|

) <

The University of Osaka
Institutional Knowledge Archive

Title Symbolic Bisimulation Checking and Decomposition
of Real-Time Service Specifications

Author(s) |AH, BAk

Citation |KFRKZ, 1997, HLXHmX

Version Type|VoR

URL https://doi.org/10.11501/3129118

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Symbolic Bisimulation Checking and
Decomposition of Real-Time Service Specifications

Akio Nakata

January 1997

Symbolic Bisimulation Checking and
Decomposition of Real-Time Service Specifications

Akio Nakata

January 1997

A Dissertation submitted to the Faculty of the Engineering Science
of Osaka University for the Degree of Doctor of Philosophy in Engineering

Abstract

This thesis summarizes the work of the author during bachelor/master/doctor stu-
dent of Osaka University on formal design of reliable real-time distributed systems.
In this thesis, we present a formal specification language for real-time distributed
systems, a verification method of their equivalence, and a decomposition method of
formally specified real-time services into a set of specifications for distributed nodes.

In the first part of this thesis, we propose a language LOTOS/T, which is an
enhancement of LOTOS, an international standard formal description language for
distributed systems and communication protocols. LOTOS/T enables us to describe
not only various behaviour of systems such as sequential compositions, choices, paral-
lel executions, and interruptions, but also time constraints of each action in formulas
of 1st-order predicate logic on time domain. The user has only to describe when each
action must be executed. The user can also specify an assignment of executed time
of each action into some variable. which can be referred in the time constraints of
succeeding actions. Use of equality (=) and inequality (<) as the time constraints
enables us to describe intervals, timeout and delay easily. We define the syntax
and semantics of LOTOS/T formally. The semantic model of LOTOS/T is the
Labelled Transition System (LTS). We give the inference rules for constructing the
LTSs mechanically from given LOTOS/T expressions. We also define timed /untimed
bisimulation equivalence for real-time systems. Timed bisimulation equivalence is a
kind of bisimulation equivalence where timing of each action is also equal, whereas
untimed bisimulation equivalence ignores the timing. It is easily proved that they
are decidable if the corresponding LTSs are finite-state.

Verification of timed bisimulation equivalence is generally difficult due to the
state explosion caused by concrete time values. Therefore, in the second part of this
thesis, we propose a verification method of timed bisimulation equivalence where its
verification cost is independent of the concrete time values described in the spec-
ifications. We first propose a new model of real-time systems, Alternating Timed
Symbolic Labelled Transition System(A-TSLTS). In an A-TSLTS, each state has
some parameter variables, whose values determine its behaviour. Each transition in
an A-TSLTS has a guard predicate. The transition is executable if and only if its
guard predicate is true under the specified parameter values. For a given state-pair

of a finite A-TSLTS, the proposed method produces the weakest condition for the
parameter values to make the state-pair be timed/untimed bisimulation equivalent.
A method to convert LOTOS/T expressions into A-TSLTSs is also given.

In the third part of this thesis, we propose a method to decompose specifications
of real-time services written in LOTOS/T into a set of specifications of distributed
nodes automatically. Here we assume that there is a reliable communication channel
between any two nodes and the maximum communication delay for each channel is
bounded by a constant. Moreover we assume service specifications have no dead-
locks. Under our simulation policy, a specification S’ is derived from a given service
specification S and a given maximum communication delay of each channel. In S’
some time-constraints are added in order to make sure synchronization messages
between nodes can reach in time. Our method firstly check if S and S’ can carry out
the same behaviour, i.e., if S and S’ are untimed bisimulation equivalent. If they
are equivalent, then we derive a correct protocol specification for simulating S from
S’ automatically.

ii

List of Major Publications

1. Akio Nakata, Teruo Higashino, and Kenichi Taniguchi: “LOTOS enhance-
ment to specify time constraint among non-adjacent actions using first order
logic,” In Proc. of IFIP TC6/WG6.1 6th Int’l Conf. on Formal Description
Techniques (FORTE’93), pp.451-466, IFIP, Elsevier Science Publishers B.V.
(North-Holland), Oct. 1993.

2. Akio Nakata, Teruo Higashino, and Kenichi Taniguchi: “Protocol synthesis
from timed and structured specifications,” In Proc. of 1995 Int’l Conf. on
Network Protocols (ICNP’95), pp.74-81, IEEE Computer Society Press, Nov.
1995.

3. Akio Nakata, Teruo Higashino, and Kenichi Taniguchi: “An extension of LO-
TOS for specifying time constraints among non-adjacent actions and verifica-

tion of equivalence,” Journal of Japan Society of Software Science and Tech-
nology, Vol.12, No.6, pp.3-16, Nov. 1995. (In Japanese)

4. Akio Nakata, Teruo Higashino, and Kenichi Taniguchi: “Deriving Protocol
Specification from Timed Service Specifications Written in LOTOS,” Trans. of
Information Processing Society of Japan, Vol.37, No.5, pp.672-686, May 1996.
(In Japanese)

5. Akio Nakata, Teruo Higashino, and Kenichi Taniguchi: “Time-Action Alter-
nating Model for Timed LOTOS and its Symbolic Verification of Bisimula-
tion Equivalence,” in Proc. of IFIP TC6/WG6.1 Joint Int’l Conf. on Formal
Description Techniques for Distributed Systems and Communication Proto-
cols, and Protocol Specification, Testing, and Verification (FORTE/PSTV’96),
pp-279-294, Chapman & Hall, Oct. 1996.

6. Akio Nakata, Teruo Higashino, Kenichi Taniguchi: “Time-Action Alternat-
ing Model for Timed Processes and its Symbolic Verification of Bisimulation
Equivalence”, IEICE Trans. on Fundamentals (to appear).

iii

Acknowledgment

This work could be achieved owing to a great deal of helps of many individuals.

First, I would like to thank my supervisor Professor Kenichi Taniguchi of Osaka
University, for his continuous support, encouragement and guidance of the work.

I'm very grateful to Professor Mamoru Fujii and Professor Toru Kikuno for their
invaluable comments and helpful suggestions concerning this thesis. I'm also very
grateful to Professor Hideo Miyahara and Professor Nobuki Tokura, for their valuable
comments on this thesis.

I would like to express my sincere gratitude to Associate Professor Teruo Hi-
gashino of Osaka University for his adequate guidance, valuable suggestions and
discussions throughout this work. This work could not be achieved without his
continuous support, encouragement and guidance.

Many of the courses that I have taken during my graduate career have been
helpful to prepare this thesis. 1 would like to acknowledge the guidance of Professors
Seishi Nishikawa, Kenichi Hagihara, Katsuro Inoue, Toshinobu Kashiwabara, Masaru
Sudo, and Akihiro Hashimoto.

I’d like to express my thanks to Assistant Professor Masahiro Higuchi of Osaka
University for his helpful comments and suggestions.

I'd like to express my thanks to Professor Hans A. Hansson of Uppsala Univer-
sity, Sweden for his kindly sending me his doctoral dissertation and some related
references.

I also wish to thank Assistant Professor Keiichi Yasumoto of Shiga University and
Research Associate Dr. Kozo Okano of Osaka University for their helpful suggestions.

Finally, I would like to thank all the members of Taniguchi Laboratory of Osaka
University for their helpful advice.

v

Contents

1 Introduction 1
1.1 Motivations L 1
1.2 Specification Language and Equivalence 3
1.3 Semantic Models and Symbolic Verification of Equivalence 5
1.4 Decomposition of Real-Time Services 7
1.5 Related Work 9

1.5.1 Formal Description Languages for Real-Time Systems 9
1.5.2 Verification of Real-Time Properties 9
1.5.3 Decomposing Real-Time Services 10
1.6 Outline of This Thesis, 10

2 LOTOS/T — A Formal Specification Language for Real-Time Dis-
tributed Systems 12
2.1 Imtroduction e 12
2.2 Definition of LOTOS/T S 13

221 Syntax e e e e e e e e e e e 13
2.2.2 Operational Semantics 18
2.2.3 Consistency of the inference system 21
2.2.4 Example of LTS construction 21
2.3 Equivalence 22
2.3.1 Timed Bisimulation Equivalence 22
2.3.2 Untimed Bisimulation Equivalence 23
24 Example e 24
25 Conclusion L 25

3 A Symbolic Approach to the Bisimulation Checking of Real-Time
System Specifications 28
3.1 Introduction 28
32 A-TSLTSmodel 28
3.3 Timed Bisimulation Equivalence — case for arbitrary time domain . . 30
3.4 Verification of Timed Bisimulation Equivalence 32

3.5 Untimed Bisimulation Equivalence and its Verification 36

3.6 Mapping LOTOS/T into A-TSLTS 40
3.6.1 Delay Transitions of LOTOS/T 41

3.6.2 Action Transitions of LOTOS/T 42

3.6.3 Nondeterministic Choice and Parallel Execution 43

3.7 Conclusions 43

4 Decomposition of Structured Specifications of Real-Time Services 45
4.1 Introduction 45
4.2 Protocol Synthesis 45
4.2.1 Protocol Synthesis Problem 45

4.2.2 Synthesis Method L. 47

4.2.3 Synthesis Algorithm 57

4.3 DiScussionso i e e e e e e e e e e 59
4.3.1 Weakening Restriction of Time Constraints 59

4.3.2 Extending Class of Service Specifications 60

4.4 Concluding Remarks 0. 61

5 Conclusions 63

vi

Chapter 1

Introduction

1.1 Motivations

In recent years, distributed systems such as online services (telephone network, online
bank services) and transport controlling systems (airplanes, trains) have become
popular to our daily life with the progress of information networks. However, it is a
difficult problem to make such a system reliable because of its nature of concurrency.
Aside from bugs of each individual computer system and/or errors of communication
media, mismatch of the communications among multiple computers may result some
failures — errors, deadlocks, or incorrect computations of entire services. Because
our daily life is heavily dependent on such a system, such a failure may cause serious
damage to our society.

To cope with this problem, an approach so-called Formal Description Technique
(FDT) for distributed systems and communication protocols are proposed. In this
approach, services are formally specified by rigorous models or specification lan-
guages. Then the service specifications are modified or refined during design pro-
cesses. In each steps, correctness of the modified or refined specification w.r.t. service
specifications is verified with the help of computers. Alternatively, the refined spec-
ifications which is guaranteed correct w.r.t service specifications are automatically
derived. Because it is aimed at verification of the correctness of communications
between distributed nodes, input/output actions are mainly described in such an
FDT. ,

Formal description languages such as CCS [Mil80], CSP [Hoa85], ACP [BK85],
LOTOS [ISO89] and so on, have been proposed to specify communication protocols
and distributed systems formally. Although these languages can express temporal
ordering of the actions, they cannot express explicit time constraints among the
actions. It is necessary for the real-time systems and communication protocols to
specify quantitative time because of some reasons. Firstly, in some systems like air

traffic controlling and train controlling, their correctness strongly depends on the
time when the operation (or action) is performed. It is critical or even fatal if some
operation does not finish in time. It is desirable to specify an external service, includ-
ing its time constraints, of such a real-time application formally and verify whether
its implementation satisfies the specification of the service. Secondly, in some ap-
plications like online bank systems and database systems, delay of each operation is
not so critical. However, excessive delay is undesirable because it gives some incon-
venience to users. In design processes of such a real-time service, time constraints
of each operation may be frequently altered depending on its implementations. In
such cases, we must guarantee that the system’s essential behaviour would remain
correct.

Moreover, when describing time constraints of service specifications of real-time
distributed systems, it is frequently the case that only the time constraint between
the initial request and the corresponding final response is required. In this case,
specifying time constraints among some intermediate actions may be too restrictive.
For example, someone would like to specify that the response ¢ must be issued within
3 seconds after the request a was received, but the intermediate action b can be
executed at any time between a and c. In this case, time constraints between b and ¢
is unnecessary. In general, capability of describing time constraints of only interested
set of (possibly non-adjacent) actions is required for specification languages of real-
time systems. Generally, expressive power of a language and its complexity are
trade-off. In order to check equivalence between specifications mechanically, we must
keep the complexity of equivalence checking problems tractable when designing such
a specification language.

Sometimes verification of equivalence between service and refined specifications
is too difficult due to the complexity of communications and/or time-constraints. In
this case, instead of writing the refined specifications by hand, it is useful to decom-
pose the formal specification of its services into the more concrete specification of
each distributed node automatically. Such a technique is known as protocol synthe-
sis. A set of decomposed specifications is called a protocol specification. Protocol
synthesis methods aim at decomposing a wider class of service specifications into
correct and better protocol specifications. When we make the decomposed specifi-
cations of all nodes work together, their behaviour must be at least correct w.r.t.
the service specification in a certain sense. Moreover, it is better to leave as many
implementation possibilities as possible for the decomposed specification. It is also
better that the performance of the decomposed specification is feasible. Specifically,
we would like to reduce the number of messages exchanged between nodes.

However, it is difficult to consider protocol synthesis for real-time distributed
systems. That is, the higher-level service of a real-time distributed system may have
some timing constraints arisen from a user side (e.g. maximum response time require-
ments), while the lower-level implementation may also have some timing constraints

2

imposed by physical reasons (e.g. propagation delay of communication media). It
is difficult or even impossible in some cases to find a correct implementation of the
service because it must satisfy the time constraints of both higher and lower lev-
els. At least two different approaches to this problem are possible — a lower level
restriction and a higher level restriction. In a lower level restriction approach, we
derive both a protocol specification and time constraints of lower level communi-
cation media necessary to implement the given service specification. In a higher
level restriction approach, we first restrict the given service specification in order to
execute it correctly on distributed nodes and a given communication medium, and
then derive a protocol specification from the restricted service specification. Since
the delay of communication media generally depends on physical lines and difficult
to change, the higher level restriction approach seems more applicable to systems
of the real-world. To derive a better protocol specification in this approach, we
must keep the service restriction minimum. Moreover, it is desirable to decompose
a service specification written in a structured parallel language such as LOTOS, be-
cause such a structured language is more appropriate to write large practical system
specifications than traditional state transition system models.

1.2 Specification Language and Equivalence

In this thesis, firstly we propose a formal language, LOTOS/T, for describing both
service specifications and one-step-forward refined specification of its lower level im-
plementations (protocol specifications) of real-time distributed systems. The pro-
posed language LOTOS/T is a timed extension of LOTOS [ISO89]. The language
LOTOS has been proposed as an international standard formal description language
for specifying distributed systems and communication protocols by ISO. In LOTOS,
we can specify temporal ordering of input/output/internal actions in a structural way
using several operators like choice, parallel, sequential composition and interruption.
In addition to LOTOS, LOTOS/T has a capability of specifying time constraints
among possibly non-adjacent actions by a formula of first order arithmetics on time
domain (may be either integers or real-numbers). For example, we can specify an
action a is executable just when the current value of the clock is less than 3 + x,
where z is the time when the previous action b is executed, and after the execution
of a, the executed time is assigned to a variable y. Specifying time constraints in
this way is very flexible. Furthermore, if the logic describing time constraints is re-
stricted to Presburger Arithmetics, that is, only addition(+) and subtraction(—) are
used as functions and only equality(=) and inequality(<) as atomic predicates, we
still obtain simple and tractable models for LOTOS/T in spite of its expressiveness,
which is explained later.

Relating real-time aspects, we introduce two kinds of equivalence between two

distributed communicating systems. One is timed bisimulation equivalence, and
the other is untimed bisimulation equivalence. Moreover, we give the two kinds of
approaches to the verification of timed/untimed bisimulation equivalence. One is a
naive but natural extension of existing methods, and the other is a symbolic method
which is an extension of [HL95].

Bisimulation equivalence (also called observation equivalence) is firstly defined in
[Par81] for reasoning equivalence of communicating systems. Intuitively, two systems
are bisimulation equivalent (bisimilar) if and only if they are indistinguishable by
external communications (an observation). More formally, it is defined as an equiv-
alence relation on states in a state transition model where each transition is labelled
by the name of the action (called Labelled Transition System, LTS for short). Two
states in an LTS are bisimilar if one state can perform some action, say a, and then
reach some state, say s, then the other state can also perform the action a and then
reach some state s’ which is bisimilar to s, and vice versa. Bisimulation equivalence
is good for a criterion of correctness of manipulation or refinement of specifications
by the following reasons:

e It has a good compositionality. If two subsystems are bisimulation equivalent
and each of them is embedded in the same environment, two instances of the
environment (each of which contains possibly different but bisimulation equiv-
alent subsystems) are also bisimulation equivalent (algebraically this property
is known as a congruence). So, process algebras [HM85, Hoa85, BK85] have
been established for reasoning semantics of communicating processes in alge-
braic (axiomatic) approaches.

e Its verification cost is feasible, in comparison with other reasonable equivalence
relations for communicating systems proposed so far. In fact, its complexity
is deterministic polynomial-time [KS90]. The verification algorithm can be
applied to finite-state communicating systems, that is, the corresponding LTS
contains only a finite number of states. (On the other hand, we can prove bisim-
ulation equivalence of even infinite-state systems using algebraic (axiomatic)
methods.)

Timed bisimulation equivalence is a time-sensitive version of bisimulation equiv-
alence. Two real-time systems are timed bisimulation equivalent if and only if they
carry out the same behaviour (in the sense of bisimulation equivalence) and each cor-
responding pair of actions can be performed at the same time. Untimed bisimulation
equivalence is a time-insensitive version of bisimulation equivalence (for real-time sys-
tems). Two real-time systems are untimed bisimulation equivalent if and only if they
carry out the same behaviour if the timing of actions are ignored. Timed bisimula-
tion equivalence inherits all of the benefits of bisimulation equivalence—verification
feasibility and compositionality. However, untimed bisimulation equivalence does

4

not have compositionality [LW93, NHT94, ACH94|, that is, axiomatic approaches to
the proving untimed bisimulation equivalence are unlikely. Thus, in this thesis we
verify these equivalence relations by

1. constructing the state transition models of real-time system specifications, and

2. checking the equivalence of the constructed models.

1.3 Semantic Models and Symbolic Verification of
Equivalence

An LTS is adopted as a semantic model for LOTOS. In the LOTOS standard [ISO89],
the inference rules are provided to derive transition relations between LOTOS expres-
sions. Using the inference rules we can construct the corresponding LTS mechani-
cally, and we can also verify bisimulation equivalence mechanically if it is finite-state.
However, it is not capable for expressing timing informations. In this thesis, we pro-
pose two kinds of state transition models for LOTOS/T specifications. The first one
is naive but it naturally extends the untimed model for LOTOS. We refer to the
first model as tick-LTS. In tick-LTS, time domain is discrete, non-negative integers.
One unit of time progress is expressed by the special action “tick”. We consider any
other (ordinary) actions take no time when performed. Timed bisimulation equiv-
alence is defined as bisimulation equivalence of the tick-LTSs. Similarly, untimed
bisimulation equivalence is defined as weak bisimulation equivalence of tick-LTSs
where all tick actions are interpreted as internal actions. Both of timed and untimed
equivalence can be checked similarly to the traditional bisimulation equivalence if
the corresponding tick-L'TSs are finite.

