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Abstract
Recently, Y. Ollivier defined the Ricci curvature of Markov chains on Polish

spaces via the contractivity of transition kernels under the L1 Wasserstein metric.
In this paper, we will discuss further the spectral gap, entropy decay, and logarith-
mic Sobolev inequality for the�-range gradient operator. As an application, given
resistance forms (i.e. symmetric Dirichlet forms with finite effective resistance) on
fractals, we can construct Markov chains with positive Riccicurvature, which yields
the Gaussian-then-exponential concentration of invariant distributions for Lipschitz
test functions.

1. Introduction

Recently, Ollivier [9] introduced theRicci curvatureof Markov chains on Polish
spaces, which was characterized by the contractivity of transition probabilities under the
L1 Wasserstein metric. In this paper, we will discuss and improve some results about
the spectral gap, entropy decay, logarithmic Sobolev inequality (LSI in short) for the
�-range gradient operator, and related topics.

Let (X, d) be a Polish space endowed with arandom walk mD {mx}x2X, i.e. a
family of Borel probability measures onX. Denote by Lip1 the set of 1-Lipschitz func-
tions, M1 the set of Borel probability measures, andC(�, �) the set ofcouplingsof
� and � (i.e. all joint distributions onX � X with marginals� and �). Supposemx

depends onx measurably, and has a finite first moment (i.e.
R

d(o, y) dmx(y) <1 for
someo 2 X). Define theL1 Wasserstein metric(or transportation distance) between
mx and my as

W1(mx, my) WD inf
�2C(mx ,my)

Z

X�X
d(� , �) d�(� , �).

Then, (M1, W1) is a complete metric space (for example, see Villani [12]).Equiva-
lently, the Kantorovich dual theorem reads (see also [12])

(1.1) W1(mx, my) D sup
f 2Lip1

�

�

�

�

Z

f dmx �

Z

f dmy

�

�

�

�

.
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According to [9] Definition 3, define the Ricci curvature of (X, d, m) as

(1.2) �(x, y) WD 1�
W1(mx, my)

d(x, y)
, 8x ¤ y.

Suppose�(x, y) > � > 0 throughout this paper. Denote byÆx the Dirac measure atx
and� �m( � ) D

R

mx( � ) d�(x), when � > 0, (1.2) implies

W1(Æx �m, Æy �m) D W1(mx, my) 6 (1� �) d(x, y) D (1� �)W1(Æx, Æy),

which means the transition�m is a strictly contractive map onto (M1, W1) with the
factor 1� �. So there exists a unique probability measure� such that� � m D �,
which is called aninvariant distribution. By convention, denote by (� , � ) the inner
product of L2(X, �), k � k2 the L2-norm, and� f the expectation off .

Let’s give an overview of main results in this paper as follows.

Invariant distribution for nonnegative curvature. In Section 2, we will discuss
the existence and uniqueness of the invariant distributionfor the critical case� D 0,
which means�m is non-expansive on (M1, W1). Define theaveraging operator

M f (x) D
Z

f dmx,

transition kernel M(x, A) WD M1A(x) D mx(A), and denote byMn the n-step transition
kernel. According to Szarek [11], we have

Proposition 1.1. Suppose� D 0. Let MN D (1=N)
P

16n6N Mn, suppose also

(E) 9z, 8Æ > 0, 9x, s.t. lim supN!1

MN(x, B(z, Æ)) > 0.
Then {Mn(z, � )}n>1 is tight and there exists an invariant distribution. Moreover, if
�(x, y) > 0 everywhere, the invariant distribution is unique.

REMARK 1.1. (E) is necessary to the existence of invariant distributions.

Spectral gap. Spectral gap will be revisited in Section 3. Define thediffusion

constantat x as� (x)D
�

(1=2)
RR

d(y,z)2 dmx(y)dmx(z)
�1=2

, andaverage diffusion con-
stant � D k� (x)k2. According to [9] Proposition 30, assume� <1 and either M is
self-adjoint or X is finite, then the spectral radius of M onL2(X, �)={const} is less
than 1� �. So the spectral gap of Id�M in L2(X, �) is at least�.

