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Abstract
Let p be a fixed odd prime number andKn the pnC1-st cyclotomic field. For a

fixed integerd 2 Z with
p

d � K0, denote byLn the imaginary quadratic subexten-
sion of the biquadratic extensionKn(

p

d)=KC

n with Ln ¤ Kn. Let h�n and h�n be the
relative class numbers ofKn and Ln, respectively. We give an explicit constantnd
depending onp andd such that (i) for any integern � nd, the ratioh�n =h

�

n�1 is odd
if and only if h�n=h

�

n�1 is odd and (ii) for 1� n < nd, h�n =h
�

n�1 is even.

1. Introduction

Let p be a fixed odd prime number. LetKn D Q(�pnC1) be the pnC1-st cyclo-
tomic field for an integern � 0, and K

1

D

S

n Kn. Let d 2 Z be a fixed integer with
p

d � K0. We denote byLn the imaginary quadratic subextension of the biquadratic
extensionKn(

p

d)=KC

n with Ln ¤ Kn. Here, KC denotes the maximal real subfield of

an imaginary abelian fieldK . When d < 0, we haveLn D KC

n (
p

d). We call Ln the
quadratic twist ofKn associated to the integerd. The extensionL

1

D

S

n Ln is the
cyclotomic Z p-extension overL0 with the n-th layer Ln. We call L

1

=L0 the quad-
ratic twist of the cyclotomicZ p-extensionK

1

=K0 associated tod. Let h�n and h�n be
the relative class numbers ofKn and Ln, respectively. It is known and easy to show
that h�n�1 (resp.h�n�1) divides h�n (resp.h�n ) using class field theory. The parity ofh�0
behaves rather irregularly whenp varies (see a table in Schoof [6]). However, it is
recently shown that whenp � 509, the ratioh�n=h

�

n�1 is odd for all n � 1 ([3, The-
orem 2]). And it might be possible that the ratio is odd for anyprime p and any
n � 1. The purpose of this paper is to study the parity of the ratioh�n =h

�

n�1 of the
quadratic twistLn. We already know thath�n =h

�

n�1 is odd for sufficiently largen by
a theorem of Washington [8] on the non-p-part of the class number in a cyclotomic
Z p-extension. Denote byS D Sd the set of prime numbersl ¤ p which ramify in

Q(
p

d)=Q. The setS is non-empty as
p

d � K0. We define an integernd � 1 by

nd D max{ordp(l p�1
� 1) j l 2 S},
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where ordp(�) is the normalizedp-adic additive valuation. The following is the main
theorem of this paper.

Theorem 1. Under the above setting, the following assertions hold.
(I) When n� nd, the ratio h�n =h

�

n�1 is odd if and only if h�n=h
�

n�1 is odd.
(II) When nd � 2 and 1� n < nd, the ratio h�n =h

�

n�1 is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain the following:

Corollary 1. Under the above setting, let p be an odd prime number with p�
509. Then the ratio h�n =h

�

nd�1 is odd for all n� nd.

This corollary, though given in a very special setting, is anexplicit version of
the above mentioned theorem of Washington. In [4], we showedTheorem 1 when
d D �1 and Ln D KC

n (
p

�1) using some results of cyclotomic Iwasawa theory. In
this paper, we prove Theorem 1 by using a main theorem of Conner and Hurrelbrink
[1, Theorem 2.3].

REMARK . When p � 1 mod 4 (resp.p � 3 mod 4), we can show that two in-
tegersd1 and d2 give the same twistL

1

=L0 of K
1

=K0 if and only if d2 D d1x2 or
d2 D pd1x2 (resp.d2 D �pd1x2) for somex 2 Q�. Hence, the setSd and the integer
nd depend only on the twistL

1

=L0 and not on the choice ofd.

2. Exact hexagon of Conner and Hurrelbrink

In this section, we recall the exact hexagon of Conner and Hurrelbrink. Let k
be an imaginary abelian field with 2-power degree, andF a real abelian field with
2  [F W Q]. We put K D kF, and

G D Gal(K=k) D Gal(KC

=kC) D Gal(F=Q).

For a number fieldN, let AN be the 2-part of the ideal class group ofN, ON the ring
of integers, andEN D O�

N the group of units ofN. The groupsAK and EK are natur-
ally regarded as modules over Gal(K=KC) and at the same time as those overG. For a
Gal(K=KC)-module X, denote byH i (X) D H i (K=KC

I X) the Tate cohomology group
with i D 0, 1. WhenX D AK or EK , the groupH i (X) is also regarded asG-modules.
In [1, Theorem 2.3], Conner and Hurrelbrink introduced the following exact hexagon
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of G-modules to study the 2-part of the class number of a relativequadratic extension.

