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Abstract

We introduce a family of orientable 3-manifolds induced Isrtain cyclically
presented groups and show that this family of 3-manifoldstaias all Dunwoody
3-manifolds by using the planar graphs corresponding toptiighedral description
of the 3-manifolds. As applications, we consider two faesliof cyclically presented
groups, and show that these are isomorphic to the fundamgriaps of the cer-
tain Dunwoody 3-manifoldD, (n > 2) which are then-fold cyclic coverings of the
3-sphere branched over the certain two-bridge knots, aadDh is the @, @ Z,)-
fold covering of the 3-sphere branched over two differ@aturves.

1. Preliminaries

Every closed 3-manifold has a spine, called the Heegaagtaiia from which one
can obtain a presentation for the group, but not all grouprations arise from the
spines of 3-manifolds. It is an open problem to determinectvtidyclic presentations
of groups correspond to spines of closed 3-manifolds. lwsdrattention to determine
which cyclically presented groups correspond to spineslaged 3-manifolds, in par-
ticular, for which classes of knots the cyclic branched cionggs give rise to such cyclic
presentations. We refer for examples to [2] and [32].

We now discuss the above questions for a new family of cycl&sgntations of
groups determined by some words. This family contains mdagses of cyclic pres-
entations which have appeared in recent years and there amng ponnections with
theories of closed connected 3-manifolds as follows.

(1) The Fibonacci groug-(2,2m), m> 2, introduced in [12] and [13] is the fundamen-
tal group of them-fold cyclic covering of the 3-sphere branched over the fgeight
knot ([17]). The groupF(r,n), r > 2, n > 3 as a generalization of the Fibonacci group
was introduced in [20]. In particular, the grodp(n — 1,n), n > 3, is the fundamental
group of Seifert fibered space ([30] and [8]).

(2) The generalized Sieradski grogr,n), r > 2, n > 2, introduced in [35] and geo-
metrically studied in [9] is the fundamental group of thdold cyclic covering of the
3-sphere branched over the torus knot of type {21, 2) ([10]). Moreover the group
containing the generalized Sieradski group was defined 1f [3
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57M05, 57M10, 57M15, 57M60.
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(3) The family of cyclically presented groups containinge theneralized Neuwirth
groups ([37]) was considered in [19]. The groups are the dumehtal groups of
closed connected orientable 3-manifolds which are homeghio to Seifert fibered
spaces and to-fold cyclic coverings of lens spaces branched over geneslshridge

knots ([11]).

(4) Besides the above, recent manuscripts on groups, 3oldmi and the cyclic
branched coverings can be found in [1], [3], [24], [28], [29nd [33]. Moreover,

from our family of words in a free group of rank which determines cyclically
presented groups, we can construct a family of 3-manifoldstaining Dunwoody
3-manifolds (first considered in [14]), which is obtainedrfr the polyhedral descrip-
tion on a polyhedral 3-ball, whose finitely many boundaryefa@re glued together in
certain pairs. Recent manuscripts of the Dunwoody 3-mhtsfecan be found in [4],
[5], [6], [15], [16], [22], [23], [25], [26], and [36].

Let (V1, Vo) be a Heegaard splitting of a 3-manifoM with genusn > 1. A prop-
erly embedded dis® in the handlebodyV; is called ameridian discof V, if cutting
V, along D yields a handlebody of genus— 1. A collection of n mutually disjoint
meridian discs{D;} in V, is called acomplete systernf meridian discs ofV; if cut-
ting V2 alongJ; Di gives a 3-ball. Lety; denote the 1-spheréD; which lies in the
closed orientable surfac&V; = dV, of genusn. The system is said to be Feegaard
diagram of the 3-manifoldM and denoted by\i; o1, a2, ..., an). In the other side
the system \(2; B1, B2, ..., Bn) is called adual Heegaard diagranof the 3-manifold
M if {D;} is a complete system of mutually disjoint meridian discs iv; and g; is
the 1-sphere) D; which lies in the closed orientable surfag¥; = 0V, of genusn. In
other words Y2; B1, B2, . . ., Bn) is the dual Heegaard diagram ofif a1, ao, . . ., ap).
In particular, letM be the lens space artd a knot in M. Then the pair (1, K) has a
(1,1)decompositiornif there exists a Heegaard splitting of genus oWg K1) U, (V2,K2)
of (M, K) such thatK; C V,; is a properly embedded trivial arc for each= 1, 2 and
¢ is an attaching homeomorphism. We call such a kkoa (1, 1}Yknot Moreover M
is determined by the Heegaard diagrawi; ;) or its dual Heegaard diagranvy; B1).

In Section 2, we introduce a planar graph corresponding égptilyhedral descrip-
tion of a certain 3-manifold constructed from a family of wer The planar graph is
obtained directly from the polyhedral description by thetmoel similar to the dual-
ity of the graph. Moreover, if the planar graph is to be a Hesjahagram of a 3-
manifold M, then the cyclically presented group determined by the lfawfi words is
the fundamental group of1.

In Section 3, we discuss some conditions under which a plagreggh actually is to
be a Heegaard diagram of a Dunwoody 3-manifold. Furthermaeshow that every
Dunwoody manifold can be induced by a planar graph. For el@napcertain family
of Dunwoody 3-manifolds were constructed by this fashiorf2f] and [7].

