

Title	EULER CHARACTERISTICS ON A CLASS OF FINITELY GENERATED NILPOTENT GROUPS
Author(s)	Hamrouni, Hatem
Citation	Osaka Journal of Mathematics. 50(2) P.339-P.346
Issue Date	2013-06
Text Version	publisher
URL	https://doi.org/10.18910/25090
DOI	10.18910/25090
rights	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University

Hamrouni, H. Osaka J. Math. **50** (2013), 339–346

EULER CHARACTERISTICS ON A CLASS OF FINITELY GENERATED NILPOTENT GROUPS

HATEM HAMROUNI

(Received July 19, 2011)

Abstract

A finitely generated torsion free nilpotent group is called an \mathscr{F} -group. To each \mathscr{F} -group Γ there is associated a connected, simply connected nilpotent Lie group G_{Γ} . Let TUF be the class of all \mathscr{F} -group Γ such that G_{Γ} is totally unimodular. A group in TUF is called TUF-group. In this paper, we are interested in finding non-zero Euler characteristic on the class TUF and therefore, on TUFF, the class of groups *K* having a subgroup Γ of finite index in TUF. An immediate consequence we obtain that any two isomorphic finite index subgroups of a TUFF-group have the same index. As applications, we give two results, the first is a generalization of Belegradek's result, in which we prove that every TUFF-group is co-hopfian. The second is a known result due to G.C. Smith, asserting that every TUFF-group is not compressible.

1. Introduction and main results

We follow [5, p. 222] in defining an Euler characteristic on a class of groups as follows (see also [2, p. 1]).

DEFINITION 1.1 (Euler characteristic). Let \mathfrak{X} be a class of groups closed under taking subgroups of finite index. By an Euler characteristic on \mathfrak{X} it meant a function $\chi : \mathfrak{X} \to \mathbb{R}$ satisfying

(Ec1) If K and H are in \mathfrak{X} , and K is isomorphic to H, then $\chi(K) = \chi(H)$. (Ec2) If K is in \mathfrak{X} , and H is a subgroup of K of finite index, then $\chi(H) =$

 $[K : H]\chi(K)$, where [K : H] denotes the index of H in K.

In this paper, we are interested in finding non zero Euler characteristics defined on a class of finitely generated nilpotent groups.

Let G be a connected Lie group and Aut(G) its group of continuous automorphisms. Let μ be a Haar measure on G. For every $\alpha \in Aut(G)$ we have

$$\alpha_*^{-1}\mu = \Delta(\alpha)\mu,$$

¹⁹⁹¹ Mathematics Subject Classification. 20F18.

where $\alpha_*^{-1}\mu$ is the push forward of μ under α^{-1} , and $\Delta \colon \operatorname{Aut}(G) \to \mathbb{R}^*_+$ is a homomorphism of $\operatorname{Aut}(G)$ into the multiplicative group of the positive reals. If *G* is a connected, simply connected nilpotent Lie group, then

$$\Delta(\alpha) = |\det(\alpha)|.$$

DEFINITION 1.2 ([10, p. 627]). A connected, simply connected nilpotent Lie group G is called totally unimodular if the image of Δ is {1}.

Let TULG be the class of connected, simply connected totally unimodular nilpotent Lie groups.

A real Lie algebra is called *characteristically nilpotent* if all its derivations are nilpotent ([4, p. 157], [6, p. 623]). We note that a characteristically nilpotent Lie algebra is nilpotent. Let CNLG be the class of connected, simply connected nilpotent Lie groups $G = \exp \mathfrak{g}$ such that \mathfrak{g} is a characteristically nilpotent Lie algebra.

Proposition 1.3 ([10, (1.1)]). We have

$$CNLG \subset TULG.$$

A finitely generated torsion free nilpotent group is called an \mathscr{F} -group. Any \mathscr{F} group Γ is isomorphic to a discrete uniform subgroup of a connected, simply connected nilpotent Lie group G_{Γ} whose Lie algebra \mathfrak{g}_{Γ} has rational structure constants ([8, Theorem 6]). Let TUF be the class of all \mathscr{F} -groups Γ such that $G_{\Gamma} \in \text{TULG}$. We call a group Γ a TUF-group if $\Gamma \in \text{TUF}$. For every integer $n \geq 7$ there exists a *n*-dimensional characteristically nilpotent Lie algebra with rational structure ([14, Theorem 5]). By the Mal'cev rationality criterion (Theorem 2.1) we derive the following.

Proposition 1.4. For every integer $n \ge 7$ there exists a TUF-group with Hirsch length n.

