<table>
<thead>
<tr>
<th>Title</th>
<th>EULER CHARACTERISTICS ON A CLASS OF FINITELY GENERATED NILPOTENT GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hamrouni, Hatem</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 50(2) P.339-P.346</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-06</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/25090</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/25090</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
EULER CHARACTERISTICS ON
A CLASS OF FINITELY GENERATED NILPOTENT GROUPS

HATEM HAMROUNI

(Received July 19, 2011)

Abstract

A finitely generated torsion free nilpotent group is called an \(\mathcal{F} \)-group. To each \(\mathcal{F} \)-group \(\Gamma \) there is associated a connected, simply connected nilpotent Lie group \(G_\Gamma \). Let \(TUF \) be the class of all \(\mathcal{F} \)-group \(\Gamma \) such that \(G_\Gamma \) is totally unimodular. A group in \(TUF \) is called \(TUF \)-group. In this paper, we are interested in finding non-zero Euler characteristic on the class \(TUF \) and therefore, on \(TUFF \), the class of groups \(K \) having a subgroup \(\Gamma \) of finite index in \(TUF \). An immediate consequence we obtain that any two isomorphic finite index subgroups of a \(TUFF \)-group have the same index. As applications, we give two results, the first is a generalization of Belegradek’s result, in which we prove that every \(TUFF \)-group is co-hopfian. The second is a known result due to G.C. Smith, asserting that every \(TUFF \)-group is not compressible.

1. Introduction and main results

We follow [5, p.222] in defining an Euler characteristic on a class of groups as follows (see also [2, p.1]).

Definition 1.1 (Euler characteristic). Let \(\mathcal{X} \) be a class of groups closed under taking subgroups of finite index. By an Euler characteristic on \(\mathcal{X} \) it meant a function \(\chi : \mathcal{X} \to \mathbb{R} \) satisfying

1. (Ec1) If \(K \) and \(H \) are in \(\mathcal{X} \), and \(K \) is isomorphic to \(H \), then \(\chi(K) = \chi(H) \).
2. (Ec2) If \(K \) is in \(\mathcal{X} \), and \(H \) is a subgroup of \(K \) of finite index, then \(\chi(H) = [K : H] \chi(K) \), where \([K : H]\) denotes the index of \(H \) in \(K \).

In this paper, we are interested in finding non zero Euler characteristics defined on a class of finitely generated nilpotent groups.

Let \(G \) be a connected Lie group and \(\text{Aut}(G) \) its group of continuous automorphisms. Let \(\mu \) be a Haar measure on \(G \). For every \(\alpha \in \text{Aut}(G) \) we have

\[
\alpha^{-1}_* \mu = \Delta(\alpha) \mu.
\]

1991 Mathematics Subject Classification. 20F18.
where $\alpha^{-1}\mu$ is the push forward of μ under α^{-1}, and $\Delta: \text{Aut}(G) \to \mathbb{R}^+_{\times}$ is a homomorphism of $\text{Aut}(G)$ into the multiplicative group of the positive reals. If G is a connected, simply connected nilpotent Lie group, then

$$\Delta(\alpha) = |\det(\alpha)|.$$

Definition 1.2 ([10, p. 627]). A connected, simply connected nilpotent Lie group G is called totally unimodular if the image of Δ is $\{1\}$.

Let TULG be the class of connected, simply connected totally unimodular nilpotent Lie groups.

A real Lie algebra is called *characteristically nilpotent* if all its derivations are nilpotent ([4, p. 157], [6, p. 623]). We note that a characteristically nilpotent Lie algebra is nilpotent. Let CNLG be the class of connected, simply connected nilpotent Lie groups $G = \exp \mathfrak{g}$ such that \mathfrak{g} is a characteristically nilpotent Lie algebra.