As applications, in Section 4, we consider two families otlically presented
groups which are isomorphic to the fundamental groups ofCthewoody 3-manifolds
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D,. Finally we show thatD, are the ¥, @ Z,)-fold coverings of the 3-spherg®
branched over two differen®-curves, which extends results in [23] whane> 2.

2. A planar graph of an orientable 3-manifold M(r, s)

For eachn > 1, let Fy, = (X1, X2, ..., Xn | ) be the free group of rank and let
n: Fn — F, be an automorphism of order defined byn(x)) = xi11, 1 =1,2,...,n,
where the indices are taken under modaloA group is said to beyclically presented
if it is isomorphic to

Gn(w) = (X1, ..., Xn | w, n(w), ..., n" Yw))

for some integen and a reduced word in F,. For the simplicity, we use the follow-
ing expression instead of the above expression:

Gn(w) = (X1, ..., X, | w = 1 indices modn).
For a wordw = x*x? --- X" in F, wheree, = +1, we definethe length (w) of
w by r andthe exponent sura(w) of w by ZL:l €,. Two wordsw and w’ in Fy
are said to beotational equivalent with rotational difference— j + 1 and denoted by
w ~r_j+1 w' if, for some integerj,

" e eir
i1 o i

eiifl
lj—1 *

Gij+1
i+

and w' =X X" xxtii L x
] r 1 2
Moreover it should be noted that’ ~j_; w.

Let a, b, ¢, andu be words inF, such that, for some integessandr,
ur*(@©n*(b)n~(u™) ~ aboyH(@™).
Thenw = un®(©)n>1(b)n~1(u=?) or abe~(a~?) induces the cyclically presented group
Gn(w) = (X1, X2, - - ., Xn | w = 1 indices modn).

We now define the polygonBy and Fy as shown in Fig. 1 determined by words=
aboy~Y(a™t) and w’ = uns(c)n>(b)n~*(u™?) in clockwise and anticlockwise orienta-
tion respectively, whereN and S are starting points. Similarly, if we repeat for all
i =1,...,n—1, we have two polygons; and F; determined by wordsj' (w) and
n'(w'), respectively. SinceFs and Fy have a common subworg®(c), we can glue
Fs and Fy along n%(c) to get an oriented polygorKo. Similarly we can getn ori-
ented polygons

KO! 77(K0) = Klr RN nnil(KO) = anl-

Foreachi =0,1,...,n—2, K; andK;_ 1 have a common edgg(*(a)n*(b)u~?), andK,_1
and Ko have a common edgg(a)n>(b)y~*(u™1). By gluing all of Ko, K1, ..., Kn_1
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ns(‘l ")
n@"

a. b.

Fig. 1. A pair of two polygons determined by words.

along the common edges, we have a cellular decompositiochwhalizes the tessellation
of the boundary of a 3-ball consisting of 2aces, calledhe polyhedral descriptioand
denoted byP,(r, s). Since the tessellation of the boundary consistsnofe2es labelled by
F, andF;, we will get a 3-dimensional complék which gives a cellular decomposition of
a closed orientable pseudo-manifold by identifying the faces; andF; of the boundary
of the 3-ball.

By the construction;/” consists of edges corresponding to the generatgrs, ...,
X in Fn, n facesFy, ..., Fn_1, and one 3-cell. Ifi(b) = I(c), thenl(b) + I(c) is even
and soM contains the restricted information that will be known frdire result of
Lemma 3.5 later on. Thus, in this section, Iéb) # 1(c). If the Euler characteristic
of M vanishes, then it i® closed orientable3-manifold which will be denoted by
Mn(r,s) ([34]). Moreover there exists a closed orientable 3-madifd,(r,s) such that
its fundamental group is associated with the finite presems

(X1, ..., % | abey~t(@™?) = 1, indices moah).
Thus, in modified form of Theorem 1 in [25], we have proved tbkofving corollary.

Corollary 2.1. For each n>1, let a, b, ¢, and u be words irF, such that (b) #
I(c) and for some integers s and r

un®(©)n® *(b)n *(u ) ~ abey Ha™).

Then there exists a closed oriental8emanifold M(r, s) induced by ab, ¢, and u.
Moreover for each n> 1, there exists a closed orientab@manifold M(r, s) uni-
formized by the following cyclically presented group

(X1, ..., % | abey (@) = 1, indicesmod n).

Naturally there exist closed orientable 3-manifolds whasedamental groups are not
uniformized by the cyclically presented groups of Corgll&:1, but we are interested
in conditions of My (r, s) for the affirmative point of view.
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We now constructhe planar graph H(r, s) corresponding toMy(r, s), which is
dual to the polyhedral descriptioR,(r, s), n > 1, as follows. Let
ur*(©)n° Hb)n HUY) = X
and

€ig €i

Xieiz e X d—r
2

aboy Y@ ) = x"errixlerez Lyl :
ld Td—r

id—r+1 “d-ri2 i1

be rotational equivalent with rotational differenae or d — r, say r, that is,
uns(©)ns1(b)nHut) ~; aboyt(a™l). Then Hy(r, s) is constructed by correspond-
ing relations of the equivalent pairs and edges in the palsdiedescriptionP,(r, s),
in other words, oriented circle€; and C; and oriented arrows with initial points or
final points onC; or C; in Ha(r,s) are defined by the equivalent paifs and F;, and
adjoining oriented edge::fjiJ with i or F in P,(r, s) as the following:
(R1) oriented polygong correspond toC;,
(R2) oriented polygons= correspond toC;,
(R3) oriented edgesxfi ' correspond to transversal oriented arrows determined divt ri
hand law, where ¥ j <d and by the right hand law we mean that each oriented ar-
row of C; has final point inC; if each exponent;; of abe~i(a™t) in F is +, initial
point otherwise; each oriented arrow 6f has initial point inC; if each exponent
&, of uns(©)nst(b)n~*(u™) in F is +, final point otherwise, and
(R4) the identifications ofn equivalent pairsF; and F; are represented by the same
numbers onC; and C; determined by a bijective functiofi: C; — C;, defined by