We have a serious problem using the tick-LTS for verifying equivalence of large
specifications of practical systems— a state explosion problem. The size of a tick-LTS
depends on not only the complexity of the control structure of the system but also the
contents of the time constraints. For example, if we add a time constraint like “action
a must be executed within 10,000 seconds”, then 10,000 states are appeared in the
corresponding tick-LTS. The problem itself seems to be solved if we select the most
appropriate unit of time. However, if we have an action which is executable within
an infinite time interval, the corresponding tick-LTS becomes infinite. Reducing
redundant states may solve this problem in some cases. For example, it is frequently
the case that after some time instant, further progress of time does not change the
essential behaviour (including timing) of the system. But in the other case such a
reduction is not possible due to the expressive power of our language. For example,
if we have a time constraint such as “execute the action b within 2z (z times 2)
seconds where z is the time the action a is executed (a is executable at any time)”,

we also have an infinite number of unreducible states in the tick-LTS. Moreover, we
cannot take real numbers as a time domain in this approach.

Therefore, we introduce the second modeling for LOTOS/T specifications— A-
TSLTS (Alternating Timed Symbolic Labelled Transition System) models. Each
state in an A-TSLTS may have some parameter variables (e.g. z, y). Each transi-
tion in an A-TSLTS has a guard predicate such as ‘execute the transition a when
time between z + 5 to y seconds has elapsed.” The guard predicate of a transition
may contain any parameter variable associated to its source state, any numerical op-
eration on time domain, and any atomic predicate. We can use any logic. The logic
only needs to be decidable in order to verify the equivalence in a proposed method.
In this thesis, only timed transitions are considered (data-passing is ignored).

We model a time transition by a delay transition A9, with a delay variable d,
which stands for an amount of the delay (duration). This is the same as [HLW91].
This modeling has a merit that we can treat durations equally as input-output data.
So, although we only handle time here, we can easily extend the result to the model

which handles both time and data-passing. Moreover, each delay transition “4) and
action transition —— have guard predicates which may contain the delay variables
and the parameter variables at their source state (they possibly include some delay
variables in previously executed delay transitions). We refer to such a model as
“Timed Symbolic Labelled Transition System (TSLTS).”

Still we have a problem for verifying timed bisimulation equivalence symbolically

using TSLTS. That is, a delay transition o0 whose amount of delay is d, is equivalent
to a sequence of delay transitions eldelds) | eldn) where d; +dy +---+ d, = d.
Note that in TSLTS, it is possible that after) s executed, both) ond =

. e(d1)e(d .
are executable. So in general, the sequence {h)%) annot be simply reduced to

o di+d . " .
one transition e(—i>2). In order to make a matching between two transitions which

form a bisimulation, we must make a (possibly finitely many) sequence-to-sequence
matching, which makes the problem difficult. Therefore, in this thesis, we assume
our model to have alternating property. Each state of a TSLTS must belong to one
of the two kinds of sets of states, the one is a set of idle states, and the other is
a set of active states. From an idle state, only a delay transition is possible and
then it moves to an active state. From an active state, some action transitions are
possible. After one of them is executed, it comes back to an idle state. We call such
a restricted TSLTS as an Alternating TSLTS (A-TSLTS). In an A-TSLTS model,
we can make the bisimulation matching of delay transitions one-to-one.

Using an algorithm similar to [HL95], from a given state-pair we obtain the
weakest condition (we refer to the condition as the most general boolean, mgb for
short) which makes the chosen two states be timed bisimulation equivalent. If the
condition is universally valid, the pair of states is timed bisimulation equivalent for

any set of parameter values. If it is satisfiable, there is some set of parameter values
which makes the pair of states be timed bisimulation equivalent. Otherwise, the pair
of states is not timed bisimulation equivalent.

For example, let us consider the following two processes, P and (. The process
P may execute the action a when time between z + 5 to y seconds has elapsed, or
execute the action b when time between y to 2+ 10 seconds has elapsed. The process
(2 may execute the action @ when time between 10 to z seconds has elapsed. In order
to make P and @ bisimilar, the condition “(z+5 = 10)A(y = 2)A(y > £+10)” must
hold (if (y > = + 10), then P cannot execute the action b). On the other hand, the
condition is also a sufficient condition to make P and @ bisimilar. Such a condition
is the mgb. In a proposed method, even if P and @ are infinite processes, if the
corresponding A-TSLTS has finite states and variables, we can obtain the mgb for
any pair of states. Once we obtain the mgb, we can verify whether the two states
are timed bisimulation equivalent w.r.t. the specified parameter values by checking
whether the values satisfy the mgb.

The algorithm we present takes a finite A-TSLTS and its state-pair as an input,
and it outputs the mgb for the state-pair. We also show that the algorithm can be
easily extended to verify untimed bisimulation equivalence.

1.4 Decomposition of Real-Time Services

Lastly we propose a method to synthesize a specification of each distributed node
from a given service specification written in LOTOS/T and given time constraints
on communication media. The problem to synthesize a specification of each node
(which may contain some communicating actions) from a given service specification
is known as a protocol synthesis problem [PS91]. We refer to each distributed entity
as a protocol entity and the specification of each node as a protocol entity specifica-
tion. And the set of all protocol entity specifications in the system is referred to as
a protocol specification. Many proposals for synthesizing protocol entity specifica-
tions from a given service specification described in various models or specification
languages have been appeared for untimed cases, but very few proposals for timed
cases [KBD95|. This is due to the difficulty to consider the time constraints of both
service and communication media, as noted previously. Here we adopt a higher level
restriction approach and define the correctness criteria as follows. Informally, we say
a protocol specification is correct w.r.t. a given service specification if and only if
they are untimed bisimulation equivalent and executed time of each action of proto-
col specification satisfies the time constraints of the service specification. Then we
give a solution to this problem as follows.

In our method, we assume that (a) each communication channel is error-free and
its maximum propagation delay is bounded by a constant, and that (b) all nodes

with their clocks can start their executions simultaneously and the clocks always
synchronize each other. Under this assumption, we give a simulation policy for each
node to execute actions in exactly the same order as specified in a given service
specification. Basically, the simulation policy is based on the method which we
have proposed in [KHB96, YHT94|. That is, after executing each action, say a, a
synchronization message is sent to the node which executes a succeeding action, say
b, to inform that a has been executed. If the execution time of a is needed, the time
is also transmitted. The action b must be executed after the message is received.
We derive protocol specifications under the above policy. However, if we consider
time-constraints, many problems arise. For example, if a service specification states
“the action @ must be executed before time 3 at node 1, and then the action b must
be executed before time 5 and x + 3 at node 2, where z is the time a is executed,”
and if the maximum communication delay from node 1 to node 2 is 3 units of time,
the synchronization message sent from node 1 after a is executed may not reach
node 2 before time 5. To cope with this kind of problem, we restrict, for example,
the time constraint of the action a to “before time 2” so that we can guarantee the
synchronization message reaches node 2 in time. As another example, suppose that
a service specification states “the action ¢ must be executed between time 1 and 3
at node 1, and after that the action b must be executed between time 4 and 5 at
node 2”. If the maximum communication delay from node 1 to node 2 is 3 units of
time, the same observation as the previous example holds, i.e., the synchronization
message from node 1 to node 2 may not reach in time. But as for the above case,
a different solution is possible. Since each node has its own clock and all clocks
synchronize each other, the ordering of actions a and b is guaranteed without any
message exchange. That is, the temporal ordering as the total system is guaranteed
if each node decides the execution time of its action a (or b) using its own clock.

In our derivation method, first, from a given service specification S and a given
maximum delay of each channel, we derive a specification S’ where additional time
constraints are appended to S so that the message exchanges are carried out in time.
We make only the weakest timing restrictions to S so that each node can simulate S
under the above policy. If S and S’ can execute the same behaviour while timing of
actions are ignored (note that the transformation from S to S’ does not necessarily
preserve the equivalence), i.e., if they are untimed bisimulation equivalent when
sending/receiving actions of synchronization messages are considered unobservable,

then a protocol specification which is correct w.r.t. S is derived automatically from
S’

1.5 Related Work

1.5.1 Formal Description Languages for Real-Time Systems

In the latest years many languages have been proposed to describe real-time proper-
ties of systems [MT90, Wan91, HR91, BB91, QAF90, vHTZ90, AD90]. For example,
timed extensions of CCS [MT90, Wan91, HR91], introduced several primitive opera-
tors such as delay and timeout operators to describe real-time properties. However,
in these languages, even describing a simple time constraint that some action has to
be done within a given time interval yields to a complicated description. Although
ACP, [BB91, FK95], based on ACP, has an expressive power closer to ours. It can
associate any time intervals ranged over reals to any action, and assign the exe-
cuted time of actions into variables. However, the type of time constraints are still
restricted to intervals, which is a less generic approach than ours. TIC [QAF90],
based on LOTOS, is restricted to specify time constraints between only adjacent
two actions. CELOTOS [vHTZ90] introduced clocks, which can be read or reset
to zero, to describe time constraints among arbitrary actions. However, CELOTOS
cannot specify urgency of actions!. Timed Automata [AD90] have been recognized
as the most general models for real-time systems. A timed automaton has several
clock variables, each of which can be read, reset, or compared to some integer con-
stants to resolve a time constraint of each transition. Although time domain of
Timed Automata is real numbers, only comparison between clock variables and in-
teger constants are allowed in order to make the state space tractable. On the other
hand, using A-TSLTS models, our language is more expressive because comparison
among any combinations of variables, real constants, and linear expressions which
may contain operators like addition(+) and subtraction(—) are allowed, while there
still exists the decision procedure of the bisimulation equivalence.

1.5.2 Verification of Real-Time Properties

There are some proposals to solve the state explosion problem in verification of real-
time properties (e.g. [HLWI1, Cer92, Che92, ACH94]) . But they all have some
stronger restriction in describing time constraints of actions (The case for Timed
Automata is already noted above. The other models used in [HLW91, Cer92, Che92]
are all less general than Timed Automata). On the other hand, for data-passing pro-
cesses, a verification method of bisimulation equivalence is proposed [HL95, Lin96].
This method has some merits: (1). Its verification cost does not depend on the data
domain which we choose or the amount of constants used in data constraints, and
(2). the method does not depend on the logic which we choose for describing data

We say that an action is urgent if the action must necessarily be executed at the current time.
The urgency issue is mentioned in many papers including [BLT90, LL93].

constraints (although they should be decidable in order to verify the equivalence).
Our method is based on [HL95].

1.5.3 Decomposing Real-Time Services

Several methods for synthesizing correct protocol specifications from given service
specifications mechanically have been proposed so far for FSM, EFSM, LOTOS and
Petri Net models [BG86, CL88, GB90, HOIT93, Hul95, KHB96, KBK89, Lan90,
YOHT95]. However those proposals do not consider quantitative time constraints for
the systems. Recently, in [KBD95], a method to derive protocol specifications from
timed service specifications written in a FSM model has been proposed. [KBD95]
adopts a lower level restriction approach, that is, time constraints of the commu-
nication media may be restricted while that of the services remain unchanged. In
comparison with [KBD95], our method has an advantage that we can specify com-
plicated ordering of actions in a structural way. Moreover we adopted a higher level
restriction approach, which is appropriate for the situation that the delay of media
is unchangeable.

1.6 Outline of This Thesis

The rest of this thesis is organized as follows.

In Chapter 2, syntax and semantics of the proposed specification language LO-
TOS/T are defined formally. The inference rules for deriving tick-LTSs are also given.
Here, it is shown that tick-LTSs are constructed mechanically from any LOTOS/T
expressions if time-constraints are described in Presburger Arithmetics. Moreover,
definition of both timed and untimed bisimulation equivalence on the discrete timed
models are defined.

In Chapter 3, an alternative approach to the verification of bisimulation equiv-
alence of LOTOS/T expressions avoiding state explosion is presented. Firstly, A-
TSLTS models are formally defined. Then, timed bisimulation equivalence on an
arbitrary time domain is defined and the verification method for timed bisimulation
equivalence is presented. The definition and verification method for untimed bisimu-
lation equivalence is also given. Finally, inference rules for deriving A-TSLTSs from
any LOTOS/T expressions are given.

In Chapter 4, the protocol synthesis method from a service specification de-
scribed in LOTOS/T and maximum delay of each communication medium, is pre-
sented. Firstly, the protocol synthesis problem for real-time services is formalized.
Then a restriction algorithm of a given service specification, which restricts the time
constraints according to the maximum communication delays and structure of the
service specifications, is presented. After that, the synthesis algorithm of the specifi-

10

cation of each node is given. The limitation and possible extensions of the proposed
algorithm is also discussed.
Chapter 5 concludes this thesis and presents some future work.

11

Chapter 2
LOTOS/T — A Formal

Specification Language for
Real-Time Distributed Systems

2.1 Introduction

In this chapter, we propose a language ‘LOTOS/T’. LOTOS/T is a timed enhance-
ment of Basic LOTOS. It allows us to describe time constraints by the 1lst-order
predicate logic formulas. The 1st-order predicate logic is well-studied, suitable for
automatic verification and makes it easy to describe complicated constraints in ‘as
i’ way. Time is considered discrete. Each process has its own time-table(clock),
which is started when it is invoked. Time is expressed as a non-negative integer.
The semantic model of LOTOS/T is the Labelled Transition System (LTS) used in
LOTOS. Unit time progress is expressed by the action tick. We give the inference
rules for constructing the LTS’s from given LOTOS/T expressions. Time constraints
are described by predicates on integers, which must contain a special free variable ¢
(denotes the current time) and may contain other free variables, associated to each
action. Use of equality(=) and inequality (<) in the predicate will enable us to
describe intervals, timeout or delay easily and naturally. Moreover, time at which
an action occurred can be assigned to a variable. So it is possible to describe time
constraints against actions which are not direct successors. For upward compati-
bility, if no predicate are associated to the action, the predicate ‘true’ is assumed
for its time constraint. In this case, the action is considered executable at any mo-
ment (not urgent). The LTS’s can be constructed from given LOTOS/T expressions
mechanically using the inference rules.

Two equivalences are introduced, the first is timed (strong/weak) bisimulation
equivalence and the last is untimed bisimulation equivalence. Timed bisimula-

12

tion equivalence is used for checking whether two systems are equivalent and have
the same time constraints. Untimed bisimulation equivalence is used for checking
whether two systems are equivalent in spite of the different time constraints. If the
corresponding LTS’s are finite, we can easily check the two bisimulation equivalences
by the algorithms in [KS90, SKTN90]. A

This chapter is organized as follows. In Section 2.2, the syntax and semantics
of LOTOS/T are defined formally. In Section 2.3, the definition of equivalences
related to timed semantics is given. In Section 2.4, a simple but practical example
is provided. Section 2.5 concludes this chapter.

2.2 Definition of LOTOS/T

2.2.1 Syntax
The syntax of LOTOS/T is defined as follows.

Definition 2.1 Behaviour expressions of LOTOS/T are defined as follows (the pri-
ority of operators are analogous to LOTOS):

E := stop (non-temporal deadlock)
| exit (successful termination)
| a;FE (untimed action prefix)
| a[P(t,Z)]; E (time constrained action prefix)
| E[F (choice)
| E||E (interleaving)
| E|FE (synchronization)
| E|[A]|lE (generic parallel composition)
| E[>E (disabling)
| E>>FE (enabling)
| hide Ain E (hiding)
| asap Ain E (“as soon as possible” execution)
| Plai,---,9)(€) (process invocation)

where a € ActU {i} (Act denotes a finite set of all observable actions, ¢ denotes an
internal action) , A C Act, k € N (N denotes a set of natural numbers), and P(t, z)
stands for a predicate which has a free variable ¢, denoting the current time, and
other variables Z (Z denotes a vector of the variables). € denotes a vector of the
value-expressions.

Predicates are well-formed formulas of 1st-order theory of integers containing
=, < as atomic predicates, +, — as functions. Var denotes a set of all variables
of the 1st-order theory. Note that this 1st-order theory is decidable because it is,
essentially, a subset of Presburger Arithmetics[HU79]. O

13

First, we will give an informal explanation of LOTOS/T.

Example 2.1 B =a[2 <t <3Azy=1t];b[t =z + 3];stop

B denotes a process which executes a between time 2 and 3 and executes b after
3 unit of time elapsed. The predicate o = ¢ denotes that the executing time of a is
assigned to the variable xg. 0

The semantic model of LOTOS/T is the LTS. We intend that the LTS in Fig-
ure 2.1 denotes the operational semantics of B.

This LTS is obtained as follows. In Figure 2.1, the root node corresponds to B.
First, only the unit time progress action tick is executable for B. Therefore, the

edge t—lilf is appended to the root node. If the tick is executed, then one unit time
elapsed. Since the current time is incremented, [t + 1/t]B is obtained as the new
behaviour expression. Here, [e/z]B denotes a behaviour expression B whose every
occurrence of the variable z is replaced with the expression e.

At the state [t +1/t| B, only tick is executable. Then [t+1/t|B = [t + 2/t]|Bis
appended. At the state [t+2/t]B, the tick and action a are executable. If the tick is
executed, then [t+3/¢]B, that is, a[2 < t+3 < 3Azo =t+3]; bt +3 = zo + 3]; stop
is obtained. If the tick was executed for [t + 3/t]B, then the action a could never
be executed. In this case, we say that the action a is urgent, that is, the action
a must be executed immediately (before the tick is executed). Then only a is
executable. If @ is executed, then “0” is assigned! to the variable ¢ in the predicate
“2<t+3<3Azo=1t+ 3", which has already been aged by 3 units of time from
the initial predicate “2 < ¢t < 3 A zp = t” through the operation [t + 3/¢]. Since
xp = t + 3, the value of the variable z, is fixed to 3, and bt + 3 = 3 + 3|;stop is
obtained as the new state (behaviour expression). So b is executed after 3 units of
time are elapsed.

Next, we will give a formal definition of LOTOS/T. First, we will introduce the
notion of the predicate contexts and defined/undefined variables. In order to discuss
whether satisfiability of predicates are decidable, we must define which variables have
some fixed values and which ones are not. Consider a predicate “t = 2® — 723 4+ 4”.
If some value is assigned to z, satisfiability of the predicate is easy to decide for any
given values of t. However, if no values are assigned to z, for a given value of t,
a Sth-degree equation must be solved to decide satisfiability. So we need a formal
definition of whether or not a variable’s value is defined. We also need a notion of
predicate contexts because the definition of a defined /undefined variable depends on
where the variable occurs in a behaviour expression of LOTOS/T.

tlck [

1 Please note that assigning 0 to ¢ in the 3 units of time aged predicate “2 < t+3 < 3Azy = t+3”
is equivalent to assigning 3 to the variable ¢ in the initial predicate “2 <t <3 Azg =¢.” We only
have to check satisfiability of the predicate in a case of £ = 0, because behaviour expressions are

properly aged when ——]5(is added, in order to treat current time as O.

