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Summary

In recent years, embedded systems are widely used in our daily life. To implement a lot of
requirements in a small embedded system, tight constraints must be met at the same time.
Power consumption is the most important constraint for modern embedded systems. For high
performance systems, power consumption increases heat of embedded systems, and for small
systems, power consumption requires bigger battery capacity and increases system size.

Application Specific Instruction-set Processors (ASIPs) are appropriate to implement embed-
ded systems because ASIPs can offer high performance per energy and high programmability.
To design high performance embedded systems, Very Long Instruction Word (VLIW) type
ASIPs (VLIW ASIPs) are suitable, and Design Space Exploration (DSE) must be performed
to determine the optimal architecture parameters. On the other hand, to implement small em-
bedded systems, small scalar ASIPs with specific instructions must be designed by taking into
account the characteristics of the target systems.

This thesis discusses two topics to challenge low power embedded system designs for high
performance systems and small systems. First, this thesis proposes a low power VLIW ASIP
generation method. The proposed method generates VLIW ASIPs with clock gating technique,
which is a well known low power technique to reduce power consumption of flip flips. Power
reduction by clock gating depends on gating signals of registers, and the gating signals are
derived from execution conditions of the registers. In order to minimize power consumption
of pipeline registers in a large-scale data path of a VLIW ASIP, the proposed method auto-
matically extracts the minimum execution conditions from ASIP generation procedures. The
experimental results show that the proposed method drastically reduce power consumption of
VLIW ASIPs, and overheads to implement clock gating are small.

The second topic is to design the pressure sensing system for Ambulatory Urodynamic Mon-



itoring (AUM). In AUM, the sensors measure pressure data of the bladder and the rectum, and
the size of the sensor must be small for less-invasive tests. Therefore, designing the small cap-
sular sensor is beneficial to less-invasive urodynamic tests. To design small pressure capsule,
the System-on-a-Chip (SoC) which integrates almost functions of the capsule is strongly re-
quired. This thesis describes the requirements and constraints of the SoC, the designs of the
capsule, the SoC, and the ASIP which is designed for this application. The experimental results
show that the designed SoC and ASIP are low power consumption and small area implemen-
tation, the implemented capsule satisfies constraints for AUM, and correct operations of the

sensing system are confirmed.



Acknowledgments

I would like to deeply thank Prof. Masaharu Imai for guiding me throughout my PhD days. I
appreciate his advices, technical suggestions, and insights for my researches. Through discus-
sions with him, I have acquired expertise in my research area.

I would like to thank Prof. Takao Onoe and Prof. Tetsuya Yagi for reviewing this thesis and
comment on my study.

I would like to thank Prof. Yoshinori Takeuchi for his guidance. His sound advices motivate
me to improve my research and papers, and he takes a great care of me at all times.

I am thankful to Dr. Keishi Sakanushi. His beneficial comments on my work help me to
progress my research. He teaches me a lot of things about researching, writing paper, and
academic mentality.

I would like to thank Dr. Kyoko Ueda, Dr. Mohamed AbdEISalam Hassan, Dr. Yuki
Kobayashi, and Dr. Hiroaki Tanaka. They friendly discuss with me on my research and give
many useful comments and advices.

I thank to Dr. Takuji Hieda. He is co-worker and helps me at various situations. Wit talking
with him makes my PhD days enjoyable.

I would like to thank Dr. Makiko Itoh, Dr. Shinsuke Kobayashi. They made the basis of my
research.

I would like to thank Prof. Masaya Miyahara, Dr. Takashi Kurashina, and Mr. Kennichi
Matsunaga. They help development of the SoC that is described in this thesis, and their modules
are implemented in the SoC.

I am thankful to Ittetsu Taniguchi, Takashi Hamabe, Takahiro Notsu, Hyun Kim Long,
Takeshi Shiro, Takahiro Itoh, Akira Kobashi, Yu Okuno, Hitoshi Nakamura, Ayataka Kobayashi,

Aiko Takabe, Kazuhiro Kobashi, Masahiro Kondo, Hiroki Ohsawa, and the rest of all members

il



of Integrated System Design Laboratory in Osaka University. They helped me and made my
student life joyful and vivid.

I wish to thank my parents Yuji and Michiko, and my sister Mina and her husband Hideyuki
Nishizawa, and also nephew Ryo and niece Yuki.

And Finally, for my dear Yuki, thank you for supporting me with your precious smile.



Contents

Introduction

1.1 Embedded System Design with ASIPs . . . . . ... ... ... .......

1.2 Design Challenges . . . . . .. . . . . . . . i

1.2.1
1.2.2

ASIP Generations with Low Power Technique . . ... ... ... ..

An SoC for Pressure Measurement Capsule in AUM . . . .. ... ..

1.3 Contributions . . . . . . . . . .

1.4 Organization. . . . . . . . . . . ot e

Related Work

2.1 Low Power Techniques for Digital Circuits . . . . . ... ... ... .....

2.2 ASIP Generation Methods . . . . . . . . . . ...

22.1
222

ASIP Generation Methods . . . . . . . . . . ... ... ...

Minimum Execution Conditions . . . . . . . . . . . . ... ... ...

2.3 Automatic Clock Gating Methods . . . . . ... ... ... ... .......

2.4  Urodynamic Monitoring Systems . . . . . . . . . . . . ..o

Low Power VLIW ASIP Generation Method

3.1 Basicof VLIW ASIP Generation . . . . . . . . . . . v v v v v v v v v ..

3.1.1
3.1.2
3.1.3
3.14

Micro-Operation Description . . . . . . . . .. . .. .. ... ... ..
VLIW ASIP Dispatching Model . . . . . ... .. ... .. ......
VLIW ASIP Controller Model . . . . . .. ... ... ... ......
VLIW ASIP GenerationFlow . . . . ... .. ... ... .. .....