_— —j+r if r<j,

pU) = {—j +r—d otherwise,
where 1 (resp—1) is the fixed starting poinN (resp.S) on C; with oriented clock-
wise (resp.C; with oriented anticlockwise) corresponding I«Sdif:l (resp. xfl‘l) and
B(r) = —d.

Since the above construction is independent to selectionibfs sufficient to con-
sideri = 0. See Fig. 2 foi = 0. Moreover ifC; or C; and transversal oriented arrows
are obtained byR1)—(R4), the others follow by the rotational symmetiyof ordern
asn(Ci) = Ciy1 andn(Ci) = Cju.

For some integers ands, there are disjoint simple closed curves under the quo-
tient of Hy(r, s) by the identification of each pai; andC;. By the number of curves
in Hy(r,s), we mean the number of disjoint simple closed curves ungemuotient of
Hn(r, s). In particular, we denote the number of curvesHr(r, 0) by L.
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Fig. 3. The planar grapits(2, 1).

EXAMPLE 2.1. Leta = X3™Xg'X1, b = X4, € = x31x;%, and u = xyxax3* be
words inFs such that, for = 2 ands = 1,

un(©)bntU™) = xxax3 XX TXaXaxg Ixst
A X3 tXg X XaXg X txg txaxo = aboy Ha ).
Then these words determine the polyhedral descripBg(@,1) and 3-manifoldVis(2,1)

by Corollary 2.1. From the face identification &(2, 1), we have the cyclically pre-
sented groupGs(2, 1) as

-1,-1 -1,-1,-1 P
(X1, - -y X5 | X {aXi p5Xi+1Xi 44X 13X 14X 15Xi+4Xi42 = 1, indices mod h

The planar grapis(2, 1) of Ms(2, 1) obtained fromPs(2, 1) is depicted in Fig. 3. The
number 1 on eackt; is the starting point corresponding tb(x; ) in n'(abe;1(a1))
for 0 <i < 4. The number 2 on eacB; is defined byB(2) = —9 in rule of R4).
Indeed Ms(2, 1) is the quotient space dl5(2, 1) by the identifications of each pairs
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Ci andC; along the same numbers and all oriented arrows with the saongswThese
identifications are generated by 1-handles and 2-handtethid example, the cyclically
presented grouss(2, 1) is the fundamental group dfi5(2, 1).

3. Generalized Dunwoody 3-manifoldsMy(r, s)

We recall that words, b, ¢, andu are inF,, n> 1, such that for some integers
r ands,

un*©)n* 1 (b)n (™) ~ abey (@™

determine an orientable 3-manifold,(r, s) and thatHu(r, s) is the planar graph cor-
responding toMy(r, s). We now consider the rotatio, by an angle (2/n) around
the axise connectingN and S in P,(r,s) as an orientation preserving homeomorphism
on My(r, s). By (My(r, 0), K) we denote the quotient space bf,(r, s) by Z,, where
K is a singular set with branching indexas the image of the rotation axés Under
this quotient, the planar grapH,(r, 0) is also obtained as the image lgf(r,s) by Zp.
Moreover the identifications oHy(r, s) corresponding toM,(r, s) induce the identifi-
cations of Hy(r, 0) corresponding tdM,(r, 0).

For a wordw = xfl”x ---xirir in Fy, wheree¢, = £1, we definew in Fy; by
W = X'x;%---x{". That is, i is obtained fromw by replacing allx; in w with
X1. Then the exponent sum(w) of w is invariant, that iso(w) = o(w) for a word
w € F,. We also note that when two words and w’ in F, are rotational equivalent
with rotational difference, two wordsw and @’ in F; are rotational equivalent with
rotational difference. Throughout this section when we consider woadsh, ¢, and
U in F1 such that,

E|2
i2

acbt* ~, abca ™,
we always mean that the words b, ¢, andu in Fy, n > 1, satisfy for some integes,
un*(@©n* o)y~ (u™) & aboyH(@™).
The canonical form oH(r, 0) is depicteg in Fig. 4, where we use the_ same char-
acters in the planar graph as=1(a), b = I(b), c =1(C) andd = 21(a) + I(b) + ()

if not confusing, andK is the singular set with branching indexas the image of the
rotation axis connectindN and S in P,(r, s).

Theorem 3.1. Leta, b, ¢, and G be words inF; such that for some integer f
Gcba! ~, abca?.

If the number of curves in #f, 0) is L, then there are two permutations and g of
X ={#£1,...,+d} such that2L = |B«|, where|-| means the number of disjoint cycles
in a permutation.
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Fig. 4. The planar grapit,(r, 0) and the singular sef.