Proposition 1.3 ([10, (1.1)]). We have

$$\text{CNLG} \subset \text{TULG}.$$

A finitely generated torsion free nilpotent group is called an \mathcal{F}-group. Any \mathcal{F}-group Γ is isomorphic to a discrete uniform subgroup of a connected, simply connected nilpotent Lie group G_Γ whose Lie algebra \mathfrak{g}_Γ has rational structure constants ([8, Theorem 6]). Let TUF be the class of all \mathcal{F}-groups Γ such that $G_\Gamma \in \text{TULG}$. We call a group Γ a TUF-group if $\Gamma \in \text{TUF}$. For every integer $n \geq 7$ there exists a n-dimensional characteristically nilpotent Lie algebra with rational structure ([14, Theorem 5]). By the Mal’cev rationality criterion (Theorem 2.1) we derive the following.

Proposition 1.4. For every integer $n \geq 7$ there exists a TUF-group with Hirsch length n.

The main result of this paper is the following.

Theorem 1.5. The class TUF admits Euler characteristics.

In Section 3, we give an explicit Euler characteristic on TUF.

By [5, p. 222] (see also [15], [2]) every Euler characteristic χ on TUF can be extended to TUFF, the class of groups K having a subgroup Γ of finite index in TUF, by setting

$$\chi(K) = \frac{1}{[K : \Gamma]} \chi(\Gamma).$$

As an immediate consequence we have the following.
Proposition 1.6. Any two isomorphic finite index subgroups of a TUFF-group have the same index.

Definition 1.7 (Co-hopfian group). A group is called co-hopfian if it satisfies the following equivalent conditions:
1. It is not isomorphic to any proper subgroup.
2. Every injective endomorphism of the group is an automorphism.

As an easy consequence of Proposition 1.6, we obtain a generalization for I. Belegradek’s result ([1, Corollary 2.4]).

Proposition 1.8. Every TUFF-group is co-hopfian.

We introduce the following definition due to G.C. Smith ([13, Definition 1]).

Definition 1.9 (Compressible group). A group G is called compressible if any finite index subgroup of G contains a finite index subgroup isomorphic to G.

The following proposition which is due to G.C. Smith ([13, Proposition 4]) is an immediate consequence of Proposition 1.6.

Proposition 1.10. Every TUFF-group is not compressible.

2. Rational structures and discrete uniform subgroups

General references for the material in this section are [3] and [11] as well as the original paper of Mal’cev [8].

Let G be a connected and simply connected nilpotent Lie group with Lie algebra \mathfrak{g}. Then the exponential map $\exp: \mathfrak{g} \to G$ is a diffeomorphism. Let $\log: G \to \mathfrak{g}$ denote the inverse of \exp.

2.1. Rational structures. Let G be a nilpotent, connected and simply connected real Lie group and let \mathfrak{g} be its Lie algebra. We say that \mathfrak{g} (or G) has a rational structure if there is a Lie algebra $\mathfrak{g}(\mathbb{Q})$ over \mathbb{Q} such that $\mathfrak{g} \cong \mathfrak{g}(\mathbb{Q}) \otimes \mathbb{R}$. It is clear that \mathfrak{g} has a rational structure if and only if \mathfrak{g} has an \mathbb{R}-basis (X_1, \ldots, X_n) with rational structure constants.

2.2. Uniform subgroups. A discrete subgroup Γ is called uniform in G if the quotient space G/Γ is compact. A proof of the next result can be found in Theorem 7 of [8] or in Theorem 2.12 of [11].
Theorem 2.1 (The Malcev rationality criterion). Let G be a simply connected nilpotent Lie group, and let g be its Lie algebra. Then G admits a uniform subgroup Γ if and only if g admits a basis (X_1, \ldots, X_n) such that

$$[X_i, X_j] = \sum_{k=1}^{n} c_{ijk} X_k, \quad (\forall 1 \leq i, j \leq n),$$

where the constants c_{ijk} are all rational.

