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Abstract
Recently we generalized Toponogov’s comparison theorem toa complete

Riemannian manifold with smooth convex boundary, where a geodesic triangle was
replaced by an open (geodesic) triangle standing on the boundary of the manifold,
and a model surface was replaced by the universal covering surface of a cylinder of
revolution with totally geodesic boundary. The aim of this article is to prove splitting
theorems of two types as an application. Moreover, we establish a weaker version of
our Toponogov comparison theorem for open triangles, because the weaker version
is quite enough to prove one of the splitting theorems.

1. Introduction

Words have fully expressed a matter of great importance for Toponogov’s comparison
theorem. However that may be, we can not stop telling the importance in Riemannian
geometry. The comparison theorem has played a vital role in the comparison geometry,
that is, the theorem gives us some techniques originating from Euclidean geometry. Such
techniques, drawing a circle or a geodesic polygon, and joining two points by a minimal
geodesic segment, are very powerful in the geometry. One mayfind concrete examples of
such techniques in proofs of the maximal diameter theorem and the splitting theorem by
Toponogov ([17], [18]), the structure theorem with positive sectional curvature by Gromoll
and Meyer ([4]), the soul theorem with non-negative sectional curvature by Cheeger and
Gromoll ([3]), the diameter sphere theorem by Grove and Shiohama ([5]), etc.

From the standpoint of the radial curvature geometry, we very recently generalized
the Toponogov comparison theorem to a complete Riemannian manifold with smooth
convex boundary, where a geodesic triangle was replaced by an open (geodesic) tri-
angle standing on the boundary of the manifold, and a model surface was replaced by
the universal covering surface of a cylinder of revolution with totally geodesic boundary
([12, Theorem 8.4], which will be stated as Theorem 2.5 in this article).

The aim of our article is to prove splitting theorems of two types as an application
of Toponogov’s comparison theorem for open triangles and a weaker version of the
comparison theorem (Theorem 2.12), respectively. The weaker version will be proved
in this article.

2010 Mathematics Subject Classification. 53C21, 53C22.
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Now we will introduce the radial curvature geometry for manifolds with bound-
ary: We first introduce our model, which will be later employed as a reference sur-
face of comparison theorems in complete Riemannian manifolds with boundary. Let
QM WD (R, d Qx2) �m (R, d Qy2) be a warped product of two 1-dimensional Euclidean lines

(R, d Qx2) and (R, d Qy2), where the warping functionmW R! (0,1) is a positive smooth
function satisfyingm(0)D 1 andm0(0)D 0. Then we call

QX WD { Qp 2 QM j Qx( Qp) � 0}

a model surface. Since m0(0) D 0, the boundary� QX WD { Qp 2 QX j Qx( Qp) D 0} of QX is
totally geodesic. The metric Qg of QX is expressed as

(1.1) Qg D d Qx2
Cm( Qx)2 d Qy2

on [0,1)�R. The functionGÆ Q�W [0,1)! R is called theradial curvature functionof
QX, where we denote byG the Gaussian curvature ofQX, and by Q� any ray emanating

perpendicularly from� QX (note that such aQ� will be called a� QX-ray). Remark that
mW [0,1)! R satisfies the differential equationm00(t)C G( Q�(t))m(t) D 0 with initial
conditionsm(0) D 1 and m0(0) D 0. Note that then-dimensional model surfaces are
defined similarly, and, as seen in [10], we may completely classify them by taking
half spaces of spaces in [13, Theorem 1.1].

Hereafter, let (X, �X) denote a complete Riemanniann-dimensional manifoldX
with smooth boundary�X. We say that�X is convex, if all eigenvalues of the shape
operator A

�

of �X are non-negative in the inward vector� normal to �X. Note that
our sign of A

�

differs from [14]. That is, for eachp 2 �X and v 2 Tp�X, A
�

(v) D
�(r

v

N)> holds. Here, we denote byN a local extension of� , and byr the Riemann-
ian connection onX.

For a positive constantl , a unit speed geodesic segment� W [0, l ] ! X emanating
from �X is called a�X-segment, if d(�X,�(t)) D t on [0,l ]. If �W [0, l ]! X is a �X-
segment for alll > 0, we call� a �X-ray. Here, we denote byd(�X, � ) the distance
function to �X induced from the Riemannian structure ofX. Note that a�X-segment
is orthogonal to�X by the first variation formula, and so a�X-ray is too.

(X,�X) is said to have theradial curvature(with respect to�X) bounded from be-
low by that of( QX,� QX) if, for every �X-segment�W [0, l )! X, the sectional curvature
KX of X satisfies

KX(�t ) � G( Q�(t))

for all t 2 [0, l ) and all 2-dimensional linear spaces�t spanned by�0(t) and a tangent
vector to X at �(t). For example, if the Riemannian metric ofQX is d Qx2

C d Qy2, or
d Qx2
C cosh2( Qx) d Qy2, then G( Q�(t)) D 0, or G( Q�(t)) D �1, respectively. Furthermore,the

radial curvature may change signs wildly. Examples of model surfaces admitting such
a crazy behavior of radial curvature are found in [16, Theorems 1.3 and 4.1].
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Our main theorems in this article are now stated as follows:

Theorem 1.1. Let (X, �X) be a complete non-compact connected Riemannian
manifold X with smooth convex boundary�X whose radial curvature is bounded from
below by that of a model surface( QX, � QX) with its metric (1.1). Assume that X admits
at least one�X-ray.
(ST-1) If ( QX, � QX) satisfies

Z

1

0

1

m(t)2
dt D 1,

then X is isometric to[0,1)�m�X. In particular, �X is the soul of X, and the number
of connected components of�X is one.
(ST-2) If ( QX,� QX) satisfieslim inf t!1

m(t)D 0, then X is diffeomorphic to[0,1)��X.
In particular, the number of connected components of�X is one.

