
Title A Study on Hierarchical Design of Fault-
containing Self-stabilizing Protocols

Author(s) 山内, 由紀子

Citation 大阪大学, 2009, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2509

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A Study on Hierarchical Design of

Fault-containing Self-stabilizing Protocols

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2009

Yukiko YAMAUCHI

i

List of Related Publications

Journal Papers

1. Yukiko Yamauchi, Sayaka Kamei, Fukuhito Ooshita, Yoshiaki Katayama, Hirotsugu Kaku-

gawa, and Toshimitsu Masuzawa, ”Hierarchical composition of self-stabilizing protocols

preserving the fault-containment property”, IEICE Transactions on Information and Sys-

tems (to appear).

2. Yukiko Yamauchi, Toshimitsu Masuzawa, and Doina Bein, ”Preserving the fault-contain-

ment property of ring protocols executed on trees”, The Computer Journal (to appear).

Conference Papers

3. Yukiko Yamauchi, Doina Bein, and Toshimitsu Masuzawa, ”Minimizing the message com-

plexity on embedded protocols”, Proceedings of the 10th International Symposium on Sta-

bilization, Safety, and Security of Distributed Systems (Poster), Detroit, USA, Nov. 2008.

4. Yukiko Yamauchi, Sayaka Kamei, Fukuhito Ooshita, Yoshiaki Katayama, Hirotsugu Kaku-

gawa, and Toshimitsu Masuzawa, ”Timer-based composition of fault-containing self-stabi-

lizing protocols”, Proceedings of the 2nd International Symposium on Intelligent Dis-

tributed Computing, pp.217-226, Catania, Italy, Sep. 2008.

5. Yukiko Yamauchi, Doina Bein, Linda Morales, Toshimitsu Masuzawa, and I. Hal Sudbor-

ough, ”Calibrating an embedded protocol on an asynchronous system”, Proceedings of the

2nd International Symposium on Intelligent Distributed Computing, pp.227-236, Catania,

Italy, Sep. 2008.

6. Yukiko Yamauchi, Toshimitsu Masuzawa, and Doina Bein, ”Ring embedding preserving

the fault-containment”, Proceedings of the 7th International Conference on Applications

and Principles of Information Science, pp.43-46, Auckland, New Zealand, Jan. 2008.

7. Yukiko Yamauchi, Sayaka Kamei, Fukuhito Ooshita, Yoshiaki Katayama, Hirotsugu Kaku-

gawa and Toshimitsu Masuzawa, ”Composition of fault-containing protocols based on

recovery waiting fault-containing composition framework”, Proceedings of the 8th Inter-

national Symposium on Stabilization, Safety, and Security of Distributed Systems, pp.516-

532, Dallas, USA, Nov. 2006.

ii

Technical Reports

8. Yukiko Yamauchi, Sayaka Kamei, Fukuhito Ooshita, Yoshiaki Katayama, Hirotsugu Kaku-

gawa, and Toshimitsu Masuzawa, ”Timer-based composition technique for self-stabilizing

protocols preserving the fault-containment property”, Technical Report of IPSJ, 2008-AL-

118, Vol.2008, No.49, pp.1-8, May 2008.

9. Yukiko Yamauchi, Toshimitsu Masuzawa, and Doina Bein, ”Emulation of ring protocols on

trees preserving fault-containment”, Technical Report of IEICE, COMP2006-52, Vol.106,

No. 566, pp.13-20, Mar. 2007.

List of Unrelated Publications

Journal Papers

10. Gen Nishikawa, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshim-

itsu Masuzawa, ”A fair self-stabilizing mutual exclusion protocol for mobile ad hoc net-

works”, IEICE Transactions on Fundamentals of Electronics, Communications and Com-

puter Science (letter), Vol.J91-A, No.02, pp.279-284, Feb. 2008 (in Japanese).

11. Yukiko Yamauchi, Yoshihiro Nakaminami, Fukuhito Ooshita, and Toshimitsh Masuzawa,

”TDMA slot assignment for wireless networks based on distance-2 coloring”. Transactions

of IPSJ, Vol.48, No.1, pp.327-341, Jan. 2007 (in Japanese).

Conference Papers

12. Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa,

”Output stability of self-stabilizing protocols against topology changes and transient faults”,

Proceedings of the 8th International Conference on Applications and Principles of Infor-

mation Science (to appear).

13. Yukiko Yamauchi, Takashi Itou, Gen Nishikawa, Fukuhito Ooshita, Hirotsugu Kakugawa,

and Toshimitsu Masuzawa, ”Clustering algorithm for mobile ad-hoc networks to improve

the stability of clusters”, Proceedings of the IASTED International Conference on Sensor

Networks 2008, pp. 9-15, Crete, Greece, Sep. 2008.

Technical Reports

14. Gen Nishikawa, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshim-

itsu Masuzawa, ”A self-stabilizing mutual exclusion protocol minimizing effect of topology

iii

changes for mobile ad hoc networks”, Technical Report of IPSJ, 2007-DPS-130, 2007-

CSEC-36, pp.177-182, Mar. 2007 (in Japanese).

15. Yukiko Yamauchi, Yoshihiro Nakaminami, Fukuhito Ooshita, Toshimitsu Masuzawa,

”TDMA slot assignment for wireless networks based on distance-2 graph coloring”, Tech-

nical Report of IPSJ, 2005-DPS-123, Vol.2005, No.58, pp.69-74, June 2005 (in Japanese).

Abstract

A distributed system consists of processes communicating with each other through communi-

cation links. Recently, large scale networks have been developed, e.g. the Internet, ad-hoc

networks, sensor networks, inter-vehicle networks. As the number of processes grows, a dis-

tributed system is more prone to faults. Fault tolerance is one of the most challenging problems

in distributed systems and the design of fault-tolerant distributed protocols attracts more and

more attention. The effect of faults may spread over the entire network due to the communica-

tion among processes. In large scale networks, it is desired that the effect of a fault is contained

and does not contaminate the entire network. In addition, it is expected that the system recover

quickly so that the system can tolerate the next fault.

Self-stabilization is one of the most powerful design paradigms for non-masking fault tol-

erance in distributed systems. A self-stabilizing protocol promises autonomous adaptability

against any finite number of transient faults that corrupt memory contents at processes. Fault-

containment has been attracted much attention in the area of adaptive stabilization. A fault-

containing self-stabilizing protocol promises containment of the effect of a small scale fault

in addition to self-stabilization against large scale faults. (In the following, we call it fault-

containing protocol.) Containment guarantees that the effect of a fault is contained around

faulty processes (spatial containment) and/or it lasts only a short period of time after the fault

(temporal containment). The notion of fault-containment is useful in practice. Self-stabilization

promises fault tolerance against any finite number of transient faults, but guarantees nothing

during the stabilization, e.g. the effect of a small scale fault may spread over the entire system.

In practice, catastrophic faults rarely occur while small scale faults are more likely to occur

frequently. However, designing fault-containing protocols is generally difficult. The difficulty

lies in the fact that it is difficult and costly to detect faulty configuration and faulty processes

in distributed settings, while it is necessary for the containment of the effect of faults.

In this dissertation, we focus on the design of fault-containing protocols and propose a

framework that facilitates the design of new fault-containing protocols. We propose two methods

to realize hierarchical structures of fault-containing protocols that ease the design of new fault-

v

vi

containing protocols and that improves the reusability of existing protocols by extending their

applications.

First of all, we present fault-containing composition that provides a hierarchical composition

of fault-containing protocols with preserving the fault-containment property of source proto-

cols. In a hierarchical composition of two (or more) protocols, the output of one protocol (the

lower protocol) is used as the input to the other protocol (the upper protocol). Though several

hierarchical composition techniques for self-stabilizing protocols have been proposed, they can-

not preserve the fault-containment property of source protocols. The problem is that existing

composition techniques allow the upper protocol to be executed on the incorrect input from the

lower protocol and the effect of a fault may spread over the entire network in the upper protocol.

Our approach is to control the execution of source protocols so that the upper protocol stops

during the recovery of the lower protocol. The difficulty lies in how to guarantee the recovery

of the lower protocol when the upper protocol starts its execution. A fault-containing protocol

provides temporal containment and/or spatial containment that can be used to guarantee the

recovery of the protocol. We propose two types of fault-containing composition methods: to

guarantee the recovery of the lower protocol, one utilizes the temporal containment of source

protocols (Chapter 3), and the other utilizes the spatial containment of source protocols (Chap-

ter 4). Fault-containing composition is the first step to facilitate the design of fault-tolerant

protocols because it shows the possibility of a uniform composition framework for fault-tolerant

protocols.

Secondly, we present a simulation technique for fault-containing protocols on an embedded

topology. Topology embedding is to embed a virtual topology on a real topology, and this enables

a distributed protocol designed for a specific topology to be executed on another topology. A one-

to-one node embedding is a topology embedding such that one real process corresponds to just one

virtual process. Any one-to-one node embedding has natural fault tolerance because when a real

process is corrupted by a fault, only one corresponding virtual process is corrupted in the virtual

topology. However, one-to-one node embedding introduces dilation (the maximum distance of a

virtual link in a real topology) bigger than one and the data on a virtual link may be corrupted

by a corruption of intermediate real processes. To preserve the fault-containment of original

protocols executed on the embedded topology, it is necessary that the data on a virtual link is

not corrupted. As one of the most investigated networks in distributed computing, a ring network

is frequently used for distributed computation and control. We focus on ring embedding on a

rooted tree and propose a simulation technique for fault-containing ring protocols on an arbitrary

rooted tree (Chapter 5). The proposed simulation technique demonstrates the possibility of a

universal simulation technique for fault-tolerant protocols executed any embedded topologies.

Contents

1 Introduction 1

1.1 Distributed Systems . 1

1.2 Fault Tolerance of Distributed Systems . 2

1.3 Self-stabilization . 3

1.3.1 Self-stabilization and Adaptive Stabilization 3

1.3.2 Fault-containment . 5

1.4 Hierarchical Design of Distributed Protocols . 6

1.4.1 Composition . 6

1.4.2 Topology Embedding . 7

1.5 Overview of This Dissertation . 9

1.5.1 Hierarchical Composition of Fault-containing Protocols 9

1.5.2 Ring Embedding . 10

1.6 Organization of This Dissertation . 11

2 Preliminary 13

2.1 Network and Processes . 13

2.2 Self-stabilization . 14

3 Hierarchical Composition with Temporal Containment 17

3.1 Fault-containing Composition and RWFC Strategy 19

3.2 Preliminary . 21

3.3 Composition Framework . 21

3.3.1 Specification of the Local Neighborhood Synchronizer 23

3.3.2 Composition Protocol RWFC-LNS . 25

3.3.3 Correctness Proof of RWFC-LNS . 25

3.4 Local Neighborhood Synchronizer . 27

3.4.1 Protocol LNS . 27

vii

viii CONTENTS

3.4.2 Correctness Proof: Stabilization of LNS 30

3.4.3 Correctness Proof: Synchronization of LNS 36

3.5 Concluding Remarks . 37

4 Hierarchical Composition with Spatial Containment 39

4.1 Preliminary . 40

4.2 Composition Framework . 41

4.2.1 Specification of the Inconsistency Detector 42

4.2.2 Composition Protocol RWFC-IcD . 43

4.2.3 Correctness Proof of RWFC-IcD . 44

4.3 Inconsistency Detector . 45

4.4 Concluding Remarks . 47

5 Ring Embedding Preserving Fault-containment Property 49

5.1 Preliminary . 51

5.2 Causal Simulation . 53

5.3 Causal Simulation Framework . 59

5.3.1 Causal Simulation Protocol RET . 61

5.3.2 Correctness Proof of RET . 62

5.3.3 Performance Evaluation . 74

5.4 Example of 1-fault-containing Leader Election . 75

5.5 Concluding Remarks . 78

6 Conclusion 79

6.1 Summary of the Results . 79

6.2 Future Directions . 80

List of Figures

1.1 Self-stabilization and fault-containment (Spanning tree construction) 5

1.2 Hierarchical structure . 6

1.3 Virtual ring embedding on a rooted tree . 8

4.1 Inconsistency range around a faulty process . 42

5.1 Ring embedding on a tree . 50

5.2 Preorder-postorder traversal . 52

5.3 An example of causal shift . 54

5.4 Faults in Pr . 56

5.5 An example of R′(Er) . 58

5.6 Local routing function at p . 59

5.7 Fault at p on the virtual ring . 63

5.8 Faults at intermediate processes on the virtual link (q, p) 64

5.9 Majority values at process p . 66

5.10 Fault at p in the virtual ring (Data a was delivered before the fault.) 67

5.11 Fault at p in the virtual ring (Data a was not delivered before the fault.) 71

5.12 The delay caused by RET . 75

5.13 Embedding forward and backward rings . 76

5.14 Leader election in the bidirectional ring . 77

ix

List of Tables

3.1 Notations for the source protocols and the composite protocol (RWFC-LNS) . . 22

4.1 Notations for the source protocols and the composite protocol (RWFC-IcD) . . . 41

xi

Chapter 1

Introduction

1.1 Distributed Systems

A distributed system consists of computational entities that communicate with each other by

communication links. (We call each computational entity process in the following.) Processes

cooperate to accomplish the objectives of the system. Distributed systems model communication

networks, multiprocessing computers, multitasking single computers, etc. There are fundamen-

tal expectations in designing distributed systems and distributed protocols, e.g. performance,

scalability, availability, resource sharing, dependability, fault tolerance.

The difficulty in designing distributed systems lies in the distributed nature itself. The whole

system should achieve its objectives, while each process has to compute with limited information

about the entire system, e.g. the number of processes, topology of the network, independent

input at each processes, asynchrony in the computation at each process or message delivery, and

failures of many types.

Recently, the application of distributed systems has been growing rapidly, e.g. the Internet,

peer-to-peer networks, mobile ad-hoc networks, sensor networks, inter-vehicle networks. These

new applications introduce novel requirements on distributed systems. The Internet and peer-

to-peer networks consist of a huge number of computers in the world. As the size of a network

grows, dynamic changes (e.g. faults and topology changes) occur more frequently. The effect

of a change may spread over the entire network due to the communication among processes.

For example, a non-faulty process is affected by a fault by communicating with faulty processes

and updating its state according to the information exchanged, and the effect may keep on

spreading in the same way. This may damage the performance, availability, and dependability

of the system. It is necessary for the system to automatically adapt to the changes and to

prevent the effect of the changes from spreading over the entire network. Sensor networks

1

2 CHAPTER 1. INTRODUCTION

consist of a large number of sensor nodes and they are often operated under harsh environment.

Thus, unexpected faults and topology changes can occur frequently. Because a large number

of sensor nodes are distributed over wide field, it is desirable that the system adapts to the

environment without human intervention. On the other hand, each sensor node has a small

processor and small battery capacity. The difference between sensor networks and the Internet

is this limitation on resource at each process. So, in sensor networks, it is desirable that the

adaptability is achieved with small computational overhead. Inter-vehicle networks are exposed

to dynamic topology changes and the biggest difference from above networks is mobile speed of

each process. In such networks, it is expected that the system adapts to fast-changing topology

quickly so that the system tolerates the next topology change.

1.2 Fault Tolerance of Distributed Systems

Distributed systems are prone to failures, e.g. memory contents at processes may be corrupted,

processes may behave arbitrarily and may stop their actions, and messages exchanged between

processes may be changed and lost. Fault tolerance is to mask the effect of failures or recover

the objective behavior of a system after failures. As distributed systems play more critical role,

fault tolerance of distributed systems is getting more and more important.

There are many levels of failures, e.g. hardware, software, process, communication. We focus

on failures at processes and they are classified into the following four types [21, 41].

• Crash failure. A process stops its actions permanently when it undergoes a crash failure.

• Omission failure. In a network such that processes send and receive messages with each

other, a receiver process does not receive some of the messages sent to it when it undergoes

an omission failure.

• Transient failure. A transient failure changes the states of some processes arbitrarily by

changing their memory contents arbitrarily.

• Byzantine failure. A Byzantine failure makes the process behave arbitrarily. This model

is the strongest model of all process failure models.

Useful properties of distributed systems are classified into either safety property or liveness

property [21, 41, 51]. Safety property implies that “bad things never happen” where bad things

mean abnormal behavior of the system. Formally, safety property addresses that the system

satisfies its safety specification in any execution. Liveness property implies that “good things

eventually happen” where good things means the specification or purpose of the system. For-

mally, liveness property addresses that the system eventually satisfies its specification in any

1.3. SELF-STABILIZATION 3

execution. The term eventuality means a finite time, i.e. finite actions or computations. It

is desirable that distributed systems always satisfy both safety property and liveness property.

However, when failure occurs, these properties may be no longer satisfied. To design fault-

tolerant distributed systems, it is necessary to guarantee that at least one of these properties is

always satisfied even when failures occur.

There exist many approaches to promise fault tolerance. These approaches are classified into

the following three types [21, 51].

• Masking tolerance. Masking tolerance promises that the application of the system

does not observe the effect of failures and the system always satisfies its specification.

Hence, the system always satisfies safety property and liveness property even when there

exist failures.

• Non-masking tolerance. Non-masking tolerance allows that the application is tempo-

rally affected after failures, but eventually the effect ceases and the system behaves as its

specification. Hence, the system always satisfies liveness property, however, when there

exist failures, it does not promise safety property.

• Fail-safe tolerance. Fail-safe tolerance just avoids critical faulty configurations that

damage the application, and even when failures occur, fail-safe tolerance may allow faulty

configurations if it does not affect the application. Hence, the system always satisfies safety

property, however, when there exist failures, it does not promise liveness property.

Masking fault tolerance is more preferable, however it is costly to implement masking fault-

tolerant distributed systems. Non-masking fault tolerance provides a reasonable way of imple-

menting fault-tolerant distributed systems.

1.3 Self-stabilization

To design fault-tolerant distributed systems, self-∗ properties attract increasing attention, e.g.

self-stabilizing, self-adaptive, self-configuring, self-healing, self-managing, self-organizing, self-

optimizing, self-repairing. Self-* properties promise that the system automatically adapts to

faults. Self-stabilization is one of the most promising design paradigms for adaptive fault-

tolerant distributed protocols.

1.3.1 Self-stabilization and Adaptive Stabilization

Dijkstra [13] first introduced the notion of self-stabilization in 1974. Self-stabilization provides

non-masking fault tolerance against finite number of transient faults that corrupts processes

4 CHAPTER 1. INTRODUCTION

by changing memory contents at processes arbitrarily. A self-stabilizing protocol promises that

starting from any arbitrary initial configuration, the system eventually converges to a legitimate

configuration where the protocol satisfies its specification. Hence, for a finite number of transient

faults, self-stabilization promises autonomous adaptability by considering the configuration after

the last fault as an initial configuration. A large number of self-stabilizing protocols have

been proposed for many problems, e.g. spanning tree construction [11, 19, 30], leader election

[22, 40], maximal independent set [50, 52], maximal matching [29, 42, 43], vertex coloring [28],

median finding [9], synchronization [7, 32], propagation of information with feedback (PIF)

[10, 12], token circulation [31], TDMA slot assignment [28], and routing [8]. Good surveys are

found in [14, 20, 48, 50]. Self-stabilization is also widely used in real networks. IEEE 802.1d

spanning tree protocol enables Ethernet bridges to construct a spanning tree in a self-stabilizing

manner to avoid packet loops. RIP (Routing Information Protocol) based on Bellman-Ford

routing algorithm and OSPF (Open Shortest Path First) based on periodical refresh of routing

informations are also self-stabilizing.

Though self-stabilization achieves excellent fault tolerance against large scale faults, catas-

trophic faults rarely occur in practice while small scale faults are more likely to occur frequently.

Moreover, self-stabilization guarantees nothing during the stabilization, and the effect of a small

scale fault may spread over the entire network (Figure 1.1).

Many researchers have tried to develop adaptive self-stabilization by restricting the fault

scenario, e.g. fault-containment [22, 23], time-adaptive stabilization [36], superstabilization

[15, 34], local stabilization [1], and time-to-fault adaptive stabilization [16]. Fault-containment

guarantees that when a fault corrupts at most f processes in a legitimate configuration, the

system reaches a legitimate configuration in a time proportional in f . (The value of f depends

on the protocol.) Time-adaptive stabilization guarantees that after a fault corrupts processes in

a legitimate configuration, the system reaches a legitimate configuration in a time proportional

to the number of corrupted processes. Super-stabilization guarantees that the system keeps its

safety during the convergence after any topology change in a legitimate configuration. Local

stabilization promises that after a fault corrupts processes in a legitimate configuration, the

system reaches a legitimate configuration in a time proportional to the diameter of corrupted

region. Time-to-fault adaptive stabilization guarantees that the output of the protocol recovers

in a time proportional to the number of corrupted processes in an initial configuration. The

main issue is the time complexity for recovery. Their aim is to guarantee the recovery time

bounded by the number of corrupted processes in an initial configuration.

1.3. SELF-STABILIZATION 5

������� �	��

������������������� �����������	� ��� !

���"��� !#�

$ �%��&	��'(����)*� ��� +��,�����-�

�����
�����	� ��� !

���".0/213�54
����1
1��	�	1
4 !

�����
�����(4��
��1
1
�	�	1�4 !

���".0/213�54
����1
1��	�	1
4 !

������� �	��

������������������� �����������	� ��� !

���"��� !#�

$ �%��&	��'(����)*� ��� +��,�����-�

�����
�����	� ��� !

���".0/213�54
����1
1��	�	1
4 !

�����
�����(4��
��1
1
�	�	1�4 !

���".0/213�54
����1
1��	�	1
4 !

Figure 1.1: Self-stabilization and fault-containment (Spanning tree construction)

1.3.2 Fault-containment

Ghosh et al. [22, 23] first introduced the notion of fault-containment in 1996. An f -faulty

configuration is a configuration obtained by a fault corrupting f processes in a legitimate con-

figuration. An f -fault-containing protocol promises self-stabilization against large scale faults

and containment of the effect against small scale faults, i.e. for any f ′-faulty configuration,

where f ′ is smaller than or equals to f , the effect is contained in any execution starting from

the configuration. The containment property is twofold: one is spatial containment property

that promises that the effect of the fault is contained around faulty processes. The other is

temporal containment property that promises that the effect of the fault lasts just a short pe-

riod of time after the fault (Figure 1.1). There already exist many fault-containing protocols,

e.g. a small scale fault is contained and rapid recovery is guaranteed in the fault-containing

protocols for rings [22, 26], and for general graphs [23, 24, 25, 39]. Ghosh et al. proposed

fault-containing leader election on rings [22], k-fault-containing token circulation [26], 1-fault-

containing BFS tree construction [24], 1-fault-containing spanning tree construction [25], and

1-fault-containing maximal independent sets [39]. Some of the above fault-containing protocols

are obtained by adding fault-containment property to already existing self-stabilizing protocols.

Ghosh et al. present a general technique for adding 1-fault-containment property to non-reactive

6 CHAPTER 1. INTRODUCTION

���������
	��
�������������
�����
��������� � �"!$# %'&
&�(�)*��+�# %�, (-#.��)*�

)
�/�-�/��%�0 � #1%2��%43���&-#156)
%�7

���8��9����:���;���
�������
���4�
< � � !=(
)*��+�#1%4,�(-#.�1)
�>)*�>�?# %'&
&

���������
	��
�������������
�����
��������� � �"!$# %'&
&�(�)*��+�# %�, (-#.��)*�

)
�/�-�/��%�0 � #1%2��%43���&-#156)
%�7

���8��9����:���;���
�������
���4�
< � � !=(
)*��+�#1%4,�(-#.�1)
�>)*�>�?# %'&
&

Figure 1.2: Hierarchical structure

self-stabilizing protocols [23]. Ghosh et al. introduced 1-fault-containing spanning tree construc-

tion using priority scheduler in [25]. Priority scheduler provides a weak priority rule that makes

the recovery actions of faulty processes precede the actions of correct processes. There exist

such fault-containing protocols obtained by composing multiple layers of protocols where each

protocol is not fault-containing by itself [4, 3]. However, these transformers are designed for

limited fault scenarios.

1.4 Hierarchical Design of Distributed Protocols

Hierarchical design of protocols improves the reusability of existing protocols by extending the

application of these protocols and eases the design of new protocols. Hierarchy means that

the output of one protocol (the lower protocol) is used as the input to the other protocol

(the upper protocol). For example, Figure 1.2 shows a hierarchical structure of two protocols

where the lower protocol is a spanning tree construction on an arbitrary graph and the upper

protocol is a ring embedding on an arbitrary tree. The tree constructed by the lower protocol

is used as the input by the upper protocol. In this dissertation, we focus on two types of

hierarchical design of self-stabilizing protocols. First, we introduce hierarchical composition of

self-stabilizing protocols that facilitates the design of new protocols. Secondly, we introduce

topology embedding that extends the application of existing protocols designed for a specific

topology to another topology.

1.4.1 Composition

In a hierarchical composition of two (or more) distributed protocols, the output of one protocol

(the lower protocol) is used as the input to the other protocol (the upper protocol) and the

composite protocol provides the output of the upper protocol on the input to the lower protocol.