2.3. The Malcev rigidity theorem. The following is a theorem of Mal’cev ([8, Theorem 5]); see also ([9, Theorem 4]).

Theorem 2.2 (Malcev rigidity theorem). Let G_1 and G_2 be connected simply connected nilpotent Lie groups and Γ_1, Γ_2 discrete uniform subgroups of G_1 and G_2. Any abstract group isomorphism ϕ between Γ_1 and Γ_2 extends uniquely to an isomorphism $M(\phi)$ of G_1 on G_2; that is, the following diagram

(2.1)

is commutative, where i is the inclusion mapping. The isomorphism $M(\phi)$ is called the Mal’cev extension of ϕ.

3. An explicit Euler characteristic on TUF. Proof of Theorem 1.5

Let G be a connected Lie group, $\mathcal{U}(G)$ be the space of discrete uniform (i.e., cocompact) subgroups of G. Let μ be a right Haar measure of G. Let $\Gamma \in \mathcal{U}(G)$, the measure μ induces a finite measure $\tilde{\mu}$ over the homogeneous space G/Γ. Let

$$V^\mu_G : \mathcal{U}(G) \to \mathbb{R}_+$$

defined for $\Gamma \in \mathcal{U}(G)$ by

$$V^\mu_G(\Gamma) = \tilde{\mu}(G/\Gamma).$$

Remark 3.1. We recall that if F is a fundamental domain for G/Γ then $\tilde{\mu}(G/\Gamma) = \mu(F)$ ([7, p. 430]).

The notation $H \leq_f K$ signifies that H is a finite index subgroup of the group K. A proof of the following proposition can be found in Lemma 3.2 of [7].
Proposition 3.2. If $H, K \in \mathcal{S}(G)$ and if $H \leq_f K$ then we have

\begin{equation}
V^\mu_G(H) = [K : H]V^\mu_G(K).
\end{equation}

Proposition 3.3. Let G in TULG and μ a Haar measure on G. Let Γ_1, Γ_2 be two isomorphic subgroups of $\mathcal{S}(G)$. Then we have

\begin{equation}
V^\mu_G(\Gamma_1) = V^\mu_G(\Gamma_2).
\end{equation}

Proof. Let ϕ be an isomorphism of Γ_1 onto Γ_2. Let F be a fundamental domain of G/Γ_1 and compute

\[
V^\mu_G(\Gamma_1) = \mu(F) = \mu(M(\phi)(F)) = V^\mu_G(\Gamma_2).\]

We define an equivalence relation \simeq on TULG by

\[G_1 \simeq G_2 \iff G_1, G_2 \text{ are isomorphic.}\]

For $G \in \text{TULG}$, let $[G]$ be the equivalence class containing G. Let T be a transversal for the equivalence relation \simeq.

Let H, K be two groups (resp. Lie groups), the set of all isomorphisms (resp. Lie groups isomorphisms) of H onto K is denoted by $\mathbb{R}(H, K)$.

Lemma 3.4. Let $G_0 \in T$ and $G \in [G_0]$. For every $\phi, \psi \in \mathbb{R}(G_0, G)$ we have

\[\phi_*\mu_0 = \psi_*\mu_0,\]

where $\phi_*\mu_0$ (resp. $\psi_*\mu_0$) is the push forward of μ_0 under ϕ (resp. ψ).

Proof. Let F be a measurable set and compute

\[
\phi_*\mu_0(F) = \mu_0(\phi^{-1}(F)) = \mu_0(\psi^{-1}\phi(\phi^{-1}(F))) = \mu_0(\psi^{-1}(F)) = \psi_*\mu_0(F).\]

Let $G_0 \in T$ and μ_0 a Haar measure on G_0. Let $G \in [G_0]$ and $\Gamma \in \mathcal{S}(G)$. The function

\[\mathbb{R}(G_0, G) \to \mathbb{R}, \quad \phi \mapsto V^\phi_{G,G_0}(\Gamma)\]
is constant. In the sequel, we note

\[V[G_0, \mu_0, G](\Gamma) = V^{\phi_*\mu_0}(\Gamma) \quad (\forall \phi \in \mathcal{R}(G_0, G)). \]

