CLASS NUMBER PARITY OF A QUADRATIC TWIST OF
A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR

HUMIO ICHIMURA

(Received March 23, 2011, revised October 5, 2011)

Abstract

Let \(p \) be a fixed odd prime number and \(K_n \) the \(p^{n+1} \)-st cyclotomic field. For a fixed integer \(d \in \mathbb{Z} \) with \(\sqrt{d} \notin K_0 \), denote by \(L_n \) the imaginary quadratic subextension of the biquadratic extension \(K_n(\sqrt{d})/K_n^+ \) with \(L_n \neq K_n \). Let \(h_n^+ \) and \(h_n^- \) be the relative class numbers of \(K_n \) and \(L_n \), respectively. We give an explicit constant \(n_d \) depending on \(p \) and \(d \) such that (i) for any integer \(n \geq n_d \), the ratio \(h_n^-/h_{n-1}^- \) is odd if and only if \(h_n^+/h_{n-1}^+ \) is odd and (ii) for \(1 \leq n < n_d \), \(h_n^-/h_{n-1}^- \) is even.

1. Introduction

Let \(p \) be a fixed odd prime number. Let \(K_n = \mathbb{Q}(\zeta_{p^{n+1}}) \) be the \(p^{n+1} \)-st cyclotomic field for an integer \(n \geq 0 \), and \(K_\infty = \bigcup_n K_n \). Let \(d \in \mathbb{Z} \) be a fixed integer with \(\sqrt{d} \notin K_0 \). We denote by \(L_n \) the imaginary quadratic subextension of the biquadratic extension \(K_n(\sqrt{d})/K_n^+ \) with \(L_n \neq K_n \). Here, \(K^+ \) denotes the maximal real subfield of an imaginary abelian field \(K \). When \(d < 0 \), we have \(L_n = K_n^+ (\sqrt{d}) \). We call \(L_n \) the quadratic twist of \(K_n \) associated to the integer \(d \). The extension \(L_\infty = \bigcup_n L_n \) is the cyclotomic \(\mathbb{Z}_p \)-extension over \(L_0 \) with the \(n \)-th layer \(L_n \). We call \(L_\infty/L_0 \) the quadratic twist of the cyclotomic \(\mathbb{Z}_p \)-extension \(K_\infty/K_0 \) associated to \(d \). Let \(h_n^+ \) and \(h_n^- \) be the relative class numbers of \(K_n \) and \(L_n \), respectively. It is known and easy to show that \(h_n^+ \) (resp. \(h_n^- \)) divides \(h_n^+(\text{resp.} h_n^-) \) using class field theory. The parity of \(h_n^+ \) behaves rather irregularly when \(p \) varies (see a table in Schoof [6]). However, it is recently shown that when \(p \leq 509 \), the ratio \(h_n^+/h_{n-1}^+ \) is odd for all \(n \geq 1 \) ([3, Theorem 2]). And it might be possible that the ratio is odd for any prime \(p \) and any \(n \geq 1 \). The purpose of this paper is to study the parity of the ratio \(h_n^-/h_{n-1}^- \) of the quadratic twist \(L_n \). We already know that \(h_n^-/h_{n-1}^- \) is odd for sufficiently large \(n \) by a theorem of Washington [8] on the non-\(p \)-part of the class number in a cyclotomic \(\mathbb{Z}_p \)-extension. Denote by \(S = S_d \) the set of prime numbers \(l \neq p \) which ramify in \(\mathbb{Q}(\sqrt{d})/\mathbb{Q} \). The set \(S \) is non-empty as \(\sqrt{d} \notin K_0 \). We define an integer \(n_d \geq 1 \) by

\[
n_d = \max \{ \text{ord}_p(l^{p-1} - 1) \mid l \in S \},
\]
where \(\text{ord}_p(*) \) is the normalized \(p \)-adic additive valuation. The following is the main theorem of this paper.

Theorem 1. Under the above setting, the following assertions hold.

(I) When \(n \geq n_d \), the ratio \(h_n^*/h_{n-1}^* \) is odd if and only if \(h_n^*/h_{n-1}^* \) is odd.

