<table>
<thead>
<tr>
<th>Title</th>
<th>CLASS NUMBER PARITY OF A QUADRATIC TWIST OF A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ichimura, Humio</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 2013, 50(2), p. 563–572</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/25091</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
CLASS NUMBER PARITY OF A QUADRATIC TWIST OF A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR

HUMIO ICHIMURA

(Received March 23, 2011, revised October 5, 2011)

Abstract

Let p be a fixed odd prime number and K_n the p^{n+1}-st cyclotomic field. For a fixed integer $d \in \mathbb{Z}$ with $\sqrt{d} \notin K_0$, denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^{+}$ with $L_n \neq K_n$. Let h_n^{+} and h_n^{-} be the relative class numbers of K_n and L_n, respectively. We give an explicit constant n_d depending on p and d such that (i) for any integer $n \geq n_d$, the ratio h_n^{-}/h_{n-1}^{-} is odd if and only if h_n^{+}/h_{n-1}^{+} is odd and (ii) for $1 \leq n < n_d$, h_n^{-}/h_{n-1}^{-} is even.

1. Introduction

Let p be a fixed odd prime number. Let $K_n = \mathbb{Q}(\zeta_{p^n+1})$ be the p^{n+1}-st cyclotomic field for an integer $n \geq 0$, and $K_{\infty} = \bigcup K_n$. Let $d \in \mathbb{Z}$ be a fixed integer with $\sqrt{d} \notin K_0$. We denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^{+}$ with $L_n \neq K_n$. Here, K^{+} denotes the maximal real subfield of an imaginary abelian field K. When $d < 0$, we have $L_n = K_n^{+}(\sqrt{d})$. We call L_n the quadratic twist of K_n associated to the integer d. The extension $L_{\infty} = \bigcup L_n$ is the cyclotomic \mathbb{Z}_p-extension over \mathbb{Q} with the n-th layer L_n. We call L_{∞}/L_0 the quadratic twist of the cyclotomic \mathbb{Z}_p-extension K_{∞}/K_0 associated to d. Let h_n^{+} and h_n^{-} be the relative class numbers of K_n and L_n, respectively. It is known and easy to show that h_{n-1}^{+} (resp. h_{n-1}^{-}) divides h_n^{+} (resp. h_n^{-}) using class field theory. The parity of h_n^{+} behaves rather irregularly when p varies (see a table in Schoof [6]). However, it is recently shown that when $p \leq 509$, the ratio h_n^{+}/h_{n-1}^{+} is odd for all $n \geq 1$ ([3, Theorem 2]). And it might be possible that the ratio is odd for any prime p and any $n \geq 1$. The purpose of this paper is to study the parity of the ratio h_n^{-}/h_{n-1}^{-} of the quadratic twist L_n. We already know that h_n^{-}/h_{n-1}^{-} is odd for sufficiently large n by a theorem of Washington [8] on the non-p-part of the class number in a cyclotomic \mathbb{Z}_p-extension. Denote by $S = S_d$ the set of prime numbers $l \neq p$ which ramify in $Q(\sqrt{d})/Q$. The set S is non-empty as $\sqrt{d} \notin K_0$. We define an integer $n_d \geq 1$ by

$$n_d = \max\{\text{ord}_p(l^{n-1} - 1) \mid l \in S\},$$

2010 Mathematics Subject Classification. Primary 11R18; Secondary 11R23.
where \(\text{ord}_p(*) \) is the normalized \(p \)-adic additive valuation. The following is the main theorem of this paper.

Theorem 1. Under the above setting, the following assertions hold.

(I) When \(n \geq n_d \), the ratio \(h_n^-/h_{n-1}^- \) is odd if and only if \(h_n^+/h_{n-1}^+ \) is odd.

(II) When \(n_d \geq 2 \) and \(1 \leq n < n_d \), the ratio \(h_n^-/h_{n-1}^- \) is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain the following:

Corollary 1. Under the above setting, let \(p \) be an odd prime number with \(p \leq 509 \). Then the ratio \(h_n^-/h_{n-1}^- \) is odd for all \(n \geq n_d \).

