<table>
<thead>
<tr>
<th>Title</th>
<th>CLASS NUMBER PARITY OF A QUADRATIC TWIST OF A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ichimura, Humio</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 2013, 50(2), p. 563–572</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/25091</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
CLASS NUMBER PARITY OF A QUADRATIC TWIST OF A CYCLOTONIC FIELD OF PRIME POWER CONDUCTOR

HUMIO ICHIMURA

(Received March 23, 2011, revised October 5, 2011)

Abstract

Let p be a fixed odd prime number and K_n the p^{n+1}-st cyclotomic field. For a fixed integer $d \in \mathbb{Z}$ with $\sqrt{d} \not\in K_0$, denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^+$ with $L_n \neq K_n$. Let h_n^+ and h_n^- be the relative class numbers of K_n and L_n, respectively. We give an explicit constant n_d depending on p and d such that (i) for any integer $n \geq n_d$, the ratio h_n^-/h_{n-1}^- is odd if and only if h_n^+/h_{n-1}^+ is odd and (ii) for $1 \leq n < n_d$, h_n^-/h_{n-1}^- is even.

1. Introduction

Let p be a fixed odd prime number. Let $K_n = \mathbb{Q}(\zeta_{p^{n+1}})$ be the p^{n+1}-st cyclotomic field for an integer $n \geq 0$, and $K_{\infty} = \bigcup_n K_n$. Let $d \in \mathbb{Z}$ be a fixed integer with $\sqrt{d} \not\in K_0$. We denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^+$ with $L_n \neq K_n$. Here, K^+ denotes the maximal real subfield of an imaginary abelian field K. When $d < 0$, we have $L_n = K_n^+(\sqrt{d})$. We call L_n the quadratic twist of K_n associated to the integer d. The extension $L_{\infty} = \bigcup_n L_n$ is the cyclotomic \mathbb{Z}_p-extension over L_0 with the n-th layer L_n. We call L_{∞}/L_0 the quadratic twist of the cyclotomic \mathbb{Z}_p-extension K_{∞}/K_0 associated to d. Let h_n^+ and h_n^- be the relative class numbers of K_n and L_n, respectively. It is known and easy to show that h_{n-1}^+ divides h_n^+ (resp. h_{n-1}^- divides h_n^-) using class field theory. The parity of h_n^+ behaves rather irregularly when p varies (see a table in Schoof [6]). However, it is recently shown that when $p \leq 509$, the ratio h_n^+/h_{n-1}^+ is odd for all $n \geq 1$ ([3, Theorem 2]). And it might be possible that the ratio is odd for any prime p and any $n \geq 1$. The purpose of this paper is to study the parity of the ratio h_n^-/h_{n-1}^- of the quadratic twist L_n. We already know that h_n^-/h_{n-1}^- is odd for sufficiently large n by a theorem of Washington [8] on the non-p-part of the class number in a cyclotomic \mathbb{Z}_p-extension. Denote by $S = S_d$ the set of prime numbers $l \neq p$ which ramify in $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$. The set S is non-empty as $\sqrt{d} \not\in K_0$. We define an integer $n_d \geq 1$ by

$$n_d = \max\{\text{ord}_p(l^{p-1} - 1) \mid l \in S\},$$

2010 Mathematics Subject Classification. Primary 11R18; Secondary 11R23.
where \(\text{ord}_p(*) \) is the normalized \(p \)-adic additive valuation. The following is the main theorem of this paper.

Theorem 1. Under the above setting, the following assertions hold.

(I) When \(n \geq n_d \), the ratio \(h_n^-/h_{n-1}^- \) is odd if and only if \(h_n^+/h_{n-1}^+ \) is odd.

(II) When \(n_d \geq 2 \) and \(1 \leq n < n_d \), the ratio \(h_n^-/h_{n-1}^- \) is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain the following:

Corollary 1. Under the above setting, let \(p \) be an odd prime number with \(p \leq 509 \). Then the ratio \(h_n^-/h_{n-1}^- \) is odd for all \(n \geq n_d \).

