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Abstract

A (not necessarily commutative) Krull monoid—as introddidey Wauters—is
defined as a completely integrally closed monoid satisfylmascending chain con-
dition on divisorial two-sided ideals. We study the struetof these Krull monoids,
both with ideal theoretic and with divisor theoretic metaodmong others we char-
acterize normalizing Krull monoids by divisor theories. sBd on these results we
give a criterion for a Krull monoid to be a bounded factotigatmonoid, and we
provide arithmetical finiteness results in case of nornraizKrull monoids with
finite Davenport constant.

1. Introduction

The arithmetic concept of a divisor theory has its origin arlg algebraic num-
ber theory. Axiomatic approaches to more general comnvetatomains and monoids
were formulated by Clifford [17], by Borewicz and Safam@\B], and then by Skula
[61] and Gundlach [33]. The theory of divisorial ideals wasseloped in the first half
of the 20th century by Prifer, Krull and Lorenzen [56, 44, 46, 48], and its presen-
tation in the book of Gilmer [31] strongly influenced the depenent of multiplicative
ideal theory. The concept of a commutative Krull monoid (oedi as completely in-
tegrally closed commutative monoids satisfying the asigndhain condition on divi-
sorial ideals) was introduced by Chouinard [16] 1981 in orgestudy the Krull ring
property of commutative semigroup rings.

Fresh impetus came from the theory of non-unique factdomatin the 1990s.
Halter-Koch observed that the concept of monoids with divitheory coincides with
the concept of Krull monoids [34], and Krause [43] provedtthacommutative do-
main is a Krull domain if and only if its multiplicative moriof non-zero elements
is a Krull monoid. Both, the concepts of divisor theories aridKrull monoids, were
widely generalized, and a presentation can be found in theographs [36, 29] (for a
recent survey see [37]).

The search for classes of non-commutative rings havingitimaetical ideal theory—
generalizing the classical theory of commutative Dedekamdl Krull domains—was
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504 A. GEROLDINGER

started with the pioneering work of Asano [3, 4,5, 6]. It l¢éadx theory of Dedekind-like
rings, including Asano prime rings and Dedekind prime rinbiseir ideal theory and also
their connection with classical maximal orders over Dedéldomains in central simple
algebras is presented in [53].

From the 1970s on a large number of concepts of hon-commetKtiull rings has
been introduced (see the contributions of Brungs, Bruyran@rie, Dubrovin, Jespers,
Marubayashi, Miyashita, Rehm and Wauters, cited in the reé@®). Always the com-
mutative situation was used as a model, and all these gaatiahs include Dedekind
prime rings as a special case (see the survey of Jespersafd8]Section 5 for more
details). The case of semigroup rings has received spdtatian, and the reader may
want to consult the monograph of Jespers and ii[40].

In 1984 Wauters [63] introduced non-commutative Krull mioisogeneralizing the
concept of Chouinard to the non-commutative setting. Hmu$owas on normalizing
Krull monoids, and he showed, among others, that a primenpotyal identity ring is
a Chamarie—Krull ring if and only if its monoid of regular eients is a Krull monoid
(see Section 5).

In the present paper we study non-commutative Krull monadidshe sense of
Wauters, which are defined as completely integrally closemaits satisfying the as-
cending chain condition on divisorial two-sided ideals. Section 3 we develop the
theory of divisorial two-sided ideals in analogy to the countative setting (as it is done
in [36, 29]). In Section 4 we introduce divisor theoretic cepts, and provide a char-
acterization of normalizing Krull monoids in divisor thetic terms (Theorem 4.13).
Although many results and their proofs are very similar egitto those for commuta-
tive monoids or to those for non-commutative rings, we peviull proofs. In Sec-
tion 5 we discuss examples of commutative and non-commatdtrull monoids with
an emphasis on the connection to ring theory. The existehaesaitable divisor homo-
morphism is crucial for the investigation of arithmeticatiféness properties in com-
mutative Krull monoids (see [29, Section 3.4]). Based on tbsults in Sections 3
and 4 we can do some first steps towards a better understaatlitng arithmetic of
non-commutative Krull monoids. Among others, we geneealize concept of trans-
fer homomorphisms, give a criterion for a Krull monoid to béd@unded-factorization
monoid, and we provide arithmetical finiteness results igecaf normalizing Krull
monoids with finite Davenport constant (Theorem 6.5).

2. Basic concepts

Let N denote the set of positive integers, and ¥f = N U {0}. For integers
a,beZ, wesethbl={xeZ|a<x<b}. If A B are sets, thertA C B means that
A is contained inB but may be equal ta.

By a semigroupwe always mean an associative semigroup with unit elemént. |
not denoted otherwise, we use multiplicative notation. Hebe a semigroup. We say
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that H is cancellativeif for all elementsa, b, ¢ € H, the equationab = ac implies

b = c and the equatioma = ca implies b = c. Clearly, subsemigroups of groups are
cancellative. A groupQ is called aleft quotient groupof H (a right quotient group
of H, resp.) ifH C Q and every element 0@ can be written in the forma b with
a,b e H (orin the formba?, resp.).

We say thatH satisfies theight Ore condition(left Ore condition resp.) ifaH N
bH # @ (Han Hb # @, resp.) for alla, b € H. A cancellative semigroup has a left
qguotient group if and only if it satisfies the left Ore condiitj and if this holds, then
the left quotient group is unique up to isomorphism (see Tt8&orems 1.24 and 1.25]).
Moreover, a semigroup is embeddable in a group if and onlyig @mbeddable in a left
(resp. right) quotient group (see [19, Section 12.4]).

If H is cancellative and satisfies the left and right Ore conaljtiben every right
quotient groupQ of H is also a left quotient group and conversely. In this ca3e,
will simply be called aguotient groupof H (indeed, ifQ is a right quotient group and
s=ax"! e Q with a,x € H, then the left Ore condition implies the existencebpy €
H such thatya = bx and hences = ax~! = y~'b; thus Q is a left quotient group).

Throughout this paper, amonoid means a cancellative semigroup which satisfies
the left and the right Ore condition, and every monoid homgrhism¢: H — D sat-
isfies p(1y) = 1p.

Let H be a monoid. We denote by(H) a quotient group ofH. If ¢: H —
D is a monoid homomorphism, then there is a unique homomarphi®): q(H) —
q(D) satisfyingq(¢) | H = ¢. If Sis a semigroup withH C S C q(H), then S is
cancellative,q(H) is a quotient group ofS, and henceS is a monoid. Every such
monoid S with H € S q(H) will be called anovermonoidof H. Let H denote the
opposite monoicdf H (H°P is a semigroup on the séi, where multiplicationH°P x
H — HO°P is defined by 4, b) — ba for all a,b € H; clearly, H°P is a monoid in the
above sense). We will encounter many statements on left igihd ideals (quotients,
and so on) in the monoidd. Since every right-statement (r) iH is a left-statement
() in HO°P, it will always be sufficient to prove the left-statement.

Let a,b € H. The elementa is said to beinvertible if there exists ama’ € H
such thataa = a’'a = 1. The set of invertible elements ¢f will be denoted byH*,
and it is a subgroup oH. We say thatH is reduced ifH* = {1}. A straightforward
calculation shows thaaH = bH if and only if aH* = bH>.

We say thata is a left divisor (right divisor, resp.) ifb € aH (b € Ha, resp.),
and we denote this bg |, b (a |, b, resp.). Ifb € aH N Ha, then we say tha& is a
divisor of b, and then we writea | b.

The elementa is called anatomif a ¢ H* and, for allu, v € H, a = uv implies
ue H* or ve H*. The set of atoms oH is denoted byA(H). H is said to be
atomicif everyu € H \ H* is a product of finitely many atoms dfl.
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For a setP, we denote byF(P) the free abelian monoidvith basisP. Then every
a € F(P) has a unique representation in the form

a=[] p~®, where vy(a)eNy and vp(@)=0 for almostall pe P,
peP

and we callla] = Zpepvp(a) € Np the length of a. If H = F(P) is free abelian
with basis P, then H is reduced, atomic withd(H) = P and q(H) = (z(, +). We

use all notations and conventions concerning greatest omndivisors in commutative
monoids as in [36, Chapter 10].

3. Divisorial ideals in monoids

In this section we develop the theory of divisorial idealsnionoids as far as it
is needed for the divisor theoretic approach in Section 4 thedarithmetical results
in Section 6. An ideal will always be a two-sided ideal. Weldaol the presenta-
tion in the commutative setting (as given in [36, 29]) witte thecessary adjustments.
The definition of a Krull monoid (as given in Definition 3.11 due to Wauters [63].
For Asano orderdd (see Section 5), the commutativity of the groip(H)* (Propos-
ition 3.12) dates back to the classical papers of Asano andatso be found in [52,
Chapter I, 82].

Our first step is to introduce modules (following the ternagy of [37]), frac-
tional ideals and divisorial fractional ideals. Each deiom will be followed by a sim-
ple technical lemma.

DEFINITION 3.1. LetH be a monoid andA, B C gq(H) subsets.
1. We say thatA is aleft module(resp.right modulg if HA = A (resp. AH = A),
and denote byM,(H) (resp. M,(H)) the set of all left (resp. right) modules. The
elements ofM(H) = M;(H) N M, (H) are calledmodules(of H).
2. We setAB = {ab|a € A, b e B}, and define thdeft and right quotientof A and
B by

(AyB)={xeqH)|xBCc A} and (A:; B)={xeq(H)|BxcC A}
If B={b}, then A;; b)=(A: B)and A: b) =(A: B).

The following lemma gathers some simple properties which g used without
further mention (most of them have a symmetric left or rightiant).

Lemma 3.2. Let H be a monoidA, B, C C q(H) subsetsand ce H.
1. (A3¢c)=Ac? (cA;B)=c(A; B), (Ac; B)=(A; Bc?l), and(A; cB) =
C_l(A i1 B).
2. (A4 B)={peg(Aub) =peg AbL.
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3. AyBC)=({(A;C);B)and((A; B):; C)=((A: C); B).
AC(H:u(Hx A)=Neeqr), ache HE and AC(H :r (H 1 A)) =(eeqeny, accn CH-
5 (@) If Ae M|(H), then(A:; B) € M(H).

(b) If Ae M;(H), then(A: B)=(A: BH).

(c) If B € M|(H), then(A:; B) € M;(H).

»

Proof. We verify only the statements 3. and 4., as the remgiohes follow im-
mediately from the definitions.
3. We have

(A7 BC)={xeq(H) | xBCCc Al ={xeq(H)|xBc (A C)}
= ((A 0 C) Nl B),

and

((AyB)yC)={xeq(H)|CxC (A B)}={xeq(H)| CxBc A}
={xeq(H)|xBC (A:; C)}=((A: C)y B).