This corollary, though given in a very special setting, is an explicit version of the above mentioned theorem of Washington. In [4], we showed Theorem 1 when \(d = -1 \) and \(L_n = K_n^+(\sqrt{-1}) \) using some results of cyclotomic Iwasawa theory. In this paper, we prove Theorem 1 by using a main theorem of Conner and Hurrelbrink [1, Theorem 2.3].

Remark. When \(p \equiv 1 \mod 4 \) (resp. \(p \equiv 3 \mod 4 \)), we can show that two integers \(d_1 \) and \(d_2 \) give the same twist \(L_\infty/L_0 \) of \(K_\infty/K_0 \) if and only if \(d_2 = d_1 x^2 \) or \(d_2 = pd_1 x^2 \) (resp. \(d_2 = -pd_1 x^2 \)) for some \(x \in \mathbb{Q}^\times \). Hence, the set \(S_d \) and the integer \(n_d \) depend only on the twist \(L_\infty/L_0 \) and not on the choice of \(d \).

2. **Exact hexagon of Conner and Hurrelbrink**

In this section, we recall the exact hexagon of Conner and Hurrelbrink. Let \(k \) be an imaginary abelian field with 2-power degree, and \(F \) a real abelian field with \(2 \nmid [F : \mathbb{Q}] \). We put \(K = kF \), and

\[
G = \text{Gal}(K/k) = \text{Gal}(K^+/k^+) = \text{Gal}(F/\mathbb{Q}).
\]

For a number field \(N \), let \(A_N \) be the 2-part of the ideal class group of \(N \), \(\mathcal{O}_N \) the ring of integers, and \(E_N = \mathcal{O}_N^\times \) the group of units of \(N \). The groups \(A_K \) and \(E_K \) are naturally regarded as modules over \(\text{Gal}(K/K^+) \) and at the same time as those over \(G \). For a \(\text{Gal}(K/K^+) \)-module \(X \), denote by \(H^i(X) = H^i(K/K^+; X) \) the Tate cohomology group with \(i = 0, 1 \). When \(X = A_K \) or \(E_K \), the group \(H^i(X) \) is also regarded as \(G \)-modules. In [1, Theorem 2.3], Conner and Hurrelbrink introduced the following exact hexagon...
of G-modules to study the 2-part of the class number of a relative quadratic extension.

$$
\begin{array}{c}
R^0(K) \\
\downarrow_{i_0} \\
R^1(K) \\
\end{array}
\begin{array}{c}
H^0(K) \\
\downarrow \quad \quad \downarrow \\
H^1(K) \\
\end{array}
\begin{array}{c}
H^1(A_K) \\
\end{array}
$$

Here, $R^i(K)$ is a certain G-module associated to K/K^+ defined in [1]. We describe the G-module structure of $R^i(K)$ following [1]. Let T_f be the set of prime ideals \wp of k^+ for which a prime ideal \mathfrak{P} of K^+ over \wp ramifies in K. Let T_{∞} be the set of infinite prime divisors of k^+. We put $T = T_f \cup T_{\infty}$. For each $v \in T$, let $G_v \subseteq G$ be the decomposition group of v at K^+/k^+. When v is an infinite prime, the group G_v is trivial. We define G-modules Ω_f and Ω_{∞} by

$$
\Omega_f = \bigoplus_{\wp \in T_f} F_2[G/G_{\wp}] \quad \text{and} \quad \Omega_{\infty} = \bigoplus_{v \in T_{\infty}} F_2[G/G_v] = \bigoplus_{v \in T_{\infty}} F_2[G],
$$

respectively, where $F_2 = \mathbb{Z}/2\mathbb{Z}$ is the finite field with two elements. (When T_f is empty, $\Omega_f = \{0\}$ by definition.) For each prime divisor w of K^+ with the restriction $w_{K^+} \in T$ and an element $x \in (K^+)^\times$, we put $t_w(x) = 0$ or 1 according as $x \in N(K^+_w)$ or not. Here, K_w is the completion of K at the unique prime divisor of K over w and $N = N_{K/K^+}$ is the norm map. For $g \in G$ and $x \in (K^+)^\times$, we see that