This corollary, though given in a very special setting, is an explicit version of the above mentioned theorem of Washington. In [4], we showed Theorem 1 when \(d = 1 \) and \(L_n = K_n^+(\sqrt{-1}) \) using some results of cyclotomic Iwasawa theory. In this paper, we prove Theorem 1 by using a main theorem of Conner and Hurrelbrink [1, Theorem 2.3].

Remark. When \(p \equiv 1 \mod 4 \) (resp. \(p \equiv 3 \mod 4 \)), we can show that two integers \(d_1 \) and \(d_2 \) give the same twist \(L_\infty/L_0 \) of \(K_\infty/K_0 \) if and only if \(d_2 = d_1 x^2 \) or \(d_2 = p d_1 x^2 \) (resp. \(d_2 = -p d_1 x^2 \)) for some \(x \in \mathbb{Q}^\times \). Hence, the set \(S_d \) and the integer \(n_d \) depend only on the twist \(L_\infty/L_0 \) and not on the choice of \(d \).

2. Exact hexagon of Conner and Hurrelbrink

In this section, we recall the exact hexagon of Conner and Hurrelbrink. Let \(k \) be an imaginary abelian field with 2-power degree, and \(F \) a real abelian field with \(2 \nmid [F : \mathbb{Q}] \). We put \(K = kF \), and

\[
G = \text{Gal}(K/k) = \text{Gal}(K^+/k^+) = \text{Gal}(F/\mathbb{Q}).
\]

For a number field \(N \), let \(A_N \) be the 2-part of the ideal class group of \(N \), \(\mathcal{O}_N \) the ring of integers, and \(E_N = \mathcal{O}_N^\times \) the group of units of \(N \). The groups \(A_K \) and \(E_K \) are naturally regarded as modules over \(\text{Gal}(K/K^+) \) and at the same time as those over \(G \). For a \(\text{Gal}(K/K^+) \)-module \(X \), denote by \(H^i(X) = H^i(K/K^+; X) \) the Tate cohomology group with \(i = 0, 1 \). When \(X = A_K \) or \(E_K \), the group \(H^i(X) \) is also regarded as \(G \)-modules. In [1, Theorem 2.3], Conner and Hurrelbrink introduced the following exact hexagon
of G-modules to study the 2-part of the class number of a relative quadratic extension.

$$
\begin{array}{ccc}
H^1(A_K) & \to & H^1(E_K) \\
\downarrow & & \downarrow \\
R^0(K) & \to & R^1(K) \\
\downarrow i & & \downarrow \\
H^0(E_K) & \leftarrow & H^0(A_K)
\end{array}
$$

Here, $R^i(K)$ is a certain G-module associated to K/K^+ defined in [1]. We describe the G-module structure of $R^i(K)$ following [1]. Let T_f be the set of prime ideals \mathfrak{p} of k^+ for which a prime ideal \mathfrak{q} of K^+ over \mathfrak{p} ramifies in K. Let T_∞ be the set of infinite prime divisors of k^+. We put $T = T_f \cup T_\infty$. For each $v \in T$, let $G_v \subseteq G$ be the decomposition group of v at K^+/k^+. When v is an infinite prime, the group G_v is trivial. We define G-modules Ω_f and Ω_∞ by

$$
\Omega_f = \bigoplus_{\mathfrak{p} \in T_f} F_2[G/G_\mathfrak{p}] \quad \text{and} \quad \Omega_\infty = \bigoplus_{v \in T_\infty} F_2[G/G_v] = \bigoplus_{v \in T_\infty} F_2[G],
$$