3.2 Low-power VLIW ASIP Generation . . . . . . ... ... ...........

10
10
11
12
13



3.2.1 Insertion of Gating Circuits . . . . . . ... ... ... .. ...... 22
3.2.2 Extraction of Minimum Execution Conditions . . . . . . . . . . .. .. 22

3.2.3  Generating Gating Signals with Minimum Execution Conditions . . . . 29

3.2.4 Generation of Scalar ASIPs . . . .. ... ... ... ... ... 31
3.3 EXperiments . . . . . . ... e e e e 31
3.3.1 Evaluation of Hardware Variation . . . . ... ... ... ... .... 32
3.3.2 Evaluation of Software Variation . . . . . . .. ... ... ... .... 37
34 Conclusion . . . . ... 37
Design of an SoC for Pressure Sensing Capsules in AUM 39
4.1 Requirements for Pressure Sensing Capsules . . . . . .. .. ... ... .... 39
4.2 System OVEIVIEW . . . . . . . o o e e e e e e 40
43 MeSOCOVEIVIEW . . . . v v v it et e e e e e e e e 43
43.1 DesignConstraints . . . . . . . . . . . ... 43
4.3.2 MeSOC Task and Architecture . . . . . . . .. ... ... ... .... 43
43.3 Power Management . . . .. ... ... ... ... ..o 46
4.4 Analog System . . . . . ... e e 46
441 CDC . .. e 47
442 Wireless Transceiver . . . . . . . .. ... ... .. 48
4.5 Digital Architecture . . . . . . ... 50
451 MeDIX-I . .. ... e 50
452 CDCControl . . .. . .. .. 52
453 WirelessModem . . . . .. ... ..o 52
454 PacketFormat . . . ... ... .. ... ... 58
455 ErrorCorrectingCode . . . . .. ... .. ... .. .. ... ... 58
4.5.6 Communication Protocol . . . . . ... ... ... .. oL, 62
4.6 Experimental Results . . . . . . ... .. .. oo 64
4.6.1 SimulationResults . . . .. ... ... L oL 64
4.6.2 ImplementationResults . . . ... ... ... ... ... .. ..... 65
477 Conclusion . . . . . . . L e 71



5 Conclusion and Future Work 73

5.1 Conclusion . . . . . . . . e 73
5.2 Future Work . . . . . . . ., 74
5.2.1 Future Work on the Low Power VLIW ASIP Generation . . . . . . .. 74

5.2.2  Future Work on the Design of an SoC for Pressure Sensing Capsules . . 75






List of Figures

1.1

2.1
22

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
39

4.1
4.2
43
4.4
45
4.6
4.7
4.8
49

A trade-off between flexibility and performance per energy. . . . . . . . .. .. 4
Clock gating. . . . . . . . . . . . 10
Operand Isolation. . . . . . . . . .. ... ... 10
MOD of ADD on RG1 (ADD,RG1).. . . . .. ... ... ... ... .... 16
VLIW ASIPmodel. . . . . ... ... 18
Decoder model of VLIW ASIPs. . . . . . . .. .. .. . . L. 19
Clock gating schemes. . . . . . . . . . . . . . . 23
Converted RCGs. . . . . . . . .. . 24
Unified RCG. . . . . . .. o 25
Constructed datapath. . . . . ... ... ... ... .. 27
Modified decodermodel. . . . . . . ... .. L L oL 29
Area reduction by applying clock gating. . . . . . . ... ... ... ... ... 35
Pressure measurement system and capsules. . . . . .. ... ... ..., 40
The work flow of pressure sensing. . . . . . . . .. .. .. .. ... ...... 41
The work flow of wireless transmission. . . . . . . .. .. ... ... ..... 42
Flow chart of a typical MeSOC task. . . . . . .. ... ... ... ....... 44
Block diagram of the MeSOC architecture. . . . ... ... ... ... .... 45
Asynchronous protocol of CDC. . . . . . . .. .. ... L L. 47
Wireless circuit for the capsule sensor. . . . . . . .. ... ... ... . .... 48
RF signal transmission. . . . . . . . . . . ... L o 49
RF signalreceiving. . . . . . . . . . . . . L 49

X



4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421
4.22
4.23
4.24

Block diagram of MeDIX-1. . . . . ... ... ... ... L. 51
Protocol stack on this SoC. . . . . .. .. ... ... ... ... .. 53
Line codes forthe SoC. . . . . . . . . . . .. . 53
Relationship with BMC, BBMC,and MBMC. . . . . . ... ... ... .... 54
Timing degradation of received signal. . . . . . . ... ... ... .. ..... 55
Packet error rate on jitterrate. . . . . . . . . ... ... 57
Packet format. . . . . . . . .. L 58
MDPC(2M) calculation algorithm. . . . . . . . .. ... ... ... ...... 60
MDPC(28) calculation circuit by using MDPC(24).. . . . . .. ... ... .. 61
Communication timeline. . . . . . . . . ... .. ... 63
Chipmicrograph. . . . . . . . ... . L 66
Photo of an assembled capsule prototype. . . . . . . ... ... ... .. 67
Test environment of CDC pressure sensing. . . . . . . . . .. .. ... .... 68
Pressure readout of CDC. . . . . . . . . . ... .o 68

Test environment of wireless communication. . . . . . . . . . . . . . .. ... 69



List of Tables

3.1
32
33
34

4.1
4.2
4.3
4.4
4.5
4.6

Exampleof Tipp . . . . . . o o o e 21
Power comparison on single-scalar DLX, varying number of pipeline stages. . . 33
Power comparison on VLIW DLX, varying number of parallel issues. . . . . . 34