We call the lower protocol and the upper protocol source protocols. Hierarchical composition

eases the design of new protocols and improves the reusability of existing protocols.

1.4. HIERARCHICAL DESIGN OF DISTRIBUTED PROTOCOLS 7

Hierarchical composition of fault-tolerant distributed protocols has been well studied. Gouda

et al. proposed an adaptive programming for the systems with input changes [27]. They proposed

hierarchical composition of adaptive protocols that forces each process to execute the lower

protocol first so that the process executes the upper protocol after the lower protocol. Their

hierarchical composition checks whether a process has to execute the lower protocol and only

when it does not have to execute the lower protocol, the process can execute the upper protocol.

However, in general, this local checking of the lower protocol cannot guarantee completion of

the global recovery of the lower protocol when the upper protocol starts its execution.

Hierarchical composition of self-stabilizing protocols is also well used in the design of new

self-stabilizing protocols. One of the most well-known composition techniques for self-stabilizing

protocols is fair-composition [17, 19]. Fair-composition executes source protocols in parallel and

it guarantees that the composite protocol is also self-stabilizing. Starting from an arbitrary

initial configuration, the lower protocol first reaches a legitimate configuration with its self-

stabilizing property. Though the upper protocol can be also executed on the incorrect input

from the lower protocol during the convergence of the lower protocol, self-stabilization guarantees

convergence from any initial configuration. Hence, after the lower protocol reaches a legitimate

configuration, the upper protocol eventually reaches a legitimate configuration and the composite

protocol eventually reaches a legitimate configuration.

Other than hierarchical structures, many composition techniques for self-stabilizing protocols

have been also developed. Gouda et al. [27] also proposed selective composition that executes

multiple adaptive protocols and switches the output so that the composite protocol can adapt

to input changes. Beauquier et al. [6] introduced cross-over composition which uses the lower

protocol as a filter to the execution of the upper protocol and improves the adaptability to

scheduler. Dolev et al. [16] proposed parallel composition that enables parallel search and

accelerates the stabilization by executing multiple self-stabilizing protocols in parallel.

1.4.2 Topology Embedding

Topology embedding is to embed a virtual topology on a real topology that enables a distributed

protocol designed for a specific topology (virtual topology) to be executed on another topology

(real topology) and extends the application of the protocol.

We can find two types of topology embedding 1. Many-to-one node embedding is an em-

1We can find one-to-many node embedding in [47]. In [47], Nolte et al. proposed virtual node layer for mobile

ad-hoc networks that deploys virtual nodes on the predefined geographic coordinates. Virtual nodes are realized

by the mobile nodes around the predefined points. Thus, virtual node layer enables stable deployment of virtual

nodes in mobile ad-hoc networks even when mobile nodes move.

8 CHAPTER 1. INTRODUCTION

�����������	��
 ��������������	��
 ���
�����������	��
 ���

 ��� �	�����������	� �����

���������������	� �����

�����������	��
 ���

 ��� �	�����������	� �����

���������������	� �����

(a) Many-to-one node embedding (b) One-to-one node embedding

Figure 1.3: Virtual ring embedding on a rooted tree

bedding such that one real process corresponds to multiple virtual processes. One-to-one node

embedding is an embedding such that one real process corresponds to just one virtual process

and different real processes correspond to different virtual processes. Figure 1.3 shows an ex-

ample of ring embedding on a rooted tree. Based on the depth-first traversal, Figure 1.3 (a)

shows a many-to-one node embedding while Figure 1.3 (b) shows a one-to-one node embedding.

Consider a fault that corrupts one real process in Figure 1.3. In many-to-one node embedding,

corresponding multiple virtual processes are corrupted in the virtual topology. On the other

hand, in one-to-one node embedding, just one corresponding virtual process is corrupted in the

virtual topology. In this way, any one-to-one node embedding has natural fault tolerance because

when a fault corrupts f real processes, it corresponds to a situation where f virtual processes

are corrupted by the fault in the virtual topology. To preserve the fault-containment property

in the virtual topology, this fact is very useful because the containment guarantee depends on

the number of processes corrupted by a fault.

However, in a one-to-one node embedding, each virtual link between two virtual processes

may be a path between corresponding real processes in the real topology. Dilation is the maxi-

mum distance of a virtual link in the real topology. A one-to-one node embedding can introduce

dilation larger than one. For example, Sekanina [49] proposed one-to-one node embedding for

ring on an arbitrary tree that has the dilation of three. Hence, each data read through (or

sent and received on) a virtual link should be relayed by the intermediate processes in a real

topology. When a real process is corrupted by a fault, the virtual links running through the

corrupted process can be also corrupted. However, in general, fault tolerance against unreliable

communication links is easier than fault tolerance against corruption at processes. For example,

by duplicating messages or attaching sequence numbers to messages, we can avoid message loss

or message duplication.

1.5. OVERVIEW OF THIS DISSERTATION 9

1.5 Overview of This Dissertation

In this dissertation, we focus on hierarchical design of fault-containing protocols that facil-

itates the design of new fault-containing protocols and extends the application of existing

fault-containing protocols. We propose two methods to realize hierarchical structures of fault-

containing protocols.

1.5.1 Hierarchical Composition of Fault-containing Protocols

When designing hierarchical composition of fault-containing protocols, the main concern is to

preserve the fault-containment property of source protocols. Though several composition meth-

ods for self-stabilizing protocols have been proposed [17, 19, 27], existing composition methods

do not preserve the fault-containment property of source protocols. Fair composition [17, 19]

of self-stabilizing protocols cannot preserve the fault-containment property of source protocols.

This is because the parallel execution of the source protocols allows the upper protocol to be

executed on an incorrect output of the lower protocol. Then, the effect of a fault may spread

over the entire network in the upper protocol. Hierarchical composition [27] of self-stabilizing

protocols also cannot preserve the fault-containment property of source protocols. Hierarchical

composition just checks whether a process has to execute the lower protocol (i.e. whether it has

an enabled guard in the lower protocol) and only when it does not have to execute the lower

protocol, the process can execute the upper protocol. The problem is that we cannot guarantee

the overall recovery of the lower protocol by checking whether one process has an enabled guard

in the lower protocol or not. The difficulty in composing fault-containing protocols lies in how

to guarantee the recovery of the lower protocol when processes execute the upper protocol.

For any f1-fault-containing protocol P1 and f2-fault-containing protocol P2, a hierarchical

composition of P1 and P2 is a fault-containing composition when the composite protocol is f1,2-

fault-containing for some 0 < f1,2 ≤ f1, f2. We propose Recovery Waiting Fault-containing Com-

position (RWFC) strategy that stops the upper protocol during the recovery of the lower pro-

tocol. To implement RWFC strategy, we utilize the containment properties of fault-containing

protocols. Temporal containment property provides the recovery time that is the maximum

time necessary for the system to recover from any target faulty configuration. The first compo-

sition technique RWFC-LNS (RWFC with the local neighborhood synchronizer) stops the upper

protocol for the recovery time of the lower protocol. After its recovery time, the lower proto-

col is in a legitimate configuration, and the upper protocol recovers with its fault-containment

property. We also implement the local neighborhood synchronizer (LNS) that measures time in

asynchronous distributed systems while preserving the spatial and temporal containment (i.e.

10 CHAPTER 1. INTRODUCTION

LNS is executed only around faulty processes and only a short period of time after the fault).

However, in the worst case, RWFC-LNS stops the upper protocol even when the lower protocol

has recovered. Moreover, not all fault-containing protocols provide both temporal containment

property and spatial containment property. They just provide temporal containment property

and/or spatial containment property. Spatial containment property provides the inconsistency

range that is the maximum distance from any faulty process to any process that finds incon-

sistency during the recovery of the protocol. The second composition technique RWFC-IcD

(RWFC with inconsistency detector) utilizes the inconsistency range to detect the recovery of

the lower protocol. RWFC-IcD enables the upper protocol to start its recovery as soon as the

lower protocol recovers and speeds up the recovery of the composite protocol. We implemented

the inconsistency detector (IcD) that detects the inconsistency of the lower protocol.

The proposed composition techniques are important both theoretically and practically. These

composition techniques suggest the possibility of a uniform framework for composition of fault-

containing protocols and a novel design technique for fault-containing protocols.

1.5.2 Ring Embedding

As one of the most investigated networks in distributed computing, a ring network is frequently

used for distributed computation and control. Dijkstra designed the first self-stabilizing protocols

for ring networks (three mutual exclusion protocols in [13]). The election problem, one of the

most fundamental problems, was first introduced by Le Lann for ring networks in a non-self-

stabilizing manner [38]. Fault-containing ring protocols are also proposed (leader election [22],

and token circulation [26]). A substantial advantage of ring protocols is that they can be applied

to arbitrary networks by means of virtual rings embedded on the real networks.

Kulkarni et al. proposed a transformation technique using a virtual ring embedded on a

spanning tree [35]. Their transformation enables self-stabilizing protocols designed for theoret-

ical models to be executed on a write all with collision (WAC) model. WAC model reflects

collisions of broadcasts in sensor networks and a virtual ring is used for mutual exclusion to

avoid collisions. However, their ring embedding is a many-to-one node embedding.

One effective way of designing fault-containing protocols is to apply existing ones, designed

for simple networks (e.g. rings), to arbitrary networks. This approach is common in protocol

design. However, to the best of our knowledge, this approach has not been investigated in the

context of fault-containment.

We propose a one-to-one ring embedding on an arbitrary rooted tree that preserves the

fault-containment property of ring protocols executed on the embedded ring. To tolerate the

corruption of virtual links, we implement the communication mechanism that enables the cor-

1.6. ORGANIZATION OF THIS DISSERTATION 11

rupted data to be discarded at endpoint virtual processes.

Simulation is to provide the same task as an original protocol designed for a specific com-

putation model on another computation model. Lynch defined the simulation relation between

two different protocols that requires one protocol traces every global configuration of the other

protocol [41]. In our ring embedding, it is difficult to simulate the global configurations of the

original ring protocol because virtual links have different communication delays. However, our

method preserves the read/write causality of the original ring protocol that makes us call our

method causal simulation. Though causal simulation is a weaker notion than simulation, it is

strong enough to guarantee that the simulating protocol can execute the same task as the origi-

nal protocol. Causal simulation provides simulation of ring protocols for non-reactive tasks (e.g.

leader election, etc.) and reactive tasks (e.g. token circulation, etc.) such that the safety prop-

erty of the task depends only on the read/write causality. Since most of the reactive protocols

are based on read/write causality, causal simulation can be applied to a variety of protocols.

To the best of our knowledge, this ring embedding method is the first challenge to develop a

method to simulate a protocol on another topology while preserving the fault-containment prop-

erty. Using the fault-containing composition and existing fault-containing spanning tree con-

struction [24, 25], the proposed method can be extended to arbitrary networks. Consequently,

this work pioneers a new methodology of designing fault-containing protocols on arbitrary net-

works.

Though our framework focuses on the ring embedding on rooted trees, this embedding tech-

nique suggests the possibility of uniform topology embedding technique for simulating fault-

containing protocols.

1.6 Organization of This Dissertation

This dissertation consists of six chapters. In Chapter 2, we give formal definitions of compu-

tational models and self-stabilization. In Chapter 3 and 4, we introduce the notion of fault-

containing composition and show two different hierarchical composition techniques that pre-

serves the fault-containment property of source protocols. In Chapter 5, we show ring embed-

ding on an arbitrary rooted tree that preserves the fault-containment property of ring protocols

executed on an embedded ring. We conclude this dissertation in Chapter 6.

Chapter 2

Preliminary

2.1 Network and Processes

A system is a network which is represented by a undirected graph G = (V,E) where the vertex

set V is a set of processes and the edge set E is a set of bidirectional communication links. Each

process has a unique identity. Process p is a neighbor of process q iff there exists a bidirectional

communication link (p, q) ∈ E. A set of direct neighbors of p is denoted by Np and δp = |Np|
is the degree of p. Let N1

p = Np, and for each i ≥ 2, N i
p = N i−1

p ∪
∪

q∈N i−1
p

Nq\{p}. The set of

processes denoted by N i
p is called i-neighbor of p. The i-neighbor of p is the set of processes such

that their distances from p are smaller than or equal to i excluding p. The distance between p

and q (q 6= p) is denoted by dist(p, q), and dist(p, q) = j iff q 6∈ N j−1
p ∧ q ∈ N j

p .

Each process p maintains local variables and the values of all local variables at p define the

local state of p. Local variables are classified into three classes: input, output, and inner. The

input variables indicate the input to the system and they are not changed by the system. The

output variables are the output of the system for external observers. The inner variables are

internal working variables used to compute output variables.

We adopt locally shared memory model 1 as a communication model: each process p can read

the values of the local variables at q ∈ Np ∪{p}. A protocol at each process p consists of a finite

number of guarded actions in the form of 〈guard〉 → 〈action〉. A 〈guard〉 is a boolean expression

involving the local variables of p and Np, and an 〈action〉 is a statement that changes the values

of p’s local variables (except input variables). A process with a guard evaluated to true is called
1There exist message passing model and link register model. In message passing model, processes communicate

with each other by sending and receiving messages. Link register model models each link as a register and each

message is written to and read from the register. However, the idea presented in this dissertation does not depend

on the communication model. Many researchers have tried to transform a protocol designed for the locally shared

memory model into a protocol on other communication models [19, 18, 53].

13

14 CHAPTER 2. PRELIMINARY

enabled. We adopt distributed daemon as a scheduler: in a computation step, distributed daemon

selects a nonempty subset of enabled processes, and each selected process executes one of the

corresponding actions. We consider the distributed daemon is weakly fair, that is, if a process

evaluates some of its guards to be true infinitely often, the process is selected by the distributed

daemon infinitely often. The evaluation of guards and the execution of the corresponding action

is atomic: these computations are done without any interruption. A configuration of a system

is represented by a tuple of local states of all processes. An execution is a maximal sequence of

configurations E = σ0, σ1, σ2, · · · that satisfies (i) σi+1 is obtained by applying one computation

step to σi or (ii) σi is the final configuration. Maximality means that the sequence is either

infinite, or it is finite and no process is enabled in the final configuration.

Distributed daemon allows asynchronous executions. In an asynchronous execution, the

time is measured by computation steps or rounds. Let E = σ0, σ1, σ2, · · · be an asynchronous

execution. The first round σ0, σ1, σ2, · · · , σi is the minimum prefix of E such that for each

process p ∈ V if p is enabled in σ0, either p’s guard becomes disabled or p executes at least one

step in σ0, σ1, σ2, · · ·σi. The second and latter rounds are defined recursively by applying the

definition of the first round to the remaining suffix of the execution E′ = σi+1, σi+2, · · · .

2.2 Self-stabilization

A problem (task) T is defined by a legitimate predicate on configurations. A non-reactive

problem is a problem such that no process changes the values of its output variables after

the system reaches a configuration where the legitimate predicate holds, e.g. spanning tree

construction, and leader election. A reactive problem is a problem such that processes change

the values of their output variables after the system reaches a configuration where the legitimate

predicate holds, e.g. token circulation and synchronization.

There exist two types of definitions for legitimacy. The difference is with what the legitimacy

is defined: one defines legitimacy based on configurations and the other defines legitimacy based

on executions. It is hard to define reactive problems by legitimacy defined on configurations.

For example, it is difficult to determine liveness and fairness of the token circulation problem

with one configuration. For the token circulation problem, the legitimacy should be defined with

executions.

Definition 1 Legitimate Configuration of Non-reactive Problems

For a non-reactive problem T , a configuration σ is legitimate iff σ satisfies the legitimate

predicate of T .

2.2. SELF-STABILIZATION 15

Definition 2 Legitimate Configuration of Reactive (and Non-reactive) Problems

For a reactive (and non-reactive) problem T ′, a configuration σ is legitimate iff any configuration

that appears in any execution starting from σ satisfies the legitimate predicate of T ′.

We say a distributed protocol P (T) has solved problem T in a configuration iff the config-

uration satisfies the legitimate predicate L(P (T)). The input (output) of P (T) is represented

by the conjunction of input (output, respectively) variables at each process. We omit T if T is

clear. The input variables to the protocol are not changed during the execution of the protocol.

Definition 3 Self-stabilization

A distributed protocol P is self-stabilizing iff it satisfies the following two properties:

• Convergence : starting from any arbitrary initial configuration, it reaches a legitimate

configuration.

• Closure : once it reaches a legitimate configuration, it remains in legitimate configurations

thereafter.

A transient fault corrupts some processes by changing the values of their local variables (ex-

cept input variables) arbitrarily. A self-stabilizing protocol guarantees autonomous adaptability

against any finite number of transient faults by considering the configuration after the last fault

as an arbitrary initial configuration from that it starts the convergence.

A configuration is f -faulty 2 iff the minimum number of processes such that we have to

change their local states (except input variables) to make the configuration legitimate is f . So,

an f -faulty configuration is the configuration just after a fault corrupts f processes. We say

process p is faulty iff we have to change p’s local state to make the configuration legitimate and

otherwise correct.

An f-fault-containing protocol autonomously reaches a legitimate configuration from any f ′-

faulty configuration (f ′ ≤ f) in a polynomial time in f , and/or the number of processes affected

is bounded by a polynomial in f , e.g. f , f2 (not |V |). We say a processes is contaminated iff the

process changes its local variables during the recovery from an f ′-faulty configuration (f ′ ≤ f).

Definition 4 f-fault-containment

A self-stabilizing protocol is f-fault-containing iff it reaches a legitimate configuration from any

f ′-faulty configuration (f ′ ≤ f) with the number of contaminated processes and/or the number

of rounds to reach a legitimate configuration bounded by some polynomial in f (not |V |).
2In general, the legitimate configuration obtained by changing the local states of f processes is not always

unique. However, in this dissertation we assume the corresponding legitimate configuration is unique because we

assume later that the legitimate configuration of the protocol is uniquely defined by the input and the input is

not corrupted by faults.

16 CHAPTER 2. PRELIMINARY

We simply denote an f -fault-containing self-stabilizing protocol as f -fault containing protocol.

Fault-containing protocols promise two types of containment, spatial containment and/or

temporal containment. The performance of an f -fault-containing protocol is measured by the

following criteria.

Stabilization :

• Stabilization time : the maximum (worst) number of rounds to reach a legitimate

configuration from an arbitrary initial configuration.

Spatial containment :

• Contamination radius : the maximum distance from any faulty process to the

process that changes its local state according to the faulty process during the recovery

from an f ′-faulty configuration (f ′ ≤ f).

• Contamination number : the maximum (worst) number of contaminated processes

from an f ′-faulty configuration (f ′ ≤ f).

Temporal containment :

• Recovery time : the maximum (worst) number of rounds to reach a legitimate

configuration from an f ′-faulty configuration (f ′ ≤ f).

These performance criteria bound the effect after faults: starting from an arbitrary initial

configuration, the protocol has reached a legitimate configuration after its stabilization time.

Starting from an f ′- faulty configuration (f ′ ≤ f), the protocol has reached a legitimate config-

uration after its recovery time. Also, during the recovery from an f ′-faulty configuration, the

number of contaminated process is at most its contamination number or the distance from any

contaminated process to a faulty process that caused the contamination is at most its contami-

nation radius.

Chapter 3

Hierarchical Composition with

Temporal Containment

In this chapter, we present a timer-based hierarchical composition technique for fault-containing

protocols that preserves fault-containment property of source protocols. In a hierarchical com-

position of two (or more) distributed protocols, the output of one protocol (the lower protocol) is

used as the input to the other protocol (the upper protocol) and the composite protocol provides

the output of the upper protocol on the input to the lower protocol. We call the lower protocol

and the upper protocol source protocols. A composition is called fault-containing composition

if it preserves the fault-containment property of the source protocols.

The proposed strategy is to control the execution of source protocols. What we call RWFC

strategy (Recovery Waiting Fault-containing Composition) is to stop the upper protocol until

the lower protocol recovers so that the upper protocol recovers with a correct input from the

lower protocol. The difficulty lies in how to detect the recovery of the lower protocol.

The proposed composition technique utilizes temporal containment property of fault-contain-

ing protocols to control the execution of source protocols. We call the proposed composition

technique RWFC-LNS (RWFC with the Local Neighborhood Synchronizer). The recovery time

of a fault-containing protocol is the maximum time for the system to recover from a target

faulty configuration. We force the upper protocol to stop during the recovery time of the lower

protocol and the upper protocol always executes on the correct input from the lower protocol.

Thus, it is guaranteed that the upper protocol recovers with its fault-containment property

because it is suspended until the lower protocol recovers, and the composite protocol promises

fault-containment as a whole.

To implement RWFC-LNS, it is necessary to measure time in an asynchronous system in a

fault-containing manner. Our framework uses local timers at processes to measure the recovery

17

18 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

times of the source protocols. Global synchronizers are often used to implement timers that

involve all processes into the synchronization. Ghosh et al. proposed a transformer for self-

stabilizing protocols to obtain corresponding 1-fault-containing protocols [23]. An obtained 1-

fault-containing protocol guarantees that the output of the protocol recovers quickly. However,

their transformer utilizes a global neighborhood synchronizer and the effect of a fault spreads over

the entire network via global synchronization. Though their transformer guarantees temporal

containment and spatial containment only for the output of the obtained protocol, the protocol

should wait the global synchronization to finish so that it can tolerate the next fault. The global

neighborhood synchronizer cannot promise the spatial containment of the composite protocol

because it involves all processes into the synchronization. To preserve the fault-containment

property, we introduce a local neighborhood synchronizer that synchronizes a limited number

of processes during a short period of time after a fault without involving all processes into the

synchronization.

Related Works. One of the most commonly used hierarchical composition technique for

self-stabilizing protocols is fair composition. Fair composition executes two (or more) different

self-stabilizing protocols in parallel and promises self-stabilization of the composite protocol [17].

However, if we compose fault-containing protocols by fair composition, the composite protocol

cannot preserve the fault-containment property of source protocols. This is because the parallel

execution of the source protocols allows the upper protocol to be executed on an incorrect output

of the lower protocol. Consider a fair composition of f1-fault-containing protocol P1 and f2-

fault-containing protocol P2. When a fault corrupts the output variables of the lower protocol

P1 at f processes (f ≤ min{f1, f2}), during the recovery of P1, the upper protocol P2 can be

executed in parallel to adopt the changes in the output variables of P1. During the recovery of

P1, processes around each faulty process may change their states (possibly) repeatedly in P1.

If they change the value of their output variables of P1, the input to P2 also changes. If the

number of such processes is greater than f2, P2 cannot guarantee fault-containment. Even when

the number of such processes is smaller than f2, if these processes change their outputs of P1

repeatedly, P2 cannot promise fault-containment. This is because a fault-containing protocol

assumes that the input does not change during the recovery.

Gouda et al. proposed adaptive programming for the systems with input changes [27]. They

proposed hierarchical composition of adaptive protocols that forces the lower protocol to be

executed first so that it provides the stable input to the upper protocol. Their hierarchical

composition just checks whether a process has to execute the lower protocol (i.e. whether it has

an enabled guard in the lower protocol) and only when it does not have to execute the lower

protocol, the process can execute the upper protocol. Though self-stabilization is one subclass

3.1. FAULT-CONTAINING COMPOSITION AND RWFC STRATEGY 19

of adaptive protocols, hierarchical composition of self-stabilizing protocols cannot preserve the

fault-containment property of source protocols. The problem is that we cannot guarantee the

overall recovery of the lower protocol by locally checking whether one process has an enabled

guard in the lower protocols or not.

These existing composition techniques cannot preserve the fault-containment property of

source protocols because they do not guarantee the recovery of the lower protocol when the

upper protocol is executed, and the effect of a fault can spread over the entire network in the

upper protocol.

This chapter is organized as follows. In Section 3.1, we first give the formal definition of the

fault-containing composition and introduce RWFC strategy. In Section 3.2, we show assump-

tions on the source protocols for RWFC-LNS. In Section 3.3, we first define the specification of

the local neighborhood synchronizer and then present the composition framework RWFC-LNS.

The correctness proof of RWFC-LNS is also shown in Section 3.3. In Section 3.4, we present

an implementation of the local neighborhood synchronizer, protocol LNS and prove that LNS

satisfies the specification in Section 3.3. We conclude this chapter with Section 3.5.

3.1 Fault-containing Composition and RWFC Strategy

We consider self-stabilization and fault-containment of protocols for non-reactive problems.

Hence, the set of legitimate configurations of a problem is defined by Definition 1.

A hierarchical composition of two protocols P1 and P2 is denoted by (P1 ∗ P2) where the

variables of P1 and those of P2 are disjoint except that the input to P2 is the output of P1. We

define the output variables of (P1 ∗P2) is the output variables of P2. A legitimate configuration

of (P1 ∗ P2) is defined by L((P1 ∗ P2)) where L(P1 ∗ P2) = L(P1) ∧ L(P2).

Definition 5 Fault-containing composition

Let P1 be an f1-fault-containing protocol and P2 be an f2-fault-containing protocol. A hierarchical

composition (P1 ∗P2) is a fault-containing composition of P1 and P2 iff (P1 ∗P2) is an f1,2-fault-

containing protocol for some f1,2 such that 0 < f1,2 ≤ min{f1, f2}.