14

Definition 2.2 Predicate contexts are syntactically defined by the following BNF.
Here, E is the syntactical component representing a behaviour expression which is
used in Definition 2.1.
C = afe]; E|a[P(t,2)];C
| ClIE | E[IC | Cl[A]IE | E|[A]|C
| CIIIE| El||C| C||E | E||C
|C[>E|E>C|C>>F|E>>C.

For example, let us consider the behaviour expression B in Example 2.1. For this
behaviour expression B, the following two predicate contexts are possible:

C = ale]; b[t = zo + 3]; stop
C’' = a2 <t <3 Az =t];ble];stop

Here, “o” denotes a time constraint of the current action. In the context C, the
variable “zy” is undefined because the value of the variable “zy” is not fixed until a
is executed. However, in the context C’, the variable z; is defined because the value
of ¢ has been fixed before b is executed.

Formally, the defined/undefined variable are decided as follows. Here, DVar(C)

and UVar(C) denote the sets of defined /undefined variables for a predicate context
C, respectively.

Definition 2.3 For any predicate context C, DVar(C) C Var is defined recursively
as follows.
DVar(afe];E) ¥ ¢
DVar(a[P(t,2));C) % {y|yis an element of 2} U DVar(C)
DVar(CAE) ¥ DVar(C)
DVar(EAC) ¥ DVar(C)
(A AL 1AL [>,>>})

And UVar(C) ¥ Var — DVar(C). O

Hereafter, we define the set of predicates P(¢,Z) which can be used in the pred-
icate context C. We believe that the class of predicates Pres(C) defined in Defi-
nition 2.4 is reasonably wide, because time interval, whose bounds are expressed in
linear expressions, can be written and the executed time of any preceded actions are
referred to in the expressions.

Definition 2.4 A set of predicates allowed to use in the predicate context C, de-

noted as Pres(C), is defined as a minimum set which satisfies the following condi-
tions:

15

o ‘oo <t < e, ‘g <t"and “t < e,” are in Pres(C). Here, ¢ and e,
denote arbitrary terms consisting of only integers, the variables in DVar(C),
and operators + and —. If ¢; and e, are the same, then “¢; < t < ¢,” is
abbreviated to “t =e¢,”.

o if P € Pres(C) and z ¢ FVar(P) U DVar(C), then “P A (z = t)” is in
Pres(C).

o if P,,P, € Pres(C) and FVar(P1) N FVar(P;) N UVar(C) = 0, then both
“PyV P and “P; A Py” are in Pres(C).

e if P € Pres(C) and FVar(P)NUVar(C) =0, then “~P” is in Pres(C).
where F'Var(P) denotes a set of all free variables occurred in a predicate P. O

Note that the predicate P(t,z) may be described as P(t, Z4, Z,) if necessary, where
the 2nd parameter T, denotes a vector of the defined variables in z and the 3rd
parameter Z, denotes a vector of the undefined variables in Z under C.

Next, we will explain that Pres(C) defined in Definition 2.4 is restrictive in
spite of its expressive power, that is, satisfiability of a predicate in the class is still
decidable. For convenience, we refer to having such a desirable property as normal.

First of all, normal predicates are defined.

Definition 2.5 A predicate P(t,Z) is normal under a context C if P(t, Z) satisfies
the following conditions.

1. (decidability) For any n € N and 7, satisfiabilities of the two formulas
P(n,9,%,) and (FP)(n,v) ¥ 3'3z,[t' > n A P(t,5,%,)] are decidable.

2. (uniqueness of substitution) For any n € N and #, there exist unique values
¢ such that P(n,7,¢) holds if the formula 3%,P(n,7,Z,) is satisfiable. Also
such values ¢ are computable from n and v i.e. there exists a partial recursive
function ¢p(n,7) such that 3z,P(n, v, Z,) implies P(n, s, dp(n,v)).

Remark: Condition 1 is needed to make sure that we can construct the semantical
model of the expression mechanically. Condition 2 is needed to avoid ambiguity of
assigned value to be assigned to variables. a

We say a behaviour expression B is normal iff all predicates appeared in B are
normal under its contexts, i.e. for any C and P such that B = C'(P), P is normal
under C.

For the elements of Pres(C), the following property holds.

Proposition 2.1 For any context C, all the predicates in Pres(C) are normal.

16

Figure 2.1: The semantics of B and D

Proof. Since each predicate P in Pres(C) is described as a logical combination
of some integer linear inequalities, P and FP in Definition 2.5 are expres-
sions in Presburger Arithmetics [HU79]. Since it is known that satisfiability
of Presburger Arithmetics is decidable [HU79], satisfiabilities of P and FP
are also decidable. Therefore, Condition 1 in Definition 2.5 holds. Condi-
tion 2 also holds by the following observation. The minimum predicate which
contain undefined variables in Pres(C) is “P A (z = t).” Appearently Con-
dition 2 holds for this predicate. Suppose both P; and P, satisfy condition 2
and Py A P, € Pres(C). Since FVar(P,) N FVar(P,) N UVar(C) = @, there
are no common undefined variables in P; and P,. Thus, Condition 2 holds
for Py A P,. The case for P; V P, is similar. Moreover, if =P € Pres(C),
then FVar(P)NUVar(C) =0, i.e., P contains no undefined variables. Thus,
Condition 2 hold clearly for =P € Pres(C). O

Pres(C) is useful for describing normal predicates. If other class of 1st-order theory
is considered, the conditions in Definition 2.5 does not always hold.

Example 2.2 Under the predicate context “a[t = z]; b[e];stop”, “t =z2+2z+ 1A
y = 2t” satisfies the conditions 1 and 2 of Definition 2.5. However, “t = 22 +2z+1A
y > t” violates the condition 2, and “¢ = y® + 9y?2* + 2?7 (Diophantine polynomial)
violates both. a

Example 2.3 The following example is also possible. The LTS for D is shown in
Figure 2.1. In this example, time constraints between non-adjacent actions (the
actions a and c¢) are described.

D=aft=2Az=1t];(blzo <t <z + 1];c[ze <t <z + 2]; stop
[|d[t = zo + zo|; stop) 0

17

tic

cft > 2]; stop tic alt = 4]; stop(jb[t = 0); P
bycft+1> 2];stop. tick 9 it = 3]; stop
tic clt+1 > 2];stop tic
b;clt + 2 > 2]; stop tick

aft = 2];stop
clt + 2 > 2];stop tic

alt = 1];stop
tic
alt = 0]; stop

tick

Figure 2.2: The semantics of E and P

Example 2.4 Other examples are given below. The first one contains untimed
action sandwiched between time-constrained actions, and infinite interval for the
time constraint. The second one describes an infinite behaviour.

1. E =alz =t];b;c[t > = + 2]; stop
2. P =a[t = 5]; stop[|b[t = 1]; P
The corresponding LTS’s are shown in Figure 2.2. a

In LOTOS/T, untimed or infinite behaviours may be described (for example, the
processes E and P in Example 2.4).

2.2.2 Operational Semantics

In this section, we will give the formal semantics of LOTOS/T. The operational
semantics of LOTOS/T is an extension of LOTOS. The difference is the treatment
of transitions of the extra action tick. Here we define the operational semantics of
LOTOS/T by giving an inference system of the transition relation (see Tables 2.1
and 2.2).

Inaction

The behaviour expression stop is extended to express non-temporally deadlocked
process, which cannot do any other computations except the infinite sequence of

18

tick. The behaviour expression exit is extended to execute tick actions any times
before executing § action?.

Action Prefix

The behaviour expression a[P(¢,Z)]; B means that the action a can occur at time
n if P(n,¢) holds for some ¢. Because the predicate P is assumed to be normal,
satisfiability of P(n,Z) is decidable (from condition 1 of Definition 2.5), and the
value ¢ which satisfies P(n, €) is uniquely computable (from condition 2).

In order to express urgency, we define that the action tick cannot occur if the
action cannot happen in the future, i.e. FP(1) = 3t'3z[t' > 1 A P(¥, z)] does not
hold. Satisfiability of FP(1) is also decidable (from condition 1).

The semantics of the untimed action prefix, a; B, is the same as that of a[true]; B.

Internal Action

For the behaviour expression ¢; B, the internal action is considered always urgent, so
its execution is prior to tick action. The rest is similar to action prefix.

Choice

We define the choice operator be weak-choice[]MT90], so our choice operator is non-
persistent. For example, “aft = 1];stop” and “bt = 2];stop” are equivalent to
“tick; a; stop” and “tick; tick; b; stop”, respectively. However, “a[t = 1]; stop[|b[t =
2]; stop” is not equivalent to “tick; a; stop[]tick; tick; b; stop” because the choice is
occurred at time 0. It must be equivalent to “tick; (a;stop [] tick; b; stop)”. The
inference rules in Table 2.1 are introduced to construct the latter semantic model.

Parallel

Parallel operators (||, ||, |[A]|) always synchronize tick actions in LOTOS/T. Con-
sequently, the time constraint of interaction is the logical product of the time con-
straints of the actions in both processes.

ex.) In a;b[2 < t < 4];stop|[b]lc; b[3 < ¢t < 5]; stop, the time constraint of the
interaction b is 3 <t < 4.

Disable
The definition is similar to LOTOS except the tick action.

25 denotes a successful termination, which is the same as LOTOS [ISO89).

19

Table 2.1: The inference rules of transition relation: Part 1

Inaction
stop tick stop (2.1) exit - stop (2.2)
exit HK exit (2.3)
Action Prefix
P(0,3) FP(1)
— _ tick _
aP(t,5)]; B L B (2.9) o[P(t,2)}; B K a[p(t + 1,8)); [t + 1/4B
@B B (2.6) a; B % a;[t 4+ 1/t]B (2.7)
Internal Action
P(0,2) —P(0,z) FP(1)
EEE———) 1. 4, tick | -
iiP(t,) B <5 B (2.8) APEE) B = iP(t+ 1, 2) [t + 1/0B (2.9)
#B - B (2.10)
Choice
B £, B, i) — By .
— 1 iff B e Actu {6,i} ——= 2 i B e ActU{5,i}
BB, -2 B! Bi[B; 2> B)
(2.11) (2.12)
B Uk p p, Uk p
B;i{]|B2 tick B! (1B}, (2.13)
B, 9% p p, ek B, U py p, Uk
tick _, tick _,
B1{]|Bs — B (2.14) By[|B; — B (2.15)
Enable

Similar to LOTOS, except tick synchronizes unconditionally and enabling is prior

to the tick action.

Hide

Similar to LOTOS. In order to express uncertain delay of internal messages, we
define hidden internal actions are not executed as soon as they are enabled. Instead,
maximal progress property of actions are expressed by asap construct, which is
defined in the next subsection.

20

“As Soon As Possible” Execution

To describe maximal progress property of actions, we define a construct
“asap A in B,” representing the same behaviour B except the actions in A must
be executed as soon as possible they are enabled.

Process Invocation

A process invocation behaves exactly the same as the behaviour at time 0, no matter
when it is invoked.

2.2.3 Consistency of the inference system

It is very important to notice that our inference system, used for defining operational
semantics, are consistent. An inference system is called consistent if the existence
of a transition is never deduced from the non-existence of the transition itself. If an
inference system is inconsistent, the semantic model cannot exist. Unfortunately, our
inference system contains negative premises in some inference rules. So consistency
is not self-evident. However, our inference rules can be proved consistent by using
the stratification technique described in [Gro90].

2.2.4 Example of LTS construction

By applying the inference rules shown in this section, we can construct the corre-
sponding LTS as follows. Let us consider the process E in Figure 2.2.

e F =alt =x];b;c[t > x + 2];stop — b; c[t > 2];stop (by rule (2.4)),

o b;c[t > 2];stop tick b; clt + 1 > 2]; stop (by rule (2.5)),
and so on. _
For the process P in Figure 2.2, the following actions are possible:

o P UK o[t — 4]; stop[Jo[t = 0]; P (by rules (2.34), (2.13), (2.5)),

e aft = 4]; stop[|b[t = 0]; P tick a[t = 3]; stop (by rules (2.14) and (2.5)),
and so on.
Note that we regard two states as the same if satisfiability of the corresponding

predicates for each £ on 0 < ¢ < oo are equivalent. Forinstance, w.r.t. E in Figure 2.2,

a[t = z]; b; cft > = + 2|; stop tick alt +1 =z|;b;c[t +1 > = + 2|; stop holds by the

21

inference rules. Here, satisfiabilities of two predicates of the action a, t = z and
t+ 1 = z, are equivalent, i.e.

Vi0<t= Tzt =z| =2t + 1 = 2]] (2.35)

holds (Note that z in “¢ = z” and z in “¢ + 1 = z” have no longer the same value.
So we describe the latter formula as “t + 1 = 7).

Furthermore, for any value assignment of x and 2/, satisfying (2.35), into two
predicate two predicates of the action c,

Vo<t =[t'>z+2]=[t'+1>2" +2] (2.36)

holds.
To summarize the idea above, we can verify whether E and [t + 1/t]E are repre-
senting the same state by checking satisfiability of the following predicate:

th[O S tl = [Elx(tl = CII) = Hx'(tl +1= :c')] A
VeV [t =2)A (i +1=2") =
V[0 <to = [(t2 22 +2) = (ta+12> 2" +2)]]]] (2.37)
So we can state a[t = z];b;c[t > = + 2];stop tick a[t = z];b; c[t > z + 2];stop
(i.e. this node has a self loop of tick).
Aging (replacing ¢ with ¢ + 1) does not have an effect on process invocation,

since process name does not have the variable ¢ literally. For example, w.r.t. P in

Figure 2.2, P tick a[t = 4]; stopl]b[t = 0]; P - P holds by the inference rules. So

the corresponding LTS has a cycle, as shown in Figure 2.2.

2.3 Equivalence

2.3.1 Timed Bisimulation Equivalence

Definition 2.6 A relation R is timed strong bisimulation if the following condition
holds.

if ByRB, , then for any a € ActU {4, tick}, the following two conditions
hold:

1. if Bj — B!, then 3B}[B, — B), and B/RB))
2. if By % B), then 3B|[B; - B, and B|R B} O

Definition 2.7 The behaviour expressions B and B’ are timed strong bisimulation

equivalent, denoted by B ~; B’ iff there exists a timed strong bisimulation R such
that BRB'. O

22

Timed weak bisimulation equivalence (), where the internal action ¢ is consid-
ered unobservable, can also be defined similarly.

Example 2.5 The following two behaviour expressions are timed strong bisimula-
tion equivalent:

B=a[2<t<3Azo=1t;blt =20+ 3]; B
C = aft = 2];b[¢t = 5]; C[Ja[t = 3];b[t = 6];C

2.3.2 Untimed Bisimulation Equivalence

Here we introduce an untimed bistmulation equivalence where tick is considered un-
observable. Using this equivalence, we can prove whether two timed expressions
execute the same observable event sequences. Like timed bisimulation equivalence,
untimed bisimulation equivalence has two definitions, one is untimed strong bisim-
ulation equivalence, where only tick is considered unobservable, and the other is
untimed weak bisimulation equivalence, where both tick and i are considered unob-
servable.

Definition 2.8 For each action a € (ActU {6} —{tick})U {e}, the relation == over
behaviour expressions is defined as follows:

Bticky o, Mkyepr it o e ActU {6} — {tick)

. O
ptickyp ifa=e

B=%p ¥

Definition 2.9 A relation R is untimed strong bisimulation if the following condi-
tion holds:

if ByRB, , then for any a € (ActU {6} — {tick}) U {¢}, the following
conditions hold:

1. if By = B, then 3B}[B, = B} and B{RB}]
2. if By =% B}, then 3B![B; == B! and B|RB}] 0

Definition 2.10 The behaviour expressions B and B’ are untimed strong bisimu-
lation equivalent, denoted by B ~, B’, iff there exists a weak bisimulation R such
that BRB'.]

Untimed weak bisimulation equivalence, denoted by =2, can be defined similarly.

Proposition 2.2 The behaviour expressions which are timed strongfweak] bisimula-
tion equivalent are untimed strong[weak] bisimulation equivalent, respectively, 1.e.:

B~yB =B~ B
B~ B = B, B O

23

Proposition 2.3 ~, is not a congruence, i.e.:
3By, By[(By ~u By) A (B[] By %4 B||B2)]
Proof. Choose By = a[t = 0];stop, Bs = a[t = 2|;stop and B = b[t = 1];stop. O

Note that from Proposition 2.3, untimed bisimulation equivalence is hardly suitable
for axiomatic proof system.

Example 2.6 Let B and D denote the following expressions, respectively:

B =a[2<t<3Azo=t];b[t =z + 3|;stop
D = a[t = 2]; stop|||b[3 < t < 5];stop

Then, B and D are untimed strong bisimulation equivalent because

R={(t+k/t|B,t+1/t]D)I0 <k <3A0LI<L2}
U{([t+k =m+3];stop, b3 <t+1 < 5];stop)|]2<m<3A
k<m+3A3<1<5}
U {(stop, stop)}

is an untimed strong bisimulation which satisfies BRD. O
In the following Proposition, we mention the decidability of these equivalences.

Proposition 2.4 If the corresponding LTS’s of both B, and B, are finite, then all
the equivalences defined above are decidable.

Proof. Analogous to [KS90, SKTN90]. O

Note that the corresponding LTS of a behaviour expression is not always finite, but
if the LTS is finite, then equivalences are decidable from Proposition 2.4.

2.4 Example

Here we introduce a more practical example. The example shown in Figure 2.3
models a remote controller or something that has only one press button for input
and executes 4 output actions according to the timing patterns of pressing button.
The timing patterns are: |

e long click once,

e short click once,

24

ONE_KEY_CONTROLLER[p,r,1lc,sc,dc]
:= pltip=t];
(1c[tip+di<=t<=t1p+d4] ;r;ONE_KEY_CONTROLLER
[1 rlt<tip+di];

(plt<t1p+d2 and t2p=t];
(r[t<t2p+d3];dc{t2p+d3<=t<=t1p+d4] ; ONE_KEY_CONTROLLER
[1 slc[t2p+d3<=t<=t1p+d4];r;ONE_KEY_CONTROLLER)

(] scltip+d2<=t<=tip+d4];exit)

+ variables
tlp: time when the first press occurred.
t2p: time when the second press occurred.
+ constants
dl: threshold for the first short or long click
d2: timeout for the second click
d3: threshold for the second short or long click
d4: required maximum total delay between button press and result action

Figure 2.3: Timed specification of one-key controller

e double short click and
e short click followed by long click.