Toponogov’s comparison theorem for open triangles in a weakform (Theorem 2.12)
will be applied in the proof of Theorem 1.1 (see Section 4). The assumption on the
existence of a�X-ray is very natural, because we may find at least one�X-ray if �X
is compact. If the modelQX is Euclidean (i.e.,m � 1), then the (ST-1) holds. Hence,
Theorem 1.1 extends one of Burago and Zalgaller’ splitting theorems to a wider class
of metrics than those described in [2, Theorem 5.2.1], i.e.,we mean that they assumed
that sectional curvature isnon-negative everywhere.

Theorem 1.2. Let (X,�X) be a complete connected Riemannian manifold X with
disconnected smooth compact convex boundary�X whose radial curvature is bounded
from below by0. Then, X is isometric to[0, l ]� �X1 with Euclidean product metric of
[0, l ] and �X1, where�X1 denotes a connected component of�X. In particular, �X1

is the soul of X.

Toponogov’s comparison theorem for open triangles (Theorem 2.5) will be applied in
the proof of Theorem 1.2 (see Section 5). Note that non-negative radial curvaturedoes
not always meannon-negative sectional curvature (cf. [11, Example 5.6]).Although
Theorem 1.2 extends one of Burago and Zalgaller’ splitting theorems to a wider class
of metrics than those described in [2, Theorem 5.2.1], Ichida [6] and Kasue [9] obtain
the same conclusion of the theorem under weaker assumptions, i.e., the mean curva-
ture (with respect to the inner normal direction) of boundary are non-negative, and that
Ricci curvature is non-negative everywhere.

In the following sections, all geodesics will be normalized, unless otherwise stated.

2. Toponogov’s theorems for open triangles

Throughout this section, let (X,�X) denote a complete connected Riemannian mani-
fold X with smoothconvexboundary�X whose radial curvature is bounded from below
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by that of a model surface (QX, � QX) with its metric (1.1).

DEFINITION 2.1 (Open triangles). For any fixed two pointsp, q 2 X n �X, an
open triangle

OT(�X, p, q) D (�X, p, qI 
 , �1, �2)

in X is defined by two�X-segments�i W [0, l i ]! X, i D 1, 2, a minimal geodesic seg-
ment
 W [0,d(p,q)]! X, and�X such that�1(l1)D 
 (0)D p, �2(l2)D 
 (d(p,q))D q.

REMARK 2.2. In this article, we always use the symbol
 as the segment emanat-
ing from p to q, which is called theopposite side ofan open triangle OT(�X, p, q) D
(�X, p, qI 
 , �1, �2) in X, and the�X-segments�1, �2 always denote sides of the
OT(�X, p, q) emanating from�X to p, q, respectively.

DEFINITION 2.3. We call the setQX(�) WD Qy�1((0,�)) a sector in QX for each con-
stant number� > 0.

REMARK 2.4. Since a map (Qx, Qy)! ( Qx, QyC c), c 2 R, over QX is an isometry, a
sector QX(�) is isometric to Qy�1(c, cC �) for all c 2 R.

Toponogov’s comparison theorem for open triangles is stated as follows:

Theorem 2.5 ([12, Theorem 8.4]). Let (X,�X) be a complete connected Riemann-
ian manifold X with smooth convex boundary�X whose radial curvature is bounded
from below by that of a model surface( QX, � QX) with its metric (1.1). Assume thatQX
admits a sectorQX(�0) which has no pair of cut points. Then, for every open triangle
OT(�X, p, q) D (�X, p, qI 
 , �1, �2) in X with d(�1(0), �2(0)) < �0, there exists an
open triangleOT(� QX, Qp, Qq) D (� QX, Qp, QqI Q
 , Q�1, Q�2) in QX(�0) such that

(2.1) d(� QX, Qp) D d(�X, p), d( Qp, Qq) D d(p, q), d(� QX, Qq) D d(�X, q)

and that

(2.2) �p � � Qp, �q � � Qq, d(�1(0),�2(0))� d( Q�1(0), Q�2(0)).

Furthermore, if d(�1(0),�2(0))D d( Q�1(0), Q�2(0)) holds, then

�p D � Qp, �q D � Qq

hold. Here�p denotes the angle between two vectors


0(0) and��01(d(�X, p)) in TpX.



APPLICATIONS OF TOPONOGOV’ S COMPARISON THEOREMS 545

REMARK 2.6. In Theorem 2.5, we do not assume that�X is connected. More-
over, the opposite side
 of OT(�X, p,q) does not meet�X (see [12, Lemma 6.1]). In
[13], they treat a pair (M, N) of a complete connected Riemannian manifoldM and a
compact connected totally geodesic hypersurfaceN of M such that the radial curvature
with respect toN is bounded from below by that of the model ((a, b)�m N, N), where
(a, b) denotes an interval, in their sense. Note that the radial curvature with respect
to N is bounded from below by that of our model ([0,1), d Qx2) �m (R, d Qy2), if it is
bounded from below by that of their model ((a, b) �m N, N). Thus, Theorem 2.5 is
applicable tothe pair (M, N).

In the following, we will prove the Toponogov comparison theorem for open tri-
angles in a weak form (Theorem 2.12), where we do not demand any assumption on
a sector. To do so, we need to introduce definitions and a key lemma:

DEFINITION 2.7 (Generalized open triangles). A generalized open triangle

GOT(� QX, Op, Oq) D (� QX, Op, OqI O
 , O�1, O�2)

in QX is defined by two� QX-segmentsO�i W [0, l i ] ! QX, i D 1, 2, and a geodesic segment
O
 emanating fromOp to Oq such that O�1(l1) D O
 (0)D Op, O�2(l2) D O
 (d( Op, Oq)) D Oq, and
that O
 is a shortest arc joiningOp to Oq in the compact domain bounded byO�1, O�2,
and O
 .

DEFINITION 2.8 (The injectivity radius). Theinjectivity radius inj( Qp) of a point
Qp 2 QX is the supremum ofr > 0 such that, for any pointQq 2 QX with d( Qp, Qq) < r , there
exists a unique minimal geodesic segment joiningQp to Qq.

