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Abstract

We establish a large deviation principle for the occupati@gtribution of a sym-
metric Markov process normalized by Feynman—Kac functiofidde obtained the-
orem means a large deviation from a ground state, not fronmeariant measure.

1. Introduction

Let M = (2, X¢, Py, ¢) be anm-symmetric irreducible Markov process on a locally
compact separable metric spa¥e Here ¢ is the lifetime andm is a positive Radon
measure with full support. LetS( D(£)) be the Dirichlet form onL?(X; m) generated
by M (for the definition, see (2.1)). We denote i the set of probability measures
with the weak topology, and for a positive Green-tight Kateasureu (Definition 2.1)
define the functionl # on the setP by

(o) = {gu(ﬁ, J) i v=f-m JTeDE),
o0

(1.1) otherwise,

where&# =& — (-, +),. Givenw € Q with 0 <t < ¢(w), let Li(w) € P be the
normalized occupation distribution: for a Borel s&tof X

t
L@ = ¢ fo 1a(Xe(®)) ds,

where 1 is the indicator function of the seA. We denote byA!' the positive con-
tinuous additive functional with Revuz measyre One of authors proved Donsker—
Varadhan type large deviation principle with rate functioh

Theorem 1.1([24]). Assume that the Markov procedspossesses the strong Feller
property and the tightness propeitsee(lll) in Section 2)
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288 M. TAKEDA AND Y. TAWARA

(i) For each open set G P
S | i .
lim inf T logEx(e™; L e G, t <) > —inf 1(v).
—>00 Ve
(i) For each closed set K& P

1 u .
lim sup - log sUupEy(e™; Li e K, t <¢) < —mrf< [#(v).
ve

t—o0 XeX

Varadhan [29] gave an abstract formulation for the largeia®n principle. The
statement in Theorem 1.1 is slightly different from his fatation. In fact, the rate
function I* is not always non-negative because it is defined by the Stigédform
E*, not by the Dirichlet form€. Furthermore, Theorem 1.1 does not represent a large
deviation from a invariant measure because the Markov psoigllowed to be ex-
plosive. By this reason, we consider the normalized prditgbneasure Qyx; on P
defined by, for a Borel seB C P,

Ey(e™: Ly € Bt <¢)

QB = e i< )

and prove that the family of probability measurg®y}i-o obeys the large deviation
principle ast — oo in the sense of Varadhan’s formulation. In other wor®y :}-0
satisfies thdull large deviation principle with good rate function in the sense of [11,
Section 2.1]. This is the main theorem of this paper (Theodet). The rate function
is given by

(1.2) JO) = 14() — aa(n), veP.

Here Ao(u) is the bottom of the spectrum of the Schrédinger type operét+ pu,
where L is the generator of the Markov process:

Aa(u) = Inf{EX(U, u): u € D(E), |lull2 = 1}.

To obtain the main theorem, we need to show that the rateiumdtis good, that
is, enjoys the properties (i)—(iv) in Lemma 4.1. In partanywe must show thal has a
unique zero point, that is, the existence of a ground gtgtaf the operatot + 1. In or-
der to show the existence of a ground state, we usually uskveeak compactness of
the set{u € D(E): £*(u,u) <1} (I € R) and the lower semi-continuity of the Schrédinger
form £* with respect to theL2-weak topology (e.g. [17]); however we can not derive
these properties from our general setting. Hence we herdgheséllowing properties
instead, the tightness of the level gete P: 1*(v) <1} and the lower semi-continuity
of the functionl* with respect to the weak topology. This is a key to the proofhef
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goodness of the rate functioh. We would like to emphasis that the tightness follows
from the condition (Ill) and the Green-tightness jof and the lower semi-continuity of

I * follows from a variational formula for the Schrodinger forfRroposition 2.1), that
is, the identification of the Schrédinger form with the mcetifil -function defined in
(2.8). The latter is an extension of a well-known fact due tmgker and Varadhan that
for a symmetric Markov process, thefunction is identical with the Dirichlet form. On
account of Lemma 4.1, we can regard the main theorem as a dergation from the
ground state of the Schrédinger operator.

In [10], [25], [28], LP-independence of growth bounds of non-local Feynman—Kac
semigroups have been considered. In this paper we also digahan-local Feynman—
Kac transforms and extended Theorem 1.1 to symmetric Markogegses with non-
local Feynman—Kac functional (Theorem 2.1). The existeofcground states implies
the existence of a quasi-stationary distributig(B) := [ $o(X) dm(x)/ [y Po(x) dm(x).