H1(AK ) K H1(EK )

K

R0(K )

K

R1(K )
K

H0(EK )

i0K

H0(AK )K

Here, Ri (K ) is a certainG-module associated toK=KC defined in [1]. We describe
the G-module structure ofRi (K ) following [1]. Let Tf be the set of prime ideals}
of kC for which a prime idealP of KC over } ramifies in K . Let T

1

be the set of
infinite prime divisors ofkC. We put T D T f [ T

1

. For eachv 2 T , let G
v

� G be
the decomposition group ofv at KC

=kC. When v is an infinite prime, the groupG
v

is trivial. We defineG-modules� f and�
1

by

� f D
M

}2T f

F2[G=G
}

] and �

1

D

M

v2T
1

F2[G=G
v

] D
M

v2T
1

F2[G],

respectively, whereF2 D Z=2Z is the finite field with two elements. (WhenTf is
empty,� f D {0} by definition.) For each prime divisorw of KC with the restriction
w

jkC 2 T and an elementx 2 (KC)�, we put �
w

(x) D 0 or 1 according asx 2 N(K�

w

)
or not. Here,K

w

is the completion ofK at the unique prime divisor ofK overw and
N D NK=KC is the norm map. Forg 2 G and x 2 (KC)�, we see that

(1) �

w

g(x) D �
w

(xg�1
)

by local class field theory. For a prime idealP of KC with P \ kC 2 Tf , let QP be

the unique prime ideal ofK over P. For an idealA of K , writing A D QPeB with an
integere and an idealB relatively prime to QP, we put ordP(A) D e.

We denote byI (K ) the group of (fractional) ideals ofK . Let X be the subgroup
of I (K ) consisting of idealsA with AJ

D A. Here, J is the complex conjugation acting
on several objects associated toK . Let X0 be the subgroup ofX consisting of ideals
A 2 I (K ) with AD xB1CJ for somex 2 (KC)� andB 2 I (K ). The G-module R1(K )
is isomorphic to the quotientX=X0. For this, see the lines 1–2 from the bottom of
p. 6 and Lemma 2.1 of [1]. For each prime ideal} 2 Tf , we fix a prime idealP of
KC over }. From the argument in [1, §5], we obtain the following isomorphism of
G-modules:

(2) R1(K ) � � f I AX0!
M

}2T f

0

�

X

Ng

ordPg(A) Ng

1

A,

where Ng (with g 2 G) runs over the quotientG=G
}

.
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Let Y be the subgroup of the multiplicative group (KC)� � I (K ) consisting of pairs
(x,A) with xA1CJ

DOK . Let Y0 be the subgroup ofY consisting of pairs (N(y),y�1B1�J)
with y 2 K� andB 2 I (K ). By definition,R0(K )D Y=Y0. We denote by [x,A] 2 R0(K )
the class containing (x, A). The mapi0 in the hexagon is defined by

i0 W H0(EK ) D EKC

=N(EK )! R0(K )I [�] ! [�, OK ]

with � 2 EKC . For eachv 2 T
1

, we fix a prime divisor Qv of KC over v. Using (1),
we observe that the homomorphisms

�

1

W (KC)� ! �

1

I x!
M

v2T
1

0

�

X

g2G

�

Qv

g(x)g

1

A

and

� f W (K
C)� ! � f I x!

M

}2Tf

0

�

X

Ng

�Pg(x) Ng

1

A

are compatible with the action ofG. Further,�
1

is nothing but the “sign” map. From
the argument in [1, §4], we obtain the following exact sequence of G-modules:

(3) {0} ! R0(K )
�

�! � f ��1

�

�! F2! {0}.

Here,� is defined by�([x, A]) D (� f (x), �
1

(x)), � is the argumentation map andG
acts trivially onF2.