REMARK 2.9. For each pointQp 2 QX n � QX, inj( Qp) > d(� QX, Qp) holds, if Qp is
sufficiently close to� QX.

DEFINITION 2.10 (Thin open triangle). An open triangle OT(�X, p, q) in X is
called athin open triangle, if
(TOT-1) the opposite side
 of OT(�X, p,q) to �X emanating fromp to q is contained
in a normal convex neighborhood inX n �X, and
(TOT-2) L(
 ) < inj( Qqs) for all s 2 [0, d(p, q)],
where L(
 ) denotes the length of
 , and Qqs denotes a point inQX with d(� QX, Qqs) D
d(�X, 
 (s)) for eachs 2 [0, d(p, q)].

Then, we have the key lemma to prove the weaker version of Toponogov’s
comparison theorem for open triangles.
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Lemma 2.11 ([12, Lemma 5.8]). For every thin open triangleOT(�X, p,q) in X,
there exists an open triangleOT(� QX, Qp, Qq) in QX such that

(2.3) d(� QX, Qp) D d(�X, p), d( Qp, Qq) D d(p, q), d(� QX, Qq) D d(�X, q)

and that

(2.4) �p � � Qp, �q � � Qq.

Now, the weaker version of Toponogov’s comparison theorem for open triangles is
stated as follows:

Theorem 2.12. Let (X,�X) be a complete connected Riemannian manifold X with
smooth convex boundary�X whose radial curvature is bounded from below by that of a
model surface( QX,� QX). Then, for every open triangleOT(�X, p,q)D (�X, p,qI
 ,�1,�2)
in X, there exists a generalized open triangleGOT(� QX, Op, Oq) D (� QX, Op, OqI O
 , O�1, O�2) in
QX such that

(2.5) d(� QX, Op) D d(�X, p), d(� QX, Oq) D d(�X, q),

and

(2.6) d(�X, q) � d(�X, p) � d( Op, Oq) � L( O
 ) � d(p, q),

and that

(2.7) �p � � Op, �q � �Oq.

Here L( O
 ) denotes the length ofO
 .

Proof. Lets0 WD 0< s1 < � � �< sk�1 < sk WD d(p,q) be a subdivision of [0,d(p,q)]
such that, for eachi 2 {1, : : : , k}, the open triangle OT(�X, 
 (si�1), 
 (si )) is thin. It
follows from Lemma 2.11 that, for each triangle OT(�X, 
 (si�1), 
 (si )), there exists an
open triangle Q4i WD OT(� QX, Q
 (si�1), Q
 (si )) in QX such that

d(� QX, Q
 (si�1)) D d(�X, 
 (si�1)),(2.8)

d( Q
 (si�1), Q
 (si )) D d(
 (si�1), 
 (si )),(2.9)

d(� QX, Q
 (si )) D d(�X, 
 (si )),(2.10)

and that

�(�X, 
 (si�1), 
 (si )) � �(� QX, Q
 (si�1), Q
 (si )),(2.11)

�(�X, 
 (si ), 
 (si�1)) � �(� QX, Q
 (si ), Q
 (si�1)).(2.12)
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Here�(�X, 
 (si�1), 
 (si )) denotes the angle between two sides joining
 (si�1) to �X
and 
 (si ) forming the triangle OT(�X, 
 (si�1), 
 (si )). Under this situation, drawQ41 D

OT(� QX, Qp, Q
 (s1)) in QX satisfying (2.8), (2.9), (2.10), (2.11), (2.12) fori D 1. Induc-
tively, we draw an open triangleQ4iC1 D OT(� QX, Q
 (si ), Q
 (siC1)) in QX, which is adjacent
to Q4i so as to have the� QX-segment toQ
 (si ) as a common side. Since

�(�X, 
 (si ), 
 (si�1))C�(�X, 
 (si ), 
 (siC1)) D � ,

for eachi D 1, 2, : : : , k � 1, we get, by (2.11) and (2.12),

(2.13) �(� QX, Q
 (si ), Q
 (si�1))C�(� QX, Q
 (si ), Q
 (siC1)) � �

and

(2.14) �p � �(� QX, Q
 (s0), Q
 (s1)), �q � �(� QX, Q
 (sk), Q
 (sk�1)).

Then, we get a domainD bounded by two� QX-segmentsQ�0, Q�k to Q
 (s0), Q
 (sk), respect-
ively, and Q�, where Q� denotes the broken geodesic consisting of the opposite sides of
Q

4i (i D 1, 2, : : : , k) to �

QX. Since the domainD is locally convex by (2.13), there
exists a minimal geodesic segmentO
 in the closure ofD joining Q
 (s0) to Q
 (sk). From
(2.14), it is clear that the generalized open triangle (�

QX, Q
 (s0), Q
 (s0)I O
 , Q�0, Q�k) has the
required properties in our theorem.

3. Definitions and notations for Sections 4 and 5

Throughout this section, let (X,�X) denote a complete connected Riemannian mani-
fold X with smooth boundary�X. Our purpose of this section is to recall the definitions
of �X-Jacobi fields, focal loci of�X, and cut loci of�X, which will appear in Sections 4
and 5.

DEFINITION 3.1 (�X-Jacobi field). Let� W [0,1) ! X be a geodesic emanat-
ing perpendicularly from�X. A Jacobi field J

�X along� is called a�X-Jacobi field,
if J

�X satisfiesJ
�X(0) 2 T

�(0)�X and J 0
�X(0) C A

�

0(0)(J
�X(0)) 2 (T

�(0)�X)?. Here J 0

denotes the covariant derivative ofJ along �, and A
�

0(0) denotes the shape operator
of �X.