In [16], they prove that if a Markov semigroup is intrinsigallltracontractive, then the
measurey is the so-called Yaglom limit and a unique quasi-stationdistribution. In
the last section, we will give an extension of this fact to gafized Feynman—Kac
semigroups by employing Fukushima’s ergodic theorem.

2. Symmetric Markov processes with non-local Feynman—Kacuictionals

Let X be a locally compact separable metric space B(d) the Borel o-field.
Adjoining an extra pointo to the measurable seX( B(X)), we setX,, = X U {oo}
and B(X) = B(X)U{BU{oo}: B € B(X)}. Let M = (22, X, Px, ¢) be a right Markov
process onX with lifetime ¢ := inf{t > 0: X; = oco}. We define the semigroup and
the resolvent by

PO =BTt <) Ref() = [ eptcot

for a bounded Borel functiorf on X. We assume that the Markov procdgsis m-
symmetric, € f, 9)m = (f, pt9)m, Wherem is a positive Radon measure with full sup-
port. Let €, D(E)) be the Dirichlet form onL?(X; m) generated byM:

D) = {u e L2(X;m): !irrg) %(u — peU, Uy < oo},
(2.1) N
E(u,v) = !irrg) %(u — PtU, v)m.

For basic materials on right processes and associatedh@iriforms (quasi-regular
Dirichlet forms), we refer to [7], [18].

We impose three assumptions bh
() (Irreducibility) If a Borel set A is p-invariant, i.e., pi(Laf)(X) = 1ap: f(X)
m-a.e. for anyf e L2(X;m) N By(X) andt > 0, then A satisfies eithem(A) = 0
or m(X \ A) = 0. HereBy(X) is the space of bounded Borel functions &¥n
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(1) (Strong Feller property For eacht, p;(Bs(X)) C Cp(X), whereCy(X) is the space
of bounded continuous functions ox.
(1) (Tightnes} For anye > 0, there exists a compact skt such that

SupRy1ke(X) < e.
xeX

Here Xk is the indicator function of the complement of the compadtise

The assumption (Il) implies thd#l satisfies theabsolute continuity conditigrthat
is, its transition probabilityp; (X, -) is absolutely continuous with respectiofor each
t > 0 andx € X. As a result, the resolvent kernel is also absolutely comstiis with
respect tom, Rg(x, dy) = Rg(x, yym(dy). By [14, Lemma 4.2.4] the densitRs(X, Y)
is assumed to be a non-negative Borel function such gk, y) is symmetric ands-
excessive inx and iny. Under the absolute continuity condition, “quasi everywatie
statements are strengthened to “everywhere” ones. Moreworxeican defined notions
without exceptional set, for examplemooth measures in the strict sensepositive
continuous additive functional in the strict sen@é. [14, Section 5.1]). Here we only
treat the notions in the strict sense and omit the phrasehtnstrict sense”.

We denoteSy the set of positive Borel measurgs such thatu(X) < co and
Riu(x) (= fx R1(X, y)u(dy)) is uniformly bounded inx € X. A positive Borel measure
w on X is said to besmoothif there exists a sequengé, )}, of Borel sets increasing
to X such that &, - u € S for eachn and

Pe(im oxe, =¢) =1, ¥xeX,
n—oo

where ox\g, is the first hitting time ofX \ E,. The totality of smooth measures is
denoted bys,.

If an additive functional{ A;};>o is positive and continuous with respect tcfor
eachw € A, it is said to be apositive continuous additive functionéPCAF in ab-
breviation). By [14, Theorem 5.1.7], there exists a on@ite- correspondence between
positive smooth measures and PCAReyuz correspondencefor each smooth meas-
ure u, there exists a unique PCAFA:}i>0 such that for any positive Borel functioh
on X and y-excessive functioh (y > 0), that is,e™”'psh < h,

2.2) lim %Eh.m( [O t f(Xs)dAs) = /X f (X)h(X)(dx).

Here Enm(-) = fx E«(-)h(x)m(dx). We denote byAl the PCAF corresponding to the

smooth measure.. For a signed Borel measupe = ut — -, let |u| = u* + u-.