Power consumption of pipeline registers in 4-slot VLIW ASIP according to

APPEATANCE TALC. . . « .« v v e e e e e e e e e e e e e e e e 36
Useof basebandcoding . . . . . . . . . . .. .. .. ... ... 54
MDPC calculation of 22. . . . . . . . ... ... 59
MDPC calculationof 23 . . . . . . .. ... ... 60
Power consumption of the digital block . . . . ... ... ... ... .. ... 64
Chipsummary . . . . . . . .. .. e 65
Comparison of the pressure sensing systems . . . . . . . . . .. . ... .... 70






Chapter 1

Introduction

Nowadays embedded systems are used to make our daily life useful and safe. Ubiquitous
information systems such as cellular phones, tablet computers, sensor networks, and medi-
cal systems are widely adopted in modern society. Since each application requires a lot of
functions in small size implementation, the design constraints of embedded systems are very
tight. Especially in modern embedded systems, power consumption is the critical problem. For
the systems which require high performance computing, power consumption increases heat
of the systems and makes the design difficult. On the other hand, for the systems which re-
quire portable and small implementation, not requiring high performance, power consumption
increases battery capacity, and makes the system size bigger. There are a various types of re-
quirements for embedded systems and power reduction is the common design challenge for

designers.

Embedded systems are implemented by Application Specific Integrated Circuits (ASICs),
General Purpose Processors (GPPs), or Application Specific Instruction-set Processors (ASIPs).
ASICs can achieve high computation performance with low power consumption, but they have
disadvantage of flexibility: they are cannot reprogrammed after design completion. In contrast,
GPPs can offer flexibility to designers, however, they are not efficient implementation in terms
of performance per energy. On the other hand, as shown in Figure 1.1, ASIPs can meet the
conflicting requirements by means of using application specific instructions. ASIPs offer high

flexibility and high performance per energy at the same time. Therefore ASIP is appropriate
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.

Performance / Energy efficiency

Flexibility

Figure 1.1: A trade-off between flexibility and performance per energy.

architecture to implement embedded systems.

1.1 Embedded System Design with ASIPs

For high performance processor architecture, superscalar processor [1] and Very Long Instruc-
tion Word (VLIW) processor [2] are proposed. Both types exploit Instruction-Level Parallelism
(ILP) to increase Instructions Per Cycle (IPC) performance; however, they have difference in
instruction scheduling mechanism. Superscalar processors fetch multiple instructions at the
same cycle, detect ILP by hardware, and schedule the instructions at execution time. There-
fore, superscalar processors need extra hardware to implement parallel execution. Such extra
hardware increase implementation size and power consumption. On the other hand, VLIW pro-
cessors do not need extra hardware to detect ILP and schedule instructions because instructions

are analyzed by software, and the scheduled instructions are placed on instruction memories in
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advance. Since VLIW processors can perform parallel execution by simple hardware, VLIW is
the suitable architecture for high performance embedded systems.

For small and low power embedded systems, VLIW and superscalar architecture are not
suitable; small scalar ASIPs with a limited instruction set are appropriate. In such systems,
designing small and low power ASIPs is not sufficient to meet the design constraints. By
taking into account the rest of the functional blocks in the system, appropriate implementation
of special instructions is required for low power design. Therefore, the low power ASIP design

for small systems depends on each particular application.

1.2 Design Challenges

To design low power embedded systems with ASIPs is still challenging task for designers.

1.2.1 ASIP Generations with Low Power Technique

When designing VLIW type ASIPs (VLIW ASIPs), or scalar ASIPs, simultaneously satisfying
the tight constraints is required: computation performance, area, and power consumption. For
this purpose, Design Space Exploration (DSE) should be performed to determine the optimal
architecture parameters of ASIPs [3]. One of the main concerns is that DSE is time consuming
task; manually performed DSE decreases design productivity.

For rapid DSE, the automatic ASIP generation methods that achieves significant short design
time have been proposed [4—8]. The generation methods automatically generate ASIPs based
on the specifications described with Architecture Description Language (ADL) [9]. Designers
can flexibly describe architecture with ADL and reduce design time by using architecture gen-
eration. However, the conventional ASIP generation methods place a priority on minimizing
area and delay. For reducing power consumption, it is required to generate ASIPs with low
power techniques.

There are many low power techniques through all design levels. In Register Transfer Level
(RTL), clock gating [10] and operand isolation [11] are familiar. Based on the gating condi-
tions, clock gating cuts off the clock supplies causing unnecessary switching inside the regis-

ters. Operand isolation stops unnecessary switching to temporarily unused blocks in a data path.
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Since an enormous amount of energy is consumed by registers in synchronous circuits [12], the
clock gating appears to be a promising technique for power reduction. Generally, there are
many pipeline registers in the large-scale data path of a VLIW ASIP. Furthermore, the num-
ber of pipeline registers rapidly increases when widening the parallel issue or deepening the
pipeline; thus a large amount of energy is dissipated in the pipeline registers [13]. For this rea-

son, clock gating on pipeline registers is expected to be effective for VLIW ASIP generation.

1.2.2 An SoC for Pressure Measurement Capsule in AUM

Biomedical information sensing has become an essential part of health care systems. Measuring
accurate biomedical information throughout the day is indispensable for diagnosing symptoms.
This thesis deals with pressure measurement capsules for urodynamics as a beneficial specific

application of a small embedded system.

Detrusor pressure measurement is indispensable for diagnosing Lower Urinary Tract Symp-
toms (LUTYS) attributed to underlying causes such as neurogenic bladder, prostatic hyperplasia,
and malignancy. Since the detrusor pressure can be calculated by subtracting the abdominal
pressure from the intravesical pressure [14], the pressures in the urinary bladder and rectum are
simultaneously evaluated by using cystometry [15], which is a major method to measure the
detrusor pressure [16]. However, the results of cystometry tend to fail to reproduce and explain
symptoms because cystometry involves artifacts by means of non-physiological procedures,
e.g., confining patients to a stressful examination room for hours, inserting catheters through
the urethra, and filling the bladder with saline. For better urodynamic study, any artifacts should

be removed.