(II) When \(n_d \geq 2 \) and \(1 \leq n < n_d \), the ratio \(h_n^-/h_{n-1}^- \) is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain the following:

Corollary 1. Under the above setting, let \(p \) be an odd prime number with \(p \not\equiv 509 \). Then the ratio \(h_n^-/h_{n-1}^- \) is odd for all \(n \geq n_d \).

This corollary, though given in a very special setting, is an explicit version of the above mentioned theorem of Washington. In [4], we showed Theorem 1 when \(d = -1 \) and \(L_n = K_n^+(\sqrt{-1}) \) using some results of cyclotomic Iwasawa theory. In this paper, we prove Theorem 1 by using a main theorem of Conner and Hurrelbrink [1, Theorem 2.3].

Remark. When \(p \equiv 1 \mod 4 \) (resp. \(p \equiv 3 \mod 4 \)), we can show that two integers \(d_1 \) and \(d_2 \) give the same twist \(L_\infty/L_0 \) of \(K_\infty/K_0 \) if and only if \(d_2 = \pm d_1 x^2 \) or \(d_2 = p d_1 x^2 \) (resp. \(d_2 = -p d_1 x^2 \)) for some \(x \in \mathbb{Q}^\times \). Hence, the set \(S_d \) and the integer \(n_d \) depend only on the twist \(L_\infty/L_0 \) and not on the choice of \(d \).

2. **Exact hexagon of Conner and Hurrelbrink**

In this section, we recall the exact hexagon of Conner and Hurrelbrink. Let \(k \) be an imaginary abelian field with 2-power degree, and \(F \) a real abelian field with \(2 \not| \{F : \mathbb{Q}\} \). We put \(K = kF \), and

\[
G = \text{Gal}(K/k) = \text{Gal}(K^+/k^+) = \text{Gal}(F/\mathbb{Q}).
\]

For a number field \(N \), let \(A_N \) be the 2-part of the ideal class group of \(N \), \(O_N \) the ring of integers, and \(E_N = O_N^\times \) the group of units of \(N \). The groups \(A_K \) and \(E_K \) are naturally regarded as modules over \(\text{Gal}(K/K^+) \) and at the same time as those over \(G \). For a \(\text{Gal}(K/K^+) \)-module \(X \), denote by \(H^i(X) = H^i(K/K^+; X) \) the Tate cohomology group with \(i = 0, 1 \). When \(X = A_K \) or \(E_K \), the group \(H^i(X) \) is also regarded as \(G \)-modules. In [1, Theorem 2.3], Conner and Hurrelbrink introduced the following exact hexagon
of G-modules to study the 2-part of the class number of a relative quadratic extension.

$$
\xymatrix{
H^1(A_K) \ar[r] & H^1(E_K) \\
R^0(K) \ar[u]^{i_0} \ar[r] & R^1(K) \\
H^0(E_K) \ar[r] & H^0(A_K) \ar[u]}
$$

Here, $R^i(K)$ is a certain G-module associated to K/K^+ defined in [1]. We describe the G-module structure of $R^i(K)$ following [1]. Let T_f be the set of prime ideals \mathfrak{P} of k^+ for which a prime ideal \mathfrak{Q} of K^+ over \mathfrak{P} ramifies in K. Let T_∞ be the set of infinite prime divisors of k^+. We put $T = T_f \cup T_\infty$. For each $v \in T$, let $G_v \subseteq G$ be the decomposition group of v at K^+/k^+. When v is an infinite prime, the group G_v is trivial. We define G-modules Ω_f and Ω_∞ by

$$
\Omega_f = \bigoplus_{\mathfrak{P} \in T_f} F_2[G/G_{\mathfrak{P}}] \quad \text{and} \quad \Omega_\infty = \bigoplus_{v \in T_\infty} F_2[G],
$$

respectively, where $F_2 = \mathbb{Z}/2\mathbb{Z}$ is the finite field with two elements. (When T_f is empty, $\Omega_f = \{0\}$ by definition.) For each prime divisor w of K^+ with the restriction $w|_{k^+} \in T$ and an element $x \in (K^+)^\times$, we put $t_w(x) = 0$ or 1 according as $x \in N(K_w^\times)$ or not. Here, K_w is the completion of K at the unique prime divisor of K over w and $N = N_{K/K^+}$ is the norm map. For $g \in G$ and $x \in (K^+)^\times$, we see that