Proof. We consideH;(r, 0) determined byicbi?® ~, abca~! (see Fig. 4). Let
Xt =11,2,...,d} and X~ = {—d,—-d+1,...,—1} be sets ofd points inC* andC~,
respectively. Then we define a permutatiorby a product ofd 2-cycles corresponding
to the ends points of line segments bfi(r, 0) as follows:

d—j+1 if 1<j<l@),
T+I© if l@+1<j<l@)+I(b),

T—10) if l@+Ib)+1<j=<I@+I(b)+I(),
d+j+1 if -l@<=<j=<-1

a(j) =

and a permutatior8 by a product ofd 2-cycles connectingC™ and C~ on Hy(r, 0)
as follows:

N i if r<j,
ﬁ(”_{j =j—r+d otherwise.
We now define an equivalence relatisnon X = Xt U X~ by

X~y if y=(Ba)(X) or y=a(Ba)(x) for some i

and call the equivalence classes ¥funder the relation the orbits gfo. Let| be a
simple closed curve iH(r,0) andx be a point onC* meetingl. Thenl is determined
by the repeated applications afand g as follows:

X, a(X), Ba(X), afa(X), ..., o - a(X),

which forms exactly an orbit oa. Conversely each orbit gfa determines a simple
closed curve inHy(r, 0). LetYy, ..., Y. be orbits of a. If X x € Y; and d; is the
smallest positive integer such thata)%(x) = x, then onY;, Ba is expressed as a
product Bi«; of two disjoint permutationsy; and g; of the same length:

ai = (X, fa(x), (Ba)*(X), . . ., (Ba)* (X))
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and
Bi = (@(x), afa(x), . . ., (@B)* a(X)).

Furthermore thesi«; are pairwise disjoint and

Ba = (BLar) - - - (Baa2)(Bra1),

which means that
|Ba| = |Brog| + -+ [Braa| = 2L. 0

In particular, if L = 1 in Theorem 3.1, ther(r, 0) is the Heegaard diagram of
the lens spacé(r,0). Note that all lens spaces assume to incl§&dut notS* x S2.
We remark that in this settingl is a (1, 1)-knot in the lens spadd(r, 0).

Theorem 3.2. Let Hy(r,0) be determined by words, b, ¢ andi in F; such that
for some integer r

acbo * ~, abca?,

and let p= —(o(b) + o(¢)) # 0, g = —0(8) — o(b) + o(0). Then for each n> 2,
Hn(r, s) is the Heegaard diagram of thg&-manifold M,(r, s) if and only if —sp+q =
O modn and L= 1.

Proof. LetMy(r,0) be the lens space and be the (1,1)-knot. ThenMy(r,0),K)
admits a (1,1)-decomposition satisfying;(«1) = H4(r,0), which can be represented by
Fig. 4. 1t is well known that then-fold cyclic covering ofM;(r, 0) branched oveK is
completely defined by an epimorphis@r Hi(M,(r, 0)— K) — Z,, called monodromy
whereZ, is the cyclic group of orden andn > 2. Letr; be a generator afV;, which
is the boundary of the meridian disk meeting wih at one point and, a generator
of 0Vi1, which is the longitude curve meeting with at one point. Letw, 8 be as
in Theorem 3.1. Then every curve 8V, determined by two permutations and g is
generated by; andr,. In other words, the curve oHl(r,0) is generated by, andrs.
Given p andq, we haver;(My(r,0)) = (x | X*P) = Z 5 and Hy(My(r,0)— K) = (ry,r2 |
pra+qri) = Z® Zgcqp,q)- Note that am-fold cyclic covering f of M branched over a
(1,1)-knotK is calledstrongly-cyclicif the branching index oK is n, that is, the fiber
f~1(x) of each pointx € K contains a single point. Therefore the homology class of a
meridian loopr; aroundK is mapped byC in a generator ofZ,, sayC(r;) = 1, and
so there exists an-fold strongly-cyclic covering spac#l,(r, s) of My(r, 0) branched
over K if and only if there iss = C(r,) € Z, such that—-sp+ g = 0 modn. []

From now on we let two integerp andqg be as in Theorem 3.2.
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Corollary 3.3. For each n> 2, Hy(r, s) can not be a Heegaard diagram of a
3-manifold M(r, s) if p + g and fn.

Proof. If H,(r,s) is a Heegaard diagram of a 3-manifold, thesap+q = 0 modn
by Theorem 3.2. Henceq = 0 modp, a contradiction. 0J

Corollary 3.4. Let H(r, 0) be the planar graph induced by words b, €, and
U in F; such thatGcht?! ~, abca=!. Then
(i) May(r, 0) is a lens space if and only if {t, 0) has L= 1.
(@iiy Mq(r, 0) is the 3-sphere if and only if Hr, 0) has L= 1 and |p| = 1.
(i) If L =1, then M(r, s), n > 2, is the n-fold strongly cyclic covering of a lens
space branched over €L, 1)}knot.
(iv) If ged(p,q) =1 and —sp+q = 0, then M(r,s), n > 2, is the n-fold cyclic covering
of the 3-sphere branched over &L, 1)knot.

Proof. For (i) it is well known in [18]. For the specific statent, see Propos-
ition 2.1 and 2.2 in [1]. For (ii), it follows from Lemma 3 in & with n = 1. For (jii),
it follows from the proof in Theorem 3.2. For (iv), if gcg(g) =1 and—sp+q =0,
then|p| =1 and sod =2a+ b+ c = 2a+ |p| is odd. The result follows from (ii)
and (iii). (It also follows from the results in [23] with odd.) O

Lemma 3.5. The following properties hold in Htr, s):
(1) q and 2l(a) + I(b) have the same parity.
(2) d, p,and I(b) + I(c) have the same parity.