When |i| is a smooth measure, we defiié = A — A and A¥ = AY" 1 AY
Following Chen [4], we introduce classes of potentials.
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DEerINITION 2.1. (i) A signed Borel measure is said to be the&kato measure
(in notation,u € K), if |u| € § and

lim supEx(A") = 0.
t—=0 yex

(i) A measurep € K is said to be in the clask,, if for any ¢ > 0 there exist a

compact subseK and a positive constart> 0 such that for all measurable sBtC K

with |u|(B) < 8,

sup Ru(x, y)|ul(dy) < e.
xeX JKeUB

(iif) A signed Borel measureu is said to be in the clas§., if for any € > 0 there

exist a compact subsdd and a positive constarit > 0 such that for all measurable

set B C K with |u|(B) < 4,

sup
(x,2) e XxX\d

/ Rl(xv y)Rl(yv Z) |M|(dY) <e.
KeuB

Ri(X, 2)

It is known in [2] thatu belongs tok if and only if

(2.3) lim sup | Rg(x, y)lul(dy) =0,

B—=0o0 xex Jx

and in [4] that
(2.4) Soo C Koo C K.

We denote thatN, H) = (N(x, dy), H;) is the Lévy system oM, that is, N is
a kernel on K, B(Xs)) with N(x, {x}) = 0 and H is a positive continuous addi-
tive functional of M such that for any non-negative measurable functioon X x X
vanishing on the diagonal set and axy X,

EX<Z F(Xeo, Xo)it <;) =Ex(/0tfx F(Xs, y)N(xs,dy)st).

O<s<t

We denote by be the smooth measure corresponding-io

DEFINITION 2.2. LetF be a bounded measurable function ¥nx X vanishing
on the diagonal set.
(i) F is said to be in the clasgly, if for any € > 0 there exist a compact subget
and a positive constat> 0 such that for all measurable sBtC K with |u|(B) < 4,

sup Ri(x, )IF(y, 2)|Ri(z, w)

N(y, dzu"(dy) <e.
x,2eXxX\d -/(;K\B)X(K\B))C Ri(x, w)
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(i) F is said to be in the classgl,, if F € A, and
@) = ( [ 1 DINGe, a9 (@ € 5.

For properties and examples gf,, and A,, see [4], [5]. In the remainder of this
paper, we assume th&t is symmetric,F(x,y) = F(y,X). We writeu + F € Ko + A2
if weKy andF € A,.

For u + F € Ka + A, define the AFA“TF by

AE = A+ Y F(Xe X,

O<s<t

and the generalized Feynman—Kac semigropp’ " }i=o by
pF f(x) = EX(eA{‘” f(X): t < ;), f € Bp(X).

For F € A,, we define the symmetric Dirichlet forn€g, D(£)) as follows: for
u, v € D(€)

Er(u, v) = EO(U, v) + EV(u, v)

45 [ (00— U0 — vy EINX, dy)i (@),
XxX

(2.5)

where£© and£® are the local part and the killing part of the Dirichlet for&, D(E))
in Beurling—Deny formula ([14, Theorem 3.2.1]). Fundana¢mgroperties of non-local
Feynman—Kac transforms were earlier studied by J. Ying, [RBd]. It is known in [8]
that{p{”F}tzo is the semigroup generated by the Schrodinger fafiit{, D(£)):

(26)  €F(U,v) = Er(u, v) - / U(X)v(x) djug (x) — / U (y) dux),
X X

where F; = exp(F) — 1. The form&#“*F is also written as

EFFF(u, v) = E(u, v) —[

Xx

. u()v(y)Fa(x, Y)N(x, dy) du® (y)
—/ u)v(x)du(x), u,veDE).
X

Let P be the set of probability measures &hequipped with the weak topology. We
define the functionl “*F on P by

|,1+F(v)={€“”(ﬂ.ﬁ) it v="f-m FeDE)
(0,]

otherwise.
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Let u + F € Ko + A2 and definex(uw + F) by

1
€(u+ F) = fim =10g]p{™" [loc.0c

We see from [1] that(u + F) is finite. If « > x(u + F) and f € By(X), we define
the resolventR**+F by

RAF£(x) = By (/ e AT £ () dt).
0
We set
D(H*F) = {REFFfra>k(u+F), fel?X;mNCy(X), f>0andf #0}.