$$
t_{w^e}(x) = t_w(x^{w^{-1}})
$$

by local class field theory. For a prime ideal \mathfrak{P} of K^+ with $\mathfrak{P} \cap k^+ \in T_f$, let \mathfrak{Q} be the unique prime ideal of K over \mathfrak{P}. For an ideal \mathfrak{A} of K, writing $\mathfrak{A} = \mathfrak{P} \mathfrak{B}$ with an integer e and an ideal \mathfrak{B} relatively prime to \mathfrak{P}, we put $\text{ord}_{\mathfrak{Q}}(\mathfrak{A}) = e$.

We denote by $I(K)$ the group of (fractional) ideals of K. Let X be the subgroup of $I(K)$ consisting of ideals \mathfrak{A} with $\mathfrak{A}^J = \mathfrak{A}$. Here, J is the complex conjugation acting on several objects associated to K. Let X_0 be the subgroup of X consisting of ideals $\mathfrak{A} \in I(K)$ with $\mathfrak{A} = x \mathfrak{B}^{1+J}$ for some $x \in (K^+)^\times$ and $\mathfrak{B} \in I(K)$. The G-module $R^1(K)$ is isomorphic to the quotient X/X_0. For this, see the lines 1–2 from the bottom of p. 6 and Lemma 2.1 of [1]. For each prime ideal $\mathfrak{P} \in T_f$, we fix a prime ideal \mathfrak{Q} of K^+ over \mathfrak{P}. From the argument in [1, §5], we obtain the following isomorphism of G-modules:

$$
R^1(K) \cong \Omega_f; \quad \mathfrak{A} X_0 \to \bigoplus_{\mathfrak{P} \in T_f} \left(\sum_{\bar{g}} \text{ord}_{\mathfrak{Q}}(\mathfrak{A})\bar{g} \right),
$$

where \bar{g} (with $g \in G$) runs over the quotient $G/G_{\mathfrak{P}}$.

Let Y be the subgroup of the multiplicative group $(K^+) \times I(K)$ consisting of pairs (x, \mathfrak{A}) with $x\mathfrak{A}^{1-\mathfrak{B}} = \mathcal{O}_K$. Let Y_0 be the subgroup of Y consisting of pairs $(N(y), y^{-1}\mathfrak{B}^{1-\mathfrak{J}})$ with $y \in K^\times$ and $\mathfrak{B} \in I(K)$. By definition, $R^0(K) = Y/Y_0$. We denote by $[x, \mathfrak{A}] \in R^0(K)$ the class containing (x, \mathfrak{A}). The map i_0 in the hexagon is defined by

$$i_0: H^0(E_K) = E_{K^+}/N(E_K) \to R^0(K); \quad [\epsilon] \mapsto [\epsilon, \mathcal{O}_K]$$

with $\epsilon \in E_{K^+}$. For each $v \in T_\infty$, we fix a prime divisor \mathfrak{v} of K^+ over v. Using (1), we observe that the homomorphisms

$$\alpha_\infty: (K^+) \to \Omega_\infty; \quad x \mapsto \bigoplus_{v \in T_\infty} \left(\sum_{\ell \in G} \ell v^\ell(x) \hat{g} \right)$$

and

$$\alpha_f: (K^+) \to \Omega_f; \quad x \mapsto \bigoplus_{\mathfrak{v} \in T_f} \left(\sum_{\mathfrak{q} \in G} \ell q^\ell(x) \hat{g} \right)$$

are compatible with the action of G. Further, α_∞ is nothing but the “sign” map. From the argument in [1, §4], we obtain the following exact sequence of G-modules:

$$[0] \to R^0(K) \xrightarrow{\alpha} \Omega_f \oplus \Omega_\infty \xrightarrow{\beta} F_2 \to [0].$$

Here, α is defined by $\alpha([x, \mathfrak{A}]) = (\alpha_f(x), \alpha_\infty(x))$, β is the argumentation map and G acts trivially on F_2.