$$
t_{w^{*}}(x) = t_w(x^{g^{-1}}) \quad \text{(1)}
$$

by local class field theory. For a prime ideal \mathfrak{P} of K^+ with $\mathfrak{P} \cap k^+ \in T_f$, let \mathfrak{P} be the unique prime ideal of K over \mathfrak{P}. For an ideal \mathfrak{A} of K, writing $\mathfrak{A} = \mathfrak{P} \mathfrak{B}$ with an integer e and an ideal \mathfrak{B} relatively prime to \mathfrak{P}, we put $\text{ord}_{\mathfrak{P}}(\mathfrak{A}) = e$.

We denote by $I(K)$ the group of (fractional) ideals of K. Let X be the subgroup of $I(K)$ consisting of ideals \mathfrak{A} with $\mathfrak{A}^J = \mathfrak{A}$. Here, J is the complex conjugation acting on several objects associated to K. Let X_0 be the subgroup of X consisting of ideals $\mathfrak{A} \in I(K)$ with $\mathfrak{A} = x \mathfrak{B}^{1+j}$ for some $x \in (K^+)^\times$ and $\mathfrak{B} \in I(K)$. The G-module $R^1(K)$ is isomorphic to the quotient X/X_0. For this, see the lines 1–2 from the bottom of p.6 and Lemma 2.1 of [1]. For each prime ideal $\wp \in T_f$, we fix a prime ideal \mathfrak{P} of K^+ over \wp. From the argument in [1, §5], we obtain the following isomorphism of G-modules:

$$
R^1(K) \cong \Omega_f; \quad \mathfrak{A} X_0 \rightarrow \bigoplus_{\wp \in T_f} \left(\sum_{\mathfrak{g}} \text{ord}_{\mathfrak{P}}(\mathfrak{A}) \mathfrak{g} \right), \quad \text{(2)}
$$

where \mathfrak{g} (with $g \in G$) runs over the quotient G/G_{\wp}.
Let Y be the subgroup of the multiplicative group $(K^+)^\times \times I(K)$ consisting of pairs (x, \mathfrak{A}) with $x \mathfrak{A}^{1+J} = \mathcal{O}_K$. Let Y_0 be the subgroup of Y consisting of pairs $(N(y), y^{-1} \mathfrak{B}^{1-J})$ with $y \in K^+$ and $\mathfrak{B} \in I(K)$. By definition, $R^0(K) = Y/Y_0$. We denote by $[x, \mathfrak{A}] \in R^0(K)$ the class containing (x, \mathfrak{A}). The map i_0 in the hexagon is defined by

$$i_0: H^0(E_K) = E_{K^+}/N(E_K) \to R^0(K); \quad [\varepsilon] \to [\varepsilon, \mathcal{O}_K]$$

with $\varepsilon \in E_{K^+}$. For each $v \in T_\infty$, we fix a prime divisor \mathfrak{v} of K^+ over v. Using (1), we observe that the homomorphisms

$$\alpha_\infty: (K^+)^\times \to \Omega_\infty; \quad x \mapsto \bigoplus_{v \in T_\infty} \left(\sum_{g \in G} \nu_\varepsilon(x) g \right)$$

and

$$\alpha_f: (K^+)^\times \to \Omega_f; \quad x \mapsto \bigoplus_{\psi \in I_f} \left(\sum_g \nu_\psi(x) \bar{g} \right)$$

are compatible with the action of G. Further, α_∞ is nothing but the “sign” map. From the argument in [1, §4], we obtain the following exact sequence of G-modules:

$$0 \to R^0(K) \xrightarrow{\alpha} \Omega_f \oplus \Omega_\infty \xrightarrow{\beta} F_2 \to 0.$$

Here, α is defined by $\alpha([x, \mathfrak{A}]) = (\alpha_f(x), \alpha_\infty(x))$, β is the argumentation map and G acts trivially on F_2.