Each functionp = R“+F f € D, (H**F) is strictly positive becausBy (oo < ¢) > 0 for
any x € X by the assumption (I). Her® is a non-empty open sgk € X: f(x) > 0}
andop = inf{t > 0: X; € O}. We define the generatd{**" by

H*Fu=au—f, u=RAFE eD (M),

Let h be the function defined bli(x) = ]Ex(exp(A’C”F)). We may assume that+
F is gaugeable, that is, syp h(x) < co. In fact, it is enough to prove Theorem 2.1
and Theorem 4.1 below for th)é—subprocessPﬁﬂ) = e P'P,. Moreover, we see that
every u + F € K, + A, becomes gaugeable with respect to fhsubprocess oM
for a large enougtB. In fact, we see from [5, Theorem 3.4] that+ F € K, + A>

is gaugeable with respect to thesubprocess if and only if

inf{c‘)p(u, u) + / u(x)*(w” + e )(dX) + B / u(x)’m(dx):
(2.7) X %

[ w0 + ey =1 1,
X
where F;" and F[ is the positive and negative part &. Since by (3.1)

e )+ [ U002+ e YA + 5 [ uxmi)

e IF e

> e 1F I (g(u, u) + B /x U(X)Zm(dx)) z IRs(tt + ie) oo

and the right hand side tends t0 as 8 — oo because ofu™ + mep €K, (2.7) holds
for a large .
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We define the function, on P by

. HM+F¢
N _—
¢eD.(H"F) Jx ¢ +€h

e>0

(2.8) Ih(v) = — dv.

The gauge functiorh(x) satisfies O< ¢ < h(x) < C < oco. Indeed, it follows from

Proposition 2.2 in [4] and (2.4) that for € K, and F € Ay, sup(ex]EX(Alc"H'F‘) < o0.
Hence, by Jensen’s inequality,

inf Ex(exp(A§+F)) > exp (— sup]EX(A'{“HF')) > 0.
XeX xeX

Let us define the function, on P by

(V) = — inf / log (“RC‘M—“Eh) dv
X

ueBy (X) U+ eh

e>0
Lemma 2.1. It holds that

(V) < Ih(iv), vewPp.

Proof. Foru= R:Ff e D (H#HF) ande > 0, set

aRFU 4 €h

Then, noting thatd/da)(R*Fu) = —RAAF(REFFU) = —(RAFF)2u, we have

wtF w+Fy2 u+F(RrtF)2
IO e O T e
do x oRTTu+eh x «RYT U4 €h

Since
(G(R[/;L+F)2U _ R5+FU)((X2(R5+F)2U + €h)
— (@(R“TF)Y2u — REFFU) (@ RETFU 4 €h)
equalsa(a(RFF)2u — REFFU)?2 > 0, we have

Ol(Rg+F)2u _ R(’;'H:u _ OI(R(’;"'F)ZU _ Rg-&-Fu
aRFU L eh az(RQHF)Zu +¢h
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and thus
u+F(Rput+Fy2 u+FRput+Fy2
MR [ TR
x aRYTTU+ €h x (R 77)2u + €h
1 'Hu+F n+Fy2y
A )
o x (RY™7)2u + eh/a?
1
Z—a—2|h(‘))-
Therefore

¢(OO)—¢((X)=/XIOQ(W—U+m) gy > 0D

u+ eh o

which implies

Ry+F h I
_ inf / Iog(a w Ute ) dv < h(u).
ueD, (H"+F) Jx u-+eh o

>0

since [ BRE ™ f o < C|[ oo, B> 0, and BRE*F f(x) - f(x) as p — oo,

1+ F RM+Ff +6h —>00 n+F
(2.9) /|og(aR“ (ﬁ+F’3 ) )dv ! /mg(M) .
X ﬂR’g f +e€h X f +¢h

Define the measure, by
Ve (A) = /)(aRg+F(x, A dv(x), A e B(X).
Given v € By (X), take a sequencfgn}®, C C;7(X) N L2(X; m) such that
fx|v—gn|d(va+v)—>0 as n — oo.
We then have
[laRe 0 —aRe ol dv = [ aREF Qo - g dy = [ o= gl dv, 0

asn — oo, and so

aRAFg, + €h n—o0 aRFFY 4+ €h
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Hence, combining (2.9) and (2.10)

u+F h u+F h
inf / |og(aRa—u+€) dv = inf / |og(aRa—u+€) dv,
ueD, (Hr+F) Jx u-+eh ueBi(X) Jx u-+eh

which implies the lemma. O
Lemma 2.2. If IL(v) < oo, thenv is absolutely continuous with respect to m.