4. We check only the first equality. Letbe an element of the given intersection.
We have to show thaa(H :; A) C H, whence for allb € (H :; A) we have to verify
thatabe H. If be (H ;; A), thenAbcC H implies thatA ¢ Hb~%. Thus we obtain that

ae ()] HccHb™
ceq(H),ACHc

and thusab € H. Conversely, suppose thate (H ;; (H :;; A)). We have to verify
thata € Hc for all c € q(H) with A c Hc. If AC Hc, then Act Cc H implies that
cle(H: A). Thus we getac ¢ H anda € Hc. O]

DEFINITION 3.3. LetH be a monoid andA C gq(H) a subset. TherA is said
to be
e left (resp. righ) H-fractional if there exista € H such thatAa C H (resp.aAC H).
e H-fractional if A is left and rightH-fractional.
e afractional left (resp. righ) ideal (of H) if A is left H-fractional and a left mod-
ule (resp. rightH-fractional and a right module).
e aleft (resp. righ) ideal (of H) if A is a fractional left ideal (resp. right ideal) and
ACH.
e a (fractional) ideal if A is a (fractional) left and right ideal.
We denote byFs(H) the set of fractional ideals ofi, and byZs(H) the set of ideals
of H.

Note that the empty set is an ideal Bff. Let A C q(H) be a subset. TheA is
e left H-fractional if and only if H :;; A) # @ if and only if (H ;; A)N H # @.
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e right H-fractional if and only if H :; A) # @ if and only if (H :; A)NH # 2.
Thus, if A is non-empty, then Lemma 3.2 (items 4. and 5.) shows thit (A) is a
fractional left ideal and il :; A) is a fractional right ideal.

Lemma 3.4. Let H be a monoid.
1. If (ai)ie is a family of fractional left idealgresp. right ideals or ideajsand JC |
is finite, then("),., a; and [, a; are fractional left idealg(resp. right ideals or ideals
2. Equipped with usual multiplicatignFs(H) is a semigroup with unit element H.
3. Ifae F(H)*, then(H ; a)a=H =a(H : a) and(H ; a) = (H ;y a) € F5(H).
4. For every ac q(H), we have(H ; aH) = Ha™, (H;; Ha)=a*H, (H 3y (H 3
Ha)) = Ha and(H :; (H :; aH)) = aH.
5. If Acq(H), then(H ; (H : A)) is a fractional left ideal and(H :; (H : A)) is
a fractional right ideal.
6. f Acqg(H),a=(H: A andb=(H :; A), thena=(H:; (H: a) andb =
(H :r (H 3 b)).

Proof. 1. Sincg ) ai Caj, [[jc; a Ca; for somej € J and subsets of left
(resp. right) H-fractional sets are left (resp. right)-fractional, the given intersection
and product are left (resp. rightj-fractional, and then clearly they are fractional left
ideals (resp. fractional right ideals or ideals).

2. Obvious.

3. Letae Fs(H)* andb € Fg(H) with ba = ab = H. Thenb C (H ; a) and
henceH = ba C (H ; a)a C H, which implies that H :; a)a = H. Similarly, we obtain
that a(H :; a) = H, and thereforeHl ;; a) = b = (H 3 a) € F5(H).

4. Leta € g(H). The first two equalities follow directly from the definitis.
Using them we infer that

(H:(H: Ha)=(H:a'H)=Ha
and
(H: (HyaH)=(H:; Hal)=aH.

5. This follows from 1. and from Lemma 3.2 4.
6. ByLemma 3.2 4., we haweC (H : (H : a)). Conversely, ifg € (H ; (H : a)),
then

gACq(H ;x (H:; A)cq(H :; a) CH,
and henceg € (H i A) = a. O
DEeFINITION 3.5. LetH be a monoid andA C g(H) a subset.

1. Als called adivisorial fractional left idealif A= (H : (H :; A)), and adivisorial
fractional right idealif A= (H :; (H 3 A)).
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2. If(Hy A =(Hz: A),then we setA™ =(H: A =(H; A).
3. f(H:;H:y A)=(H: (H: A), then we setA, = (H ; (H :x A), and A
is said to be aivisorial fractional ideal (or a fractional v-ideal) if A = A,. The set
of such ideals will be denoted h¥,(H), andZ,(H) = F,(H) N Zs(H) is the set of
divisorial idealsof H (or the set ofv-ideals of H).
4. Suppose thatH ; ¢) = (H : ¢) for all fractional idealsc of H.
(@) For fractional ideals:, b we definea -, b = (ab),, and we calla -, b the v-
product of a and b.
(b) A fractional v-ideal a is called v-invertible if a-,at=at., a =H. We
denote byZ?(H) the set of allv-invertible v-ideals.

Lemma 3.4 5. shows that a divisorial fractional left idealndeed a fractional left
ideal, and the analogous statement holds for divisoriaitifsaal right ideals and for di-
visorial fractional ideals. Furthermore, Lemma 3.4 4. shdhat, for everya € q(H),
Ha is a divisorial fractional left ideal. We will see that thesamption of Defin-
ition 3.5 4. holds in completely integrally closed monoid@@e(inition 3.11) and in nor-
malizing monoids (Lemma 4.5).

Lemma 3.6. Suppose thatH : ¢) = (H : ¢) for all fractional idealsc of H, and
let a, b be fractional ideals of H.
1. We havea C a, = (a,), and (a,) ™t = a ! = (a7 Y),. In particular, a=?,a, € F,(H).
2. (aa b, =(a,: ).
3. Ifa,be F(H), thena-,be F,(H)andanb e F,(H), and if a, b € Z,(H), then
a,beZ,(H),anbeZ,(H),anda-, b Canb.
4. If d € q(H) with da C b, then dv, C b,. Similarly, ad C b implies thata,d C b.
5. We have(ab), = (a,b), = (a,b,),.
6. Equipped withv-multiplication, F,(H) is a semigroup with unit element ,Hand
Z,(H) is a subsemigroup. Furthermqré a € F,(H), thena is v-invertible if and only
if a € 7,(H)*, and henceZ;(H) = Z,(H) N F,(H)*.

Proof. 1. By Lemma 3.4 5., we haveC a,. Therefore it follows that
[(@H N =() ' catc@D =0T

O g Lemma 32 5w i it
2. Using Lemma 3.2 3. we infer that

(@ HrT=MH:aaHY=(H:aYH:a)=(a:0),
and henceda™), = (a, : a)™.

3. Leta, b e F,(H). Thena-, b = (ab), is a divisorial fractional ideal by 1.
Clearly, we havexnb C (anb), C a,Nb, =anb. The remaining statements are clear.
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4. |If da C b, then we get

do,=d () cH= () deH= () eH

ceq(H),accH ceq(H),dacdcH ecq(H),daceH
=(H:; (H:;da)c(H: (H:b)=b,.

If ad C b, we argue similarly.
5. We have ¢b), C (a,b), C (a,b,),. To obtain the reverse inclusion it is suffi-
cient to verify that

(ab)™* C (a,b,) %

Let d € (ab)~%. Thendab C H and hencedab c H for all a € a. Then 4. implies that
dab, ¢ H, = H for all a € a and hencedab, C H. Sinceab, is a fractional ideal,
it follows that ab,d C H and henceasbd C H for all b € b,. Again 4. implies that
a,bd c H for all b € b, and hences,b,d C H.

6. Using 5. we obtain to first assertion. We provide the dethil the further-
more statement. Let € F,(H). Thena € F,(H), and thus, ifa is v-invertible,
thena € F,(H)*. Conversely, suppose thate F,(H)* and letb € F,(H) such that
a,b=0b-,a=H. Thenab C H, henceb C (H :a) andab C a(H : a) C H. This
implies thatH = (ab), C a-,a~* C H. Similarly, we geta™*-, a = H, and hence: is
v-invertible. O

The next topic are prime ideals and their properties.

Lemma 3.7. Let H be a monoid angp C H an ideal. Then the following state-
ments are equivalent
(@) If a,b C H are ideals withab C p, thena C p or b C p.
(b) If a,b C H are right ideals withab C p, thena Cp or b C p.
(c) If a,b C H are left ideals withab C p, thena C p or b C p.
(d) If a,be H with aHbC p, then ae p or b € p.

Proof. (a)= (b) If a, b C H are right ideals withab C p, thenHa, Hb C H
are ideals with Ha)(Hb) = Hab C Hp = p, and hences C Ha C p or b C Hb C p.

(b) = (d) If a,b e H with aHb C p, then @H)(bH) C pH = p, and hence
acaH CporbebHCp.

(d= (@ Ifagpandb ¢ p, then there exisa € a\p, b e b\ p, and hence
aHb ¢ p, which implies thatab ¢ p.

The proof of the implications (a3> (c) = (d) = (a) runs along the same lines.

O

An ideal p C H is calledprimeif p ## H and if it satisfies the equivalent state-
ments in Lemma 3.7. We denote lsyspecH) the set of prime ideals oH, and by
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v-specH) = s-specH) N Z,(H) the set of divisorial prime ideals ofl. Following
ring theory ([47, Definition 10.3]), we call a subs&tC H an m-systemif, for any
a,b e S, there exists an € H such thatahbe S. Thus Lemma 3.7 (d) shows that an
idealp C H is prime if and only ifH \ p is an m-system.

A subsetm C H is called av-maximal v-ideal if m is a maximal element of
Z,(H) \ {H} (with respect to the inclusion). We denote bymax(H) the set of all
v-maximal v-ideals of H.

Lemma 3.8. Suppose thatH : ¢) = (H : ¢) for all fractional idealsc of H.
1. If SC H is an m-system angd is maximal in the sefa € Z,(H) | a N S = 0},
thenp € v-specH).
2. v-max(H) C v-specH).

Proof. 1. Assume to the contrary that Z,(H) is maximal with respect tp N
S=0, butp is not prime. Then there exist elemeratsb € H \ p such thataHb C p.
By the maximal property of, we haveSN (pUHaH), # 0 and SN (p UHbH), # 3.
If se SNn(pU HaH), andt € SN (p U HbH),, thensht e S for someh € H, and
using Lemma 3.6 5. we obtain that

shte (p U HaH),H(p U HbH),
C[(pUHaH)H(p UHbH)], C[pUHaHbH], =p, =p,

a contradiction.
2. If m € v-max(H), thenm € Z,(H) is maximal with respect tan N {1} = @,
and thereforem is prime by 1. O]

Our next step is to introduce completely integrally closeonoids.

Lemma 3.9. Let H be a monoid and Han overmonoid of H.
L Ifl =(H:; H), then Hc(( ;1)
2. LetabeH with aHb c H. Then there exists a monoid”Hvith H c H” C H’
such that(H ;; H”) # @ and (H” ;; H’) # 0.

Proof. 1. SinceH’(H’l) =H’l C H, it follows thatH'l < (H ;; H) =1 and
henceH” c (I 3 1).

2. We setH” = HaH'UH, and obtain thaH c H” c H’, H"H” = H"”, H"b C
H andaH’ c H”. O

Lemma 3.10. Let H be a monoid.