3. Consequences

In this section, we derive some consequences of the exact hexagon and (2), (3). All of them are G-decomposed versions of the corresponding results in [1]. We work under the setting of Section 2. Denote by \tilde{A}_{K^+} the 2-part of the narrow class group of K^+. Letting $K_{>0}^+$ be the group of totally positive elements of K^+, we have an exact sequence

$$\{0\} \to (K^+)^\times/(K_{>0}^+E_{K^+}) \to \tilde{A}_{K^+} \to A_{K^+} \to \{0\}$$

of G-modules. We define the minus class group A_{K}^{-} to be the kernel of the norm map $A_K \to A_{K^+}$. Let χ be a \tilde{Q}_2-valued character of $G = \text{Gal}(K/k) = \text{Gal}(F/Q)$, which we also regard as a primitive Dirichlet character. For a module M over $\mathbb{Z}_2[G]$, we denote by $M(\chi)$ the χ-part of M. Here, \mathbb{Z}_2 is the ring of 2-adic integers and \tilde{Q}_2 is a fixed algebraic closure of the 2-adic rationals Q_2. (For the definition of the χ-part and some of its properties, see Tsuji [7, §2].) Denote by S_K the set of prime numbers lying
below some prime ideal in \(T_f \). In all what follows, we assume that \(\chi \) is a nontrivial character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above setting, the groups \(H^i(K/K^+; A_K)(\chi) \) with \(i = 0 \) and 1 are trivial if and only if

(i) \(\chi(l) \neq 1 \) for all \(l \in S_K \) and

(ii) \(|\tilde{A}_K(\chi)| = |A_K(\chi)| \).

The following corollary is a version of [1, Corollary 13.10] and Hasse [2, Satz 45].

Corollary 2. Under the above setting, the group \(A_K(\chi) \) is trivial if and only if

(i) \(\chi(l) \neq 1 \) for all \(l \in S_K \) and

(ii) \(\tilde{A}_K(\chi) \) is trivial.

Let \(\tilde{h}_M \) be the class number in the narrow sense of a number field \(M \). When \(M \) is an imaginary abelian field, let \(h_M \) be the relative class number of \(M \). We can easily show that \(h_M \) (resp. \(\tilde{h}_M \)) divides \(h_K \) (resp. \(\tilde{h}_K \)) using class field theory. The following is an immediate consequence of Corollary 2.

Corollary 3. Under the above setting, the ratio \(h_K/h_M \) is odd if and only if

(i) no prime number \(l \) in \(S_K \) splits in \(F \) and

(ii) \(\tilde{h}_K/\tilde{h}_M \) is odd.

To prove these assertions, we prepare the following two lemmas. For a number field \(L \), let \(\mu(L) \) be the group of roots of unity in \(L \) and \(\mu_2(L) \) the 2-part of \(\mu(L) \).

Lemma 1. The group \(H^1(K/K^+; E_K)(\chi) \) is trivial.

Proof. Let \(NE_K \) be the group of units \(e \in E_K \) with \(N(e) = e^{1+J} = 1 \). We have \(N(e) = 1 \) if and only if \(e \in \mu(K) \) by a theorem on units of a CM-field (cf. Washington [9, Theorem 4.12]). Since \(\mu(K)^2 = \mu(K)^{1-J} \subseteq E_K^{1-J} \), we obtain a surjection

\[
\mu(K)/\mu(K)^2 \rightarrow H^1(K/K^+; E_K) = NE_K/E_K^{1-J}
\]

of \(G \)-modules. However, as \([K:k]\) is odd, we have

\[
\mu(K)/\mu(K)^2 = \mu_2(K)/\mu_2(K)^2 = \mu_2(k)/\mu_2(k)^2.
\]

Since \(\chi \) is nontrivial, the \(\chi \)-part \((\mu_2(k)/\mu_2(k)^2)(\chi) \) is trivial. Hence, we obtain the assertion.