Proof. By a similar argument in the proof of [12, Lemma 4.1k wbtain this
lemma. Indeed, fom > 0 and A € B(X), setu(x) = ala(x) + 1 € B (X). Then

/ o aRFU 4 €h q / o aaREFF(x, A) + aREFF(x, X) + €h d
-« @ V= V.
N T en 9 ala(X) + 1+ ¢h

Define the measure, as in the proof of Lemma 2.1. Put

e = [ aRETX X ) (= ).
X
We see from Lemma 2.1 and Jensen’s inequality that

log(@ve (A) + ¢, + €h) > v(A) log@+ 1 + €h) + v(A%)(1 + €h) — Ih(v),

o

and by lettinge — 0

|
log(ave(A) + c,) > v(A) loga + 1) — ﬂ.
o
Since logx < x—1 for x > 0, we have
Ih(v)
avy(A) + ¢, — 1> v(A) logla + 1) — ,
o

and so
—Ih()/a +v(A)(log@+1)—a)+1—c,

va(A) = v(A) = a

Noting that logh + 1) —a < 0, we have

—Ih(v)/a + (logl@+1)—a)+1—-c,
a

va(A) —v(A) =

for all A e B(X) and

V(A) = va(A) = 1=y + (v (A°) — 1(A%))

_ ~Ih()/a +(logl@a+1)—a) + (1-c)(@+1)
- a
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for all A € B(X). Therefore we can conclude that

ASup |V(A) —_ va(A)| - |Og(a + 1) + Ih(V;/(X + (1— Ca)(a+ 1)

Note thatc, — 1 asa — oo. Then since

. a—logl@a+1
limsup sup [v(A) — v, (A)] < alog@arl)
a—oo  AeB(X) a
and the right-hand side converges to Oaas> 0, the lemma follows. []

Proposition 2.1. It holds that forv € P
In(v) = 1*+F ().

Proof. We follow the argument of the proof of [12, Theorem SYuppose that
Ih(v) =1 < co. By Lemma 2.2,v is absolutely continuous with respect ma Let us
denote byf its density and letf" = \/f An. Since log(l-x) < —x for —oc < X <
1 and

w+F £n
_00<Lf<1,
fn+eh

we have

Ole'H:fn—i-eh B R[/y.L+an
n__ uw+F £n
5_/ f aREFTT{ t dm
X fn+6h

and then

fn—OleH: fn
_— < .
/x T eh fdm=I,(f-m).

By letting n — oo ande — 0, we have

[ VIWT-are Tydm= (1 m < 20,
which implies that/T € D() and E4TF (T, VT) < Ih(f - m).
Let ¢ € D, (H"*F) and define the semigroup’ by
F
R 100 = (e "L o PR
0

@ - eh)(Xo) é + eh (XS)ds) f(xt))
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Then, P? is (¢ + eh)®?m-symmetric and satisfieB’1 < 1. Givenv = f -m € P with

JEeDE), set

S /T(x) = Ey (eA‘f” exp(— t HM+F¢(xs) ds) JT (xt)).

o ¢ +¢€h
Then
2
2 2 oo VT
[ (& Viram= [ @ +en (Pt (¢+Eh) dm
2
_ 2po[ (VT
_/X(tl)—i—eh) P ( ¢+eh) )dm
JT 2
2
</(¢+eh) (¢ o
= f dm.
X
Hence
o1 HHHF
0= lim +(/T = § VT, VD= (VT VD + [ 2 fram
and thus&*+F (T, /T) = In(f - m). O]

We now obtain a generalization of Theorem 1.1 in exactly thmes way as the
proof of it (cf. [10], [28]):

Theorem 2.1 ([24]). Assume(l), (Il) and (Ill). Suppose tha + F € Ko + As.
(i) For each open set & P

l u+
liminf = log Ex (" i LieGt<()>— inf 1447 (v).
—>00 VE
(i) For each closed set K& P

. 1 u .
lim sup = log supEx(e¥ : L €K, t <¢) < — inf 1R ().
Ve

t—o0 xeX

3. The existence of ground states

We first recall an inequality ([19]): fop € K,

(3.1) /X 0 di < [[Rualloo(E(U, U) + (U, U)y), U € DEE).
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Let Ao(u + F) be the bottom of the spectrum @f#+F:
(3.2) ro(u + F) = inf{E¥F(u, u): u e D), |ul2 = 1}.