We call P1 and P2 the source protocols. Fault-containing composition preserves the fault-

containment property of source protocols because 0 < f1,2 ≤ min{f1, f2} holds for an f1-fault-

containing protocol P1 and an f2-fault-containing protocol P2.

In a hierarchical composition, the input to P2 can be corrupted by a fault when the fault

corrupts the output variables of P1.

20 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

Remark 1 For a hierarchical composition (P1 ∗ P2), the input to P1 is not corrupted by any

fault.

The input to P1 is given as the input variables at each process and we defined the input variables

are not changed by any fault. Generally, fault-containment for non-reactive problems is designed

under the assumption that the input to the protocol is not changed by the fault. The input to

P1 is considered as the system parameters, e.g. topology, ID of each process, etc.

For fault-containing composition, we consider a subclass of fault-containing protocols Π

such that each f -fault-containing protocol P ∈ Π satisfies Assumption 1. Many existing fault-

containing protocols [22, 25] satisfy this assumption.

Assumption 1 The legitimate configuration of P is uniquely defined by the input variables.

Consider a composition (P1∗P2) of an f1-fault-containing protocol P1 and an f2-fault-containing

protocol P2. Starting from an f ′-faulty configuration (f ′ ≤ min{f1, f2}), if the output of P1

after P1 reaches a legitimate configuration is different from what it was before the fault, then

the input to P2 is considered to change and it may appear to be an f ′-faulty configuration for

some f ′ > min{f1, f2}. Then, P2 cannot guarantee fault-containment even though the original

fault is small enough for the fault-containment of P2. Because the input to P1 is not changed

by any fault (Remark 1), Assumption 1 guarantees that P1 recovers to the unique legitimate

configuration and ensures the possibility of fault-containment in the composite protocol.

Our approach to fault-containing composition is to control the execution of P1 and P2 to

guarantee the recovery of P1 when P2 starts its execution. We call this approach Recovery

Waiting Fault-containing Composition (RWFC).

Definition 6 RWFC strategy

RWFC strategy is to stop the execution of P2 until P1 provides a correct output when (P1 ∗ P2)

starts from a target faulty configuration.

To preserve the fault-containment (i.e. spatial containment and/or temporal containment) of

source protocols, the implementation of RWFC strategy should have the following property.

Remark 2 A composing protocol that realizes fault-containing composition should be also fault-

containing.

RWFC strategy preserves the fault-containment of P1 and P2 in the following way: starting

from an f -faulty configuration (f ≤ f1,2), when P1 reaches its unique legitimate configuration

for the stable input 1, there are at most f faulty processes in P2. Then P2 can recover with its
1A fault cannot change the input variables of P1 (Assumption 1) and P1 reaches the unique legitimate config-

uration (Assumption 1).

3.2. PRELIMINARY 21

fault-containment property and the whole composite protocol succeeds in containing the effect

of faults.

3.2 Preliminary

In this chapter, we consider self-stabilization and fault-containment of protocols for non-reactive

problems. Hence, the set of legitimate configurations of a problem is defined by Definition 1.

In this chapter, we consider a subclass of fault-containing protocols Π such that each f -

fault-containing protocol P ∈ Π satisfies Assumption 2 and 3. Many existing fault-containing

protocols [22, 25] satisfy these assumptions.

Assumption 2 The legitimate predicate L(P) for P is represented in the form L(P) ≡ ∀p ∈
V : consp(P). The predicate consp(P) involves the local variables at p and its neighbors, and it

is defined over the values of output, inner, and input variables.

We say process p is inconsistent iff consp(P) is evaluated to false at p, otherwise consistent.

Because we work on non-reactive problems, the predicate consp(P) is evaluated to false when

process p is enabled.

Assumption 3 In an f ′-faulty configuration (f ′ ≤ f), if a faulty process p is a neighbor of

correct process(es), at least one correct process q neighboring to p evaluates consq(P) to false or

p evaluates consp(P) to false.

For a faulty process p and a neighboring correct process q, consp(P) (consq(P), respectively)

involves the local variables at q and p. Because p is faulty, there can be some inconsistency

between the local state of p and that of q.

Assumption 4 The recovery time of f -fault-containing protocol P is larger than its contami-

nation radius and f .

Generally, the recovery time of an f -fault-containing protocol is not always larger than f and

the contamination radius in an asynchronous system. However, in synchronous systems, the

recovery time is always larger than f and the contamination radius. Because our composition

technique executes the source protocols in a synchronous manner, we put this assumption.

3.3 Composition Framework

Let P1 be an f1-fault-containing protocol and P2 be an f2-fault-containing protocol. Our goal

is to produce f1,2-fault-containing protocol (P1 ∗ P2) for f1,2 = min{f1, f2}.

22 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

Table 3.1: Notations for the source protocols and the composite protocol (RWFC-LNS)

protocol number of maximum faults recovery time contamination radius

P1 f1 r1 c1

P2 f2 r2 c2

(P1 ∗ P2) f1,2 = min{f1, f2} r1,2 c1,2

In this chapter, we use the notations shown in Table 3.1.

RWFC strategy is a strategy for fault-containing composition: P2 should wait the recovery of

P1. The key is how to guarantee the recovery of P1. To implement RWFC strategy, the proposed

fault-containing composition utilizes the recovery time of fault-containing protocols. Starting

from an f -faulty configuration (f ≤ f1,2), if a process finds inconsistency in P1 or P2, the process

stops the execution of P2 at processes in the contamination radius of P1 and P2 for r1 rounds.

(Note that the inconsistency in P2 may be caused by the corruption of output variables of P1.)

During the r1 rounds, these processes execute only P1 and P1 reaches a legitimate configuration.

After that, these processes execute P2 on the correct input from P1.

To make the composite protocol fault-containing, it is necessary that all processes in the con-

tamination radius from each faulty process measure time from f -faulty configuration, i.e. these

processes need local timers. We implement local timers at processes with a local neighborhood

synchronizer that synchronizes the processes in max{c1, c2}-neighbors for each faulty process

for (r1 + r2) rounds.

The idea of our composition is as follows: from Assumption 3, in an f -faulty configuration

(f ≤ f1,2), if faulty process p has a correct process q in its neighbor, p or q finds the inconsistency

between them in P1 or P2. The proposed composition technique utilizes this property. So, when

process s finds inconsistency with its neighbor(s) in P1 or P2, it triggers the synchronization

of the local neighborhood synchronizer. The maximum distance from s to any contaminated

process is max{c1, c2} + min{f1, f2} + 1. (Note that the target faulty configuration is f -faulty

configuration for f ≤ f1,2 = min{f1, f2}.) Then, all processes in N
max{c1,c2}+min{f1,f2}+1
r are

involved in the synchronization and these processes execute P1 for the first r1 rounds and P2 for

the next r2 rounds.

For the fault-containment of the composite protocol, it is necessary that no correct process

executes P2 before P1 recovers. If a correct process executes P2 before P1 recovers, the number

of faulty processes in P2 may become larger than f2. On the other hand, we can allow faulty

processes to execute P2 before P1 reaches a legitimate configuration because in an f -faulty

3.3. COMPOSITION FRAMEWORK 23

configuration (f ≤ f1,2), even if faulty processes execute P2 before P1 recovers, the number of

faulty process in P2 is still no larger than f .

We first define the specification of the local neighborhood synchronizer in Section 3.3.1 and

show our composition framework in Section 3.3.2. The proof for the framework with the local

neighborhood synchronizer is shown in Section 3.3.3.

3.3.1 Specification of the Local Neighborhood Synchronizer

In this section, we define the specification of the local neighborhood synchronizer for fault-

containing composition (P1 ∗ P2).

Specification 1 Stabilization

Each process p maintains a timer variable tp that takes an integer in [0..(r1 + r2)]. The local

neighborhood synchronizer is self-stabilizing and in a legitimate configuration, tp = 0 holds at

each p ∈ V .

The local neighborhood synchronizer is implemented with a typical technique of synchronizers

[23]. We say a process is s-consistent iff its timer variable differs at most one with those at all

its neighbors involved in the synchronization. Synchronization is realized by making each timer

variable s-consistent and then decrementing it with preserving the s-consistency.

The local neighborhood synchronizer has the following two API for its application. Let k1,2

be max{c1, c2} + min{f1, f2} + 1.

Specification 2 API

The following API is available at each process p ∈ V for the application of the local neighborhood

synchronizer:

(i) start synch NS: when this function call is executed at process p, it starts the synchroniza-

tion involving k1,2-neighbors of p. These processes decrements their timer variables from

(r1 + r2) to 0 with keeping s-consistency and their timer variables take 0 in O(r1 + r2)

rounds.

(ii) exec NS: when this function call is executed at process p, if p is enabled in the local neigh-

borhood synchronizer, then it executes one of the corresponding actions, and if p decrements

tp, this function call returns true, otherwise false. If p is not enabled, then p does nothing

and this function call returns ⊥.

Starting from an f -faulty configuration (f ≤ f1,2), in the composite protocol, the variables

of P1, P2, and the local neighborhood synchronizer can be corrupted. In this case, the local

24 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

neighborhood synchronizer starts its own recovery actions. However, the source protocols are ex-

ecuted according to the value of the timer variables. Thus, during the recovery actions, the local

neighborhood synchronizer should provide correct values of timer variables and synchronization

of timer variables at faulty processes.

Synchronization radius is the maximum distance between any faulty process and a process

involved in the synchronization caused by the faulty process. To keep the spatial containment

of the source protocols, the synchronization radius should be smaller than or equals to k1,2.

To keep the temporal containment of the source protocols, the local neighborhood synchronizer

makes these processes synchronize at most (r1 + r2) rounds.

In an f -faulty configuration (f ≤ f1,2), tp = 0 always holds at correct process p because

the variables of correct processes were not corrupted by the fault. So, correct processes are

synchronized for (r1+r2) rounds by setting their timer variables (r1+r2) and then decrementing

it. However, it is difficult to make faulty processes decrement their timer variables from (r1 +

r2) because of corruption of timer variables. From Assumption 3, when a faulty process p is

surrounded by other faulty processes, it cannot determine whether it is correct or not. If the

value of timer variables at p and all q ∈ Np seem to be consistent (i.e. synchronized) with

values smaller than (r1 + r2), p may start to decrement tp from the value though it is corrupted

by a fault. In the composite protocol, this causes faulty processes to execute P2 before P1

recovers. However, as mentioned in the beginning of Section 3.3, this does not a problem for

the composition. What is important is that starting from an f -faulty configuration, correct

processes always count down their timer variables from (r1 + r2).

Specification 3 Synchronization

Starting from an f-faulty configuration (f ≤ f1,2), the local neighborhood synchronizer provides

the following five properties:

(i) Spatial containment: synchronization radius is smaller than or equals to k1,2.

(ii) Temporal containment: the local neighborhood synchronizer reaches a legitimate config-

uration in O(r1 + r2) rounds.

(iii) Synchronization: each processes involved in the synchronization decrements its timer

variable with keeping s-consistency.

(iv) Correct countdown: if a correct process counts down its timer variable, the timer variable

first takes (r1 + r2).

(v) Initialization: if start synch NSis executed at process p, then each process in N
k1,2
p are

involved in the synchronization started by p.

3.3. COMPOSITION FRAMEWORK 25

3.3.2 Composition Protocol RWFC-LNS

Our composition framework RWFC-LNS (Fault-containing Composition with the Local Neigh-

borhood Synchronizer) is shown in Protocol 3.3.1.

Process p executes the guarded actions of the local neighborhood synchronizer by execut-

ing exec NS, and whenever it decrements tp, p executes the source protocols by executing the

procedure A(tp) that determines which source protocol is executed at p. If r2 ≤ tp < r1 + r2 p

executes just P1, otherwise P2.

When p finds inconsistency in P1 or P2 (consp(P1) = false or consp(P2) = false holds at p),

there exists a faulty process in Np ∪ {p}. If there exists a process that is not involved in the

synchronization in its neighbors and p ({∃q ∈ Np ∪ {p} : tq = 0}), p executes start synch NS

and initiates the synchronization of its k1,2-neighbors. Then, p and its k1,2-neighbors execute

P1 for r1 rounds. After that, they executes P2 on the correct input from P1 and P2 reaches the

legitimate configuration with its fault-containment property.

Protocol 3.3.1 RWFC-LNS for (P1 ∗ P2)

Procedure A(tp) for process p

if(r2 ≤ tp < r1 + r2) then execute P1

else execute P2

Action for process p

true −→
if(exec NS = true) then A(tp);

if(¬consp(P1) ∨ ¬consp(P2)) ∧ (∃q ∈ Np ∪ {p} : tq = 0)

then start synch NS

3.3.3 Correctness Proof of RWFC-LNS

First, we show the stabilization of RWFC-LNS (Lemma 1) and then, we show the f1,2-fault-

containment of RWFC-LNS (Theorem 1).

Lemma 1 Starting from an arbitrary initial configuration, RWFC-LNS eventually reaches the

legitimate configuration.

Proof. Starting from an arbitrary initial configuration, the local neighborhood synchronizer

eventually reaches its legitimate configuration (Specification 1). After that, if P1 is not in a

legitimate configuration, then there exists at least one process p that evaluates consp(P1) to

26 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

false. Then, process p executes start synch NS and initiates the synchronization and p can

execute P1 by executing A(tp) when it decrements tp. After the neighborhood synchronizer

reaches a legitimate configuration, if P1 has not reached its legitimate configuration, there exists

at least one process that initiates the synchronization by executing start synch NS. Until P1

reaches its legitimate configuration, P1 is executes in this way. After P1 reaches a legitimate

configuration, if P2 is not in a legitimate configuration, then there exists at least one process

q that evaluates consq(P2) to false. Then, process q executes start synch NS and initiates the

synchronization and q can execute P2 by executing A(tq) when it decrements tq. In the same

way as the stabilization of P1, P2 eventually reaches its legitimate configuration. Consequently,

RWFC-LNS eventually reaches a legitimate configuration. 2

Then, we have the following theorem.

Theorem 1 RWFC-LNS provides a min{f1, f2}-fault-containing protocol (P1 ∗P2) for f1-fault-

containing protocol P1 and f2-fault-containing protocol P2. The contamination radius of the

obtained protocol is O(max{c1, c2}+ min{f1, f2}). The recovery time of the obtained protocol is

O(r1 + r2).

Proof. From Lemma 1, RWFC-LNS is self-stabilizing. In the following, we present the f1,2-

fault-containment of RWFC-LNS.

In an f -faulty configuration (f ≤ f1,2), for each faulty process p, there exists at least one

faulty process q ∈ N
min{f1−1,f2−1}
p that is neighboring a correct process. Let this correct process

be r. In an f -faulty configuration, tr takes 0 because it is not corrupted by the fault. Also, from

Assumption 3, in an f -faulty configuration, at least one of the following predicates is evaluated

to false: consq(P1), consq(P2), consr(P1), and consr(P2). We have the following two cases:

Case 1: If r finds inconsistency in the source protocols (consr(P1) or consr(P2) is evaluated to

false), r executes start synch NS because tr takes 0 in the f -faulty configuration. After

that, from the initialization property in Specification 3, each s ∈ N
k1,2
r is involved in the

synchronization. From N
max{c1,c2}
p ⊂ N

k1,2
r , each process s ∈ N

max{c1,c2}
p counts down ts

from (r1 + r2) to 0.

Case 2: If r does not find inconsistency in the source protocols (consr(P1) and consr(P2) are

evaluated to true), consq(P1) or consq(P2) is evaluated to false at q. In this case, q executes

start synch NS because tr takes 0 in the f -faulty configuration. After that, from the

initialization property in Specification 3, each s ∈ N
k1,2
q is involved in the synchronization.

From N
max{c1,c2}
p ⊂ N

k1,2
r , each process s ∈ N

max{c1,c2}
p counts down ts from (r1 + r2) to 0.

Thus, in both cases, all processes in N
max{c1,c2}
p are involved in the synchronization. Once a

process is involved in the synchronization, it decrements its timer variable from (r1 + r2) to 0.

3.4. LOCAL NEIGHBORHOOD SYNCHRONIZER 27

For the first r1 rounds, the process executes only P1 and for the latter r2 rounds, it executes

only P2. Thus, each process in N
max{c1,c2}
p executes P2 on the correct input from P1.

A faulty processes can execute P2 before P1 recovers when it is surrounded by other faulty

processes and the timer variables happen to be consistent. We can treat the resulting state

from the execution of P2 as one that is obtained by the original fault as long as no correct

process executes P2 before the recovery of P1, i.e. no correct process is contaminated in P2

by this execution of P2 at faulty processes. The correct countdown property in Specification 3

guarantees that each correct process starts to decrement its timer variable from (r1+r2). So, each

correct process executes P1 for the first r1 rounds and P1 reaches the legitimate configuration.

After that, it executes P2 on the correct input from P1 for the remaining r2 rounds. Hence, even

if faulty processes executes P2 before P1 recovers, it does not damage the fault-containment of

whole composite protocol.

After one round, no process executes start synch NS because there exists no faulty process

neighboring a correct process with a timer variable of value 0. The synchronization takes O(r1 +

r2) rounds to terminate. Thus, the overall recovery time is O(r1 + r2).

Because start synch NS is executed just at faulty processes and some correct processes neigh-

boring a faulty process and other correct processes never execute start synch NS, the contami-

nation radius of the composite protocol is O(max{c1, c2} + min{f1, f2}).
Before the synchronization is initiated by some process that detects inconsistency in the

source protocols, the local neighborhood synchronizer may start its own recovery actions because

of the corruption on its variables. However, the contamination is contained in k1,2 radius for each

faulty process (spatial containment property in Specification 3) and the contamination ends in

O(r1 + r2) rounds (temporal containment property in Specification 3). Thus, the contamination

is contained.

Hence, Protocol 3.3.1 provides an f1,2-fault-containing protocol (P1 ∗ P2). 2

3.4 Local Neighborhood Synchronizer

In this section, we present an implementation of the local neighborhood synchronizer in Section

3.4.1 and prove that LNS satisfies the Specification 1, Specification 2, and Specification 3 in

Section 3.4.2 and Section 3.4.3.

3.4.1 Protocol LNS

For any given M and k, protocol LNS provides the synchronization of M rounds among k-

neighbors of a process when the process gives the initialization signal by start synch NS. The

28 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

synchronization consists of three phases. In the first phase, the shortest path tree (SPT) of

depth k and rooted at the process is constructed so that all the k-neighbors of the process are

involved into the synchronization. Then, in the second phase, the synchronized countdown of

timer variables takes place among these processes. In the third phase, the shortest path tree is

released from the root to the leaves.

Protocol LNS is shown in Protocol 3.4.1. Each process p has four variables, tp, dp, Predicateinit
p

and retp: tp is the timer variable, dp is the depth variable which is used to construct the

SPT, and Predicateinit
p and retp are boolean variables that are used to implement the API

defined in Specification 2. Protocol LNS is self-stabilizing and in a legitimate configuration,

(tp = 0 ∧ dp = 0 ∧ Predicateinit
p = false ∧ retp = false) holds at each p ∈ V .

API in Specification 2 is implemented as follows: When the application of LNS executes

start synch NS at process p, we assume it changes Predicateinit
p from false to true. If the

predicate Predicateinit
p = true holds at p, LNS changes the value of tp to M and dp to k.

After p executes LNS (and (tp = M ∧ dp = k) holds), the application of LNS should change

Predicateinit
p from true to false. The return value of exec NS is implemented with retp that

returns true iff the execution of LNS decrements tp, otherwise false.

We call process p a root iff the value of dp is locally maximum among its direct neighbors.

For each root process p, each non-root process q ∈ N
dp
p constructs the SPT rooted at p by setting

dq = dp − dist(p, q) where dist(p, q) denotes the distance between p and q. The parent(s) of q is

any neighbor r ∈ Nq where dr = dq + 1. A process s ∈ Nq is a child of q iff ds = dq − 1.

Protocol LNS consists of seven guarded actions, S1, · · · , S7. Starting from an arbitrary

initial configuration, LNS allows process p, where tp = M holds in the initial configuration,

to become a root and to construct the SPT rooted at itself. When start synch NS is executed

at process p (Predicateinit
p = true), p becomes a root of the SPT of depth k by executing S1.

When process q ∈ Np finds that the value of tq is smaller than M (Rp(1)) and it is neighboring

a process p with tp = M (Rp(2)), q executes S2 and change the value of tq to M and the value

of dq to dp − 1. A non-root process q ∈ N
dp
p is involved in the SPT tree rooted at p by executing

S2 (and S3 if necessary) and setting tq = M and dq = dp − dist(q, p). Note that there may be

multiple root processes and each non-root process is involved in the SPT rooted at the nearest

root process. After (tq = M ∧ dq = dp − dist(p, q)) holds at q and all its neighbors get involved

in the shortest path tree, q goes into the second phase.

In the second phase, q decrements tq by executing S4 iff tq is synchronized with all its

neighbors (OK tq = true) and all its neighbors have involved in the SPT (OK dq = true). The

guard decq make the execution of S4 at q’s parent precede the execution of S4 at q when the

value of the timer value takes the same value (Dq(1) and Dq(2)). So, the execution of S4 starts

3.4. LOCAL NEIGHBORHOOD SYNCHRONIZER 29

Protocol 3.4.1 LNS
Local variables at process p

tp: timer variable that takes a value in [0..M]

dp: depth variable that takes a value in [0..k]

For API at process p

Predicateinit
p : an input variable that takes a boolean value

retp: an output variable to the application that takes a boolean value

Predicates at process p

OK dp ≡ {∀q ∈ Np : |dp − dq| ≤ 1} ∧ {(∃q ∈ Np : dp = dq − 1) ∨ (∀q ∈ Np : dp ≥ dq)}
OK tp ≡ {(dp > 0) ∧ (∀q ∈ Np : |tp − tq| ≤ 1)}∨

{(dp = 0) ∧ (∀q ∈ Np : (|tp − tq| ≤ 1 ∧ dp = dq + 1) ∨ (dq = 0))}
raisep ≡ Rp(1) ∧ Rp(2)

Rp(1) ≡ (tp 6= M)

Rp(2) ≡ {∃q ∈ Np : (tq = M) ∧ (dq > 0) ∧ ¬((tp = M − 1) ∧ (dp = dq + 1))}
maxdp ≡ Mp(1) ∧ Mp(2) ∧ Mp(3)

Mp(1) ≡ (maxq∈Np{dq} 6= 0) ∧ (dp < maxq∈Np{dq} − 1)

Mp(2) ≡ (dp 6= k) ∧ ¬(∀q ∈ Np : dp > dq)

Mp(3) ≡ {∀q ∈ Np ∪ {p} : tq = M ∨ (tq = 0 ∧ dq = 0)}
decp ≡ OK dp ∧ OK tp ∧ Dp(1) ∧ Dp(2)

Dp(1) ≡ (tp > 0) ∧ (∀q ∈ Np : tp ≥ tq)

Dp(2) ≡ (∀q ∈ Np : tp = tq → dp ≥ dq)

clrdp ≡ Cp(1) ∧ Cp(2)

Cp(1) ≡ (tp = 0) ∧ (∀q ∈ Np : tq = 0)

Cp(2) ≡ (dp > 0) ∧ {∀q ∈ Np : dp ≥ dq ∨ dq = 0}
rsetp ≡ ¬raisep ∧ ¬maxdp ∧ ¬decp ∧ ¬clrdp∧

¬(tp = M) ∧ ¬(OK dp ∧ OK tp) ∧ ¬(tp = 0 ∧ dp = 0)

Actions for process p

S1 Predicateinit
p −→ tp = M ; dp = k

S2 ¬Predicateinit
p ∧ raisep −→ tp = M ; dp = maxq∈Np∧tq=M{dq} − 1

S3 ¬Predicateinit
p ∧ maxdp −→ dp = maxq∈Np{dq} − 1

S4 ¬Predicateinit
p ∧ decp ∧ retp = false −→ tp = tp − 1; retp = true

S5 ¬Predicateinit
p ∧ clrdp −→ dp = 0

S6 ¬Predicateinit
p ∧ rsetp −→ dp = 0; tp = 0

S7 retp = true −→ retp = false

30 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

from the root process and spreads to the leaves in a top-down fashion. When q executes S4,

retq is changed from false to true and exec NS returns true. After that, q reset retq to false by

executing S7 before it executes S4 again. Note that the first phase and the second phase can

be executed in parallel but each process involved in the SPT start the second phase after all its

neighbors have finished the first phase.

In the third phase, after all the neighbors finish the countdown (Cq(1)), q executes S5 and

sets dq = 0. The execution of S5 also starts from the root and spreads to leaves (Cq(2)), and

the SPT is released. Eventually, the third phase ends and tq = 0 ∧ dq = 0 holds at each q ∈ V .

During the stabilization, if process p finds that the guards raisep, maxdp, decp, clrdp are

all false or it is not waiting its neighbors to attend an SPT (¬(tp = M)) or it is not waiting

its neighbors to decrement their timer variables (¬(OK tp ∧ OK dp)), it resets tp and dp by

executing S6. This behavior does not prevent the progress of above three phases.