Fu-Zhou Gong and Li-Ming Wu give a counterexample (which willbe mentioned
later) to say that, if M is non self-adjoint, there may be no spectral gap inL2(X, �). If
M is self-adjoint, we can remove the original assumption� < 1 in [9] to show that
the spectral radius of M is strictly less than 1 yet.
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Theorem 1.2. Suppose� > 0 and M is self-adjoint. Then the spectral radius of
M on L2(X, �)={const} is at most

p

1� �.

In [9] Section 3.3.6, there defines a reversible random walk on N with two param-
etersa andb, which admits positive Ricci curvature and a unique invariant distribution
�. Letting a D b gives � D 1. We point out, from the above theorem, the spectral
gap of Id�M in L2(X, �) does exist, and then the Poincaré inequality holds. Accord-
ing to Aida and Stroock [1] or Ledoux [7], one might look forward to proving the
exponential concentration of� for Lipschitz test functions. However, for this moment,
� has a heavy tail, which means there is no exponential concentration at all. Hence,
this example shows us that� < 1 is essentially necessary to derive the exponential
concentration for Lipschitz test functions from the Poincaré inequality.

Entropy decay. Section 4 will give an entropy-variance inequality, which implies
Ent

�

(Mn f ) has an exponential decay by using Proposition 1.2.

Proposition 1.3. There exists a constant C1 not greater than2(2C log 2) such
that for positive f2 L2(X, �)

Ent
�

f 6 C1

p

Var
�

f .

Suppose� > 0 and M is self-adjoint, then for any t2 N

Ent
�

Mt f 6 C1

p

Var
�

f (1� �)t=2.

REMARK 1.2. From the inequalitya log a 6 a2
� a, it follows Ent

�

f 6

Var
�

f =(� f ). The right-hand fraction can be much bigger than
p

Var
�

f .

Define the Dirichlet formE�( f, g) D ( f, (Id � M2)g), which satisfies a modified
LSI if mx is absolutely continuous to�.

Proposition 1.4. Suppose� > 0 and M is self-adjoint. Supposedmx(y) D
p(x, y) d�(y) with kp(x, � )k2 6 C2 for all x. Then for positive f2 L2(X, �)

Ent
�

f 6 E�( f, log f )C
2C1C2

1�
p

1� �
� f .

In fact, it is hopeless to obtain the standard LSI Ent
�

( f 2) 6 CE�( f, f ), since
E�( f, f ) 6 Var

�

f by the Hölder inequality.



494 F.-Z. GONG, Y. L IU AND Z.-Y. WEN

LSI for �-range gradient operator. Section 5 will be devoted to the standard
LSI for the �-range gradient operator D. According to [9] Section 4, define

(1.3) Df (x) WD sup
y,y02X

j f (y) � f (y0)j

d(y, y0)
e�� d(x,y)�� d(y,y0).

Assume�
1

WD supx(1=2) diam(Suppmx) < 1. Then a modified LSI holds, i.e. there
exists some� > 0 such that for positivef

(1.4) Ent
�

f WD �

�

f � log
f

� f

�

6

�

sup
x

4� (x)2

�nx

�

Z

(D f )2

f
d�,

where define thelocal dimension nx D � (x)2
=sup{Varmx f W f 2 Lip1} and thevariance

Varmx f D (1=2)
RR

j f (y) � f (z)j2 dmx(y) dmx(z). In fact, 0< � 6 1=(20�
1

(1C U )),
whereU takes the supremum ofunstability, which will be mentioned later.

Theorem 1.5. Suppose� > 0 and �
1

<1. Then for0< � 6 1=(80�
1

(1CU ))

Ent
�

( f 2) 6
32

��

sup
x

s

� (x)2

nx

Z

(D f )2 d�.