Proposition 3.1. Assume(l), (Il) and (Ill). There exists a unique ground state
¢o € D(E): ra(n + F) = E"F (o, ¢o).

Proof. Let{u,} be a minimizing sequence of the right-hand side of (3.2), i.e
unllz = 1 and Ax(n + F) = limp_o E¥FF(Un, Up). Put ' = |u| + |url. Since
E(Un, Un) = - Er(Un, un) (¢ = exp(=[| Fllx)) and [y uadp’ < Ryt [lo - (€ (Un, Un) + @),

EFFF(un, up) = Er(u, u) —/ uz du/
X
1
Z & (Un, un) = IRt oo (€ (Un, Un) + o
1 ’ ’
= (5 ~ IRt ||oo)5(un, Un) = || Rutt/c-
Taking « large enough so that||R,u'||l« < 1 on account of (2.3), we have

c(sup, £ (Un, Un) + ol Ryt [l0) o
1-cfRett/lloo

sup&(Un, Up) <
n

We see from the assumption (lll) that for amy> O there exists a compact s&t
such that
sup [ u2dm < ||RyLke|leo - (supg(un, Un) + 1) <e.
n Ke n
As a result, the subsgti2-m} of P is tight. Hence there exists a subsequenﬁ;ke m

which converges to a probability measureveakly. Since the function”*F is lower
semi-continuous by Proposition 2.1,

1F ) < lim in 14 Fua -m) = lim in EFFF(Un,, Un,) < oo.

Thereforev can be written as = ¢2m, ¢ € D(E) by Proposition 2.1 andy(u+ F) =
ErHF (o, ¢0), that is, ¢y is the ground state. The uniqueness of the ground stateviollo
from the irreducibility (1) (e.g. [9, Proposition 1.4.3]). O

We also know from the proof above that the level $ete P: 1"*F(v) < I}
is compact.
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4. Large deviations from ground states

Given w € Q with 0 <t < ¢(w), we define the occupation distributido (w) €
P by

t

Li(w)(A) = % /o 1a(Xs(w)) ds

for a Borel setA of X, where 1y is the indicator function of the seA.
Define the probability measur®y; on P by

Exe¥ L eB, t<¢)

(4.1) Qxt(B) = , BeB(P).
Ex(eM ;t <)
We define the functiond on P by
(4.2) J() = 1"TF () — Ao + F).

We then have the next lemma by Proposition 2.1 and Proposiid.

Lemma 4.1. The function J satisfies
(i) 0<J(v) < o0
(i) J is lower semicontinuous.
(iif) For each | < oo, the set{v € P: J(v) <I} is compact.
(iv) J(¢2-m) =0 and Jv) > 0 for v # ¢3-m.

REMARK 4.1. Let €%, D(£%)) the bilinear form onL2(X; ¢2m) defined by

£%(u, v) = EF (Ugo, Ugo) — 2a(it + F)(Udo, Uo)m,
D(E%) = {u € L3(X; ¢p3m): ugo € D(E)}.

We then see thatéfe, D(£%)) is a Dirichlet form andS? is expressed by

E%(u, v) = /x ¢gdu?u’u) +/

XxX

\A(U(X) = u(y))(w(x) — v(y))go(X)po(y) I (dx, dy).
Here /J“((:u,v) is the local part of energy measure ([6]). We then see that

J() = lgw(v),

where | ¢4 is defined by

ER(JT, VT if v =1 gdm, T eDEY),
oo

otherwise.

(4.3) lgso (V) = {
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We then have the main theorem:

Theorem 4.1. Assume(l), (1) and (lll). Let u + F € Ko + A2. Let {Qxt}i=0
be a family of probability measures defined(#l1). Then{Qx}i~0 Obeys a large de-
viation principle with rate function J
(1) For each open set G P

1
liminf — log Q«t(G) = — inf J(v).
t—oo t ' veG
(2) For each closed set K& P

lim sup} log Qxi(K) < — inlli J(v).
VE

t—o0 t

Corollary 4.1. The measure ¢ converges td,;, weakly.