Lemma 2. The natural map \(A_K(\chi) \rightarrow A_K(\chi) \) is injective.
Proof. Denote the natural map \(A_{K^+} \to A_K \) by \(\iota \). Let \(\mathfrak{A} \) be an ideal of \(K^+ \) with the class \([\mathfrak{A}] \in \ker \iota\). Then \(\mathfrak{A}O_K = xO_K \) for some \(x \in K^\times \). We see that \(\epsilon = x^{1-I} \) is a unit of \(K \) with \(N(\epsilon) = 1 \). It is known that the map

\[
\ker \iota \to H^1(K/K^+; E_K); \ [\mathfrak{A}] \to x^{1-I}E_K^{1-I}
\]

is an injective \(G \)-homomorphism ([1, Theorem 7.1]). Then, from Lemma 1, we see that the \(\chi \)-part \((\ker \iota)(\chi) \) is trivial, from which we obtain the assertion. \(\square \)

Proof of Theorem 2. Let \(\varphi \) be a prime ideal in \(T_f \), and let \(l = \varphi \cap \mathcal{Q} \in S_K \). We see that the \(\chi \)-part \(F_2[G/G_\varphi](\chi) \neq \{0\} \) if and only if \(\chi \) factors through \(G/G_\varphi \), which is equivalent to \(\chi(G_\varphi) = \{1\} \). Since \([k^+ : \mathcal{Q}]\) is a 2-power and \([F : \mathcal{Q}]\) is odd, we have \(\chi(G_\varphi) = \{1\} \) if and only if \(\chi(l) = 1 \). Hence, we have shown that the condition (i) in Theorem 2 is equivalent to the condition \(\Omega_f(\chi) = \{0\} \). By the hexagon and Lemma 1, we see that \(H^0(A_K)(\chi) \) and \(H^1(A_K)(\chi) \) are trivial if and only if (iii) \(R^1(K)(\chi) = \{0\} \) and (iv) the map

\[
i_0: H^0(E_K)(\chi) = (E_{K^+}/N(E_K))(\chi) \to R^0(K)(\chi)
\]

is an isomorphism. By (2) and the above, the condition (iii) is equivalent to (i). Under the condition (i), we see that \(R^0(K)(\chi) = \Omega_{\infty}(\chi) \) from the exact sequence (3), and that for each class \([\epsilon] \in H^0(E_K)(\chi)\) with \(\epsilon \in E_{K^+} \), we have \(i_0([\epsilon]) = \alpha_{\infty}(\epsilon) \) from the definitions of the maps \(i_0 \) and \(\alpha \). Further, the 2-rank of \(\Omega_{\infty}(\chi) \) is larger than or equal to that of \(H^0(E_K)(\chi) \) by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz [5, Theorem 3.26]). Therefore, under (i), we observe that the condition (iv) holds if and only if \(\alpha_{\infty}(E_{K^+})(\chi) = \Omega_{\infty}(\chi) \). We see that the last condition is equivalent to the condition (ii) in Theorem 2 because of the exact sequence (4) and \(\alpha_{\infty}((K^+)^\times)(\chi) = \Omega_{\infty}(\chi) \). Therefore, we obtain Theorem 2. \(\square \)

Proof of Corollary 2. First, we show the “only if” part assuming that \(A_K^-(\chi) \) is trivial. By Lemma 2, we can regard \(A_K^+(\chi) \) as a subgroup of \(A_K(\chi) \). Assume that \(A_K^+(\chi) \) is nontrivial. Then there exists a class \(c \in A_K^+(\chi) \) of order 2. We have \(c^f = c = c^{-1} \), and hence \(c \in A_K^-(\chi) \). It follows that \(A_K^-(\chi) \) is nontrivial, a contradiction. Hence, \(A_K^-(\chi) = \{0\} \). It follows that \(A_K(\chi) \) is trivial by the exact sequence

\[
\{0\} \to A_K^-(\chi) \to A_K(\chi) \xrightarrow{1+j} A_K^+(\chi) \to \{0\}.
\]