Proof. Let D be the number of arrows pointing down the pageHg(r, 0) of
Fig. 4, U the number of arrows pointing up, R the number of arrows pointing from
left to right, and RL the number of arrows pointing from right to left, when we turn
Fig. 4 by 90 clockwise. From the definition op and q, it means thatD —U = p
and LR — RL = q. Since{D, U} (resp.{LR, RL}) has no relation witH(a) edges
(resp.l(c) edges),D + U = I(b) + I(c) (resp.LR + RL = 2/(a) + I(b)). Moreover
d =2(a)+1(b)+1(c). Then (1) and (2) follow from the fact that+t ands—t have
the same parities for integessandt. ]

Corollary 3.6. The lens space Mr, 0) can not be the3-sphere if d is even.
Proof. The proof follows from results of Corollary 3.4 andnma 3.5. ]

We recall that ifa, b, ¢, andu are words inF,, n > 1, such that, for some integers
r ands,

un®(©)n® *(b)n t(u ) ~ abey Ha™),
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then the identifications oH,(r,s) yielding My(r,s) induce the identifications o, (r,0)
yielding Mq(r, 0) determined by wordg, b, ¢ and in F; such that

Gcbi ! ~, abca .
Conversely, letM4(r, 0) be determined by words, b, ¢ and G in F; such that
Gcbli* ~, abca .

Then for a fixedsy, we can determine all types d¥l,(r, ;) having M4(r, 0) as the
guotient space.

Corollary 3.7. Let Hy(r, 0) be determined by worda, b, ¢ and G in F; such
that, for some integer r

acbat , abca?,

and let p= —(o(b)+0(€)) #0,q = —0(@)—o(b)+0o () and n> 2. If 5 is an integer
such that—syp + g = 0 modn, then there are as many Heegaard diagramg(rHsy)
having H(r, 0) as the quotient graph as the number of divisors-a§p + q.

EXAMPLE 3.1. Letda = x;1, b = x;1, € = x; I Ixax; 1L, and @ = x; be
words in F; such thatticba? a4 abca=t. Then for the planar graplii(4, 0), we
have p =4, q=3 andL = 1. By Theorem 3.2{H\(4,s) | n|-4s+ 3} is the set
of Heegaard diagrams representing 3-manifolds wti{4, 0) as a quotient space. In
particular, if s = —3, then, by Corollary 3.7, the Heegaard diagrams represgpr8t
manifolds with the quotient spadd;(4, 0) are Hz(4, —3), Hs(4, —3), and His5(4, —3).
In fact, H3(4, —3), Hs(4, —3), and H15(4, —3) are determined by words

a=x7% b=x71 c=xrxexixgt, U= xs,

a=x7% b=x7t c=xahgtxexixt U= xs,
and

a=x% b=x71, c=x% %X X4, Uu=X3

respectively.

We show that every Dunwoody 3-manifold can be reformulatedVa(r, s). Let
Dn(a, b, ¢, r, —s) be the Heegaard diagram of the Dunwoody 3-manifold. Since
1, Ba has two cycles of lengtll such that ga)d(x) = x for all x on Di(a, b, c, r).
It is an immediate consequence of Theorem 3.1. Suppose hbafirst cycle of o
starts with the symbol 1. Sincesp + q = 0 modn, the path corresponding to this
cycles connects from the endpoint labelled 1 in the oriemiecle labelled 0 (a<Co)
to the endpoint labelled 1 in the oriented circle labelfe@s+q (as C_psiq) under
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mod n. Thus the condition-sp+ g = 0 modn ensures that the path corresponding
to the cycles is a simple closed curve with an orientatiomc&D,(a, b, ¢, r, —s) has

n simple closed curves, the second simple closed curve paomeing to the cycles
connects from the endpoint labelled 1 in the oriented cilabelled 1 to the endpoint
labelled 1 in the oriented circle labelled under modn. Repeatedly, the path which
starts with the endpoint labelled 1 in the oriented circleelled n —1 corresponding to
the cycles ofBa will be arrived the endpoint labelled 1 in the oriented @rthbelled
n—1 under mod1f). For eachi =0,1,...,n—1, let w(C;) (resp.w(C;)) be the word
obtained from reading off simple closed curves around thented circle labelled
(resp.i), denoted byC; (resp.C;), by the right hand law. Thus the identification of
C andC; by r on Dy(a, b, c,r,s) inducew(Ci) ~ w(C;). In case ofi =0, we have

un*(@n* (o) ~H(u™) ~ aboyH@™).

For the specific example, ip is odd andg = +2 (mod p), the Dunwoody 3-manifold
which is then-fold cyclic covering of the 3-sphere branched over theddaootsT (p, q)
satisfiesun(c)n>X(b)n~*(u™?) ~, abay~(a™?) ([25]). Generally we call the compact
connected orientable 3-manifold,(r, s)(possibly with boundary) constructed from the
polyhedral description in Sectiont@e generalized Dunwood¥manifold

Theorem 3.8. The Dunwoody3-manifold which is the strongly-cyclic branched
covering of a lens space is a closed orientaBlenanifold M(r, s) uniformized by the
cyclically presented group§y,...,x, | aba~*(at) = 1, indicesmod n), where n> 2.