3.4.2 Correctness Proof: Stabilization of LNS

In this section, we show the stabilization of LNS defined in Specification 1. We first show the

behavior of LNS when LNS is started from an arbitrary initial configuration. In the following,

we assume that Predicateinit
p is false and the application of LNS does not affect the behavior of

LNS. So, no process executes S1. We first focus on the SPTs constructed during the execution

and then we show the stabilization of the whole system with Lemma 7.

We first show that if the system is not in a legitimate configuration, there is at least one

process that executes a guarded action of LNS. Then, we show the stabilization of LNS. Starting

from an arbitrary initial configuration, the set of root processes of SPTs is determined by the

states of processes in the initial configuration. Process p can become a root process if tp = M

holds in the initial configuration (Lemma 3). For process p, let RNk

p be the set of processes such

that q ∈ Nk
p ∪ {p} and tq = M holds in the initial configuration. So, RNk

p is the set of possible

root processes in Nk
p . Each non-root process p is involved in the SPT rooted at the nearest

root process in RNk

p (Lemma 4). Then, p decrements tp and its neighbors also decrements their

timer variables (Lemma 5). Finally, p decrements tp from M with keeping s-consistency and tp

eventually reaches 0 (Lemma 6).

Lemma 2 For any configuration, if the configuration is not legitimate, at least one process has

an enabled guard and executes the corresponding action.

Proof. If a configuration is not legitimate, there exists at least one process p ∈ V where

¬(tp = 0 ∧ dp = 0 ∧ retp = false) holds. If retp = true holds, then p executes S7 and changes

3.4. LOCAL NEIGHBORHOOD SYNCHRONIZER 31

retp to false. In the following, we focus on the case where (¬(tp = 0 ∧ dp = 0) ∧ (retp = false))

holds at p.

For contradiction, consider the case where all the guards of S2, · · · , S6 are evaluated to false

at all q ∈ V in an illegitimate configuration. (We do not consider S1 because in this section, we

assume Predicateinit
q = false always holds.) Thus, the following predicate holds at each q ∈ V :

raiseq ∨ maxdq ∨ decq ∨ clrdq∨

{¬raiseq ∧ ¬maxdq ∧ ¬decq ∧ ¬clrdq

∧ ¬(tq = M) ∧ ¬(OK dq ∧ OK tq) ∧ ¬(tq = 0 ∧ dq = 0)}

=(raiseq ∨ maxdq ∨ decq ∨ clrdq)∨

{¬(raiseq ∨ maxdq ∨ decq ∨ clrdq)

∧ ¬(tq = M) ∧ ¬(OK dq ∧ OK tq) ∧ ¬(tq = 0 ∧ dq = 0)}

=false.

Because we assume S2, · · · , S6 are evaluated to false at q, (raiseq ∨maxdq ∨decq ∨clrdq) = false

holds. Thus, we obtain

false ∨ {true ∧ ¬(tq = M) ∧ ¬(OK dq ∧ OK tq) ∧ ¬(tq = 0 ∧ dq = 0)}

=false

So, (¬(tq = M) ∧ ¬(OK dq ∧ OK tq) ∧ ¬(tq = 0 ∧ dq = 0)) = false holds at each q ∈ V .

By assumption, ¬(tp = 0 ∧ dp = 0) holds at p. By above discussion, (tp = M) or (OK tp ∧
OK dp) is true at p. We have the following two cases.

(i) tp = M : In this case, we have the following two cases:

(a) tq = M holds for all q ∈ Np: In this case, we have the following two cases:

- |dp − dq| ≤ 1 holds for all q ∈ Np: If dp ≥ dq for all q ∈ Np, then p evaluates decp to

true. Otherwise, there exists process r ∈ Np such that (dr > dp) and (tr = M) hold and

dr evaluates decr to true.

- |dp − dq| > 1 holds for some q ∈ Np: thus, q evaluates maxdq to true.

(b) tq < M holds for some process q ∈ Np: At such process q, (OK dq ∧ OK tq) or

(tq = 0∧dq = 0) holds. If (OK dq∧OK tq) holds at q, then (tq = M−1) and (|dp−dq| ≤ 1)

hold and p evaluates decp to true. If (tq = 0 ∧ dq = 0) holds at q, then q evaluates maxdq

to true.

(ii) OK dp ∧ OK tp: In this case, we have the following two cases:

(a) (∀q ∈ Np : tp ≥ tq) holds at p: If (∀q ∈ Np : tp = tq → dp ≥ dq) holds at p, then decp

32 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

is evaluated to true. Otherwise, there exists process q ∈ Np such that (tp = tq ∧ dp < dq)

holds. In this case, decq is evaluated to true at q.

(b) (∃q ∈ Np : tp < tq) holds at p: Let q be the process where (tq > tp) holds. Because

OK dp and OK tp holds at p, tq = tp+1. At process q, ((tq = M)∨(OK dq∧OK tq)∨(tp =

0∧dp = 0)) also holds. If (tq = M) holds at q, then q follows case (i). If (OK tdp∧OK tq)

holds at q, q evaluates decq to true. Because tq is larger than tp(≥ 0), (tp = 0 ∧ dp = 0)

does not hold at q.

Hence, there is contradiction and there exists at least one process that evaluates one of the

guards of S2, · · · , S6 to true and executes the corresponding action. 2

Lemma 3 Starting from an arbitrary initial configuration, if tp < M holds in the initial con-

figuration at process p, the SPT rooted at p is not constructed during any execution.

Proof. For contradiction, consider the case such that tp < M holds at process p in the initial

configuration and the SPT rooted at p is constructed during the execution. The values of depth

variables are changed by S2, S3, S5, and S6. (Note that process p never executes S1 because we

assume Predicateinit
p is false in this section.) To construct the SPT rooted at p, the value of dp

remains larger than dq for each q ∈ Np until (dp = 0∧ tp = 0) holds at p and each q ∈ Np should

change the value of dq to (dp − 1).

During the execution, p can execute S2, S3, S5, and S6 to change the value of dp. By the

execution of S5 or S6, dp takes zero. By the execution of S2 or S3, the value of dp is changed to

dr − 1 for a process r ∈ Np. So, by the execution of LNS, dp cannot take a larger value than dr′

for any r′ ∈ Np.

For each q ∈ Np, dq cannot take (dp − 1) by executing S2 or S3 because dp is smaller than

M . Clearly, the execution of S5 or S6 cannot make dq to take (dp − 1).

Hence, the SPT rooted at p never constructed during the execution. 2

From Lemma 3, the possible root processes are determined by the initial configuration. If

tp = M holds at process p in the initial configuration, dq take the value (dp − 1) for each q ∈ Np

as long as there is no process r such that (dr − dist(r, q)) is larger than (dp − 1). In this case,

the SPT rooted at p is constructed during the execution. If such process r exists, then p may be

involved in the SPT rooted at r even if tp = M holds in the initial configuration. In this case,

all the descendants of p in p’s SPT is involved in r’s SPT.

Lemma 4 Starting from an arbitrary initial configuration, for non-root process p, if tq = M

holds at some process q ∈ Nk
p in the initial configuration, dp eventually takes the value of

max
q∈RNk

p
{dq − dist(p, q)}.

3.4. LOCAL NEIGHBORHOOD SYNCHRONIZER 33

Proof. Let p be a non-root process such that RNk

p 6= ∅ holds in the initial configuration. We

show by induction that dp eventually takes (dq − dist(p, q)) for process q ∈ RNk

p that maximize

value of (dq − dist(p, q)). Clearly, for each process r on the shortest path(s) from q to p, q

maximize the value of (dq − dist(r, q)).

Starting from an arbitrary initial configuration, process r ∈ Nq eventually executes S2 or

S3 and dr takes (dq − 1) because q is the nearest root process. Until dr takes (dp − 1) for each

r ∈ Nq, q cannot decrement tq (from S4). (If q starts to decrement tq, tq can reach 0 and dq may

take 0 by executing S5 before the SPT is constructed.) Thus, eventually (dr = dq −1∧ tr = M)

holds at each r ∈ Nq.

Let process r′ and r′′ be on the shortest path from q to p and dist(q, r′′) = dist(q, r′) + 1.

Let (dr′ = dq − dist(q, r′) ∧ tr′ = M) eventually hold during the execution. Then, after that,

r′′ executes S2 or S3 and tr′′ takes dr′ − 1 = dq − dist(q, r′) = dq − dist(q, r′′). Until dr′′ takes

(dr′ − 1), r′ cannot decrement tr′ (from S4). Thus, eventually (dr′′ = dq − dist(q, r′′)∧ tr′′ = M)

holds at r′′.

Thus, eventually, dp takes dq − dist(p, q). 2

Then, we focus the execution of S4 at each process to show that all the processes involved in

an SPT can keep on decrementing its timer variable from M to 0. Consider the case such that

p and q ∈ Np evaluates the guard of S4 to true in a configuration. If p executes S4 first, the

execution of S4 at p should not prevent the execution of S4 at q, i.e. the evaluation of the guard

of S4 should remain true. When p and q decrements their timer variables at the same time, it

does not matter the countdown.

Lemma 5 The execution of S4 at any process p does not change decq at any q ∈ Np from true

to false.

Proof. Let decp = true hold at process p and decq = true hold at process q ∈ Np. Thus, decp

and decq, Dp(1), Dp(2), Dq(1), and Dq(2) are evaluated to true. From Dp(1) and Dq(1), we

have tp = tp. From Dp(2) and Dq(2), we have dp = dq.

Consider the case where only p executes S4. After the execution of S4 at p, we have tq = tp−1.

Because S4 just changes the value of tp, the evaluation of OK tq, Dq(1), and Dq(2) are not

changed by the execution of S4 at p. So, the execution of S4 at process p does not change decq

at any q ∈ Np from true to false. 2

Lemma 6 Each process p involved in an SPT rooted at a root process decrements tp from M

to 0 with keeping the s-consistency of timer variables.

Proof. Let p be a process such that RN−k
p 6= ∅ holds in the initial configuration. From Lemma

4, dp eventually takes max
q∈RNk

p
{dp −dist(p, q)} and p is involved in an SPT correctly. Because

34 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

S4 forces each process to wait until all its neighbors keep the consistent depth value and S4

allows the processes with higher depth values to decrement the timer variable, p cannot execute

S4 until dp keeps the correct value. Thus, (tp = M ∧ dp = max
q∈RNk

p
{dp − dist(p, q)} eventually

holds at p and all the neighbors. We will show by induction on tp that process p decrements tp

from M to 0 with keeping the s-consistency.

From Lemma 5, the execution of S4 at p does not change decq at each q ∈ Np from true to

false. Thus, after p executes S4 and the value of tp changes from M to (M − 1), its neighbors

eventually executes S4, and after that decp = true holds again.

Let tp be (M − `) and decp = true hold at p. From Lemma 5, the execution of S4 at p does

not change decq at each q ∈ Np from true to false. Thus, after the execution of S4 at p, its

neighbors eventually executes S4, and after that decp = true holds again.

Consequently, p execute S4 and decrement tp with keeping s-consistency until tp reaches 0.

2

Finally, we show that the system eventually reaches a legitimate configuration. Note that

even when ¬(tp = 0 ∧ dp = 0 ∧ retp = false) holds at process p in the initial configuration, it is

possible that there is no root process in Nk
p during the stabilization.

Lemma 7 Starting from an arbitrary initial configuration, the system reaches a configuration

where (tp = 0 ∧ dp = 0 ∧ retp = false) holds at each p ∈ V .

Proof. For a configuration, let dmax(V) (tmax(V), respectively) be the maximum value of dp

(tp, respectively) for all p ∈ V . We show that starting from an arbitrary initial configuration,

dmax(V) and tmax(V) eventually reaches 0.

We first show the outline of the progress of stabilization. The set of root processes are

defined by the initial configuration (Lemma 3). All the SPTs rooted at these processes are

eventually constructed by executing S2 and S3 (Lemma 4). Let σSPT be the configuration such

that after σSPT , no process executes S2 and S3. The system eventually reaches σSPT because

the execution of LNS does not make new root process(es). For each root process, once the

SPT is constructed, each process p involved in the SPT decrements tp and eventually tp takes

0 by executing S4 (Lemma 5). Let σdec be the configuration such that after σdec, no process

executes S4. The system eventually reaches σdec because M is a finite value. After the system

reaches σdec, no process executes S6 because no timer variable changes its value, and no depth

variable changes its value to take a larger value. After p and all its neighbors have finished the

countdown, they execute S5. Eventually, all SPTs are removed. Let σclr be the configuration

such that after σclr, no process executes S5. The system eventually reaches σclr.

We show the decrement of tmax(V) and dmax(V) during the execution. The system first

reaches σSPT , then σdec, and finally σclr. Until the system reaches σSPT , tmax(V) is smaller

3.4. LOCAL NEIGHBORHOOD SYNCHRONIZER 35

than or equals to M and after σSPT , tmax(V) decreases monotonically. Let tp at process p takes

tmax(V)(> 0) in a configuration after σSPT . Because no process executes S2 after SPTs are

constructed, OK dp holds. Also, OK tp holds at p because after σSPT , p changes the value of

dp by executing S4 and S6. The execution of S4 preserves OK tp and because tp = tmax(V), p

has not executed S6. Because tp = tmax(V), Dp(1) holds at p. And without loss of generality,

we can assume dp ≥ dq when tp = tq = tmax(V) holds for q ∈ Np. So, decp = true holds at p

and p decrements tp by executing S4. After the system reaches σdec, tmax(V) remains 0 because

no process executes S2 thereafter.

Until the system reaches σdec, dmax(V) is smaller than or equals to k and after σdec, dmax(V)

decreases monotonically. Let dp takes dmax(V)(> 0) in a configuration after σdec. Because

(tq = 0) holds each process q ∈ V after σdec, Cp(1) holds at p. Because dp = dmax(V), Cp(2)

holds at p. So, clrdp is evaluated to true at p and p decrements dp. After the system reaches

σclr, dmax(V) remains zero because no process executes S2 or S3 thereafter.

After the system reaches σclr, retp = false holds at each process in one round by the execution

of S7.

Consequently, the system eventually reaches a configuration where (tp = 0∧ dp = 0∧ retp =

false) holds for each process p ∈ V . 2

Lemma 8 Starting from an arbitrary initial configuration, the system reaches a legitimate con-

figuration in O(k + M) rounds.

Proof. From Lemma 6 and Lemma 7, non-root process p is involved in an SPT or reset tp and

dp. If p is involved in an SPT, it decrements tp from M to 0 and after that p changes dp to 0.

From Lemma 3, root processes are determined by the initial configuration. From Lemma

4, the SPTs rooted at root processes are constructed. The SPTs construction takes at most k

rounds because the depth of each SPT is at most k. From Lemma 5, once SPTs are constructed,

the synchronized countdown of tree processes takes place. It takes M rounds for all the tree

processes count down from M to 0.

Each process p executes S5 when all its neighbors has finished decrementing their timer

variables (thus, for each q ∈ Np, tp = 0). From clrdp, p can execute S5 after all the neighbors

with higher depth values execute S5. Thus, the execution of S5 starts from the root process

to the leaves of its SPT. It takes at most k rounds for all the tree processes to execute S5 and

(tp = 0 ∧ dp = 0) holds at each process p ∈ V . It takes at most one round for each process to

chance retp to false (if necessary) by executing S7.

Once (tp = 0 ∧ dp = 0 ∧ retp = false) holds at each process p ∈ V , no process is enabled

and each process p does not change the values of its local variables, tp, dp, and retp. Hence, the

system reaches a legitimate configuration and the stabilization time of LNS is O(k + M). 2

36 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

From Lemma 8, the following theorem immediately holds.

Theorem 2 Protocol LNS is self-stabilizing.

3.4.3 Correctness Proof: Synchronization of LNS

In this section, we show that LNS provides the API defined in Specification 2 and the five

specifications defined for neighborhood synchronizer in Specification 3 for M = (r1 + r2) and

k = k1,2.

LNS satisfies the spatial containment property because only faulty processes can become

root processes, and LNS just involves their k1,2-neighbors into the synchronization (Lemma 9).

From Lemma 8 in Section 3.4.2, the synchronization of LNS takes O(k + M) rounds. From

definition, k + M = (r1 + r2) + max{c1, c2} + min{f1, f2} + 1 and r1 (r2, respectively) is larger

than f1 and c1 (f2 and c2, respectively). So, O(k + M) equals to O(r1 + r2) and LNS satisfies

the temporal containment property. The synchronization property holds directly from Lemma 5

in Section 3.4.2. The correct countdown property is satisfied because in any execution starting

from a target faulty configuration, each correct process first sets its timer variable (r1 + r2)

(Lemma 10). The initialization property is the special case of Lemma 4 in Section 3.4.2 such

that the timer variable takes (r1 + r2) and the depth variable takes k1,2 at the root process

(Lemma 11).

Lemma 9 Spatial containment

Starting from an arbitrary initial configuration, only faulty processes can become root processes

and construct SPTs. Hence, the spatial containment property in Specification 3 is satisfied.

Proof. From Lemma 3, p can become a root process only when tp = M holds in the initial

configuration.

At a correct process q, (tq = 0 ∧ dq = 0) holds in the initial configuration. Thus, starting

from an f -faulty configuration, a correct process never become a root process of an SPT. On

the other hand, (dp 6= 0 ∨ tp 6= 0) holds at a faulty process p. Thus, only faulty processes can

become a root process of an SPT.

From Lemma 4, only the k1,2-neighbors of each root process are involved in the SPT. Thus,

LNS satisfies the spatial containment property. 2

Lemma 10 Correct countdown

Starting from an faulty configuration, if a correct process p changes its state during the recovery,

p first executes S2 and always countdown from (r1 + r2).

3.5. CONCLUDING REMARKS 37

Proof. In an f -faulty configuration, (tp = 0 ∧ dp = 0 ∧ retp = false) holds at a correct process

p. Thus, initp, maxdp, decp, and clrdp are evaluated to false. The only predicate that can be

evaluated to true at p when (tp = 0∧ dp = 0) holds is S2. By executing S2, tp takes (r1 + r2). 2

Lemma 11 Initialization

If process p executes start synch NS, then after that all processes in N
k1,2
p ∪{p} count down their

timer variable from (r1 + r2) to 0.

Proof. The execution of start synch NS at process p changes Predicateinit
p from false to true.

When Predicateinit
p is true, p can execute only S1 and S7. Thus, S1 becomes a root process

and after that, the SPT rooted at p is constructed (Lemma 4). From Lemma 6, each process in

N
k1,2
p decrements its timer variable from (r1 + r2) to 0.

During the recovery, there may be multiple SPTs rooted at different root processes. However,

the distance from any root process to any other root process is at most min{f1, f2}. Thus, the

SPTs encounter each other during the SPT construction phase. So, a process involved in SPTs

waits its depth variable to take correct value for its nearest root process and after that it starts

to decrement its timer variable from M to 0.

Note that if faulty process p is surrounded by other faulty processes, then p may become

a root process even if dp is smaller than k. In this case, just among faulty processes, there

may be an SPT such that the depth of the SPT is smaller than k. However, correct processes

always attend an SPT of depth k because the nearest root process for a correct process executes

start synch NS. 2

Consequently, we have the following theorem.

Theorem 3 Starting from an f -faulty configuration, LNS satisfies Specification 3 for k = k1,2

and M = (r1 + r2).

3.5 Concluding Remarks

In this chapter, we first introduced the RWFC strategy for fault-containing composition. Our

strategy is to stop the execution of the upper protocol until the lower protocol recovers. We

can compose more than two fault-containing protocols with RWFC strategy by applying RWFC

strategy repeatedly to the source protocols. Though the strategy is very simple, it provides

significant improvement on composing fault-containing protocols. Furthermore, this framework

helps designing new fault-containing protocols, e.g. we can easily built new fault-containing

protocols on top of existing fault-containing protocols.

38 CHAPTER 3. HIERARCHICAL COMPOSITION WITH TEMPORAL CONTAINMENT

In this chapter, we proposed a fault-containing composition RWFC-LNS that utilizes the

temporal containment property of fault-containing protocols. The proposed composition tech-

nique RWFC-LNS stops the upper protocol during the recovery time of the lower protocol and

utilizes timers at processes to measure the recovery time of the source protocols. To implement

timers, we designed a local neighborhood synchronizer protocol LNS.

In RWFC-LNS, when some process finds inconsistency in the lower protocol, each process

in the contamination radius stops the upper protocol during the recovery time of the lower

protocol. Though LNS imposes additional communication overhead and time complexity, the

overall overhead is bounded by the contamination radius of source protocols. The contamination

of the composite protocol is also bounded by the contamination radius of source protocols.

Hence, the proposed composition technique preserves the fault-containment property of source

protocols. Unfortunately, because the proposed framework stops the upper protocol for the

recovery time of the lower protocol, even when the lower protocol has recovered earlier than its

recovery time, the upper protocol does not resume immediately.

The notion of local neighborhood synchronizer and the implementation LNS are useful in

fault-containment and other fault-tolerant distributed protocols. For example, we can improve

the spatial containment property of [23] by replacing the global neighborhood synchronizer with

our local neighborhood synchronizer. Other applications of the local neighborhood synchronizer

remain to be discussed and developed.

Chapter 4

Hierarchical Composition with

Spatial Containment

Fault-containing protocols provide temporal containment and/or spatial containment. In Chap-

ter 3, we proposed fault-containing composition RWFC-LNS based on temporal containment

property of source protocols. In this chapter, we present a fault-containing composition tech-

nique based on the spatial containment property of source protocols. The proposed composition

technique also improves the recovery scenario of RWFC-LNS. In the worst case, RWFC-LNS

keeps the upper protocol waiting after the lower protocol has recovered. This is because the

recovery time of a fault-containing protocol is the maximum (worst) time necessary for the re-

covery. In this chapter, we improve the recovery scenario by executing the upper protocol as

soon as the lower protocol recovers.

The proposed composition technique checks the inconsistency of the lower protocol to detect

the recovery of the lower protocol. Generally, in self-stabilizing protocols, each process checks

the inconsistency between its neighbors with local predicates. In fault-containing protocols,

each process utilizes this local consistency predicate to find faulty processes and if it finds a

faulty process, then the process waits for the recovery actions of the faulty process so that

the effect of the fault is contained around the faulty process. In this chapter, we utilize this

local consistency predicate to detect the recovery of the lower protocol. We call the proposed

composition technique RWFC-IcD (RWFC with the Inconsistency Detector). The inconsistency

range of a fault-containing protocol guarantees that from a target faulty configuration, there

always exists at least one process that finds inconsistency in the inconsistency range from a

faulty process. We force each process to check the consistency of the lower protocol among

the inconsistency range. When the process finds no inconsistency in the lower protocol, it is

guaranteed that the process can execute the upper protocol on a correct input from the lower

39

40 CHAPTER 4. HIERARCHICAL COMPOSITION WITH SPATIAL CONTAINMENT

protocol. Then, the composition protocol allows the process to execute the upper protocol.

Thus, the upper protocol can recover with its fault-containment property and the composite

protocol promises fault-containment as a whole.

To implement RWFC-IcD, it is necessary to implement the inconsistency detector that allows

each process to detect the inconsistency of the lower protocol. We implement the inconsistency

detector IcD based on an existing Propagation of Information with Feedback (PIF) protocol PIF

in [12], however, PIF itself is not fault-containing. Hence, we modified PIF to provide spatial

and temporal containment property.

This chapter is organized as follows. In Section 4.1, we show conditions on source protocols.

In Section 4.2, we first define the specification of the inconsistency detector and then present

the composition framework RWFC-IcD. The correctness proof of RWFC-IcD is also shown in

Section 4.2. In Section 4.3, we present an implementation of the inconsistency detector, protocol

IcD and prove that IcD satisfies the specification in Section 4.2. We conclude this chapter with

Section 4.4.

4.1 Preliminary

In this chapter, we consider self-stabilization and fault-containment of protocols for non-reactive

problems. We follow Definition 5 (fault-containing composition), Remark 1 and Assumption 1

in Section 3.1. We also follow Definition 6 (RWFC strategy) and Remark 2 in Section 3.1.

In this chapter, we put some assumptions on the source protocols of fault-containing compo-

sitions. We consider a subclass of fault-containing protocols Π such that each f -fault-containing

protocol P ∈ Π satisfies Assumption 1, 2, 5, and 6. (Note that Assumption 1 (unique legiti-

mate configuration), and Assumption 2 (legitimacy predicate) are defined in Chapter 3.) Many

existing fault-containing protocols satisfy Assumption 1, 2, 5, and 6 [33, 24, 25, 22].

Assumption 5 In an f ′-faulty configuration (f ′ ≤ f), if faulty process p is a neighbor of correct

process(es), at least one correct process q ∈ Np or p itself evaluates consq(P) (or consp(P)) false.

Many fault-containing protocols satisfies Assumption 5: for a faulty process p and a neighboring

correct process q, the predicate consp(P) (consq(P), respectively) involves the local variables at

q (p, respectively). Because p is faulty, there can be some inconsistency between the local state

of p and that of q.

