<table>
<thead>
<tr>
<th>Title</th>
<th>CLASS NUMBER PARITY OF A QUADRATIC TWIST OF A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ichimura, Humio</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 2013, 50(2), p. 563–572</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/25091</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
CLASS NUMBER PARITY OF A QUADRATIC TWIST OF
A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR

HUMIO ICHIMURA

(Received March 23, 2011, revised October 5, 2011)

Abstract

Let p be a fixed odd prime number. Let $K_n = \mathbb{Q}(\zeta_{p^n+1})$ be the p^{n+1}-st cyclotomic field for an integer $n \geq 0$, and $K_{\infty} = \bigcup_n K_n$. Let $d \in \mathbb{Z}$ be a fixed integer with $d \neq K_0$. We denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^+$ with $L_n \neq K_n$. Let h_n^+ and h_n^- be the relative class numbers of K_n and L_n, respectively. We give an explicit constant n_d depending on p and d such that (i) for any integer $n \geq n_d$, the ratio h_n^+/h_{n-1}^- is odd if and only if h_n^+/h_{n-1}^- is odd and (ii) for $1 \leq n < n_d$, h_n^-/h_{n-1}^- is even.

1. Introduction

Let p be a fixed odd prime number. Let $K_n = \mathbb{Q}(\zeta_{p^n+1})$ be the p^{n+1}-st cyclotomic field for an integer $n \geq 0$, and $K_{\infty} = \bigcup_n K_n$. Let $d \in \mathbb{Z}$ be a fixed integer with $d \neq K_0$. We denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^+$ with $L_n \neq K_n$. Here, K^+ denotes the maximal real subfield of an imaginary abelian field K. When $d < 0$, we have $L_n = K_n^+(\sqrt{d})$. We call L_n the quadratic twist of K_n associated to the integer d. The extension $L_{\infty} = \bigcup_n L_n$ is the cyclotomic \mathbb{Z}_p-extension over L_0 with the n-th layer L_n. We call L_{∞}/L_0 the biquadratic twist of the cyclotomic \mathbb{Z}_p-extension K_{∞}/K_0 associated to d. Let h_n^+ and h_n^- be the relative class numbers of K_n and L_n, respectively. It is known and easy to show that h_{n-1}^+ (resp. h_{n-1}^-) divides h_n^+ (resp. h_n^-) using class field theory. The parity of h_n^+ behaves rather irregularly when p varies (see a table in Schoof [6]). However, it is recently shown that when $p \leq 509$, the ratio h_n^+/h_{n-1}^- is odd for all $n \geq 1$ ([3, Theorem 2]). And it might be possible that the ratio is odd for any prime p and any $n \geq 1$. The purpose of this paper is to study the parity of the ratio h_n^+/h_{n-1}^- of the quadratic twist L_n. We already know that h_n^-/h_{n-1}^- is odd for sufficiently large n by a theorem of Washington [8] on the non-p-part of the class number in a cyclotomic \mathbb{Z}_p-extension. Denote by $S = S_d$ the set of prime numbers $l \neq p$ which ramify in $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$. The set S is non-empty as $\sqrt{d} \neq K_0$. We define an integer $n_d \geq 1$ by

$$n_d = \max\{\text{ord}_p(l^{p-1} - 1) \mid l \in S\},$$

2010 Mathematics Subject Classification. Primary 11R18; Secondary 11R23.
where \(\text{ord}_p(*) \) is the normalized \(p \)-adic additive valuation. The following is the main theorem of this paper.

Theorem 1. Under the above setting, the following assertions hold.

(I) When \(n \geq n_d \), the ratio \(h_n^- / h_{n-1}^- \) is odd if and only if \(h_n^e / h_{n-1}^e \) is odd.

(II) When \(n_d \geq 2 \) and \(1 \leq n < n_d \), the ratio \(h_n^- / h_{n-1}^- \) is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain the following:

Corollary 1. Under the above setting, let \(p \) be an odd prime number with \(p \leq 509 \). Then the ratio \(h_n^- / h_{n-1}^- \) is odd for all \(n \geq n_d \).