Therefore, the “only if” part follows from Theorem 2. Next, assume that the conditions (i) and (ii) in Corollary 2 are satisfied. Then, \(A_K^-(\chi) = \{0\} \), and the groups \(H^i(A_K)(\chi) \) \((i = 0, 1) \) are trivial by Theorem 2. As the cohomology groups are trivial, we obtain an exact sequence

\[
\{0\} \to A_K^+(\chi) \to A_K(\chi) \xrightarrow{1-j} A_K^-(\chi) = A_K^-(\chi) \to \{0\}.
\]
Since \(A_{K^+}(\chi) = \{0\} \), we see that \(A_{K}(\chi) = A_{K}^{-}(\chi) \), and
\[
A_{K}^{-}(\chi) = A_{K}^{-}(\chi)^{1-J} = A_{K}^{-}(\chi)^2
\]
from the above exact sequence. Therefore, \(A_{K}^{-}(\chi) \) is trivial.

4. Proof of Theorem 1

We use the same notation as in Section 1. In particular, \(d \in \mathbb{Z} \) is a fixed integer with \(\sqrt{d} \notin K_0 \) and \(L_n \) is the quadratic twist of \(K_n \) associated to \(d \). We have \(L_n^+ = K_n^+ \). Let \(k \) (resp. \(k_d \)) be the maximal intermediate field of \(K_0/\mathcal{Q} \) (resp. \(L_0/\mathcal{Q} \)) of 2-power degree, and let \(F_0 \) be the maximal subfield of \(K_0^+ = L_0^+ \) of odd degree over \(\mathcal{Q} \). Then \(k \) and \(k_d \) are imaginary abelian fields with \(k^+ = k_d^- \). Let \(B_n/\mathcal{Q} \) be the real abelian field with conductor \(p^{n+1} \) and \([B_n : \mathcal{Q}] = p^n \). We put \(F_n = F_0B_n \). Then \(L_n = k_dF_n \) and \(K_n = kF_n \). The triples \((k_d, F_n, L_n)\) and \((k, F, K_n)\) correspond to \((k, F, K)\) in Sections 2 and 3. We see that

\[
S_{L_n} = S_d \text{ or } S_d \cup \{p\}
\]
and \(S_{K_n} = \{p\} \). We put
\[
G_n = \text{Gal}(F_n/\mathcal{Q}) = \text{Gal}(L_n/k_d) = \text{Gal}(K_n/k),
\]
and
\[
\Delta = \text{Gal}(F_0/\mathcal{Q}), \quad \Gamma_n = \text{Gal}(F_n/F_0) = \text{Gal}(B_n/\mathcal{Q}).
\]
Then we have a natural decomposition \(G_n = \Delta \times \Gamma_n \). For characters \(\varphi \) and \(\psi \) of \(\Delta \) and \(\Gamma_n \) respectively, we regard \(\varphi \psi = \varphi \times \psi \) as a character of \(G_n \). Further, we regard \(\varphi \), \(\psi \) and \(\varphi \psi \) also as primitive Dirichlet characters. The class groups \(A_{L_n^+} \), \(A_{K_n}^{-} \) and \(\tilde{A}_{K_n^+} \) are modules over \(G_n \). We can naturally regard \(A_{L_n^+}^{-} \) as a subgroup of \(A_{K_n}^{-} \) since \(L_n/L_{n-1} \) is a cyclic extension of degree \(p \neq 2 \) and \(A_{L_n^+}^{-} \) is the 2-part of the class group. Actually, it is a direct summand of \(A_{L_n}^{-} \) (cf. [9, Lemma 16.15]). We see that

\[
A_{L_n^+}^{-}/A_{L_{n-1}^+}^{-} \cong \bigoplus_{\varphi, \psi_n} A_{L_n}^{-}(\varphi \psi_n)
\]
where \(\varphi \) (resp. \(\psi_n \)) runs over a complete set of representatives of the \(\mathbb{Q}_2 \)-conjugacy classes of the \(\mathbb{Q}_2 \)-valued characters of \(\Delta \) (resp. \(\Gamma_n \) of order \(p^n \)). Regarding \(\tilde{A}_{K_n^+} \) as a subgroup of \(A_{K_n}^{-} \), we have a similar decomposition for \(\tilde{A}_{K_n^+}/A_{K_{n-1}^+}^{-} \). As \(S_{K_n} = \{p\} \) and \((\varphi \psi_n)(p) = 0\), we obtain the following assertion from Corollary 2 for the triple \((k, F_n, K_n)\).