In general, there is no way to define a gradient-type symmetric Dirichlet form E

such thatE( f, f ) '
R

(D f )2 d�. Otherwise, the above standard LSI yields the Gaussian
concentration for Lipschitz test functions (see [1]), which contradicts the case that� is
allowed to be Poisson-like.

Ricci curvature for resistance forms. In Section 6, let’s consider a probabil-
ity space (X, �) equipped with a resistance form (E , F ), namelysymmetric Dirichlet
form with finite effective resistance R(x, y), see Kigami [5]. Moreover, suppose (E ,F )
is conservative.

Proposition 1.6. Let {G
�

}
�>0 be the resolvent operator family associated to

(E , F ), and m a random walk with its average operatorM D �G
�

. Then, � is in-
variant to m, and (X,

p

R, m) has a positive Ricci curvature at least� > 0 provided
that 2�

R

R(o, x) d�(x) 6 (1� �)2 for some o2 X. Moreover, if R(o, x) is uniformly
bounded, � satisfies the Gaussian-then-exponential concentration for Lipschitz test func-
tions by[9] Theorem 33.

REMARK 1.3. Equip the real lineR with a probability measure d�(x) D
C exp(�cjxj�) dx for � > 2. DefineE( f, f ) D (1=2)

R

j f 0j2 d�. Then R(0, x) is not
uniformly bounded, but satisfies

R

R(0, x) d�(x) <1.
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For a basic theory of Dirichlet forms, we refer to Fukushima,Oshima and Takeda
[4], or Ma and Röckner [8]. Note that for resistance forms on fractal sets (for example,
the Sirpínski gasket), writingG to be the collection of Lipschitz functions under the
metric

p

R(x, y), there usually occursF   G.
Finally, we would like to mention that, all above functionalinequalities use a uni-

fied approach in the viewpoint of Ricci curvature from [9], but might be not sharp for
concrete models of Markov chains.

2. Invariant distribution for nonnegative curvature

Suppose� > 0, (1.1) and (1.2) imply that for anyn > 1 and f 2 Lip1

jMn f (x) �Mn f (y)j 6 d(x, y), 8x, y 2 X.

So {Mn f }n>1 is a (uniformly) equicontinuous family onX.
Now, let’s prove Proposition 1.1.

Proof of Proposition 1.1. If (E) holds, the tightness of{Mn(z, � )}n>1 and existence
of invariant distributions directly follow from [11] Proposition 2.1 due to equicontinuity.

Moreover, suppose�(x, y) > 0 everywhere. Let4 be an optimal coupling of tow
distinct �1, �2 2M1. Similar to [9] Proposition 20, let�x,y be an optimal coupling
of mx and my, depending on (x, y) measurably. Then

R

�x,yd4(x, y) is a coupling of
�1 �m and�2 �m, which yields

W1(�1 �m, �2 �m) 6
Z

d(x, y) d

�

Z

�x0,y0 d4(x0, y0)

�

(x, y)

D

Z Z

d(x, y) d�x0,y0(x, y) d4(x0, y0)

D

Z

d(x0, y0)(1� �(x0, y0)) d4(x0, y0) < W1(�1, �2).

It follows �1 D �2 if both �1 and�2 are invariant distributions.

3. Spectral gap

Let’s point out, if M is non self-adjoint, there may be no spectral gap in L2(X, �).
Fu-Zhou Gong and Li-Ming Wu give a counterexample as follows.

Let X D {0, 1}N be the symbol space of one-sided infinite words, equipped with a
metric d(x, y) WD 2� inf{nW xn¤yn} for x D x0x1 � � � and y D y0y1 � � � . Let � be a{0, 1}-
valued Bernoulli random variable with the lawP (� D 0)D P (� D 1)D 1=2. Define the
average operator as Mf (x) D E[ f (�x)], which determines a random walkm. Then,
(X, d, m) becomes a compact Polish space and has a Ricci curvature at least (1=2).
The unique invariant distribution� is the infinite product measurePN . However, the
spectral radius of M onL2(X, �)={const} equals 1, since M�M D Id.
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However, the spectral gap in the set of Lipschitz functions always exists, since
kM f � � f kLip 6 (1� �)k f kLip .