This corollary, though given in a very special setting, is an explicit version of the above mentioned theorem of Washington. In [4], we showed Theorem 1 when \(d \neq 1 \) and \(L_n = K_n^+(\sqrt{-1}) \) using some results of cyclotomic Iwasawa theory. In this paper, we prove Theorem 1 by using a main theorem of Conner and Hurrelbrink [1, Theorem 2.3].

Remark. When \(p \equiv 1 \mod 4 \) (resp. \(p \equiv 3 \mod 4 \)), we can show that two integers \(d_1 \) and \(d_2 \) give the same twist \(L_\infty / L_0 \) of \(K_\infty / K_0 \) if and only if \(d_2 = d_1 x^2 \) or \(d_2 = p d_1 x^2 \) (resp. \(d_2 = -p d_1 x^2 \)) for some \(x \in \mathcal{O}^\times \). Hence, the set \(S_d \) and the integer \(n_d \) depend only on the twist \(L_\infty / L_0 \) and not on the choice of \(d \).

2. **Exact hexagon of Conner and Hurrelbrink**

In this section, we recall the exact hexagon of Conner and Hurrelbrink. Let \(k \) be an imaginary abelian field with 2-power degree, and \(F \) a real abelian field with \(2 \nmid [F : \mathcal{O}] \). We put \(K = kF \), and

\[
G = \text{Gal}(K/k) = \text{Gal}(K^+/k^+) = \text{Gal}(F/\mathcal{O}).
\]

For a number field \(N \), let \(A_N \) be the 2-part of the ideal class group of \(N \), \(\mathcal{O}_N \) the ring of integers, and \(E_N = \mathcal{O}_N^\times \) the group of units of \(N \). The groups \(A_K \) and \(E_K \) are naturally regarded as modules over \(\text{Gal}(K/K^+) \) and at the same time as those over \(G \). For a \(\text{Gal}(K/K^+) \)-module \(X \), denote by \(H^i(X) = H^i(K/K^+; X) \) the Tate cohomology group with \(i = 0, 1 \). When \(X = A_K \) or \(E_K \), the group \(H^i(X) \) is also regarded as \(G \)-modules.

In [1, Theorem 2.3], Conner and Hurrelbrink introduced the following exact hexagon
of G-modules to study the 2-part of the class number of a relative quadratic extension.

$$
\begin{array}{ccc}
R^0(K) & \xrightarrow{i_0} & R^1(K) \\
\downarrow H^0(E_K) & & \downarrow H^0(A_K) \\
R^1(A_K) & \xrightarrow{i_0} & H^1(A_K) \\
\end{array}
$$

Here, $R^i(K)$ is a certain G-module associated to K/K^+ defined in [1]. We describe the G-module structure of $R^i(K)$ following [1]. Let T_f be the set of prime ideals \wp of k^+ for which a prime ideal \mathfrak{P} of K^+ over \wp ramifies in K. Let T_∞ be the set of infinite prime divisors of k^+. We put $T = T_f \cup T_\infty$. For each $v \in T$, let $G_v \subseteq G$ be the decomposition group of v at K^+/k^+. When v is an infinite prime, the group G_v is trivial. We define G-modules Ω_f and Ω_∞ by

$$
\Omega_f = \bigoplus_{\wp \in T_f} F_2[G/G_{\wp}] \quad \text{and} \quad \Omega_\infty = \bigoplus_{v \in T_\infty} F_2[G/G_v] = \bigoplus_{v \in T_\infty} F_2[G],
$$

respectively, where $F_2 = \mathbb{Z}/2\mathbb{Z}$ is the finite field with two elements. (When T_f is empty, $\Omega_f = \{0\}$ by definition.) For each prime divisor w of K^+ with the restriction $w_{|k^+} \in T$ and an element $x \in (K^+)^\times$, we put $t_w(x) = 0$ or 1 according as $x \in N(K_{w}^\times)$ or not. Here, K_w is the completion of K at the unique prime divisor of K over w and $N = N_{K/K^+}$ is the norm map. For $g \in G$ and $x \in (K^+)^\times$, we see that