Ambulatory Urodynamic Monitoring (AUM) has become an established diagnosing method
for LUTS [17]. AUM is expected to reduce artifacts for pressure measurement becuase AUM
releases patients from the stressful environment and investigates the natural activity of the uri-
nary system in daily life. To conduct pressure measurement in AUM, several pressure sensing
systems have been proposed by using catheters or implanting sensing devices. Although these
systems can be used in home, the results are still supposed to contain artifacts. To improve

plausibility of the recorded data, inserting catheters and invasive incision should be removed
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for less-invasive pressure measurement in AUM.

In order to perform AUM, sensing devices must be small capsule form because big sen-
sors make patients feel uncomfortable, or even pain, resulting undesirable artifacts. A small
capsule can be inserted in the bladder and directly measure pressure data. Since insertion is
less-invasive and the inserted capsule does not disturb daily activities, the capsule sensor con-
tributes less-invasive pressure sensing in AUM. Several pressure sensing devices have been
proposed to tackle realizing AUM. However, the proposed sensing devices are too big to im-
plement in a miniature size capsule. The main reason of the big size is due to the multiple chips
on a Printed Circuit Board (PCB). To implement small size pressure measurement sensor for
AUM, a System on a Chip (SoC), which integrates multiple components in a single chip, is an

appropriate solution to the capsule form pressure sensing devices.

1.3 Contributions

This thesis discusses low power embedded system design with ASIP generation for both high-
performance and small applications.

As a low power design for high-performance systems, a low power VLIW ASIP generation
method is described. To apply clock gating to VLIW ASIP generation method is necessary for
low power ASIP design because VLIW ASIPs contain a lot of pipeline registers. Power reduc-
tion by clock gating depends on gating conditions. Extracting the minimum execution condi-
tions is important for reducing power consumption. However, the extraction in a complex data
path is time consuming and error-prone task. The low power VLIW ASIP generation method
automatically extracts the minimum execution conditions in ASIP generation procedures. By
using the minimum execution conditions, the proposed method generates clock gating control
signals and minimizes pipeline register activities.

As a low power design for small systems, the design of an SoC with an ASIP for pressure
sensing capsules for AUM is tackled. By using the ASIP, the SoC is designed as small enough
to implement the pressure sensing capsules which are inserted in the bladder and rectum. The
main tasks of the SoC are: sensing pressure data in the bladder and rectum, receiving commands

and transmitting the data to an outside recorder via wireless link. Designs of sensing system
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framework, capsule implementation, SoC architecture, wireless protocols, digital circuits for
wireless modem, and an ASIP are studied in this thesis. The ASIP design is the main concern of
the SoC. The ASIP in the SoC is very small and pipeline registers are not used in it. Therefore,
although the low power VLIW ASIP generation method described in this thesis is applicable,
it is not effective. Effective implementation of specific instructions is required to contribute

power reduction and small area implementation.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses related work. Chap-
ter 3 describes low power VLIW ASIP generation method by means of extracting minimum
execution conditions. The designs of the pressure sensing capsule and the SoC for AUM are

studied in Chapter 4. Conclusion and future work are described in Chapter 5.



Chapter 2

Related Work

This chapter describes related work of ASIP generation methods, low power techniques and

methods, and pressure sensing systems for AUM.

2.1 Low Power Techniques for Digital Circuits

There are mainly two low power techniques for digital circuit design: clock gating and operand

isolation. Figure 2.1 and 2.2 show clock gating circuit and operand isolation circuits.

Clock gating shuts off redundant clock supplies to flip flops when the output of the flip flips
are not necessary in the following calculation stages. Additionally, clock gating can reduce
power consumption in clock trees if the clock gate can be placed on higher level of the tree.
Although clock gating is the effective low power technique, clock gating has a disadvantage in

layout design; the placed gates make clock tree synthesis difficult because clock skew increases.

On the other hand, operand isolation stops unnecessary signal switchings to combinational
logics. Operand isolation can reduce power consumption if the target combinational logic con-
sumes large energy. However, Operand isolation involves many circuit overheads. The inserted
gates increases size, power consumption, and critical path delay. To use operand isolation, de-

signers have to care the overheads and determine isolation targets to gain net power reduction.

9
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2.2 ASIP Generation Methods

In this section, the overview of ASIP generation method is described, and the issue for applying

clock gating to the ASIPs generated by those method is discussed.

2.2.1 ASIP Generation Methods

In order to automatically generate ASIPs, scalar ASIP and VLIW ASIP generation methods
are proposed [7] [18]. Those methods generate ASIPs with an ADL called Micro Operation
Description (MOD). The MOD describes architecture parameters, port information, using re-
sources, the data flows of instructions. By using MODs, ASIP generation methods automati-

cally construct a data path and a controller. In the generation methods, pipeline registers are
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automatically inserted, and control logic for the pipeline registers are created as follow:
eny, = stallsage,, (2.1)

where p is a pipeline register and stage, represents the pipeline stage number to which p be-
longs. stall,, stands for a condition of a pipeline interlock caused by several situations, e.g.,
structural hazard or multi-cycle operation. When en,, is true, data are stored and calculation ad-
vances to the next pipeline stage, and when en,, is false, pipeline stage stage, is stalled. Since
the aim of conventional VLIW ASIP generation is to design high-speed and small-area ASIPs;

the form of signal (2.1) is simplified as much as possible.