1. The following statements are equivatent
(&) There is no overmonoid Hof H with H € H" C q(H) and aHb c H for
some ab e H.
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(b) (@ a) = (b: b) = H for all non-empty left modules of H which are
right H-fractional and for all non-empty right modules of H which are left
H-fractional.
(€) (@ a)=(a: a)=H for all non-empty ideals: of H.
2. Suppose that H satisfies one of the equivalent conditionk ifthen(H ; a) =
(H:ya)yand(H :y (H :; a)) = (H : (H :y a)) for all non-empty fractional ideals
of H.

Proof. 1. IfH = q(H), then all statements are fulfilled. Suppose thhtis not
a group.

(@ = (b) Let®d #acCq(H)andae H with Ha =a andaa C H. ThenH’ =
(a: a) is an overmonoid oH. If be anH, thenaH’b C aa C H and henceH’ = H
by 1.

(b) = (c) Obvious.

(c) = (a) LetH’ be an overmonoid oH with aH’b ¢ H for somea, b € H.
We have to show thatl’ = H. By Lemma 3.9 2., there exists a mondit!’ with H C
H” ¢ H' such thata = (H : H”) # @ andb = (H” ; H’) # @. Then Lemma 3.9 1. im-
plies thatH” C (a a) = H andH' C (b: b) = H.

2. Ifac g(H)is a non-empty fractional ideal, then Lemma 3.2 3. and 1lyrtigat

Huyao)=(axra)ya)=(a:a)ra)=(H:a).

Since H ; a) = (H :; a) is a non-empty fractional ideal, the previous argumentliesp
that H 3 (H 3 a)) = (H :; (H y a)). 0J

DEerFINITION 3.11. A monoidH is said to be
e completely integrally close it satisfies the equivalent conditions of Lemma 3.10 1.
e v-noetherianif it satisfies the ascending chain condition ofideals of H.
e aKrull monoid if it is completely integrally closed and-noetherian.

If H is a commutative monoid, then the above notion of being cetefyl inte-
grally closed coincides with the usual one (see [29, Se@i&}). We need a few no-
tions from the theory of po-groups (we follow the terminologf [62]). Let Q = (Q, )
be a multiplicatively written group with unit elementelQ, and let< be a partial or-
der onQ. Then @, -, <) is said to be
e apo-groupif x <y implies thataxb < ayb for all x, y,a,b e Q.

e directedif each two element subset @ has an upper and a lower bound.
e integrally closedif for all a,be Q, a" <b for all n € N implies thata < 1.

Proposition 3.12. Let H be a completely integrally closed monoid.
1. Every non-empty fractional-ideal is v-invertible, and v-max(H) = v-specf)\ {%}.



NON-COMMUTATIVE KRULL MONOIDS 513

2. Equipped with the set-theoretical inclusion as a partiadler and v-multiplication
as group operationthe group F,(H)* is a directed integrally closed po-group.

3. I¥(H) is a commutative monoid with quotient groufy(H)*.

4. If a,beZi(H), thena Db if and only ifa | b in Z7(H). In particular, (a Ub), =
gcd(@, b) in Z3(H), and Z;(H) is reduced.

Proof. 1. Let® # a e F,(H).

Using Lemma 3.6 2. and thatl is completely integrally closed, we obtain that
(aaY), =(a,:a)t=(a:a)t=H1=H. Sincea? € F,(H), we may apply this
relation fora—! and get ¢ *a), = H. Therefore it follows that

ayal=@H,=H=(@@k),=at,a

By Lemma 3.8 2., we have-max(H) C v-specH) \ {#}. Assume to the contrary
that there are, q € v-specH) with @ # p € q C H. Sinceq is v-invertible, we get
p=gq-awitha=qg?t-,pC H. Sincep is a prime ideal andy ¢ p, it follows that
aCyp. Thena=b-,p with b =a-,p~* C H, whencep = q-,b-,p and thusH = q-, b,

a contradiction.

2. Clearly, (F,(H)*, -, ©) is a po-group. In order to show that it is directed,
considera, b € F,(H)*. Thena-, b € 7 (H) is a lower bound of{a, b}, and @ U b),
is an upper bound. In order to show that it is integrally cthset a, b € F,(H)* be
given such that" C b for all n € N. We have to show that C H. The set

ao=Ua”Cb

n>=1

is a non-empty fractional ideal, and we getC (ap :; ap) = H, sinceH is completely
integrally closed.

3. Since F,(H)*, -,, Q) is a directed integrally closed po-group by Z,(H)*
is a commutative group by [62, Theorem 2.3.9]. SiGgH) = F,(H)* NZ,(H) by
Lemma 3.6 6., it follows thaf;(H) is a commutative monoid. In order to show that
Fy(H)* is a quotient group of;(H), let c € F,(H)* be given. We have to find some
a € Z7(H) such thata -, ¢ € Z(H), and for that it suffices to verify that ., ¢ C H.
Now, sincec is a fractional ideal, there exists somses H such thatce C H, thus
(HcH), € Z;(H) and, by Lemma 3.6 5.,

(HcH), -, ¢ = ((HcH),c), = (Hce), € H, = H.

4. Note thatZ;(H) is commutative by 3., and hence the greatest common div-
isor is formed in a commutative monoid. Thus the in particg@tements follow im-
mediately from the main statement. In order to show thatsdility is equivalent to
containment, we argue as before. letb € Z7(H). If a| b in Z(H), thenb=a-, ¢
for somec € Z}(H), and thereforeb C a. If b C q, thenb-,a™* Ca-, a7t = H, and
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thusb -, a7t € F,(H)* N Z,(H) = Z*(H). The relationb = (b -, a%) -, a shows that
albin Z}(H). O

The missing parts are ideal theoretic properties-ofoetherian monoids.

Proposition 3.13. Suppose thatH : ¢) = (H :; ¢) for all fractional idealsc of H.
1. The following statements are equivatent
(@) H is v-noetherian.
(b) Every non-empty set af-ideals of H has a maximal elemefwith respect to
the inclusio.
(c) Every non-empty set of fractionatideals of H with non-empty intersection
has a minimal elemen(with respect to the inclusign
(d) For every non-empty ideal C H, there exists a finite subset & a such that
(HEH) ' =al
2. If H is v-noetherian andx € Z(H), then there exists a finite set € a such that
a = (HEH),.
3. If H is v-noetherian and & H, then the sefp € v-specH) | a € p} is finite.

Proof. 1. (a)= (b) If ¥ # Q C Z,(H) has no maximal element, then every
a € Q is properly contained in some& € Q. If ag € Q is arbitrary and the sequence
(an)n=o is recursively defined by, 1 = ay, for all n > 0, then ¢n)n=0 is an ascending
sequence ob-ideals not becoming stationary.

(b) = (¢) Suppose that # Q@ C F,(H) anda € a for all a € Q2. Then the set
Q* ={aa!|ae€Q} CZ,(H) has a maximal elemergtay! with ag € Q, and thenag
is a minimal element of2.

()= (d) If@#ECa,thend #atcC(HEH) e F,(H). Thus the sef =
{(HEH)™'| @ # E C q, E finite} has a minimal element{EqH)~, whereEq C a is
a finite non-empty subset. Thei EoH)™* D a1, and we assert that equality holds.
Assume to the contrary that there exists same (HEqH)™*\ a=. Then there exists
an elementa € a such thatua ¢ H, and if E; = Eo U {a}, thenu ¢ (HE;H)™? and
consequently HE;H) ™t € (HEqH) ™1, a contradiction.

(d) = (a) Letay Cay C... be an ascending sequencewideals. Then

a=UanCH

n=1

is an ideal ofH, and we pick a finite non-empty subsgtc a such that HEH)™ =
a~l. Then there exists somma > 0 such thatE C a,,. For alln > m we obtaina, C
aCa, =(HEH), C ay, and hencer, = ap.

2. Let H be av-noetherian andr € Z)(H). By 1., there exists a finite subset
E C a such that HEH)™! = a~! and therefore HEH), = a, = a.

3. Assume to the contrary that is v-noetherian and that there exists some
H such that the se = {p € v-specH) | a € p} is infinite. Then 1. implies that there
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iS a sequencepf)n=o in £ such that, for alln > 0, p,, is maximal inQ2\ {pg,...,Pn_1},
and again by 1., the sépgNp, N---Np, | N € Ng} has a minimal element. Hence
there exists soma € Ng such thatpgN---Np, =poN---Npp 1 CPypg. Sincep, g is
a prime ideal, Lemma 3.7 implies that there exists sama€g0, n] such thatp; C p,,,1.
Since nowp,, 1 € Q\{p1,....,pn} C 2\ {py,....pj_1} andp; is maximal in the larger set,
it follows that p,,; C p;, and hencey,,.1 =p; € @\ {p1, ..., pn}, @ contradiction. [

In contrast to the commutative setting the §et v-spec) | a € p} can be empty.
We will provide an example in Section 5 after having estdlais the relationship be-
tween Krull monoids and Krull rings (see Example 5.2).

Theorem 3.14(ldeal theory of Krull monoids) Let H be a Krull monoid. Then
Zx(H) is a free abelian monoid with basismax(H) = v-specf) \ {9}.

Proof. SinceH is v-noetherian and since divisibility if;/(H) is equivalent to
containment (by Proposition 3.12 47;(H) is reduced and satisfies the divisor chain
condition. Therefore, it is atomic by [29, Proposition #]1.Again by the equivalence
of divisibility and containment, the set of atoms ®f(H) equalsv-max(H), and by
Proposition 3.12, we have-max(H) = v-specH) \ {#}. Since every non-empty prime
v-ideal is a prime element & (H), every atom ofZ’(H) is a prime element, and thus
Zx(H) is a free abelian monoid with basismax(H) by [29, 1.1.10 and 1.2.2]. [

4. Divisor homomorphisms and normalizing monoids

The classic concept of a divisor theory was first presenteanirabstract (commu-
tative) setting by Skula [61], and after that it was genesdliin many steps (see e.g.
[27], and the presentations in [36, 29]). In this section weestigate divisor homo-
morphisms and divisor theories in a non-commutative sgttiWe study normal elem-
ents and normalizing submonoids of rings and monoids aedatred by Wauters [63]
and Cohn [20, Section 3.1]. For the role of normal elementsirig theory see [32,
Chapter 12] and [53, Chapter 10]. The normalizing mon{ti) of a monoidH plays
a crucial role in the study of semigroup algeb#apH] (see [40]). In this context, Jes-
pers and Okriski showed that completely integrally closed monoids, sehquotient
groups are finitely generated torsion-free nilpotent gsoapd which satisfy the ascend-
ing chain condition on right ideals, are normalizing (se®, [Bheorem 2]). Recall that,
if Ris a prime ring anda € R\ {0} is a normal element, thea is a regular element.
The main results in this section are the divisor theoretaratterization of normalizing
Krull monoids together with its consequences (Theorem 4d@ Corollary 4.14).