$$
t_{w^g}(x) = t_w(x^{g^{-1}})
$$

by local class field theory. For a prime ideal \mathfrak{P} of K^+ with $\mathfrak{P} \cap k^+ \in T_f$, let \mathfrak{P} be the unique prime ideal of K over \mathfrak{P}. For an ideal \mathfrak{A} of K, writing $\mathfrak{A} = \mathfrak{P} \mathfrak{B}$ with an integer e and an ideal \mathfrak{B} relatively prime to \mathfrak{P}, we put $\text{ord}_\mathfrak{P}(\mathfrak{A}) = e$.

We denote by $I(K)$ the group of (fractional) ideals of K. Let X be the subgroup of $I(K)$ consisting of ideals \mathfrak{A} with $\mathfrak{A}^I = \mathfrak{A}$. Here, J is the complex conjugation acting on several objects associated to K. Let X_0 be the subgroup of X consisting of ideals $\mathfrak{A} \in I(K)$ with $\mathfrak{A} = x \mathfrak{B}^{1+J}$ for some $x \in (K^+)^\times$ and $\mathfrak{B} \in I(K)$. The G-module $R^1(K)$ is isomorphic to the quotient X/X_0. For this, see the lines 1–2 from the bottom of p. 6 and Lemma 2.1 of [1]. For each prime ideal $\wp \in T_f$, we fix a prime ideal \mathfrak{P} of K^+ over \wp. From the argument in [1, §5], we obtain the following isomorphism of G-modules:

$$
R^1(K) \cong \Omega_f; \quad \mathfrak{A}X_0 \rightarrow \bigoplus_{\wp \in T_f} \left(\sum_{\tilde{g}} \text{ord}_{\mathfrak{P}}(\mathfrak{A}) \tilde{g} \right),
$$

where \tilde{g} (with $g \in G$) runs over the quotient G/G_{\wp}.

Let Y be the subgroup of the multiplicative group $(K^+)^\times \times I(K)$ consisting of pairs (x, A) with $x A^{1+J} = \mathcal{O}_K$. Let Y_0 be the subgroup of Y consisting of pairs $(N(y), y^{-1} A^{1-J})$ with $y \in K^+$ and $A \in I(K)$. By definition, $R_0^0(K) = Y/Y_0$. We denote by $[x, A] \in R_0^0(K)$ the class containing (x, A). The map i_0 in the hexagon is defined by

$$i_0 : H^0(E_K) = E_K^+ / N(E_K) \rightarrow R_0^0(K); \quad [\varepsilon] \rightarrow [\varepsilon, \mathcal{O}_K]$$

with $\varepsilon \in E_K^+$. For each $v \in T_{\infty}$, we fix a prime divisor v of K^+ over v. Using (1), we observe that the homomorphisms

$$\alpha_\infty : (K^+)^\times \rightarrow \Omega_\infty; \quad x \mapsto \bigoplus_{v \in T_{\infty}} \left(\sum_{g \in G} t_v^\infty(x) g \right)$$

and

$$\alpha_f : (K^+)^\times \rightarrow \Omega_f; \quad x \mapsto \bigoplus_{v \in T_f} \left(\sum_{g \in G} t_v^f(x) g \right)$$

are compatible with the action of G. Further, α_∞ is nothing but the “sign” map. From the argument in [1, §4], we obtain the following exact sequence of G-modules:

$$\{0\} \rightarrow R_0^0(K) \xrightarrow{\alpha} \Omega_f \oplus \Omega_\infty \xrightarrow{\beta} F_2 \rightarrow \{0\}.$$

Here, α is defined by $\alpha([x, A]) = (\alpha_f(x), \alpha_\infty(x))$, β is the argumentation map and G acts trivially on F_2.

