
finite set of points
4) n=2k—-3,0(X,L) =2/(n—2) and X is the simultaneous contraction of ex-
tremal rays as in case§/-11) and/or (7-12) of Proposition 3.2with disjoint exceptional
divisors.

Proof. Let{R :=R,[I]}ici be the set of all the extremal rays ME(X) satis-
fying (o(X, L)Kx + L)- R = 0 and denote byt := 7 (R) = 1/0(X, L). Then each
R satisfies the assumptions of Proposition 3.2, so we can eotdimssume that there
exists at least two such rays.

Assume first that there existp € | such thatR; is nef. Since, by [19, The-
orem 1.1], the general fiber of any contractipr,, j € I, of fiber type has dimen-
sion > 2(n — k), we derive that we can have at most two such contractions edier,
in this casen = 5 andk = 4. Now it is straightforward to get cases (1-1) and (1-2) of
the statement by Proposition 3.2. Assume that there exisignanef rayR; for some
i € 1. In this case the general fiber of the contractian has dimensior® 2(n—k)+ 1
by [19, Theorem 1.1]; again we have= 5 andk = 4, so it is immediate to get case
(1-3) of the statement by Proposition 3.2.

Assume now that all thdR;, i € |, are birational. Then eacpr is as in one of
cases (6-3), (7-10)—(7-12) of Proposition 3.2 and the eimep loci of the R’s are
disjoint. Now it is straightforward to get cases (2)—(4) bé tstatement. []

4.1. Application to polarized manifolds. In this section we apply the previous
results to describe the nefvalue morphism of polarized fohts.

Let (X,L) be apolarized manifoldof dimensionn > 3. We can define thaefvalue
of (X, L), which is the numerical invariant given by:= 7(X, L) = min{t e R: Kx +
tL is neff. Now, assume thaKx is not nef, or, equivalently, thakK is not minimal
in the sense of théMinimal Model Program so thatt is a positive number. By the
Kawamatés rationality theoremt is a rational number. Moreover, the diviséryx +
L defines a faces := {C € NE(X): (Kx + rL) - C = 0} which is contained in the
negative part (with respect tix) of the Kleiman—Mori cone and which is therefore
generated by a finite number of extremal rays. By Kavamata—Shokurov base point
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free theorema high multiple of the divisolKx + L is spanned by global sections,
so it defines a morphisnd: X — Y onto a normal projective variety with connected
fibers. The mapd is called thenefvalue morphisnfrelative to (X, L)). Note that by
construction—Ky is ®-ample, thereforeb is a Fano—Mori contraction and it contracts
all curves inXx.

The nefvalue morphism is classically studied in #djunction theory(see [8]) to
describe polarized manifolds; however, by the discusshmve, it is clear that it can be
studied by looking at it as the contraction of an extremakfaghich factors through
the contraction of extremal rays. Notice that, for any exik ray R orthogonal to
Kx 4+ (X, L)L, we haver (R) = t(X, L) = 1lo(X, L), whereo (X, L) is the invariant
defined in (4.0.1). Moreover, sinage> 3 and we are interested in non-integral values
of 7 (R), in view of [7, Proposition 1.2], we have (R) < n—1.

The next proposition deals with polarized manifolds sudt th— 2 < 7(X, L) <
n—1 (for the proof in terms of adjunction theory, cf. [8, Thewr&.3.4]).

Proposition 4.1.1. Let (X, L) be a polarized manifold of dimension n. Assume
that Kx is not nef and that - 2 < t(X, L) < n— 1. Then the nefvalue morphism
is an elementary contraction anX, L) is described in[7, Proposition 1.4].

In the following proposition we take care of the case¢h—3 < t(X,L) <n—2
(for the proof in terms of adjunction theory, cf. [8, Secti@}).

Proposition 4.1.2. Let (X, L) be a polarized manifold of dimension n. Assume
that Kx is not nef and that # n— 3 < (X, L) < n— 2. Then the nefvalue mor-
phism® is an elementary contraction an(k, L) is described inProposition 3.1unless
7(X, L) = 3/2 and one of the following holds
(1) (X, L) = (P? x P?, Op2yp2(2, 2)) and @ contracts X to a point
(2) ®: X =Y is the blow-up of the smooth variety Y at a finite number oftpcand
(Ei, Lg) = (P3, Ops(2)) for all exceptional divisors E

In the following proposition we consider lower value ofX, L) (for the proof in
terms of adjunction theory, cf. [6, Theorem 2.1]).

Proposition 4.1.3. Let (X, L) be a polarized manifold of dimension n. Assume
that Kx is not nef and thaD#n—k < t(X,L)<n—-k+1,k>4and n> 2k — 3.
Then the nefvalue morphiskh is an elementary contraction an@, L) is described
in Proposition 3.2unless one of the following holds
(1) n=5, (X, L) = 3/2 and there exist extremal raysi1R.., R, i €{2,..., m},
such that(Kx + (X, L)L) - R = 0; moreoverone of the following holds

(1-1) m = 2 and eachgg is as in caseg(7-9) of Proposition 3.2;

(1-2) m = 2, gg, is as in casg7-8) of Proposition 3.2with gg, (X) = P? and ¢r,

is as in casg7-9) of Proposition 3.2;



EXTREMAL RAYS OF NON-INTEGRAL L-LENGTH 361

(1-3) ¢, is as in case(7-9) of Proposition 3.2and eachgg, with i > 2, is the
blow-up of a smooth variety along a smooth curve such thahEx =@ if j #k
(J, k=2);

(2) n=5, (X, L) = 4/3 and @ is the blow-up of a smooth variety at a finite set of
points

(B) n=2k—-2, (X, L) =(n—1)/2 and @ is the blow-up of a smooth variety at a
finite set of points

(4) n=2k—-3, 7(X,L) = (n—2)/2 and @ is the simultaneous contraction of extremal
rays as in caseér’-11) and/or (7-12) of Proposition 3.2vith disjoint exceptional divisors.
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