DEFINITION 3.2 (Focal locus of�X). A point �(t0), t0 ¤ 0, is called afocal
point of �X along a geodesic� W [0,1)! X emanating perpendicularly from�X, if
there exists a non-zero�X-Jacobi fieldJ

�X along� such thatJ
�X(t0) D 0. The focal

locus Foc(�X) of �X is the union of the focal points of�X along all of the geodesics
emanating perpendicularly from�X.
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DEFINITION 3.3 (Cut locus of�X). Let � W [0, l0] ! X be a �X-segment. The
end point�(l0) of �([0, l0]) is called acut point of �X along�, if any extended geo-
desic N�W [0,l1]! X of �, l1 > l0, is not a�X-segment anymore. Thecut locusCut(�X)
of �X is the union of the cut points of�X along all of the�X-segments.

4. Proof of Theorem 1.1

From the similar argument in the proof of [15, Lemma 3.1], onemay prove

Lemma 4.1. Let

f 00(t)C K (t) f (t) D 0, f (0)D 1, t 2 [0,1),

m00(t)C G(t)m(t) D 0, m(0)D 1, m0(0)D 0, t 2 [0,1),

be two ordinary differential equations with K(t) � G(t) on [0,1).
(L-1) If f > 0 on (0,1), f 0(0)D 0, and

Z

1

0

1

m(t)2
dt D1,

then K(t) D G(t) on [0,1).
(L-2) If m > 0 on (0,1), f 0(0)< 0, and

Z

1

0

1

m(t)2
dt D1,

then there exists t0 2 (0,1) such that f> 0 on [0, t0) and f(t0) D 0.

Hereafter, let (X,�X) be a complete non-compact connected Riemanniann-manifold
X with smoothconvexboundary�X whose radial curvature is bounded from below by
that of a model surface (QX, � QX) with its metric (1.1). Moreover, we denote by

I l
�X(V, W) WD I l (V, W) � hA

�

0(0)(V(0)), W(0)i

the index form with respect to a�X-segment� W [0, l ] ! X for piecewiseC1 vector
fields V, W along�, where we set

I l (V, W) WD
Z l

0
{hV 0, W0

i � hR(�0, V)�0, Wi} dt,

which is a symmetric bilinear form. Furthermore,

we assume thatX admits at least one�X-ray.

By Lemma 4.1, we have
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Lemma 4.2. Let � W [0,1)! X be a�X-ray. If ( QX, � QX) satisfies

Z

1

0

1

m(t)2
dt D 1,

then, �(0) is the geodesic point in�X, i.e., the second fundamental form vanishes at
the point.

Proof. Let E be a unit parallel vector field along� such that

A
�

0(0)(E(0))D �E(0),(4.1)

E(t) ? �0(t).(4.2)

Here� denotes an eigenvalue of the shape operatorA
�

0(0) of �X. Since�X is convex,
� � 0 holds. Consider a smooth vector fieldY(t) WD f (t)E(t) along� satisfying

f 00(t)C KX(�0(t), E(t)) f (t) D 0,

with initial conditions

(4.3) f (0)D 1, f 0(0)D ��.

Here KX(�0(t), E(t)) denotes the sectional curvature with respect to the 2-dimensional
linear space spanned by�0(t) and E(t) at �(t). Note thatY satisfiesY(0) 2 T

�(0)�X
and Y0(0) C A

�

0(0)(Y(0)) D 0 2 (T
�(0)�X)?, by (4.1), (4.2), and (4.3). Suppose that

� > 0. Since f 0(0)< 0 and
Z

1

0

1

m(t)2
dt D 1,

it follows from (L-2) in Lemma 4.1 that there existst0 2 (0,1) such that f > 0 on
[0, t0) and

(4.4) f (t0) D 0,

i.e.,

(4.5) Y(t) ¤ 0, t 2 [0, t0)

and Y(t0) D 0. Since hR(�0(t), Y(t))�0(t), Y(t)i D f (t)2
hR(�0(t), E(t))�0(t), E(t)i D

� f 00(t) f (t), we have, by (4.3) and (4.4),

(4.6) I t0(Y, Y) D
Z t0

0

d

dt
( f f 0) dt D f (t0) f 0(t0) � f (0) f 0(0)D �.
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Thus, by (4.1), (4.3), and (4.6),

(4.7) I
t0
�X(Y, Y) D I t0(Y, Y) � hA

�

0(0)(Y(0)), Y(0)i D � � � D 0.

On the other hand, since�X has no focal point along�, for any non-zero vector field
Z along� satisfying Z(0) 2 T

�(0)�X and Z(t0) D 0,

(4.8) I
t0
�X(Z, Z) > 0

holds (cf. Lemma 2.9 in [14, Chapter III]). Thus, by (4.7) and(4.8), Y � 0 on [0,t0].
This is a contradiction to (4.5). Therefore,�D 0, i.e.,�(0) is the geodesic point in�X.

Here we want to go over some fundamental tools on (QX, � QX): A geodesic
Q
 W [0, a)! QX (0 < a � 1) is expressed byQ
 (s) D ( Qx( Q
 (s)), Qy( Q
 (s))) DW ( Qx(s), Qy(s)).
Then, there exists a non-negative constant� depending only onQ
 such that

(4.9) � D m( Qx(s))2
j Qy0(s)j D m( Qx(s)) sin�

�

Q


0(s),

�

�

� Qx

�

Q
 (s)

�

.

This (4.9) is a famous formula—theClairaut relation. The constant� is called the
Clairaut constant of Q
 . Remark that, by (4.9),� > 0 if and only if Q
 is not a � QX-ray,
or its subarc. Since Q
 is unit speed, we have, by (4.9),

(4.10) Qx0(s) D �

p

m( Qx(s))2
� �

2

m( Qx(s))
.