3. Consequences

In this section, we derive some consequences of the exact hexagon and (2), (3). All of them are G-decomposed versions of the corresponding results in [1]. We work under the setting of Section 2. Denote by \tilde{A}_{K^+} the 2-part of the narrow class group of K^+. Letting $K^+_{>0}$ be the group of totally positive elements of K^+, we have an exact sequence

$$\{0\} \rightarrow (K^+)^\times / (K^+_{>0} E_{K^+}) \rightarrow \tilde{A}_{K^+} \rightarrow A_{K^+} \rightarrow \{0\}$$

of G-modules. We define the minus class group A^-_{K} to be the kernel of the norm map $A_K \rightarrow A_{K^+}$. Let χ be a \bar{Q}_2-valued character of $G = \text{Gal}(K/k) = \text{Gal}(F/Q)$, which we also regard as a primitive Dirichlet character. For a module M over $\mathbb{Z}_2[G]$, we denote by $M(\chi)$ the χ-part of M. Here, \mathbb{Z}_2 is the ring of 2-adic integers and \bar{Q}_2 is a fixed algebraic closure of the 2-adic rationals Q_2. (For the definition of the χ-part and some of its properties, see Tsuji [7, §2].) Denote by S_K the set of prime numbers lying
below some prime ideal in \(T_f \). In all what follows, we assume that \(\chi \) is a nontrivial character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above setting, the groups \(H^i(K/K^+;A_K)(\chi) \) with \(i = 0 \) and \(1 \) are trivial if and only if

(i) \(\chi(l) \neq 1 \) for all \(l \in S_K \) and

(ii) \(|\tilde{A}_K(\chi)| = |A_K(\chi)| \).

The following corollary is a version of [1, Corollary 13.10] and Hasse [2, Satz 45].

Corollary 2. Under the above setting, the group \(A_K(\chi) \) is trivial if and only if

(i) \(\chi(l) \neq 1 \) for all \(l \in S_K \) and

(ii) \(\tilde{A}_K(\chi) \) is trivial.

Let \(\tilde{h}_M \) be the class number in the narrow sense of a number field \(M \). When \(M \) is an imaginary abelian field, let \(h^-_M \) be the relative class number of \(M \). We can easily show that \(h^-_K \) (resp. \(\tilde{h}_{K^+} \)) divides \(h^-_k \) (resp. \(\tilde{h}_{K^+} \)) using class field theory. The following is an immediate consequence of Corollary 2.

Corollary 3. Under the above setting, the ratio \(h^-_K/h^-_k \) is odd if and only if

(i) no prime number \(l \) in \(S_K \) splits in \(F \) and

(ii) \(\tilde{h}_{K^+}/\tilde{h}_{k^+} \) is odd.

To prove these assertions, we prepare the following two lemmas. For a number field \(L \), let \(\mu(L) \) be the group of roots of unity in \(L \) and \(\mu_2(L) \) the 2-part of \(\mu(L) \).

Lemma 1. The group \(H^1(K/K^+;E_K)(\chi) \) is trivial.

Proof. Let \(N_{E_K} \) be the group of units \(\epsilon \in E_K \) with \(N(\epsilon) = \epsilon^{1+j} = 1 \). We have \(N(\epsilon) = 1 \) if and only if \(\epsilon \in \mu(K) \) by a theorem on units of a CM-field (cf. Washington [9, Theorem 4.12]). Since \(\mu(K)^2 = \mu(K)^{1+j} \subseteq E_K^{1-j} \), we obtain a surjection

\[
\mu(K)/\mu(K)^2 \to H^1(K/K^+;E_K) = N_{E_K}/E_K^{1-j}
\]

of \(G \)-modules. However, as \([K:k] \) is odd, we have

\[
\mu(K)/\mu(K)^2 = \mu_2(K)/\mu_2(K)^2 = \mu_2(k)/\mu_2(k)^2.
\]

Since \(\chi \) is nontrivial, the \(\chi \)-part \((\mu_2(k)/\mu_2(k)^2)(\chi)\) is trivial. Hence, we obtain the assertion.