3. Consequences

In this section, we derive some consequences of the exact hexagon and (2), (3).
All of them are G-decomposed versions of the corresponding results in [1]. We work
under the setting of Section 2. Denote byQAKC the 2-part of the narrow class group
of KC. Letting KC

>0 be the group of totally positive elements ofKC, we have an ex-
act sequence

(4) {0}! (KC)�=(KC

>0EKC)! QAKC

! AKC

! {0}

of G-modules. We define the minus class groupA�K to be the kernel of the norm map
AK ! AKC . Let � be a NQ2-valued character ofG D Gal(K=k) D Gal(F=Q), which
we also regard as a primitive Dirichlet character. For a module M over Z2[G], we
denote byM(�) the �-part of M. Here,Z2 is the ring of 2-adic integers andNQ2 is a
fixed algebraic closure of the 2-adic rationalsQ2. (For the definition of the�-part and
some of its properties, see Tsuji [7, §2].) Denote bySK the set of prime numbers lying
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below some prime ideal inT f . In all what follows, we assume that� is a nontrivial
character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above setting, the groups Hi (K=KC

I AK )(�) with i D 0
and 1 are trivial if and only if
(i) �(l ) ¤ 1 for all l 2 SK and
(ii) j QAKC(�)j D jAKC(�)j.

The following corollary is a version of [1, Corollary 13.10]and Hasse [2, Satz 45].

Corollary 2. Under the above setting, the group A�K (�) is trivial if and only if
(i) �(l ) ¤ 1 for all l 2 SK and
(ii) QAKC(�) is trivial.

Let QhM be the class number in the narrow sense of a number fieldM. When M
is an imaginary abelian field, leth�M be the relative class number ofM. We can easily

show thath�k (resp. QhkC ) divides h�K (resp. QhKC) using class field theory. The following
is an immediate consequence of Corollary 2.

Corollary 3. Under the above setting, the ratio h�K =h
�

k is odd if and only if
(i) no prime number l in SK splits in F and
(ii) QhKC

=

QhkC is odd.

To prove these assertions, we prepare the following two lemmas. For a number
field L, let �(L) be the group of roots of unity inL and�2(L) the 2-part of�(L).

Lemma 1. The group H1(K=KC

I EK )(�) is trivial.

Proof. Let N EK be the group of units� 2 EK with N(�) D �1CJ
D 1. We have

N(�)D 1 if and only if � 2 �(K ) by a theorem on units of a CM-field (cf. Washington
[9, Theorem 4.12]). Since�(K )2

D �(K )1�J
� E1�J

K , we obtain a surjection

�(K )=�(K )2
! H1(K=KC

I EK ) D N EK =E1�J
K

of G-modules. However, as [K W k] is odd, we have

�(K )=�(K )2
D �2(K )=�2(K )2

D �2(k)=�2(k)2.

Since � is nontrivial, the�-part (�2(k)=�2(k)2)(�) is trivial. Hence, we obtain the
assertion.

Lemma 2. The natural map AKC(�)! AK (�) is injective.
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Proof. Denote the natural mapAKC

! AK by �. Let A be an ideal ofKC with
the class [A] 2 ker�. ThenAOK D xOK for somex 2 K�. We see that� D x1�J is a
unit of K with N(�) D 1. It is known that the map

ker �! H1(K=KC

I EK )I [A] ! x1�J E1�J
K

is an injectiveG-homomorphism ([1, Theorem 7.1]). Then, from Lemma 1, we see
that the�-part (ker�)(�) is trivial, from which we obtain the assertion.

Proof of Theorem 2. Let} be a prime ideal inTf , and l D }\Q 2 SK . We see
that the�-part F2[G=G

}

](�) ¤ {0} if and only if � factors throughG=G
}

, which is
equivalent to�(G

}

) D {1}. Since [kC W Q] is a 2-power and [F W Q] is odd, we have
�(G

}

) D {1} if and only if �(l ) D 1. Hence, we have shown that the condition (i) in
Theorem 2 is equivalent to the condition� f (�) D {0}. By the hexagon and Lemma 1,
we see thatH0(AK )(�) and H1(AK )(�) are trivial if and only if (iii) R1(K )(�) D {0}

and (iv) the map

i0 W H0(EK )(�) D (EKC

=N(EK ))(�)! R0(K )(�)

is an isomorphism. By (2) and the above, the condition (iii) is equivalent to (i). Under
the condition (i), we see thatR0(K )(�) D �

1

(�) from the exact sequence (3), and
that for each class [�] 2 H0(EK )(�) with � 2 EKC , we have i0([�]) D �

1

(�) from
the definitions of the mapsi0 and �. Further, the 2-rank of�

1

(�) is larger than or
equal to that ofH0(EK )(�) by a theorem of Minkowski on units of a Galois extension
(cf. Narkiewicz [5, Theorem 3.26]). Therefore, under (i), we observe that the condi-
tion (iv) holds if and only if �

1

(EKC)(�) D �

1

(�). We see that the last condition
is equivalent to the condition (ii) in Theorem 2 because of the exact sequence (4) and
�

1

((KC)�)(�) D �
1

(�). Therefore, we obtain Theorem 2.

