

Title	EULER CHARACTERISTICS ON A CLASS OF FINITELY GENERATED NILPOTENT GROUPS
Author(s)	Hamrouni, Hatem
Citation	Osaka Journal of Mathematics. 2013, 50(2), p. 339-346
Version Type	VoR
URL	https://doi.org/10.18910/25090
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

EULER CHARACTERISTICS ON A CLASS OF FINITELY GENERATED NILPOTENT GROUPS

HATEM HAMROUNI

(Received July 19, 2011)

Abstract

A finitely generated torsion free nilpotent group is called an \mathcal{F} -group. To each \mathcal{F} -group Γ there is associated a connected, simply connected nilpotent Lie group G_Γ . Let TUF be the class of all \mathcal{F} -group Γ such that G_Γ is totally unimodular. A group in TUF is called TUF -group. In this paper, we are interested in finding non-zero Euler characteristic on the class TUF and therefore, on TUFF , the class of groups K having a subgroup Γ of finite index in TUF . An immediate consequence we obtain that any two isomorphic finite index subgroups of a TUFF -group have the same index. As applications, we give two results, the first is a generalization of Belegradek's result, in which we prove that every TUFF -group is co-hopfian. The second is a known result due to G.C. Smith, asserting that every TUFF -group is not compressible.

1. Introduction and main results

We follow [5, p.222] in defining an Euler characteristic on a class of groups as follows (see also [2, p.1]).

DEFINITION 1.1 (Euler characteristic). Let \mathfrak{X} be a class of groups closed under taking subgroups of finite index. By an Euler characteristic on \mathfrak{X} it meant a function $\chi : \mathfrak{X} \rightarrow \mathbb{R}$ satisfying

(Ec1) If K and H are in \mathfrak{X} , and K is isomorphic to H , then $\chi(K) = \chi(H)$.

(Ec2) If K is in \mathfrak{X} , and H is a subgroup of K of finite index, then $\chi(H) = [K : H]\chi(K)$, where $[K : H]$ denotes the index of H in K .

In this paper, we are interested in finding non zero Euler characteristics defined on a class of finitely generated nilpotent groups.

Let G be a connected Lie group and $\text{Aut}(G)$ its group of continuous automorphisms. Let μ be a Haar measure on G . For every $\alpha \in \text{Aut}(G)$ we have

$$\alpha_*^{-1}\mu = \Delta(\alpha)\mu,$$

where $\alpha_*^{-1}\mu$ is the push forward of μ under α^{-1} , and $\Delta: \text{Aut}(G) \rightarrow \mathbb{R}_+^*$ is a homomorphism of $\text{Aut}(G)$ into the multiplicative group of the positive reals. If G is a connected, simply connected nilpotent Lie group, then

$$\Delta(\alpha) = |\det(\alpha)|.$$

DEFINITION 1.2 ([10, p. 627]). A connected, simply connected nilpotent Lie group G is called totally unimodular if the image of Δ is $\{1\}$.

Let TULG be the class of connected, simply connected totally unimodular nilpotent Lie groups.

A real Lie algebra is called *characteristically nilpotent* if all its derivations are nilpotent ([4, p. 157], [6, p. 623]). We note that a characteristically nilpotent Lie algebra is nilpotent. Let CNLG be the class of connected, simply connected nilpotent Lie groups $G = \exp \mathfrak{g}$ such that \mathfrak{g} is a characteristically nilpotent Lie algebra.

Proposition 1.3 ([10, (1.1)]). *We have*

$$\text{CNLG} \subset \text{TULG}.$$

A finitely generated torsion free nilpotent group is called an \mathcal{F} -group. Any \mathcal{F} -group Γ is isomorphic to a discrete uniform subgroup of a connected, simply connected nilpotent Lie group G_Γ whose Lie algebra \mathfrak{g}_Γ has rational structure constants ([8, Theorem 6]). Let TUF be the class of all \mathcal{F} -groups Γ such that $G_\Gamma \in \text{TULG}$. We call a group Γ a TUF-group if $\Gamma \in \text{TUF}$. For every integer $n \geq 7$ there exists a n -dimensional characteristically nilpotent Lie algebra with rational structure ([14, Theorem 5]). By the Mal'cev rationality criterion (Theorem 2.1) we derive the following.

Proposition 1.4. *For every integer $n \geq 7$ there exists a TUF-group with Hirsch length n .*

The main result of this paper is the following.

Theorem 1.5. *The class TUF admits Euler characteristics.*

In Section 3, we give an explicit Euler characteristic on TUF .