The main result of this paper is the following.

Theorem 1.5. The class TUF admits Euler characteristics.

In Section 3, we give an explicit Euler characteristic on TUF.

By [5, p. 222] (see also [15], [2]) every Euler characteristic χ on TUF can be extended to TUFF, the class of groups K having a subgroup Γ of finite index in TUF, by setting

$$\chi(K) = \frac{1}{[K:\Gamma]} \chi(\Gamma).$$

As an immediate consequence we have the following.

Proposition 1.6. Any two isomorphic finite index subgroups of a TUFF-group have the same index.

DEFINITION 1.7 (Co-hopfian group). A group is called co-hopfian if it satisfies the following equivalent conditions:

(1) It is not isomorphic to any proper subgroup.

(2) Every injective endomorphism of the group is an automorphism.

As an easy consequence of Proposition 1.6, we obtain a generalization for I. Belegradek's result ([1, Corollary 2.4]).

Proposition 1.8. Every TUFF-group is co-hopfian.

We introduce the following definition due to G.C. Smith ([13, Definition 1]).

DEFINITION 1.9 (Compressible group). A group G is called compressible if any finite index subgroup of G contains a finite index subgroup isomorphic to G.

The following proposition which is due to G.C. Smith ([13, Proposition 4]) is an immediate consequence of Proposition 1.6.

Proposition 1.10. *Every TUFF-group is not compressible.*

2. Rational structures and discrete uniform subgroups

General references for the material in this section are [3] and [11] as well as the original paper of Mal'cev [8].

Let G be a connected and simply connected nilpotent Lie group with Lie algebra g. Then the exponential map exp: $\mathfrak{g} \to G$ is a diffeomorphism. Let log: $G \to \mathfrak{g}$ denote the inverse of exp.

2.1. Rational structures. Let G be a nilpotent, connected and simply connected real Lie group and let g be its Lie algebra. We say that \mathfrak{g} (or G) has a *rational structure* if there is a Lie algebra $\mathfrak{g}(\mathbb{Q})$ over \mathbb{Q} such that $\mathfrak{g} \cong \mathfrak{g}(\mathbb{Q}) \otimes \mathbb{R}$. It is clear that \mathfrak{g} has a rational structure if and only if g has an \mathbb{R} -basis (X_1, \ldots, X_n) with rational structure constants.

2.2. Uniform subgroups. A discrete subgroup Γ is called *uniform* in *G* if the quotient space G/Γ is compact. A proof of the next result can be found in Theorem 7 of [8] or in Theorem 2.12 of [11].

H. HAMROUNI

Theorem 2.1 (The Malcev rationality criterion). Let G be a simply connected nilpotent Lie group, and let \mathfrak{g} be its Lie algebra. Then G admits a uniform subgroup Γ if and only if \mathfrak{g} admits a basis (X_1, \ldots, X_n) such that

$$[X_i, X_j] = \sum_{k=1}^n c_{ijk} X_k, \quad (\forall 1 \le i, j \le n),$$

where the constants c_{ijk} are all rational.

2.3. The Malcev rigidity theorem. The following is a theorem of Mal'cev ([8, Theorem 5]); see also ([9, Theorem 4]).

Theorem 2.2 (Malcev rigidity theorem). Let G_1 and G_2 be connected simply connected nilpotent Lie groups and Γ_1 , Γ_2 discrete uniform subgroups of G_1 and G_2 . Any abstract group isomorphism ϕ between Γ_1 and Γ_2 extends uniquely to an isomorphism $M(\phi)$ of G_1 on G_2 ; that is, the following diagram

(2.1)
$$\begin{array}{c} \Gamma_1 \xrightarrow{\phi} \Gamma_2 \\ i \downarrow \qquad \qquad \downarrow i \\ G_1 \xrightarrow{M(\phi)} G_2 \end{array}$$

is commutative, where i is the inclusion mapping. The isomorphism $M(\phi)$ is called the Mal'cev extension of ϕ .

3. An explicit Euler characteristic on TUF. Proof of Theorem 1.5

Let G be a connected Lie group, $\mathscr{S}(G)$ be the space of discrete uniform (i.e., cocompact) subgroups of G. Let μ be a right Haar measure of G. Let $\Gamma \in \mathscr{S}(G)$, the measure μ induces a finite measure $\bar{\mu}$ over the homogeneous space G/Γ . Let

$$V_G^{\mu} \colon \mathscr{S}(G) \to \mathbb{R}_+$$

defined for $\Gamma \in \mathscr{S}(G)$) by

$$V_G^{\mu}(\Gamma) = \bar{\mu}(G/\Gamma).$$

REMARK 3.1. We recall that if F is a fundamental domain for G/Γ then $\bar{\mu}(G/\Gamma) = \mu(F)$ ([7, p.430]).