DEFINITION 4.1. 1. A homomorphism of monoids: H — D is called a
e (left and right) divisor homomorphisnif ¢(u) || ¢(v) implies thatu |, v and
() |r ¢(v) implies thatu |, v for all u, v € H.
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e (left and right)cofinalif for every a € D there existu,v € H such thata || ¢(u)
anda |; ¢(v) (equivalently,aD N ¢(H) # @ and Da N ¢(H) # 9).
2. A divisor theory(for H) is a divisor homomorphisnp: H — D such thatD =
F(P) for some setP and, for everyp € P, there exists a finite subsét# X C H
satisfying p = gcdp(X)).
3. A submonoidH C D is called
e cofinal if the embeddingH — D is cofinal.
e saturatedif the embeddingH — D is a divisor homomorphism.

DEFINITION 4.2. LetH be a cancellative semigroup.
1. An elementa € H is said to benormal (or invariant) if aH = Ha. The subset
N(H) ={ae H |aH = Ha} Cc H is called thenormalizing submonoidor invariant
submonoidl of H, and H is said to benormalizingif N(H) = H (Lemma 4.3 will
show thatN(H) is indeed a normalizing submonoid).
2. An elementa € H is said to beweakly normalif aH* = H*a. The subseH" =
{ae H|aH* = H*a} C H is called theweakly normal submonoidf H, and H is
said to beweakly normalif HY = H.
3. Two elements, b € H are said to beassociatedf a € H*bH* (we write a ~ b,
and note that this is an equivalence relation kb
4. We denote byP(H) = {aH | a € H} the set of principal right ideals, bf"(H) =
{aH | a € N(H)} the set of normalizing principal ideals, by(H) = {a€ H | ab =
ba for all b € H} the centerof H, and we setHq = {aH* | a € H"},

Lemma 4.3. Let H be a cancellative semigroup.
1. If H is normalizing then H is a monoid.
2. N(H) is a subsemigroup with Ic N(H), and if H is a monoidthenN(H) c H
is a normalizing saturated submonoid.
3. C(H) c N(H) is a commutative saturated submonoid.

Proof. 1. LetH be a normalizing semigroup. H,b € H, thenabe aH = Ha
implies the existence of an element H such thatab = ca and henceHan Hb # @.
Similarly, we get thanH NbH # @. Thus the left and right Ore condition is satisfied,
and H is a monoid.

2. If a,be H with aH = Ha andbH = Hb, thenabH = aHb = Hab. Since
1 e N(H), it follows thatN(H) C H is a subsemigroup. SinceH = H = He for all
¢ € H*, we haveH™ C N(H).

Suppose thaH is a monoid. In order to show that(H) is normalizing, we have
to verify thataN(H) = N(H)a for all a € N(H). Let a, b € N(H). Sinceab e aH =
Ha, there exists some € H such thatab = ca. Since H is a monoid,a € H is
invertible in q(H), and we getctH = aba'H = Haba! = Hc, which shows shows
that c € N(H). This implies thataN(H) C N(H)a, and by repeating the argument we
obtain equality.



NON-COMMUTATIVE KRULL MONOIDS 517

In order to show thaN(H) C H is saturated, let,b € N(H) be given such thaa |,

b in H. Then there exists an element H such thatb = ac. SincecH = a'bH =
Ha'b = Hc, it follows thatc € N(H), and hencea || b in N(H). If a, b € N(H)
such thata | b in H, then we similarly get thaa | b in N(H). ThusN(H) C H is a
saturated submonoid.

3. It follows by the definition thaC(H) € N(H) is a commutative submonoid. In
order to show thaC(H) C N(H) is saturated, led, b € C(H) be given such thaa |, b
in N(H). Then there exists an element N(H) such thatb = ac. For everyd € H,
we havecd = a~'bhd = da~'b = dc, hencec € C(H) anda |, b in C(H). We argue
similarly in case of right divisibility and obtain that(H) c N(H) is saturated. [

Lemma 4.4. Let H be a monoid.
1. HYis a monoid with ¥ € N(H) ¢ H" c H. To be associated is a congruence
relation on HY, and [a]~ = aH* = H*a for all a € H".
2. The quotient semigroup ‘H~ = H,eq is @ monoid with quotient group(H"Y)/H*.
Moreover H is normalizing if and only if H= H" and Hcq is normalizing.
3. Let D be a monoid ang: H — D a monoid homomorphism. Then there exists a
uniqgue homomorphis@req: Hreq — Dreg Satisfyingpreq(@H>) = ¢(a)D* for all a € HY.
4. The map fZg(H") = Zs(Hwed), | = | = {uH* |u e I} is an inclusion preserving
bijection. Moreover! is a principal right ideal or a divisorial ideal if and onlyfil
has the same property.

Proof. 1. Ifa,b e H are weakly normal, thembH* = aH*b = H*ab, and
henceab is weakly normal. Next we show that every normal element isikiye nor-
mal. Leta € H be normal. Ife € H*, thenas = bac aH = Ha with be H and hence
asa~! € H. Similarly, we getas~*a™! € H, henceasa™! € H*, andas = (aca1t)a
H>*a. This shows thaaH* C H*a, and by symmetry we geaH* = H*a.

By Lemma 4.3, we infer thaH"Y is a monoid withH* C N(H) c HY C H.
Clearly, ~ is a congruence relation oH" and fa]. = aH* = H*a for all a € H".

2. The groupg(HY)/H* is a quotient group of,eq, and henceH,eq is a monoid.

Suppose thaH is normalizing. ThenN(H) ¢ HY ¢ H = N(H), and we verify
that H,eq is Nnormalizing. Since

{ac|ce H} =aH =Ha = {ca|ce H},
it follows that

(@aH*)Heg = {aH*cH* | ce H} = {acH* |ce H} = {caH* | c € H}
= {cH*aH* | c € H} = Heg(@aH>),

and thusH,eq is normalizing.
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Conversely, suppose th&t = HY and thatHeq is normalizing. Leta € H. By
symmetry it suffices to verify theaH C Ha. Let c € H. Since

acH* e {(aH*)(dH*) = adH* | d € H} = ((dH*)@H*) = daH* | d € H},

there existd € H and ¢ € H* such thatac = das. SinceaH* = H*a, there is an
n € H* such thatae = na, and henceac = (dn)a € Ha.

3. If b,c e HY with bH* = cH*, theng(b)D* = ¢(c)D*. Hence we can define
a Map@red: Hred = Dreg Satisfying greg(@aH*) = @(a)D*. Obviously, greq is uniquely
determined and a homomorphism.

4. We define a mag: Zs(Hreq) — Zs(HY) by settingg(J) = {v € HY | vH* € J}
for all J € Zs(Heq). Obviously, f andg are inclusion preserving, inverse to each other,
and hencef is bijective.

If 1 =aHY, then f(lI) = {abH* = (@aH*)(bH*) | b € H"} = (@H*)Heq, and if
J = (@aH*)Heq, theng(J) = aHY.

If ACq(HY), then

(HY ;3 AJH* = {uH* | u € q(HY), uAcC H"}
={uH* |ueq(H"), ufaH* |a € A} C Hied}
= (Hred il {aHX | ac A})

The analogous statement is true for right quotients, and the assertion for divisorial
ideals follows. O

Lemma 4.5. Let H be a monoid. Then the following statements are equitiale
(@ H is normalizing.
(b) For all X c q(H), (H q X)=(H :; X).
(c) Forall X c g(H), HX = XH.
(d) Every (fractional) left ideal is a(fractional) ideal.
(e) Every divisorial (fractional) left ideal is a divisorial(fractional) ideal.
(f) For every ae q(H), Ha is a fractional ideal.

REMARK. Of course, the statements on right ideals, symmetric to (@) and
are also equivalent.

()

Proof of Lemma 4.5. (a} (b) If X C q(H), then

(HaX)=()H1a)=[)(HyaH)=()Ha'=()a"H=(H: X).

aeX aeX aeX aeX
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(b) = (c) If X Cq(H), then
HX =|JHa=[JHsa'H)=JH a™?

aeX aeX aeX
= JHva?h)=[]aH=XH.
aeX aeX

(c) = (d) = (e) = (f) Obvious.
(fy = (@) Letae H. ThenHa = HaH D> aH, Ha™' = Ha'H > a'H and
henceaH > Ha, which implies thataH = Ha. O

Lemma 4.6. Let H be a weakly normal monqidr: H — H,q the canonical
epimorphismand letg: H — D be a homomorphism to a monoid D.
1. If ¢ is a divisor homomorphism angt: D — D’ is a divisor homomorphism to a
monoid D, theny o @p: H — D’ is a divisor homomorphism.
2. m is a cofinal divisor homomorphisnand ¢ is a divisor homomorphism if and
only if greq: Hreqg — Dreq is a divisor homomorphism. Ip is a divisor homomorphism
then greq is injective Hreg = ¢red(Hred) @and ¢red(Hreq) C Dreq is @ saturated submonoid.
3. If D = F(P), theng is a divisor theory if and only ifpreq: Hieq — D is a div-
isor theory.

Proof. 1. Suppose that and ¢ are divisor homomorphisms, and latb € H
such thaty (¢(a)) || ¥ (¢(b)). Sincey is a divisor homomorphism, we infer tha(a) |,
¢(b), and sincep is a divisor homomorphism, we obtain that|, b. The analogous
argument works for right divisibility.

2. The first statements are clear. Now suppose ¢higta divisor homomorphism,
and leta,b € H with ¢(a) = ¢(b). Theng(a) | ¢(b), ¢(b) | ¢(a), hencea | b, b|a, and
thusaH* = bH*. Thus ¢ IS injective, Hreq = @red(Hred), @nd sincepyeq is a divisor
homomorphismgred(Hreq) C Dreg IS Saturated.

3. By 2, it remains to verify thap satisfies the condition involving the greatest
common divisor if and only ifpeq does. Indeed, ify,...,a, € H, thengqa H>*) =
¢(g) for all i €[1,n] and hence

gedip(ag), - - -, ¢(@n)) = gedlpred(@H™), .. ., @red(@ H™)),

which implies the assertion. Ll

Lemma 4.7. Let H be a monoid.
1. If a,b e N(H), then aH, bH are divisorial ideals of H and (aH) -, (bH) =
(aH)(bH) = abH. Thus the wusual ideal multiplication coincides with the
v-multiplication.
2. Equipped with usual ideal multiplicatioriP"(H) is a normalizing monoid. It is a
saturated submonoid &f;(H), and the inclusion is cofinal if and only #NN(H) # @
for all a € Z;(H).
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3. The map f N(H)eq — P"(H), defined by akt = aN(H)* — aH for all a
N(H), is an isomorphism.

4. If H is normalizing then the mam: H — Z*(H), defined byd(a) = aH for all
a € H, is a cofinal divisor homomorphism.

Proof. 1. Ifce N(H), thencH is an ideal ofH by definition, and it is diviso-
rial by Lemma 3.4 4. Ifa, b € N(H), then

(aH) -, (bH) = ((aH)(bH)), = (abH), = abH.