respectively, where $F_2 = \mathbb{Z}/2\mathbb{Z}$ is the finite field with two elements. (When T_f is empty, $\Omega_f = \{0\}$ by definition.) For each prime divisor w of K^+ with the restriction $w_{k^+} \in T$ and an element $x \in (K^+)^\times$, we put $t_w(x) = 0$ or 1 according as $x \in N(K_{k^+}^\times)$ or not. Here, K_w is the completion of K at the unique prime divisor of K over w and $N = N_{K/K^+}$ is the norm map. For $g \in G$ and $x \in (K^+)^\times$, we see that

$$
t_{w^x}(x) = t_w(x^{x^{\mathfrak{p}^{-1}}})
$$

by local class field theory. For a prime ideal \mathfrak{q} of K^+ with $\mathfrak{q} \cap k^+ \in T_f$, let \mathfrak{Q} be the unique prime ideal of K over \mathfrak{q}. For an ideal \mathfrak{A} of K, writing $\mathfrak{A} = \mathfrak{Q} \mathfrak{B}$ with an integer e and an ideal \mathfrak{B} relatively prime to \mathfrak{Q}, we put $\operatorname{ord}_G(\mathfrak{A}) = e$.

We denote by $I(K)$ the group of (fractional) ideals of K. Let X be the subgroup of $I(K)$ consisting of ideals \mathfrak{A} with $\mathfrak{A}^J = \mathfrak{A}$. Here, J is the complex conjugation acting on several objects associated to K. Let X_0 be the subgroup of X consisting of ideals $\mathfrak{A} \in I(K)$ with $\mathfrak{A} = x \mathfrak{B}^{1+J}$ for some $x \in (K^+)^\times$ and $\mathfrak{B} \in I(K)$. The G-module $R^1(K)$ is isomorphic to the quotient X/X_0. For this, see the lines 1–2 from the bottom of p.6 and Lemma 2.1 of [1]. For each prime ideal $\mathfrak{p} \in T_f$, we fix a prime ideal \mathfrak{q} of K^+ over \mathfrak{p}. From the argument in [1, §5], we obtain the following isomorphism of G-modules:

$$
R^1(K) \cong \Omega_f ; \quad \mathfrak{A} X_0 \to \bigoplus_{\mathfrak{p} \in T_f} \left(\sum_{\mathfrak{g}} \operatorname{ord}_G(\mathfrak{A}) \mathfrak{g} \right),
$$

where \mathfrak{g} (with $g \in G$) runs over the quotient $G/G_\mathfrak{p}$.
Let Y be the subgroup of the multiplicative group $(K^+)^\times \times I(K)$ consisting of pairs (x, \mathfrak{A}) with $x\mathfrak{A}^{1+J} = \mathcal{O}_K$. Let Y_0 be the subgroup of Y consisting of pairs $(N(y), y^{-1}\mathfrak{B}^{1-J})$ with $y \in K^+$ and $\mathfrak{B} \in I(K)$. By definition, $R^0(K) = Y/Y_0$. We denote by $[x, \mathfrak{A}] \in R^0(K)$ the class containing (x, \mathfrak{A}). The map i_0 in the hexagon is defined by

$$i_0: H^0(E_K) = E_{K^+}/N(E_K) \rightarrow R^0(K); \quad [\epsilon] \rightarrow [\epsilon, \mathcal{O}_K]$$

with $\epsilon \in E_{K^+}$. For each $v \in T_{\infty}$, we fix a prime divisor \tilde{v} of K^+ over v. Using (1), we observe that the homomorphisms

$$\alpha_{\infty}: (K^+)^\times \rightarrow \Omega_{\infty}; \quad x \rightarrow \bigoplus_{v \in T_{\infty}} \left(\sum_{g \in G} t_{\tilde{v}}(x)g \right)$$

and

$$\alpha_f: (K^+)^\times \rightarrow \Omega_f; \quad x \rightarrow \bigoplus_{v \in T_f} \left(\sum_{g \in G} t_{\tilde{v}}(x)g \right)$$

are compatible with the action of G. Further, α_{∞} is nothing but the “sign” map. From the argument in [1, §4], we obtain the following exact sequence of G-modules:

$$(3) \quad \{0\} \rightarrow R^0(K) \xrightarrow{\alpha} \Omega_f \oplus \Omega_{\infty} \xrightarrow{\beta} F_2 \rightarrow \{0\}.$$

Here, α is defined by $\alpha([x, \mathfrak{A}]) = (\alpha_f(x), \alpha_{\infty}(x))$, β is the argumentation map and G acts trivially on F_2.