By (4.10), we see thatQx0(s) D 0 if and only if m( Qx(s)) D �. Moreover, by (4.10), we
have that, for a geodesicQ
 (s) D ( Qx(s), Qy(s)), s1 � s� s2, with the Clairaut constant�,

(4.11) s2 � s1 D �( Qx0(s))
Z

Qx(s2)

Qx(s1)

m(t)
p

m(t)2
� �

2
dt,

if Qx0(s) ¤ 0 on (s1, s2). Here,�( Qx0(s)) denotes the sign ofQx0(s). Furthermore, we have
a lemma with respect to the lengthL( Q
 ) of Q
 :

Lemma 4.3. Let Q
 W [0,s0]! QXn� QX denote a geodesic segment with the Clairaut
constant�. Then, L( Q
 ) is not less than

(4.12) t2 � t1C
�

2

2

Z t2

t1

1

m(t)
p

m(t)2
� �

2
dt,

where we set t1 WD Qx(0) and t2 WD Qx(s0).
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Proof. We may assume thatt2 > t1, otherwise (4.12) is non-positive. Let [s1, s2]
be a sub-interval of [0,s0] such that Qx0(s) ¤ 0 on (s1, s2). By (4.11),

L( Q
 j[s1,s2]) D s2 � s1 D

�

�

�

�

�

Z

Qx(s2)

Qx(s1)

m(t)
p

m(t)2
� �

2
dt

�

�

�

�

�

.

Since Qx0(s) ¤ 0 for all s 2 (s1, s2) with Qx(s) 2 [t1, t2], we may choose the numberss1

and s2 in such a way thatQx(s1) D t1 and Qx(s2) D t2 or that Qx(s1) D t2 and Qx(s2) D t1.
Thus, we see that

(4.13) L( Q
 ) �
Z t2

t1

m(t)
p

m(t)2
� �

2
dt.

Since

m(t)
p

m(t)2
� �

2
� 1C

�

2

2m(t)
p

m(t)2
� �

2
,

we have, by (4.13),

L( Q
 ) � t2 � t1C
�

2

2

Z t2

t1

1

m(t)
p

m(t)2
� �

2
dt.

The next lemma is well-known in the case of the cut locus of a point (see [1]).
Although it can be proved similarly, we here give a proof of the lemma totally different
from it.

Lemma 4.4. For any q2 Cut(�X)\ (X n �X) and any" > 0, there exists a point
in Cut(�X) \ B

"

(q) which admits at least two�X-segments.

Proof. Suppose that the cut pointq admits a unique�X-segment�q to q. Then,
q is the first focal point of�X along�q. For eachp 2 �X, we denote byvp the inward
pointing unit normal vector to�X at p 2 �X. And let U be a sufficiently small open
neighborhood aroundd(�X, q)�0q(0) in the normal bundleN

�X of �X, so that there

exists a number�(vp) 2 (0,1) such that exp?(�(vp)vp) is the first focal point of�X for
each�(vp)vp 2 U . Setk WD lim inf

vp!�
0

q(0) �(vp), where�(vp) WD dim ker(d exp?)
�(vp)vp .

SinceU is sufficiently small, we may assume that�(vp) � k on S WD {w=kwk j w 2

U}, which is open in the unit sphere normal bundle of�X. It is clear that, for each
integerm � 0, the set{vp 2 S j rank(d exp?)

�(vp)vp � m} is open inS. Hence, by [8,
Lemma 1], � is smooth on the open set{vp 2 S j �(vp) � k} D {vp 2 S j �(vp) D
k} � S. Since (d exp?)

�(vp)vp W T�(vp)vpN�X ! Texp?(�(vp)vp) X is a linear map depending
smoothly onvp 2 S, there exists anon-zerovector field W on S such thatW

vp 2
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ker(d exp?)
�(vp)vp on S. Here, we assume that ker(d exp?)

�(vp)vp � T
vpS by the natural

identification.
Assume that there exists a sequence{�i W [0, l i ] ! X} of �X-segments convergent

to �q such that�i (l i ) 2 Cut(�X) and�i (l i ) � Foc(�X) along�i . Then it is clear that
each�i (l i ) admits at least two�X-segments. Hence, we have proved our lemma in
this case.

Assume that exp?(�(vp)vp) 2 Cut(�X) for all vp 2 S. Let � (s), s 2 (�Æ, Æ), be the
local integral curve ofW on S with �q(0)D � (0). Hence, (d exp?)

�(� (s))� (s)(� 0(s)) D
0 on (�Æ, Æ). By [7, Lemma 1], exp?(�(� (s))� (s)) D exp?(�(� (0))� (0)) D q holds.
Henceq is a point in Cut(�X) admitting at least two�X-segments.

REMARK 4.5. Lemma 4.4 holds without curvature assumption on (X, �X).

Proposition 4.6. Let �0W [0,1)! X be a�X-ray guaranteed by the assumption
above. If( QX, � QX) satisfies

(4.14)
Z

1

0

1

m(t)2
dt D1,

or

(4.15) lim inf
t!1

m(t) D 0,

then, any point of X lies in a unique�X-ray. In particular, �X is totally geodesic in
the case where(4.14) is satisfied.

Proof. Choose any pointq 2 X n �X not lying on�0. Let �1W [0, d(�X, q)] ! X
denote a�X-segment with�1(d(�X,q))D q. For eacht > 0, let 
tW [0,d(q,�0(t))]! X
denote a minimal geodesic segment emanating fromq to �0(t). From Theorem 2.12
and the triangle inequality, it follows that there exists a generalized open triangle

GOT(� QX, O�0(t), Oq) D (� QX, O�0(t), OqI O
t , O�
(t)
0 , O�1)

in QX corresponding to the triangle OT(�X, �0(t), q) D (�X, �0(t), qI 
t , �0j[0,t ] , �1) in
X such that

(4.16) d(� QX, O�0(t)) D t , d(� QX, Oq) D d(�X, q),

and

(4.17) L( O
t ) � d(�0(t), q) � t C d(q, �0(0))

and that

(4.18) �(�X, q, �0(t)) � �(� QX, Oq, O�0(t)).
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Here�(�X, q, �0(t)) denotes the angle between two sides�1 and 
t joining q to �X
and�0(t) forming the triangle OT(�X, �0(t), q). From Lemma 4.3, (4.16), and (4.17),
we get

(4.19)

t C d(q, �0(0))� L( O
t )

� t � d(�X, q)C
�

2
t

2

Z t

d(�X,q)

1

m(t)
p

m(t)2
� �

2
t

dt.

where�t denotes the Clairaut constant ofO
t . By (4.19),

(4.20) d(�X, q)C d(q, �0(0))�
�

2
t

2

Z t

d(�X,q)

1

m(t)2
dt.