2.2.2 Minimum Execution Conditions

To apply clock gating to pipeline registers in an ASIP, using control signal (2.1) is a trivial
method. By using control signal (2.1) for clock gating, clocks are supplied to all pipeline
registers when the pipeline is not stalled. However, applying control signal (2.1) has less effect
on power reduction because the pipeline rarely stalls in well-optimized VLIW programs. To
reduce power consumption in such cases, it is necessary to consider the fact that a large portion
of the data path is idle during instruction execution even if the pipeline is not stalled. Clocks
must be supplied to only necessary pipeline registers for power reduction.

In order to supply clocks to the only necessary pipeline registers, minimum execution con-
ditions are introduced in this thesis. The minimum execution conditions of a resource are
conditions for clock supply and represented by a set of the instructions which use the resource
for their execution, i.e., the resource is used only when the instructions in the condition are
executed. By using the minimum execution conditions for the control signals of clock gating,
clock supplies are limited to only necessary pipeline registers; therefore, power consumption is
reduced.

Manual extraction of the minimum execution conditions is not practical because it requires a
long-term design period and is error-prone. An automated extraction method of the minimum
execution conditions is strongly required. To automatically obtain gating signals, two major
approaches are known: forward [19] [20] and backward [21]. The forward approach extracts

the gating signals through high-level synthesis processes using high-level architecture infor-
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mation. On the other hand, the backward approach extracts the signals by analyzing low-level
designs. A merit of the backward approach is that it can be widely applied to arbitrary circuits.
However, they need long calculation time and involve large area overhead due to the analysis of
their complex design. Therefore, the forward approach is suitable for VLIW ASIP generation.
Obviously, a forward approach must be designed for each high-level synthesis method. With
respect to the VLIW ASIP generation method, an automated extraction method of minimum

execution conditions is not known yet.

2.3 Automatic Clock Gating Methods

Several automatic clock gating insertion methods and tools are currently available.

Power Compiler [22], which is the most widely known commercial tool, automatically in-
serts gates into the clock lines of registers. However, it does not extract the gating signals of
the registers; that is, the efficiency of clock gating by Power Compiler rests on the shoulders of
designers. Power Compiler forces designers to manually derive the gating signals from com-
plex RTL designs for additional power reduction. Manual extraction of the signals is very time
consuming, because VLIW ASIP contains several hundred pipeline registers; it is not suitable
for design space exploration. Automated extraction of the gating signals is strongly required.

A clock gating method based on finite state machines [19] [23] extracts the gating signals of
registers by analyzing the finite state machines. To use this method, the circuit must obviously
contain the finite state machines and be feedback-free pipelines. Since the finite state machines
are not suitable for pipeline processors, it cannot be applied to VLIW ASIP generation.

A clock gating method based on the Observability Don’t Care (ODC) [21] can derive the
gating signals of registers by ODC calculation. At present, this approach appears to be the most
powerful clock gating method because of its high scalability and applicability. Unfortunately,
ODC calculation takes too long time to completely apply such large-scale circuitry as VLIW
ASIPs. To complete the calculation in practical time, a calculation time limit is introduced in
the method. In addition, ODC-based clock gating extraction causes an enormous area overhead
due to duplicating the circuits to create gating signals. A more suitable extraction method is

still required to calculate the minimum execution conditions for VLIW ASIPs.
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2.4 Urodynamic Monitoring Systems

The pressure monitoring systems for AUM must be small for less-invasive measurement, and
the system must not make patients feel pain, or even discomfort.

To conduct pressure measurement in AUM, several pressure sensing systems using transurethral
catheters have been proposed [24-27], Although these systems can be used in home, the results
are still supposed to contain artifacts because the catheters adversely affect the test results [28]
and limit patient’s mobility. To improve plausibility of the recorded data, catheters should be
removed for less-invasive pressure measurement in AUM.

Several pressure sensing systems which do not use catheters have been proposed [29-31].

The system in [29, 30] implants a capsule in the bladder and transmits data. Although the
system requires incision, it could be used in the less invasive tests because the capsule is suf-
ficiently small to be inserted in the bladder through the urethra. However, the system cannot
simultaneously measure multiple pressure in the body because the system does not support
multiple wireless communication. To correctly perform AUM, pressure data at multiple lo-
cations must be measured at the same time. Therefore, these systems are not enough to use
pressure sensing for AUM.

The balloon-type remote bladder pressure sensor reported in [31] can measure and transmit
the bladder pressure every five minutes. However, the balloon is difficult to employ in AUM

because of its size, power consumption, time resolution, and wireless functionality:

e Since diameter of the balloon is 25 mm, invasive incision is supposed to be necessary to

implant the balloon.
e Collecting data every five minutes is too coarse to capture the rapid transition of pressure.

e Unidirectional wireless communication is inconvenience for the quality control, commu-

nication control for the multiple capsules, and research and development of the capsules.

Especially, the size of the balloon becomes an big obstacle for the less-invasive system. The
large size of the balloon is due to multiple chips on a PCB. The multiple chips needs large
implementation area as well as many batteries for high power consumption. Accordingly, the

most important technical issue to downsize the capsule is to integrate almost system in one
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chip. A small-area and low-power SoC is strongly required to design such miniature capsules

for AUM.



Chapter 3

Low Power VLIW ASIP Generation
Method

This chapter describes a VLIW ASIP generation method to generate low-power VLIW ASIPs
by automatically extracting minimum execution conditions for clock gating. The proposed
method extracts the conditions of pipeline registers based on the forward approach using MOD
[7], which specifies the high-level architecture of a VLIW ASIP. By employing the MODs,
the proposed method can extract the minimum execution conditions of the pipeline registers

through the VLIW ASIP generation processes, analyzing neither RTL descriptions nor netlists.

3.1 Basic of VLIW ASIP Generation

A VLIW ASIP is generated based on MODs and a VLIW ASIP model [18] [8]. In this section,
MODs, the VLIW ASIP model, and the VLIW ASIP generation flow are described.