Now, we prove Theorem 1.2 without the original condition� <1 in [9].

Proof of Theorem 1.2. Define a new metricOd as

Od(x, y) D

�

d(x, y), if d(x, y) 6 1,
p

d(x, y), otherwise.

Denote by Lip1( Od) the set of 1-Lipschitz functions with respect toOd. When Od(x,y) 6 1,

we have due to Lip1( Od) � Lip1 that

W
Od

1 (mx, my) WD sup
f 2Lip1( Od)

jM f (x) �M f (y)j 6 (1� �) Od(x, y).

When Od(x, y) > 1, we have for any coupling� of mx and my that

�

Z

X�X

Od(� , �) d�(� , �)

�2

6

Z

X�X
d(� , �) d�(� , �),

which implies

W
Od

1 (mx, my) 6
p

W1(mx, my) 6
p

1� � � Od(x, y).

Hence, (X, Od, m) has a positive curvature at leastO� D 1�
p

1� � > 0. The as-
sociated diffusion constantO� (x) is L2-integrable since� has a finite first moment by
[9] Corollary 21. Then, we can apply the spectral gap result in [9] Proposition 30 to
(X, Od, m).

4. Entropy decay

In this section, we can prove an entropy-variance inequality which implies the ex-
ponential decay of entropy. Then we will obtain a modified LSIif the density function
dmx=d� belongs toL2(X, �).

According to the proof of Theorem 45 in [9], it follows

Lemma 4.1. Let f > 0 and t 2 N. ThenEnt
�

f D
P

t>0

R

Entmx (M
t f ) d�(x).

Proof. This summation formula can be verified straightforward.

Referring to Barthe and Roberto [3], we give a preliminary inequality, where the
control constant is a bit different.
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Lemma 4.2. Let 9r (s) D s log(s=r ) � (s� r ) for any s, r > 0. Then

9r 2(s2) 6 2(1C log �)(s� r )2, 8s 2 [0, �r ].

Proof. Let8(s) D 2(1C log �)(s� r )2
� 9r 2(s2), which satisfies d8=ds

jsDr D 0
and d28=ds2

> 0 on [0,�r ].

Now, let’s prove Proposition 1.3. Some ideas come from [3].

Proof of Proposition 1.3. By the definition of9r (s), we have Ent
�

f D
R

9

� f ( f ) d�. DenoteE D {x W f (x) > 2� f }, which implies for all y 2 E

(4.1) f (x) 6 2( f (x) � � f ), log
f (x)

� f
6

s

f (x)

� f
.

Using (4.1) and the Hölder inequality gives

(I) WD
Z

E
9

� f ( f (x)) d�(x) 6
Z

E
2( f (x) � � f )

s

f (x)

� f
d�(x) 6 2

p

Var
�

f .

Moreover, putting� D 2 andC D 2(1C log �), we have by Lemma 4.2 that

(II) WD
Z

Ec

9

� f ( f (x)) d�(x)

6 C
Z

Ec

(
p

f (x) �
p

� f )2 d�(x) 6 C
p

Var
�

f .

Combining the above estimates and Theorem 1.2 yields

Ent
�

f 6 (I)C (II) 6 (2C C)
p

Var
�

f .

Hence, we obtain the exponential decay of Ent
�

Mt f by Proposition 1.2.

Now we prove Proposition 1.4, a modified LSI.

Proof of Proposition 1.4. Put Q(f ) D
R

Entmx f d�(x). Lemma 4.1 and Propos-
ition 1.3 give

Ent
�

f D
X

t>0

Q(Mt f ) 6 Q( f )C
C1

1�
p

1� �

p

Var
�

(M f ).