By [5, p. 222] (see also [15], [2]) every Euler characteristic χ on TUF can be extended to TUFF , the class of groups K having a subgroup Γ of finite index in TUF , by setting

$$\chi(K) = \frac{1}{[K : \Gamma]} \chi(\Gamma).$$

As an immediate consequence we have the following.

Proposition 1.6. *Any two isomorphic finite index subgroups of a TUFF-group have the same index.*

DEFINITION 1.7 (Co-hopfian group). A group is called co-hopfian if it satisfies the following equivalent conditions:

- (1) It is not isomorphic to any proper subgroup.
- (2) Every injective endomorphism of the group is an automorphism.

As an easy consequence of Proposition 1.6, we obtain a generalization for I. Belegradek's result ([1, Corollary 2.4]).

Proposition 1.8. *Every TUFF-group is co-hopfian.*

We introduce the following definition due to G.C. Smith ([13, Definition 1]).

DEFINITION 1.9 (Compressible group). A group G is called compressible if any finite index subgroup of G contains a finite index subgroup isomorphic to G .

The following proposition which is due to G.C. Smith ([13, Proposition 4]) is an immediate consequence of Proposition 1.6.

Proposition 1.10. *Every TUFF-group is not compressible.*

2. Rational structures and discrete uniform subgroups

General references for the material in this section are [3] and [11] as well as the original paper of Mal'cev [8].

Let G be a connected and simply connected nilpotent Lie group with Lie algebra \mathfrak{g} . Then the exponential map $\exp: \mathfrak{g} \rightarrow G$ is a diffeomorphism. Let $\log: G \rightarrow \mathfrak{g}$ denote the inverse of \exp .

2.1. Rational structures. Let G be a nilpotent, connected and simply connected real Lie group and let \mathfrak{g} be its Lie algebra. We say that \mathfrak{g} (or G) has a *rational structure* if there is a Lie algebra $\mathfrak{g}(\mathbb{Q})$ over \mathbb{Q} such that $\mathfrak{g} \cong \mathfrak{g}(\mathbb{Q}) \otimes \mathbb{R}$. It is clear that \mathfrak{g} has a rational structure if and only if \mathfrak{g} has an \mathbb{R} -basis (X_1, \dots, X_n) with rational structure constants.

2.2. Uniform subgroups. A discrete subgroup Γ is called *uniform* in G if the quotient space G/Γ is compact. A proof of the next result can be found in Theorem 7 of [8] or in Theorem 2.12 of [11].

Theorem 2.1 (The Malcev rationality criterion). *Let G be a simply connected nilpotent Lie group, and let \mathfrak{g} be its Lie algebra. Then G admits a uniform subgroup Γ if and only if \mathfrak{g} admits a basis (X_1, \dots, X_n) such that*

$$[X_i, X_j] = \sum_{k=1}^n c_{ijk} X_k, \quad (\forall 1 \leq i, j \leq n),$$

where the constants c_{ijk} are all rational.

2.3. The Malcev rigidity theorem. The following is a theorem of Mal'cev ([8, Theorem 5]); see also ([9, Theorem 4]).

Theorem 2.2 (Malcev rigidity theorem). *Let G_1 and G_2 be connected simply connected nilpotent Lie groups and Γ_1, Γ_2 discrete uniform subgroups of G_1 and G_2 . Any abstract group isomorphism ϕ between Γ_1 and Γ_2 extends uniquely to an isomorphism $M(\phi)$ of G_1 on G_2 ; that is, the following diagram*

$$(2.1) \quad \begin{array}{ccc} \Gamma_1 & \xrightarrow{\phi} & \Gamma_2 \\ i \downarrow & & \downarrow i \\ G_1 & \xrightarrow{M(\phi)} & G_2 \end{array}$$

is commutative, where i is the inclusion mapping. The isomorphism $M(\phi)$ is called the Mal'cev extension of ϕ .

3. An explicit Euler characteristic on TUF. Proof of Theorem 1.5

Let G be a connected Lie group, $\mathcal{S}(G)$ be the space of discrete uniform (i.e., cocompact) subgroups of G . Let μ be a right Haar measure of G . Let $\Gamma \in \mathcal{S}(G)$, the measure μ induces a finite measure $\bar{\mu}$ over the homogeneous space G/Γ . Let

$$V_G^\mu: \mathcal{S}(G) \rightarrow \mathbb{R}_+$$

defined for $\Gamma \in \mathcal{S}(G)$ by

$$V_G^\mu(\Gamma) = \bar{\mu}(G/\Gamma).$$

REMARK 3.1. We recall that if F is a fundamental domain for G/Γ then $\bar{\mu}(G/\Gamma) = \mu(F)$ ([7, p. 430]).