First, assume that (QX, � QX) satisfies (4.14). Then, it is clear from (4.20) that
limt!1

�t D 0. Hence, by (4.9), we have

(4.21) lim
t!1

�(� QX, Oq, O�0(t)) D � .

By (4.18) and (4.21),

1

WD limt!1


t is a ray emanating fromq such that

�(
 0
1

(0),��01(d(�X, q))) D � .

This implies thatq lies on a unique�X-segment. Therefore, by Lemma 4.4,q lies on
a �X-ray. Now, it is clear from Lemma 4.2 that�X is totally geodesic.

Second, assume that (QX,� QX) satisfies (4.15). Then, there exists a divergent sequence
{ti }i2N such that

(4.22) lim
t!1

m(ti ) D 0.

From (4.9), we see

(4.23) �i � m(ti ),

where�i denotes the Clairaut constant ofO
ti . Hence, by (4.22) and (4.23), lim inft!1

�t D

0 holds. Now, it is clear that there exist a limit geodesic

1

of {
ti } such that

1

is a ray
emanating fromq and satisfies�(
 0

1

(0),��01(d(�X, q))) D � . Therefore, by Lemma 4.4,
q lies on a�X-ray.

By Proposition 4.6, there does not exist a cut point of�X. Therefore, it is clear that

Corollary 4.7. If ( QX, � QX) satisfies(4.14), or (4.15), then X is diffeomorphic to
[0,1) � �X.
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Furthermore, we may reach stronger conclusion than Corollary 4.7:

Theorem 4.8. If ( QX, � QX) satisfies

Z

1

0

1

m(t)2
dt D1,

then, for every�X-ray � W [0,1)! X, the radial curvature KX satisfies

(4.24) KX(�t ) D G( Q�(t))

for all t 2 [0,1) and all 2-dimensional linear space�t spanned by�0(t) and a tan-
gent vector to X at�(t). In particular, X is isometric to the warped product manifold
[0,1)�m �X of [0,1) and (�X, g

�X) with the warping function m. Here g
�X denotes

the induced Riemannian metric from X.

Proof. Take any pointp 2 �X, and fix it. By Proposition 4.6, we may take a
�X-ray � W [0,1)! X emanating fromp D �(0). Suppose that

(4.25) KX(�t0) > G( Q�(t0))

for some linear plane�t0 spanned by�0(t0) and a unit tangent vectorv0 orthogonal to
�

0(t0). If we denote byE(t) the parallel vector field along� satisfying E(t0) D v0,
then E(t) is unit and orthogonal to�0(t0) for eacht . We define a non-zero vector field
Y(t) along � by Y(t) WD f (t)E(t), where f is the solution of the following differen-
tial equation

(4.26) f 00(t)C KX(�0(t), E(t)) f (t) D 0

with initial condition f (0) D 1 and f 0(0) D 0. Here KX(�0(t), E(t)) denotes the sec-
tional curvature of the plane spanned by�0(t) and E(t). It follows from (4.25) and
(L-1) in Lemma 4.1 that there existst1 > 0 such that f (t1) D 0. From (4.26), we get

(4.27) I t1(Y, Y) D
Z t1

0

d

dt
( f f 0) dt D 0.

Since �X is totally geodesic by Proposition 4.6,A
�

0(0)(E(0)) D 0. Thus, by (4.27),
I

t1
�X(Y, Y) D 0 holds. On the other hand,I t1

�X(Y, Y) > 0 holds, since there is no focal
point of �X along �. This is a contradiction. Therefore, we get the first assertion
(4.24).

Now it is clear that the map'W [0,1)�m �X! X defined by'(t,q) WD exp?(tvq)
gives an isometry from [0,1)�m�X onto X. Herevq denotes the inward pointing unit
normal vector to�X at q 2 �X.
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5. Proof of Theorem 1.2

Throughout this section, let (X,�X) be a complete connected Riemannian manifold
X with disconnectedsmooth compactconvexboundary�X whose radial curvature is
bounded from below by 0. Under the hypothesis, we may assume

�X D
k
[

iD1

�Xi , k � 2.

Here each�Xi denotes a connected component of�X and is compact. Set

l WD min{d(�Xi , �X j ) j 1� i , j � k, i ¤ j }.

Then let�X1, �X2 denote the connected components of�X satisfying

d(�X1, �X2) D l .

Lemma 5.1. Let � denote a minimal geodesic segment in X emanating from�X1

to �X2. Then, there does not exist any other�X-segment to�(l=2) than �j[0,l=2] and
�j[l=2,l ] . Furthermore, each midpoint�(l=2) is not a focal point of�X along�.

Proof. Note that the� is not tangent to another connected components�Xi (3 �
i � k) of �X, since�X is convex. Suppose that there exists a�X-segment�i0W [0,l=2]!
X for a numberi0 2 {3, 4, : : : , k} such that�i0 emanates from�Xi0 to �(l=2). Since
�(�Xi0, �(l=2), �Xi ) < � (i D 1, or 2), we have, by the triangle inequality,l D
d(�Xi0,�(l=2))Cd(�(l=2),�Xi ) > d(�Xi0, �Xi ). This is a contradiction to the definition
of l .