The notation $H \leq_f K$ signifies that H is a finite index subgroup of the group K. A proof of the following proposition can be found in Lemma 3.2 of [7]. **Proposition 3.2.** If $H, K \in \mathscr{S}(G)$ and if $H \leq_f K$ then we have

(3.1)
$$V_G^{\mu}(H) = [K : H]V_G^{\mu}(K).$$

Proposition 3.3. Let G in TULG and μ a Haar measure on G. Let Γ_1 , Γ_2 be two isomorphic subgroups of $\mathscr{S}(G)$. Then we have

(3.2)
$$V_G^{\mu}(\Gamma_1) = V_G^{\mu}(\Gamma_2).$$

Proof. Let ϕ be an isomorphism of Γ_1 onto Γ_2 . Let *F* be a fundamental domain of G/Γ_1 and compute

$$V_G^{\mu}(\Gamma_1) = \mu(F)$$

= $\mu(\mathbf{M}(\phi)(F))$
= $V_G^{\mu}(\Gamma_2).$

We define an equivalence relation \simeq on TULG by

$$G_1 \simeq G_2 \iff G_1, G_2$$
 are isomorphic.

For $G \in TULG$, let [G] be the equivalence class containing G. Let T be a transversal for the equivalence relation \simeq .

Let H, K be two groups (resp. Lie groups), the set of all isomorphisms (resp. Lie groups isomorphisms) of H onto K is denoted by $\mathcal{R}(H, K)$.

Lemma 3.4. Let $G_0 \in T$ and $G \in [G_0]$. For every $\phi, \psi \in \mathscr{R}(G_0, G)$ we have

$$\phi_*\mu_0=\psi_*\mu_0,$$

where $\phi_*\mu_0$ (resp. $\psi_*\mu_0$) is the push forward of μ_0 under ϕ (resp. ψ).

Proof. Let F be a measurable set and compute

$$\phi_*\mu_0(F) = \mu_0(\phi^{-1}(F))$$

= $\mu_0(\psi^{-1}\phi(\phi^{-1}(F)))$ $(\psi^{-1}\phi \in \operatorname{Aut}(G_0))$
= $\mu_0(\psi^{-1}(F))$
= $\psi_*\mu_0(F).$

Let $G_0 \in T$ and μ_0 a Haar measure on G_0 . Let $G \in [G_0]$ and $\Gamma \in \mathscr{S}(G)$. The function

$$\mathscr{R}(G_0, G) \to \mathbb{R}, \quad \phi \to V_G^{\phi_* \mu_0}(\Gamma)$$

is constant. In the sequel, we note

$$V[G_0, \mu_0, G](\Gamma) = V_G^{\phi_* \mu_0}(\Gamma) \quad (\forall \phi \in \mathscr{R}(G_0, G)).$$

Let $G_1, G_2 \in [G_0]$. For every $\psi \in \mathscr{R}(G_0, G_2)$ and $\phi \in \mathscr{R}(G_1, G_2)$, we note

$$V[G_0, \mu_0, G_1] * \phi = V[G_0, \mu_0, G_2] \circ \phi^*,$$

$$\psi * V[G_0, \mu_0, G_1] = V[\psi(G_0), \psi_*\mu_0, G_1],$$

where $\phi^* \colon \mathscr{S}(G_1) \to \mathscr{S}(G_2), \ \Gamma \mapsto \phi(\Gamma).$

Proposition 3.5. With the same notation as above we have:

- (3.3a) $V[G_0, \mu_0, G_1] * \phi = V[G_0, \mu_0, G_1],$
- (3.3b) $\psi * V[G_0, \mu_0, G_1] = V[G_0, \mu_0, G_1].$

Proof. Let $\Gamma \in \mathscr{S}(G_1)$. Let F be a fundamental domain for G_1/Γ and compute

$$V[G_{0}, \mu_{0}, G_{1}] * \phi(\Gamma) = V[G_{0}, \mu_{0}, G_{2}](\phi(\Gamma))$$

$$= V_{G_{2}}^{\varphi_{*}\mu_{0}}(\phi(\Gamma)) \qquad (\varphi \in \mathscr{R}(G_{0}, G_{2}))$$

$$= \varphi_{*}\mu_{0}(\phi(F))$$

$$= (\phi^{-1}\varphi)_{*}\mu_{0}(F)$$

$$= V_{G_{1}}^{(\phi^{-1}\varphi)_{*}\mu_{0}}(F)$$

$$= V[G_{0}, \mu_{0}, G_{1}](\Gamma).$$

Similarly, we prove (3.3b).