Then, we have by the concavity of logarithm and self-adjointness of M that

Q( f ) D
Z

f � log f �M f � log M f d� 6 E�( f, log f ).
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Recall the notationp(x, y) D dmx(y)=d�(y), we also have by the Minkowski inequal-
ity that

p

Var
�

(M f ) D

 

Z

�

�

�

�

Z

f (y) � � f dmx(y)

�

�

�

�

2

d�(x)

!1=2

6

Z

�

Z

j f (y) � � f j2 p(x, y)2 d�(x)

�1=2

d�(y) 6 2C2� f .

Combining above estimates, we complete the proof.

5. LSI for �-range gradient operator

Let �x,y be an optimal coupling ofmx and my for x ¤ y, and

�

C

(x, y) WD
1

d(x, y)

Z

(d(x, y) � d(x0, y0))
C

d�x,y(x0, y0),

�

�

(x, y) WD
1

d(x, y)

Z

(d(x, y) � d(x0, y0))
�

d�x,y(x0, y0),

satisfying�(x, y) D �
C

(x, y)� �
�

(x, y). According to [9] Definition 42, theunstability
U (x, y) is defined asU (x, y) D �

�

(x, y)=�(x, y) and U D supx¤y U (x, y).
Recall the definition of�-range gradient operator (1.3), let’s address two facts from

[9] Theorem 44 and Lemma 48 respectively.

Lemma 5.1 (Gradient Contraction). Suppose� > 0 and �
1

< 1. If 0 < � 6

1=(20�
1

(1CU )), then for any f withD f <1 and any x

(DM f )(x) 6
�

1�
�

2

�

M(D f )(x).

Lemma 5.2. Let f satisfyingD f <1. Then for any y, z 2 Suppmx

j f (y) � f (z)j 6 e4��
1 d(y, z)M(D f )(x).

Denote by D4 the 4�-range gradient operator.

Lemma 5.3. Let f satisfyingD f <1. Then for all x

D4( f 2)(x) 6 2j f (x)jD f (x)C
2

e�
(D f )2(x).

Proof. We have by usinga 6 ea�1 that

j f (y) � f (x)j 6

�

j f (y) � f (x)j

d(y, x)
e�2� d(y,x)

�

e3�d(y,x)

e�
6 D f (x)

e3�d(y,x)

e�
,



SOME NOTES ON RICCI–OLLIVIER CURVATURE 499

and for anyy, y0 2 X

j f 2(y) � f 2(y0)j 6 j f (y) � f (y0)j(2j f (x)j C j f (y) � f (x)j C j f (y0) � f (x)j).

Combining the above estimates yields an upper bound of D4( f 2)(x).

Now, let’s prove Theorem 1.5, the standard LSI.
Proof. Take 4� 6 1=(20�

1

(1 C U )) such that Lemma 5.1 holds for D4 f . For
simplicity, denote�(x) D � (x)2

=nx (see (1.4)),� D e16��
1

6 e1=5 and � D 1=(e�).
Given f with f 2

> 0 everywhere. Denoteh D Mt ( f 2) for t 2 N. For anyx 2 X,
due toa log a 6 a2

� a, we have Entmx (h) 6 Varmx h=Mh(x). Applying Lemma 5.2 to
D4h yields

Varmx h

Mh(x)
6 �

2
�(x)

(M(D4h)(x))2

Mh(x)
.

Moreover, it follows from Lemma 5.1 and 5.3 that

M(D4h) 6
�

1�
�

2

�t
MtC1

�

D4( f 2)
�

6 2
�

1�
�

2

�t
MtC1(j f jD f C �(D f )2).

Abbreviate A D MtC1((D f )2)(x) and B D Mh(x) D MtC1( f 2)(x), then combining the
above estimates and Hölder inequality yields

(5.1) Entmx (h) 6 4�2
�(x)

�

1�
�

2

�2t
�

p

AC �
A
p

B

�2

.