2. and 3. Leta,b e H. SinceaH = bH if and only if aH* = bH*, f is in-
jective, and obviouslyf is a semigroup epimorphism. Sindé&H) is normalizing by
Lemma 4.3, its associated reduced moniidH)eq is Normalizing, and thu$"(H) is
a normalizing monoid. By 1., it is a submonoid Bf(H).

In order to show thatP"(H) C Z¥(H) is saturated, lela, b € N(H) such that
aH | bH in Z¥(H). Then there exists somee Z7(H) such thatbH = aH -, a, and
hencea™*b € a'bH = (a*H)bH = (a*H) -, (@aH) -, a = a C H. The argument for
divisibility on the right side is similar.

If a € Zf(H) anda € anN(H), thena-,at=a?1-,a=H, aH C a, and hence
a-, (@?t,aH)=aH = (aH-, a 1) -, a. This shows that, it " N(H) # @ for all a €
ZrX(H), thenP"(H) C Z;(H) is cofinal. An analogous argument shows the converse.

4. If H is normalizing, thenH = N(H) is weakly normal. Using 2., 3., and
Lemma 4.6 we infer that

9: H —> Hyeg = P"(H) = P(H) < Z(H)

is a cofinal divisor homomorphism, because it is a compasitiosuch homomorphisms.
O

The following characterization of a divisor homomorphisnil vee used without
further mention.

Lemma 4.8. Let ¢: H — D be a monoid homomorphismand set¢ =
q(¢): q(H) — q(D). Then the following statements are equivalent
() ¢ is a divisor homomorphism.
(b) ¢~(D) = H.
In particular, if ¢ = (H < D), then HC D is saturated if and only if H=qg(H)ND.

Proof. (a)= (b) Clearly, we haveH C ¢ }D). If x = a~b € ¢p~1(D) with
a,b € H, then¢(x) = ¢(a)tp(b) € D and thereforep(a) | ¢(b). Hencea |, b and
xeH.

(b) = (@) Leta,be H such thatp(a) || ¢(b). Theng(atb) = ¢(a)t¢(b) € D,
hencea=tb € H anda | b. Similarly, ¢(a) |, ¢(b) implies thata |, b.
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If ¢ = (H < D), theng~(D) = q(H) N D, and the assertion follows. Ol

Lemma 4.9. Let D be a monoid and H- D a saturated submonoid.
1. IfacHis aleftideal of Hthen Du C D is a left ideal of D and DaNH =a
(similarly, if a C H is a right ideal of H thenaD N H = a).
2. Leta C H be an ideal. Ifa is a divisorial left idea) then (D 3 (H : a)) is a
divisorial left ideal of D witha = (D ;; (H :y a)) N H. If a is a divisorial right ideal
then(D :; (H 3 a)) is a divisorial right ideal of D witha = (D :;; (H 3 a)) N H.
3. If D satisfies the ascending chain condition on divisorieft lideals then H is
v-noetherian.

REMARK. All quotients are formed in their respective quotient greu So
(H:ya)={qeaq(H)|agcC H} (D (H:a)={qeqD)|a(H : a) C D}, and
S0 on.

Proof of Lemma 4.9. 1. Clearlypa C D is a left ideal ofD, and we haver C
DanH. If x=uze H whereue D andzea C H, thenueq(H)ND =H and
hencex € Ha = a.

2. Leta C H be a divisorial left ideal. TherH € (H :; a) and D = HD C
(H : a)D which implies that D :;; (H ;; a)) =(D 3 (H ;; a)D) C D. By Lemma 3.4 6.,
(D 5 (H : @) is a divisorial left ideal ofD.

If aea, thena(H: a)CHCD and henceae(D:; (H: a). If aec(D;y(H:;ya)N
H, thena(H ;; aq)c D Ng(H)=H and henceae (H ; (H ;y a)) =a. Thus we have
a=(D:i3H:xa)NH.

3. Let (@n)n=0 be an ascending chain of divisorial ideals kf, and set2(, =
(D (H i ap)) for all n > 0. Then @Q,)n>0 is an ascending chain of divisorial left
ideals of D. If it becomes stationary, then the initial chaim,),>0 becomes stationary
becausear, = A, N H for all n > 0. O

Lemma 4.10. Let ¢p: H — D be a monoid homomorphism with(H) C N(D),
and set¢ = q(¢): q(H) — q(D).
1. If H' is an overmonoid of H with ah ¢ H for some ab € H, then D =
D¢(H’) is an overmonoid of D witlp(a)D’¢(b) C D.
2. Suppose thap is a divisor homomorphism.
(@) If D is completely integrally closedhen H is completely integrally closed.
(b) H is normalizing.

Proof. 1. Sincep(H) C N(D), we haveD¢(H") = ¢(H")D, and henceD’ is an
overmonoid ofD. Furthermore, we get

¢(a)D'gp(b) = ¢(a)Dp(H")p(b) = De(a)p(H')¢(b) = Dp(aH'b) C D.
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2. (a) If D is completely integrally closed an#l’ is an overmonoid ofH as
in 1., thenH’ Cc ¢ }(D’) = ¢ D) = H. Thus H is completely integrally closed by
Lemma 3.10.

2. (b) Letae H. We show thaaH C Ha, and then by symmetry we gatH =
Ha. If b € aH, theng(b) € ¢(a)D = D¢(a), which implies thatp(a) | ¢(b), a |, b
and henceb € Ha. O

Lemma 4.11. Let ¢: H — D be a divisor homomorphism into a normalizing
monoid D and set¢ = g(¢): q(H) — q(D).
1. For every XC H we have X! = ¢ 1(¢(X)™).
2. For everya € F,(H) we havea = ¢~(¢(a),).
3. If D=F(P), 9 #acZ,(H) and a= gcd(a)), thena = ¢~ 1(aD).
4. Letg be a divisor theory.
(a) For every ac q(D) there is a finite non-empty set X q(H) such that aD=
B(X)s.
(b) For every@ # X C H, we havegcdp(X)) = gcdp(X,)).

Proof. We observe thatl is normalizing by Lemma 4.10, and hendd ( X) =
(H z X) for all X € q(H) by Lemma 4.5.(b). We will need the following fact for a com-
mutative monoidM satisfying GCDE) # ¢ for all E C M (see [36, Theorem 11.5]):
for any subseiX C M we have

() X, =dM if and only if GCDX) =dM*.

1. If x e X1, thenxX C H, hencep(x)p(X) = ¢(xX) C D, andp(x) € ¢p(X)72,
which impliesx € ¢~ X(¢(X)1).

Conversely, ifx € ¢~ 1(p(X)™1), then ¢(xX) = ¢(X)¢p(X) Cc D. Hence it follows
that xX c ¢~%(D) = H andx € X1,

2. Leta e F,(H). Clearly, we haver C ¢(¢(a),). Conversely, lek € (¢ (a),).
Theng(x) € ¢(a), = (¢(a)~1)~1, and hence by 1., we get

p(xa ™) = p(x¢ H(p(a) 1) C p(X)¢(a) * C D.

SinceH = ¢ (D) by Lemma 4.8, it follows thaka=' ¢ H and thusx € (a7 1) = a.

3. If a=gcd(a)), thenaD = ¢(a), by (x), and 2. implies that = ¢~(¢(a),) =
¢~ (@D).

4. Suppose thaD = F(P).

4. (a) First we consider an elemeate D. Thena = p;--- p with | € Ng and
P1,..., p € P. For everyv € [1,1] there exists a finite non-empty s, € H such that
p, = gcd(X,)). Then the product seX;---X; C H is finite anda = gcdp(X;- - - X))
(where we use the convention tht --- X; = {1} if | = 0). Now (x) implies that
aD = g(X1--- Xi)y.
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Let a € (D) be given. Then there is somee H such thatp(u)ae D. If X C H
is a finite non-empty set witkp(u)aD = ¢(X),, thenaD = ¢(u~1X),.
4. (b) We start with the following assertion.

A. For every XC q(H) we havep(X), = ¢(X,),-

Suppose that A holds, leX ¢ H and a = gcd(X)). Applying A and &) we
infer thataD = ¢(X), = ¢(X,), and hencea = gcd(X,)) by 3.

Proof of A. Let X C gq(H). Clearly, we havep(X), C ¢(X,),. To show the con-
verse, we assert thaD(: ¢(X)) C (D : ¢(X,)). This implies that

P(Xo)o = (D : p(X,))™H C (D : ¢(X)) ™ = p(X),..

Leta € (D : ¢(X)) C q(D). By 4. (a), there is a finite non-empty sétC q(H) with
aD = ¢(Y),. Then¢(XY) C ¢(X)aD C D and henceXY C H. This implies that
XyY C (XY), C H, henceg(X,)p(Y) = ¢(X,Y) C D and thereforep(X,)o(Y), C
(#(X)9(Y)), C D. Thus it follows thatp(X,)a C ¢(X,)é(Y), C D anda € (D : ¢(X,)).
Ll

Corollary 4.12. Let¢: H — D be a divisor homomorphism into a normalizing
monoid D.
1. If D is v-noetherian then H isv-noetherian.
2. If D is a Krull monoid then H is a normalizing Krull monoid.

Proof. 1. If @)n=0 IS an ascending chain of divisorial ideals &f, then
(¢(an)y)n=0 is an ascending chain of divisorial ideals Df If this chain becomes sta-
tionary, then so does the initial chain k, becauser, = ¢ (¢ (an),) for all n > 0 by
Lemma 4.11 2.

2. If D is a normalizing Krull monoid, therH is completely integrally closed
by Lemma 4.10 2, and hence the assertion follows from 1. []

Theorem 4.13(A divisor theoretic characterization of normalizing Kirmdonoids)
Let H be a monoid. Then the following statements are equitiale
(a) The mapd: H — Z¥(H), defined byd(a) = aH for all a € H, is a divisor theory.
(b) H has a divisor theory.
(c) There exists a divisor homomorphism H — F(P) into a free abelian monoid.
(d) H is a normalizing Krull monoid.

Proof. (a)= (b) = (c) Obvious.
(c) = (d) SinceF(P) is a normalizing Krull monoid, this follows from Corol-
lary 4.12 2.
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(d) = (a) By Lemma 4.7 4p: H — Z*(H) is a cofinal divisor homomorphism.
Theorem 3.14 shows th&t!(H) is a free abelian monoid with basisspecH) \ {%}.
Let p be a non-empty divisorial prime ideal. By Proposition 3.13H2&re exists a finite
setE = {aj, ..., an} C p such that HEH), = p. Since H is normalizing, we get
HEH =aHU-.--UayH, whereayH, ..., a,H are divisorial ideals by Lemmas 3.4
and 4.5. Now Proposition 3.12 4. implies that

p=(uHU---UayH), = gcd@(ay), ..., d(an)). 0

Corollary 4.14. Let H be a monoid.
1. If H is a Krull monoid thenN(H) C H is a normalizing Krull monoidand there
is @ monomorphism fZ*(N(H)) — Z*(H) which mapsP(N(H)) onto P"(H).
2. N(H) is a normalizing Krull monoid if and only iN(H),eq is @ normalizing Krull
monoid. If this holds then both N(H),eq = P"(H) and C(H), are commutative
Krull monoids.