We come now to the principal theorem of this paper, in which we give an explicit Euler characteristic on TUF.

Theorem 3.6. *The mapping*

 $\chi: TUF \to \mathbb{R}, \quad \Gamma \mapsto V[G_0, \mu_0, G_{\Gamma}](\Gamma),$

where $\{G_0\} = [G_{\Gamma}] \cap T$, is an Euler characteristic on TUF, which does not depend of the choice of transversal.

Proof. Let Γ be a TUF-group and $\Gamma_0 \leq_f \Gamma$. Then Γ_0 and Γ have the same Hirsch length, it follows that $\mathfrak{g}_{\Gamma_0} = \mathfrak{g}_{\Gamma}$ and hence the class TUF is closed under taking subgroups of finite index. Let Γ_1 and Γ_2 be two isomorphic TUF-groups. By Theorem 2.2,

344

the Lie groups G_{Γ_1} and G_{Γ_2} are isomorphic and hence $[G_{\Gamma_1}] = [G_{\Gamma_2}]$. Let

$$\{G_0\} = [G_{\Gamma_1}] \cap T.$$

Let $\phi \in \mathscr{R}(\Gamma_1, \Gamma_2)$ and compute

$$\chi(\Gamma_2) = V[G_0, \mu_0, G_{\Gamma_2}](\Gamma_2)$$

= $V[G_0, \mu_0, G_{\Gamma_1}] * \mathbf{M}(\phi)(\Gamma_1)$
= $V[G_0, \mu_0, G_{\Gamma_1}](\Gamma_1)$ (by (3.3a))
= $\chi(\Gamma_1)$.

This completes the proof of (Ec1). (Ec2) follows from (3.1). Finally, the formula (3.3b) implies that the mapping χ is independent of the choice of the transversal *T*.

References

- [1] I. Belegradek: On co-Hopfian nilpotent groups, Bull. London Math. Soc. 35 (2003), 805–811.
- [2] I.M. Chiswell: Euler characteristics of groups, Math. Z. 147 (1976), 1–11.
- [3] L.J. Corwin and F.P. Greenleaf: Representations of Nilpotent Lie Groups and Their Applications, Part I, Cambridge Studies in Advanced Mathematics 18, Cambridge Univ. Press, Cambridge, 1990.
- [4] J. Dixmier and W.G. Lister: Derivations of nilpotent Lie algebras, Proc. Amer. Math. Soc. 8 (1957), 155–158.
- [5] A. Karrass, A. Pietrowski and D. Solitar: An improved subgroup theorem for HNN groups with some applications, Canad. J. Math. 26 (1974), 214–224.
- [6] G. Leger and S. Tôgô: *Characteristically nilpotent Lie algebras*, Duke Math. J. **26** (1959), 623–628.
- [7] A.M. Macbeath and S. Świerczkowski: *Limits of lattices in a compactly generated group*, Canad. J. Math. 12 (1960), 427–437.
- [8] A.I. Malcev: On a class of homogeneous spaces, Amer. Math. Soc. Translation 1951 (1951).
- Y. Matsushima: On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J. 2 (1951), 95–110.
- [10] L.P. Polek: Small neighborhoods of the identity of a real nilpotent group, Proc. Amer. Math. Soc. 42 (1973), 627–630.
- [11] M.S. Raghunathan: Discrete Subgroups of Lie Groups, Springer, New York, 1972.
- [12] A. Reznikov: Volumes of discrete groups and topological complexity of homology spheres, Math. Ann. 306 (1996), 547–554.
- [13] G.C. Smith: Compressibility in nilpotent groups, Bull. London Math. Soc. 17 (1985), 453-457.
- [14] S. Yamaguchi: Derivations and affine structures of some nilpotent Lie algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A 34 (1980), 151–170.
- [15] C.T.C. Wall: Rational Euler characteristics, Proc. Cambridge Philos. Soc. 57 (1961), 182–184.

H. HAMROUNI

Department of Mathematics Faculty of Sciences at Sfax University of Sfax Route Soukra, B.P. 1171, 3000 Sfax Tunisia e-mail: hatemhhamrouni@voila.fr