Note that if p and all its neighbors are faulty, consp(P) = true may hold at p. This is because

consp(P) involves the local variables at p and its neighbors and the values of these corrupted

4.2. COMPOSITION FRAMEWORK 41

variables happen to seem consistent. In this case, p cannot determine whether it is faulty or

not.

The inconsistency range of P is the maximum (worst) distance from any faulty process to

the process q that evaluates consq(P) false because of the faulty process during the recovery

from an f ′-faulty configuration (f ′ ≤ f).

Assumption 6 Let k be the inconsistency range of P . Starting from any f ′-faulty configuration

(f ′ ≤ f), for each faulty process p, in every configuration there exists at least one process

q ∈ Nk
p ∪ {p} such that consq(P) is evaluated false until the local variables at p takes the values

that they take in the legitimate configuration.

The upper bound of the inconsistency range of a protocol is obtained by its contamination

number or recovery time that are always larger than or equals to the inconsistency range. We

can obtain the more accurate value of the inconsistency range by analyzing the behavior of the

protocol. In many 1-fault-containing protocols [33, 24, 25, 22], inconsistency range is 1: in theses

protocols, in a 1-faulty configuration the faulty process or its neighbors may suspect it is faulty

and exchange the local information with neighbors. If a correct process finds the faulty process,

the process waits until the faulty process changes its variables.

4.2 Composition Framework

Let P1 be an f1-fault-containing protocol and P2 be an f2-fault-containing protocol. Our goal

is to produce f1,2-fault-containing protocol (P1 ∗ P2) for f1,2 = min{f1, f2}. In this chapter, we

use the notations shown in Table 4.1.

Table 4.1: Notations for the source protocols and the composite protocol (RWFC-IcD)

protocol number of maximum faults recovery time contamination number inconsistency range

P1 f1 t1 c1 k1

P2 f2 t2 c2 k2

(P1 ∗ P2) f1,2 = min{f1, f2} t1,2 c1,2 k1,2

A corruption at process p in P1 can change the evaluation of guards of P1 and P2 only at

p and its neighbors. This is because the guards of each process involve the local variables at

the process itself and its neighbors. So, it is possible that conss(P2) is evaluated false at some

process s ∈ Np. If s executes P2, the effect of the corruption at p spreads in P2. To prevent this,

it is necessary that each process in Np does not execute P2 until the variables at p takes the

values that they take in the legitimate configuration. By forcing all processes in Np to stop the

42 CHAPTER 4. HIERARCHICAL COMPOSITION WITH SPATIAL CONTAINMENT

� �
�

�

�����
	���
������	

������ ���
����� ����� � �"!$#
���� �&%

� �
�

�

�����
	���
������	

������ ���
����� ����� � �"!$#
���� �&%

Figure 4.1: Inconsistency range around a faulty process

execution of P2 during the recovery of P1, we can prevent the effect of the fault from spreading

in P2. From Assumption 6, there exists at least one process r in Nk1
p for p and in Nk1+1

s for s

such that consr(P1) is evaluated false during the recovery (See Figure 4.1). RWFC strategy is

a strategy for fault-containing composition: P2 should wait the recovery of P1. To implement

RWFC strategy, the proposed fault-containing composition stops P2 by using the contamination

radius k1 of P1.

We can allow faulty processes to execute P2 before P1 reaches the legitimate configuration

because in an f -faulty configuration, even if faulty processes executes P2 before P1 recovers, the

number of faulty processes in P2 is still no larger than f (≤ f1,2). What is important is that no

correct process executes P2 before P1 recovers. If some correct process executes P2 before the

recovery of P1, the number of faulty processes in P2 may exceed f2.

The idea of our composition is to make each process p check the inconsistency of each

q ∈ Nk1+1
p . For simplicity, we first assume that each process can evaluate consq(P1) for each

q ∈ Nk1+1
p with the inconsistency detector. The inconsistency detector guarantees that starting

from any f -faulty configuration (f ≤ f1,2), it provides
∧

q∈N
k1+1
p

consq(P1) to p in O(|Nk1+1
p |)

rounds. We just define the specification and the interface of the inconsistency detector in

Section 4.2.1, because our focus is not on the implementation of the inconsistency detector but

on the fault-containing composition. We show an implementation of the inconsistency detector

in Section 4.3.

4.2.1 Specification of the Inconsistency Detector

The inconsistency detector provides the evaluation of
∧

q∈N
k1+1
p

consq(P1) to each process p ∈ V .

Each process p has two variables, reqp and resp: when p requests the inconsistency detector to

evaluate
∧

q∈N
k1+1
p

consq(P1), p sets reqp = 1, otherwise 0. The inconsistency detector stores

the result in resp that takes a value in {true, false,⊥} and p receives the result by reading resp.

4.2. COMPOSITION FRAMEWORK 43

(Note that p cannot change the value of resp.)

Specification 4 The Inconsistency Detector

(i) In a legitimate configuration, reqp = 0 ∧ resp = ⊥ holds at each process p ∈ V .

(ii) If process p ∈ V changes reqp from 0 to 1 when resp = ⊥, resp takes true or false in α

rounds with changing the state of only the processes in Nβ
p :

• if
∧

q∈N
k1+1
p

consq(P1) = false holds when the inconsistency detector changes resp

from ⊥, resp takes false.

• if
∧

q∈N
k1+1
p

consq(P1) = true holds when the inconsistency detector changes resp from

⊥, resp takes true or false. Even when resp = false holds, the inconsistency detector

returns resp = true in a constant number of requests.

(iii) α and β are bounded by some polynomial in k1.

(iv) When reqp = 0∧resp 6= ⊥ holds at process p ∈ V , the inconsistency detector sets resp = ⊥
in O(1) rounds.

After p requests the evaluation to the inconsistency detector, if reqp = 1∧ resp = true holds,

process p can determine that consq(P1) = true holds at each q ∈ Nk1+1
p .

4.2.2 Composition Protocol RWFC-IcD

The composition protocol RWFC-IcD checks the consistency of P1 by using the inconsistency

detector whenever the upper protocol needs to be executed.

Protocol 4.2.1 shows RWFC-IcD for (P1 ∗P2) at process p that provides f1,2-fault-containing

protocol. For each i ∈ {1, 2}, G(Pi) is the disjunction of all guards of protocol Pi at p, and

A(Pi) indicates the corresponding action of one of the enabled guards of G(Pi).

Protocol 4.2.1 RWFC-IcD for (P1 ∗ P2)

Actions for process p

S1 G(P1) −→ A(P1)

S2 G(P2) ∧ reqp = 0 ∧ resp = ⊥ −→ reqp = 1

S3 G(P2) ∧ reqp = 1 ∧ resp = false −→ reqp = 0

S4 G(P2) ∧ reqp = 1 ∧ resp = true −→ A(P2); reqp = 0

Starting from an f -faulty configuration (f ≤ f1,2), process p can execute P1 whenever it

has an enabled guard of P1 by executing S1. However, when p has an enabled guard of P2,

44 CHAPTER 4. HIERARCHICAL COMPOSITION WITH SPATIAL CONTAINMENT

p should check the inconsistency of P1 among Nk1+1
p . Process p requests the evaluation to

the inconsistency detector by executing S2 and checks the result with S3 and S4. If there is no

process q ∈ Nk1+1
p that finds inconsistency in P1, then p executes P2 by executing S4. Otherwise,

p waits the recovery of P1 by executing S3.

4.2.3 Correctness Proof of RWFC-IcD

First, we show the stabilization of RWFC-IcD. Starting from an arbitrary initial configuration,

each process can execute P1 whenever it has an enabled guard of P1. Thus, it is obvious

that eventually P1 reaches the legitimate configuration and the output of P1 (the input to P2)

eventually becomes unchanged. After that, if process p requests the inconsistency detector to

evaluate
∧

q∈N
k1+1
p

consq(P1), p always receives resp = true. Thus, the execution of (P1 ∗ P2) is

that of P2. So, it is obvious that (P1 ∗ P2) eventually reaches the legitimate configuration. The

following lemma holds clearly.

Lemma 12 Starting from an arbitrary initial configuration, RWFC-IcD for (P1 ∗P2) eventually

reaches the legitimate configuration.

Secondly, we show the fault-containment of RWFC-IcD. Starting from an f -faulty configura-

tion (f ≤ f1,2), P1 reaches the legitimate configuration in its recovery time and with its contam-

ination number (Lemma 13). Until P1 reaches the legitimate configuration, each correct process

that is a neighbor of a faulty process cannot execute P2 (Lemma 13). However, a faulty process

may execute P2 before P1 reaches the legitimate configuration, e.g. if reqp = 1 ∧ resp = true

holds at a faulty process p in an f -faulty configuration (f ≤ f1,2), then p can execute P2. Though

p executes P2 before P1 recovers, the number of faulty processes in the resulting configuration

of P2 is still no larger than f2. Thus, after P1 reaches the legitimate configuration, P2 can reach

the legitimate configuration with its fault-containment property.

The composite protocol (P1∗P2) via RWFC-IcD preserves the fault-containment property of

the source protocols (Theorem 4). The performance of the obtained protocol depends on those

of P1, P2, and the inconsistency detector.

Starting from an f -faulty configuration (f ≤ f1,2), P1 first reaches the legitimate configura-

tion with its fault-containment property.

Lemma 13 Starting from any f -faulty configuration (f ≤ f1,2), P1 reaches the legitimate con-

figuration with its recovery time and contamination number. During the recovery of P1, each

correct process that is a neighbor of a faulty process cannot execute P2.

Proof. Starting from an f -faulty configuration (f ≤ f1,2), P1 reaches the legitimate configura-

tion with its recovery time and contamination number because S1 is P1 itself.

4.3. INCONSISTENCY DETECTOR 45

In an f -faulty configuration, reqq = 0∧resq = ⊥ holds at each correct process q. If a correct

process q is a neighbor of a faulty process and q has an enabled guard in P2, q changes reqq from 0

to 1 by executing S2 and the inconsistency detector returns the evaluation of
∧

r∈N
k1+1
q

consr(P1).

From Assumption 6, if P1 is not in the legitimate configuration, q receives resq = false. So,

correct processes neighboring some faulty process(es) do not execute P2 with incorrect output

from P1. 2

Lemma 14 After P1 reaches the legitimate configuration, P2 reaches the legitimate configuration

with the recovery time of t2α and the contamination number of c2∆β, where ∆ is the maximum

degree in G.

Proof. From Lemma 13, there exist at most f (≤ f1,2) faulty processes in P2 when P1

reaches the legitimate configuration. Thus, P2 reaches the legitimate configuration with its

fault-containment property: for the variables of P2, the recovery time and the contamination

number is still t2 and c2.

However, each process p should check the consistency of P1 with the inconsistency detector

whenever p has an enabled guard of P2. From Specification 4, this forces each q ∈ Nβ
p to change

their states and imposes α rounds for p to obtain the result. Thus, in RWFC-IcD, it takes t2α

rounds for P2 to reach the legitimate configuration with the number of c2∆β processes changing

their local states. 2

From Specification 4, α and β are bounded by some polynomial in k1.

Theorem 4 RWFC-IcD provides an min{f1, f2}-fault-containing protocol (P1∗P2) for f1-fault-

containing protocol P1 and f2-fault-containing protocol P2. The recovery time is (t1 + t2α) and

the contamination number is max{c1, c2∆β}.

Proof. From Lemma 13 and 14, RWFC-IcD executes P1 and P2 in the coordinated order and

each protocol executes its own recovery actions. So the maximum number of faults that the

obtained protocol guarantees fault-containment is f1,2 = min{f1, f2}. From Lemma 14, the

recovery time is (t1 + t2α) and the contamination number is max{c1, c2∆β}. 2

4.3 Inconsistency Detector

In this section, we show an implementation of the inconsistency detector.

The inconsistency detector should provide the communication between process p and each

q ∈ Nk1+1
p to evaluate

∧
q∈N

k1+1
p

consq(P1) whenever p changes reqp from 0 to 1. In the locally

shared memory model, process p can read only the local variables at its direct neighbors. Thus,

46 CHAPTER 4. HIERARCHICAL COMPOSITION WITH SPATIAL CONTAINMENT

it is necessary to broadcast the request to each process q ∈ Nk1+1
p and each q ∈ Nk1+1

p should

return the evaluation of consq(P1) to p.

Recall that the legitimate predicate L(P1) ≡ ∀p ∈ V : consp(P1) is a stable predicate on

configurations in P1. Thus, starting from a target faulty configuration, once L(P1) = true holds,

L(P1) remains true thereafter. However, the fault-containment property guarantees that only

the processes in the inconsistency range of each faulty process p change their states during the

recovery. So, starting from a target faulty configuration, once consq(P1) holds for each q ∈ Nk1+1
p

for a faulty process p, consq(P1) remains true at all q ∈ Nk1+1
p thereafter. Consequently, the

inconsistency detector should answer whether there is a configuration where
∧

q∈N
k1+1
p

consq(P1)

holds between the time when p requests by changing reqp from 0 to 1 and the time the incon-

sistency detector answers to p by changing resp from ⊥ to a value in {true, false}.

One simple solution for evaluating a stable predicate is to use PIF (Propagation of Infor-

mation with Feedback) protocols that take a snapshot of global configurations by broadcasting

a request to all processes and gathering feedbacks from all processes.

However, we do not need any global detection but the local detection among Nk1+1
p for

process p. One way to involve Nk1+1
p into some task is to use the breadth first tree of height

(k1 + 1) rooted at p. Whenever process p changes reqp to 1, p constructs the breadth first tree

and by using a PIF protocol on the breadth first tree, p broadcasts the request to each q ∈ Nk1+1
p

and q feedbacks the evaluation of consq(P1) to p. We can use the breadth first tree construction

protocol in [30] by setting the height of the tree k1 + 1.

However, this simple implementation cannot provide the correct evaluation of the predicate∧
q∈N

k1+1
p

consq(P1) to p. Because each process executes P1 during the request and feedback of

a PIF protocol, the evaluation of consq(P1) at q ∈ Nk1+1
p may change during the feedback: e.g.

after q sends consq(P1) = true as a feedback, if the evaluation of consq(P1) changes from true

to false (it may be caused by some state change of the processes in Nq), p cannot obtain the

correct evaluation of
∧

q∈N
k1+1
p

consq(P1).

Generally, to evaluate a stable predicate among processes, PIF is used twice. The first PIF

propagates the request to each process and each process starts to observe the stable predicate.

The second PIF gathers the result of observation at each process via the feedback of PIF. In

this way, one can evaluate a stable predicate on configurations.

Cournier et al. proposed a snap-stabilizing PIF protocol for arbitrary networks [12]. Their

protocol PIF guarantees that each process returns the feedback after all processes in V received

the request. Thus, by using PIF, we can collect the observation of the stable predicate with a

single PIF execution.

We allow each process p to execute PIF independently in parallel so that each process

4.4. CONCLUDING REMARKS 47

q ∈ Nk1+1
p can evaluate

∧
r∈N

k1+1
q

consr(P1) when q changes reqq from 0 to 1. This is done,

for example, by attaching the ID of q to the broadcast and feedback. This imposes additional

memory of size of O(|Nk1+1
p | log n) at p to manage different trees while this does not impose

additional time complexity.

We modify PIF as follows:

(i) process p constructs the breadth first tree of height (k1 + 1) rooted at p when it changes

reqp from 0 to 1.

(ii) process q starts to observe consq(P1) when it receives the request of the PIF protocol. If

consp(P1) = true holds during the observation, p records it.

(iii) q returns the result of the observation to p with the feedback of PIF.

The snap-stabilization property of PIF guarantees that starting from an arbitrary initial

configuration, whenever the root process begins the broadcast, every process receives the broad-

cast and the root process receives feedback from every process in O(N) rounds. Thus, in our

implementation, the broadcast and feedback take O(Nk1+1
p) rounds. The breadth-first tree is

constructed in O(k1 + 1) rounds. Thus, p receives the feedback from all processes in Nk1+1
p

in O(|Nk1+1
p |) rounds. Consequently, the value of α in Specification 4 is a polynomial in k1.

Because only the processes in Nk1+1
p change their states, the value of β in Specification 4 is

k1 + 1. So, the condition (iii) of Specification 4 is satisfied.

To satisfy the condition (iv) of Specification 4, the inconsistency detector should check reqp

and resp, and whenever reqp = 0 ∧ resp 6= ⊥ holds at p, it should change resp to ⊥.

4.4 Concluding Remarks

In this chapter, we proposed a fault-containing composition technique that utilizes spatial con-

tainment property of source protocols. Because fault-containing protocols provide the temporal

containment property and/or the spatial containment property, RWFC-IcD is the complement

of RWFC-LNS.

We utilize the spatial containment property of fault-containing protocols to check the incon-

sistency of the lower protocol. Then, we defined and implemented the inconsistency detector

that enables each process to communicate with the processes in its inconsistency range of the

lower protocol. Our implementation is based on an existing snap-stabilizing PIF protocol and

we modified PIF [12] so that it is executed among the processes in the inconsistency range of

the lower protocol. The performance of obtained protocol depends on the inconsistency detec-

tor. Though the PIF protocol imposes additional communication overhead and execution time,

48 CHAPTER 4. HIERARCHICAL COMPOSITION WITH SPATIAL CONTAINMENT

the effect is contained around faulty processes in the inconsistency range of the lower protocol.

The inconsistency range of the lower protocol is limited because the lower protocol is fault-

containing. Thus, the overhead imposed by the PIF protocol is small and do not spread over

the entire network.

To accelerate the composite protocol by RWFC, we can use the legitimacy of only output

variables of the lower protocol (called output legitimacy) instead of legitimacy of input, inner,

and output variables. This is because the upper protocol just uses the output variables of the

lower protocol as its input. However, to adopt output legitimacy, it is necessary that when the

system starts from a target faulty configuration, once the lower protocol reaches the output

legitimate configuration, it does not change the values of output variables thereafter. Note that

not all the fault-containing protocols provide this property for output legitimacy.

Chapter 5

Ring Embedding Preserving

Fault-containment Property

In this chapter, we present a ring embedding on an arbitrary rooted tree that enables simulation

of fault-containing ring protocols on an arbitrary rooted tree.

The most desirable ring embedding is the one along a Hamiltonian cycle of the tree network,

but finding a Hamiltonian cycle is computationally intractable. To embed a ring on an arbitrary

network, one way is to embed the ring in a spanning tree of the network. Commonly used ring

embeddings on a tree are the Euler tour [14] (Figure 5.1(a)), the one proposed by Sekanina

[37, 49] (Figure 5.1(b)), and an embedding similar to Sekanina’s, proposed by Arora et al. [2].

We observe that adjacent processes in the tree remain adjacent in the Euler tour, but not in

Sekanina’s or Arora’s ring embeddings; Sekanina’s and Arora’s embeddings have the dilation

(the maximum distance in the tree between consecutive processes in the ring) of three. Also,

each process in the tree corresponds to a single process in the ring in Sekanina’s and Arora’s

embeddings, while in the Euler tour a process in the tree is duplicated a number of times equal

to its degree. Thus for a tree with n processes, the length of the ring based on the Euler tour is

2n − 2, respectively n for Sekanina’s and Arora’s ring embeddings.

Simulation of protocols designed for simple networks (e.g. rings) on an arbitrary network

facilitates the design of new protocols. However, it involves the difficulty described below when

applied to fault-containing protocols. Euler tour embedding cannot preserve the fault contain-

ment property of ring protocols. This impossibility is due to the fact that a tree process appears

in the Euler ring several times: a faulty process in the tree is treated as multiple faults in the

ring. The number of faults in the ring may exceed the maximum number of faults that the

fault-containing ring protocol can tolerate. Sekanina’s embedding is the first step in preserving

fault-containment of a ring protocol in a tree. The one-to-one node embedding ensures that a

49

50CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

�

��

�� �

�

��

�� �

�

��

�� �

�

��

�� �

�

��

�� �

�

��

�� �

(a) Euler tour ring (b) Sekanina’s ring

Figure 5.1: Ring embedding on a tree

fault that affects a single process in the tree can be treated as a single faulty process in the ring.

However this embedding alone cannot ensure fault-containment completely since the links of the

ring go through some intermediate process(es) that can be corrupted by a fault, thus corrupting

the ring communication.

The proposed simulation protocol RET (ring embedding protocol on an arbitrary tree)

enables fault-containing protocols to be executed on Sekanina’s ring embedded on an arbitrary

rooted tree. The dilation of Sekanina’s embedding is three, thus neighboring processes in the

virtual ring are not necessarily neighboring processes in the tree. Additionally, any process p,

of degree δp, is an intermediate process for δp − 1 embedded ring links. Thus a single fault

at process p can affect communication for δp virtual links of Sekanina’s embedding that pass

through p.

To overcome this difficulty, we force eahc sender process to send each data five timers and

the destination process to compute majority of the received data to exclude the corrupted data.

We use a communication synchronizer [45] among neighboring processes so that for each data

to be routed at most two corrupted pieces of the data are read at the endpoint process, and

We force each piece of data to be relayed five times and the endpoint process to apply the

majority computation on them. Because there are at most two corrupted pieces of data in each

set of five pieces of data, the corrupted data is removed at the endpoint process. Repeating

the communication five times before delivering the data causes a slowdown in executing the

ring protocol in the tree, but overall the slowdown of the ring protocol is proportional to the

maximum degree of the tree.

Related works. We introduce the notion of causal simulation, a method for applying ring

protocols to trees that preserves the fault-containment property. Lynch defined the simulation

relation between two different protocols that requires one protocol traces every global configu-

ration of the other protocol [41]. However, our simulation protocol cannot provide simulation

relation between the execution of the original fault-containing ring protocol and the execution of

the simulation protocol. This is because each virtual link have different communication delays.

Causal simulation preserves the read/write causality of each data of the execution of original

5.1. PRELIMINARY 51

protocol and this is strong enough to guarantee that the simulating protocol executes the same

task as the original protocol. This is because most of reactive and non-reactive tasks are based

on read/write causality.

This chapter is organized as follows. In Section 5.1 we present system models and the

definition of the vertex bijective ring. In Section 5.2 we define the causal simulation. In Section

5.3 we present protocol RET that provides a causal simulation of ring protocols by simulating the

communication link on the vertex bijective ring. In Section 5.4 we show how protocol RET can

be used to design a 1-fault-containing leader election protocol in arbitrary trees. We conclude

this chapter in Section 5.5.

5.1 Preliminary

In this chapter, we consider self-stabilizing protocols and fault-containing protocols for reactive

and non-reactive problems. Hence, the set of legitimate configurations of a problem is defined

by Definition 2.

In this chapter, when a process is corrupted by a fault we consider that the process has

executed a faulty action and the process is called faulty.

We embed a vertex bijective ring on a rooted tree and simulate a fault-containing ring

protocol on the embedded ring.

Definition 7 Vertex Bijective Ring

Given a tree T = (V,E), a vertex bijective ring of T is any ring R = (V,E′) embedded on T

such that each process of tree T appears only once on the ring R.

The processes and the links of a vertex bijective ring R are called virtual, and the processes

and the links of T are called real. The dilation of R in T is the maximum distance in T between

any neighboring processes in R.

Sekanina’s ring embedding [49] is an example of a vertex bijective ring of a tree with dilation

of three. It can be described as a preorder-postorder traversal of the tree. Given a tree T = (V,E)

rooted at process r, the processes in T are divided into even and odd-level processes such that:

(i) the root is at even level, and (ii) a process is at odd (even) level iff its parent is at even (odd)

level. The preorder-postorder traversal starts with the root process r, then continues along a

depth-first traversal. A process p ∈ V is deployed on the virtual ring as follows. If p’s level

is even, p is deployed as preorder traversal, that is, p is deployed on the ring before all its

descendants in the tree. If p’s level is odd, p is deployed as postorder traversal, that is, p is

deployed on the ring after all its descendants.

52CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

�

� ��

��

� � �

	

� �

�������

�����

�����

��������

� ��

��

� � �

	

� �

�

� ��

��

� � �

	

� �

�������

�����

�����

�������

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

�

(a) preorder-postorder traversal (b) The Virtual Ring

�

� ��

��

� � �

	

� �

(c) Routing in the Virtual Ring

Figure 5.2: Preorder-postorder traversal

5.2. CAUSAL SIMULATION 53

Two adjacent processes in a preorder-postorder traversal are connected by a virtual link. To

form a ring, a virtual link is added between the last visited process and the root process r. The

preorder-postorder traversal for a given tree topology is shown in Figure 5.2(a). The obtained

ring is shown in Figure 5.2(b). Process a (the root of the tree T) is deployed first. The successor

of a in the traversal is e because b’s level is odd and the next preorder process is e. Process e,

whose level is even, is deployed for the ring before e’s descendants (processes i, j, and k) are

deployed. Process b, whose level is odd, is selected for the ring after its descendants (processes

e, i, j, k, and f) are deployed.

Figure 5.2(c) shows the virtual links of the embedded ring presented in Figure 5.2(b). Each

virtual link is a path of at most three real (tree) links (e.g., a virtual link (b, g) is a path (b, a, c, g)

in the tree).