Proof of Corollary 2. First, we show the “only if ” part assuming that A�K (�) is
trivial. By Lemma 2, we can regardAKC(�) as a subgroup ofAK (�). Assume that
AKC(�) is nontrivial. Then there exists a classc 2 AKC(�) of order 2. We havecJ

D

c D c�1, and hencec 2 A�K (�). It follows that A�K (�) is nontrivial, a contradiction.
Hence,AKC(�) D {0}. It follows that AK (�) is trivial by the exact sequence

{0} ! A�K (�)! AK (�)
1CJ
��! AKC(�)! {0}.

Therefore, the “only if ” part follows from Theorem 2. Next, assume that the condi-
tions (i) and (ii) in Corollary 2 are satisfied. Then,AKC(�) D {0}, and the groups
H i (AK )(�) (i D 0, 1) are trivial by Theorem 2. As the cohomology groups are trivial,
we obtain an exact sequence

{0}! AKC(�) ,! AK (�)
1�J
��! A1�J

K (�) D A�K (�)! {0}.
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Since AKC(�) D {0}, we see thatAK (�) D A�K (�), and

A�K (�) D A�K (�)1�J
D A�K (�)2

from the above exact sequence. Therefore,A�K (�) is trivial.

4. Proof of Theorem 1

We use the same notation as in Section 1. In particular,d 2 Z is a fixed integer
with

p

d � K0 and Ln is the quadratic twist ofKn associated tod. We haveLCn D KC

n .
Let k (resp.kd) be the maximal intermediate field ofK0=Q (resp. L0=Q) of 2-power
degree, and letF0 be the maximal subfield ofKC

0 D LC0 of odd degree overQ. Then
k and kd are imaginary abelian fields withkC D kCd . Let Bn=Q be the real abelian
field with conductorpnC1 and [Bn W Q] D pn. We put Fn D F0Bn. Then Ln D kd Fn

and Kn D kFn. The triples (kd, Fn, Ln) and (k, Fn, Kn) correspond to (k, F, K ) in
Sections 2 and 3. We see that

(5) SLn D Sd or Sd [ {p}

and SKn D {p}. We put

Gn D Gal(Fn=Q) D Gal(Ln=kd) D Gal(Kn=k),

and

1 D Gal(F0=Q), 0n D Gal(Fn=F0) D Gal(Bn=Q).

Then we have a natural decompositionGn D 1 � 0n. For characters' and  of 1
and0n respectively, we regard' D ' �  as a character ofGn. Further, we regard
',  and ' also as primitive Dirichlet characters. The class groupsA�Ln

, A�Kn
and

QAKC

n
are modules overGn. We can naturally regardA�Ln�1

as a subgroup ofA�Ln
since

Ln=Ln�1 is a cyclic extension of degreep ¤ 2 and A�Ln�1
is the 2-part of the class

group. Actually, it is a direct summand ofA�Ln
(cf. [9, Lemma 16.15]). We see that

(6) A�Ln
=A�Ln�1

D

M

', n

A�Ln
(' n)

where ' (resp. n) runs over a complete set of representatives of theQ2-conjugacy
classes of theNQ2-valued characters of1 (resp.0n of order pn). RegardingA�Kn�1

as
a subgroup ofA�Kn

, we have a similar decomposition forA�Kn
=A�Kn�1

. As SKn D {p}

and (' n)(p) D 0, we obtain the following assertion from Corollary 2 for thetriple
(k, Fn, Kn).

Lemma 3. Let n� 1 be an integer, and the characters' and  n be as in(6).
Then A�Kn

(' n) D {0} if and only if QAKC

n
(' n) D {0}.
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Proof of Theorem 1 (I). Let' and n be as in (6). As the orders of' and n

are relatively prime to each other, we have (' n)(l )D 1 if and only if '(l )D  n(l )D 1
for a prime numberl . Let n be an integer withn � nd. Then we have n(l ) ¤ 1 and
hence (' n)(l ) ¤ 1 for all prime numbersl 2 SD Sd. Further, we have (' n)(p) D 0.
Hence, by (5), the condition (i) in Corollary 2 for the triple(kd, Fn, Ln) is satisfied.
It follows that the conditionA�Ln

(' n) D {0} is equivalent to QAKC

n
(' n) D {0}. (Note

that LCn D KC

n .) Therefore, we obtain Theorem 1(I) from Lemma 3.