The notation $H \leq_f K$ signifies that H is a finite index subgroup of the group K . A proof of the following proposition can be found in Lemma 3.2 of [7].

Proposition 3.2. *If $H, K \in \mathcal{S}(G)$ and if $H \leq_f K$ then we have*

$$(3.1) \quad V_G^\mu(H) = [K : H]V_G^\mu(K).$$

Proposition 3.3. *Let G in TULG and μ a Haar measure on G . Let Γ_1, Γ_2 be two isomorphic subgroups of $\mathcal{S}(G)$. Then we have*

$$(3.2) \quad V_G^\mu(\Gamma_1) = V_G^\mu(\Gamma_2).$$

Proof. Let ϕ be an isomorphism of Γ_1 onto Γ_2 . Let F be a fundamental domain of G/Γ_1 and compute

$$\begin{aligned} V_G^\mu(\Gamma_1) &= \mu(F) \\ &= \mu(\mathbf{M}(\phi)(F)) \\ &= V_G^\mu(\Gamma_2). \end{aligned}$$

□

We define an equivalence relation \simeq on TULG by

$$G_1 \simeq G_2 \iff G_1, G_2 \text{ are isomorphic.}$$

For $G \in \text{TULG}$, let $[G]$ be the equivalence class containing G . Let T be a transversal for the equivalence relation \simeq .

Let H, K be two groups (resp. Lie groups), the set of all isomorphisms (resp. Lie groups isomorphisms) of H onto K is denoted by $\mathcal{R}(H, K)$.

Lemma 3.4. *Let $G_0 \in T$ and $G \in [G_0]$. For every $\phi, \psi \in \mathcal{R}(G_0, G)$ we have*

$$\phi_*\mu_0 = \psi_*\mu_0,$$

where $\phi_*\mu_0$ (resp. $\psi_*\mu_0$) is the push forward of μ_0 under ϕ (resp. ψ).

Proof. Let F be a measurable set and compute

$$\begin{aligned} \phi_*\mu_0(F) &= \mu_0(\phi^{-1}(F)) \\ &= \mu_0(\psi^{-1}\phi(\phi^{-1}(F))) \quad (\psi^{-1}\phi \in \text{Aut}(G_0)) \\ &= \mu_0(\psi^{-1}(F)) \\ &= \psi_*\mu_0(F). \end{aligned}$$

□

Let $G_0 \in T$ and μ_0 a Haar measure on G_0 . Let $G \in [G_0]$ and $\Gamma \in \mathcal{S}(G)$. The function

$$\mathcal{R}(G_0, G) \rightarrow \mathbb{R}, \quad \phi \rightarrow V_G^{\phi_*\mu_0}(\Gamma)$$

is constant. In the sequel, we note

$$V[G_0, \mu_0, G](\Gamma) = V_G^{\phi_* \mu_0}(\Gamma) \quad (\forall \phi \in \mathcal{R}(G_0, G)).$$

Let $G_1, G_2 \in [G_0]$. For every $\psi \in \mathcal{R}(G_0, G_2)$ and $\phi \in \mathcal{R}(G_1, G_2)$, we note

$$V[G_0, \mu_0, G_1] * \phi = V[G_0, \mu_0, G_2] \circ \phi^*,$$

$$\psi * V[G_0, \mu_0, G_1] = V[\psi(G_0), \psi_* \mu_0, G_1],$$

where $\phi^* : \mathcal{S}(G_1) \rightarrow \mathcal{S}(G_2)$, $\Gamma \mapsto \phi(\Gamma)$.

Proposition 3.5. *With the same notation as above we have:*

$$(3.3a) \quad V[G_0, \mu_0, G_1] * \phi = V[G_0, \mu_0, G_1],$$

$$(3.3b) \quad \psi * V[G_0, \mu_0, G_1] = V[G_0, \mu_0, G_1].$$

Proof. Let $\Gamma \in \mathcal{S}(G_1)$. Let F be a fundamental domain for G_1/Γ and compute

$$\begin{aligned} V[G_0, \mu_0, G_1] * \phi(\Gamma) &= V[G_0, \mu_0, G_2](\phi(\Gamma)) \\ &= V_{G_2}^{\phi_* \mu_0}(\phi(\Gamma)) \quad (\phi \in \mathcal{R}(G_0, G_2)) \\ &= \phi_* \mu_0(\phi(F)) \\ &= (\phi^{-1} \phi)_* \mu_0(F) \\ &= V_{G_1}^{(\phi^{-1} \phi)_* \mu_0}(F) \\ &= V[G_0, \mu_0, G_1](\Gamma). \end{aligned}$$

Similarly, we prove (3.3b). □

We come now to the principal theorem of this paper, in which we give an explicit Euler characteristic on TUF.