Let \(G_1, G_2 \in [G_0] \). For every \(\psi \in \mathcal{R}(G_0, G_2) \) and \(\phi \in \mathcal{R}(G_1, G_2) \), we note

\[V[G_0, \mu_0, G_1] * \phi = V[G_0, \mu_0, G_2] \circ \phi^*, \]

\[\psi \ast V[G_0, \mu_0, G_1] = V[\psi(G_0), \psi_*\mu_0, G_1], \]

where \(\phi^* : \mathcal{R}(G_1) \to \mathcal{R}(G_2), \Gamma \mapsto \phi(\Gamma) \).

Proposition 3.5. With the same notation as above we have:

\begin{align}
(3.3a) & \quad V[G_0, \mu_0, G_1] * \phi = V[G_0, \mu_0, G_1], \\
(3.3b) & \quad \psi \ast V[G_0, \mu_0, G_1] = V[G_0, \mu_0, G_1].
\end{align}

Proof. Let \(\Gamma \in \mathcal{S}(G_1) \). Let \(F \) be a fundamental domain for \(G_1/\Gamma \) and compute

\[V[G_0, \mu_0, G_1] * \phi(\Gamma) = V[G_0, \mu_0, G_2](\phi(\Gamma)) \]

\[= V^{\phi_*\mu_0}(\phi(\Gamma)) \quad (\phi \in \mathcal{R}(G_0, G_2)) \]

\[= \varphi_*\mu_0(\phi(F)) \]

\[= (\phi^{-1}\varphi)_*\mu_0(F) \]

\[= V^{\phi_*\mu_0}(\phi(F)) \]

\[= V[G_0, \mu_0, G_1](\Gamma). \]

Similarly, we prove (3.3b). \qed

We come now to the principal theorem of this paper, in which we give an explicit Euler characteristic on \(\text{TUF} \).

Theorem 3.6. The mapping

\[\chi : \text{TUF} \to \mathbb{R}, \quad \Gamma \mapsto V[G_0, \mu_0, G_\Gamma](\Gamma), \]

where \(\{G_0\} = \{G_\Gamma\} \cap T \), is an Euler characteristic on \(\text{TUF} \), which does not depend of the choice of transversal.

Proof. Let \(\Gamma \) be a \(\text{TUF} \)-group and \(\Gamma_0 \leq_T \Gamma \). Then \(\Gamma_0 \) and \(\Gamma \) have the same Hirsch length, it follows that \(g_{\Gamma_0} = g_{\Gamma} \) and hence the class \(\text{TUF} \) is closed under taking subgroups of finite index. Let \(\Gamma_1 \) and \(\Gamma_2 \) be two isomorphic \(\text{TUF} \)-groups. By Theorem 2.2,
the Lie groups G_{Γ_1} and G_{Γ_2} are isomorphic and hence $[G_{\Gamma_1}] = [G_{\Gamma_2}]$. Let

$$\{G_0\} = [G_{\Gamma_1}] \cap T.$$

Let $\phi \in R(\Gamma_1, \Gamma_2)$ and compute

$$\chi(\Gamma_2) = V[G_0, \mu_0, G_{\Gamma_2}](\Gamma_2)$$
$$= V[G_0, \mu_0, G_{\Gamma_1}] \ast M(\phi)(\Gamma_1)$$
$$= V[G_0, \mu_0, G_{\Gamma_1}](\Gamma_1)$$ \hspace{1cm} (by (3.3a))
$$= \chi(\Gamma_1).$$

This completes the proof of (Ec1). (Ec2) follows from (3.1). Finally, the formula (3.3b) implies that the mapping χ is independent of the choice of the transversal T. □

References

Department of Mathematics
Faculty of Sciences at Sfax
University of Sfax
Route Soukra, B.P. 1171, 3000 Sfax
Tunisia
e-mail: hatemhamrouni@voila.fr