3. Consequences

In this section, we derive some consequences of the exact hexagon and (2), (3). All of them are G-decomposed versions of the corresponding results in [1]. We work under the setting of Section 2. Denote by \tilde{A}_{K^+} the 2-part of the narrow class group of K^+. Letting $K^+_{\geq 0}$ be the group of totally positive elements of K^+, we have an exact sequence

$$(4) \quad \{0\} \rightarrow (K^+)^\times/(K^+_{\geq 0}E_{K^+}) \rightarrow \tilde{A}_{K^+} \rightarrow A_{K^+} \rightarrow \{0\}$$

of G-modules. We define the minus class group A_{K}^{-} to be the kernel of the norm map $A_K \rightarrow A_{K^+}$. Let χ be a \bar{Q}_2-valued character of $G = \text{Gal}(K/k) = \text{Gal}(F/Q)$, which we also regard as a primitive Dirichlet character. For a module M over $Z_2[G]$, we denote by $M(\chi)$ the χ-part of M. Here, Z_2 is the ring of 2-adic integers and \bar{Q}_2 is a fixed algebraic closure of the 2-adic rationals Q_2. (For the definition of the χ-part and some of its properties, see Tsuji [7, §2].) Denote by S_K the set of prime numbers lying
below some prime ideal in T_f. In all what follows, we assume that χ is a nontrivial character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above setting, the groups $H^i(K/K^+; A_K)(\chi)$ with $i = 0$ and 1 are trivial if and only if

(i) $\chi(l) \neq 1$ for all $l \in S_K$ and

(ii) $|\tilde{A}_K^+(\chi)| = |A_K^+(\chi)|$.

The following corollary is a version of [1, Corollary 13.10] and Hasse [2, Satz 45].

Corollary 2. Under the above setting, the group $A_K^-(\chi)$ is trivial if and only if

(i) $\chi(l) \neq 1$ for all $l \in S_K$ and

(ii) $\tilde{h}_+/(\chi)$ is trivial.

Let \tilde{h}_M be the class number in the narrow sense of a number field M. When M is an imaginary abelian field, let \tilde{h}_M^- be the relative class number of M. We can easily show that \tilde{h}_K^- (resp. \tilde{h}_K^+) divides \tilde{h}_K^+ (resp. \tilde{h}_K^+) using class field theory. The following is an immediate consequence of Corollary 2.

Corollary 3. Under the above setting, the ratio $\tilde{h}_K^-/\tilde{h}_K^+$ is odd if and only if

(i) no prime number l in S_K splits in F and

(ii) $\tilde{h}_K^+/(\chi)$ is odd.

To prove these assertions, we prepare the following two lemmas. For a number field L, let $\mu(L)$ be the group of roots of unity in L and $\mu_2(L)$ the 2-part of $\mu(L)$.

Lemma 1. The group $H^1(K/K^+; E_K^1)(\chi)$ is trivial.