Proof. We setS= N(H).

1. Suppose thaH is a Krull monoid. By Lemma 4.3 2.5 C H is a normaliz-
ing saturated submonoid. Thus the inclusion n&p> H satisfies the assumption of
Lemma 4.10 2., and hencgis completely integrally closed.

Let f: Z;(S) — Z;(H) be defined byf (a) = (H 3 (S a)) for all a € Z;(S) (with
the same notational conventions as in Lemma 4.9; in paaticl = (S:; a) C q(9)).

We check thatf (a) € Z¥(H). If x € q(H) with xAC H, thenxHA=xAH C H,
and thus H ; A) is a right module ofH. By Lemma 4.9 2., ; A) is a divisorial
left ideal of H. SinceH is a Krull monoid, it follows thatf (a) is a divisorial ideal
of H, and hencef (a) € Z;(H).

Since f(a) N S=a by Lemma 4.9 2.,f is injective andS is v-noetherian because
H is v-noetherian. Ifa € S, then, by Lemma 3.4 4., we infer that

f(S=(H:;(S; Sa)=(H:3a'S=(H;alSH) =Ha

This shows thatf mapsP(S) onto P"(H). Since f1: Z)(S) — Z(S), defined bya
(S:a), and f: Z;(H) — Z;(H), defined bya — (H : a), are homomorphismsf =
fo o f; (use Lemma 3.6) is a homomorphism.

2. We freely use Theorem 4.13. §q is a normalizing Krull monoid, then there
exists a divisor homomorphism: Seq — F(P). If 7: S— Seq denotes the canonical
epimorphism, therp o 7: S — F(P) is a divisor homomorphism by Lemma 4.6 and
thus S is a normalizing Krull monoid. Suppose th&tis a normalizing Krull monoid.
Again, by Theorem 4.13 (b) and by Lemma 4.6 3., it follows tBag is a normalizing
Krull monoid. Lemma 4.7 shows th&eq and P"(H) are isomorphic, and th&®"(H)
is a submonoid of the commutative mondigi(H). Lemma 4.3 3. implies that(H) C
S is saturated, and thug(H) is a Krull monoid by Corollary 4.12 2.
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Our next step is to introduce a concept of class groups, ad tth show a unique-
ness result for divisor theories. Let: H — D be a homomorphism of monoids.
The group

Cle) = a(D)/a(e(H))

is called theclass groupof ¢. This coincides with the notion in the commutative set-

ting (see [29, Section 2.4]), and we will point out that in e€asf a Krull monoidH

and a divisor theory: N(H) — D the class grou(¢) is isomorphic to the normal-

izing class group oH (see Equations (4.1) and (4.2) at the end of this section).
For a € q(D), we denote by

[a], = [a] = aq(e(H)) € C(p)
the class containing. As usual, the class grouf¢) will be written additively, that is,
[abl =[a] +[b] for all a, b e q(D),

and then [1}= 0 is the zero element @(¢). If ¢: H — D is a divisor homomorphism,
then a straightforward calculation shows that for an elénaea D, we have §] = O if
and only ifa € (H). If D = F(P) is free abelian, thetsp = {[p] | p € P} C C(p)
is the set of classes containing prime divisors.

Consider the special cas¢ C D, ¢ = (H — D), and suppose thaf(H) c q(D).
ThenC(¢) = q(D)/q(H), and we define

D/H = {[a] = aq(H) | a € D} C C(¢).

Then D/H C C(¢) is a submonoid with quotient groufXy), and D/H = C(¢) if and
only if H C D is cofinal.

Suppose that is a normalizing Krull monoid, and lei: H — Z*(H) be as in
Theorem 4.13. TheP"(H) = P(H) C Z;(H) is cofinal, and

C(9) = Z;(H)/P(H) = F7(H)/a(P(H))

is called thev-class groupof H, and will be denoted by, (H).

We continue with a uniqueness result for divisor theoriets. consequences for
class groups will be discussed afterwards. We proceed dmicdmmutative case ([29,
Section 2.4]). Recently, W.A. Schmid gave a more expliciprapch valid in case of
torsion class groups ([60, Section 3]).

Proposition 4.15 (Uniqueness of divisor theories)Let H be a monoid.
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1. Lety: H— F = F(P) be a divisor theory. Then the maps: F — Z;(H) and
¢: C(p) — Cy(H), defined by

¢*(@) = ¢ YaF), and g([a],) =[¢ *(@F),] forall acF,

are isomorphisms.

2. If ¢p1: H— Fy and ¢o: H — F, are divisor theoriesthen there is a unique iso-
morphism®: F; — F, such that® o ¢; = ¢,. It induces an isomorphismp: C(¢p1) —
C(¢2), given by5([a]¢1) = [®(a)]y, for all a € Fy.

Proof. 1. Note thatH is a normalizing Krull monoid by Theorem 4.13. We
start with the following assertion.

A. {ged@(X)) |0 # X C H} = F.

Proof of A. Sinceg: H — F(P) is a divisor theory, it follows thatP C
{gcd@(X)) | ¥ #£ X C H}. Since gcdp(X1Xz)) = gedlp(X1)) gedp(X2)) for all non-
empty subsets{;, X, C H, it follows that F(P) C {gcd@(X)) | 9 # X C H} C F(P).

Let a e F. By A, we havea = gcd(p(X)) for some non-empty subset C H,
and hencel # X C ¢ Y(aF). This implies thaty 1(aF), € Z,(H) \ {0} = Z;(H). By
definition, we haveaF Np(H) = (¢ 1(aF)), and using Lemma 4.11 4. it follows that

a = ged@F N ¢(H)) = gedp(e™(@F))) = gedple (aF).)) = ged@(¢* (@),

which shows thaty™* is injective.

In order to show thap* is surjective, lett € Z*(H) be given, and set = gcd(p(a)).
Theng*(a) = ¢~%(aF), = a by Lemma 4.11 3., and thug* is surjective.

Next we show thatp* is a homomorphism. Led, b e F. Then Lemma 3.6 5. im-
plies that

9*(@) - ¢*(b) = (¢ (@F)up (bF),), = (¢ (@F)¢ (bF)), C ¢ *(@abF), = ¢*(ab).

To prove the reverse inclusion, we set= gcd(e*(@) -, ¢*(b))) € F, and note that
¢*(@) -, ¢*(b) D ¢~ (@aF)p~1(bF). This implies that

¢ | gedp(p™(@F)¢ ™ (bF))) = ged@F N ¢(H)) gedpF N ¢(H)) = ab,

henceabF c cF, and thuse*(ab) C ¢ 1(cF), = (¢*(@) -, ¢*(0)), = ¢*() -, ¢*(b),
where the penultimate equation follows from Lemma 4.11 3.

It remains to verify thatp is an isomorphism. Note that for every € H, we
have ¢* o ¢(X) = ¢~ H@(X)F), = a(¢)"X(a(e)(X)F), = xH by Lemma 4.11 3. Obvi-
ously, ¢* induces an epimorphism’: F — C,(H), where¢’(a) = [¢*(@)] € C,(H). If
a, b € F with [a], = [b],, then there exisk, y € H such thatp(x)a = ¢(y)b. Since
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[e*(@)] = [x¢*(@)] = [¢*(¢(x)a)] = [¢*(p(Y)b)] = [ye*(b)] = [¢*(b)], it follows that
¢’ induces an epimorphism: C(¢) — C,(H). To show thatp is injective, leta,b e F
with [¢p*(a)] = [¢*(b)] € C,(H). Then there are, y € H such thatxe*(a) = ye*(b),
henceg*(¢(x)a) = ¢*(p(y)b), thus p(x)a = ¢(y)b, and therefore we get], = [b],.

2. Forie{l,2, lety’: F —Z;(H) andg: C(¢i) — C,(H) be the isomorphisms
as defined in 1. The® = ¢;tog;: F; > F, and ® = ;1 o 11 C(p1) — Clgo) are
isomorphisms as asserted.

Let v : F1 — F, be an arbitrary isomorphism with the property thiab ¢; = @,.
Then for everya € F; we have

(@) = y(gedipa(er (@F)) = ged@ o giler (aFw)) = geda(er (@),

which shows that) is uniquely determined. []

Let H be a Krull monoid and: P"(H) < Z*(H) be the inclusion map which is
a divisor homomorphism by Lemma 4.7 2. Then

4.1) C"(H) = C()

is called thenormalizing class groupf H (as studied by Jespers and Wauters, see
[38, p.332]). The monomorphisnh: Z*(N(H)) — Z;(H), discussed in Corollary 4.14,
induces a monomorphism

f: Co(N(H)) = Z;(N(H))/P(N(H)) — C"(H).

In particular, if H is normalizing andp: H — D is a divisor theory, then Propos-
ition 4.15 shows that

(4.2) Clp) = Cy(H) = C"(H),
and thus all concepts of class groups coincide.

5. Examples of Krull monoids

In this section we provide a rough overview on the differel#tcps where Krull
monoids show up. We start with ring theory.

Let R be a commutative integral domain. Thé&his a Krull domain if and only
if its multiplicative monoid of non-zero elements is a Krutlonoid. This was first
proved independently by Wauters ([63, Corollary 3.6]) andwse ([43]). A thorough
treatment of this relationship and various generalizatioan be found in [36, Chap-
ters 22 and 23] and [29, Chapter 2]). B is a Marot ring (this is a commutative ring
having not too many zero-divisors), thd® is a Krull ring if and only if the monoid
of regular elements is a Krull monoid ([35]).



528 A. GEROLDINGER

Next we consider the non-commutative setting. A large numdfeconcepts of
non-commutative Krull rings has been introduced (see [950957, 58, 51, 12, 54, 10,
64, 41, 42, 21], and in particular the survey article [38])urQlefinition of a Krull
ring (given below) follows Jespers and Omski ([40, p.56]). The following propos-
ition summarizes the relationship between the ideal thebmyngs and the ideal theory
of the associated monoids of regular elements. This relstip was first observed by
Wauters in [63]. More detailed references to the literatuile e given after the prop-
osition. For clarity reasons, we carefully fix our setting fings, and then the proof
of the proposition will be straightforward.