Suppose that there exists a�X-segment�W [0, l=2]! X emanating from�Xi (i D
1, or 2) to�(l=2) satisfying�(0)¤ �(0) if i D 1, and�(0)¤ �(l ) if i D 2. In the case
where i D 1: Let �(�X1,�(l=2),�X2) denote the angle between two segments� and�
joining �(l=2) to �X1 and �X2, respectively. Then�(�X1, �(l=2),�X2) < � holds. By
the triangle inequality, we havel D d(�(0),�(l=2))Cd(�(l=2),�(l )) D d(�X1,�(l=2))C
d(�(l=2),�X2) > d(�X1, �X2). In the case wherei D 2, we also havel > d(�X1, �X2).
Thus, both cases are also a contradiction to the definition ofl .

Hence, the first assertion of this lemma has been proved. In the proof of the sec-
ond assertion of this lemma, suppose that�(l=2) is a focal point of�X along�. Then,
we may get a contradiction to the definition ofl by the similar way above.

Hereafter, the half plane

R

2
C

WD { Qp 2 R2
j Qx( Qp) � 0}

with Euclidean metricd Qx2
C d Qy2 will be used as the model surface for (X, �X).
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Lemma 5.2. Any point in X lies on a minimal geodesic segment emanating from
�X1 to �X2 of length l. In particular, �X consists of�X1 and �X2.

Proof. SinceX is connected, it is sufficient to prove that the subsetO of X is
open and closed, whereO denotes the set of all pointsr 2 X which lies on a minimal
geodesic segment emanating from�X1 to �X2 of length l . Since it is trivial thatO is
closed, we will prove thatO is open.

Choose any pointr 2 O, and fix it. Thus,r lies on a minimal geodesic segment
�1W [0, l ]! X emanating from�X1 to �X2. Set p WD �1(l=2). Let S be the equidistant
set from�X1 and �X2, i.e.,

(5.1) S WD {q 2 X j d(�X1, q) D d(�X2, q)}.

It follows from Lemma 5.1 thatS\ B
"1(p) � Cut(�X), if "1 > 0 is chosen sufficiently

small. Choose any pointq 2 S\ B
"1(p) n {p}, and also fix it. Let�i , i D 1, 2, denote

a �X-segment toq such that�1(0) 2 �X1 and �2(0) 2 �X2, respectively. Moreover, let

 W [0, d(p, q)]! X denote a minimal geodesic segment emanating fromp to q. Since

�

�




0(0),��01

�

l

2

��

C�

�




0(0),�01

�

l

2

��

D � ,

we may assume, without loss of generality, that

(5.2) �

�




0(0),��01

�

l

2

��

�

�

2
.

It follows from Theorem 2.5 that there exists an open triangle

OT(�R2
C

, Qp, Qq) D (�R2
C

, Qp, QqI Q
 , Q�1, Q�1)

in R

2
C

corresponding to the triangle OT(�X1, p,q)D (�X1, p,qI
 ,�1j[0,l=2],�1) such that

(5.3) d(�R2
C

, Qp) D
l

2
, d( Qp, Qq) D d(p, q), d(�R2

C

, Qq) D d(�X1, q),

and

(5.4) �

�




0(0),��01

�

l

2

��

D �p � � Qp, �q � � Qq.

By (5.2) and�p � � Qp of (5.4), we have

(5.5) � Qp �
�

2
.
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Since our model isR2
C

, it follows from the two equationsd(� QX, Qp)D l=2, d(�R2
C

, Qq)D
d(�X1, q) of (5.3), and (5.5) that

(5.6) d(�X1, q) D d(�R2
C

, Qq) �
l

2
.

On the other hand, the broken geodesic segment defined by combining �1 and �2 is a
curve joining�X1 to �X2. This implies that length of the broken geodesic segment is
not less than that of�1. Thus,

(5.7) 2L(�1) D L(�1)C L(�2) � l ,

where L( � ) denotes the length of a curve. SinceL(�1) D d(�X1, q), we have, by
(5.7), that

(5.8) d(�X1, q) �
l

2
.

By (5.6) and (5.8),d(�X1, q) D d(�X2, q) D l=2. Therefore, we have proved that any
point q 2 S\ B

"1(p) is the midpoint of a minimal geodesic segment emanating from
�X1 to �X2 of length l . Furthermore, by Lemma 5.1, each point ofS\ B

"1(p) is not
a focal point of�X. It is therefore clear that any point sufficiently close to the point
r 2 O is a point ofO, i.e, O is open.

REMARK 5.3. From Lemmas 5.1 and 5.2, it is clear that

(5.9) Cut(�X) D

�

p 2 X d(�X, p) D
l

2

�

D S

and that

(5.10) d(�X, p) �
l

2

for all p 2 X. Here S is the equidistant set defined by (5.1). Thus, from the proof of
Lemma 5.2, we see that�p D �q D �=2 holds for all p, q 2 Cut(�X).

Lemma 5.4. Cut(�X) is totally geodesic.

Proof. Let p, q be any mutually distinct points of Cut(�X), and fix them. More-
over, let
 W [0, d(p, q)] ! X denote a minimal geodesic segment emanating fromp to
q. If we prove that
 (t) 2 Cut(�X) for all t 2 [0, d(p, q)], then our proof is complete.

Suppose that

(5.11) 
 (t0) 62 Cut(�X)
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for somet0 2 (0, d(p, q)). By (5.9), we have that

(5.12) d(�X, 
 (t0)) ¤
l

2
,

and that

(5.13) d(�X, p) D d(�X, q) D
l

2
.

The equations (5.10) and (5.12) imply that

(5.14) d(�X, 
 (t0)) <
l

2
.

Without loss of generality, we may assume that

(5.15) d(�X, 
 (t0)) D min{d(�X, 
 (t)) j 0� t � d(p, q)}.

By Remark 5.3, (5.11), and (5.15), we obtain the open triangle OT(�X, p, 
 (t0))
satisfying

(5.16) �p D
�

2
, �
 (t0) D

�

2
.