The second one is used for terminating, while others are continued to be accepted
infinitely. Pressing button is modeled by the sequence of the actions p (short for
‘press’) and r (short for ‘release’). The corresponding output actions are lc (short
for ‘long click’), sc (short for ‘short click’) and dc (short for ‘double click’) and
slc (short for ‘short and long click’). If d2+d3>d4, it may cause violation of time
constraint (temporal deadlock). And if d1>=d2, it may cause second click be lost.
So the sound implementation must satisfy d1<d2 and d2+d3<=d4.

This will be checked by constructing the LTS for some values to d1,d2,d3 and
d4 satisfying above. In the LTS, the temporally deadlocked state has no outgoing
arc including tick. Whether or not the behaviour has been modified because of the
time constraint is checked by verifying untimed bisimulation equivalence with the
untimed specification like Figure 2.4.

2.5 Conclusion

We have proposed a language LOTOS/T, a timed enhancement of Basic LOTOS.
LOTOS/T enables us to describe time constraints among actions in a flexible way
using formulas of 1st-order theory.

25

UNTIMED_ONE_KEY_CONTROLLER[p,r,1c,sc,dc]
:=p; (i;1lc;r;UNTIMED_ONE_KEY_CONTROLLER
(1 r;(p;(r;dc;UNTIMED_ONE_KEY_CONTROLLER
[li;slc;r;UNTIMED_ONE_KEY_CONTROLLER)
[1i;sc;exit)

Figure 2.4: Untimed specification of one-key controller

In order to construct the LTS from a given LOTOS/T expression mechanically,
we need a decision procedure for Presburger Arithmetics. We have developed the
decision procedure[HKT92] on a Sun SparcStation ELC. For the predicates given in
this chapter as examples, satisfiabilities of the predicates can be decided within one
second. For even more complex predicates such as the logical combinations of ten
integer linear inequalities, their satisfiabilities can be decided within a few seconds in
most cases. Therefore, LOTOS/T is enough powerful for practical purposes and suit-
able for mechanical proof method. We have developed LOTOS interpreter[YHMT92]
and a test system for LOTOS with data parameters[HBL*92]. Using these systems,
we can construct the LTS from a given LOTOS expression mechanically. Now we
have a plan to develop the decision procedure for proving the timed/untimed bisim-
ulation equivalences described in Section 2.3 by using the above tools.

We did not introduce timing-interaction operator defined in [BLT90]. The
strength of this is that locality of specification is preserved, as mentioned in [BLT90]
(but differs from Timed-Action LOTOS[BLT90] because urgency is still supported
- in ours). Urgency of interaction can still be expressed in LOTOS/T by hiding the
interaction from outside, but urgency of observable interaction cannot be expressed.
So expressive power of LOTOS/T is weaker than Timed-Interaction LOTOS and
Timed Petri Nets.

Untimed bisimulation equivalence is introduced in order to consider the two pro-
cesses, which behave the same but in different time constraints (e.g. in different
speed), be equivalent. Similar but more advanced investigations are made for CCS
in [MT91, AKH92)|.

26

Table 2.2: The inference rules

of transition relation: Part 2

Parallel
B2 B BB tick _, _ tick _,
5 iff Be AU {6} B1 — B} B2 — Bj
Bi|[A)| B2 — By |[4]| B, tick

(2.16)
B, -5 B,

B1|[A]|Bs = B!|[A]|B2

ifag AVa=1

(2.18)

B:|[0}|B. = B’
B.|10)|B, — B' iff @ € ActU {8, tick, i}

Bi1|[A]l|B2 — B |[A]|B; (2.17)
B: % B,

B1|[A]|B: = Bi|[A]| B}

ifag AVa=1

(2.19)

Bi|[Acl|B: — B' oy
——————— iff @ € ActU {4, tick, i}

B|||B: = B Bi||B: = B
(2.20) (2.21)
Disable
B
a B; — B!
Bi — B 2 iff B € ActU {6,4}
By[> By = B}[> B> (2.22) Bi\[> B; — B,
(2.23)
B> B, B, Yk g p, Yk p
3 -
Bi[> B2 -~ B, (2.29) B> B "X p > B (2.25)
Enable
By — B; B, i) B;
B >> By = B{ >> B> (2.26) B >> By - B, (2.27)
B, BN p pUkp p L,
By >> B, ¥ p 55 py
(2.28)
Hide
Bt B
iff B € (Act— A) U {6,i}
hide A in B -2 hide A in B' (2.29)
a 1] tick]
f B iffa €A B—B
hide A4 in B — hide A in B’ hide A in B 9K hide A in B’
(2.30) (2.31)
“As soon as possible” Execution
B-% B BUYK B BA, forallaca
. a . ? .
asap Ain B — asap A in B asapAinB‘i—lil»(a.sapAinB'
(2.32) (2.33)
Process Invocation
(e/z)B{d}/91,... 9} /ax} — B' o € ActU {tick, 6,4} and
1
Plg},... ., g,1(&) ., B Plg1,... ,91)(Z) := B is a definition
(2.34)

27

Chapter 3

A Symbolic Approach to the
Bisimulation Checking of
Real-Time System Specifications

3.1 Introduction

In this chapter, we propose a new model for timed processes, A-TSLTS, and give
a method for checking bisimilation equivalence between two A-TSLTS states sym-
bolically. A method for mapping LOTOS/T expressions into A-TSLTSs are also
presented.

This chapter is organized as follows. In Section 3.2, the model of timed processes,
A-TSLTS, is defined. In Section 3.3, timed bisimulation equivalence of states in an
A-TSLTS is defined. In Section 3.4, an algorithm is presented to construct the mgb
for two states in an A-TSLTS w.r.t. timed bisimulation equivalence. In Section 3.5,
untimed bisimulation equivalence of states in an A-TSLTS is defined and an exten-
sion of the algorithm to verify untimed bisimulation equivalence is presented. In
Section 3.6, we apply our verification method to the language LOTOS/T defined in
Chapter 2. Finally, in Section 3.7, we conclude this chapter.

3.2 A-TSLTS model

A TSLTS is an LTS where each state s has a set of parameter variables DVar(s),

.. a,P
and each transition is either an action transition, represented as s — s’ or a delay

el e(d),P
transition represented as s —= s'. a is an action name. d is a variable which stands

for a duration. For each delay transition s AP o , d & DVar(s) is assumed. Each

P is a transition condition. The transition condition P is a formula of a (decidable)

28

1st-order arithmetic on any (dense or discrete) time domain. P may contain any

variable in DVar(s) (s is a source state of the transition). In a delay transition
e(d . .
s D, s, P may also contain the variable d.
Intuitively, a delay transition s «aLp s’ represents a state-transition only by

delay. Its duration is d and d must satisfy P under a current assignment for the
parameter variables in DVar(s). The delay is possible up to the maximum value of
d’s which satisfy P. The delay over the maximum value of d is not allowed (time-
deadlock[MT90],urgency[BL92]). When the delay transition is completed, the actual
duration (which satisfies P) is assigned to the variable d. DVar(s') may contain the
variable d. So the value of d may be used in conditions of any succeeding transitions.

An action transition s <% s’ represents an execution of an action ¢ when P holds
under a current assignment for parameter variables in DVar(s). The execution
of an action is considered instantaneous, since we take interleaving semantics to
express concurrency[Wan91, Che92]. The state s may have multiple outgoing action
- transitions. In that case, one of executable action Eransitions is nondeterministically
chosen and then executed.

Example 3.1 We show an example of a TSLTS in Fig. 3.1. In Fig. 3.1, for conve-
nience, the names s, s3,... are assigned to states and #1,1,, ... for transitions. The
set associated with each state s; represents DVar(s;). a[P] (or e(d)[P]) associated
with each transition represents an action name a (or a delay with its duration of
d, respectively) with a transition condition P. When a value v is assigned to the
parameter variable z at state s;, the TSLTS in Fig. 3.1 behaves as follows. First,
x = v units of time have elapsed (the value v is assigned to d;,) and then the action
a is executed. Next, before 4 units of time have elapsed, the action b or c is executed.
The action b is executable when the duration is within 3 units of time. The action
c is executable when the duration is more than or equal to 2 units of time. In the
case c is executed, the TSLTS moves its state to s; and then repeats the behaviour
from the beginning. O

In the TSLTS model, it is possible that a sequence of multiple consecutive delay
transitions is equivalent to one delay transition. This fact makes it difficult to con-
sider bisimulation without concrete values (symbolic bisimulation[HL95]). Thus, in
order not to execute two consecutive delay transitions, we restrict a TSLTS so that
its states fall into two categories of states, idle states and active states. Each idle
state has only a delay transition as an outgoing transition and the destination is an
active state. An active state has only action transitions as outgoing transitions and
all the destinations are idle states. We call this restricted TSLTS as an Alternating
TSLTS (A-TSLTS). The notion of A-TSLTS is inspired by [Han91].

In the rest of this chapter, we assume that each TSLTS is a finite A-TSLTS, and
it is time-deterministic, i.e., every state has at most one outgoing delay transition.

29

5 81, {.’E}

l1, e(dtl)[dtl = 3.'5]
& 52, {dt1 3 .’E}

ty, aftrue]

5 53, {dtpm}

i3, e(dta)[dis < 4]
S4, {dtu z, dt;;
t47b[dt3 S 3]
S5, {}

0

t5, C[dt3 > 2]

Figure 3.1: An example of TSLTS

Tirhe-determinacy is a reasonable assumption when we consider processes of real-
world. Many other studies also assume time-determinacy[MT90, Wan91, Che92].

Example 3.2 The TSLTS of Example 3.1 is an A-TSLTS because a division into
{s1,53,55} (idle states) and {ss,s4} (active states) is possible. It is also time-
deterministic.

3.3 Timed Bisimulation Equivalence — case for
arbitrary time domain

In this section, we define timed bisimulation equivalence for A-TSLTSs. The defi-
nition here is different from that of Section 2.3, because we consider arbitrary time
domains. Before all, we need some preliminary definitions.

Definition 3.1 o We denote assignments of values to variables by p, ¢/,

e For a predicate P and an assignment p, we denote p = P iff P is true under
an assignment p.

e We denote p[z = e] the same assignment as p except that the value of the
expression e is assigned to the variable z.

e We denote a tuple (s, p) of a state s in a TSLTS and an assignment p, as p(s).
p(s) stands for a state with some parameter values(not variables) associated
with s. We call it an instance of s w.r.t. p.]

The actual moves of a TSLTS are formally defined by considering the correspond-
ing (traditional) LTS, whose states are all instances of TSLTS states, and whose
transitions are labelled by either an action name or a concrete value of a duration.

30

Definition 3.2 For a TSLTS M, its corresponding semantic LTS M’ is defined as
follows:

e The set of states in M’ is the set of all instances of M, i.e.
{p(s)|p:an assignment, s:a state of M}.

e Each transition in M’ is labelled by either an action name a of M, or any
non-negative time value .

e For each transition s 25 ' in M and each assignment p, M’ has a transition
p(s) — p(s) iff p = P.

.. e(d),P . . .
e For each transition s —5 s’ in M, each assignment p, and any non-negative

time value t, M’ has a transition p(s) — pld = t](s') iff p[d = #] = Id'[d <
d' AN P{d'/d}] (P{d'/d} denotes P whose any occurrence of a free variable d is
replaced by d'). Moreover, for any non-negative time value # which satisfies

t' <'t, M’ has a transition p[d = ¢'](s") LA pld = t](s'). O

Remark: Note that the semantic LTS defined above may not be alternating even if
the corresponding TSLTS is alternating. It may contain consecutive delay transitions
associated with concrete time values which satisfy time associativity, that is, s 2 AN
$1 L2, sy implies s atl o, (the fourth condition in Definition 3.2 ensures this
property). It may also contain infinite delay transitions.

The method for modeling real-time processes by considering a delay transition
with an associated time value is similar to [Wan91, HLW91, Che92].

For a given TSLTS, timed bisimulation equivalence of its two instances of states
is defined by considering a traditional bisimulation equivalence on its semantic LTS.

Definition 3.3 A timed bisimulation relation R is a binary relation on a set of
instances of TSLTS states {p(s)|s:a TSLTS state, p:an assignment}, which satisfies
all of the following conditions:

o If (pi(si), pj(s;)) € R, then all of the following conditions hold:

— For any time value ¢, if p;(s;) — pi(s}), then there exist some s} and g
such that p;(s;) SN p;(s;) and (p;(s;), pi(s})) € R,

— For any action name a in the TSLTS, if p;(s;) — pi(s), then there exist
some s} and pj; such that p;(s;) —— p}(s}) and (pi(s}), 0j(s})) € R.

e R is a symmetric relation.

31

If there exists some timed bisimulation relation R such that (p;(s;),p;(s;)) € R,
the two instances p;(s;) and p;(s;) are called timed bisimulation equivalent, which is
denoted by p;(s;) ~¢ p;(s;). Especially, if p(s;) ~: p(s;), then the two states s; and
s; are called timed bisimulation equivalent w.r.t. an assignment p. ’ O

Remark: The definition of timed bisimulation above is equivalent to the tradi-
tional definition of bisimulation, because of the condition that R must be symmetric
relation. We use this alternative definition in order to make the definition more
compact.

3.4 Verification of Timed Bisimulation Equiva-
lence

For any state-pair (s;,s,) in an A-TSLTS, we call the weakest condition P such that
if p = P then s; and s; are timed bisimulation equivalent w.r.t. p, as the mgb of
(84, 55). If we can obtain the mgb P for any state-pair (s;, s;), then the verification
of timed bisimulation equivalence of p(s;) and p(s;) is reduced to the verification to
check whether p = P.

To keep track of the correspondences between variables during matching, it is
useful to replace some different variables of two states with some common name,
standing for their matched common value which equates the two states. In order to
do so, we consider the mgb for a pair of terms instead of states in A-TSLTS. This
is similar to [HL95]. A term is a tuple of a state and a substitution. A substitution
is a mapping from variables to variables. We denote a term (s,0) as so, where s is
a state of A-TSLTS and o is a substitution. We also denote a substitution which
maps the variable d to d' as [d — d']. If ¢ is an identity substitution, we abbreviate
so to s and we do not distinguish between the term so and the state s. Note that if
the set of variables is a finite set, then the set of all possible substitutions are finite.
A transition between terms is defined as so ““%" ¢o (so 202 g o) iff s D g
(s LA respectively) in an A-TSLTS. We denote the mgb of a term-pair (s;, s;) as
mgb(si, s;). If the A-TSLTS has only finite states and finite variables, mgb(s;, s;) is
obtained by the algorithm in Fig. 3.2.

Note that the algorithm in Fig. 3.2 is just a fragment of [HL95]. Only the differ-
ence is that we consider delay transitions instead of input transitions. The topology
of the semantic LTS of an A-TSLTS is quite different from that of symbolic transi-
tion graph in [HL95]: infinite concrete delay transitions are sequentially connected
in timed case, while infinite concrete data transitions are branching from the same
state in data case. However, to check bisimulation, we are only interested in (1).
what amount of delay/data transitions are possible, and (2). whether the branch-
ing structures are equivalent after the transitions of the same amount of delay/data

32

mgb(si, s;) def mgbl(s;, s;,0)
mgbl(s;,s;, W) & if (s, s;) € W then return true
else if (s;,s;) is a pair of idle states,
then return match_delay(s;, s;, W)
else if (s;, s;) is a pair of active states,
then return match_action(s;, s;, W)
else return false

match_delay(s;, s;, W) & if 5 el sy and s; () Fi s,
then let {d = new(DVar(s;) U DVar(s;)),
My jo = mgbl(sy[di — d], sj[d; — d], W U {(s;,5;)})} in
return Vd[Pz{d/dz} = [ljj{d/d]} A Mil,jl]]
AVd[Pi{d/d;} = [P{d/d;} A My y]]
e(d;), P; e(d;),P;
elseif s; #/— ands; #— then return true else return false
match_action(s;, s;, W) 4 return Nacaa{imatch_actionl(a, s;, s;, W)}
match_actionl(a, s;, sj, W) & Jet {K = {k|s: Y si}, L= {ls; o9 si}
My = mgbl(s;,, s;, WU {(si,s;)})} in
return Apeg {Pr = Vier {Qi A M} In
Ner{Qu = Vier{Ps A My} }

where, for a set V' of variables, new(V') denotes a function which returns
an appropriate new variable x such that © ¢ V. Moreover, s;[d; — d]
represents that every occurrence of the variable d; in the transition condi-
tions of any s;’s outgoing transitions and further succeeding transitions,
is replaced by d.

Figure 3.2: The algorithm to calculate mgb(s;, s;).

transitions. These are not dependent on the topology of the semantic LTS. There-
fore, we can simply reduce the problem to [HL95]. ! In the following, we explain the
algorithm just for readers’ convenience.

1To be exact, in contrast to A-TSLTS, the Hennessy-Lin’s model, symbolic transition
graph[HL95] cannot have an input transition whose possible range of input values is limited by
its transition condition. However, without any problems, their result can be easily extended to the
model which have an input transition which has a limited range of input values. This is because
the form of the mgb is like “Vz[P = (Q A ...)]AVz[Q = (P A...)]” and whether the input
variable z has a range limitation is expressed by whether the transition conditions P and Q have
@’s as free variables. To make P and Q have z as free variables does not affect the fact that the
entire expression is the mgb. Therefore, their result is extended and our problem is reduced to the
extended result.

33

The function mgb(s;, s;) takes two arguments s; and s;, any two states in an
A-TSLTS, and returns the mgb for (s;, s;). The function mgbl(s;, s;, W) takes three
arguments s;, s; and a set W of state-pairs. W is a set of already visited pairs,
introduced to make sure the algorithm eventually terminates. For (s;,s;) € W,
it simply returns true. Otherwise, it returns match_delay(s;,s;, W) if (s;,s;) is a
pair of idle states, or match_action(s;,s;, W) if (s;,s;) is a pair of active states.
match_delay(si, sj, W) (match_action(s;, s;, W)) is a function which recursively cal-
culates the mgb for (s;, s;), where we assume (s;, s;) is a pair of idle (active, respec-
tively) states.