Lemma 2. The natural map \(A_K(\chi) \to A_K(\chi) \) is injective.

\[\square \]
that the \(\mathfrak{A} \) is an injective \(G \)-homomorphism (\cite[Theorem 7.1]{1}). Then, from Lemma 1, we see that the \(\chi \)-part \((\ker \iota)(\chi)\) is trivial, from which we obtain the assertion.

Proof of Theorem 2. Let \(\mathfrak{p} \) be a prime ideal in \(T_f \), and \(l = \mathfrak{p} \cap \mathcal{O} \in \mathcal{S}_K \). We see that the \(\chi \)-part \(F_2[G/G_{\mathfrak{p}}](\chi) \neq \{0\} \) if and only if \(\chi \) factors through \(G/G_{\mathfrak{p}} \), which is equivalent to \(\chi(G_{\mathfrak{p}}) = \{1\} \). Since \([k^+/K] \) is a 2-power and \([F:K] \) is odd, we have \(\chi(G_{\mathfrak{p}}) = \{1\} \) if and only if \(\chi(l) = 1 \). Hence, we have shown that the condition (i) in Theorem 2 is equivalent to the condition \(\Omega_f(\chi) = \{0\} \). By the hexagon and Lemma 1, we see that \(H^0(A_K(\chi)) \) and \(H^1(A_K(\chi)) \) are trivial if and only if (iii) \(R^1(K)(\chi) = \{0\} \) and (iv) the map

\[
i_0: H^0(E_K)(\chi) = (E_K^+ / N(E_K))(\chi) \rightarrow R^0(K)(\chi)
\]

is an isomorphism. By (2) and the above, the condition (iii) is equivalent to (i). Under the condition (i), we see that \(R^0(K)(\chi) = \Omega_\infty(\chi) \) from the exact sequence (3), and that for each class \([\epsilon] \in H^0(E_K)(\chi) \) with \(\epsilon \in E_K^+ \), we have \(i_0([\epsilon]) = \alpha_\infty(\epsilon) \) from the definitions of the maps \(i_0 \) and \(\alpha \). Further, the 2-rank of \(\Omega_\infty(\chi) \) is larger than or equal to that of \(H^0(E_K)(\chi) \) by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz \cite[Theorem 3.26]{5}). Therefore, under (i), we observe that the condition (iv) holds if and only if \(\alpha_\infty(E_K^+)(\chi) = \Omega_\infty(\chi) \). We see that the last condition is equivalent to the condition (ii) in Theorem 2 because of the exact sequence (4) and \(\alpha_\infty((K^+)\chi) = \Omega_\infty(\chi) \). Therefore, we obtain Theorem 2.

Proof of Corollary 2. First, we show the “only if” part assuming that \(A_K^- (\chi) \) is trivial. By Lemma 2, we can regard \(A_K^+ (\chi) \) as a subgroup of \(A_K (\chi) \). Assume that \(A_K^- (\chi) \) is nontrivial. Then there exists a class \(c \in A_K^+ (\chi) \) of order 2. We have \(c^J = c = c^{-1} \), and hence \(c \in A_K^- (\chi) \). It follows that \(A_K^- (\chi) \) is nontrivial, a contradiction. Hence, \(A_K^- (\chi) = \{0\} \). It follows that \(A_K (\chi) \) is trivial by the exact sequence

\[
\{0\} \rightarrow A_K^- (\chi) \rightarrow A_K (\chi) \rightarrow A_K^+ (\chi) \rightarrow \{0\}.
\]