Let R be a prime Goldie ring, and leQ denote its classical quotient ring (we
follow the terminology of [53] and [32]; in particular, by ad@ie ring, we mean a
left and right Goldie ring, and then the quotient ring is a l@fid right quotient ring;
an ideal is always a two-sided ideal). Th&h is simple artinian, and every regular
element ofQ is invertible. SinceR is prime, every non-zero ideal C R is essential,
and hence it is generated as a I&tmodule (and also as a riglR-module) by its
regular elements (see [53, Corollary 3.3.7]). By a fradioideal a« of R we mean a
left and right R-submodule ofQ for which there exisg, b € Q* such thataa C R and
ab C R. Clearly, every non-zero fractional ideal is generateddnyutar elements. Lat
be a fractional ideal. IfR:; (R a)) = (R (R a)), then we setr, = (R (R a)),
and we say that is divisorial if a = a,. We denote byF,(R) the set of divisorial
fractional ideals (fractionab-ideals), byZ,(R) the set of divisorial ideals oR, and
by v-specR) the set of divisorial prime ideals oR. We say thatR is completely
integrally closed if ¢ ;; a) = (a :;y @) = R for all non-zero ideals: of R. Suppose that
R is completely integrally closed. Then left and right quotgcoincide, and fou, b €
Fu(R), we definev-multiplication asa -, b = (ab),. Equipped withv-multiplication,
Fu(R) is a semigroup, and,(R) is a subsemigroup. A prime Goldie ring is said to
be aKrull ring if it is completely integrally closed and satisfies the asiieg chain
condition on divisorial ideals.

For a subsett C Q, we denote byl®* = | N Q* the set of regular elements of
I. Then the set of all regular elemenits = R* of R is a monoid, andy(H) = Q*
is a quotient group oH. Let a, b, ¢ be fractional ideals oR. Sincec is generated
(as a leftR-module and also as a riglR-module) by the regular elements, we have
¢ = r{c®) = (c®)r, and thus also

b;a°*=(®"3a") and @ a)® = (6°:; a®).

Proposition 5.1. Let R be a prime Goldie ringand let H be the monoid of regu-
lar elements of R.
1. R is completely integrally closed if and only if H is comglgtintegrally closed.
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2. The maps

- {fv(R)»fv(H), and e {fU(H)»fU(R),

a — a, a = (a)r,

are inclusion preserving isomorphisms which are inverseaoh other. Furthermore
@ ¢ |Z,(R): Z,(R) — Z,(H) and «* | v-specR): v-specR) — v-specH) are
bijections.
(b) R satisfies the ascending chain condition on divisorial isled R if and only
if H satisfies the ascending chain condition on divisoria¢ats of H.

3. Ris aKrull ring if and only if H is a Krull monoidand if this holds then N(H)

is a normalizing Krull monoid.

Proof. 1. Suppose that is completely integrally closed, and latC R be a
non-zero ideal. Them® C H is an ideal, ¢° ; a®) = H by Lemma 3.10 and hence

(aza)=r{(aya)) =r(@ :a%))=r(H) =R

Similarly, we get ¢ ;; a) = R.
Conversely, suppose th& is completely integrally closed, and latC H be a
non-empty ideal. IfA C R denotes the ideal generated bythen

HC(@ja)C(AyA*=R =H.

Similarly, we get ¢ :;y a) = H.
2. Clearly,* and° are inclusion preserving and map fractional ideals to frac-
tional ideals. Ifa € F,(R), then

Hi(Hxa)=R (R a))=(R:y(Ryq) =a
=Rz (Rya)=(H: (H:a%),

and hencen® is a divisorial fractional ideal oH. Similarly, we obtain that°(F,(H)) C
Fu(R). If a € F,(R), then

“or*(a) =(anNQ*)r =ga,
and, if a € F,(H), then
fo’(a)=(a)gN Q" =a.

Thus * and ° are inverse to each other, and it remains to show thas a homo-
morphism.

Let a, b, c € F,(R). In the next few calculations, we write—for clarity reasen
a-r b for the ring theoretical product -s b for the semigroup theoretical produaty
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for the v-operation onR and vy for the v-operation onH. If C C ¢* N H is an ideal
of H such that{(C)gr = ¢, then R ¢)* = (H :; C), and hence

0 NQ* = (R (R (C))* =(R" 3 (R (C)) =(H: (H: C) =C,,.
Applying this relationship taC = (a N Q*) :s (b N Q*) we obtain that

1*(a g b) = (a-r b)y, N Q* = ({a-sb)R)r N Q*
=({((anQ*)-s(bNQ*))R)z N Q*
= ((aN Q) -s(b N Q")) = t°(a) -y, t*(b).

2. (a) It is clear that the restrictiort | Z,(R): Z,(R) — Z,(H) is bijective. We
verify that:® | v-specR): v-specR) — v-specH) is bijective. Indeed, ip € v-specR)
and a, b € Z5(H) such thatab C p°, then (a)r(b)r = (ab)r C p, whence(a)gr C p or
(b)r C p and thusa® C p® or b® C p°. Thereforep® is a prime ideal by Lemma 3.7 (a),
and hencep® € s-specH) N Z,(H) = v-specH). Conversely, suppose thate Z,(R)
such thatp® € v-specf). In order to show thap C R is a prime ideal, let1,b C R be
ideals such thattb C p. Thena®b® C (ab)® C p°®, and thusa® C p* or b* C p°®, which
implies thata C p or b C p.

2. (b) Since the restriction of to Z,(R) and the restriction of° to Z,(H) are
both inclusion preserving and bijective, this follows inufteely.

3. The equivalence follows immediately from 1. and 2. (b). d&er, if H is a
Krull monoid, thenN(H) is a normalizing Krull monoid by Corollary 4.14. ]

Suppose thaR is a prime P.l.-ring. TherR is a Krull ring if and only if R is
a Chamarie—Krull ring ([63, Proposition 3.5]), and moreotee notions of2-Krull
rings, central2-Krull rings, Krull rings in the sense of Marubayashi, in thense of
Chamarie and others coincide ([38, Theorem 2.4]). Claksig#ers in central simple
algebras over Dedekind domains are Asano prime rings ([B8pifem 5.3.16]), and if
R is an Asano prime ring (in other words, an Asano order), thers a Krull ring
([53, Proposition 5.2.6]). Moreover, iR is a maximal order in a central simple alge-
bra over a Dedekind domain with finite class group, then th&rakclass group and
hence the normalizing class group Bf are finite (for more general results see [59,
Corollary 37.32], [38, Proposition 8.1], [55, Chapter Eppusition 2.3]). Krull rings,
in which every element is normalizing, are discussed in g4, Further results and
examples of non-commutative Dedekind and Krull rings mayfdaend in [1, 64].

If a monoid H is normalizing, then every non-unit € H is contained in the di-
visorial idealaH # H. But this does not hold in general. We provide the announced
example of a Krull monoidH having an elemena € H \ H* which is not contained
in a divisorial ideal distinct fromH (we thank Daniel Smertnig for his assistance).
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ExAMPLE 5.2. LetR be a commutative principal ideal domain with quotient field
K andn € N. ThenM(R) is a classical order in the central simple algeMgK) and
hence an Asano prime ring. By Proposition 5H,= Mp(R)* = Mp(R) N GLn(K) is
a Krull monoid with quotient group GI(K). Since every ideal oM,(R) is divisorial
([53, Proposition 5.2.6]), we get

Z,(R) = {(Ma(@aR) | a € R}.
Again by Proposition 5.1, this implies that

Z,(H) = {Mna(aR)" |a € R},

where
Mn(@R)* = {C = (Ci,j)1<i.j<n | Gi,j € @aR for all i, j € [1, n] and detC) # O}.

Thus, if C € My(R) with GCD({c; | i, j € [1, n]}) = R* and detC) # 0O, then
(HCH), = H.

We end this section with some more examples of Krull monofizart from their
appearance as monoids of regular elements in Krull ringsy ttcur in various other
circumstances. We offer a brief overview:

e Regular congruence monoids in Krull domains are Krull mdseo{[29, Propos-
ition 2.11.6]).

e Module Theory: LetR be a ring andC a class of right (or left)R-modules—
closed under finite direct sums, direct summands and isdmwns—such that has
a setV(C) of representatives (that is, every modle € C is isomorphic to a unique
[M] € V(C)). ThenV(C) becomes a commutative semigroup under the operahtjnH
[N] = [M & N], which carries detailed information about the direct-sbehavior of
modules inC. If every R-module M € C has a semilocal endomorphism ring, then
V(C) is a Krull monoid (see [22], and [23] for a survey).

e Diophantine monoids: A Diophantine monoid is a monoid whadnsists of the
set of solutions in nonnegative integers to a system of tin@aphantine equations
(see [15, Proposition 4.3] and [29, Theorem 2.7.14]).

e Monoids of zero-sum sequences over abelian groups.

Since monoids of zero-sum sequences will be needed in theseeton, we dis-
cuss them in greater detail. L& be an additively written abelian group a@h C G
a subset. The elements of the free abelian mo(@,) over G, are calledsequences
over &. Thus a sequenc8 e F(Gp) will be written in the form

S= gr---Qg = l_[ ng(S)’

geGo
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and we use all notions (such as the length) as in general fseBaa monoids (see
Section 2). Furthermore, we denote &YS) = g; + --- + g the sumof S, and

B(Go) = {Se F(Go) | o(S) = 0}

is called themonoid of zero-sum sequenaager Gy. Clearly, 35(Go) C F(Gp) is a satu-
rated submonoid, and hence it is a Krull monoid by Theorer3 &). In Theorem 6.5 we
will outline the relationship between a general Krull mahaind an associated monoid
of zero-sum sequences. An elemént g; - - - g is an atom in3(Gy) if and only if it is

a minimal zero-sum sequence (thatd§S) = 0 but) ., g # 0 for all @ # | < [1,1]).
The Davenport constant

D(Go) = suf|U]| | U € A(B(Go))} € No U {00},

of Gp is a central invariant in zero-sum theory (see [24]), andit®relevance in fac-
torization theory we refer to [25]. For a finite s€y we haveD(Gp) < oo (see [29,
Theorem 3.4.2)).

6. Arithmetic of Krull monoids

The theory of non-unique factorizations (in commutativenmids and domains)
has its origin in algebraic number theory, and in the last tiecades it emerged as
an independent branch of algebra and number theory (seet,[23128, 29] for some
recent surveys and conference proceedings). Its main tolgjgs to describe the non-
uniqueness of factorizations by arithmetical invariarstsch as sets of lengths, defined
below), and to study the relationship between these artibadgparameters and classi-
cal algebraic parameters (such as class groups) of the vindgr investigation. Trans-
fer homomorphisms play a crucial role in this theory. Thelpwalto shift problems
from the original objects of interest to auxiliary monoidshich are easier to han-
dle; then one has to settle the problems in the auxiliary ridsnand shift the an-
swer back to the initial monoids or domains. This machinenpést established—but
not restricted to—in the case of commutative Krull monoidsd it allows to employ
methods from additive and combinatorial number theory Jj[25

In this section, we first show that the concept of a transfendmorphism carries
over to the non-commutative setting in perfect analogy.nltve give a criterion for a
Krull monoid to be a bounded factorization monoid, and shbat,tif a Krull monoid
admits a divisor homomorphism with finite Davenport constéren all the arithmetical
invariants under consideration are finite too (Theorem.@rb)order to do so we need
all the ideal and divisor theoretic tools developed in Sei3 and 4.