The function match_delay(s;, s;, W) calculates the mgb for two idle states s; and
s; as follows. Firstly, from the definition of A-TSLTS and time-determinacy,
delay transitions from s, and s; correspond to one-to-one, including duration val-
ues. So we unify the delay variables in the two transitions into one. We intro-
duce a new variable d representing the common duration of delay. We choose
d = new(DVar(s;) U DVar(s;)). W.r.t. a given assignment p, if s; and s; are
timed bisimulation equivalent, and if any delay transition of duration v from s;
is possible, then there must exist a delay transition of the same duration v from
sj, and the destinations s, and s, must be timed bisimulation equivalent w.r.t.

s; and s;

j
pld = v]. For example, if s; () dise !)y <v sj, then Vd[d < z =
[d < y A (the mgb for (sj[d; — d], s}[d; — d]))] holds. Here, in general, the mgb for
(s}, 8;) contains the variables d; or d;. To preserve the information that d; and d; are
equal, we consider the mgb for (si[d; — d], s}[d; — d]) instead. In general, the mgb
for (si[d; — d], s}[d; — d]) contains the variable d as a free variable. It represents
the mgb for (s}, s7) in the case d; = d; = d is assumed.

The above discussion must apply when s; and s; are exchanged. Therefore, p
must satisfy the following condition if s; and s; are timed bisimulation equivalent

w.r.t. p.

Vd[P{d/d;} = [Pi{d/d;} A My y]) AVA[P{d/d;} = [P{d/d;} A My ;]
(3.1)

where My j = mgb(si[d; — d], sj[d; — d]). On the other hand, if s; and s; are not
timed bisimulation equivalent w.r.t. p, then, for example, a delay transition of some
duration v' is possible from s;, which is impossible on s;, or otherwise s} and s} are not
equivalent w.r.t. p[d = v"] for some value v”. In any case, Expression (3.1) does not
hold. Therefore, Expression (3.1) is the weakest condition such that p must satisfy
in order to make p(s;) and p(s;) be timed bisimulation equivalent, i.e., the mgb
for (si,s;). The function match_delay(s;, s;, W) calculates My j = mgbl(s[d; —
d], sj[d; — d], WU{(si, s;)}) recursively (where (s;, s;) is treated as an already visited
pair) and then returns Expression (3.1) as the mgb for (s;, s;).

The function match_action(s;, s;, W) returns the mgb for active states s; and s;,

34

which is calculated as follows. Firstly, if s; and s; are timed bisimulation equivalent
w.r.t. an assignment p, for any action a in a set Act of all actions, the following

condition holds. For any possible transition s; L s;, whose transition condition Py

satisfies p |= P, if the action a is executable, there must exist some transition 5; o9
sj, whose transition condition @Q; also satisfies p |= Q; and the destinations s;, and 55,
must be timed bisimulation equivalent w.r.t. p (p must satisfy the mgb for (s;,, s;,))-
The above discussion must be true when s; and s; are exchanged. Therefore, when

we let K = {k|s; 225 si b, L ={l|s; 29 s; } and My ; = mgb(s;,, s;,), p must satisfy
A AP = V{QuA M 3h A A{Qi= \ {Pi A Mg} (3:2)

keK lel leL keK

A conjunction of Expression (3.2) over all actions a € Act is a condition that p must
satisfy if s; and s; are timed bisimulation equivalent for any action w.r.t. p. On the
other hand, if p does not make s; and s; be timed bisimulation equivalent, there

. . a P, .
must exist some action a’ such that, for example, s;, — s;_is executable and for

4
. a',Q,
any [, either s; =9 8; 1s not executable or s;, and sj are not timed bisimulation

equivalent w.r.t. p. In any case, Expression (3.2) does not hold. Therefore, a con-
junction of Expression (3.2) over all actions a € Act is the weakest condition that p
must satisfy to make s; and s; be timed bisimulation equivalent w.r.t. p, i.e. the mgb
for (si, s;). The function match_actionl(a, s;, s;, W) calculates each M;, ; recursively
(with (s;, s;) as an already visited pair), and then returns Expression (3.2). The func-
tion match_action(s;, s;, W) composes a conjunction of match_actionl(a, s;,s;, W)
over all a € Act and returns it as the mgb for (s;, s;).

The algorithm mgb(s;, s;) terminates if the considered A-TSLTS has only a finite
number of states and variables (thus it has only a finite number of pair of terms).

Formally, we obtain the correctness result by the following theorem.

Theorem 3.1 p(s;) ~; p(s;) if and only if p |= mgb(s;, s;). O

The complexity of our algorithm is estimated as follows. Our algorithm termi-
nates when all pairs of terms in A-TSLTS are visited. Let n;, n, and n, be the
number of terms, variables and states of A-TSLTS. Then n; = ns X n,™ holds be-
cause the number of all substitutions over variables are n,™. So the number of all
pairs of terms are n,2 = n,? X n,?™. Therefore we obtain the following theorem:

Theorem 3.2 The time complexity of mgb(s;, s;) is O(n2 x 2¢mvlogny), O

Example 3.3 For a pair (s1, s3) of the A-TSLTS in Fig. 3.3, mgb(s1, s3) is obtained
as follows.

mgb(sl, 5‘3) e le[dl =r = {dl =¥y A M24”
/\le[dl =Y = [dl =z A M24]]

35

si{z} s3{y}
e(dtl)[dtl

e(dss)[de, = 1]

54{3/, dts}
b[cl,g3 <1V2<dy, §3]

o 55{}

Figure 3.3: An example of A-TSLTS

b[d,, < 3] blds, <
32{'737 dt1}

where,

Myy = mgbl(ss|dy, — di], saldi, — di], {(s1,83)})
= [di <3=[d <2AM;
V(di <1V2<d; <3)AMis)|A
[di <2=[d; <3 A M)A
[(di <1Vv2<d <3)=[d; <3A My,
Mz = mgbl(sy,ss, {(s1,3), (52,54)}),
Mis = mgbl(sy,ss, {(s1,3), (52,84)}) = false.

Since mgbl(sy, s3, {(s1, $3), (52, 54)}) = true, the mgb after simplification is
mgb(sy,s3) = [z =y|A[1<z<2vz>3]|. ' O

Remark: In the mgb, all duration variables are universally quantified, that is, they
do not appear as free variables but as bound variables. In this example, they can be
eliminated by simplifying the mgb by hand.

3.5 Untimed Bisimulation Equivalence and its
Verification

For verification of time-constrained systems, it is also useful to verify whether its
possible action sequences and their executability are changed when timing of each
action is modified. Thus, in this section we extend the result of the previous section
to the verification of untimed bisimulation equivalence, a bisimulation equivalence
where the timing does not have to be exactly equal.

At first, we define untimed bisimulation equivalence precisely.

36

Definition 3.4 An untimed bisimulation relation R is a binary relation on a set of
instances of TSLTS states {p(s)|s:a TSLTS state, p:an assignment}, which satisfies
the following conditions:

e R is a symmetric relation, and

o if (pi(si), pj(s;)) € R, then all of the following conditions hold:

— For any time value t, if p;(s;) —— pi(s}), then there exist some 83, py and
some time value ¢’ such that p;(s;) AN p;(s;) and (pi(s}), pi(s})) € R,

— For any action name a in the TSLTS, if p;(s;) == p.(s}), then there exist
some s} and pj such that p;(s;) == p(s}) and (pj(s}), pj(s;)) € R. Here
a def i a in .
= ——— for some time values #; and t,.
If there exists some untimed bisimulation equivalence R such that (p;(s;), p;(s;)) € R,
the two instances p;(s;) and p;(s;) are called untimed bisimulation equivalent, which
is denoted by p;(s;) ~u p;(s;). O

The result of the previous section can be extended to untimed bisimulation
equivalence. To do this, we have only to modify functions match_delay() and
match_action() to make durations not necessarily be equal when we match delay
transitions.

The mgb of idle states is easily expressed by the following formula:

Vd[P{d/d;} = 3d'[P{d'/d;} A My j)| ANd'[P{d'/d;} = Fd[Pi{d/d;} A My ;]|

where M ; is the mgb of the next pair of active states.

On the other hand, in order to consider the mgb of the active states for untimed
bisimulation equivalence, we must solve the following problem. For the timed bisim-
ulation equivalence, we have only to consider the executable actions at the specified
time instant (for example, the action a is executable at time 2, the action b is ex-
ecutable at time 3, ...). However, it is not the case for the untimed bisimulation
equivalence. Consider the two A-TSLTSs in Fig. 3.4. If we consider the executability
of actions at time d only, the states s; and s3 should be untimed equivalent, because
for duration d; = 2 after which only a is executable, there exists a duration dy = 3
after which only a is also executable, and vice versa. However, for the above ex-
ample, s; and s3 are not untimed equivalent in the sense of Definition 3.4, because
after the delay of 2.5 units of time, s; is in the state such that only b is executable
(after more 0.5 units of time elapsed), whereas s3 is in the state such that only a is
executable. So, instead of the executability at the given time instant, we consider
the executability at some time after the given time instant. For the above example,
when the system is at state s; and 2 units of time have elapsed, a is executable

37

S

e(d1)[d1 < 3]

Figure 3.4: Example of A-TSLTS where s; and s3 are not untimed bisimulation
equivalent.

pldr = 0](s1)

pldr = 2](s1)

pldy = 0](s1)

pld1 = 2](s1)

d1 = 3](s1)

[d1 = 3](s1)

(a) (b)

Figure 3.5: Illustration of (a) timed semantics and (b) untimed semantics of Fig. 3.4-

(A).

now and b is executable after more 3 — 2 = 1 unit of time elapses. In this case,
51 is in the state such that both a and b are executable at some time in the future
(see Fig. 3.5-(b)). In general, when d units of time have elapsed and a is executable
after more d’ — d units of time elapse, i.e., d’ satisfies both d < d’ and the transition
condition of a, @ is executable at some time in the future.

Because of the reasons above, we must loose the executability condition of actions
in order to define the mgb of the untimed bisimulation equivalence. So we define that
for a given duration d, an action is executable if and only if there exists some duration
d' such that d < d' and d’ satisfies the transition condition of the action. Note that
d’, as well as d, must also satisfy the transition condition of the delay transition.
Formally, let P denote the transition condition of an action a. Then we say that the
action a is untimedly executable after duration d, if and only if 3d'[d < d' A P{d'/d}].
We refer to the condition as the untimed transition condition. Since we frequently
consider the predicate of the form 3d'[d < d' A P{d’'/d}] w.r.t. P and the variable
d, we abbreviate it as F;P. Note that if the transition condition of the most recent
delay transition is D, then d ranges over the solutions of D. However, F;P may have

a solution d’ which does not satisfy D, which is incorrect. (Consider the untimed

.. .. . e(d),d<2 b,d=3 .
transition condition of b in the sequence s (@)ds S1 = $s.) In this case, the

38

untimed transition condition becomes F3{P A D}.

Using the untimed transition conditions, the mgb of the active states (s;,s;)
for untimed case is given as follows. Firstly, if s; and s; are untimed bisimulation
equivalent w.r.t. an assignment p, for any action a in a set Act of all actions, the

following condition holds. Suppose that the most recent delay transitions of s; and

e(d:), D; e(d;),D; .
sj are s;; —— s;lor some s;y, and s;, —=" s; for some s;,, respectively. Note that

the delay variable d; (d;) ranges over solutions of the predicate D; (D;, respectively).

. e P . . "
For any possible transition s; 2% s; whose untimed transition condition Fu.lPe A

D;] satisfies p |= Fy,[Pr A D;], if the action a is untimedly executable, there must

. .. a,Q . el .,
exist some transition s; - sj, whose untimed transition condition Fa [Q: A Dj]

also satisfies p |= Fy,[Q1 A D;] and the destinations s;, and s; must be untimed
bisimulation equivalent w.r.t. p[d; — dj,d; — d}] (p[di — d},d; — dj}] must satisfy
the mgb for (s, s;,)). Here p[d; — di,d; — d}] denotes the same assignment as p
except the names of variables d; and d; are replaced with d; and d;, respectively.
Note that since it is assumed that a is untimedly executed, the executed time of a
at the state s; is not d; but d;. So the destinations s;, and sj, can be reached with
the values of not d; and d; but d; and dj. That is why s;, and s;, must be untimed
equivalent w.r.t. p[d; — dj,d; — d;]. The above discussions must be true when s;
and s; are exchanged. Therefore, similar to the timed case, we obtain the mgb of
active states s; and s; for untimed bisimulation equivalence as:

Niex{Fa; [P A Di = Vi, {F4;[Qi A Dj A My} }
A NeedF4; (@A Dj = Vier {Fa,[Pe A Di A My]}]}

where, K = {k|s; L si by L ={l]s, &9 si} Miy = mgb(si,, 55,), Si e(di). i s; for
e(d;),D;

some s;,, and sj, s; for some sj,.
In summary, the mgb for untimed bisimulation equivalence can be obtained by
modifying a part of the algorithm in Section 3.4 as Fig. 3.6.

Example 3.4 Consider the two A-TSLTSs in Fig 3.4. The mgb of (s, s3) for the
untimed bisimulation equivalence can be obtained as follows:

mgb(sl, .5‘3) = le[dl S 3= E|d2[d2 S 3A M24]] N Vdg[dg S 3= Eld1 [d1 S 3A M24]],

where,

My = 3dj[di <diAd, <3Ad, =2=3d)[dy < dyAd), <3Ad, =3 A My
Adyldy < dyAdy <3Ady=3= 3di[dy < d\Ady <3Ny =2 A My
Adi[dy < djAdy <3Ad, =3= 3dy[dy < dyAdy <3Ady, =2 A My
Adyldy < dyAdy <3 Ady=2= 3di[dy < dyAdy <3N =3 A My,

My = true.

39

. d;),P; d;),Pj
match_delay(s;, sj, W) & if 5, (i), P sy and s; i)y St

then let d = new(DVar(s;) U DVar(s;)),
d' = new(DVar(s;) UDVar(s;) U {d}),
My j = match_action(sy[d; — d), sp[d; — d'], W U {(ss,s;)}
d, P{d/d;},d', P;{d'/d;}) in
return Vd[Pi{d/d;} = 3d'[P;{d'/d;} A My ;]|
AV P{d'[d;} = 3d[P{d/d;} A My 7]]
e(d;),P; e(d;),P;
else if s; #— and s; #— then return true else return false
match_action(s;, s;, W, d;, D;, d;, D;) o
return A,caq{match_actionl(a, s;, sj, W, d;, D;,d;, D;)}
match_actionl(a, s;, s;, W, d;, D;, d;, D;) def
let {K = {k|s; 25 5.}, L= {l|s; 2% 5,,},
My = mgbl(s;,, s;,, WU {(si,s;)})} in
return Apeg{Fa [P A Di = Viet{F4;[@Q1 A Dj A My]}]}
ANier{F4;[Qu A Dj = Vier{Fa [P A Di A Mi]}]}

where F,P % 30'[d < &' A P{d'/d}).

3

Figure 3.6: Definition of match_delay() and match_action() for untimed bisimulation
equivalence

After simplifying the above formula, we obtain My = (d; < 2Ady < 2)V (d; >
3 Ad; > 3). So we get mgb(sy,s3) = false, that is, s; and s3 are not untimed
bisimulation equivalent. O

3.6 Mapping LOTOS/T into A-TSLTS

In Chapter 2, a structured operational semantics of LOTOS/T expressions on a dis-
crete (integer) time domain is defined. Our intention is to define another structured
operational semantics of LOTOS/T which maps a LOTOS/T expression to an A-
TSLTS. In the latter semantics, it does not matter which time domain we choose.
To achieve this, firstly we define each state of the obtained A-TSLTS corresponds
to an expression of LOTOS/T with a mark ‘I’ or ‘a’, indicating which category of
states (idle or active) the state itself resides now. Secondly, for each idle state (B, i),
where B is a LOTOS/T expression, we define an idle transition starting with (B, 1)
by inference rules. Finally, for each active state (B, a), we define an active transition
starting with (B, a), and a complete inference system which derives A-TSLTS’s from
LOTOS/T expressions is given. Please note that we simply define DVar((B, 1)) (or

40

DVar((B,a))) as DVar(B), where DVar(B) represents the set of all defined (free)
variables in B. Informally, a defined variable means the variable whose value has
been already determined by previous execution of actions. For example, w.r.t. the
behaviour expression a[z = ¢]; b[t < z + 3]; stop, the variable in the subexpression
bit < z + 3];stop is a defined variable because the executed time of a has been
assigned to z. On the other hand, z in af[z = t];b[t < z + 3]; stop is not a defined
variable, since the value of the variable = has not been assigned at this moment. The
formal definition of defined variables appears in [NHT94]. In the rest of the chapter,
we assume DVar(B) is a set of defined variables of the subexpression B w.r.t. the
entire behaviour expression. Since it is always obvious which expression we assume
as the entire behaviour expression (we always assume it is the behaviour expression

of the initial state), we simply refer to the defined variables of the expression B as
DVar(B).

3.6.1 Delay Transitions of LOTOS/T

Basically, a delay transition from an idle state (B, %) is defined as follows.

e A new delay variable d, which is not used by the behaviour expression B, is
introduced to represent the duration of the delay transition.

e The transition condition is defined so that it exactly expresses the possible
range of delay of the behaviour expression B.

e The destination state (B’ a) of the transition is defined so that it represents
the behaviour after d units of time has elapsed. The behaviour expression B’
may contain the variable d because the following behaviour might depend on
how much time elapsed on this delay transition.

For example, consider a behaviour expression B = a[2 < t < 3 Azo = t];b[t =
Ty + 3]; c[t = o + 4];stop. From the definition of LOTOS/T, up to 3 units of time
of delay are possible from the idle state (B,3). A delay variable d is introduced
to represent the duration. Then, the transition condition of the outgoing delay
transition of (B,) is defined as ‘d < 3". To consider the state where d units of time
have elapsed, every occurrence of ¢ in B is replaced with (¢+d). This is the extension
of [NHT94]. So, the delay transition from (B, %) can be defined as

(B,i) ‘25 (2 < (t+d) <3Azo=(t+d)];b[(t +d) = 70 + 3];
c[(t + d) = zp + 4]; stop, a).

The condition such as d < 3 is easily obtained from [2 < ¢ < 3Ax, = t]the transition
condition of a. In this case, 3d'Ixo[d < d' A [2 < d' < 3 Az = d']] is equivalent
to d < 3. In general, if B = a[P(t,z)]; B, then the delay transition from (B, 1) is

defined as (B, i) “P?**UL @A Bris 1 gy /1), a).

41

3.6.2 Action Transitions of LOTOS/T

From the previous section, each active state (B, a), which is reachable from any
idle state by a delay transition, represent the behaviour where d units of time have
elapsed. So, similar to [NHT94], the transition condition is defined as the condition
whether the first action is executable at time 0. The transition condition may contain
some undefined variable to which the executed time of the action will be assigned.

Since the action is considered instantaneous, we do not have to consider delay in
action transition. So the destination behaviour is obtained similarly to LOTOS.