3. Consequences

In this section, we derive some consequences of the exact hexagon and (2), (3). All of them are G-decomposed versions of the corresponding results in [1]. We work under the setting of Section 2. Denote by \hat{A}_{K^+} the 2-part of the narrow class group of K^+. Letting $K^+_{>0}$ be the group of totally positive elements of K^+, we have an exact sequence

$$[0] \to (K^+) \to A_{K^+} \to \hat{A}_{K^+} \to A_{K^+} \to \{0\}$$

of G-modules. We define the minus class group A_{K}^\times to be the kernel of the norm map $A_K \to A_{K^+}$. Let χ be a \hat{Q}_2-valued character of $G = \text{Gal}(K/k) = \text{Gal}(F/Q)$, which we also regard as a primitive Dirichlet character. For a module M over $Z_2[G]$, we denote by $M(\chi)$ the χ-part of M. Here, Z_2 is the ring of 2-adic integers and \hat{Q}_2 is a fixed algebraic closure of the 2-adic rationals Q_2. (For the definition of the χ-part and some of its properties, see Tsuji [7, §2].) Denote by S_K the set of prime numbers lying
below some prime ideal in T_f. In all what follows, we assume that χ is a nontrivial character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above setting, the groups $H^i(K/K^+; A_K(\chi))$ with $i = 0$ and 1 are trivial if and only if

(i) $\chi(l) \neq 1$ for all $l \in S_K$ and

(ii) $|\tilde{A}_K(\chi)| = |A_K(\chi)|$.

The following corollary is a version of [1, Corollary 13.10] and Hasse [2, Satz 45].

Corollary 2. Under the above setting, the group $A_K(\chi)$ is trivial if and only if

(i) $\chi(l) \neq 1$ for all $l \in S_K$ and

(ii) $\tilde{A}_K(\chi)$ is trivial.

Let \tilde{h}_M be the class number in the narrow sense of a number field M. When M is an imaginary abelian field, let h_M^- be the relative class number of M. We can easily show that h_M^- (resp. \tilde{h}_K^+) divides h_K^- (resp. \tilde{h}_K^+) using class field theory. The following is an immediate consequence of Corollary 2.

Corollary 3. Under the above setting, the ratio h_K^-/h_K^- is odd if and only if

(i) no prime number l in S_K splits in F and

(ii) $\tilde{h}_K^+/\tilde{h}_K^+$ is odd.

To prove these assertions, we prepare the following two lemmas. For a number field L, let $\mu(L)$ be the group of roots of unity in L and $\mu_2(L)$ the 2-part of $\mu(L)$.

Lemma 1. The group $H^1(K/K^+; E_K)(\chi)$ is trivial.

Proof. Let N_{E_K} be the group of units $e \in E_K$ with $N(e) = e^{1+J} = 1$. We have $N(e) = 1$ if and only if $e \in \mu(K)$ by a theorem on units of a CM-field (cf. Washington [9, Theorem 4.12]). Since $\mu(K)^2 = \mu(K)^{1-J} \subseteq E_{K}^{1-J}$, we obtain a surjection

$$\mu(K)/\mu(K)^2 \to H^1(K/K^+; E_K) = N_{E_K}/E_{K}^{1-J}$$

of G-modules. However, as $[K:k]$ is odd, we have

$$\mu(K)/\mu(K)^2 = \mu_2(K)/\mu_2(K)^2 = \mu_2(k)/\mu_2(k)^2.$$

Since χ is nontrivial, the χ-part $(\mu_2(k)/\mu_2(k)^2)(\chi)$ is trivial. Hence, we obtain the assertion.

Lemma 2. The natural map $A_K^+(\chi) \to A_K(\chi)$ is injective.
Proof. Denote the natural map $A_{K+} \to A_K$ by ι. Let \mathfrak{A} be an ideal of K^+ with the class $[\mathfrak{A}] \in \ker \iota$. Then $\mathfrak{A}O_K = xO_K$ for some $x \in K^\times$. We see that $\epsilon = x^{1-J}$ is a unit of K with $N(\epsilon) = 1$. It is known that the map

$$\ker \iota \to H^1(K/K^+; E_K); [\mathfrak{A}] \to x^{1-J}E_K^{1-J}$$

is an injective G-homomorphism ([1, Theorem 7.1]). Then, from Lemma 1, we see that the χ-part $(\ker \iota)(\chi)$ is trivial, from which we obtain the assertion.