Theorem 3.6. *The mapping*

$$\chi : TUF \rightarrow \mathbb{R}, \quad \Gamma \mapsto V[G_0, \mu_0, G_\Gamma](\Gamma),$$

where $\{G_0\} = [G_\Gamma] \cap T$, is an Euler characteristic on TUF, which does not depend of the choice of transversal.

Proof. Let Γ be a TUF-group and $\Gamma_0 \leq_f \Gamma$. Then Γ_0 and Γ have the same Hirsch length, it follows that $\mathfrak{g}_{\Gamma_0} = \mathfrak{g}_\Gamma$ and hence the class TUF is closed under taking subgroups of finite index. Let Γ_1 and Γ_2 be two isomorphic TUF-groups. By Theorem 2.2,

the Lie groups G_{Γ_1} and G_{Γ_2} are isomorphic and hence $[G_{\Gamma_1}] = [G_{\Gamma_2}]$. Let

$$\{G_0\} = [G_{\Gamma_1}] \cap T.$$

Let $\phi \in \mathcal{R}(\Gamma_1, \Gamma_2)$ and compute

$$\begin{aligned} \chi(\Gamma_2) &= V[G_0, \mu_0, G_{\Gamma_2}](\Gamma_2) \\ &= V[G_0, \mu_0, G_{\Gamma_1}] * M(\phi)(\Gamma_1) \\ &= V[G_0, \mu_0, G_{\Gamma_1}](\Gamma_1) \quad (\text{by (3.3a)}) \\ &= \chi(\Gamma_1). \end{aligned}$$

This completes the proof of (Ec1). (Ec2) follows from (3.1). Finally, the formula (3.3b) implies that the mapping χ is independent of the choice of the transversal T . \square

References

- [1] I. Belegradek: *On co-Hopfian nilpotent groups*, Bull. London Math. Soc. **35** (2003), 805–811.
- [2] I.M. Chiswell: *Euler characteristics of groups*, Math. Z. **147** (1976), 1–11.
- [3] L.J. Corwin and F.P. Greenleaf: *Representations of Nilpotent Lie Groups and Their Applications, Part I*, Cambridge Studies in Advanced Mathematics **18**, Cambridge Univ. Press, Cambridge, 1990.
- [4] J. Dixmier and W.G. Lister: *Derivations of nilpotent Lie algebras*, Proc. Amer. Math. Soc. **8** (1957), 155–158.
- [5] A. Karrass, A. Pietrowski and D. Solitar: *An improved subgroup theorem for HNN groups with some applications*, Canad. J. Math. **26** (1974), 214–224.
- [6] G. Leger and S. Tôgô: *Characteristically nilpotent Lie algebras*, Duke Math. J. **26** (1959), 623–628.
- [7] A.M. Macbeath and S. Świerczkowski: *Limits of lattices in a compactly generated group*, Canad. J. Math. **12** (1960), 427–437.
- [8] A.I. Malcev: *On a class of homogeneous spaces*, Amer. Math. Soc. Translation **1951** (1951).
- [9] Y. Matsushima: *On the discrete subgroups and homogeneous spaces of nilpotent Lie groups*, Nagoya Math. J. **2** (1951), 95–110.
- [10] L.P. Polek: *Small neighborhoods of the identity of a real nilpotent group*, Proc. Amer. Math. Soc. **42** (1973), 627–630.
- [11] M.S. Raghunathan: *Discrete Subgroups of Lie Groups*, Springer, New York, 1972.
- [12] A. Reznikov: *Volumes of discrete groups and topological complexity of homology spheres*, Math. Ann. **306** (1996), 547–554.
- [13] G.C. Smith: *Compressibility in nilpotent groups*, Bull. London Math. Soc. **17** (1985), 453–457.
- [14] S. Yamaguchi: *Derivations and affine structures of some nilpotent Lie algebras*, Mem. Fac. Sci. Kyushu Univ. Ser. A **34** (1980), 151–170.
- [15] C.T.C. Wall: *Rational Euler characteristics*, Proc. Cambridge Philos. Soc. **57** (1961), 182–184.

Department of Mathematics
Faculty of Sciences at Sfax
University of Sfax
Route Soukra, B.P. 1171, 3000 Sfax
Tunisia
e-mail: hatemhhamrouni@voila.fr