Proof. If a closed seK does not contaizbg-m, then infck J(X) > 0 by Lemma 4.1
(iv). Hence Theorem 4.1 (ii) says that lim,, Qx«(K) = 0 and lim_,, Qx (K¢ = 1.
For a positive constant and a bounded continuous functidnon the set ofP, define
the closed seK C P by K = {v € P: |f(v) — f(¢5 - m)| > §}. Then we have

‘ /P f (v) Qxe(dv) — f (2~ m)

§/|f(v)— (82 - m)| Qua(dv)
P

=[|f(v)— f(¢§-m)|Qx,t(dv)+/ £(v) — (8- M) Que(dv)
K Ke
< 5Qua(K®) + 2| f [0 Que(K) —

ast — oco. Sincesd is arbitrary, the weak convergence follows. O

On account of Corollary 4.1, we can regard Theorem 4.1 as aigenarge devi-
ation principle from the ground state.

5. Quasistationary distribution

In this section, we consider the existence of quasi-statiordistributions as an
application of the existence of ground states. We continiib the setting of the pre-
ceding section.

Define the semigrougpf®}i-o on L(X; ¢2m) generated byd%, D(£%)), that is

$o e L §*F
(5.1) pf° f(x) = e tFr 4)0()()]Ex(eA Po(Xe) f(Xr)).
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Let M% = (€, X;, ;”0) be theq&gm—symmetric Markov process generated by the Markov

semigrouppf® in (5.1).
Set

Py = {v eP: /x P (x, x) dv(x) < o0, / do(x) dv(x) < oo}
We then have

Theorem 5.1. Assume that fX) < co. Then forv € Py and Be B(X)

lim e20+FE, (eA""; X, € B) = / bo dv/ $odm.
X B

t—o0

Proof. Note that
it l
eAz(;LJrF)t]Ev(eA' F; Xt € B) =/ ‘PO(X)EfO((b_:(Xt)) dv(x).
X

Let {E;, 0 < A < oo} be the spectral family ofdf, F%). Then lim_o p°f = Eqf
in L2(X; ¢gm). Since&»(Eof, Eof) =0, Eof equals/, faidm, m-a.e. by the irre-
ducibility of (€%, F%) (cf. [7, Theorem 5.2.13]). Note that{°(x, -) € L%(X; $2m)
because/, plo(x, Y)2p3(y) dm(y) = p2°(x X) < 0o. Putc = [ ¢odm. We then have

/¢0(X)1E¢°(—(X )) dv(x) — /d’o dv/zpodm‘
‘ [ o00( [ patx (B (2000-2)) )2 dmiy)) o).

The right-hand side is dominated by

[ oot \/ [ Bt 9309 dm(y)dv(x)-\/ [ (Ei"(%(xt_m)) —c)2¢§(y) dmy).

Since

o tF)t Pt (x, )

bo
P, ¥) = D0(X)90Y)

the first factor is equal to

/X Po(X)y/ P(X, X) dv(x) = elt/De+F) /X VPR (%, ) dv(x)

and is finite by the assumption thate P;. Hence the right-hand side of (5.2) con-
verges to zero as — oo because g/¢o € L2(X; p3m). O
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Let » and R, be probability measures oK defined by

n+F

e to0dm o BN X B)

(53) U(B) - fx ¢0(X) dm(x)' ]Ev(eAéﬁF; t< é‘)

for B e B(X).

Corollary 5.1. For v € Py and Be B(X)

(5.4) Jim R, (B) = 1(B).

Note that the Dirac measusg belongs toP, and so the distributioRs, ; converges
to n for all x € X. Hence Corollary 5.1 says that the semigrdyg ™" };> is condition-
ally ergodicandn is aquasi-stationary distributiorof the semigrougd p{”F}tzoz for any
t>0

(55) Rr],t =1

(e.g. [16]). If the semigroupf p{‘+':}tzo is ultracontractive,p["“:(x, y) < ¢, then
p{‘*F(x, x) and ¢o(x) are bounded ané®, equalsP. Consequently, for any € P,
the distributionR, ; converges to.

When the measuren is not finite, we assume thmtrinsic ultracontractivity of
{p"F 0, that is,

(5.6) PR (X, y) < Cio(X)o(y).

In [16], they proved that for a (not necessary symmetric) Markrocess, the intrin-
sic ultracontractivity is a sufficient condition for the nseiae n being a unique quasi-
stationary distribution, and the equation (5.4) holds fay anitial distribution. We

would like to give another proof of this fact by using the nekeorem due to
Fukushima [13].