Proof of Theorem 2. Let \mathfrak{p} be a prime ideal in T/K, and $l = \mathfrak{p} \cap Q \in S_K$. We see that the χ-part $F_2[G/G_{\mathfrak{p}}](\chi) \neq \{0\}$ if and only if χ factors through $G/G_{\mathfrak{p}}$, which is equivalent to $\chi(G_{\mathfrak{p}}) = \{1\}$. Since $[k^+:Q]$ is a 2-power and $[F:Q]$ is odd, we have $\chi(G_{\mathfrak{p}}) = \{1\}$ if and only if $\chi(l) = 1$. Hence, we have shown that the condition (i) in Theorem 2 is equivalent to the condition $\Omega_I(\chi) = \{0\}$. By the hexagon and Lemma 1, we see that $H^0(A_K(\chi))$ and $H^1(A_K(\chi))$ are trivial if and only if (iii) $R^1(K)(\chi) = \{0\}$ and (iv) the map

$$i_0: H^0(E_K)(\chi) = (E_K+/N(E_K))(\chi) \to R^0(K)(\chi)$$

is an isomorphism. By (2) and the above, the condition (iii) is equivalent to (i). Under the condition (i), we see that $R^0(K)(\chi) = \Omega_\infty(\chi)$ from the exact sequence (3), and that for each class $[\epsilon] \in H^0(E_K)(\chi)$ with $\epsilon \in E^+_K$, we have $i_0([\epsilon]) = \alpha_{\infty}(\epsilon)$ from the definitions of the maps i_0 and α. Further, the 2-rank of $\Omega_\infty(\chi)$ is larger than or equal to that of $H^0(E_K)(\chi)$ by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz [5, Theorem 3.26]). Therefore, under (i), we observe that the condition (iv) holds if and only if $\alpha_{\infty}(E_K)(\chi) = \Omega_\infty(\chi)$. We see that the last condition is equivalent to the condition (ii) in Theorem 2 because of the exact sequence (4) and $\alpha_{\infty}(K^+)(\chi) = \Omega_\infty(\chi)$. Therefore, we obtain Theorem 2.

Proof of Corollary 2. First, we show the “only if” part assuming that $A_{K}^-(\chi)$ is trivial. By Lemma 2, we can regard $A_K^+(\chi)$ as a subgroup of $A_K(\chi)$. Assume that $A_K^+(\chi)$ is nontrivial. Then there exists a class $c \in A_K^+(\chi)$ of order 2. We have $c^{-J} = c = c^{-1}$, and hence $c \in A_{K}^-(\chi)$. It follows that $A_{K}^-(\chi)$ is nontrivial, a contradiction. Hence, $A_{K}^+(\chi) = \{0\}$. It follows that $A_{K}^-(\chi)$ is trivial by the exact sequence

$$\{0\} \to A_{K}^- (\chi) \to A_K(\chi) \xrightarrow{1-J} A_{K}^+(\chi) \to \{0\}.$$

Therefore, the “only if” part follows from Theorem 2. Next, assume that the conditions (i) and (ii) in Corollary 2 are satisfied. Then, $A_{K}^+(\chi) = \{0\}$, and the groups $H^i(A_K^+(\chi)) (i = 0, 1)$ are trivial by Theorem 2. As the cohomology groups are trivial, we obtain an exact sequence

$$\{0\} \to A_{K}^+(\chi) \leftrightarrow A_K(\chi) \xrightarrow{1-J} A_{K}^-(\chi) \equiv A_{K}^-(\chi) \to \{0\}.$$
Since \(A_{K^+}(\chi) = \{0\} \), we see that \(A_K(\chi) = A_{K,\chi}^{-} \), and
\[
A_{K,\chi}^{-}(\chi) = A_{K,\chi}^{-}(\chi)^{1 - J} = A_{K,\chi}^{-}(\chi)^2
\]
from the above exact sequence. Therefore, \(A_{K,\chi}^{-}(\chi) \) is trivial.