Proof. Let $N E_K$ be the group of units $\epsilon \in E_K$ with $N(\epsilon) = \epsilon^{1+J} = 1$. We have $N(\epsilon) = 1$ if and only if $\epsilon \in \mu(K)$ by a theorem on units of a CM-field (cf. Washington [9, Theorem 4.12]). Since $\mu(K)^2 = \mu(K)^{1-J} \subseteq E_K^{1-J}$, we obtain a surjection

$$\mu(K)/\mu(K)^2 \rightarrow H^1(K/K^+; E_K) = N E_K/E_K^{1-J}$$

of G-modules. However, as $[K : k]$ is odd, we have

$$\mu(K)/\mu(K)^2 = \mu_2(K)/\mu_2(k)^2 = \mu_2(k)/\mu_2(k)^2.$$

Since χ is nontrivial, the χ-part $(\mu_2(k)/\mu_2(k)^2)(\chi)$ is trivial. Hence, we obtain the assertion.

Lemma 2. The natural map $A_K^+(\chi) \rightarrow A_K(\chi)$ is injective.
Proof. Denote the natural map $A_K^+ \to A_K$ by ι. Let \mathfrak{A} be an ideal of K^+ with the class $[\mathfrak{A}] \in \ker \iota$. Then $\mathfrak{A}O_K = xO_K$ for some $x \in K^\times$. We see that $\epsilon = x^{1-J}$ is a unit of K with $N(\epsilon) = 1$. It is known that the map

$$\ker \iota \to H^1(K/K^+; E_K): [\mathfrak{A}] \to x^{1-J}E_K^{1-J}$$

is an injective G-homomorphism ([1, Theorem 7.1]). Then, from Lemma 1, we see that the χ-part $(\ker \iota)(\chi)$ is trivial, from which we obtain the assertion. \hfill \square

Proof of Theorem 2. Let \wp be a prime ideal in T_f, and $l = \wp \cap Q \in S_K$. We see that the χ-part $F_2[G/G_\wp](\chi) \neq \{0\}$ if and only if χ factors through G/G_\wp, which is equivalent to $\chi(G_\wp) = \{1\}$. Since $[k^+:Q]$ is a 2-power and $[F:Q]$ is odd, we have $\chi(G_\wp) = \{1\}$ if and only if $\chi(l) = 1$. Hence, we have shown that the condition (i) in Theorem 2 is equivalent to the condition $\Omega_f(\chi) = \{0\}$. By the hexagon and Lemma 1, we see that $H^0(A_K)(\chi)$ and $H^1(A_K)(\chi)$ are trivial if and only if (iii) $R^1(K)(\chi) = \{0\}$ and (iv) the map

$$i_0: H^0(E_K)(\chi) = (E_K^+/N(E_K))(\chi) \to R^0(K)(\chi)$$

is an isomorphism. By (2) and the above, the condition (iii) is equivalent to (i). Under the condition (i), we see that $R^0(K)(\chi) = \Omega_\infty(\chi)$ from the exact sequence (3), and that for each class $[\epsilon] \in H^0(E_K)(\chi)$ with $\epsilon \in E_K^+$, we have $i_0([\epsilon]) = \alpha_\infty(\epsilon)$ from the definitions of the maps i_0 and α. Further, the 2-rank of $\Omega_\infty(\chi)$ is larger than or equal to that of $H^0(E_K)(\chi)$ by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz [5, Theorem 3.26]). Therefore, under (i), we observe that the condition (iv) holds if and only if $\alpha_\infty(E_K^+)(\chi) = \Omega_\infty(\chi)$. We see that the last condition is equivalent to the condition (ii) in Theorem 2 because of the exact sequence (4) and $\alpha_\infty((K^+)^\times)(\chi) = \Omega_\infty(\chi)$. Therefore, we obtain Theorem 2. \hfill \square