Therefore, the “only if” part follows from Theorem 2. Next, assume that the conditions (i) and (ii) in Corollary 2 are satisfied. Then, \(A_K^- (\chi) = \{0\} \), and the groups \(H^i(A_K)(\chi) \) \((i = 0, 1)\) are trivial by Theorem 2. As the cohomology groups are trivial, we obtain an exact sequence

\[
\{0\} \rightarrow A_K^+ (\chi) \rightarrow A_K (\chi) \rightarrow A_K^- (\chi) \rightarrow \{0\}.
\]
Since $A_K^+(\chi) = \{0\}$, we see that $A_K(\chi) = A_K^-(\chi)$, and

$$A_K^-(\chi) = A_K^-(\chi)^{1-J} = A_K^-(\chi)^2$$

from the above exact sequence. Therefore, $A_K^-(\chi)$ is trivial. \(\square\)

4. Proof of Theorem 1

We use the same notation as in Section 1. In particular, $d \in \mathbb{Z}$ is a fixed integer with $\sqrt{d} \notin K_0$ and L_n is the quadratic twist of K_n associated to d. We have $L_n^+ = K_n^+$. Let k (resp. k_d) be the maximal intermediate field of K_0/Q (resp. L_0/Q) of 2-power degree, and let F_0 be the maximal subfield of $K_0^+ = L_0^+$ of odd degree over Q. Then k and k_d are imaginary abelian fields with $k^+ = k_d^+$. Let B_n/Q be the real abelian field with conductor p^{n+1} and $[B_n : Q] = p^n$. We put $F_n = F_0B_n$. Then $L_n = k_dF_n$ and $K_n = kF_n$. The triples (k_d, F_n, L_n) and (k, F, K) correspond to (k, F, K) in Sections 2 and 3. We see that

\begin{equation}
S_{L_n} = S_d \quad \text{or} \quad S_d \cup \{p\}
\end{equation}

and $S_{K_n} = \{p\}$. We put

$$G_n = \text{Gal}(F_n/Q) = \text{Gal}(L_n/k_d) = \text{Gal}(K_n/k),$$

and

$$\Delta = \text{Gal}(F_0/Q), \quad \Gamma_n = \text{Gal}(F_n/F_0) = \text{Gal}(B_n/Q).$$

Then we have a natural decomposition $G_n = \Delta \times \Gamma_n$. For characters φ and ψ of Δ and Γ_n respectively, we regard $\varphi\psi = \varphi \times \psi$ as a character of G_n. Further, we regard φ, ψ and $\varphi\psi$ as also primitive Dirichlet characters. The class groups A_{L_n}, A_{K_n} and $\tilde{A}_{K_n^+}$ are modules over G_n. We can naturally regard $A_{L_n}^{-}$ as a subgroup of $A_{L_n}^-$ since L_n/L_{n-1} is a cyclic extension of degree $p \neq 2$ and $A_{L_n}^{-}$ is the 2-part of the class group. Actually, it is a direct summand of $A_{L_n}^-$ (cf. [9, Lemma 16.15]). We see that

\begin{equation}
A_{L_n}^- / A_{L_{n-1}}^- = \bigoplus_{\varphi, \psi_n} A_{L_n}^- (\varphi\psi_n)
\end{equation}

where φ (resp. ψ_n) runs over a complete set of representatives of the Q_2-conjugacy classes of the \tilde{Q}_2-valued characters of Δ (resp. Γ_n of order p^n). Regarding $A_{K_n}^-$ as a subgroup of A_{K_n}, we have a similar decomposition for $A_{K_n}^- / A_{K_{n-1}}^-$. As $S_{K_n} = \{p\}$ and $(\varphi\psi_n)(p) = 0$, we obtain the following assertion from Corollary 2 for the triple (k, F, K_n).