4. Proof of Theorem 1

We use the same notation as in Section 1. In particular, \(d \in \mathbb{Z} \) is a fixed integer with \(\sqrt{d} \notin K_0 \) and \(L_n \) is the quadratic twist of \(K_n \) associated to \(d \). We have \(L_n^+ = K_n^+ \).

Let \(k \) (resp. \(k_d \)) be the maximal intermediate field of \(K_0/\mathbb{Q} \) (resp. \(L_0/\mathbb{Q} \)) of 2-power degree, and let \(F_0 \) be the maximal subfield of \(K_0^+ = L_0^+ \) of odd degree over \(\mathbb{Q} \). Then \(k \) and \(k_d \) are imaginary abelian fields with \(k^+ = k_d^+ \). Let \(B_n/\mathbb{Q} \) be the real abelian field with conductor \(p^{n+1} \) and \([B_n : \mathbb{Q}] = p^n \). We put \(F_n = F_0 B_n \). Then \(L_n = k_d F_n \) and \(K_n = k F_n \). The triples \((k_d, F_n, L_n)\) and \((k, F_n, K_n)\) correspond to \((k, F, K)\) in Sections 2 and 3. We see that

\[
S_{L_n} = S_d \quad \text{or} \quad S_d \cup \{p\}
\]

and \(S_{K_n} = \{p\} \). We put
\[
G_n = \text{Gal}(F_n/\mathbb{Q}) = \text{Gal}(L_n/k_d) = \text{Gal}(K_n/k),
\]
and
\[
\Delta = \text{Gal}(F_0/\mathbb{Q}), \quad \Gamma_n = \text{Gal}(F_n/F_0) = \text{Gal}(B_n/\mathbb{Q}).
\]

Then we have a natural decomposition \(G_n = \Delta \times \Gamma_n \). For characters \(\varphi \) and \(\psi \) of \(\Delta \) and \(\Gamma_n \) respectively, we regard \(\varphi \psi = \varphi \times \psi \) as a character of \(G_n \). Further, we regard \(\varphi \), \(\psi \) and \(\varphi \psi \) also as primitive Dirichlet characters. The class groups \(A_{L_n}^+, A_{K,n}^+ \) and \(\tilde{A}_{K,n}^+ \) are modules over \(G_n \). We can naturally regard \(A_{L_n^{-1}}^- \) as a subgroup of \(A_{L_n}^- \) since \(L_n/L_{n^{-1}} \) is a cyclic extension of degree \(p \neq 2 \) and \(A_{L_n^{-1}}^- \) is the 2-part of the class group. Actually, it is a direct summand of \(A_{L_n}^- \) (cf. [9, Lemma 16.15]). We see that

\[
A_{L_n}^-/A_{L_{n^{-1}}}^- = \bigoplus_{\varphi, \psi_n} A_{L_n}^- (\varphi \psi_n)
\]

where \(\varphi \) (resp. \(\psi_n \)) runs over a complete set of representatives of the \(\mathbb{Q}_2 \)-conjugacy classes of the \(\tilde{Q}_2 \)-valued characters of \(\Delta \) (resp. \(\Gamma_n \) of order \(p^n \)). Regarding \(A_{K,n}^- \) as a subgroup of \(A_{K,n}^+ \), we have a similar decomposition for \(A_{K,n}^-/A_{K,n^{-1}}^- \). As \(S_{K,n} = \{p\} \) and \((\varphi \psi_n)(p) = 0\), we obtain the following assertion from Corollary 2 for the triple \((k, F_n, K_n)\).