Proof of Corollary 2. First, we show the “only if” part assuming that $A_K^-(\chi)$ is trivial. By Lemma 2, we can regard $A_K^-(\chi)$ as a subgroup of $A_K(\chi)$. Assume that $A_K^-(\chi)$ is nontrivial. Then there exists a class $c \in A_K^+(\chi)$ of order 2. We have $c^J = c = c^{-1}$, and hence $c \notin A_K^-(\chi)$. It follows that $A_K^-(\chi)$ is nontrivial, a contradiction. Hence, $A_K^+(\chi) = \{0\}$. It follows that $A_K(\chi)$ is trivial by the exact sequence

$$\{0\} \to A_K^-(\chi) \to A_K(\chi) \xrightarrow{1+J} A_K^+(\chi) \to \{0\}.$$

Therefore, the “only if” part follows from Theorem 2. Next, assume that the conditions (i) and (ii) in Corollary 2 are satisfied. Then, $A_K^+(\chi) = \{0\}$, and the groups $H^i(A_K)(\chi)$ ($i = 0, 1$) are trivial by Theorem 2. As the cohomology groups are trivial, we obtain an exact sequence

$$\{0\} \to A_K^+(\chi) \to A_K(\chi) \xrightarrow{1-J} A_K^-(\chi) = A_K^+(\chi) \to \{0\}.$$
Since $A_{K^+}(\chi) = \{0\}$, we see that $A_K(\chi) = A_K^-(\chi)$, and

$$A_K^-(\chi) = A_K^-(\chi)^{1-J} = A_K^-(\chi)^2$$

from the above exact sequence. Therefore, $A_K^-(\chi)$ is trivial.

\section{4. Proof of Theorem 1}

We use the same notation as in Section 1. In particular, $d \in \mathbb{Z}$ is a fixed integer with $\sqrt{d} \notin K_0$ and L_n is the quadratic twist of K_n associated to d. We have $L_n^+ = K_n^+$. Let k (resp. k_d) be the maximal intermediate field of K_0/Q (resp. L_0/Q) of 2-power degree, and let F_0 be the maximal subfield of $K_0^+ = L_0^+$ of odd degree over Q. Then k and k_d are imaginary abelian fields with $k^+ = k_d^+$. Let B_n/Q be the real abelian field with conductor p^{n+1} and $[B_n : Q] = p^n$. We put $F_n = F_0 B_n$. Then $L_n = k_d F_n$ and $K_n = k F_n$. The triples (k_d, F_n, L_n) and (k, F_n, K_n) correspond to (k, F, K) in Sections 2 and 3. We see that

\begin{equation}
S_{L_n} = S_d \quad \text{or} \quad S_d \cup \{p\}
\end{equation}

and $S_{K_n} = \{p\}$. We put

$$G_n = \text{Gal}(F_n/Q) = \text{Gal}(L_n/k_d) = \text{Gal}(K_n/k),$$

and

$$\Delta = \text{Gal}(F_0/Q), \quad \Gamma_n = \text{Gal}(F_n/F_0) = \text{Gal}(B_n/Q).$$

Then we have a natural decomposition $G_n = \Delta \times \Gamma_n$. For characters φ and ψ of Δ and Γ_n respectively, we regard $\varphi \psi = \varphi \times \psi$ as a character of G_n. Further, we regard φ, ψ and $\varphi \psi$ also as primitive Dirichlet characters. The class groups $A_{L_n}^-$, $A_{K_n}^-$ and $\hat{A}_{K_n^+}$ are modules over G_n. We can naturally regard $A_{L_n}^-$ as a subgroup of $A_{K_n}^-$ since L_n/L_{n-1} is a cyclic extension of degree $p \neq 2$ and $A_{L_n}^-$ is the 2-part of the class group. Actually, it is a direct summand of $A_{L_n}^-$ (cf. [9, Lemma 16.15]). We see that

\begin{equation}
A_{L_n}^-/A_{L_{n-1}}^- = \bigoplus_{\varphi, \psi_n} A_{L_n}^-(\varphi \psi_n)
\end{equation}

where φ (resp. ψ_n) runs over a complete set of representatives of the Q_2-conjugacy classes of the \hat{Q}_2-valued characters of Δ (resp. Γ_n of order p^n). Regarding $A_{K_n}^-$ as a subgroup of $A_{K_n}^-$, we have a similar decomposition for $A_{K_n}^-/A_{K_{n-1}}^-$. As $S_{K_n} = \{p\}$ and $(\varphi \psi_n)(p) = 0$, we obtain the following assertion from Corollary 2 for the triple (k, F_n, K_n).