Let H be a monoid. Ifae H anda = uy---ux, wherek e N andug, ..., ux €
A(H), then we say thak is the length of the factorization. Foa € H \ H*, we call

Ly(@) = L(a) = {k e N | a has a factorization of length} C N
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the set of lengthf a. For convenience, we sé(a) = {0} for all a € H*. By defin-
ition, H is atomic if and only ifL(a) # @ for all a € H. We say thatH is a BFmonoid
(or a bounded factorization monoid) if(a) is finite and non-empty for alb € H.
We call

L(H) ={L(a) [a e H}

the system of sets of lengtltd H. So if H is a BF-monoid, thenZ(H) is a set of
finite non-empty subsets of the non-negative integers.

We recall some invariants describing the arithmetic of Bénpoids. LetH be a
BF-monoid. IfL = {l1,...,l;} C N, wheret e N andl,; <--- < |, is a finite non-
empty subset of the positive integers, then
e p(L) =maxL/minL € Qs is called theelasticity of L, and
e A(L)={lj—li—1]i €[2,t]} is called theset of distancesf L.

For convenience, we set({0}) = 1 and A({0}) = @. We call
e p(H)=supp(L)|L e L(H)} € R-1 U{oo} the elasticity of H, and
e A(H)= ULeﬂ(H) A(L) C N the set of distancesf H.

Clearly, we haveo(H) = 1 if and only if A(H) = @. Suppose that\(H) # @, in
other words that there is some € £(H) such that|L| > 2. Then there exists some
a € H such thata = u;---ux = v1-- -y where 1< k <| andug,...,ux,vs,...,v € A(H).
Then for everyn € N, we have

a" = (ug--uw)’(wgeo )™ forall vel0,n]

and hence{ln —v(l — k) | v C [0, n]} € L(@"). Therefore sets of lengths get arbitrarily
large. We will see that—under suitable algebraic finitermswditions—sets of lengths
are well-structured. In order to describe their structuee meed the notion of almost
arithmetical progressions.

Letd e N, M € Ny and {0,d} € D C [0,d]. A subsetL C Z is called anal-
most arithmetical multiprogressiofAAMP for short) with difference d period D, and
bound M if

L=y+(L'UL*UL") Cy+D+dz,

wherey € Z is a shift parameter,
e L* is finite nonempty with mirL* =0 andL* = (D + dZ) N [0, maxL*] and
e L' C[-M,-1]andL” C maxL* + [1, M].

We say thatthe Structure Theorem for Sets of Lengtiwdds for the monoidH if
H is atomic and there exist somd* € Ny and a finite nonempty seh* C N such
that everyL € £L(H) is an AAMP with some differenc&l € A* and boundM* (in
this case we say more precisely, that the Structure Theordds hvith parameterd/*
and A¥).

We start with a characterization of BF-monoids, and for tivaet need the notion
of length functions. A functiom.: H — Ny is called alength functionif 1(a) < A(b)
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for all be (aH U Ha) \ (aH* U H*a).

Lemma 6.1. Let H be a monoid aneh = H\ H*. Then the following statements
are equivalent
(&) H is a BF-monoid.

(0) Nnzom" = 0.
(c) There exists a length function: H — No.

Proof. (a)= (b) Letae mk for somek € N. Then there existy, ..., a € m
such thata = a; - - - ax and hence mak(a) > k. SincelL(a) is finite, there exists some
| € N such thata ¢ m' D ()., m".

(b) = (c) We define a map: H — Ny by settingx(a) = maxn € No | a € m"},
and assert that is a length function. Lea € H andb € (aH U Ha) \ (aH* U H*a),
sayb € aH. Thenb = ac for somec € m. If A(a) =k, thena € m¥, b = ac e m"t?,
and thusi(b) > k + 1 > A(a).

(c) = (a) Leti: H— Ny be a length function. Note that, ife H* andc e H\
H>, thenc € bH = H implies thati(c) > A(b) > 0. We assert that everg e H \ H*
can be written as a product of atoms, and thatlgap < A(a). If a € A(H), then
L(a) = {1}, and the assertion holds. Suppose tha H is neither an atom nor a unit.
Thena has a product decomposition of the form

(%) a=uy---ux where k>2 and ug,...,uce H\H*

Fori € [0,k], we setay = u;---u;j, and theng; . ; € g H\gH> for all i € [0,k—1]. This
implies thati(a) = A(ax) > A(ak-1) > --- > A(a1) > 0 and thusi(a) > k. Therefore
there exists & € N maximal such thad = u; - - -ux whereuy,...,ux € H\ H*, aand
this implies thatuy, ..., ux € A(H) andk = maxL(a) < A(a). ]

Lemma 6.2. Let H be a monoid and2 a set of prime ideals of H such that

(1p"=0 foral peq.

neN

If for every ae H \ H* the setQ, = {p € Q | a € p} is finite and non-empfythen H
is a BF-monoid.

Proof. By Lemma 6.1, it suffices to show thet has a length function. la € H
and Q4 = {p4, ..., pr}, we define

AM@) =suping +---+nNg [Ny, ...,Nk€Ng, @aepfne---Npk.

By assumption, there exists somee N such thata ¢ p{' for all i € [1, k], whence
A(@) < kn. We assert that: H — Np is a length function. Lea € H andb € (aH U
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Ha)\ (aH*UH*a), sayb = ac for somec € H\ H*. SinceQ. # @, there is ag € Q
with ¢ € q. We assume thaRa = {py,...,p}, @ € p*N---Npg< and (@) = Ny+- - -+ng.
If q € Qa, sayq = py, thenb=ace (P NpYN---Npp)p C pINphzN---Npptt and
thereforer(b) > ny+- - -+ (Nk+1) > A(a). If q ¢ Qa, thenb =ace (p}*N-- -ﬂpﬂk)q C
pitN---NplNgq and thus again(b) > ny + -+ + N + 1 > A(a). O

DEFINITION 6.3. A monoid homomorphisré: H — B from a monoidH onto a
reduced monoid is called atransfer homomorphisrii it has the following properties:
(T1) B=0(H) and6 (1) = H*.

(T2) If a€ H, by, b, € B andf(a) = byb,, then there exishy, a, € H such thata =
a1ap, 0(ay) = by andb(az) = by.

Transfer homomorphisms in a non-commutative setting wese fised by Baeth,
Ponomarenko et al. in [7].

Proposition 6.4. Let H and B be monoid®: H — B a transfer homomorphism
and ae€ H.
1. IfkeN,by,...,bx € B andf(@) =b;---byg, then there existg...,ax € H such
that a=a;---ax and6(a,) = b, for all v € [1, K].
2. ais an atom of H if and only if(a) is an atom of B.
3. Lu(a) =Ls(6(a)).
4. H is atomic(a BF-monoid resp. if and only if B is atomic(a BF-monoid resp.
5. Suppose that H is @&F-monoid. Thenp(H) = p(B), A(H) = A(B), and the
Structure Theorem for Sets of Lengths holds for H if and ohly holds for B (with
the same parameters

Proof. 1. This follows by induction of.

2. Letae H be an atom, and suppose tléga) = b;b, with by,b, € B. By (T2),
there exista;, a, € H with a = a;a, andf(a) = by for i € [1, 2]. Sincea is an atom,
we infer thata; € H* or a; € H*, and thusb; = 1 or b, = 1. Conversely, suppose
that 6(a) is an atom ofB. If a = ajap, thend(a) = 0#(a;)0(az). Thusb(a;) = 1 or
0(az) = 1, and thereforey € H* or a; € H*.

3. By (T1), it follows thata € H* if and only if 6(a) = 1. Suppose tha ¢ H>,
and choose&k € N. If k € Ly(a), then there exist, ..., ux € A(H) such thata =
Ui---Uk. Thenf(a) = 0(uy)---0(uy). Sinced(uy),...,0(ux) € A(B) by 2., it follows that
k € Lg(@(a)). Conversely, suppose thite Lg(f(a)). Then there ardy, ..., bk € A(B)
such thatd(a) = by ---bx. Now 1. and 2. imply thak € Ly (a).

4. A monoid S is atomic (a BF-monoid resp.) if and only if for afle S, we
havelL(s) # @ (L(s) is finite and non-empty resp.). Thus the assertion follosasnf 3.

5. This follows immediately from 3. and 4. [
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Theorem 6.5 (Arithmetic of Krull monoids) Let H be a Krull monoid.
1. If every ae H \ H* lies in a divisorial ideal distinct from K then H is a
BF-monoid.
2. Letg: H — D = F(P) be a divisor homomorphisnG = C(¢) its class group
and Gp C G the set of classes containing prime divisors.
(@) Let B: F(P) — F(Gp) denote the unique homomorphism satisfyfigp) =
[p] for all p e P. Then for all « € D, we haveB(a) € B(Gp) if and only if
a € p(H), and the map8 = Boy: H — B(Gp) is a transfer homomorphism.
(b) If D(Gp) < oo, then p(H) < oo, A(H) is finite and there exists some M
Np such that the Structure Theorem for Sets of Lengths hold#ifavith param-
eters M* and A(H).

Proof. 1. We show that? = v-specH) \ {0} satisfies the assumptions of
Lemma 6.2. TherH is a BF-monoid.

Let a € H \ H*. By assumption, the se®, = {a € Z,(H) | a € a with a N
{1} = @} is non-empty, and sincél is v-noetherian 2, has a maximal element by
Lemma 3.13, which is prime by Lemma 3.8 1. Therefore theSget {p € v-specf) |
a € p} is finite and non-empty. Lei € v-spec@). If the intersection of all powers gf
would be non-empty, it would be a non-emptyjideal and hence divisible by arbitrary
powers ofp, a contradiction to the fact th&t;(H) is free abelian by Theorem 3.14.

2.(@) IfaeD,thena =p;---p, wherel e Ng and py,..., p € P, B(e) =
[pa---[p] and o(B(e)) = [p] + --- + [p] = [«]. Thus we have d] = 0 if and
only if @ € p(H). Therefore we obtain thaB = B o ¢: H — B(Gp) is a monoid
epimorphism onto a reduced monoid wigt(1) = H*. To verify (T2), leta € H
with ¢(@) = p1---p € D, wherel e Ng and py,...,p € P, andB(a) =[pi]---[p] =
b;b, with by, by € B(Gp). After renumbering if necessary there is sokne [0,I] such
thatb, = [pa]---[p] and by = [piia] - - -[p]. Settingoy = pa--- Pe, 02 = Pesa- -~ P
we infer thata, s € o(H), saya = ¢(a) with a € H, and B(«;) = by for i €[1,2].
Then ¢(a) = ¢(a1)p(az), and hence by Lemma 4.6 2., we gell* = a;a,H*. Thus
there is ane € H* such thata = (¢a;)ay, B(ca1) = B(a;) = by and B(ap) = bs.

2. (b) Suppose thab(Gp) < co. By Proposition 6.4 5., it suffices to prove all
assertions for the monoi8(Gp). Thus the finiteness of the elasticity and of the set
of distances follows from [29, Theorem 3.4.11], and thedigliof the Structure The-
orem follows from [30, Theorem 5.1] or from [26, Theorem 4.4] O
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