Lemma 3. Let \(n \geq 1 \) be an integer, and the characters \(\varphi \) and \(\psi_n \) be as in (6). Then \(A_{K,n}^- (\varphi \psi_n) = \{0\} \) if and only if \(\tilde{A}_{K,n}^+ (\varphi \psi_n) = \{0\} \).
Proof of Theorem 1 (I). Let \(\varphi \) and \(\psi_n \) be as in (6). As the orders of \(\varphi \) and \(\psi_n \) are relatively prime to each other, we have \((\varphi \psi_n)(l) = 1\) if and only if \(\varphi(l) = \psi_n(l) = 1 \) for a prime number \(l \). Let \(n \) be an integer with \(n \geq n_d \). Then we have \(\psi_n(l) \neq 1 \) and hence \((\varphi \psi_n)(l) \neq 1\) for all prime numbers \(l \in S = S_d \). Further, we have \((\varphi \psi_n)(p) = 0\). Hence, by (5), the condition (i) in Corollary 2 for the triple \((k_d, F_n, L_n)\) is satisfied. It follows that the condition \(A^+_n(\varphi \psi_n) = \{0\} \) is equivalent to \(\hat{A}^+_n(\varphi \psi_n) = \{0\} \). (Note that \(L^+_n = K^+_n \).) Therefore, we obtain Theorem 1 (I) from Lemma 3.

To show Theorem 1 (II), assume that \(n_d \geq 2 \) and let \(n \) be an integer with \(1 \leq n < n_d \). We put

\[S^{(n)} = \{ l \in S = S_d \mid \text{ord} \,(l^{p-1} - 1) \geq n + 1 \}. \]

From the definition, we see that

\[S \supseteq S^{(1)} \supseteq S^{(2)} \supseteq \cdots \supseteq S^{(n-1)} \]

and that each \(S^{(n)} \) is non-empty. Let \(\varphi \) (resp. \(\psi_n \)) be a \(\hat{Q}_2 \)-valued character of \(\Delta \) (resp. of \(\Gamma_n \) of order \(p^n \)). Denote by \(\varphi_0 \) the trivial character of \(\Delta \). Theorem 1 (II) is a consequence of the following assertion.

Proposition 1. Under the above setting, the following hold.

(I) The class group \(A^+_{L_n}(\varphi \psi_n) \) is nontrivial if \(\varphi(l) = 1 \) for some \(l \in S^{(n)} \). In particular, \(A^+_{L_n}(\varphi_0 \psi_n) \) is nontrivial.

(II) If \(A^+_{K_n}(\varphi \psi_n) = \{0\} \), the converse of the first assertion of (I) holds.

Proof. Applying Corollary 2 for the triple \((k_d, F_n, L_n)\), we see from Lemma 3 that \(A^+_{L_n}(\varphi \psi_n) = \{0\} \) if and only if (i) \((\varphi \psi_n)(l) \neq 1\) for all \(l \in S = S_d \) and (ii) \(A^+_{L_n}(\varphi \psi_n) = \{0\} \). We have \(\psi_n(l) = 1 \) for \(l \in S^{(n)} \), and \(\psi_n(l) \neq 1 \) for \(l \in S \setminus S^{(n)} \). Therefore, we see that the condition (i) is satisfied if and only if \(\varphi(l) \neq 1 \) for all \(l \in S^{(n)} \) noting that the orders of \(\varphi \) and \(\psi_n \) are relatively prime. From this, we obtain the proposition.

We put \(M_n = K_n(\sqrt{d}) = K_n L_n \). On the relative class number \(h_{M_n}^- \) of \(M_n \), the following assertion holds.

Proposition 2. (I) When \(n \geq n_d \), the ratio \(h_{M_n}^- / h_{M_n^{v_1}}^- \) is odd if and only if \(h_{n}^n / h_{n-1}^n \) is odd.

(II) When \(n_d \geq 2 \) and \(1 \leq n < n_d \), \(h_{M_n}^- / h_{M_n^{v_1}}^- \) is even.

To prove this proposition, we need to show the following lemma. For an imaginary abelian field \(N \), we put

\[E_N = E_N / \mu(N)E_N^+ \]

It is well known that the unit index \(Q_N = \vert E_N \vert \) is 1 or 2 ([9, Theorem 4.12]).
Lemma 4. Let \(T \) and \(N \) be imaginary abelian fields with \(N \subseteq T \). If the degree \([T : N]\) is odd, then \(Q_T = Q_N \).