Lemma 3. Let $n \geq 1$ be an integer, and the characters φ and ψ_n be as in (6). Then $A_{K_n}^-(\varphi\psi_n) = \{0\}$ if and only if $\tilde{A}_{K_n^+}(\varphi\psi_n) = \{0\}$.
Proof of Theorem 1 (I). Let φ and ψ_n be as in (6). As the orders of φ and ψ_n are relatively prime to each other, we have $(\varphi\psi_n)(l) = 1$ if and only if $\varphi(l) = \psi_n(l) = 1$ for a prime number l. Let n be an integer with $n \geq n_d$. Then we have $\psi_n(l) \neq 1$ and hence $(\varphi\psi_n)(l) \neq 1$ for all prime numbers $l \in S = S_d$. Further, we have $(\varphi\psi_n)(p) = 0$. Hence, by (5), the condition (i) in Corollary 2 for the triple (k_d, F_n, L_n) is satisfied. It follows that the condition $A_{L_n}^{-}(\varphi\psi_n) = \{0\}$ is equivalent to $\hat{A}_{K_n}^{-}(\varphi\psi_n) = \{0\}$. (Note that $L_n^{+} = K_n^{+}$.) Therefore, we obtain Theorem 1 (I) from Lemma 3.

To show Theorem 1 (II), assume that $n_d \geq 2$ and let n be an integer with $1 \leq n < n_d$. We put

$$S^{(n)} = \{ l \in S = S_d \mid \text{ord}_p(l^{p^n-1} - 1) \geq n + 1 \}.$$

From the definition, we see that

$$S \supseteq S^{(1)} \supseteq S^{(2)} \supseteq \cdots \supseteq S^{(n_d-1)}$$

and that each $S^{(n)}$ is non-empty. Let φ (resp. ψ_n) be a $\hat{\mathbb{Q}}_2$-valued character of Δ (resp. of Γ_n of order p^n). Denote by φ_0 the trivial character of Δ. Theorem 1 (II) is a consequence of the following assertion.

Proposition 1. Under the above setting, the following hold.

(I) The class group $A_{L_n}^{-}(\varphi\psi_n)$ is nontrivial if $\varphi(l) = 1$ for some $l \in S^{(n)}$. In particular, $A_{L_n}^{-}(\varphi\psi_n)$ is nontrivial.

(II) If $A_{K_n}^{-}(\varphi\psi_n) = \{0\}$, the converse of the first assertion of (I) holds.

Proof. Applying Corollary 2 for the triple (k_d, F_n, L_n), we see from Lemma 3 that $A_{L_n}^{-}(\varphi\psi_n) = \{0\}$ if and only if (i) $(\varphi\psi_n)(l) \neq 1$ for all $l \in S = S_d$ and (ii) $A_{L_n}^{-}(\varphi\psi_n) = \{0\}$. We have $\psi_n(l) = 1$ for $l \in S^{(n)}$, and $\psi_n(l) \neq 1$ for $l \in S \setminus S^{(n)}$. Therefore, we see that the condition (i) is satisfied if and only if $\varphi(l) \neq 1$ for all $l \in S^{(n)}$ noting that the orders of φ and ψ_n are relatively prime. From this, we obtain the proposition.

We put $M_n = K_n(\sqrt{d}) = K_n L_n$. On the relative class number $h_{M_n}^{-}$ of M_n, the following assertion holds.

Proposition 2.

(I) When $n \geq n_d$, the ratio $h_{M_n}^{-}/h_{M_n}^{-1}$ is odd if and only if h_{n}^{*}/h_{n-1}^{*} is odd.

(II) When $n_d \geq 2$ and $1 \leq n < n_d$, $h_{M_n}^{-}/h_{M_n}^{-1}$ is even.

To prove this proposition, we need to show the following lemma. For an imaginary abelian field N, we put

$$\mathcal{E}_N = E_N/\mu(N)E_N^{\times}.$$

It is well known that the unit index $Q_N = |\mathcal{E}_N|$ is 1 or 2 ([9, Theorem 4.12]).
Lemma 4. Let \(T \) and \(N \) be imaginary abelian fields with \(N \subseteq T \). If the degree \([T : N] \) is odd, then \(Q_T = Q_N \).