On the other hand, recall the proof of Proposition 1.3 in Section 4 (replace� by
mx), denote9r (s) D s log(s=r ) � (s� r ) for any r, s> 0, then

Entmx h D
Z

9Mh(x)(h) dmx 6 2(2C log 2)
p

Varmx h.

Hence, by the similar argument to derive (5.1), there is another bound

(5.2) Entmx h 6 4(2C log 2)�
p

�(x)
�

1�
�

2

�t
(
p

ABC �A).

Now, let 
 > 0 be a parameter which will be determined later. Using either(5.1)
if �2A 6 
 2B or (5.2) otherwise, we have

(5.3)
Entmx h 6 max{4�2(1C 
 )2

p

�(x), 4(2C log 2)��(1C 
 �1)}

�

p

�(x) �
�

1�
�

2

�t
� A.

Note that
p

�(x) 6
p

2�
1

< 1=�, the above maximum is not greater than 16=� by
taking 
 D (

p

5� 1)=2. Finally, we apply Lemma 4.1 to (5.3).
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6. Ricci curvature for resistance forms

Let � be a Borel probability measure on the Polish spaceX. Let (E , F ) be a
symmetric Dirichlet form inL2(X,�) associated to a conservative Markov process with
a transition kernelpt (x, dy). According to [5], define

(6.1) R(x, y) WD sup
E( f, f )¤0

j f (x) � f (y)j2

E( f, f )
, 8x, y 2 X,

which is called effective resistance if it is finite everywhere. In fact, R is a metric on
X and (E ,F ) called a resistance form. For resistance forms on fractals, we refer to [2,
5, 6] and references therein. Sturm [10] gave another kind ofgradient-type construction
via the0-convergenceargument.

Define a random walkmD {mx} (depending on�) by

dmx(y) WD
Z

1

0
�e��t pt (x, dy) dt .

Then mx 2 M1 due to the conservativeness,� is invariant to m, and the averaging
operator M is self-adjoint since (E , F ) is symmetric. Moreover, recall the definition of
resolvent operators family, we have Mf D �G

�

f .
Now, let’s prove Proposition 1.6 that (X,

p

R, m) has a positive curvature.

Proof of Proposition 1.6. Denote by Lip1 the set of 1-Lipschitz functions under
p

R. Let f 2 Lip1 and f (o) D 0 for o 2 X, then f 2 L2(X,�), M f D �G
�

f 2 F and

jM f (x) �M f (y)j 6
p

R(x, y) �
p

E(M f, M f ).

Applying the basic properties of resolvent operators, we have

E(M f, M f ) D �( f � �G
�

f, �G
�

f ) D �( f �M f, M f ),

and estimate respectively

j f (x) �M f (x)j 6
Z

p

R(x, y) dmx(y), jM f (x)j 6
Z

p

R(o, y) dmx(y).

Denoteg(x) D
R

p

R(o, y) dmx(y), we obtain by the Hölder inequality that

E(M f, M f ) 6 �
Z

p

R(o, x)g(x)C g2(x) d�(x) 6 2�
Z

R(o, x) d�(x).

Hence, the desired result follows from (1.2).
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In particular, a standard LSI (6.2) holds ifR(x, y) is uniformly bounded.

Proposition 6.1. Suppose R(x, y) 6 C for all x, y. Then for any f2 F

Ent
�

( f 2) 6 2CE( f, f ).(6.2)

Proof. Due toa log a 6 a2
� a, we have

Ent
�

( f 2) 6
Var

�

( f 2)

�( f 2)
D

1

2�( f 2)

Z Z

j f 2(x) � f 2(y)j2 d�(x) d�(y).

Since j f (x) � f (y)j2 6 R(x, y)E( f, f ) by (6.1), we complete the proof.

REMARK 6.1. R(x, y) 6 C means�
1

< 1, so we can use Theorem 1.5 and
Proposition 1.6 to show the LSI but with a constant much bigger than 2C.
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