The following shows the existence of 3-manifolik, (r,s) which are not Dunwoody
3-manifolds.

EXAMPLE 3.2. Leta=x;x;1, b= XsX; 1, ¢ = XpX3Xg, andu = x; 1x, be words
in F5 such that, for =3 ands =1,
un(C)bn H(u™) = x; XoXaXaXsXsXy TX; X5

~rg XTI IXeXT I XoXaXaXsXs = abayH(a™?).
Then the cyclically presented group
Gs(3, 1) = (X1, - - -, X5 | XX 11X X1 Xi+2Xi +3%i +aXi X = 1 indices mod 5

determines the polyhedral descriptidf(3, 1) and its planar graphis(3, 1). More-
over we have wordg = x71x7%, b = xix7%, € = xgxaxq, U = x71xq, in Fy, satisfying
bt a3 abca—t. However the numbet. of curves inHy(3,0) is 2 and sdaf| = 4.
By Theorem 3.2Hs(3, 1) is not a Heegaard diagram bf5(3, 1). In fact, Ms(3, 1) is
not Dunwoody 3-manifold because the planar grapfi3, 0) is representing a link in
a lens spacd.(3, 2) and Corollary 3.4 (iii).
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ExAMPLE 3.3. Leta = x;%, b = xix;1xx3t, ¢ = x71, andu = x5! be words
in F3 such that, for =4 ands =0,

uenH(b)n (U™ ~4 abay~H(@™),

Then the cyclically presented grou@s(4, 0) determines the polyhedral description
P3(4,0) and its planar graphiz(4,0). However the numbdr of curves inHy(4,0) is 2
and by Theorem 3.2H3(4,0) is not a Heegaard diagram bf;(4,0). In fact, M3(4, 0)

is not Dunwoody 3-manifold because the planar gr&fi, 0) is representing the link
62 in S® (see the Rolfsen-table in [32]).

4. On the cyclically presented groups

We review the properties of the quotient spaces of 3-matsfeind dual Heegaard
diagrams. LetMu(r, s) be the Dunwoody 3-manifold and its Heegaard diagram
Dn(a, b, c, r, s). Then the quotient spackl,(r, 0) is the lens space with its Heegaard
diagram Hy(r, 0). Moreover M(r, 0) admits a (1, 1)-decompositioB(a, b, ¢, r) of
the certain (1, 1)-knoK (a, b, ¢, r). As the dual Heegaard diagram we have the dual
(1, 1)-decomposition oD1(a, b, c,r) and denote it byDu(a, b, c,r) or Di(a, b, c,r’),
where the dual (1, 1)-decomposition can be understood frieen attaching homeo-
morphism onto the dual Heegaard diagrawy;(8;) consisting of the meridian curve
m’ and simple closed curvé on V, that are the images of simple closed cutvand
meridian curvem on V;, respectively. We now introduce an algorithm for the dual
(1, 1)-decomposition oD;(a, 0, 1,r) as follows.

On Di(a, 0, 1,r), there arethree types of regioms follows (See Fig. 5 where all
indices are taken under modula 2- 1):

(1) two bigons bounded by the edges [B 2 1] and f,r +1] at C* and C-
respectively,

(2) 2(@—1) quadrilaterals bounded by the edgg¢sJand [ —1,i +1] at C* and the
edges{—i,r +i+1]and f —i +1,r +1i] at C~ respectively, where ¥i <a—1
andi + j = 2a+ 2, and

(3) an octagon bounded by the edgasa+ 2], [r +a,r —a+ 1], [a+1,r +a+ 1],
and p+ 1,Fr—=a] of | and parts ofC* andC.

Through process that changés, I} on V; into the curve-systenil’, m'} on Vs,
the role ofm (resp.l) in each region will be changed int6 (resp.m’) in Du(a, 0, 1),
so if 1, in the bigon bounded by [1a2+ 1], is a starting point inD1(a, 0, 1,r), then
2a + 1 will be starting point inDu(a, 0, 1,r). Similarly, the pointr + 1, in the bigon
bounded by, r + 1], is going to situate om” in Du(a, 0, 1,r). On Dy(a, 0, 1,r), if a
is the number of regions of type (1) or (2) that is connectednfithe bigon bounded
by [1, 2a 4+ 1] to a quadrilateral withd, a + 2] which is to be a side of an octagon,
then onDu(a, 0, 1,r), @’ determined by’ is equal to the number of regions of type
(1) or (2) that is connected along parts mf from the bigon bounded by &+ 1, 1]
to a quadrilateral which is connected with a side of an oataddince each region is
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Fig. 5. Three types of region ob4(a, 0, 1,r).

preserved inD;(a, 0, 1,r) and Du(a, O, 1,r), we havec’ = 2a + 1 —a’. Moreover we
see that + 1 orr + 1 appears at the'th term of the following cycle:

O0=2a+1—--->r+1 or r+1—>r—>---—1,

which is a cycle sequence alorgstarting from 2 + 1 and determiningm’ on
Du(a, 0, 1,r). Vice versa we can obtaibu(a, 0,c, r) from D(a, O,c, r) by the dual
process above. (For detail, see [26].)
For positive integersr (> 1) andt, we consider two families of cyclically pre-
sented groups as follows:
G(n1 t) = <YO1 ylv ey yn—l | (yi71yi +1)t/2(yi71yi +1)(yi7-‘,iI-2yi+1)t/2(yiﬂ-2) =1
indices modn),

wheret is even, and

G, t) = (Yo, Yo, -+ Y1 | () 2y ) D2 () () 2 = 1
indices modn),

wheret is odd.