Proof. We first show that the inclusion map \(N \to T \) induces an injection \(\mathcal{E}_N \hookrightarrow \mathcal{E}_T \). For a unit \(\epsilon \) of \(N \), assume that \(\epsilon = \zeta \eta \) for some \(\zeta \in \mu(T) \) and \(\eta \in E_T^* \). Let \(\rho \) be a nontrivial element of the Galois group \(G = \text{Gal}(T/N) \). Then, as \(\epsilon = e^\rho \), we see that \(\zeta^{1-\rho} = \eta^{p-1} \in \mu(T) \cap E_T^* \). Hence, \(\zeta^{1-\rho} = \pm 1 \). However, as \(N_{T/N}(\zeta^{1-\rho}) = 1 \) and \([T : N] \) is odd, the case \(\zeta^{1-\rho} = -1 \) does not happen. Hence, \(\zeta^{1-\rho} = 1 \) for all \(\rho \in G \). It follows that \(\zeta \in \mu(N) \) and hence \(\eta \in E_{N^+} \). Therefore, we can regard \(\mathcal{E}_N \) as a subgroup of \(\mathcal{E}_T \). In particular, \(Q_N \) divides \(Q_T \).

Assume that \(Q_N \neq Q_T \). Then we have \(|\mathcal{E}_T| = |\mathcal{E}_T/\mathcal{E}_N| = 2 \). Regarding \(\mathcal{E}_T \) as a module over \(G \), we have a canonical decomposition

\[
\mathcal{E}_T = \mathcal{E}_T/\mathcal{E}_N = \bigoplus_\chi \mathcal{E}_T(\chi)
\]

where \(\chi \) runs over a complete set of representatives of the \(\mathbb{Q}_2 \)-conjugacy classes of the nontrivial \(\mathbb{Q}_2 \)-valued characters of \(G \). Hence, \(|\mathcal{E}_T(\chi)| = 2 \) for some such \(\chi \). Let \(\mathbb{Z}_2[\chi] \) be the subring of \(\mathbb{Q}_2 \) generated by the values of \(\chi \) over \(\mathbb{Z}_2 \). The group \(\mathcal{E}_T(\chi) \) is naturally regarded as a module over the principal ideal domain \(\mathbb{Z}_2[\chi] \). Since the order of \(\chi \) is odd and \(\geq 3 \), we observe that \(\mathbb{Z}_2[\chi] \cong \mathbb{Z}_2^d \) as \(\mathbb{Z}_2 \)-modules for some \(d \geq 2 \). Hence, \(|\mathcal{E}_T(\chi)| \) is a multiple of \(2^d \), which contradicts \(|\mathcal{E}_T(\chi)| = 2 \). Therefore, we obtain \(Q_N = Q_T \). \(\square \)

Proof of Proposition 2. By Lemma 4, we have \(Q_{M_n} = Q_{M_{n+1}} \) and \(Q_{L_n} = Q_{L_{n+1}} \) for all \(n \geq 1 \). Therefore, using the class number formula [9, Theorem 4.17], we see that

\[
h_{M_n}^-/h_{M_{n+1}}^- = p \prod_{\sigma} \prod_{\psi_n} \left(-\frac{1}{2} B_{1, \sigma \psi_n} \right)
\]

where \(\sigma \) runs over the odd Dirichlet characters associated to \(M_0 \), and \(\psi_n \) over the even characters of conductor \(p^{n+1} \) and order \(p^n \). Further, \(B_{1, \sigma \psi_n} \) denotes the generalized Bernoulli number. We easily see that \(\sigma \) equals an odd Dirichlet character associated to \(K_0 \) or \(L_0 \) since \(M_0/K_0^+ \) is an imaginary biquadratic extension with the imaginary quadratic subextensions \(K_0 \). Hence, using the class number formulas for \(L_n, K_n \) and \(Q_{L_n} = Q_{L_{n+1}} \), we obtain

\[
h_{M_n}^-/h_{M_{n+1}}^- = h_n^*/h_{n-1}^* \times h_n^-/h_{n-1}^-.
\]

Therefore, the assertion follows from Theorem 1. \(\square \)
References

Faculty of Science
Ibaraki University
Bunkyo 2-1-1, Mito, 310-8512
Japan