For example, for the behaviour expression

B"=al2< (t+d) <3Az=(t+d)];b[(t + d) =z + 3|; ¢[(t + d) = = + 4]; stop,
the action transition
(B, a) @2<(0+d)S3pe=(044) Blt+d)=z+3];c[(t+d) =z + 4] ; stop, 7)

is defined. Note that since [2 < (04 d) < 3A z = (0 + d)] holds after a is executed,
the value of z is equal to the duration d in the succeeding behaviour.

When a process is defined recursively such as P(z) :=a[t <z +3 Ay =1¢];b[t <
y A z = 1|; P(z), the states (P(z),i) and (P(2),4) are essentially the same state if
z = z. However, because the names of the variables are different, the two states
are treated differently in the symbolic semantics. To unify the two states above,
we replace these variables with the minimum one of all possible new variables (we
assume some total order is defined on variables). This is similar to [JP89].

For example, assume that the set of variables is {z,v, 2,d,d’'} and that a total
order of the variables is defined as x < y < z < d < d'. For the above example P(x),
the corresponding A-TSLTS is obtained as follows.

(P(x),4) “PI57° (a[(t+d) < 2+3Ay = (t+d)];b[(t+d) < yAz = (t+d)]; P(2), a)

(alt+d) <z +3Ay=(t+db(E+d) <yAz=(t+d)];P(z),a)
HOTDSZERTOD bl 4 d) < y Az = (2 + d)]; P(2),)

The undefined variable y is replaced with y itself. Since the defined variable z is also
contained in the condition, the minimum new variable is y.

[t +d) <yAz=(t+d)]; P(y),q)
LIS Bt +d+d) <yAz=(t+d+d)]; P(2),0)
Gt +d+d) <yrz=(t+d+d));P(z),a) THOILEOTHE by)

The undefined variable z is replaced with the minimum new variable z. Because
of the replacement, the obtained A-TSLTS has a loop, which corresponds to the
recursion.

42

3.6.3 Nondeterministic Choice and Parallel Execution

For all compositional operators of LOTOS/T, delay and action transitions are also
defined. Although we only describe how the transitions of choice and parallel con-
structs are defined, the other cases are similar.

For choice constructs B;[|B,, time passing is allowed if and only if it is allowed
by either B, or B, (non-persistent choice). This means that time may elapse until
reaching the deadline of the first action of either B; or By. ? So, in general, the
delay transition can be defined as

e(d) P] vP;

(Bl[]B277') (Bi[]Bé7a)>

e(d) Py e(d) P

if (B1,7) —> (B{,a) and (B,,1) —>
similar to LOTOS.
For example, if B) = a[t < 2J; stop and B, = b[t < 3]; stop, then

(Bj,a). The action transitions are defined

(Bi[1B2, 1) “V=5"= (o[t + d) < 2J; stop[lb[(t + d) < 3]; stop, a),
(al(t + d) < 2J; stop[Jb[(t + d) < 3]; stop, a) “EI=* (stop, i),

) b,(0+4)<3

(a[(t + d) < 2];stop[]b[(t + d) < 3];stop,a (stop, 7).

For parallel constructs B |[G]| Bz, time of both B; and B, synchronizes each other
in our semantics. In this case, the delay transition from (B;|[G]|By, 1) is defined as

e(d) PiAP,

(B1l[G]| B, 7) (B1l[G1| By, a),

e(d) P e(d) P,

where (By,1) —> (Bj},a) and (B,,i) —" (Bj,a). The case of synchronized action
transition (the case where the action a is in G) is similar. That is, the transition
condition is a logical product of the transition condition of each component. The
case of interleaving action transition is similar to LOTOS.

3.7 Conclusions

In this chapter, we proposed a model A-TSLTS which can describe timed processes,
and a verification method of timed verification equivalence for an A-TSLTS using a
method similar to [HL95].

®Note that if we use persistent choice semantics instead, we have only to modify the guard
predicate of the delay transition from P, V P> to Py A P, (i.e., time passing is allowed as long as it
is allowed both B; and Bs).

43

In contrast to other proposals for timed processes, our model allows arbitrary
decidable 1st-order logic on any time domain for describing time constraints. In the
model we can describe time constraints in a very flexible manner and still we can
verify timed bisimulation equivalence whose cost is independent of the amount of
constants used in the time constraints. Although we do not handle value-passing
in this thesis, our model can be easily extended to the model with both time and
value-passing by extending action transitions to have input/output values.

The future work is to extend the result to the verification of timed weak bisimu-
lation equivalence (internal actions are considered), and to implement the algorithm
and evaluate the cost of the verification for practically large processes.

44

Chapter 4

Decomposition of Structured
Specifications of Real-Time
Services

4.1 Introduction

In this chapter, we propose a method for synthesizing correct protocol specifications
automatically from given service specifications written in a sub-class of LOTOS/T.

This chapter is organized as follows. In Section 4.2 we explain the protocol
synthesis method. Section 4.3 discusses possible extensions of our synthesis method.
Section 4.4 concludes this chapter.

4.2 Protocol Synthesis

4.2.1 Protocol Synthesis Problem

In this section, we define a protocol synthesis problem from timed service specifica-
tions. First we introduce some notations. Let place(a) denote a node assignment for
the action a. In the rest of this chapter, we assume that a* stands for an action a
with place(a) = k. Moreover, we use some notations SP(B), EP(B), AP(B), whose
intuitive meanings are the sets of the starting nodes of B, the ending nodes of B, all
the participating nodes in B, respectively.

For example, if B = a'; b%; exit|||e3; d?; exit, then SP(B) = {1,3}, EP(B) = {2}
and AP(B) = {1,2,3}. We can derive them from B and place() mechanically. The
formal definitions of these notations appeared in [KHB96].

[Protocol Synthesis Problem]

45

Assumptions: 1. there exists a reliable(error-free), asynchronous, full-duplex
communication channel between every two nodes.
2. there’s no limitations on contents of messages exchanged among nodes.
3. all nodes have their own clocks and they always synchronize each other.
Inputs: e A service specification S.
e A node assignment place(a) for each action a.
e An upper bound of delay d;; . for each channel from node : to j, such
that dj;max = 0 and V& dijmax < dikmax + d’“jma.x'
Here, we give the following restrictions for simplifying the derivation.

Restriction 1. S does not contain any deadlock states.

Restriction 2. If S contains B;[> B, as a subexpression, B; must be a finite
process, and there exists a constant ¢, such that B; can execute no action
after time ¢ty and B, can execute any action only after time ;.

Restriction 3. If S contains B; >> B, as a subexpression, B; must be a
finite process. '

Restriction 4. Every process invocation in S must not have any process pa-
rameters, i.e. the behaviour of each invoked process does not depend on
the previous behaviour.

Restriction 5. The context of each process invocation P must be either a; P
or a[P(t,z)]; P, so that just one action precedes P.

Restriction 6. For every subexpression B;[|B; of S, there exists a node p
such that SP(B;) = SP(B;) = {p}, and EP(B;) = EP(B;)[KHB96|.

Restriction 7. For every subexpression Bij[> B, of S, EP(B;) =
EP(B,)[KHBY6|.

Restriction 8. For every subexpression Bj|[A]|B; of S, each occurrence of
action a € A which has time constraint is only in (at most) one of B; or

B;.
Outputs: Protocol entity specifications Node;, Node,y, ..., Node, for all nodes,
which are correct in the following meaning:
Let I be the composite system which connects Node;, Nodes, ..., Node,

together with a communication medium which has channels from node 7 to j
with maximum delay of d;; .. Intuitively, {N ode;}i=1,. n are correct w.r.t.
S when S can strictly simulate [including timing properties, whereas I can
simulate S if time is ignored. In this case, a set of executable time of each
action in I is a nonempty subset of that of the corresponding action in S.
Formally, the correctness is defined as follows. Let

I = hide G in (asap G in
((Nodei|||Nodes|| . . . ||| Noden)|[G)| Medium)),

where G is a set of all sending/receiving actions of synchronization messages

46

{sij(m),ri;(m) | 4,7 € {1,2,...,n}, m € M} and G, is a set of all sending
actions of synchronization messages {s;;(m)[s,7 € {1,2,...,n}, m € M}, and
Medium is a specification of the communication medium defined as follows:

Medium = |Hi,j€{l,2,...,n}Channelij
Channeli; = |||lmenm(si;(m)[x = t];
rig(m)[z <t <z +dij, .. s Channel;;)

Note that under the asynchronous communication medium, the sending ac-
tions are executed as soon as possible they are enabled, because they are spon-
taneous. In contrast, the receiving actions are not spontaneous, so they are
not executed as soon as possible.

Before defining the correctness, we need some preliminary definitions.
Definition 4.1 Relations ==, —,,,==, are defined as follows:
B(-) = (Lyp,
B, p & { " e € ActU {4, tick}
B(—)*B', a=c¢
{ p(tickyr =, tikypr
o € ActU {§,i}

B(%)*B', a=c¢

B=X,B =

B=,B = a € ActU {6}

B(~5)" o (—u)" B,
B(—,)* B, a=¢
O
Definition 4.2 A binary relation ; on behaviour expressions is defined
as a maximum one of relations R satisfying the following condition:
o If IRS, then for all & € ActU {4, €}, all of the following conditions hold:
1. If] ==, I, then there exists some S’ s.t. S ==, S’ and I'RS’.
ti:CL(/ . ' tl:C;(7 ’ '
2. If I + I, then there exists some S’ s.t. S + S and I'RS’.
3. If S =, S, then there exists some I’ s.t. [==, I’ and I'RS’.

Here we define the correctness.
Definition 4.3 We call a derived protocol specification { Node;}i=1 2. » as
C;-correct w.r.t. S if the following relation holds:

hide G in (asap G, in (
(Nodei|||Nodes|] ... ||| Noden)|[G]|Medium)) C; S

4.2.2 Synthesis Method

Now we describe our method for synthesizing protocol specifications from timed
service specifications.

47

Basically, we follow a similar idea to our previous work[KHB96, YHT94]. Thus,
after each node executed an action, it sends messages to the nodes which execute the
succeeding actions, informing them that it has finished. We refer this kind of mes-
sages as synchronization messages. To handle time constraints between actions on
different nodes, we naturally assume that synchronization messages may also contain,
if needed, information about the time at which preceding actions were executed. One
major problem is that the communication delay may make it impossible to execute
an action in time. In general, all realistic communication media have propagation
delay, and we cannot neglect uncertainty of such a delay in most cases. To overcome
this problem, we propose the following method. First, for a given service speci-
fication S, we decide where to insert actions sending or receiving synchronization
messages to simulate S, according to the policy similar to [KHB96, YHT94]. Then
we restrict time-constraints of some actions in S in order to guarantee the execution
of succeeding actions are possible at the worst case of communication delay, keeping
the restriction to a minimum. We represent the obtained specification as Restr(S).
Finally, from the restricted specification S’ = Restr(S) , we derive protocol entity
specifications for all nodes. If S and S’ are equivalent[NHT94], the derived protocol
specifications are guaranteed correct w.r.t. S.

In the following subsections, we describe how the simulation of the service spec-
ification S is done, and how we can define the transformation Restr(), for each
construct of LOTOS/T.

4.2.2.1 Action Prefix

We can simulate Action Prefix a?[P(t, Z)]; B by sending a synchronization message
from node p to all the nodes in SP(B).

If time constraints are specified by assignment and reference of the variables,
nodes at which such variables are assigned to some values must propagate the values
to the succeeding nodes.

Example 4.1
S=alz=tP*t<z+5Ay=t];
Flt <z +TAt<y+ 5);exit
d12max = d13max = d23max = 2

Nodey = a[z = t]; s12(m, z); exit
Nodey = r1a(m,z);bt <z +5Ay =1t);
323(ml,$,y);eXit
Nodez = rog(m/,z,y);clt <z +5At <y+ 5|;exit O

48

Here we can remove some redundancies in inserting synchronization messages when
time is considered. Specifically, if there’s no executable time of a succeeding action
that is earlier than or equal to some executable time of the preceding action, and
there’s no values to propagate to succeeding nodes, the synchronization message at
this place is of no need to guarantee actions’ order, i.e., time implicitly guarantees
the order (recall Assumption 3 in Section 4.2.1). For example, let S = a![P(t, Z)];
0*[Q(t,7)); exit and suppose Vi,t', Z, §[[P(t,Z)A Q(¥',§)] = t < t/] is true. Then
from the time constraints, a is always executed before b, so even if we simply execute
a and b at different places, the order is still preserved. Therefore, we can remove the
synchronization message from node 1 to node 2 in this case. This can be formalized as
follows. For a behaviour expression B = a?[P(t,%)]; B, let TopT'C(B',t,%) denote
a logical disjunction of time constraints of all starting actions of B’. We call the

time constraint of the starting action a? of B is temporally non-overlapping for B’,
if vt,t, %, g[[P(t,2) A TopTC(B',¢,7)] = t < '] holds.

Example 4.2 If the input is the following:
S=a'll <t<3;b%[4<t<5);exit
dl?max = 47

we will simply derive:

Node; = a[l <t < 3];exit

Nodes, = b[4 <t < 5]; exit
because the time constraint a' is temporally non-overlapping for b[4 < t < 5|; exit,
ie. VELH[[(1<t<3)A(4 <t <5)] = (¢t <t)] holds.]

From now, we consider the case where communication delay affects the simulation.
For action prefix a?[P(¢,z)]; B, we will derive a specification Restr(S) whose time
constraint of a? is restricted so that there exists a time to execute the succeeding
actions in B no matter how late the messages from the node p reach the nodes in
SP(B). Because we describe time constraints in Presburger formulas, we can easily
restrict time constraints by logical conjunction.

Example 4.3 If the input is:
S=a'[1<t<3;P[A<t<T;
A5 <t < 10];d%[6 < t < 12); exit

d12max =4 3 d23max = 4a d32ma.x = 3,
we restrict the time constraint of each action as follows:

d?: 6 <t <12 (unmodified)

49

A5 <t<I0A (W 2>t +dapmax A6 <12) (=25<t<9)
b2:4§t§7/\3t’(t'2t+d23max/\5§t_’§9) (=4<t<5)
a': 1<t<3 (unmodified (by Example 4.2))

So the derived protocol entity specification will be the followings:
Node; = a'[1 <t < 3]; exit
Nodey = b*[4 < t < 5]; 593(m1);
ra2(m2); d*[6 < t < 12]; exit
Nodes = ry3(ml); &[5 < t < 9]; s33(m2); exit 0

Now we can define Restr(S) formally as follows.

Definition 4.4 If S = a[Q(%, z)]; B, then Restr(S) is defined inductively as fol-
lows: .

Restr(S) % Restr(S, 0)
S if B = exit, B = stop
or B = P (Process invocation),
a[Q(t, Z) A Q'(1)]; Restr(B,V UZ)
otherwise.

Restr(S,V) &

where, if {bz[Qx(t,9x)] | k € K} is the set of starting actions of Restr(B,V UZ) with
their time constraints,

[Aker{3t' e[t > t+
Aplace(a),place(bi) max) N Qu(t's Yk)]}
if Vt, ', z, y[[Q(t, z)A
Q'(t) = ¢ TopTC(B,t,y)] = t < t'] is false,
or B contains some variables
of VUZ,
| true otherwise.

To summarize this section, our derivation takes 3 steps:

Step 1 determine at what position the synchronization messages are needed.
Step 2 according to the results of Step 1 and d;;___, construct Restr(S).

Step 3 decompose Restr(S) into each node by the similar method to [KHB9S6,
YHT94], already described above.

4.2.2.2 Choice

To simulate choice expressions, we must solve the problem about distributed choice
and empty alternativesiKHB96]. A choice expression B;[|B, is called distributed

50

choice if the starting actions of B; and B, may be executed at different nodes. And
we say that a node p has an empty alternative w.r.t. Bi[|B, if some actions in B;
may be executed at node p, whereas no actions in B(imod2)+1 are executed at node p.
Distributed choice may cause simultaneous execution of the starting actions of both
B; and B,. Empty alternatives on node p may cause unconditional execution of B;
even if B(;mod2)+1 is chosen. As for distributed choice, we avoid it by putting the same
restriction (Restriction 6) as [KHB96]. We have proposed a method for solving the
empty alternative problem for the untimed case in [KHB96]. But, here, we will use a
slightly modified method. Unlike [KHB96], the node where choice was made should
immediately sends messages to the nodes that have empty alternatives in order not
to violate time constraints of succeeding processes. Moreover, to make sure each
B; would not terminate before the messages sent to the nodes which has empty
alternatives reach the destinations, the ending nodes of the chosen expression will
receive acknowledgments from the nodes with empty alternatives before executing
the ending actions (note that if the starting action of B; coincides the ending action of
it, i.e., the maximum length of B,’s action sequences is 1, this simulation method may
not be applicable). Furthermore, to simulate a choice expression B;[|B; in the above
way successfully, we must not remove redundant synchronization messages in both
B; and B,, discussed in Section 4.2.2.1 (Example 4.2), otherwise the intermediate
actions of each B; may be executed independently, no matter which alternative is
chosen.

To make it possible to simulate choice in the way above, we must guarantee that
all the messages reach the destinations in time by restricting the time constraints
of some actions. For a choice expression B[] By, if the messages sent from the node
choice was made wouldn’t have reached the destinations, or the acknowledgments
wouldn’t return, before the chosen behaviour B; have been done, extra time would
be spent waiting for the messages. So we will restrict the time constraints of the
starting actions of B; and B; so that the messages can reach in time.

Example 4.4 Consider the following input:
S=d2<t<5Az=1t];*[t <z +3];E[t <z + 6]; exit
[d'[3 <t < 9];€3[t < 10]; exit
d12max = 2, d93max = 4, d13max = 3
We must restrict the time constraint of d* in order to make the message from

node 1 to 2 and the acknowledgment from node 2 to 3 reach by time 10.

Restr(S) = al2<t<5Az=t;b*[t <z +2];

At <z + 6]; exit

[d'[3 < t < 4]; €3t < 10]; exit

51

Then, the specification of each node will be derived as follows:
Node; = a'[2 <t <5 Az =t);s15(ml,z); s13(m3, z);
exit
[d[3 < t < 4]; (s13(m2); exit|||s12(m4); exit)
Nodey = r15(ml,z); 03[t < z + 2]; s93(m5); exit
[lr12(m4); so3(m4); exit
Nodez = r13(m3, x);m23(m4); [t < = + 6]; exit
[[(r13(m2); exit|||r2s(m4); exit) >> €[t < 10]; exit O

For defining Restr(S), we need the following auxiliary function Restr'(S), which is
the same as Restr(S) except that no removal of redundant messages is considered.

Definition 4.5 Restr'(S) is defined inductively as follows:
If S = a[Q(t,x)]; B, then, -

S if B = exit, B = stop
or B = P (Process invocation),
a|Q(t, z) A Q"(t)]; Restr'(B)

otherwise.