To show Theorem 1 (II), assume thatnd � 2 and letn be an integer with 1� n <
nd. We put

S(n)
D {l 2 SD Sd j ordp(l p�1

� 1)� nC 1}.

From the definition, we see that

S� S(1)
� S(2)

� � � � � S(nd�1)

and that eachS(n) is non-empty. Let' (resp. n) be a NQ2-valued character of1 (resp. of
0n of order pn). Denote by'0 the trivial character of1. Theorem 1 (II) is a conse-
quence of the following assertion.

Proposition 1. Under the above setting, the following hold.
(I) The class group A�Ln

(' n) is nontrivial if '(l )D 1 for some l2 S(n). In particular,
A�Ln

('0 n) is nontrivial.
(II) If A�

Kn
(' n) D {0}, the converse of the first assertion of(I ) holds.

Proof. Applying Corollary 2 for the triple (kd, Fn,Ln), we see from Lemma 3 that
A�Ln

(' n) D {0} if and only if (i) (' n)(l ) ¤ 1 for all l 2 SD Sd and (ii) A�Kn
(' n) D

{0}. We have n(l ) D 1 for l 2 S(n), and n(l ) ¤ 1 for l 2 Sn S(n). Therefore, we see
that the condition (i) is satisfied if and only if'(l ) ¤ 1 for all l 2 S(n) noting that the
orders of' and n are relatively prime. From this, we obtain the proposition.

We put Mn D Kn(
p

d) D KnLn. On the relative class numberh�Mn
of Mn, the

following assertion holds.

Proposition 2. (I) When n� nd, the ratio h�Mn
=h�Mn�1

is odd if and only if h�n=h
�

n�1

is odd.
(II) When nd � 2 and 1� n < nd, h�Mn

=h�Mn�1
is even.

To prove this proposition, we need to show the following lemma. For an imaginary
abelian fieldN, we put

EN D EN=�(N)ENC .

It is well known that the unit indexQN D jEN j is 1 or 2 ([9, Theorem 4.12]).
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Lemma 4. Let T and N be imaginary abelian fields with N� T . If the degree
[T W N] is odd, then QT D QN .

Proof. We first show that the inclusion mapN ! T induces an injectionEN ,!

ET . For a unit� of N, assume that� D �� for some� 2 �(T) and � 2 ETC . Let �
be a nontrivial element of the Galois groupG D Gal(T=N). Then, as� D �� , we see
that � 1��

D �

��1
2 �(T)\ ETC . Hence,� 1��

D �1. However, asNT=N(� 1��) D 1 and
[T W N] is odd, the case� 1��

D �1 does not happen. Hence,� 1��
D 1 for all � 2 G. It

follows that � 2 �(N) and hence� 2 ENC . Therefore, we can regardEN as a subgroup
of ET . In particular,QN divides QT .

Assume thatQN ¤ QT . Then we havejET j D jET=EN j D 2. RegardingET as a
module overG, we have a canonical decomposition

ET D ET=EN D
M

�

ET (�)

where � runs over a complete set of representatives of theQ2-conjugacy classes of
the nontrivial NQ2-valued characters ofG. Hence,jET (�)j D 2 for some such� . Let
Z2[� ] be the subring of NQ2 generated by the values of� over Z2. The groupET (�) is
naturally regarded as a module over the principal ideal domain Z2[� ]. Since the order
of � is odd and� 3, we observe thatZ2[� ] � Zd

2 as Z2-modules for somed � 2.
Hence,jEn(�)j is a multiple of 2d, which contradictsjEn(�)j D 2. Therefore, we obtain
QN D QT .

Proof of Proposition 2. By Lemma 4, we haveQMn D QMn�1 and QLn D QLn�1

for all n� 1. Therefore, using the class number formula [9, Theorem 4.17], we see that

h�Mn
=h�Mn�1

D p
Y

$

Y

 n

�

�

1

2
B1,$ n

�

where$ runs over the odd Dirichlet characters associated toM0, and n over the even
characters of conductorpnC1 and order pn. Further, B1,$ n denotes the generalized
Bernoulli number. We easily see that$ equals an odd Dirichlet character associated
to K0 or L0 since M0=KC

0 is an imaginary biquadratic extension with the imaginary
quadratic subextensionsK0 and L0. Hence, using the class number formulas forLn,
Kn and QLn D QLn�1, we obtain

h�Mn
=h�Mn�1

D h�n=h
�

n�1 � h�n =h
�

n�1.

Therefore, the assertion follows from Theorem 1.
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