3.1.1 Micro-Operation Description

The architecture of a VLIW ASIP is specified with MODs. An MOD is identified as a pair
of an operation ope and a resource group rg: m = (ope,rg). A set of all MODs specified
by designers are represented by M. The MOD specifies the architecture of operation ope that

is executed on resource group rg. An operation is a minimum executable unit such as an

15
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P HH TN
— h Stagel
wire [31:0] reg1; PC
wire [31:0] reg2; data
wire [31:0] sum;
stage 1: { IR;I]IE?VI
wire [31:0] cur_pc; data
wire [31:0] inst_word; ¢
cur_pc = PC.read(); datain
inst_word = IMEM.read(cur_pc); |  crccrecteev IR
IR.write(inst_word); Stage2 rsrt rd
b
read0 readl
stage 2: {
regl = GPR.read0(rs); GPR
reg2 = GPR.read1(rt); dout0 doutl
}, ............ .
Stage3 f t
stage 3: { ADDO
sum = ADDO.add(regl, reg2); result
}; ........................
stage 4: { Staged
}, ...................... .
Staged
stage 5: { \A
GPR.write(rd, sum); g’I’DF‘é"SG'
b

Figure 3.1: MOD of ADD on RG1 (ADD, RG1).
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arithmetic operation, and a resource group is a set of hardware resources necessary for the
operation. The architecture specified by an MOD can be converted to a Resource Connection
Graph (RCG), which represents the data path of the corresponding operation in the form of the
connections of resource ports.

Figure 3.1 is the example of an arithmetic addition described as the MOD of operation ADD
on resource group RG1 = {PC, IMEM, IR, GPR, ADDO0}, where PC, IMEM, IR, GPR, and
ADDO are hardware resources. In Fig.3.1, the left side description is the MOD of ADD on
RG1, and the right side diagram is the corresponding RCG. In Fig.3.1, the two pieces of data,
regl and reg2, from register file GPR at stage 2 are sent to adder ADDO at stage 3, and then
the output is stored in the GPR at stage 5. Signals rs, rt, and rd stand for register indexes
from instruction register IR. IMEM is a memory accessing unit that fetches VLIW instructions
indicated by the address data from the program counter PC. In this way, the MOD contains
not only connection information, but also such high-level architecture information as resource

function and purpose.

3.1.2 VLIW ASIP Dispatching Model

Describing the dispatching behavior is the main concern of the VLIW ASIP specification. To
handle this issue, the dispatching pattern of the VLIW ASIP is modeled as following three con-
cepts: a slot, an operation group, and a resource group. Designers can specify the dispatching
rule of the VLIW ASIP by slots, operation groups, resource groups, and their relations.

Slots are parallel dispatching units of the VLIW ASIP. One operation can be dispatched from
a slot in one clock cycle.

Let slot_num be the number of slots, O be a set of all operations, and ope,, € O be an oper-

ation dispatched from n-th slot, a VLIW instruction inst is composed of multiple operations:

inst = (0]9617 opeész, opes, ..., Opeslot,num) (31)

Note that single-scalar ASIP corresponds to a one slot VLIW ASIP; our method can also deal
with both single-scalar and VLIW ASIPs.
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Slots
slot1|slot2|slot3| @ ®@ @
/ \ Resource Groups
‘Res1‘ ‘ Res2 ‘ ‘Res1‘ ‘ Res2 ‘ ‘Res4‘ ‘ Resb ‘ ‘Res7‘ ‘ Res8 ‘

W

[ RGALUO | [ RGALU1 | [ RGMUL | [ RGMAC |
OG1 0G2 OG3 0G4 o oo

Operation Groups

Figure 3.2: VLIW ASIP model.

Let RG be a set of all resource groups and R is a set of all resources, resource group rg € RG
is a set of hardware resources: rg C R.

The relation between slots and resource groups: RSR is

RSR ={(s,rg)|1 < s < slot_ num,rg € RG}. (3.2)

Pair (s, rg) represents that the operations dispatched from s-th slot are executed on rg.
Let OG be a set of all operation groups, an operation group og € OG' is a set of operations:
og C O.

The relation between a resource group and an operation group: RRO is

RRO = {(rg,09)|rg € RG,09 € OG}. (3.3)

Pair (rg,0g9) € RRO indicates that the operations categorized in og can be performed on rg.

As specification, the number of slot slot_num, operations O, resources R, resource groups
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Instruction register

( Slot OG decoder ) (Opecode decoder )
Dec, ,, Dec,,
Pattern decoder y y
( ) (Resource control logic )—» Data path resources
InstPattern , ]
Resource group ) Acty,,
active logic )
Data path feedback

¢ - Stall =en, — -
(Interlock logic )—» Pipeline registers

Figure 3.3: Decoder model of VLIW ASIPs.

RG, operation groups OG, the relation between slots and resource groups RSR, and the rela-
tion between a resource group and an operation group RRO are given by designers.

Figure 3.2 illustrates a model of a VLIW ASIP. In Fig.3.2, the operations categorized in
operation group OG1, which can be performed on resource groups RG_ALUO and RG_ALUI,

can be simultaneously issued from slots 1 and 2.

3.1.3 VLIW ASIP Controller Model

The decoder model of VLIW ASIPs is shown in Fig.3.3. To calculate the control logic for data
path resources, Dec,,. and Actv,, are needed.