Restr'(5) %

where, if {b;x[Qx(t,yx)] | £ € K} is the set of starting actions of Restr(B) with their
time constraints,

def
Q”(t) = /\keK{at’ayk{tl 2t+ dpla.ce(a),place(bk)max

AQr(t, yr)]}

Otherwise,
Restr'(S) ¥ Restr(S) O

Now we can define Restr(S) as follows:

Definition 4.6 If S = B,[| By, then Restr(S) is defined inductively as follows:
Restr(S) ¥ Restr'(f(B,))[|Restr'(f(B,))

where, we assume that {bx[Qx (¢, y&)] | k¥ € K} is the set of the starting actions of B;
with their time constraints, and that f(B;) is an expression B; whose time constraint
of each starting action Qg (¢, yx) is replaced with Qr(?, yx) A R (t). Here R (t) is a
Presburger formula defined as follows.

Ry(t) YA (3t'3alt >t +d,

q € AP(B;)\ AP(B(imod2)+1)
leL,re EP(Bz)

+d AN Rl(t,,zl)]}

9max 9" max

where {R(t, z)|l € L} denotes the time constraints of EP(B;) and SP(B;) = {p}.0

52

4.2.2.3 Asynchronous Parallel

For any asynchronous parallel expression B, |||B, By and B, are executed indepen-
dently. So any synchronization messages are necessary between B; and B;. Thus,
Restr(S) is defined as follows:

Definition 4.7 If S = B, ||| B, then Restr(S) % Restr(B;) ||| Restr(B,) O

4.2.2.4 Enabling

For enabling expression B; >> B,, we can apply essentially the same idea as action
prefix. The difference is that we must add time constraints between processes B; and
B,, not between actions. We will achieve this by adding time constraints between
each action in EP(B;) and each action in SP(Bj,).

However, in each enabling expression we sequentially connect two processes. So
in general it is possible that the preceding process is an infinite process and it may
execute actions indefinite times before the succeeding process is invoked. That is
very problematic. Take a look at the following example.

Example 4.5 Consider the following behaviour expression:
alt =2]; P >> b[3 < t < 4]; exit

If the process P is defined as P := c[t = 1]; P[|d[t = 1]; exit, the action b cannot
be executed before time 4 when c is executed more than 3 times (because at least 3
units of time must have passed since P is invoked). O

Thus, in this case, whether the succeeding actions can be executed depends on the
number of the recursion. Because it is difficult to analyze, we add Restriction 3 for
simplicity. From Restriction 4, B, in each enabling expression B; >> B; must be a
finite process. So we can avoid the problem described above.

Example 4.6 Consider the following input:
S = (a1 <t < 3]; exit)||p*[2 < t < 4]; exit)
>> (P2 <t < T)sexit]||d![3 < t < 8] exit)
d13ma.x =35 9 d14max =7 3 d23max =4 3 d24ma.x =3

The synchronization messages will be sent from node 1 to both nodes 3 and 4 to
guarantee a! is executed before ¢® and d*. Thus, the time constraint of a! must be
restricted to make the message reach both node 3 by time 7 and node 4 by time 8.
A similar restriction must be made for 2.

Restr(S) = (a'[1 <t < 1];exit|||[p?[2 < t < 3]; exit)

>> (*[2 < t < 7]; exit]||d*[3 < t < §]; exit)

53

So, the protocol entity specification of each node will be derived as follows:

Node; = a'[1 <t < 1];exit

>> (s13(m1); exit]||s14(m1); exit) >> exit
Node, = b*[2 < t < 3]; exit

>> (s93(m2); exit|||s24(m2); exit) >> exit
Nodes = exit >> (r3(ml); exit|||ra3(m2); exit)

>> 32 < t < 7);exit
Node, = exit >> (r14(ml); exit|||r2a(m2); exit)

>> d3[3 < t < 8]; exit

The formal definition of Restr(S) follows:

Definition 4.8 If S = B, >> B,, then Restr(S5) is defined inductively as follows:

Restr(S) ¥ Restr(g(B,)) >> Restr(B,)

where g(B;) is an expression obtained by replacing the time constraint Py(t, zy)
of each ending action ai[Py(t, ;)] in By with Py(t,zx) A P(t). Here, Pk(t) is a
Presburger formula defined as follows:

Plc t) ef /\{Elt EIyl[t > t+ dpla,ce(a.k),place(bl)max
leL

AQu(t,)]}

where {b;[Qi(t,y1)] | | € L} is the set of starting actions of Restr(B,) with their time
constraints. a

4.2.2.5 Disabling

For each disabling expression B;j[> B, we make a strong restriction, Restriction 2,
for simplicity. That is, for some ¢y, all actions in B; are not executable after time
to, and all actions in B, are executable only after time t,. From Restriction 2, there
is no cases that actions in B; and B, are simultaneously enabled at different nodes.
So Bi[> B, can be simulated by inserting messages to notify successful termination
of B; to all nodes.

To make this simulation method work,the messages notifying B;’s termination
have to reach before &.

54

Example 4.7 The input described below satisfies Restriction 2 (t, = 11) and
Restriction 7:
S =a'[l <t <43 <t <87 <t < 10]; exit
[> d?[12 < t]; exit

dl?max = 37 d23max = 47 d31ma.x = 37 d32ma,x = 47 d = 2 for other 7’).7

*Jmax
In order to guarantee that the notification of successful termination sent from node
3 to nodes 1 and 2 can reach before time ¢, = 11, the time constraint of ¢3 must be
restricted to 7 < t < 7, because the notification from node 3 to node 2 may take
d32max = 4 units of time. Then, the restriction discussed in the previous section is
applied for b and a'.

Restr(S) = a'[L <t <1;0*[3 < ¢ < 4;
A7 <t < 7);exit[> d°[12 < #]; exit

From this, the protocol entity specification of each node will be derived as below:
Node; = a'[1 <t < 1]; 73 (ml); exit[> i[t = 12]; exit
Node, = b*[3 < t < 4]; r32(ml); exit[> i[t = 12]; exit
Nodez = [T <t < 7); (sa1(m1)]]|s32(m1)) >> exit
[> d*[12 < t]; exit 0
The definition of Restr(S) is as follows:
Definition 4.9 If S = Bi[> B,

Restr(S) % Restr(g'(B,))[> Restr(Bs),

where ¢'(B;) represents a transformation replacing the time constraint P(¢,z) of
each ending action of By with P(¢,Z) A P'(t). Here
PB<E A {t+4d,
pEEP(B1),q€ALL

<to} o

dmax —

4.2.2.6 Process Invocation

In our specification language, time is reset to 0 at every moment processes are in-
voked, avoiding accumulation of time constraints. To simulate this in distributed
environments, we make all nodes to pretend as if they invoke a process simultane-
ously. In order to do so,

1. Fix one node for a responsible node, which decides the time to invoke a process
(the time just before invoking a process). In this chapter, from Restriction 5,
the context of each process invocation must be the form of a; B or a[P(t, z)]; B.
So we fix the node place(a) as the responsible node w.r.t. the process P.

55

2. The responsible node notifies the invocation time of the process to all nodes,
and immediately invokes the process locally.

3. The other nodes except the responsible node receive the notification, and invoke
the process whose time constraints are modified to make the invocation time
be virtually equal to that of the responsible node. Recall that the actual local
time is reset to O just after the process invocation of each node.

To implement 3., we modify each process P without parameters in service specifica-
tions to P(ep) with just one parameter ep in protocol specifications (Restriction 4),
and replace every occurrence of ¢ in the right hand of the process definition of P
with ¢ + ep. The parameter ep represents the difference between the actual invoca-
tion time and virtual invocation time. For example, P(3) means the process P with
replacing its time constraint, for instance, ¢ < 5, with ¢ + 3 < 5. Corresponding
to each process invocation of P in the service specification, we derive a protocol
specification such that (1.)the responsible node sends the current time tp to every
other node just before invoking P(0), and (2.)the other nodes invoke P(t —tp) after
receiving tp from the responsible node. The time ¢t — ¢p corresponds to the actual
communication delay from the responsible node.

Note that the process P may be called by another process Q). In such a case, the
variable ¢ in P(t — tp) should be adjusted to represent the virtual time at which Q
had been invoked. So it should be modified to P(t+eg—ep) if this process invocation
occurs in the right hand of the definition of process @, where t + e represents the
virtual invocation time of Q.

Example 4.8

P:=d2<t<4nz=t;p*t<z+5;P
[Ict[5 < t]; exit
di2max = 4, d21max = 3
Node; = Plep) :=a'[2<t+ep<4dAz=t+epA
(' >t+ep+dipm At <z +5));
s12(ml, z);721(m3,tp); P(t + ep — tp)
>> s5(md); exit]|c'[5 < t + ep]; exit
Node, = P(ep) :=r1a(ml,z); B[t + ep < z + 5];
s21(m2, z); s21(m3,t + ep); P(0)
[Jr12(m4); exit O
To make this simulation possible, we check whether the starting action of each process
cannot be late if the notification from the responsible node would reach in maximum

delay. For consistency, we include this checking into Restr(). If the checking is false,
the time constraint of the starting action becomes “false.”

56

Definition 4.10 If S = P where P := B, Restr(S) is defined inductively as
follows: Restr(S) & P where P := h(Restr(B))

where h(Restr(B)) is an expression obtained by replacing the time constraint
Qr(t, z1) of each starting action a; of Restr(B) with Qi(t,zx) A Q). Here Q) is
a Presburger formula defined as follows :

;s: d:e.f /\{3?5'31,% [tl Z 0+ dpapla,ce(ak)ma.x A Q(t,’ .’L'k)]} N

p=1l,...,n

4.2.3 Synthesis Algorithm

The synthesis algorithm consists of two parts:

1. For a given service specification .S, an assignment of each action to a node, and
a maximum delay d;; _for each pair of nodes, construct S’ = Restr(S).

2.If S ~, 8§, ie, S and S’ are bisimulation equivalent when time is ignored,
derive a protocol entity specification Node; of each node 7 from S’. Otherwise,
do not derive and halt.

~, denotes untimed strong bisimulation equivalence defined by Definition 2.10 in
Chapter 2.

The algorithm to derive each Node; from S’ is defined as follows. In the following,
we assume that for any subexpression B of S, N(B) is a unique ID of B, that ¢ is
any node such that p # ¢, and that V represents a set of variables (corresponding
to defined variables as defined in [NHT94]).

Definition 4.11 A transformation 7,(B), which derives a protocol entity speci-
fication of node p from a behaviour expression B, is defined inductively as Fig. 4.1.
The auxiliary functions used in the definition of T,(B) are defined as Fig. 4.2. 0O

Remark: For T,(B,V,p,p, B, B") in Fig. 4.1, the parameters B, V, p, p, B’ B"
mean, a service specification, a set of defined variables, a responsible node, a boolean-
valued flag indicating whether redundant synchronization messages can be removed,
,the behaviour expression of message exchanges necessary for simulating choice ex-
pressions, the behaviour expression also necessary for simulating choice expressions
inserted just before stop or exit, respectively.

Remark2: The intuitive meanings of functions defined in Fig. 4.2, are the followings:

send,(P, N,V): node p sends to each node in P a message labelled by ID N, with
values of the variables in V.

receive,(P, N,V): node p receives from each node in P a message labelled by ID N,
with values of the variables in V.

57

Ty(B) = Ty(B, 0, po, true, empty, empty)
Ty(stop, V,p',p, B', B") = B" >> stop
Tp(exit, V,p',p, B', B") = B" >> exit
Tp(a?; B,V,p',p, B', B") = aP;sendp(SP(B)\ {p}, N(a?; B),V) >> B' >> T,(B, V,p, p,empty, B")
Teceivel’({q}v N(aq; B)7 V) >> B >> TP(Ba va q, P, 9ml7tyv B”)
if p € SP(B)
B' >> Tp(B, V,q, p,empty, B"')
otherwise.
[aP[P(t, 3)]; sendp(SP(B) \ {p}, N(aP[P(t,2)]; B),V U z)
>> B' >> Tx(B,V U Z,p, p,empty, B")
Tp(a?{P(t,3)}; B,V,p',p,B',B") = 4 if vt,t, 3, §{[P(t,2) A TopTC(B, ', §)] = (t < #)] is false,
or p= false
\ @P[P(t,%)]; B' >> Tp(B,V UZ,p, p,empty, B") otherwise.
(receivep({q}, N(a?|[P(¢,Z)}; B),VUZ) >> B’
>> Tp(B,V Uz, q,p, empty, B")
if p € SP(B) and
vt,t',z, [[P(t,z) A TopTC(B,t,§)] = (t < t')] is false
or p = false,
\ B' >> T(B,VU#z,q,p,empty, B'") otherwise.
Tp(B1[|B2, V,p',p, B, B") = Tu(B1,V,p', false, Alternative,(B1, B2)|||B’, Alternative2, (B, B2)|||B")
(1Tp(B2,V,p', false, Alternativep(B2, B1)|||B', Alternative2,(Bz, B1)|||B")
Tp(B1|||B2,V,p',p,B', B") = Tp(B1,V,p',p, B', B")||Tp(B2,V,p',p, B', B")
Tp(Bi[> B2, V,p',p, B',B") = (Tp(B1,V,p', false, B', B") >> Rel,(B1))
[> Tp(B2,V,p', B', false, Alternative,(Bz, ALL)|||B',
Alternative2,(Ba, ALL)|||B")
Tp(Bl >> Ba, VyP';P; B’i B”) = Tp(Bly V:P’:/% BI’ B”) >> SynCh-Leftp(Bly B2)
>> Synch_Right,(Bi1, Bz) >> Tp(Ba2, V,min EP(B1),p, B', B')
TP(P[gly o agklv V., p, B,) BN) = sendP(SP(BP) - {P}1 N(P[glv v 19’9]7 {t}) >> P[911 eee 1gk](0)
Tq(P[gl1 e sgk]’ ‘/1171 P BI? B”) = Teceiveq({p}, N(P[gla s 1gk]i {tP}) >> P[gh e 7gk](tP - t)
iff a process definition P{g1,...,gx] := Bp exists.
Tp(S where Plg1,... ,g1] := Bp) = Tp(S) where Plg1,... ,gxl(ep) := [t + ep/t]Tp(Bp)

Tp(a%; B,V,p',p,B',B") =

T,(a?[P(t,%)}; B,V,p,p, B',B") = ¢

Figure 4.1: Definition of T,(B)

Synch_Left,(Bi, By): each node in EP(B;) sends a synchronization message to each
node in SP(B,)

Synch_Right,(B;, By): each node in SP(B,) receives a synchronization message
from each node in EP(By).

Rel,(B): each node in EP(B) notifies B’s successful termination to all other nodes.

Alternativey(B;, By): (the node where choice was made) sends messages to the
nodes participating to B, but not to B;.

Alternative2,(By, By): the ending nodes of B; receive acknowledgments from the
nodes participating to By but not to Bj.

Then, we obtain our main theorem:

58

sendp(P,N,V) = if P =@ then empty

if P={i,j,...,k} then (sp:(N,V);exit(V)||]...|||spu(N, V); exit(V))
receivep(P,N,V) = if P =0 then empty
if P={i,5,... ,k} then (rip(N, V) exit(V)]]]...||lrpp(NV, V); exit(V))
dy((SP(B ,N(B.),0) ifpe EP(B
Synch.Leftp(B1, Bs) = { sendp((SP(QH; t{pr (B1).0) ip € EP(B;)

receivep((EP(B1) \ {p}), N(B1),0) ifp € SP(B;)

empty otherwise.

sendp((Act \ {p}), N(B), 0)|||receive,((EP(B) \ {p}), N(B),0) ifp € EP(B)
receivep(EP(B), N(B),®) otherwise.

Synch.Righty(By, B2) = {
{ send,(AP(B2)\ AP(B1),N(B1)) ifp € SP(B:)

Rel,(B) =

Alternativey(B1, B2) = receivep(SP(B1), N(B1)) >> send(EP(B1), N(B1)) if pe AP(B2)\ AP(B)

emnpty otherwise.

receive,(AP(B2) \ AP(B1), N(B1)) if pe EP(B1)

Alternative2,(Bi1, Bp) = empty otherwise.

Figure 4.2: The Auxiliary functions used in Fig. 4.1.

Theorem 4.1 For a given service specification S, let S’ = Restr(S). If S ~, 5,
the protocol specification {T;(S’)}iz1,2.... n is E4-correct w.r.t. the service specification
S. O

Note that similar to [KHB96], derived protocol entity specifications by the algorithm
T,(B) may have some redundancy. Some of those can be optimized by the similar
method to [GB90].

4.3 Discussions

In this section, we discuss both weakening time constraints of the restricted service
specification and extending the applicable class of the service specifications for our
method.

4.3.1 Weakening Restriction of Time Constraints

We wish to weaken Restr(S) as much as possible in order to enlarge the class
for which protocol specification is derivable by our algorithm, i.e., to make S ~,
Restr(S) hold for as many S’s as possible. Restr(S) defined in Section 4.2.2 satis-
fies the following property: each action in Restr(S) has the weakest timing constraint
which makes the subsequent actions executable in time when every synchronization
messages are not omitted in simulating S in distributed environment (under our
policy). However, actually more redundant messages (than Section 4.2.2) can also
be omitted by modifying the overlapped time constraints to non-overlapping ones,

39

which we refer to as overlapping removal. Thus, in this section we make the time
constraints of Restr(S) slightly more weaker.

First, for each service specification S = a[P(t,z)]; B (a € Act), let TSync(t)
denote the predicate which is true iff ¢ is less than any time at which some of the
starting action in B is executable (T'Sync(t) is easily represented by a Presburger
formula). We modify Definition 4.4 by replacing Q'(t) with T'Sync(t) if Vt[{Q'(t) =
TSync(t)] (T'Sync(t) is weaker than @Q'(t)) holds and otherwise @Q'(t) is retained.
After the modification above, if overlapping removal is less restrictive than using
synchronization synchronization, the algorithm Restr() chooses overlapping removal
for the time constraints.

Finally, for obtained S’ = Restr(S), the simulation policy by distributed nodes
is modified so as not to send synchronization messages at the actions which is
overlapping-removed.

By the modified method described above, we can increase the number of service
specifications from which protocol entity specifications are derivable.

4.3.2 Extending Class of Service Specifications

Many of the restrictions imposed on inputs of our algorithm are for simplicity. Many
of them are not essential restriction which heavily dependent on our simulation pol-
icy. Our simulation policy is merely one of all possible simulation policies. So
introducing some other (possibly more complex) simulation policy, many of the re-
strictions we introduced may be removed.

However, it is difficult to remove the restrictions imposed on synchronous paral-
lel(rendezvous) and disabling subexpressions.