Theorem 4.1. For an even t G(n, t) is isomorphic to the fundamental group of
the Dunwoody3-manifold represented by ft + 1, 0, 1, € + 2)/2, 2).

Proof. From the presentation @&(n, t), we have
Vo) 2y Yi—) 2 =
for all i =0,...,n—1 under modula. By letting x; = (y 4 yi)2y7% fori =0,1,..,n—

1, we havey, = xi_lx;l foralli =0,...,n—1 under modulon. HenceG(n, t) is
isomorphic to

(X0, - - -y Xp—1 | w = 1, indices modn),
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b.t for even.

Fig. 6. Then-periodic link b,(2t + 3, 2) fort > 0.

where
w = (%X Xi—2X )% X 2% .
We now consider words, b, ¢, andu in Fy;
a = xyx,
b=1,
C = XnXg X1 (Xg Dxnxg 1xq) 22,

U= XX

Then we have that
un’©)n (o)~ (u™) ~4 abey @™,
that is,abe~t(a~t) and un®(c)p~(b)y~*(u~1) are rotational equivalent by 4. This de-

termines a Dunwoody 3-manifold representeddy(2, 0, 2 —1, 4, 0) which is the dual
Heegaard diagram ob,(t + 1, 0, 1, € + 2)/2, 2). This completes the proof. []

Similar argument gives the following.

Theorem 4.2. For an odd t G(n, t) is isomorphic to the fundamental group of
the Dunwoody3-manifold represented by Jit + 1, 0, 1, 1, 0)

We recall that any link can be obtained as the closure of somaiel.bFor coprime
integersp andq, by aip/q we denote the rationgb/g-tangle whose incoming arcs are
i-th and (+1)-th strings. For an integer > 2 we denote by, (2t +3,2) the n-periodic
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Fig. 7. The 2-bridge knob,(2t + 3, 2).

link which is the closure of the rational 3-strings brairjzdf/(”z))” or (0,0
if t is even or odd respectively. The link,(2t + 3, 2) is pictured in Fig. 6 where
(t+1)/2 and { + 2)/2 mean the numbers of half twists. We note thaf2t + 3, 2) is
a knot forn # 3m, and bsn(2t + 3, 2) is a 3-component link for an odd  1)/2 or
an odd t + 2)/2 if t is even or odd respectively.

We suppose that > 2 from now on. Then we obtain the (1, 1)-knots by using the
certain rotation symmetries on the Dunwoody 3-manifoldgcdisws.

2/(t+l))n
1

Corollary 4.3. For an odd t the Dunwoody3-manifold represented by it + 1,
0, 1, 1, 0)is an n-fold cyclic covering of th8-sphereS® branched over the-bridge
knot by(2t + 3, 2). For even t the Dunwoody3-manifold represented by J& + 1, 0, 1,
(t +2)/2, 2)is an n-fold cyclic covering of th8-sphereS® branched over th@-bridge
knot b(2t + 3, 2).

Proof. Lett be odd. We note that there is a rotation symmetrpf ordern on
Dn(t + 1,0, 1,1, 0). The rotation bys2/n defines an action of the cyclic groufy, =
(u|pu"=1) onDp(t+1,0,1,1,0). The quotient spade,(t + 1,0, 1, 1, 0)Z, admits
a (1, 1)-decomposition consisting of a trivial arc with brhimg indexn. Moreover
the (1, 1)-decompositio4(t + 1, 0, 1, 1) represents the 2-bridge krgi{(2t + 3, 2)
in S3. (See Fig. 7 and [15] or [36].) Therefore the Dunwoody 3-rfadirepresented
by Dn(t +1,0, 1, 1, 0) is am-fold cyclic branched covering a2, branched over the
2-bridge knotb,(2t +3,2). Similarly, lett be even, the (1,1)-decomposition bBf,(t + 1,
0,1, t +2)/2, 2)/Z, represents the 2-bridge kndt(2t + 3,t + 2) which is equivalent
to b(2t + 3, 2) because 2(4 2) = 1 mod (2 + 3). This completes the proof. [
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Note that the result of Corollary 4.3 can also be obtainedhfresults in [15] or
[36]. We now mention some covering properties of the quotigaces ofDp(t + 1,
0,1,1,0) andDy(t + 1,0, 1, € + 2)/2, 2), which were noted implicitly in [21]. There
is an involutione for by(2t 4+ 3, 2) as shown in Fig. 7, and the quotient spacee kg
the 3-spheres® and the image ob,(2t + 3, 2) is the 2-component link(4l — 2,1 —1)
or L(4 —2,1) (denoted byb(2t + 3, 2) briefly) obtained as the closure of the rational
(4l —2)/2-tangle or (#—2)/2-tangle ift is odd or even respectively. In general nifis
even, there are at least 2 involutions, denotedsbgnd r, and one rotation symmetry
of ordern, denoted by, on b,(2t + 3, 2). If n is odd, there are at least one involution
and one rotation symmetry of ordar denoted by on b,(2t +3,2). Thus the quotient
space bye for by(2t + 3, 2) isS® and the image obn(2t + 3, 2) is £(4l —2,1 —1) or
L4 —2,1). In other words,

(i) The link by(2t + 3, 2) is then-fold cyclic covering ofS® branched over(4l — 2,
| — 1) for oddt and L(4l — 2,1) for event.