5.2 Causal Simulation

In this section we give a formal definition of causal simulation. We first introduce the causal

simulation of a fault-free and non-stabilizing case, then we progress into a self-stabilizing case

and a fault-containing case. The idea of causal simulation of protocol Pv designed for topology

Tv is that a protocol Pr designed for topology Tr executes the same task as Pv.

We now define what it means that one protocol Pr defined for topology Tr provides a causal

simulation of another protocol Pv defined for topology Tv, both using locally shared memory

model. Besides the variables of Pv, a process in Pr may have another set of variables. The

variables that are common to Pv and Pr are called common and the rest are called non-common.

Thus the projection of a process state in Pr on to its common variables represents its state in Pv.

Given an execution Er of Pr, this projection defines the behavior in Pv. R(Er) represents the

execution in Pv obtained by the projection of Er and removing some stuttering configurations

in it. Causal simulation guarantees that any execution Er of Pr has a corresponding execution

Ev of Pv such that we can obtain R(Er) by a shift operation on time-space diagram of Ev. We

call this shift operation as causal shift since the operation preserves the read/write causality of

the original execution in a sense that any data read was written before.

Generally, when executing a self-stabilizing protocol or a fault-containing protocol, a process

may write the same value on one register repeatedly. For example, let a process write value a

to one register three times. We consider this as write actions of three different data: e.g. a(1),

a(2), a(3) are written in the register successively. Causal shift should preserve the read/write

54CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

�
�

�

�

� �
���	�	�
�

� �
� �����

� � � �

� � � �

� ��� ����� � �
� ��� �

��
�

�

��

�� ��
���	�	�
����	�	�
�

� �
� ������ �
� �����

�� �� �� ��

�� �� �� ��

� ��� ������ ��� ����� � �
� ��� �� �
� ��� �

�
�

�

�

� �
���	�
���

� ��
 �����

� � � �

� � � �

� ��
 ����� � ��
 ��� �

��
�

�

��

�� ��
���	�
������	�
���

� ��
 ������ ��
 �����

�� �� �� ��

�� �� �� ��

� ��
 ������ ��
 ����� � ��
 ��� �� ��
 ��� �

�
�

�

�

� �
���	�
���

� ��
 �����

� � � �

� � � �

� ��
 ����� � ��
 ��� �

���

��
�

�

��

�� ��
���	�
������	�
���

� ��
 ������ ��
 �����

�� �� �� ��

�� �� �� ��

� ��
 ������ ��
 ����� � ��
 ��� �� ��
 ��� �

������

(a) Time-space diagram of Pv (b) State shift (i) of (a) (c) State addition (ii) of (a)

Figure 5.3: An example of causal shift

causality for each a(1), a(2), a(3).

Definition 8 Causal Shift

Given an infinite execution Ev of Pv, a causal shift modifies the time-space diagram of Ev as

follows:

(i) shift states on the temporal lines of processes, but keep each write event of some data precedent

to any read event of that data, and

(ii) add some copies of the initial state of a process as the first states of the process so that the

initial states of all processes are aligned.

The time-space diagram obtained from execution Ev by causal shift represents a sequence

of configurations denoted by Ev|cs. Ev|cs is not uniquely defined by Ev.

Figure 5.3 shows an example of a causal shift where we focus on the read/write causality of

data a that is written to the register at process p and after that is read by one of p’s neighbors,

q. Process q changes its state from c to d according to data a (Figure 5.3(a)). Because causal

shift should preserve that the data read should always be written before, we can shift the states

at q to right. Let the operation (i) of causal shift shift the temporal line of q as Figure 5.3(b).

Then, the first state c of q is copied and the initial states of p and q are aligned. The sequence

of configuration obtained from Pv is given in Figure 5.3(c). Causal shift does not violate the

read/write causality of the original execution.

We say two states sp of process p and sq of process q (p 6= q) are concurrent in an execution

iff sp and sq have no relation in the sense of read/write causality. From Definition 8 the following

remark follows immediately.

Remark 3 For any configuration σ in Ev|cs, all local states that are part of σ are concurrent

states in Ev.

Any configuration sequence obtained by a causal shift from an execution denotes another exe-

cution in an asynchronous message passing system. However, in locally shared memory model,

5.2. CAUSAL SIMULATION 55

Ev|cs does not necessarily denote an execution. For example, in Figure 5.3(c) process q cannot

read a when the state of p is b. Causal simulation is weaker than the simulation relation defined

by Lynch [41]. Lynch defined a simulation relation between two protocols such that for any

execution of one protocol, every computation step is traced by the other protocol. This means

every global configuration of the original protocol appears in the simulation protocol. Causal

simulation does not trace global configurations of original executions but preserves the local

behavior of each process and the read/write causality. This is sufficient for many problems such

that the legitimacy of the problem is defined by the read/write causality: e.g. leader election

problem, spanning tree construction problem, token circulation problem, and so on.

Definition 9 Causal Simulation of Fault-free Non-stabilizing Protocols

A protocol Pr defined for a topology Tr provides a causal simulation of another protocol Pv

defined for a topology Tv (with the same process set as Tr) on a locally shared memory model

iff for any infinite execution Er of Pr, there exists an infinite execution Ev of Pv such that we

obtain R(Er) from Ev|cs.

Starting from a predefined good initial configuration, it may be possible to provide a causal

simulation of the original protocol from the initial configuration. However, self-stabilizing proto-

cols start from an arbitrary initial configuration. We relax the restriction for a causal simulation

of self-stabilizing protocols: starting from an arbitrary initial configuration, Pr eventually pro-

vides the causal simulation of Pv. Thus, to preserve the self-stabilization of Pv, causal simulation

guarantees that any execution of Pr starting from an arbitrary initial configuration has a suf-

fix whose projection on to the common variables is obtained from some causal shift of some

execution of Pv. We denote an infinite suffix of an infinite execution E by suff(E).

Definition 10 Causal Simulation of Fault-free Self-stabilizing Protocols

A protocol Pr defined for a topology Tr provides a causal simulation of another self-stabilizing

protocol Pv defined for a topology Tv (with the same process set as Tr) on a locally shared memory

model iff for any infinite execution Er of Pr starting from any arbitrary initial configuration,

there exists an infinite execution Ev of Pv such that we obtain suff(R(Er)) from Ev|cs.

A configuration σr of Pr is cs-legitimate iff for any execution starting from σr the projection

of it is obtained by a causal shift of some execution of Pv starting from a legitimate configuration

of Pv. Since Pr do the same task as Pv and Pv is a self-stabilizing protocol, Pr eventually reaches

a cs-legitimate configuration.

Remark 4 Starting from any arbitrary initial configuration, Pr eventually reaches a cs-legiti-

mate configuration.

56CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

�
�

�
� �

� �

�

�����
	 �

��
�� �����

 ���
���

� �

� �

� ��

� ��

��
�

�
�� ��

�� ��

��

�����
	 ������
	 �

��
�� �������
�� �����

 ���
���
 ���
���

�� ��

�� ��

�� ����

�� ����

Figure 5.4: Faults in Pr

To preserve the fault containment of Pv, intuitively the following conditions should be satisfied:

if Er starts with a cs-legitimate configuration σr of Pr and the fault corrupts some processes in

the first computation step, R(Er) should be a suffix of a causal shift of some execution Ev of Pv

such that all the faulty processes experience faulty actions in Ev in a legitimate configuration

σv at the same time in Ev and the faulty actions change all the common variables in the same

way as Er. If the number of faulty processes is not larger than the maximum number for which

Ev guarantees fault containment, Er shows the fault-containing recovery because Er provides a

causal simulation of Ev.

However, it is not guaranteed that the above condition holds. This is because Er is obtained

by a causal shift of some execution Ev of Pv. A causal shift shifts states on the temporal line of

processes of Ev and may also shift the faulty actions in Ev executed at the same time at different

processes. Furthermore, a causal shift can produce a configuration of Er that may never appear

in Ev. For example, based on the causal shift, such execution of Pr can exist (Figure 5.4). After

the fault corrupts some process p, a non-faulty process q reads the data that p holds before

the corruption. Thus, the projection of global configuration just before the corruption cannot

appear in Pv.

Still, it is guaranteed that there is some execution Ev of Pv such that all faulty processes

execute faulty actions in a legitimate configuration of Pv and the projection of the states before

and after the corruption at faulty processes is same as those in Ev.

Remark 5 There exists an execution of Pv such that all faulty processes execute faulty actions

in a legitimate configuration of Pv and those faulty actions change all the common variables in

the same way as Er.

Proof. Consider the case that faults corrupted two processes in a cs-legitimate configuration

σr of Pr. These two faults occur at processes p and q, and p (respectively, q) changes its state

from sp to s′p (from sq to s′q, respectively). Let R(sp) represent the projection of sp on to the

common variables.

5.2. CAUSAL SIMULATION 57

Since σr is a cs-legitimate configuration of Pr, the projection of σr is obtained by causal shift

of some execution of Pr starting from a legitimate configuration.

Let us consider fault-free executions first. From some fault-free execution, E∗
r = σr, σr+1, . . .,

Er is obtained by corrupting some processes after σr. Such E∗
r is obtained from some execution

of Pv starting from a legitimate configuration since σr is a cs-legitimate configuration. Let Π(σr)

be a set of executions of Pv from which we can obtain the projection of any execution of Pr

starting from σr by suff(E′
v|cs) where E′

v ∈ Π(σr) and E′
v starts from a legitimate configuration

of Pv.

For any E′
v ∈ Π(σr), p takes the state R(sp) in some configuration σp and q takes the state

R(sq) in some configuration σq. For contradiction, assume that σp and σq do not coincide in any

execution E′
v ∈ Π(σr). If R(sp) and R(sq) are concurrent states, then there exists at least one

execution in Π(σr) such that these two states coincide in one configuration. However, if there

is no such execution in Π(σr), then there exists some read/write causality between R(sp) and

R(sq). Thus, R(sp) and R(sq) are not concurrent states in Pv and this conflicts with Remark 3.

Thus, there exists some execution E∗
v ∈ Π(σr) such that R(sp) and R(sq) coincide in a con-

figuration σv. Because σr is a cs-legitimate configuration of Pr, σv is a legitimate configuration

of Pv.

We considered that the number of faulty processes is two, but when the number of faulty

processes is bigger than two, we can conclude in the same way. 2

In Er, the fault corrupts some processes and changes the configuration from σr to σ′
r. This

corresponds to that in E∗
v , the fault corrupts some processes and changes the configuration from

σv to σ′
v. If the number of faulty processes is not larger than the maximum number of faulty

processes that Pv guarantees fault-containment, the execution of Pv after the corruption shows

a recovery of fault-containment and Er also shows the recovery of fault-containment.

When a fault corrupts some processes, the corrupted process cannot provide causal simulation

immediately after the corruption. For example, common variables at a faulty process may change

after the corruption because non-common variables were also corrupted by the fault. In this

case, common variables may flutter and the state of that process in the projection may also

flutter. However, we can ignore this repetition of fluttering states if the repetition is finite and

the fluttering states do not affect other processes in the projection: any neighbor in Pv does not

change its state according to the fluttering states at a faulty process.

Let R′(Er) be obtained from R(Er) by replacing some local states that appear consecutively

and immediately after each faulty action with the state that follows the last replaced state.

R′(Er) is not uniquely defined by R(Er). Figure 5.5 shows an example of R′(Er) where the

state x at process q is replaced with the following state e.

58CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

�
�

�
� �

� � �

� �

� �	��
 �

� ��

� �

�

� �

�

� �	��
 �

�

�� ��

��
�

�
�� ��

�� �� ��

�� ��

� �	��
 �� �	��
 �

�� ����

�� ��

��

�� ��

��

� �	��
 �� �	��
 �

��

���� ����

�
�

�
� �

� � �

� �

� ���
	 �

�

�

� �

�

 �

�

� ���
	 �

�

�� ��

��
�

�
�� ��

�� �� ��

�� ��

� ���
	 �� ���
	 �

�

��

�� ��

��

 ��

��

� ���
	 �� ���
	 �

��

���� ����

(a) R(Er) for execution Er of Pr (b) R′(Er)

Figure 5.5: An example of R′(Er)

In R′(Er), the replaced states do not affect other processes in the projection while the

replacing state may affect other processes in the projection. R′(Er) enables the simulating

protocol Pr to have other variables than common variables since it may take some steps (or

rounds) for Pr to recover both common and non-common variables after the corruption. Clearly,

Remark 5 holds when we use R′(Er) instead of R(Er).

Definition 11 Causal Simulation of Fault-containing Protocols

A protocol Pr defined for a topology Tr provides a causal simulation of another fault-containing

protocol Pv defined for a topology Tv (with the same process set as Tr) on a locally shared memory

model iff for any execution Er of Pr starting from any cs-legitimate configuration where all faulty

actions occur in the first step and all the other actions are correct ones, there exists an execution

Ev of Pv such that Ev starts from a legitimate configuration of Pv and a fault corrupts the same

processes at a time and there exists R′(Er) that we obtain from suff(Ev|cs).

If Pr satisfies both Definitions 10 and 11 for fault-containing self-stabilizing protocol Pv,

Pr provides the causal simulation of Pv preserving the self-stabilization property and fault-

containment property of Pv.

Causal simulation preserves the behavior of each process and the read/write causality of

original execution. When a fault corrupts some processes in a cs-legitimate configuration of Pr,

causal simulation guarantees there exists some execution of Pv that experiences the corruption

of the same process set at a time. Consequently, for a fault-containing self-stabilizing protocols

Pv, causal simulation guarantees the fault containment property if the number of corrupted

processes is smaller than or equal to the number for which Pv guarantees fault containment.

5.3. CAUSAL SIMULATION FRAMEWORK 59

�

�

�

����� �	��
��

����
���� ����
��

Figure 5.6: Local routing function at p

5.3 Causal Simulation Framework

We define protocol RET for a tree. We show that it provides a causal simulation of a uni-

directional ring protocol on the tree and preserves the fault-containment of the ring protocol

(Theorem 5).

We embed a vertex bijective ring on a tree. Our local routing function is similar to Arora’s

paper [2]. Each process p is part of the data in δp virtual links and maintains a local routing

function fp(). For q ∈ Np∪{p}, fp(q) returns some process in Np or p to which p relays the data

from q: fp(q) = r with r ∈ Np ∪ {p} if p needs to forward to r the data from q. The inverse of

fp(q), f−1
p (q), returns p or some neighbor of p from which p should relay to q: f−1

p (q) = r with

r ∈ Np ∪ {p} if p should read from r the data for q. The following relation always holds (see

Figure 5.6): fp(q) = r ⇔ f−1
p (r) = q.

The routing function fp() at each process p is defined as follows. Let Np[0] represent p’s

parent on the tree and Np[i] (1 ≤ i < δp) represent p’s children (thus, Np[i] (0 ≤ i < δp) is

constant). At the root process r, Nr[0] =⊥ and Nr[δr] 6=⊥ (δr ≥ 1).

1. For the root process r (Nr[0] =⊥, Nr[δr] 6=⊥),

fr(q) =



Nr[1] if q = r and r has a child

(Nr[1] is the first child of r)

Nr[0] if q = r and r has no children

Nr[i + 1] if q = Nr[i] and 1 ≤ i < δr

r if q = Nr[δr]

60CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

2. For a non-root, even-level process p,

fp(q) =



Np[1] if q = p and p has a child

(Np[1] if the first child of p)

Np[0] if q = p and p has no children

p if q = Np[0]

Np[i + 1] if q = Np[i] and 1 ≤ i < δp − 1

Np[0] if p has a child and q = Np[δp − 1]

3. For an odd-level process p,

fp(q) =



Np[0] if q = p

Np[1] if q = Np[0] and p has a child

(Np[1] is the first child of p)

p if q = Np[0] and p has no children

Np[i + 1] if q = Np[i] and 1 ≤ i < δp − 1

p if p has a child and q = Np[δp − 1]

For process c in Figure 5.2(c), fc(a) = g, fc(g) = h, fc(h) = c, fc(c) = a.

A virtual link of vertex bijective ring consists of at most three (tree) links and at most two

intermediate processes. These intermediate processes relay the data between endpoints in a

store-and-forward manner. We consider the case of a virtual link along which the intermediate

processes are corrupted but the endpoints are not. If an endpoint is corrupted by the fault, the

virtual process of that endpoint is also corrupted. If we allow the corrupted data to be read at

the endpoint of the virtual link, the fault may spread in the entire system unhindered.

To prevent unlimited propagation of corrupted data from an intermediate process to an

endpoint process of a virtual link, we synchronize the communication of a process with its

immediate neighbors. Between two consecutive communications of a process p with its neighbor

q, we force p to communicate with all its other neighbors. To this end, we use the mechanism

of link alternator [45]. There are also tree synchronizers [32, 7], however these synchronizers

are not snap-stabilizing because a faulty process can communicate twice consecutively with the

same neighbor before communicating with other neighbors.

The link alternator is snap-stabilizing and ensures synchronization immediately after the

fault. In the link alternator protocol, each process p has a pointer compp indicating a process

in Np. When two neighboring processes point at each other (e.g. compp = q and compq = p for

some process q ∈ Np), the two processes can communicate. After that they change the pointer to

another neighbor. The ordering of the neighbors is determined by the topology and each process

can communicate with its neighbors in a round robin fashion. The link alternator protocol is

5.3. CAUSAL SIMULATION FRAMEWORK 61

snap-stabilizing; every configuration of the protocol is legitimate. Starting from an arbitrary

initial configuration, the protocol ensures that each process can communicate with its neighbors

in a round robin fashion. Thus, in every execution, between two consecutive communications

with the same neighbor, each process communicates with other neighbors.

5.3.1 Causal Simulation Protocol RET

In a locally shared memory model, a process executes the following three steps: (1) reads the

local variable(s) of the immediate neighbor(s), (2) executes some local computation, (3) writes

into its own local variable(s). When process p receives five pieces of data from its predecessor in

the virtual ring, p computes majority of them. The result is then delivered at p that corresponds

to read action in the virtual ring. Then, p executes the computation of the original protocol and

updates the common variables, which corresponds to a write action to common variables in the

virtual ring.

Protocol RET (Protocol 5.3.1) uses the following variables. Each process p has a variable ωp

used by the ring protocol. 1. Variable cp denotes the remaining number of times p should read

the data from its predecessor in the ring (through possible intermediate processes) and cp takes

a value in the set {0, . . . , 4}. In the original ring protocol, process p updates ωp by executing a

generic action called Action(). Action() has two parameters: the current content of p, ωp, and

the data relayed from its predecessor in the ring. By default, Action(ωp,⊥) = ωp (if no data is

delivered at p, then do nothing).

For the routed data, process p uses the variables:

1. w†
p(q), called contents table, keeps the data sent by f−1

p (q) through p that needs to be

relayed to process q, q ∈ Np ∪ {p}. If f−1
p (q) = p then w†

p(q) = ωp.

2. w‡
p, called cache table, keeps the latest five data relayed from p’s predecessor in the ring.

Two operations are defined on the table: append(w‡
p, w) appends w to w‡

p, and ext(w‡
p) returns

the five entries.

Function maj(w‡
p) returns the majority of ext(w‡

p) or ⊥ if there is no majority. Predicate

commp(q) is controlled by the communication synchronizer and is true when process p can

communicate with some neighbor q, q ∈ Np.

Action C1 corrects the value of the counter cp (if outside the range [0,. . . , 4], then it is set

to 4), and also ensures that the entry w†
p(fp(p)) of the contents table is equal to ωp (fp(p) is the

neighbor of p towards p’s successor in the ring).

Action A1 simulates the ring communication on the tree. Condition fp(q) 6= p implies that
1For simplicity, we use one common variable for each process but without loss of generality this can be seen

as a composite of multiple common variables.

62CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

Protocol 5.3.1 RET (Ring Embedding protocol on an arbitrary rooted Tree)

Predicate OK c(p) ≡ (0 ≤ cp < 5) ∧ w†
p(fp(p)) = ωp

Actions for any process p

C1 cp < 0 ∨ cp ≥ 5 ∨ w†
p(fp(p)) 6= ωp −→ cp = 4; w†

p(fp(p)) = ωp

A1 OK c(p) ∧ commp(q) −→
// read from q

iffp(q) 6= p then w†
p(fp(q)) = w†

q(p)

else

append(w‡
p, w

†
q(p))

ifcp > 0 then cp −−
else

ωp ← Action(ωp,maj(w‡
p))

w†
p(fp(p)) = ωp

cp = 4

the data read from q needs to be relayed further. When the counter cp is 0 the majority is

applied (function maj) to the content of ω‡
p relayed from its predecessor in the virtual ring. If

the result is not empty, we say that the result is delivered at p. Then, p executes Action() and

updates ωp with the result. The counter cp is reset to 4 and the new content of ωp is relayed to

its successor in the ring.

5.3.2 Correctness Proof of RET

For some process p, let q and r be its predecessor and successor in the ring.

In any execution of RET, if q changes ωq to s with Action(ωq,maj(ω‡
p)) and no fault occurs

at q during ωq = s, then p stores at least five s’s in ω‡
p (Proposition 1). Independent of the value

of cp at the time q changes ωq to s, if p stores five s’s in ω‡
p, then s is delivered at p (Proposition

2). A configuration σ of RET is a legitimate configuration iff in any execution starting from σ

Proposition 1 and Proposition 2 hold.

A legitimate configuration is reached in finite time once each process has reset its counter

cp to 4 at least once (Lemma 15). The time complexity depends on the synchronizer used for

communication between neighboring processes.

Since dilation is three, a fault at the intermediate processes on a virtual link may corrupt

5.3. CAUSAL SIMULATION FRAMEWORK 63

������� �	�

��

��

��

��

��

��� ��� ���

� � �

 ! "

�

������� �	�

��

��

��

��

��

��� ��� ���

� � �

 ! "

�

Figure 5.7: Fault at p on the virtual ring

at most two pieces of data out of five, thus by applying a majority function the corrupted data

is eliminated. If neither q nor p are faulty and ωq = s, then either data s is delivered at p or

is lost (but no other data is delivered) if some fault occurs at the intermediate processes on the

virtual link between q and p (Lemma 16).

The fault at p can corrupt p’s variables: ωp, cp, w†
p, and w‡

p. Assume that the fault had

changed ωp from a value s to a value t 6= s, cp to some value in the set {0, . . . , 4} (Action C1

corrects it otherwise), and the top five entries of w‡
p are w1, . . . , w5 (Figure 5.7). The contents

table w†
p is correctable: the entries for all q 6= fp(p) in the contents table w†

p will be corrected

(Lemma 16). The entry w†
p(fp(p)) (data that p forwards to its successor in the ring) is equal to

ωp (Action C1 corrects it otherwise).

In the ring, process p reads the contents of process q that is a value s. This corresponds in

the tree that p stores five s’s in ω‡
p (Proposition 1). Propositions 1 and 2 deal with fault-free

cases. We show that a fault at p that occurred during this communication may affect it at most

twice: Only data s and another data that p took before s may be lost, but no data before that

or after s is lost and the state of p in the virtual ring, ωp, is corrupted at most once by the

fault in the virtual ring (Lemma 17). We can then conclude that a fault may cause a loss of at

most three pieces of data per virtual link (Lemma 18). Lemmas 16, 17, and 18 cover all possible

timings of faults for a virtual link. Then, we will show the data loss is acceptable in the causal

simulation of ring protocols (Theorem 5).

Proposition 1 If process q changes its content ωq to s by Action(ωq,maj(ω‡
p)), and p is the

successor of q in the virtual ring, then p stores at least five s’s in ω‡
p.

Proof. Whenever the contents of q (stored in ωq and w†
q(fq(q))) is changed, the counter cq

is reset to 4. Whenever the current value of w†
q(fq(q)) is read by process fq(q), the counter is

gradually decremented to 0. Each intermediate process between q and p relays s every time it

reads s. Thus the current content of q is relayed in the tree at least five times and p stores the

content of p at least five times in ω‡
p. (It may be relayed and stored more than five times if the

64CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

������� � �

� 	
���
 	 ����������� ����
���
����������

� � �������� � �

� 	
���
 	 ����������� ����
���
����������

� � � ������� � � �	�	��� � �

 � ��
�� � �����������
��	��
������������
! ���
�� ��#"��$�

� � " %������� � � �	�	��� � �

 � ��
�� � �����������
��	��
������������
! ���
�� ��#"��$�

� � " %

(a) (b)

Figure 5.8: Faults at intermediate processes on the virtual link (q, p)

content of ωq remains unchanged.) 2

Proposition 2 If process p stores five s’s in ω‡
p, then p delivers s.

Proof. Let c′p be the content of cp when the first s is stored in ω‡
p. Majority is applied after

(c′p + 1)th s is stored in ω‡
p. If c′p ≤ 1, then the next majority will be s since (5 − (c′p + 1)) s’s

are stored in ω‡
p. Else (c′p > 1), the current majority is s. 2

When the majority is s, p delivers s. This corresponds to a situation in the ring where p

reads its predecessor q’s state s. Then p executes Action(ωp, s) and updates ωp with the resulting

content. This corresponds to a situation in the ring where p executes local computation and

writes to its local variables.