Proof. We first show that the inclusion map \(N \to T \) induces an injection \(\mathcal{E}_N \to \mathcal{E}_T \). For a unit \(\epsilon \) of \(N \), assume that \(\epsilon = \zeta \eta \) for some \(\zeta \in \mu(T) \) and \(\eta \in E_T^+ \). Let \(\rho \) be a nontrivial element of the Galois group \(G = \text{Gal}(T/N) \). Then, as \(\epsilon = \epsilon^\rho \), we see that \(\zeta^{1-\rho} = \eta^{\rho-1} \in \mu(T) \cap E_T^+ \). Hence, \(\zeta^{1-\rho} = \pm 1 \). However, as \(N_{T/N}(\zeta^{1-\rho}) = 1 \) and \([T : N]\) is odd, the case \(\zeta^{1-\rho} = -1 \) does not happen. Hence, \(\zeta^{1-\rho} = 1 \) for all \(\rho \in G \). It follows that \(\zeta \in \mu(N) \) and hence \(\eta \in E_N^+ \). Therefore, we can regard \(\mathcal{E}_N \) as a subgroup of \(\mathcal{E}_T \). In particular, \(Q_N \) divides \(Q_T \).

Assume that \(Q_N \neq Q_T \). Then we have \([\mathcal{E}_T] = [\mathcal{E}_T/\mathcal{E}_N] = 2 \). Regarding \(\mathcal{E}_T \) as a module over \(G \), we have a canonical decomposition

\[
\mathcal{E}_T = \mathcal{E}_T/\mathcal{E}_N = \bigoplus_{\chi} \mathcal{E}_T(\chi)
\]

where \(\chi \) runs over a complete set of representatives of the \(\mathbb{Q}_2 \)-conjugacy classes of the nontrivial \(\mathbb{Q}_2 \)-valued characters of \(G \). Hence, \([\mathcal{E}_T(\chi)] = 2\) for some such \(\chi \). Let \(\mathbb{Z}_2[\chi] \) be the subring of \(\mathbb{Q}_2 \) generated by the values of \(\chi \) over \(\mathbb{Z}_2 \). The group \(\mathcal{E}_T(\chi) \) is naturally regarded as a module over the principal ideal domain \(\mathbb{Z}_2[\chi] \). Since the order of \(\chi \) is odd and \(\geq 3 \), we observe that \(\mathbb{Z}_2[\chi] \cong \mathbb{Z}_2^d \) as \(\mathbb{Z}_2 \)-modules for some \(d \geq 2 \). Hence, \([\mathcal{E}_n(\chi)]\) is a multiple of \(2^d \), which contradicts \([\mathcal{E}_n(\chi)] = 2\). Therefore, we obtain \(Q_N = Q_T \). \(\square \)

Proof of Proposition 2. By Lemma 4, we have \(Q_{M_n} = Q_{M_{n-1}} \) and \(Q_{L_n} = Q_{L_{n-1}} \) for all \(n \geq 1 \). Therefore, using the class number formula [9, Theorem 4.17], we see that

\[
h_{M_n}/h_{M_{n-1}} = p \prod_{\sigma} \prod_{\psi_n} \left(-\frac{1}{2} B_{1,\sigma,\psi_n} \right)
\]

where \(\sigma \) runs over the odd Dirichlet characters associated to \(M_0 \), and \(\psi_n \) over the even characters of conductor \(p^{n+1} \) and order \(p^n \). Further, \(B_{1,\sigma,\psi_n} \) denotes the generalized Bernoulli number. We easily see that \(\sigma \) equals an odd Dirichlet character associated to \(K_0 \) or \(L_0 \) since \(M_0/K_0^+ \) is an imaginary biquadratic extension with the imaginary quadratic subextensions \(K_0 \) and \(L_0 \). Hence, using the class number formulas for \(L_n \), \(K_n \) and \(Q_{L_n} = Q_{L_{n-1}} \), we obtain

\[
h_{M_n}/h_{M_{n-1}} = h^*_n/h^*_n \times h_n^*/h_{n-1}^*.
\]

Therefore, the assertion follows from Theorem 1. \(\square \)
References

Faculty of Science
Ibaraki University
Bunkyo 2-1-1, Mito, 310-8512
Japan