Lemma 3. Let \(n \geq 1 \) be an integer, and the characters \(\varphi \) and \(\psi_n \) be as in (6). Then \(A_{K_n}^{-}(\varphi \psi_n) = \{0\} \) if and only if \(\tilde{A}_{K_n^+}(\varphi \psi_n) = \{0\} \).
Proof of Theorem 1 (I). Let φ and ψ_n be as in (6). As the orders of φ and ψ_n are relatively prime to each other, we have $(\varphi \psi_n)(l) = 1$ if and only if $\varphi(l) = \psi_n(l) = 1$ for a prime number l. Let n be an integer with $n \geq n_d$. Then we have $\psi_n(l) \neq 1$ and hence $(\varphi \psi_n)(l) \neq 1$ for all prime numbers $l \in S = S_d$. Further, we have $(\varphi \psi_n)(p) = 0$. Hence, by (5), the condition (i) in Corollary 2 for the triple (k_d, F_n, L_n) is satisfied. It follows that the condition $A_{\alpha_n}(\varphi \psi_n) = \{0\}$ is equivalent to $A_{K_n^+}(\varphi \psi_n) = \{0\}$. (Note that $L_n^+ = K_n^+$. Therefore, we obtain Theorem 1(I) from Lemma 3.

To show Theorem 1 (II), assume that $n_d \geq 2$ and let n be an integer with $1 \leq n < n_d$. We put

$$S^{(n)} = \{l \in S = S_d \mid \text{ord}_p(l^{p^n-1} - 1) \geq n + 1\}.$$

From the definition, we see that

$$S \supseteq S^{(1)} \supseteq S^{(2)} \supseteq \cdots \supseteq S^{(n_d-1)}$$

and that each $S^{(n)}$ is non-empty. Let φ (resp. ψ_n) be a \hat{Q}_2-valued character of Δ (resp. of Γ_n of order p^n). Denote by φ_0 the trivial character of Δ. Theorem 1 (II) is a consequence of the following assertion.

Proposition 1. Under the above setting, the following hold.

(I) The class group $A_{\Delta_n}(\varphi \psi_n)$ is nontrivial if $\varphi(l) = 1$ for some $l \in S^{(n)}$. In particular, $A_{\Delta_n}(\varphi \psi_n)$ is nontrivial.

(II) If $A_{\Delta_n}(\varphi \psi_n) = \{0\}$, the converse of the first assertion of (I) holds.

Proof. Applying Corollary 2 for the triple (k_d, F_n, L_n), we see from Lemma 3 that $A_{\Delta_n}(\varphi \psi_n) = \{0\}$ if and only if (i) $(\varphi \psi_n)(l) \neq 1$ for all $l \in S = S_d$ and (ii) $A_{\Delta_n}(\varphi \psi_n) = \{0\}$. We have $\psi_n(l) = 1$ for $l \in S^{(n)}$, and $\psi_n(l) \neq 1$ for $l \in S \setminus S^{(n)}$. Therefore, we see that the condition (i) is satisfied if and only if $\varphi(l) \neq 1$ for all $l \in S^{(n)}$ noting that the orders of φ and ψ_n are relatively prime. From this, we obtain the proposition.

We put $M_n = K_n(\sqrt{d}) = K_n L_n$. On the relative class number h_{M_n} of M_n, the following assertion holds.

Proposition 2. (I) When $n \geq n_d$, the ratio $h_{M_n} / h_{M_{n-1}}$ is odd if and only if h_{n}^* / h_{n-1}^* is odd.