Theorem 5.2. Assume that fX) < co and M is conservativepil = 1, t > 0.
Then for fe LY(X; m),

1

W[x f(x)dm(x), m-a.e. and in E(X;m).

lim p f(x) =
t—o0
Note thatM? satisfies the assumptions in Theorem 5.2.

Theorem 5.3. Assume thaf p{“r':}tzo is intrinsically ultracontractive. Then for
any v € P and any Be B(X)

t—o0

lim &20+PE, (N7 X,  B) =/ d)odv/ ¢odm.
X B
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Consequentlythe equation(5.4) follows.

Proof. First note that the upper bound (5.6) implies the loleund ([9, The-
orem 4.2.5]):

(5.7) cpo()o(y) < P (X, y).
As a result,

1
supgo(x) | do(y) dm(y) = =[Pl 1] < 0.
xeX X Ct

Hencego belongs toL(X; m) N L>®(X; m) and Ig/¢o € L1(X; p3m). Applying The-
orem 5.2 toM®, we have

E;’?O(%(Xt)) _>/B¢Odm, m-a.e.y and LY(X; ¢5m)

ast — oo. Since psz(x, -) is bounded by the ultracontractivity, it follows from the
equation (5.2) that

. (18 B
tim [ ooz (%(xt)) v = [ dodv [ gocm 0

We finally consider the exponential integrability of hitlinrimes of compact sets.
Let K C X be a compact set anD the complement oK, D = X\ K. We define the
part (or absorbing) processP on D by

Xi t<rt .
D t D> _ .
X = {A e p = inf{t > 0: X; ¢ D}.

Define the regular Dirichlet form&P, D(EP)) on D by

EP =¢,
D(EP)={ueDE): u=0 g.e. onK}.

By [14, Theorem 4.4.3] the part proce¥® is regarded as a Hunt process generated
by (£P, D(EP)). We see from [4, Theorem 4.2] that is in K. We write Koo (Ry)

for K to show the dependence. LBP be the 1-resolvent oKP. The restrictionmP

of mon D is in K+ (RP). Indeed, let a compact s&t and a positive constar#t in

the definition of K, (Definition 2.1). We can supposé C K. Let G be a relatively
compact open set such th&tc G ¢ G ¢ K andm(G \ K) < 8. ThenK N G® is a
compact subset ob and

RP Lk neeyr = R Lgeyeiky < Rilge + Rilak < 2e.
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Moreover,RP15 < R;1p for any Borel seB ¢ K NGE. Hence we haven® € K (RP).
If XP satisfies the irreducibility (1), it follows from [4, Theame 4.1] that

SUPE,(6™) < 00 <= A < AP,

xeD

where AP is the bottom of the spectrum of @, D(EP)).
Noting that by (3.1)

1= |Rilpllo(r® + 1),
we see from (lll) that
(5.8) Ap P oo as K1 X

We can conclude that if for any compact $€t the part procesX® (D = X\ K) is
irreducible, then for any. > 0 there exists a compact skt such that

(5.9) SUpE, (¢"™) < oo.

xeX

If M is conservativezp equals the first hitting timex of K, ox = inf{t > 0: X; €
K}. Then the property (5.9) is called thmiform hyper-exponential recurrende [30].

EXAMPLE 5.1 (One-dimensional diffusion processes). Let us consigeone-
dimensional diffusion proces®l = (X, Py, £) on an open interval = (ry, rz) such
that Py(X.— =11 Or rp, £ < 00) = Py(¢ < 00), X € |, and Py(op < 00) > 0 for any
a,b e |I. The diffusionM is symmetric with respect to its canonical measorend it
satisfies (I) and (Il). The boundary point of | is classified into four classesegular
boundary exit boundary entrance boundary and natural boundaffl5, Chapter 5]):
(a) Ifrp is a regular or exit boundary, then lm,, Ri1(x) = O.

(b) If rp is an entrance boundary, then Jim, SUBe(ry,r) Rilr,)(x) = 0.
(c) rzisanatural boundary, then limr,Ri 1 r,)(X)=1 and thus sup, ,)Riler,)(X)=1.
Therefore, (Ill) is satisfied if and only if no natural bounida are present. As a corol-
lary of the equation (5.8), If, is entrance, for any. > 0 there existg; <r <5
such that

SUpE,(expioy)) < oo,

X>r

whereo; is the first hitting time of{r}. The statement above implies a uniqueness of
guasi-stationary distributions ([3]).
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