\textbf{Lemma 3.} Let $n \geq 1$ be an integer, and the characters φ and ψ_n be as in (6). Then $A_{K_n}^-(\varphi \psi_n) = \{0\}$ if and only if $\hat{A}_{K_n^+}(\varphi \psi_n) = \{0\}$.
Proof of Theorem 1 (I). Let φ and ψ_n be as in (6). As the orders of φ and ψ_n are relatively prime to each other, we have $(\varphi \psi_n)(l) = 1$ if and only if $\varphi(l) = \psi_n(l) = 1$ for a prime number l. Let n be an integer with $n \geq n_d$. Then we have $\psi_n(l) \neq 1$ and hence $(\varphi \psi_n)(l) \neq 1$ for all prime numbers $l \in S = S_d$. Further, we have $(\varphi \psi_n)(p) = 0$. Hence, by (5), the condition (i) in Corollary 2 for the triple (k_d, F_n, L_n) is satisfied. It follows that the condition $A_{\Lambda_n}^{-}(\varphi \psi_n) = \{0\}$ is equivalent to $A_{K_n^+}^{-}(\varphi \psi_n) = \{0\}$. (Note that $L_n^+ = K_n^+$.) Therefore, we obtain Theorem 1 (I) from Lemma 3.

To show Theorem 1 (II), assume that $n_d \geq 2$ and let n be an integer with $1 \leq n < n_d$. We put

$$S^{(n)} = \{l \in S = S_d \mid \text{ord}_l(l^{p-1} - 1) \geq n + 1\}.$$

From the definition, we see that

$$S \supseteq S^{(1)} \supseteq S^{(2)} \supseteq \cdots \supseteq S^{(n_d-1)}$$

and that each $S^{(n)}$ is non-empty. Let φ (resp. ψ_n) be a \hat{Q}_2-valued character of Δ (resp. of Γ_n of order p^n). Denote by φ_0 the trivial character of Δ. Theorem 1 (II) is a consequence of the following assertion.

Proposition 1. Under the above setting, the following hold.

(I) The class group $A_{\Lambda_n}^{-}(\varphi \psi_n)$ is nontrivial if $\varphi(l) = 1$ for some $l \in S^{(n)}$. In particular, $A_{\Lambda_n}^{-}(\varphi_0 \psi_n)$ is nontrivial.

(II) If $A_{K_n}^{-}(\varphi \psi_n) = \{0\}$, the converse of the first assertion of (I) holds.

Proof. Applying Corollary 2 for the triple (k_d, F_n, L_n), we see from Lemma 3 that $A_{\Lambda_n}^{-}(\varphi \psi_n) = \{0\}$ if and only if (i) $(\varphi \psi_n)(l) \neq 1$ for all $l \in S = S_d$ and (ii) $A_{\Lambda_n}^{-}(\varphi \psi_n) = \{0\}$. We have $\psi_n(l) = 1$ for $l \in S^{(n)}$, and $\psi_n(l) \neq 1$ for $l \in S \setminus S^{(n)}$. Therefore, we see that the condition (i) is satisfied if and only if $\varphi(l) \neq 1$ for all $l \in S^{(n)}$ noting that the orders of φ and ψ_n are relatively prime. From this, we obtain the proposition.

We put $M_n = K_n(\sqrt{d}) = K_nL_n$. On the relative class number $h_{M_n}^{-}$ of M_n, the following assertion holds.

Proposition 2. (I) When $n \geq n_d$, the ratio $h_{M_n}^{-}/h_{M_{n-1}}^{-}$ is odd if and only if h_{n}^{*}/h_{n-1}^{*} is odd.