(II) When $n_d \geq 2$ and $1 \leq n < n_d$, $h_{M_n} / h_{M_{n-1}}$ is even.

To prove this proposition, we need to show the following lemma. For an imaginary abelian field N, we put

$$E_N = E_N / \mu(N) E_{N^+}.$$

It is well known that the unit index $Q_N = |E_N|$ is 1 or 2 ([9, Theorem 4.12]).
Lemma 4. Let T and N be imaginary abelian fields with $N \subseteq T$. If the degree $[T : N]$ is odd, then $Q_T = Q_N$.

Proof. We first show that the inclusion map $N \rightarrow T$ induces an injection $E_N \hookrightarrow E_T$. For a unit ϵ of N, assume that $\epsilon = \eta \zeta$ for some $\zeta \in \mu(T)$ and $\eta \in \mathcal{E}_T$. Let ρ be a nontrivial element of the Galois group $G = \text{Gal}(T/N)$. Then, as $\epsilon = e^\rho$, we see that $\zeta^{1-\rho} = \eta^{\rho-1} \in \mu(T) \cap \mathcal{E}_T$. Hence, $\zeta^{1-\rho} = \pm 1$. However, as $N_{T/N}(\zeta^{1-\rho}) = 1$ and $[T : N]$ is odd, the case $\zeta^{1-\rho} = -1$ does not happen. Hence, $\zeta^{1-\rho} = 1$ for all $\rho \in G$. It follows that $\zeta \in \mu(N)$ and hence $\eta \in \mathcal{E}_N$. Therefore, we can regard E_N as a subgroup of E_T. In particular, Q_N divides Q_T.

Assume that $Q_N \neq Q_T$. Then we have $|E_T| = |E_T/E_N| = 2$. Regarding E_T as a module over G, we have a canonical decomposition

$$E_T = E_T/E_N = \bigoplus \mathcal{E}_T(\chi)$$

where χ runs over a complete set of representatives of the Q_2-conjugacy classes of the nontrivial Q_2-valued characters of G. Hence, $|\mathcal{E}_T(\chi)| = 2$ for some such χ. Let $Z_2[\chi]$ be the subring of \bar{Q}_2 generated by the values of χ over Z_2. The group $E_T(\chi)$ is naturally regarded as a module over the principal ideal domain $Z_2[\chi]$. Since the order of χ is odd and ≥ 3, we observe that $Z_2[\chi] \cong Z_2^d$ as Z_2-modules for some $d \geq 2$. Hence, $|\mathcal{E}_n(\chi)|$ is a multiple of 2^d, which contradicts $|\mathcal{E}_n(\chi)| = 2$. Therefore, we obtain $Q_N = Q_T$.

Proof of Proposition 2. By Lemma 4, we have $Q_{M_n} = Q_{M_{n-1}}$ and $Q_{L_n} = Q_{L_{n-1}}$ for all $n \geq 1$. Therefore, using the class number formula [9, Theorem 4.17], we see that

$$h_{M_n}^-/h_{M_{n-1}}^- = p \prod_{\sigma} \prod_{\psi_n} \left(-\frac{1}{2} B_{1, \sigma \psi_n}\right)$$

where σ runs over the odd Dirichlet characters associated to M_0, and ψ_n over the even characters of conductor p^{n+1} and order p^n. Further, $B_{1, \sigma \psi_n}$ denotes the generalized Bernoulli number. We easily see that σ equals an odd Dirichlet character associated to K_0 or L_0 since M_0/K_0^σ is an imaginary biquadratic extension with the imaginary quadratic subextensions K_0 and L_0. Hence, using the class number formulas for L_n, K_n and $Q_{L_n} = Q_{L_{n-1}}$, we obtain

$$h_{M_n}^- = h_{M_{n-1}}^- \times h_{n}^+ / h_{n-1}^-$$.

Therefore, the assertion follows from Theorem 1.

References

Faculty of Science
Ibaraki University
Bunkyo 2-1-1, Mito, 310-8512
Japan