Dec,yp, of operation ope is decode logic on opecode. Dec,,. is calculated as

true  if Jope,, € inst, codeyy. = code,ye,
Decpe(inst) = (3.4)

false otherwise,

where code,,. is the function that returns the opecode of ope and VLIW instruction inst is

stored in the instruction register.
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To dispatch operations to appropriate resource groups, the controller calculates Dec 4,
InstPattern,, and Actv,,. Dec, o4 is the decode logic indicating that the operation dispatched

from s-th slot belongs to og € OG:

Decs o4(inst) = \/ Decype(inst) N Exist(rg, ope), (3.5)

(s,rg) € RSR
ope € og

true if 3(rg,og) € RRO, ope € og
Ezist(rg, ope) = ( ) (3.6)

false otherwise.

In order to activate the appropriate resource groups for the dispatched instruction, pattern

detecting logic InstPattern, (inst) is calculated:

InstPatterny,(inst) = /\ Dec 4(inst), (3.7

Tipp, € Tipp

(s;rg,09) € Tipp,,

where T7pp 1s the table of instruction dispatching patterns calculated by the algorithm proposed
by Kobayashi, et al. [8] [18], and T} pp, is the n-th entry in T7pp. Dispatching pattern 77pp, can
be described as a set of (s, g, 0og) which indicates that the operations in og can be dispatched
from s-th slot and executed on rg.

An example of Tjpp is shown in Table 3.1. InstPattern,(inst) indicates that the pattern
of dispatched instruction inst. For instance, following Table 3.1, when InstPatterns(inst)
is true, the pattern of inst is (OG2,0G2,0G2,0G2) and the corresponding resource groups
which execute inst are (RG5, RG2, RG3, RG6).

Actv,4 s an activation logic of resource group rg:

Actv,g(inst) = \/ InstPatterny,(inst). (3.8)

Tpp, € Tipp

(s,7g,09) € Trpp,,
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Table 3.1: Example of T1pp

n | Istslot | 2nd slot | 3rd slot | 4th slot

1| OGl 0G2 OG3 0G4
RG1 RG2 RG3 RG4
2] 0G2 0G2 0G2 0G2
RG5 RG2 RG3 RG6
31 0Gl1 0Gl1 0G3 0G4
RG1 RG7 RG8 RG4

According to the pattern of VLIW instructions, the assignments of operations to appropriate

resource group are controlled by Actv,,.

Resource control logic is calculated by using Dec,,. and Actv,,. On the other hand, the
control logic for pipeline registers is calculated only with feed back signals from data path.
However, such control incurs unnecessary activation of pipeline registers. As a result, the

pipeline registers dissipate unnecessary power.

3.1.4 VLIW ASIP Generation Flow

VLIW ASIP generation consists of two parts. The first part is data path construction that
consists of four procedures: RCG conversion, RCG merging, signal conflict resolution, and
pipelining. First, RCGs are converted from MODs. Second, all RCGs are combined by RCG
merging to construct a prototype of the data path. Third, multiplexers are inserted, and finally,
pipeline registers are inserted into appropriate locations. At each procedure, the generation
method retrieves execution conditions that are used to generate steering signals and resource
control signals in the second part. The second part is controller construction. The control sig-
nals for the resources in the VLIW ASIP are generated using the execution conditions obtained

in the previous data path construction part.
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3.2 Low-power VLIW ASIP Generation

In this section, the low-power VLIW ASIP generation method is proposed. First, the inser-
tion of gating circuits is discussed, then, the extraction of minimum execution conditions is

proposed.

3.2.1 Insertion of Gating Circuits

Due to the power overhead of the gating circuit, inserting one gating circuit before a few flip
flops is ineffective; to increase the clock gating impact, one gating circuit must be shared by as
many flip flops as possible. Such shared gating circuits reduce not only the power overhead of
the gating circuits but also the power consumption of the clock trees at the same time. In clock
tree synthesis, the shared gating circuit can be placed on the upper level of the clock tree. The
proposed method also follows this basic insertion strategy.

Additionally, as mentioned in [10] and [32], selecting gating circuit schemes is crucial to
increase circuit stability and to decrease implementation overhead. As shown in Fig. 3.4, the
gate based (a) and flip flop based (b) schemes are mainly used. Gate based scheme is low
overhead, but cannot stop glitches from gating signals, and the flip flop based scheme has
overhead of gating signal latch, but can stop glitches. Despite its area and power overhead, the
proposed method adopts the flip flop based gating scheme because it can block glitch noises

that cause incorrect register activation.

3.2.2 Extraction of Minimum Execution Conditions

In this section, a formal extraction method of minimum execution conditions of the pipeline
registers is proposed in the following four data path construction procedures.

3.2.2.1 RCG conversion

Resource Connection Graphs (RCGs) are generated from MODs. An RCG is represented by
directed graph G, = (R, E\) where m = (ope,rg) is an identifier of an MOD, R,, is a
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Gating signal Gated
— P Gating CLK

—p| circuit

CLK
/ \
/ \
/ \
__________ .
: : : Latched :
. . . . i onal
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(a) Gate based (b) Flip flop based

Figure 3.4: Clock gating schemes.

resources used by m, E,, = {(0,i)|o,i € P} is a set of data transfers used by m, pair (0, 1)
represents a data transfer from output port o to input port ¢, and P is a set of all resource ports.
A set of execution conditions C'ond, for each data transfer e € F,, is retrieved in the RCG

extraction. C'ond, is described as

Condeeg,, = {(ope,rg) | m = (ope,rg)}. (3.9)

Cond. denotes that data transfer e is executed when operation ope on resource group rg is
dispatched.