(II) When $n_d \geq 2$ and $1 \leq n < n_d$, $h_{M_n}^{-}/h_{M_{n-1}}^{-}$ is even.

To prove this proposition, we need to show the following lemma. For an imaginary abelian field N, we put

$$E_{N} = E_{N}/\mu(N)E_{N^+}.$$

It is well known that the unit index $Q_{N} = |E_{N}|$ is 1 or 2 ([9, Theorem 4.12]).
Lemma 4. Let T and N be imaginary abelian fields with $N \subseteq T$. If the degree $[T : N]$ is odd, then $Q_T = Q_N$.

Proof. We first show that the inclusion map $N \rightarrow T$ induces an injection $E_N \hookrightarrow E_T$. For a unit ϵ of N, assume that $\epsilon = \zeta \eta$ for some $\zeta \in \mu(T)$ and $\eta \in E_T^+$. Let ρ be a nontrivial element of the Galois group $G = \text{Gal}(T/N)$. Then, as $\epsilon = e_\rho$, we see that $\zeta^1 = \eta^{e-1} \in \mu(T) \cap E_T^+$. Hence, $\zeta^{1-\rho} = \pm 1$. However, as $N_{T/N}(\zeta^{1-\rho}) = 1$ and $[T : N]$ is odd, the case $\zeta^{1-\rho} = -1$ does not happen. Hence, $\zeta^{1-\rho} = 1$ for all $\rho \in G$. It follows that $\zeta \in \mu(N)$ and hence $\eta \in E_{N^+}$. Therefore, we can regard E_N as a subgroup of E_T. In particular, Q_N divides Q_T.

Assume that $Q_N \neq Q_T$. Then we have $|E_T| = |E_T/E_N| = 2$. Regarding E_T as a module over G, we have a canonical decomposition

$$E_T = E_T/E_N = \bigoplus \chi E_T(\chi)$$

where χ runs over a complete set of representatives of the Q_2-conjugacy classes of the nontrivial Q_2-valued characters of N. Hence, $|E_T(\chi)| = 2$ for some such χ. Let $Z_2[\chi]$ be the subring of Q_2 generated by the values of χ over Z_2. The group $E_T(\chi)$ is naturally regarded as a module over the principal ideal domain $Z_2[\chi]$. Since the order of χ is odd and ≥ 3, we observe that $Z_2[\chi] \cong Z_2^d$ as Z_2-modules for some $d \geq 2$. Hence, $|E_T(\chi)|$ is a multiple of 2^d, which contradicts $|E_T(\chi)| = 2$. Therefore, we obtain $Q_N = Q_T$. \hfill \square

Proof of Proposition 2. By Lemma 4, we have $Q_{M_n} = Q_{M_{n-1}}$ and $Q_{L_n} = Q_{L_{n-1}}$ for all $n \geq 1$. Therefore, using the class number formula [9, Theorem 4.17], we see that

$$h_{M_n}/h_{M_{n-1}} = p \prod_{\sigma} \prod_{\psi_n} \left(-\frac{1}{2} B_{1, \sigma \psi_n} \right)$$

where σ runs over the odd Dirichlet characters associated to M_0, and ψ_n over the even characters of conductor p^{n+1} and order p^n. Further, $B_{1, \sigma \psi_n}$ denotes the generalized Bernoulli number. We easily see that $\sigma \psi_n$ equals an odd Dirichlet character associated to K_n or L_0 since M_0/K_0 is an imaginary biquadratic extension with the imaginary quadratic subextensions K_0 and L_0. Hence, using the class number formulas for L_n, K_n and $Q_{L_n} = Q_{L_{n-1}}$, we obtain

$$h_{M_n}/h_{M_{n-1}} = h_n^*/h_{n-1}^* \times h_n^-/h_{n-1}^-.$$

Therefore, the assertion follows from Theorem 1. \hfill \square
References