(i) The Dunwoody 3-manifolds represented By(t + 1,0, 1, 1, 0) andDy(t + 1,0, 1,
(t + 2)/2, 2) are the 2-fold cyclic coverings & branched over thaé-periodic links
bn(2t + 3, 2).

(iif) The Dunwoody 3-manifolds represented By (t + 1,0, 1,1, 0) andD,(t + 1,0, 1,
(t + 2)/2, 2) are the Zn & Z5)-fold cyclic branched coverings of(4 — 2,1 — 1) and
L4l — 2,1), respectively.

Theorem 4.4. For each2 <i < n —1, there is a closed orientabl8-manifold
M; i+1 which is the(i 4+ 1)-fold cyclic branched covering dfi (2t 4+ 3, 2) and the i-fold
cyclic branched covering df;, 1(2t 4+ 3, 2) for any t> 0.

Proof. For anyt >0, (S3,b;(2t+3,2)) is thei-fold cyclic covering ofS® branched
over b(2t + 3, 2) by (i). Moreover there is a closed orientable 3-manifdld 1 such
that it is the { + 1)-fold cyclic covering ofS® branched ovem;(2t + 3, 2). On the
other hand, 3, b; ;1(2t + 3, 2)) is the { + 1)-fold cyclic covering ofS® branched over
b(2t + 3, 2) by (i). By the commutativity, we obtain thal; ;.1 is thei-fold cyclic
covering of S branched oveb;1(2t + 3, 2). []

We note thatM; i1 in Theorem 4.4 is theZ . ; & Z;)-fold cyclic branched cover-
ing of the link £(4l —2,1 —1) or L(4l —2,1), where 2<i <n—1. In case ofh = 3,
the manifold M, 3 is homeomorphic to the Dunwoody 3-manifolds(t + 1, O, 1, 1, 0)
or D3(t+1,0,1, ¢+ 2)/2, 2).

By a ®-curve 0(X, y, z), we mean a®-curve which has three edgesy and z,
each of which joins two vertices. In this casely, yU z and zU x are calledthe
constituent knots ofd(x, y, 2).

Theorem 4.5. The Dunwoody3-manifolds represented by + 1,0, 1, 1, 0)and
Dh(t +1,0,1, ¢+ 2)/2, 2) are the (Z,, & Z,)-fold cyclic branched coverings of two
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Fig. 8. Two different®-curves.
different ®-curves inS2, where t# 1.

Proof. We only do forD,(t+1,0,1,1,0). The same argument can be applied for
the other case. By Corollary 4.3, the Dunwoody 3-manifoldresented byD,(t + 1,
0,1,1,0) is am-fold cyclic branched covering 82, branched oveb,(2t 4 3,2). From
Fig. 7 we see that the orbifolty(2t + 3, 2)(n) has two rotation symmetries and ¢
of order two such that each axis of the symmetry interseassthgular set ob,(2t +
3,2)(n) in two points. The quotient spadg(2t +3,2)(n)/(c) by o is an orbifold whose
underlying space i§® and whose singular set is@-curve #1(a,b,c) with two vertices,
depicted in Fig. 8 a. Similarlyt induces a quotient spade(2t + 3, 2)(n)/(r) and a
®-curve 6,(x, Y, z) in Fig. 8 b. We note that tw@®-curvesob;(a, b, c) and 6;(x, v, 2)
are different each other. This can be shown by checking thosstituent knots of
each®-curve. Indeed;i(a, b, c) has two trivial knots and the torus kndt(2, 2 + 3)
as constituent knots. However the three constituent knb& (@, y, z) are two trivial
knots and the closure of the rational {((2 5)/4)-tangle. O

In case ofn = 2, by (iii) and Theorem 4.5, the Dunwoody 3-manifolds repreged
by Do(t +1,0,1,1,0) andD,(t + 1,0, 1, € + 2)/2, 2),t # 1, are the Z, & Z,)-fold
branched coverings of two differe-curves and a link irS3. The results extend the
corresponding ones in [23] and [22]. We also note that forvama, the involutionso
and t for b,(2t 4+ 3, 2) in Theorem 4.5 can be naturally extended torikgeriodic link
bn(2t + 3, 2). Hence there are two spati@lcurvesd, and @, such that then-periodic
knot b (2t + 3, 2) is the 2-fold cyclic covering branched owver and 6, in S2. By (ii),
we have the following.

Corollary 4.6. Let n be even and,(2t + 3, 2) be a knot. Then the Dunwoody
3-manifolds represented by, + 1,0, 1,1,0)and Dyt + 1,0, 1, € + 2)/2, 2) are the
(z, & Z,)-fold cyclic branched coverings of two spati@-curves.
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Similarly let n be odd, then there exists an involution on theeriodic knot
bn(2t+3,2) such that the Dunwoody 3-manifolds representedhft +1,0,1,1,0) and
Dn(t+1,0,1, €+ 2)/2,2) are the Z, & Z,)-fold cyclic branched coverings of a spa-
tial ®-curve. As another application of the cyclically presentgdup, we proved the
fact that the Dunwoody polynomial of (1, 1)-knot in 3-sphéseto be the Alexander
polynomial (see Theorem 3.5 in [27]).
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