From Theorem 2.5, (5.13), (5.14), and (5.16), we thus get an open triangle
OT(�R2

C

, Qp, Q
 (t0)) in R

2
C

corresponding to the triangle OT(�X, p, 
 (t0)) such that

d(�R2
C

, Qp) D
l

2
, d(�R2

C

, Q
 (t0)) <
l

2
,

and that

� Qp �
�

2
, � Q
 (t0) �

�

2
.

This is a contradiction, since our model isR2
C

. Therefore,
 (t) 2 Cut(�X) holds for
all t 2 [0, d(p, q)].

Lemma 5.5. For each t2 (0, l=2), the level set Hi (t) WD {p 2 X j d(�Xi , p) D t},
i D 1, 2, is totally geodesic, and H1(t) is totally geodesic for all t2 (0, l ).

Proof. Take anyt 2 (0, l=2), and fix it. Let p, q be any mutually distinct points
in H1(t), and also fix them. Let�1, �2 W [0, l ] ! X denote minimal geodesic segment
emanating from�X1 to �X2 and passing through�1(t) D p, �2(t) D q, respectively.
Thus, we have an open triangle OT(�X1, p, q) D (�X1, p, qI 
t , �1j[0,t ] , �2j[0,t ]), where
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t W [0, d(p, q)] ! X denotes a minimal geodesic segment emanating fromp to q. If
we prove

(5.17) �p D �q D
�

2
,

then we see, by similar argument in the proof of Lemma 5.4, that H1(t) is totally geo-
desic. Thus, we will prove (5.17) in the following.

By Theorem 2.5, there exists an open triangle

OT(�R2
C

, Qp, Qq) D (�R2
C

, Qp, QqI Q
t , Q�1j[0,t ] , Q�2j[0,t ])

in R

2
C

corresponding to the triangle OT(�X1, p, q) such that

(5.18) d(�R2
C

, Qp) D d(�R2
C

, Qq) D t , d( Qp, Qq) D d(p, q)

and that

(5.19) �p � � Qp, �q � � Qq.

Since our model isR2
C

, the equationd(�R2
C

, Qp) D d(�R2
C

, Qq) of (5.18) implies that

(5.20) � Qp D � Qq D
�

2
.

Thus, by (5.19) and (5.20), we have

(5.21) �p �
�

2
, �q �

�

2
.

On the other hand, by Lemma 5.4, Cut(�X) is totally geodesic, i.e., all eigenvalues
of the shape operator of Cut(�X) are 0 in the vector normal to Cut(�X). Since the
radial vector of any Cut(�X)-segment is parallel to that of a�X-segment, Cut(�X)
has also non-negative radial curvature. Therefore, we can apply Theorem 2.5 to the
open triangle

OT(Cut(�X), p, q) D (Cut(�X), p, qI 
t , �1j[t,l=2], �2j[t,l=2]).

Thus, by Theorem 2.5, there exists an open triangle

OT(�R2
C

, Op, Oq) D (�R2
C

, Op, OqI Q
t , Q�1j[t,l=2], Q�2j[t,l=2])
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in R

2
C

corresponding to the triangle OT(Cut(�X), p, q) such that

(5.22) d(�R2
C

, Op) D d(�R2
C

, Oq) D
l

2
� t , d( Op, Oq) D d(p, q)

and that

(5.23) � � �p � � Op, � � �q � �Oq.

As well as above, the equations (5.22) and (5.23) imply� ��p � �=2 and� ��q �
�=2, since our model isR2

C

. Thus, we have

(5.24) �p �
�

2
, �q �

�

2
.

By (5.21) and (5.24), we therefore get (5.17). By the same argument above, one may
prove thatH2(t) is also totally geodesic for allt 2 (0, l=2). Since H1(t) D H2(l � t),
H1(t) is totally geodesic for allt 2 (0, l ).

Theorem 5.6. Let (X,�X) be a complete connected Riemannian manifold X with
disconnected smooth compact convex boundary�X whose radial curvature is bounded
from below by0. Then, X is isometric to[0, l ]� �X1 with Euclidean product metric of
[0, l ] and �X1, where�X1 denotes a connected component of�X. In particular, �X1

is the soul of X.

Proof. Let8 W [0, l ] � �X1! X denote the map defined by8(t, p) WD exp?(tvp),
wherevp denotes the inward pointing unit normal vector to�X1 at p 2 �X1. We will
prove that the8 is an isometry. From Lemma 5.2, it is clear that8 is a diffeomorphism.

Let �1 W [0, l ] ! X denote any minimal geodesic segment emanating from�X1

to �X2, and fix it. Choose a minimal geodesic segment�2 W [0, l ] ! X emanating
from �X1 to �X2 sufficiently close�1, so that, for eacht 2 (0, l ), �1(t) is joined with
�2(t) by a unique minimal geodesic segment
t . Since each level hypersurfaceH1(t)
is totally geodesic by Lemma 5.5,
t meets�1 and �2 perpendicularly at�1(t) and
�2(t), respectively. Therefore, by the first variation formula,

d

dt
d(�1(t), �2(t)) D 0,

holds for all t 2 (0, l ). Thus,d(�1(t), �2(t)) D d(�1(0),�2(0)) holds for all t 2 [0, l ].
This implies that

(5.25)













d8(t, p)

�

�

�xi

�













D













d8(0,p)

�

�

�xi

�
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for all t 2 [0, l ]. Here (x1, x2, : : : , xn�1) denotes a system of local coordinates around
p WD �1(0) with respect to�X1. Since

d8(0,p)

�

�

�xi

�

D

�

�

�xi

�

(0,p)

,

we get, by (5.25),

(5.26)
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It is clear that

(5.27) d8(t, p)

�

�

�xi

�

? d8(t, p)

�

�

�x0

�

, i D 1, 2, : : : , n� 1,

and

(5.28)













d8(t, p)

�

�

�x0
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D 1

for all t 2 [0, l ]. Here x0 denotes the standard local coordinate system for [0,l ]. By
(5.26), (5.27), (5.28),8 is an isometry.
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