Lemma 15 Starting from an arbitrary initial configuration, RET reaches in O(∆) rounds

(where ∆ is the maximum degree of a node in the tree) a configuration such that Propositions 1

and 2 hold for every process in every configuration thereafter.

Proof. Let p and q be two processes such that p is the successor of q. After process q has reset

cq to 4 at least once, ωq changes when the process fq(q) has read the content of ωq five times.

Since p has reset cp to 4, p applies majority once during the acquisition of s.

Propositions 1 and 2 hold for every process. In a finite time, each process executes C1 or

A1 of Protocol 5.3.1. By using link alternator, a process communicates with one neighbor every

O(∆) rounds. Thus, O(∆) rounds are necessary. 2

Lemma 16 If neither process q nor p is faulty, and ωq = b, then p delivers the value b if no

fault occurs at the intermediate processes, otherwise the value b may be lost, but no fictitious

data is delivered at p.

Proof. The distance between q and p must be at least two, but no more than three. Let u be

the next process after q on the tree towards p: fq(q) = u. (Figure 5.8.)

Let a be the majority at p before the first b is stored at p. Let c be the next content of ωq

after b.

5.3. CAUSAL SIMULATION FRAMEWORK 65

If none of the intermediate processes between q and p in the tree is faulty and ωq = b, then p

stores five b’s in ω‡
p (Proposition 1). Majority is applied at process p when cp becomes 0. Data

b is either the current, or the next majority (Proposition 2).

If u is faulty, and the fault at u affected w†
u(fu(q)) such that w†

u(fu(q)) 6= w†
q(u), then data

b that relayed to p from q through u is corrupted.

So, we have two cases:

Case A) The distance between q and p is two (Figure 5.8(a)).

By the communication synchronizer, after p stores a from u, u copies the correct data from

q and corrects the entry in the content table. So, next time u relays to p correct data. So,

instead of the sequence b b b b b, process p stores four b’s and one faulty data f . We have

then five cases, depending on the position of the faulty data.

1. Process p stores f b b b b in ω‡
p (Figure 5.9(b)). If cp = 2 when f is stored, then the

next majority will be ⊥, followed by c, and b is lost. Otherwise data b is delivered at

p.

2. Process p stores b f b b b in ω‡
p (Figure 5.9(c)). Same as Case 1.

3. Process p stores b b f b b in ω‡
p (Figure 5.9(d)). Same as Case 1.

4. Process p stores b b b f b in ω‡
p (Figure 5.9(e)). If cp = 1 when the first b is stored, then

the next majority will be ⊥, followed by c. Thus b is lost. Otherwise b is delivered at

p.

5. Process p stores b b b b f in ω‡
p (Figure 5.9(f)). If cp = 1 when the first b is stored then

the next majority will be ⊥, followed by c. Thus b is lost. Otherwise b is delivered at

p.

Case B) The distance between q and p is three (Figure 5.8(b)).

Let u, v be the intermediate processes in the tree topology, and assume that either they

are both faulty. After p stores a corrupted data from v, v copies another corrupted data

from u that p also stores the next time p and v communicates. Then, u copies the correct

data from q, so next time u relays to v the correct data.

So, instead of the sequence b b b b b, process p stores three b’s and two consecutive faulty

data f1 and f2. Let c c c c c be the sequence to follow the sequence of b. We have five

cases, depending on the position of the faulty data.

66CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

� � � � �
� � � � � ��������	��
 ��

� � � � �

� � � � � �
� � � � �

� � � � � ��������	��
 ��

��� � � �

� � � � ������	��

� ���
��� � � �

� � � � �
��� � � �

� � � � ������	��

� ���
� ��� � �

� � � � ������	��

� ���
� ��� � �

� � � � �
� ��� � �

� � � � ������	��

� ���

(a) (b) (c)
� � ��� �

� � � � ������	��

� ���
� � ��� �

� � � � �
� � ��� �

� � � � ������	��

� ���
� � � ��� � � � � �

� � � � � � � � � ������
	���
 ���
� � � ��� � � � � �

� � � � � � � � � �
� � � ��� � � � � �

� � � � � � � � � ������
	���
 ���
� � � � ��� � � � �

� � � � � � � � � ������
	���
 ���
� � � � ��� � � � �

� � � � � � � � � �
� � � � ��� � � � �

� � � � � � � � � ������
	���
 ���

(d) (e) (f)
��������� � �

� � � �	
����
���� ���
��������� � �

� � � �	
����
���� ���
� ������� � �

� � � ��	��

����� ���
� ������� � �

� � � ��	��

����� ���
� � ���������

� � � �	
����
���� ���
� � ���������

� � � �	
����
���� ���

(g) (h) (i)
� � � ��������� � � � �

	 	 	 � � � � � �
�	
������� ���
� � � ��������� � � � �

	 	 	 � � � � � �
�	
������� ���
� � � � ��������� � � �

	 	 	 � � � � � �
�	
������� ���
� � � � ��������� � � �

	 	 	 � � � � � �
�	
������� ���

(j) (k)

Figure 5.9: Majority values at process p

1. Process p stores f1 f2 b b b in ω‡
p (Figure 5.9(g)). If cp ∈ {2, 3} when f1 is stored, then

the next majority will be ⊥, followed by c. Thus b is lost. Otherwise b is delivered at

p.

2. Process p stores b f1 f2 b b in ω‡
p (Figure 5.9(h)). Same as Case 1.

3. Process p stores b b f1 f2 b in ω‡
p (Figure 5.9(i)). Same as Case 1.

4. Process p stores b b b f1 f2 in ω‡
p (Figure 5.9(j)). If cp ∈ {0, 1} when the first b is

stored, then the next majority (after b’s) will be ⊥, followed by c. Thus b is lost.

Otherwise b is delivered at p.

5. Process p stores b b b b f1 f2 c c c c (Figure 5.9(k)). If cp ∈ {1, 2} when the first b

is stored, then the next majority (after b’s) will be ⊥, followed by c. Thus b is lost.

Otherwise b is delivered at p.

Consequently, if a fault occurred at some intermediate process(es) when p was about to

collect five b’s, in the worst case, instead of five b’s, p will store three b’s and two faulty data.

Nevertheless, the corrupted data is not enough for a majority, thus data b can be either delivered

at p or lost. 2

Lemma 17 If ωq changes from a to b and the fault at p occurred after p stored five a’s then

data a and b may be lost, but no data relayed before a or after b is lost. The contents of p, ωp,

is corrupted at most once by the fault in the ring and no fictitious data is delivered at p instead

of b.

5.3. CAUSAL SIMULATION FRAMEWORK 67

�

� � �

� � � �
�

�

�

� � �

� � � �
�

�

�

� � �

�
� � �

�

�� � �
�

	
�

� � �

�
� � �

�

�� � �
�

	
�

� � �

�
��� �
	� �

� � �

�
��� �
	�

(a) (b) (c)

� � �

�
�

��� �
	

�� � � 	

�

� � �

�
�

��� �
	

�� � � 	

�
�

� � �

� ���
�
	

�
�

� � �

� ���
�
	

�

� � �

�
�

��� �
	

�� � � 	

� � �

�
�

��� �
	

�� � � 	

(d) (e) (f)

Figure 5.10: Fault at p in the virtual ring (Data a was delivered before the fault.)

Proof. Let nb be the number of b’s still left to be stored by p after the fault at p (1 ≤ nb ≤ 5)

and c′p be the value of cp before the fault.

After p stored five a’s, p would receive at most two more b’s before p delivers a. So, we have

three cases depending on the value of c′p.

1. c′p = 0. If there was no fault, p would have computed majority after p stored one b and

ω‡
p = {a, a, a, a, b} (nb = 5) or {a, a, a, b, b} (nb = 4). Thus, a was not delivered at p before

the fault.

2. c′p = 1. If there was no fault, p would have computed majority after p stored two b’s and

ω‡
p = {a, a, a, b, b} (nb = 5). Thus, a was not delivered at p before the fault.

3. c′p > 1 The majority has already computed on ω‡
p that contains at least three a’s and a

was delivered at p.

We consider two cases: Case A) when a was delivered at p before the fault and Case B)

when a was not delivered at p before the fault.

Case A) Data a is delivered at p before the fault

Let the fault changes ωp from s to t. We have five cases, depending on the value of cp after

the fault.

Case cp = 0. A majority function is applied to w‡
p after one b is stored in ω‡

p.

Let w = maj({b, w1, . . . , w4}, 5). We have three cases, depending on the value of w:

68CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

1. w = ⊥. Thus ωp remains unchanged (value t), and r stores five t’s from p. By

Proposition 2, t is delivered at r.

If nb < 4 then p will store at most two other b’s (since one b was already stored),

thus too few b’s to be able to be the next majority at p. Thus b is lost. This

corresponds in the virtual ring as a fault at process p that changed ωp from s to

t, and caused b to be lost (Figure 5.10(a)).

Else (nb ≥ 4) then the next majority at p is b. Thus b is delivered at p, ωp is

changed to x = Action(t, b), and r stores five x’s. By Proposition 2, x is delivered

at r. This corresponds in the virtual ring as a fault at process p that changed ωp

from s to t, but p reads b (Figure 5.10(b)).

2. w 6= ⊥∧w = b. Then ωp is changed to x = Action(t, b), and r stores five x’s. By

Proposition 2, x is delivered at r.

If nb < 4 then p will store too few b to be able to be the next majority at p. Thus

b is lost. This corresponds in the virtual ring as a fault at process p changed ωp

from s to x, and caused b to be lost (Figure 5.10(c)).

Else (nb ≥ 4) then the next majority at p is b. Thus b is delivered at p, ωp is

changed to y = Action(x, b), and r stores five m’s. By Proposition 2, y is delivered

at r. This corresponds in the virtual ring as a fault at process p changed ωp from

s to x, but p reads b (Figure 5.10(d)).

3. w 6= ⊥ ∧ w 6= b. Then ωp is changed to z = Action(t, w), and r stores five z’s.

By Proposition 2, z is delivered at r.

If nb < 4 then p will store too few b to be able to be the next majority at p. Thus

b is lost. This corresponds in the virtual ring as a fault at process p changed ωp

from s to z, and caused b to be lost (Figure 5.10(e)).

Else (nb ≥ 4) then the next majority at p is b. Thus b is delivered at p, ωp

is changed to m = Action(z, b), and r stores five m’s. By Proposition 2, m is

delivered at r. This corresponds in the virtual ring as a fault at process p that

changed ωp from s to z, but p reads b (Figure 5.10(f)).

Case cp = 1. Thus r reads one t from p.

If nb = 1 then p stores one b and after that p stores another data q relays after b. Let

c be that data and w = maj({c, b, w1, w2, w3}, 5). Based on w, we have three cases.

1. w = ⊥. Thus ωp remains unchanged (value t), and r stores five t’s. By Propo-

sition 2, t is delivered at r. The next majority will be c and ωp is changed to

Action(t, c). This corresponds in the virtual ring as a fault at process p that

changed ωp from s to t and caused b to be lost (Figure 5.10(a)).

5.3. CAUSAL SIMULATION FRAMEWORK 69

2. w 6= ⊥∧w = b. Then ωp is changed to x = Action(t, b), and r stores five x’s. By

Proposition 2, x is delivered at r. The next majority will be c. This corresponds

in the virtual ring as a fault at process p changed ωp from s to x and caused b

to be lost (Figure 5.10(c)).

3. w 6= ⊥∧w 6= b. Then ωp is changed to z = Action(t, w), and r stores five z’s. By

Proposition 2, z is delivered at r. The next majority will be c. This corresponds

in the virtual ring as a fault at process p that changed ωp from s to z and caused

b to be lost (Figure 5.10(e)).

If nb > 1, let w = maj({b, b, w1, w2, w3}, 5). Based on w, we have three cases.

1. w = ⊥. Thus ωp remains unchanged (value t), and r stores five t’s. By Proposi-

tion 2, t is delivered at r.

If 1 < nb < 5 then p will store at most two more b’s from q (already two b’s have

been stored) thus too few b’s to be able to be the next majority at p. Thus b is

lost. This corresponds in the virtual ring as a fault at process p that changed ωp

from s to t, and caused b to be lost (Figure 5.10(a)).

Else (nb = 5) then the next majority at p is b. Thus b is delivered at p, ωp is

changed to x = Action(t, b), and r stores five x’s. By Proposition 2, x is delivered

at r. Since one t is not enough to be majority at r, this corresponds in the virtual

ring as a fault at process p changed ωp from s to x, and caused b to be lost (Figure

5.10(c)).

2. w 6= ⊥ ∧ w 6= b. Then ωp is changed to z = Action(t, w), and r stores five z’s.

By Proposition 2, z is delivered at r.

If 1 < nb < 5 then p will store too few b to be able to be the next majority at p.

Thus b is lost. This corresponds in the virtual ring as a fault at process p that

changed ωp from s to z, and caused b to be lost (Figure 5.10(e)).

Else (nb = 5) then the next majority at p is b. Thus b is delivered at p, ωp

is changed to m = Action(z, b), and r stores five m’s. By Proposition 2, m is

delivered at r. This corresponds in the virtual ring as a fault at process p that

changed ωp from s to z, but p reads b (Figure 5.10(f)).

3. w 6= ⊥∧w = b. Then ωp is changed to x = Action(t, b), and r stores five x’s. By

Proposition 2, x is delivered at r.

If 1 < nb < 5 then p will store too few b to be able to be the next majority at p.

Thus b is lost. This corresponds in the virtual ring as a fault at process p that

changed ωp from s to x, and caused b to be lost (Figure 5.10(c)).

Else (nb = 5) then the next majority at p is b. Thus b is delivered at p, ωp is

70CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

changed to y = Action(x, b), and r stores five y’s. By Proposition 2, y is delivered

at r. This corresponds in the virtual ring as a fault at process p that changed ωp

from s to x, but p reads b (Figure 5.10(d)).

Case cp = 2. Thus r stores two t’s from p.

If nb < 3 then p stores at least one b and after that p stores another data q relays

after b. Let c be that data and w = maj({c, c, b, w1, w2}, 5). Based on w we have

three cases.

1. w = ⊥. Thus ωp remains unchanged (value t), and r stores five t’s. By Propo-

sition 2, t is delivered at r. The next majority will be c and ωp is changed to

Action(t, c). This corresponds in the virtual ring as a fault at process p that

changed ωp from s to t and caused b to be lost (Figure 5.10(a)).

2. w 6= ⊥∧w = b. Then ωp is changed to x = Action(t, b), and r stores five x’s. By

Proposition 2, x is delivered at r. The next majority will be c. This corresponds

in the virtual ring as a fault at process p that changed ωp from s to x and caused

b to be lost (Figure 5.10(c)).

3. w 6= ⊥∧w 6= b. Then ωp is changed to z = Action(t, w), and r stores five z’s. By

Proposition 2, z is delivered at r. The next majority will be c. This corresponds

in the virtual ring as a fault at process p that changed ωp from s to z and caused

b to be lost (Figure 5.10(e)).

Else (nb ≥ 3) then the next majority at p is b. Thus b is delivered at p, ωp is changed

to x = Action(t, b), and r stores five x’s. By Proposition 2, x is delivered at r. Since

two t’s is not enough to make majority at r, this corresponds in the virtual ring as

a fault at process p that changed ωp from s to x, and caused b to be lost (Figure

5.10(c)).

Case cp = 3. Thus r stores three t’s from p. Then follow the same as Case cp = 2.

Case cp = 4. Thus r stores four t’s from r. Then follow the same as Case cp = 2.

Case B) Data a is not delivered at p before the fault.

Thus, nb ≥ 4. Let the fault changes ωp from s′ to t′. We have five cases, depending on the

value of cp after the fault.

Case cp = 0. A majority function is applied to w‡
p after one b is stored in ω‡

p.

Let w = maj({b, w1, . . . , w4}, 5). We have three cases, depending on the value of w:

1. w = ⊥. Thus ωp remains unchanged (value t′), and r stores five t′ from p. By

Proposition 2, data t′ is delivered at r. Since nb ≥ 4, the next majority at p is

5.3. CAUSAL SIMULATION FRAMEWORK 71

� � �

���

�

�	��
��
��
�

� � �

���

�

�	��
��
��
�

� � �

���

�

�	��
��
��

� �
�� � �
 �

�

� � �

���

�

�	��
��
��

� �
�� � �
 �

�

� � �

���

�

�	��

� ���
�

� � �

���

�

�	��

� ���
�

(a) (b) (c)

� � �

���

�

�	��

� ���

���
����	� � �

�

� � �

���

�

�	��

� ���

���
����	� � �

�

� � �

���

�

�	��
��
��
�

� � �

���

�

�	��
��
��
�

� � �

���

�

�	��
��
��

���
����	�
 �

�

� � �

���

�

�	��
��
��

���
����	�
 �

�

(d) (e) (f)
� � �

���

�

�	��
��
��
�

� � �

���

�

�	��
��
��
�

� � �

���

�

�	��
��
��

� �� �	���
 �

�

� � �

���

�

�	��
��
��

� �� �	���
 �

�

(g) (h)

Figure 5.11: Fault at p in the virtual ring (Data a was not delivered before the fault.)

72CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

b. Thus b is delivered at p, ωp is changed to x′ = Action(t′, b), and r stores five

x′. This corresponds in the virtual ring as a fault at process p changed ωp from

s′ to t′, and caused a to be lost but p reads b. (Figure 5.11(b)).

2. w 6= ⊥ ∧ w = a. Then ωp is changed to x′′ = Action(t′, a), and r stores five x′′.

By Proposition 2, data x′′ is delivered at r. Since nb ≥ 4, the next majority at p

is b. Thus b is delivered at p, ωp is changed to y′′ = Action(x′′, b), and r stores

five y′′. This corresponds in the virtual ring as a fault at process p changed ωp

from s′ to x′′, and caused a to be lost but p reads b (Figure 5.11(d)).

3. w 6= ⊥∧w = b. Then ωp is changed to x′ = Action(t′, b), and r stores five x′. By

Proposition 2, data x′ is delivered at r. Since nb ≥ 4, the next majority at p is

b. Thus b is delivered at p, ωp is changed to y′ = Action(x′, b), and r stores five

y′. This corresponds in the virtual ring as a fault at process p changed ωp from

s′ to x′, and caused a to be lost but p reads b (Figure 5.11(f)).

4. w 6= ⊥∧w 6= a∧w 6= b. Then ωp is changed to z′ = Action(t′, w), and r stores five

z′. By Proposition 2, data z′ is delivered at r. Since nb ≥ 4, the next majority at

p is b. Thus b is delivered at p, ωp is changed to m′ = Action(z′, b), and r stores

five m′. This corresponds in the virtual ring as a fault at process p changed ωp

from s′ to z′, and caused a to be lost but p reads b (Figure 5.11(h)).

Case cp = 1. Thus r reads one t from p.

Since nb ≥ 4, let w = maj({b, b, w1, w2, w3}, 5). Depending on w, we have three cases.

1. w = ⊥. Thus ωp remains unchanged (value t′), and r stores five t′. By Proposition

2, data t′ is delivered at r. Next two cases can occur:

(i) If 4 ≤ nb < 5 then follow the same as Case A. This corresponds in the virtual

ring as a fault at process p changed ωp from s′ to t′, and caused data a and b to

be lost (Figure 5.11(a)).

(ii) If nb = 5 then the next majority at p is b. Thus b is delivered at p, ωp is

changed to x′ = Action(t′, b), and r stores five x′. This corresponds in the virtual

ring as a fault at process p changed ωp from s′ to x′, and caused a to be lost but

p reads a (Figure 5.11(b)).

2. w 6= ⊥ ∧ w = a. Then ωp is changed to x′′ = Action(t′, a), and r stores five x′′.

By Proposition 2, data x′′ is delivered at r. Next two cases can occur:

(i) If 4 ≤ nb < 5 then follow the same as Case A. This corresponds in the virtual

ring as a fault at process p changed ωp from s′ to x′′, and caused a and b to be

lost (Figure 5.11(c)).

(ii) If nb = 5 then the next majority at p is b. Thus b is delivered at p, ωp is

5.3. CAUSAL SIMULATION FRAMEWORK 73

changed to y′′ = Action(x′′, b), and r stores five y′′. This corresponds in the

virtual ring as a fault at process p changed ωp from s′ to x′′, and caused a to be

lost but p reads b (Figure 5.11(d)).

3. w 6= ⊥ ∧ w = b. Then ωp is changed to x′ = Action(t′, b), and r stores five x′.

By Proposition 2, data x′ is delivered at r. Next two cases can occur:

(i) If 4 ≤ nb < 5 then follow the same as Case A. This corresponds in the virtual

ring as a fault at process p changed ωp from s′ to x′, and caused a and b to be

lost (Figure 5.11(e)).

(ii) If nb = 5 then the next majority at p is b. Thus b is delivered at p, ωp is

changed to y′ = Action(x′, b), and r stores five y′. This corresponds in the virtual

ring as a fault at process p changed ωp from s′ to x′, and caused a to be lost but

p reads b (Figure 5.11(f)).

4. w 6= ⊥ ∧ w 6= a ∧ w 6= b. Then ωp is changed to z′ = Action(t′, w), and r stores

five z′. By Proposition 2, data z′ is delivered at r. Next two cases can occur:

(i) If 4 ≤ nb < 5 then follow the same as Case A. This corresponds in the virtual

ring as a fault at process p changed ωp from s′ to z′, and caused a and b to be

lost (Figure 5.11(g)).

(ii) If nb = 5 then the next majority at p is b. Thus b is delivered at p, ωp is

changed to m′ = Action(z′, b), and r stores five m′. This corresponds in the

virtual ring as a fault at process p changed ωp from s′ to z′, and caused a to be

lost but p reads b (Figure 5.11(h)).

Case cp = 2. Thus r stores two t’s from p. Since nb ≥ 4, the next majority at p is b.

Thus b is delivered at p, ωp is changed to x′ = Action(t′, b), and r stores five x′. This

corresponds in the virtual ring as a fault at process p changed ωp from s′ to x′, and

caused a and b to be lost (Figure 5.11(e)).

Case cp = 3. Thus r stores three t’s from p. Then follow the same as Case cp = 2.

Case cp = 4. Thus r stores four t’s from r. Then follow the same as Case cp = 2.

2

Lemma 18 If q changes ωq from b to c after q changes ωq from a to b and the fault at p and

intermediate processes occurred after p stored five a’s then data a, b, and c may be lost, but no

data relayed before a or after c is lost. The contents of p, ωp, is corrupted at most once by the

fault in the ring and no fictitious data is delivered at p.

Proof. From Lemma 16 the data relayed when the fault corrupts the intermediate processes

can be lost. During the acquisition of b’s at p, data b or c is relayed and can be corrupted. From

74CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

Lemma 17 data a and b can be lost by the fault at p. Thus, at most three messages are lost by

the fault at p and intermediate processes. 2

Theorem 5 Protocol RET provides a causal simulation of a ring protocol executed in a tree,

and also preserves the self-stabilization and the fault-containment of the original ring protocol.

Proof. Let A be a protocol on a ring and ωp be the local state of some process p in A. The

set of local variables at p in RET consists of ωp, cp, w†
p, and w‡

p. The condition of Definition 10

is satisfied: From Lemma 15 the system eventually reaches a configuration σ such that after σ

Proposition 1 and 2 holds. In A, if a process p reads the state a of its predecessor q, executes local

computation and writes its local variables (updates ωp), then in RET the following sequence of

execution steps occurs: a is delivered at p and p executes Action(ωp, a) and writes the results

to ωp. From Proposition 1 and 2, this always holds after σ if no fault occurs.

From Lemma 16, 17, and 18, when some fault corrupts p and intermediate processes on the

virtual link towards p, at most three data relayed to p is lost and at most one data for each

neighbor of p is lost. A lost data corresponds to a state of some process in the virtual ring that

was not read by its successor. Thus, we conclude that the condition of Definition 11 is satisfied.

2

5.3.3 Performance Evaluation

The execution of ring protocols in the virtual ring is slowed down because the dilation of vertex

bijective ring is three and the communication synchronization mechanism for RET forces a

process to communicate with its neighbors in a specific order. The slowdown of protocol Pr for

a simulated protocol Pv is the maximum number of rounds in Pr that are necessary for one read

action of Pv. Since the dilation is constant, we show the slowdown of RET is proportional to

the maximum degree of some process in the tree.

Theorem 6 Slowdown of RET for a ring protocol executed in a tree of maximum degree ∆ is

8∆.

Proof. Let p and q be neighboring processes in the tree such that fp(q) = p. After p commu-

nicates with q, the synchronization mechanism forces p to communicate with other neighbors

than q before communicating with q again. In [45] it is proved that starting from any arbitrary

initial configuration, after ∆d rounds where d is the diameter of the graph, it is guaranteed that

for any process p, p can communicate with its neighbor q k times in k∆ rounds.