At first, consider the case of the rendezvous subexpression B;|[G]|B,. If every
action a € G and every subsequent action whose executable time is dependent on
a, has a time constraint of form [e < t] (no rendezvous deadline), we can derive
protocol specification which contains Rendezvous by applying the same algorithm as
described so far. Further extension is difficult by the following reasons:

o If the executable time of synchronous action @ € G has an upper bound,
[e1 < t < ey for example, in the subexpression B; or B,, the actual upper
bound of the synchronized behaviour B;|[G]|B; is generally smaller than lo-
cally specified (in B; or B;). So, even if there is a time to execute a € G
in Restr(B)|[G]|Restr(Bs), the synchronization message may be late for the
actual upper bound of the subsequent actions of a. Therefore, to compute
Restr(B,|[G]|B;) when rendezvous deadline exists, we must analyze the be-
haviour expression globally.

e In order to obtain the actual time constraint of synchronous action a € G,
we may decide the combinations of synchronizing actions and take a logical

60

conjunction of them as the actual time constraint. However, this is too costly
in general.

e In some service specification, synchronizing group of actions may vary dynam-
ically on the execution. In such case, it is very difficult to analyze due to the
possible state explosion.

Even if rendezvous with deadline is difficult to handle in our structural protocol
synthesis, we may derive a correct protocol specification from a service specification
which contains rendezvous with deadline, if we can expand it into the specification
which is in finite length, does not contain any rendezvous operators and satisfies
other restrictions imposed by the algorithm.

Restriction 2 imposed on disabling subexpression B;[> B is rather strong. How-
ever, it is known that if some action of B; and a starting action of B, are simulta-
neously executable, bisimulation equivalence between the service specification and
the protocol specification may not be preserved. So if we take bisimulation as one
of correctness criteria, such a restriction is necessary. Under the restriction, many
of timeout scenarios are still expressible. Thus we think the restriction is not too
strong for practical purposes.

Some system do need the specification which allows B, to interrupt B; while
executing, not by timeout. In such a case, an alternative restriction as follows may
be more useful. Divide up the time axis into time slots (finite intervals of constant
length). The service specification must be arranged so that the two kind of slots
alternate (like Time Sharing System), where B; is (temporally) disabled and B,
is interruptible in one slot, and interruption of B, is disabled and B; is runnable
in the other slot. Under this restriction, we can similarly consider the alternative
simulation policy which enables a correct simulation of the service specification by
distributed nodes.

Still another solution is possible. If we weaken the correctness criteria so that
execution of B is possible for a while when interruption occurred, Restriction 2 is
no longer necessary.

4.4 Concluding Remarks

In this chapter, we have proposed a method to synthesize protocol specifications
from timed service specifications written in LOTOS/T. The proposed method en-
ables us to synthesize protocol specifications from both timed and structured service
specifications. In contrast to [KBD95], our method restricts the time constraints
of service specifications, not of the communication media, because the delay of the
media depends on the physical lines, so it is more difficult to change them than those
of the specifications. Moreover, our correctness criteria guarantee that the control
structure of the derived protocol specification is a full, not partial, implementation

61

of that of the service specification. Using the same timing extension as ours, our
result should easily apply to other process models such as CCS.

The future work is to extend the class of service specifications and to estab-
lish a framework for evaluating performance aspects of the derived protocol entity
specifications.

62

Chapter 5

Conclusions

In this thesis, we have proposed the following methods for specification, verification
and decomposition of real-time services for design and developing reliable real-time
distributed systems:

1. a specification language LOTOS/T, which is capable for expressing time con-
straints among only interested (possibly non-adjacent) actions, as well as ur-
gency,

2. a verification method, which is applicable for the new semantic model A-TSLTS
of LOTOS/T, and whose cost is independent of time domain nor contents of
time constraints, and

3. a decomposition method for real-time services described in LOTOS/T.

In summary, we have proposed a language LOTOS/T, and shown its tractabil-
ity by presenting a verification method of both timed and untimed bisimulation
equivalence for A-TSLTS and a transformation method from LOTOS/T into A-
TSLTS. Moreover, a decomposition method for real-time services is presented. The
presented decomposition method strongly depends on the expressive power of LO-
TOS/T. Without capability of describing time constraints which may contain quan-
tifiers of 1st-order logic, the basic idea of our decomposition would not be so simple.
The specifications with quantifiers can be still verified by our symbolic verification
method on A-TSLTSs.

Some discussions and future directions for our work is as follows.

We have adopted timed/untimed bisimulation equivalence as the correctness cri-
teria of refined/modified specifications w.r.t. a given real-time service specification.
So our verification method is basically equivalence checking. Equivalence checking is
good for ensuring the correctness of service modifications (e.g. changing the timing
constraints), as mentioned in Chapter 2. However, it might be too strong in some
cases for ensuring implementation (refinement) correctness, since generally refine-
ment may add some more actions, or constrain some more moves (i.e. the moves

63

becomes more deterministic, which reduces the possibility of all moves). Therefore,
we may need to develop verification techniques for some refinement relations (which
are typically defined as pre-orders of systems) for real-time services, in addition to
timed /untimed bisimulation equivalence.

There is another approach for specification and verification of real-time systems
— a Temporal Logic approach. In this approach, requirements (services) are specified
by temporal logic formulas, whereas, its implementations are described by formal
models. Temporal logic is good for prototyping services in the earlier phase of a
system development process. It is inherently compositional, that is, if we need to
add or remove some functions/requirements/services, we can simply add or remove
the corresponding descriptions in logic formulas. The verification method is model
checking, i.e., checking whether the given implementation satisfies its requirements
described in logic formulas. It is one of the most important future works to develop
a model checking method for some temporal logics and a symbolic model such as
our A-TSLTS model. Moreover, a temporal-logic version of synthesis problem is
interesting. It is known as satisfiability problem of temporal logic formulas, that is,
finding a model which satisfies the given temporal logic formulas.

In our decomposition method, rendezvous of actions in some parallel modules
cannot be handled. This is due to the following two reasons in summary. First,
rendezvous essentially requires simultaneity, that is, an action in rendezvous can
be only executed when all of the modules participating rendezvous can perform
the action at the same time. This troubles us especially when real-time property is
considered. By this fact, the locality of time constraints is destructed, i.e., we cannot
~ tell when an action can be executed (or not) by only looking at the local module
specification, if the action is participating rendezvous with other modules. Thus, this
makes it difficult to use structural divide-and-conquer methods. Second, rendezvous
induces global cause among actions. By rendezvous, a causal relation is introduced
between two actions which belong to different parallel modules, even if they do
not rendezvous. For example, in a LOTOS expression “a;b; ...|[b]|b; c; ...”, the causal
relation between a and c is introduced by the rendezvous of b. This is known as global
cause. Thus, the executed time of a may affect the execution of ¢ if we add time
constraints to this expression. In order to cope with rendezvous in our decomposition
method for real-time services, we must analyze global cause relation between actions,
and restrict the time constraint properly so that the synchronization messages reach
in time. Use of models for real-time systems which are based on causality such as
[Kat96] might be necessary.

64

Bibliography

[ACHO94]
[AD90]

[AKH92]
[BB91]

[BG86]

[BK85]
[BK90]
[BL92]
[BLT90]
[Cer92]

[Che92]

Rajeev Alur, Costas Courcoubetis, and Thomas A. Henzinger. The ob-
servational power of clocks. In Proc. of CONCUR’94, volume 836 of Lec-
ture Notes in Computer Science, pages 162-177. Springer-Verlag, 1994.
Rajeev Alur and David Dill. Automata for modelling real-time systems.
In M. S. Paterson, editor, Proc. of ICALP’90, volume 443 of Lecture
Notes in Computer Science, pages 322-335. Springer-Verlag, 1990.

S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes.
Acta Informatica, 29:737-760, 1992.

J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Journal
of Formal Aspects of Computing Science, 3(2):142-188, 1991.

G. v. Bochmann and R. Gotzhein. Deriving protocol specification from
service specifications. In Proc. of the ACM SIGCOMM ’86 Symposium,
pages 148-156, Vermont, USA, 1986.

J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoret. Comput. Sci., 37:77-121, 1985.

J. C. M. Baeten and J. W. Klop, editors. Proc. of CONCUR ’90, volume
458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.
Tommaso Bolognesi and Ferdinando Lucidi. LOTOS-like process alge-
bras with urgent or timed interactions. In K. R. Parker and G. A. Rose,
editors, Formal Description Techniques, IV, pages 249-264. IFIP, Else-
vier Science Publishers B.V.(North-Holland), 1992.

Tommaso Bolognesi, Ferdinando Lucidi, and Sebastiano Trigila. From
timed Petri nets to timed LOTOS. In Logrippo et al. [LPU90|, pages
395—408.

K. Cerans. Decidability of bisimulation equivalence for parallel timer
processes. In Proc. of 4th CAV, volume 663 of Lecture Notes in Computer
Science, pages 302-315. Springer-Verlag, 1992.

Liang Chen. An interleaving model for real-time systems. In A. Nerode
and M. Taitslin, editors, Proc. of 2nd Int’l Symp. on Logical Founda-
tions of Computer Science (LFCS’92), volume 620 of Lecture Notes in
Computer Science, pages 81-92. Springer-Verlag, July 1992.

65

[CLsS]

[FK95]

[GBY0]

[Gro90]

[Han91]

[HBL*92]

[HKT92]

[HL95]

[HLWO1]

[HMS85)

[Hoa85]

[HOIT93]

[HRO1]

[HUT9]

P. M. Chu and M. T. Liu. Protocol synthesis in a state transition model.
In Proc. IEEE COMPSAC 88, pages 505-512, 1988.

W.J. Fokkink and A.S. Klusener. An effective axiomatization for real
time ACP. Report CS-R9542, CWI, Amsterdam, June 1995. To appear
in Information and Computation.

R. Gotzhein and G. v. Bochmann. Deriving protocol specifications from
service specifications including parameters. ACM Trans. on Computer
Systems, 8(4):255-283, 1990.

Jan Friso Groote. Transition system specifications with negative
premises. In Baeten and Klop [BK90|, pages 332-341.

Hans A. Hansson. Time and Probability in Formal Design of Distributed
Systems. Ph.D thesis DoCS 91/27, Dept. of Computer Systems, Uppsala
University, September 1991.

Teruo Higashino, Gregor von Bochmann, Xiangdong Li, Keiichi Ya-
sumoto, and Kenichi Taniguchi. Test system for a restricted class of LO-
TOS expressions with data parameters. In Proc. 5th IFIP Int’l Workshop
on Protocol Test Systems, pages 205-216. IFIP, North-Holland, Septem-
ber 1992.

Teruo Higashino, Junji Kitamiti, and Kenichi Taniguchi. Presburger
arithmetic and its application to program developments. Journal of
Japan Society of Software Science and Technology, 9(6):31-39, 1992. (In
Japanese). '

M. Hennessy and H. Lin. Symbolic bisimulations. Theoret. Comput.
Seci., 138:353-389, 1995.

U. Holmer, K. Larsen, and Y. Wang. Deciding properties of regular
timed processes. In Proc. of 8rd CAV, volume 575 of Lecture Notes in
Computer Science, pages 443-453. Springer-Verlag, 1991.

Matthew Hennessy and Robin Milner. Algebraic laws for nondetermin-
ism and concurrency. J. ACM, 32(1):137-161, January 1985.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

T. Higashino, K. Okano, H. Imajo, and K. Taniguchi. Deriving protocol
specifications from service specifications in extended FSM models. In
Proc. of the 18th IEEE Int’l Conf. on Distributed Computing Systems
(ICDCS-13), pages 141-148, 1993.

Matthew Hennessy and T. Regan. A temporal process algebra. In J. Que-
mada, J. Manas, and E. Vazquez, editors, Formal Description Tech-
niques, III, pages 33-48. IFIP, Elsevier Science Publishers B.V.(North-
Holland), 1991.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

66

[Hul95]

[1SO89)

[IP89)

[Kat96]

[KBD95]

[KBKS89]

[KHB96]

[KS90]

[Lan90]

[Lin96]

[LL93]

[LPU90]

[LW93]

Maria Hultstrom. Structural decomposition. In Vuong and Chanson
[VC95], pages 201-216.

ISO. Information Processing System, Open Systems Interconnection,
LOTOS ~ A Formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. IS 8807, January 1989.

Bengt Jonsson and Joachim Parrow. Deciding bisimulation equivalences
for a class of non-finite-state programs. In B. Monien and Cori R.,
editors, Proc. of STACS’89, volume 349 of Lecture Notes in Computer
Science, pages 421-433. Springer-Verlag, 1989.

Joost-Pieter Katoen. Quantative and Qualitative Extensions of FEvent
Structures. CTIT Ph.D-thesis series N0.96-09, Centre for Telematics and
Information Technology, Enshede, The Netherlands, September 1996.
A. Khoumsi, Gregor v. Bochmann, and R. Dssouli. On specifying ser-
vices and synthesizing protocols for real-time applications. In Vuong and
Chanson [VC95], pages 185-200.

F. Khendek, G. v. Bochmann, and C. Kant. New results on deriving
protocol specifications from services specifications. In Proc. of the ACM
SIGCOMM ’89, pages 136-145, 1989.

Christian Kant, Teruo Higashino, and Gregor v. Bochmann. Deriving
protocol specifications from service specifications written in LOTOS.
Distributed Computing, 10(1):29-47, 1996.

Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Information and Compu-
tation, 86:43—68, 1990. ,

R. Langerak. Decomposition of functionality; a correctness-preserving
LOTOS transformation. In Logrippo et al. [LPU90|, pages 229-242.
Huimin Lin. Symbolic transition graph with assignment. In Proc. of
CONCUR’96, Lecture Notes in Computer Sciences. Springer-Verlag, Au-
gust 1996. to appear.

Guy Leduc and Luc Léonard. A timed LOTOS supporting a dense time
domain and including new timed operators. In M. Diaz and R. Groz,
editors, Formal Description Techniques, V, pages 87-102. IFIP, Elsevier
Science Publishers B.V.(North-Holland), 1993.

L. Logrippo, R. L. Probert, and H. Ural, editors. Protocol Specifi-
cation, Testing and Verification, X. IFIP, Elsevier Science Publishers
B.V.(North-Holland), 1990.

Kim G. Larsen and Yi Wang. Time abstracted bisimulation: Implicit
specifications and decidability. In S. Brookes, M. Main, A. Melton,
M. Mislove, and D. Schmidt, editors, Proc. of 9th Int’l Conf. on Mathe-
matical Foundations of Programming Semantics (MFPS’98), volume 802
of Lecture Notes in Computer Science, pages 160-175. Springer-Verlag,

67

[Mil80]
[MT90]

[MT91]

[NHT94]

[Par81]

[PS91]

[QAF90]

[SKTN90]

[VC95]

[VHTZ90]
[Vuo90]

[Wan91]

[YHMT92]

April 1993.

Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

Faron Moller and Chris Tofts. A temporal calculus of communicating
systems. In Baeten and Klop [BK90], pages 401-415.

Faron Moller and Chris Tofts. Relating processes with respect to speed.
In J. C. M. Baeten and J. F. Groote, editors, Proc. of CONCUR ’91, vol-
ume 527 of Lecture Notes in Computer Science, pages 424—438. Springer-
Verlag, 1991.

Akio Nakata, Teruo Higashino, and Kenichi Taniguchi. LOTOS enhance-
ment to specify time constraints among nonadjacent actions using first
order logic. In R. L. Tenney, P. D. Amer, and M. U. Uyar, editors,
Formal Description Techniques, VI (FORTE’93), pages 451-466. IFIP,
Elsevier Science Publishers B.V. (North-Holland), 1994.

D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proc. of 5th GI Conference, volume 104 of Lecture Notes in Com-
puter Science, pages 167-183. Springer-Verlag, 1981.

Robert L. Probert and Kassem Saleh. Synthesis of communication pro-
tocols: Survey and assessment. IEEE Trans. Comput., 40(4):468-475,
April 1991.

J. Quemada, A. Azcorra, and D. Frutos. TIC: A timed calculus for
LOTOS. In Vuong [Vuo90], pages 195-209.

Norio Shiratori, Hiroaki Kaminaga, Kaoru Takahashi, and Shoichi
Noguchi. A verification method for LOTOS specifications and its ap-
plication. In E. Brinksma, G. Scollo, and C. A. Vissers, editors, Protocol
Specification, Testing, and Verification, IX, pages 59-70. IFIP, Elsevier
Science Publishers B.V.(North-Holland), 1990.

Son T. Vuong and Samuel T. Chanson, editors. Protocol Specification,
Testing and Verification, XIV (PSTV-XIV). IFIP, Chapman & Hall,
1995.

Wilfried H. P. van Hulzen, Paul A. J. Tilanus, and Han Zuidweg. LOTOS
extended with clocks. In Vuong [Vuo90], pages 179-194.

S. T. Vuong, editor. Formal Description Techniques, II. IFIP, Elsevier
Science Publishers B.V.(North-Holland), 1990.

Yi Wang. CCS + time = an interleaving model for real time systems. In
J. Leach Albert, B. Monien, and M. Rodriguez Artalejo, editors, Proc.
of ICALP ’91, volume 510 of Lecture Notes in Computer Science, pages
217-228. Springer-Verlag, 1991.

Keiichi Yasumoto, Teruo Higashino, Toshio Matsuura, and Kenichi
Taniguchi. PROSPEX: A graphical LOTOS simulator for protocol
specifications with N nodes. IFICE Trans. on Communication, E75-

68

[YHT94)

[YOHT95]

B(10):1015-1023, 1992.

Keiichi Yasumoto, Teruo Higashino, and Kenichi Taniguchi. Software
process description using LOTOS and its enaction. In Proc. of 16th Int’l
Conf. on Software Engineering (ICSE-16), pages 169-179, May 1994.
Hirozumi Yamaguchi, Kozo Okano, Teruo Higashino, and Kenichi
Taniguchi. Synthesis of protocol entities’ specifications from service spec-
ifications in a Petri net model with registers. In Proc. of 15th IEEFE Int’l
Conf. on Distributed Computing Systems (ICDCS-15), May 1995.

69

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

3.5

3.6

4.1
4.2

The semanticsof Band D
The semanticsof Fand P
Timed specification of one-key controller
Untimed specification of one-key controller

Anexample of TSLTS
The algorithm to calculate mgb(s;,s;).
An example of A-TSLTS,
Example of A-TSLTS where s; and s3 are not untimed bisimulation
equivalent. L. L e
Nlustration of (a) timed semantics and (b) untimed semantics of
Fig. 3.4-(A).«
Definition of match_delay() and match_action() for untimed bisimu-
lation equivalence L

Definition of T,(B)
The Auxiliary functions used in Fig. 4.1.

70

List of Tables

2.1 The inference rules of transition relation: Part 1
2.2 The inference rules of transition relation: Part 2

71

............

............