One virtual link consists of at most three links of the tree. Thus, at most 3k∆ rounds are

necessary to relay k pieces of data between endpoint processes. For one piece of data to be

5.4. EXAMPLE OF 1-FAULT-CONTAINING LEADER ELECTION 75

� � � �� �����

�	�
��

�������

�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�
������	� ���

� � � �� �����

�	�
��

�������

�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�
������	� ���

Figure 5.12: The delay caused by RET

delivered at an endpoint process, five pieces of identical data should be relayed and the data

relayed is pipelined (Figure 5.12). Thus, for one data to be relayed, (5+3)∆ rounds is necessary

and the slowdown of RET is 8∆. 2

5.4 Example of 1-fault-containing Leader Election

We show how protocol RET can be used to design a 1-fault-containing leader election protocol

in arbitrary trees from the 1-fault-containing leader election protocol of Ghosh and Gupta [22]

on bidirectional rings.

Let LE be the Ghosh and Gupta’s leader election protocol that selects the node with the

maximum ID as the leader. We present a causal simulation of LE on arbitrary trees that is

1-fault-containing and is obtained by combining RET and LE.

We denote the predecessor of p with prep.

In LE each process p has a unique ID idp, and other variables as follows:

1. maxp is the maximum ID known by p.

2. distp is the distance from the leader on the counter-clockwise ring.

3. qp ∈ {0, 1} indicates whether p asked the predecessor prep (qp = 1) if prep has to change

maxprep or disdistp .

4. ap ∈ {0, 1,⊥} indicates whether p answered the question from the successor; ap = 1 (respec-

tively, 0) if it has (respectively, does not have) to change maxp or distp; if it has not answered

then ap = ⊥.

5. cp stores a copy of aprep

Let q be the process with the maximum ID among all processes in V , and let K be the value

of idq.

In a legitimate configuration of LE, the following conditions hold:

76CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

�

��

�� �

�

��

�� �

(a) A rooted tree
�

�

�

�

�

�

�

��

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�� �

�

��

�� �

�

��

�� �

�

�

�

�

�

�

�

��

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�� �

�

��

�� �

�

��

�� �

(b) Forward ring (c) Backward ring

Figure 5.13: Embedding forward and backward rings

(i) For all process p ∈ V , maxp = K, and

(ii) distq = 0 and for any other process p, distp = distprep + 1.

LE is designed for bidirectional rings and RET for unidirectional rings. RET uses the

routing function from Section 5.3 on what we call the forward ring (counter-clockwise preorder-

postorder traversal). The reverse of the routing function provides communication on what we

call the backward ring (clockwise preorder-postorder traversal).

Each process p has to evaluate the guards of LE and execute the corresponding actions with

the value that p has just delivered in the virtual ring. The guards of LE contains the state of

p’s predecessor and successor. However, when process p executes Action() with RET+, p has

delivered the data just from its predecessor.

To evaluate and execute the guarded actions of LE with the latest data that p has just

delivered from its predecessor and successor, we divide LE into two distinct set of guarded

commands, LE+ and LE−. The guards and actions in LE+ at process p contains just p’s local

variables and its predecessor’s variables while the guards and actions in LE− contains just p’s

local variables and its successor’s variables. We obtain LE by the union of LE+ and LE−.

The guarded commands in LE+ are executed when RET+ executes Action() and the guarded

commands in LE− are executed when RET− executes Action().

While RET+ and RET− use different counters, cache tables, and contents tables, the con-

tents of both rings are common: at process p, ω+
p = ω−

p = (idp,maxp, distp, qp, ap, cp). Whenever

the distributed daemon selects process p, RET+ and RET− are executed consecutively. When

RET+ (respectively, RET−) executes Action(), LE+ (respectively, LE−) is executed. We call

5.4. EXAMPLE OF 1-FAULT-CONTAINING LEADER ELECTION 77

�

�

�

�

�

�

� ���
	��

��� �
	��
��� ��� �
	��

� ����	��

��� ��	��
��� ��� ��	��

� ����	�

!��� ��	��
��� ��� ��	#"

� ��$
	�%

��� $&	��
��� ��� $
	�

� ��'&	#"

!��� '
	��
��� ��� '&	�% � �)(*	��

��� (*	��
��� ��� (�+

�

�

�

�

�

�

�

�

�

�

�

�

� ���
	��

��� �
	��
��� ��� �
	��

� ����	��

��� ��	��
��� ��� ��	��

� ����	�

!��� ��	��
��� ��� ��	#"

� ��$
	�%

��� $&	��
��� ��� $
	�

� ��'&	#"

!��� '
	��
��� ��� '&	�% � �)(*	��

��� (*	��
��� ��� (�+

Figure 5.14: Leader election in the bidirectional ring

this implementation as BRET (Bidirectional RET).

In BRET, a selected process p may execute at most two actions of LE : one is executed by

RET+ and the other is executed by RET−. This corresponds to the case that p is selected by

distributed daemon successively in the original execution of LE on a bidirectional ring.

In other cases, p may execute the actions of LE+ several times without executing LE−.

Since we adopt the model that allows an enabled process to execute one of the enabled actions,

this corresponds to the case that p does not select the enabled guard of LE−.

The following lemma holds immediately.

Lemma 19 For any execution Er of BRET, there is an execution Ev of LE such that Er is

obtained by a causal shift of Ev.

Thus, BRET provides a causal simulation of LE.

For example, consider the case where BRET is executed on the tree in Figure 5.13(a). The

forward and the backward ring of the tree are shown in Figure 5.13(b) and 5.13(c). The forward

ring enables each process to read its predecessor’s state and the backward ring enables each

process to read its successor’s state. The predecessor for process a is c (Figure 5.13(b)) and the

successor for a is d (Figure 5.13(e)).

Figure 5.14 shows a legitimate configuration of the leader election when ida = 3, idb = 6,

idc = 2, idd = 5, ide = 1, and idf = 4. Let process c be corrupted by a fault and after the fault,

the contents of c, ωc is idc = 2, maxc = 5, distc = 0, qc = 0, ac = ⊥, cc = 0 and we denote this

by (2, 5, 0, 0,⊥, 0).

Clearly, not only the state of process c in the virtual ring but also the data in the contents

78CHAPTER 5. RING EMBEDDING PRESERVING FAULT-CONTAINMENT PROPERTY

table at c can be corrupted. Because c is on the virtual link (b, f) of the forward ring and on the

virtual link (f, b) of the backward ring, process b and f can read at most one corrupted data.

This is eliminated by the majority computation at each process.

The corruption at c makes c to set qc = 1 and a to set qa = 1. No other processes change

their question flags. This is because each process checks the state of the predecessor first. In

this case, maxb 6= maxc at process c and maxc 6= maxa at process a.

Let us concentrate on the forward ring. If the fault changes c+
c = 3, then c executes BRET

after it reads the content at f once. When the majority of the cache table may be different

from the content at f , c may change its content with incorrect data: e.g. (2, 5, 0, 0,⊥, 1). The

successor of c, a reads the content (2, 5, 0, 0,⊥, 0) just once and the state cannot be delivered

at a. Thus, (2, 5, 0, 0,⊥, 0) can be ignored in the causal simulation and for a, the fault seems

to change the contents at c to (2, 5, 0, 0,⊥, 1). After that, c corrects correct data from f and

executes BRET and executes recovery actions.

5.5 Concluding Remarks

In this chapter, we proposed protocol RET that preserves the fault-containment property of a

ring protocol executed on an arbitrary rooted tree. Our protocol ensures that along any link of

a virtual ring embedded on a tree, there is no data corruption, neither data creation. Because

the delay of each virtual link differs from others, RET cannot trace the global configurations of

the original execution. We introduced causal simulation that preserves the read/write causality

of the original execution. Causal simulation is strong enough to execute the same task as the

original protocol for any reactive and non-reactive tasks as long as the safety property of the

task is defined by the read/write causality. Because the safety properties of many reactive and

non-reactive tasks are defined by the read/write causality, the proposed protocol RET is useful

in extending the application of existing fault-containing ring protocols.

Though protocol RET is designed in the locally shared memory model, it can be extended

to ring protocols written in message-passing model by considering a time-stamp to the data

sent along the virtual link embedded on a tree. The time-stamp will takes integer values in the

range 1 . . . 5. Also, the proposed communication mechanism can be used to embed virtual links

of other topology embeddings.

Chapter 6

Conclusion

6.1 Summary of the Results

In this dissertation, we focused on hierarchical design of fault-containing self-stabilizing proto-

cols. Hierarchical structure of protocols facilitates the design of new protocols and extends the

application of existing protocols. Fault-containing protocols have the power of adaptive self-

stabilization, i.e. they provide self-stabilization for large scale faults and fault-containment for

small scale faults. This adaptability is useful in practice because in real networks, catastrophic

faults rarely occur while small scale faults are more likely to occur frequently.

In Chapter 3 and Chapter 4, we proposed hierarchical composition techniques for fault-

containing protocols. The goal of the composition techniques is to preserve the fault-containment

property of source protocols. Our strategy RWFC is to control the execution of source protocols

and we utilized the fault-containment property of source protocols to control their execution. In

Chapter 3, we utilized the temporal containment property of source protocols and, as a compo-

nent of the composition protocol RWFC-LNS, we designed local neighborhood synchronizer LNS

that synchronizes only small number of processes around faulty processes for a short period of

time after a fault. In Chapter 4, we utilized the spatial containment property of source protocols

and, as a component of the composition protocol RWFC-IcD, we designed inconsistency detector

IcD that checks the inconsistency of source protocols. Though the component protocols (LNS

and IcD) impose some overhead on the composite protocol, the overhead is bounded by the

containment property of source protocols. Hence, the composite protocol preserves the spatial

and/or temporal containment property of source protocols at the cost of small overhead. The

composition framework for fault-containing protocols is important both theoretically and practi-

cally. We can design new fault-containing protocols easily at the top of existing fault-containing

protocols with the proposed composition framework. This is the first step in facilitating the

79

80 CHAPTER 6. CONCLUSION

design of new fault-tolerant distributed protocols.

In Chapter 5, we introduced ring embedding on an arbitrary rooted tree and proposed causal

simulation technique for fault-containing ring protocols on the embedded ring. The proposed

protocol RET embeds virtual links on the real topology and in the embedded ring there is

neither data corruption nor data creation. Because the delay of each virtual link is different

from others, RET preserves read/write causality of original executions that is strong enough

to guarantee that the simulation executes the same task as the original execution. We call the

execution of the source protocol on the embedded ring causal simulation. The slowdown of the

simulation depends on the dilation of the embedding and our ring embedding has the dilation

of three. Hence, the simulation protocol simulates fault-containing ring protocols on a rooted

tree with a small slowdown. The proposed topology embedding demonstrates the possibility

of uniform framework based on topology embedding that extends the application of existing

fault-containing protocols.

6.2 Future Directions

Regarding the proposed methods for hierarchical design of fault-containing protocols, there exist

many issues of both theoretical interest and practical interest.

In Chapter 3 and Chapter 4, we discussed hierarchical composition of self-stabilizing proto-

cols that preserves the fault-containment property. The point is how to guarantee the recovery

of the lower protocol when the upper protocol starts its execution. In the proposed compo-

sition technique, we utilize the containment property of fault-containing protocols to control

the execution of source protocols, i.e. temporal containment property and spatial containment

property. Fault-containing protocols form one subclass of adaptive self-stabilizing protocols.

One extension of our work is to propose hierarchical composition technique for other adap-

tive self-stabilizing protocols preserving their own adaptability, e.g. time-adaptive stabilization,

superstabilization, local stabilization, and time-to-fault adaptive stabilization. To develop hier-

archical composition for adaptive self-stabilizing protocols, the adaptability of source protocols

can be used to guarantee the recovery of the lower protocol.

Another interesting issue in composing adaptive self-stabilizing protocols is to investigate

the trade-off between the adaptability preserved in the composite protocol and the cost (e.g.

time and space) paid to preserve the adaptability of source protocols. The proposed composition

techniques guarantee that the lower protocol has recovered when the upper protocol starts its

execution. However, we can relax the condition by allowing the upper protocol to be executed

after some safety property holds in the lower protocol. This relaxed condition can make the

6.2. FUTURE DIRECTIONS 81

composite protocol satisfy some safety property quickly. However, the critical issue is how to

bound the spread of the effect of faults.

In Chapter 5, we introduced one-to-one ring embedding on an arbitrary rooted tree and

proposed a simulation technique that preserves the fault-containment property simulated on the

embedded ring. We proposed a communication mechanism that realizes virtual links on the

real topology. Though this communication mechanism is implemented for ring embeddings, we

can apply this mechanism to any virtual link embedding with constant dilation. For example,

in a network clustering based on a maximal independent set, the maximum distance between

cluster heads is three and we can easily apply the proposed communication mechanism to realize

almost reliable communication between cluster heads. It is one of the interesting extensions for

our communication mechanism to seek for applications in real networks.

Another future work is to relax the communication model and fault model. Though the

proposed simulation technique is designed for locally shared memory model, the technique also

fits the message passing model. This is because each virtual link has different but bounded

delay that corresponds to message passing model and channels with bounded delay. Fault

tolerance against Byzantine faults is well studied in the area of self-stabilization [5, 44, 46, 54].

By embedding multiple disjoint virtual links between two adjacent virtual processes, we can

realize communication mechanism with Byzantine fault tolerance. However, the problem is the

communication slowdown because the slowdown of the proposed communication mechanism

depends on the number of virtual links. Thus, the message duplication technique itself needs to

be improved for multiple virtual links. Adding Byzantine fault tolerance should be significant

improvement for our simulation technique because Byzantine fault is the strongest fault model.

To develop further methods for hierarchical structures of fault-tolerant distributed protocols,

it is important to examine other useful properties for implementing hierarchical structures. For

example, consider the stability in output of non-masking fault-tolerant protocols that guarantees

even when some faults or topology changes occur, the output of a protocol may change to adopt

them but the changes in the output are as small as possible. This stability in output can

prevent the application of the protocol from changing its configuration frequently according to

the unnecessary changes of the input. Adding these useful properties to existing fault-tolerant

protocols is important both theoretically and practically.

Acknowledgments

The author has been fortunate to receive assistance from many people. She would especially like

to express her gratitude to her supervisor Professor Toshimitsu Masuzawa for his guidance and

encouragement. The author has also received precious advice from Professors of the Graduate

School of Information Science and Technology, Osaka University. Among them, the author

would like to extend her gratitude to Professor Kenichi Hagihara, Professor Katsuro Inoue, and

Professor Hirotsugu Kakugawa for their valuable comments on this dissertation. The author

would like to acknowledge Professor Yasushi Yagi and Professor Shinji Kusumoto for their

helpful comments on her work.

The author would like to thank Professor Koichi Wada at Nagoya Institute of Technology,

Professor Akinori Saitoh at Tottori University of Environmental Study, Professor Hideo Ma-

suda at Kyoto Institute of Technology, Dr. Tadashi Araragi at NTT Communication Science

Laboratories, Associate Professor Yoshiaki Katayama at Nagoya Institute of Technology, Pro-

fessor Sébastien Tixeuil at Université Pierre et Marie Curie, Research Associate Doina Bein at

Pennsylvania State University, Assistant Professor Sayaka Kamei at Hiroshima University, and

Assistant Professor Taisuke Izumi at Nagoya Institute of Technology for their useful comments

on her work. The author also thanks to Mrs. Tomoko Arakawa, Mrs. Megumi Kunimatsu,

and Ms. Fusami Nagae for their kind support. She is also grateful to the staffs and students of

Algorithm Engineering Laboratory, the Graduate School of Information Science and Technol-

ogy, Osaka University. In particular, she thanks to Assistant Professor Fukuhito Ooshita, Dr.

Yoshihiro Nakaminami, and Dr. Tomoko Izumi for their time and kindness.

Finally, the author wishes to thank her parents Masayuki Yamauchi and Chieko Yamauchi,

and all of her families for their support and kindness during her life at the university.

83

Bibliography

[1] Y. Afek and S. Dolev. Local stabilizer. In Proceedings of the 5th Israeli Symposium on

Theory of Computing and Systems, pages 74–84, June 1997.

[2] A. Arora and A. Singhai. Fault-tolerant reconfiguration of trees and rings in networks. In

Proceedings of the 2nd International Conference on Network Protocols, pages 221–228, Oct.

1994.

[3] A. Arora and H. Zhang. LSRP: Local stabilization in shortest path routing. In Proceedings

of the International Conference of Dependable Systems and Networks, pages 139–148, June

2003.

[4] Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed error confinement. In Proceedings of

the 22nd Annual ACM Symposium on Principles of Distributed Computing, pages 33–42,

July 2003.

[5] F. Bastani, I. Yen, and Y. Zao. On self-stabilization, non-determinism and inherent fault

tolerance. In Proceedings of the MCC Workshop on Self-Stabilizing Systems, 1989.

[6] J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - enforcement of

fairness under unfair adversary. In Proceedings of the 5th Workshop on Self-Stabilizing

Systems, pages 19–34, Oct. 2001.

[7] D. Bein, A. K. Datta, and L. L. Larmore. Self-stabilizing space optimal synchronization

algorithm on trees. In Proceedings of the 13th Colloquium on Structural Information and

Communication Complexity, pages 334–348, July 2006.

[8] D. Bein, A. K. Datta, and V. Villain. Self-stabilizing local routing in ad hoc networks. The

Computer Journal, 50(2):197–203, 2007.

[9] S. C. Bruell, S. Ghosh, M. Karaata, and S. V. Pemmaraju. Self-stabilizing algorithms for

finding centers and medians of trees. SIAM Journal of Computing, 29:600–614, 1999.

85

86 BIBLIOGRAPHY

[10] A. Bui, A. K. Datta, F. Petit, and V. Villain. State-optimal snap-stabilizing PIF in tree

networks. In Proceedings of the 4th Workshop on Self-Stabilizing Systems, pages 78–85,

June 1999.

[11] N. Chen, H. Yu, and S. Huang. A self-stabilizing algorithm for constructing a spanning

tree. Information Processing Letters, 39(3):147–151, 1991.

[12] A. Cournier, A. K. Datta, F. Petit, and V. Villain. Snap-stabilizing PIF algorithm in

arbitrary networks. In Proceedings of the 22nd International Conference on Distributed

Computing Systems, pages 199–208, July 2002.

[13] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of

ACM, 17(11):643–644, 1974.

[14] S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.

[15] S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems. In

Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pages 3.1–3.15, 1995.

[16] S. Dolev and T. Herman. Parallel composition for time-to-fault adaptive stabilization.

Distributed Computing, 20:29–38, 2007.

[17] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems. In Proceedings of

the MCC Workshop on Self-Stabilizing Systems, 1989.

[18] S. Dolev, A. Israeli, and S. Moran. Resource bounds for self-stabilizing message driven

protocols. In Proceedings of the 10th Annual ACM symposium on principles of distributed

computing, pages 281–293, 1991.

[19] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only

read/write atomicity. Distributed Computing, 7:3–16, 1993.

[20] F. C. Gartner. A survey of self-stabilizing spanning-tree construction algorithms. Technical

report, Swiss Federal Institute of Technology (PEFL), School of Computer and Communi-

cation Science, June 2003.

[21] S. Ghosh. Distributed systems: an algorithmic approach. Chapman & Hall/CRC, 2007.

[22] S. Ghosh and A. Gupta. An exercise in fault-containment: self-stabilizing leader election.

Information Processing Letters, 59(5):281–288, 1996.

BIBLIOGRAPHY 87

[23] S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju. Fault-containing self-stabilizing

algorithms. In Proceedings of the 15th Annual ACM Symposium on Principles of Distributed

Computing, pages 45–54, May 1996.

[24] S. Ghosh, A. Gupta, and S. Pemmaraju. Fault-containing network protocols. In Proceedings

of the 12th ACM Symposium on Applied Computing, pages 431–437, Feb. 1997.

[25] S. Ghosh and X. He. Fault-containing self-stabilization using priority scheduling. Informa-

tion Processing Letters, 73:145–151, 2000.

[26] S. Ghosh and S. V. Pemmaraju. Trade-offs in fault-containing self-stabilization. In Pro-

ceedings of the 3rd Workshop on Self-stabilizing Systems, pages 157–169, Aug. 1997.

[27] M. G. Gouda and T. Herman. Adaptive programming. IEEE Transactions on software

engineering, 17(9):911–921, 1991.

[28] T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for wireless

sensor networks. In Proceedings of the 1st International Workshop of Algorithmic Aspects

of Wireless Sensor Networks, pages 45–58, July 2004.

[29] S. H. Hsu and S. T. Huang. A self-stabilizing algorithm for maximal matching. Information

processing letters, 43:77–81, 1992.

[30] S. T. Huang and N. S. Chen. A self-stabilizing algorithm for constructing breadth-first

trees. Information Processing Letters, 41(2):109–117, 1992.

[31] S. T. Huang and N. S. Chen. Self-stabilizing depth-first token circulation on networks.

Distributed Computing, 7(1):61–66, 1993.

[32] C. Johnen, L. O. Alima, A. K. Datta, and S. Tixeuil. Self-stabilizing neighborhood synchro-

nizer in tree network. In Proceedings of the 19th International Conference on Distributed

Computing Systems, pages 487–494, May 1999.

[33] Y. Katayama and T. Masuzawa. A fault-containing self-stabilizing protocol for constructing

a minimum spanning tree. Transactions of the IEICE (In Japanese), J-84-D-I(9):1307–1317,

2001.

[34] Y. Katayama, E. Ueda, H. Fujiwara, and T. Masuzawa. A latency optimal superstabiliz-

ing mutual exclusion protocol in unidirectional rings. Journal of Parallel and Distributed

Computing, 62(5):865–884, 2002.

88 BIBLIOGRAPHY

[35] S. S. Kulkarni and M. U. Arumugam. Transformations for write-all-with-collision model. In

Proceedings of the 7th International Conference of Principles of Distributed Systems, pages

184–197, Dec. 2003.

[36] S. Kutten and B. Patt-Shamir. Time-adaptive self stabilization. In Proceedings of the 16th

Annual ACM Symposium on Principles of Distributed Computing, pages 149–158, 1997.

[37] F. T. Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hyper-

cubes. Morgan Kaufmann Publishers, San Mateo, CA 94403, USA, 1992.

[38] G. LeLann. Distributed systems: Towards a formal approach. In Proceedings of the IFIP

Congress ’77, pages 155–160, Aug. 1977.

[39] J. Lin and T. C. Huang. An efficient fault-containing self-stabilizing algorithm for finding a

maximal independent set. IEEE Transactions on Parallel and Distributed Systems, 14:742–

754, 2003.

[40] X. Lin and S. Ghosh. Maxima finding in a ring. In Proceedings of the 28th Annual Allerton

Conference on Computers, Communication and Control, pages 662–671, 1991.

[41] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1996.

[42] F. Manne and M. Mjelde. A self-stabilizing weighted matching algorithm. In Proceedings

of the 9th International Symposium on Stabilization, Safety, and Security of Distributed

Systems, pages 383–393, Nov. 2007.

[43] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal matching

algorithm. In Proceedings of the 14th Colloquium on Structural Information and Commu-

nication Complexity, pages 96–108, June 2007.

[44] T. Masuzawa and S. Tixeuil. A self-stabilizing link-coloring protocol resilient to unbounded

byzantine faults in arbitrary networks. In Proceedings of the 9th International Conference

of Principles of Distributed Systems, pages 118–219, Dec. 2005.

[45] Y. Nakaminami, T. Masuzawa, and T. Herman. Self-stabilizing agent traversal on tree

networks. IEICE Transactions of Information and Systems, E87-D(12):2773–2780, 2004.

[46] M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In Proceedings of

the 21st Symposium on Reliable Distributed Systems, pages 22–29, Oct. 2002.

BIBLIOGRAPHY 89

[47] T. Nolte and N. Lynch. A virtual node-based tracking algorithm for mobile networks. In

Proceedings of the 27th International Conference on Distributed Computing Systems, June

2007.

[48] M. Schneider. Self-stabilization. ACM Computing Survey, 25(1):45–67, Mar. 1993.

[49] M. Sekanina. On the ordering of the set of vertices of a connected graph. Publications of

the Faculty of Science, University of Brno, 412:137–142, 1960.

[50] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Observation on self-stabilizing graph

algorithms for anonymous networks. In Proceedings of the 2nd Workshop on Self-stabilizing

Systems, May 1995.

[51] G. Tel. Introduction to distributed algorithms. Cambridge Univ. Press, Cambridge, U.K.,

2nd edition, 2000.

[52] F. Turau. Linear self-stabilizing algorithms for the independent and dominating set prob-

lems using an unfair distributed scheduler. Information Processing Letters, 103(3):88–93,

2007.

[53] K. Yoshida, H. Kakugawa, and T. Masuzawa. Observation on light weight implementation

of self-stabilizing node clustering algorithms in sensor networks. In Proceedings of the Inter-

national Association of Science and Technology for Development International Conference

on Sensor Networks, pages 1–8, Sept. 2008.

[54] Y. Zhao and F. B. Bastani. A self-adjusting algorithm for byzantine agreement. Distributed

Computing, 5:219–226, 1992.