Figure 3.5 shows an example of extracted RCGs. For clarity, the ports of the RCGs and
Stagel are omitted. In the example, the three RCGs correspond to ADD on RGy, SUB on
RG9, and ANDI on RGj, respectively. GPR, IR, EXT, ALUI1,and ALUZ2 are the resources,
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ADD on RGT1 SUB on RG2 ANDI on RG3
Stage?
GPR GPR GPR IR
ell [e2 ed | [ e5 \
Stage3 Yy Vv Yy V o7 K _€eo
ALU1 ALU2 EXT
e9
ALU1
Stage4 el eb el0
Stageb Y Y Y
GPR GPR GPR

Figure 3.5: Converted RCGs.

and the edges labeled el to €10 are the data transfers. Here, sets of the conditions for the data

transfers in Fig.3.5 are retrieved in the form of Eq.(3.9) as follows:

C’ondel == { ADD,RGl)}, C’ondeg == { ADD,RGl)},
Condes = {(ADD, RG1)}, Condeq = {(SUB, RG2)},

( (

( (
Condes = {(SUB, RGy)}, Conde = {(SUB, RGy)},
Conde; = {(ANDI, RG3)}, Condes = {(ANDI, RG3)},
( (

Condeg = { AND[,RGg)}, Condelo = { AND[,RGg)}.
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Figure 3.6: Unified RCG.

3.2.2.2 RCG Merging

After all MODs are converted, they are merged into a unified RCG G’ = (R, E’). R and F’

are calculated as follows:

where M is a set of all identifiers of MODs consisting of the VLIW ASIP. Since data transfers
E,, are merged into E’, conditions C'ond, of all extracted RCGs are also merged. The new

conditions of data transfers C'ond,, are calculated as

Condyep = U Cond,. (3.10)

VYmeM Ne€E,y, e’ =e

The three operations in the example in Fig.3.5 are merged into the unified RCG illustrated as

Fig.3.6. The conditions of data transfers €'l to ¢'8 are newly calculated as follows:
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Cond.,, = {(SUB, RGa)}, Cond., = {(SUB, RG2)},
Cond.,s = {(ADD, RG:), (ANDI, RG5)}, Cond.,, = {(ADD, RG1)},
Cond.,s = {(ANDI, RG3)}, Cond.,s = {(ANDI, RG5)},
Cond.» = {(SUB, RG2)},

Cond.,s = {(ADD, RG1), (ANDI, RG3)}.

The unified RCG is the prototype of the data path. Then multiplexers and pipeline registers

are inserted in the following procedures.

3.2.2.3 Signal Conflict Resolution

Multiplexers are inserted in order to resolve signal conflicts occurring in unified RCG G’ such
as €7 and €'8 in Fig.3.6. The RCG in which the multiplexers are inserted is described as
G// — (R// E//>.

A multiplexer is inserted before an input port, which is the multiple destination of some data

transfers. Here, a set of edges conflicting at identical input port 2: £ C1; is described as
ECI; ={(d,i)|d e P ieP (J,i') e F' i =i} (3.11)

Since the multiplexers are inserted, the signal connections change. The conditions of data
transfers E” should be calculated, too. A set of the conditions of data transfer ¢/ € E” is

described as follows:

(
!/ s "
UV@IGECIdestF,, Conde/eE/ lf (& E EMR,

Cond.,,
Cond', = e (3.12)

such that dest, = dest.» if e''e Eru,

Cond,, . suchthat ¢ =¢€”  otherwise,
\

where dest, is a destination port of data transfer e, F'yp is a set of data transfers that connect a

multiplexer to a resource, and E), is a set of data transfers selected by a multiplexer.
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Stage?
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Stage3 L\
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Figure 3.7: Constructed data path.

3.2.2.4 Pipelining

For pipelining G”, pipeline registers are required for data transfers that cross pipeline stage
boundaries. The RCG in which the pipeline registers are inserted is described as G". The
location of a pipeline register p = (0, n) can be described as a pair of output port o and stage
number n where the pipeline register is placed because one pipeline register is shared by several

data transfers from o. A set of edges connected to identical output port o: £CO, is
ECO, ={(",i") | d",i" € P, (¢",i") € E", 0" = o}. (3.13)
In ECO,, a set of data transfers crossing stage boundaries £ECOX, is

ECOX, ={(d,i) | stagey < stagey,for all (o',i') € ECO,}, (3.14)
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where stage, represents the pipeline stage number to which port = belongs.
In G”, a set of data transfers crossing stage boundaries is

Elposs = |J ECOX,. (3.15)

o€ Pout

Finally, a set of pipeline registers P REG is obtained as

PREG = U {p|p = (0,n), stage, < n < stage;}. (3.16)
(0:0)€EGRoss

Figure 3.7 depicts the data path after inserting multiplexers MUX and pipeline registers PREG
in the unified RCG in Fig.3.6. Pipeline registers PREG1 to PREG7 are inserted in the appro-
priate points.

Here, the execution conditions of the inserted pipeline registers are calculated. The execu-
tion conditions for the pipeline registers are derived from the conditions of the data transfers
calculated by Eq.(3.12). Since the pipeline registers are shared by some data transfers, a set of
execution conditions £'C), of pipeline register p = (o0, n) is calculated as

EC, = U Condy, ;. (3.17)
p=(o,n), (0,i)€ECOX,

EC, is a set of m = (ope,rg) such that ope dispatched to rg requires p for execution. Let

G!" C " be anecessary data path for executing m and PREG,,, € G be a set of the pipeline

registers that is required for execution by ope dispatched to rg, extracted £'C), can be also

described as:
EC,={m|me€ M,p € PREG,,}. (3.18)
For the pipeline registers in Fig.3.7, execution conditions £'C), are calculated as follows:

ECprec1 = {(SUB, RG»)},

ECprpce = {(SUB, RG2)},

ECprpas = {(ADD, RGy), (ANDI, RGs)},
ECprpcy = {(ADD,RG1)},
ECprEGs = {(ANDI, RG3)},

ECprece = {(ADD, RG1), (SUB, RG2), (ANDI, RG3)},
ECprpay = {(ADD, RGY), (SUB, RGs), (ANDI, RG3)}.
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Figure 3.8: Modified decoder model.

Thus the execution conditions for pipeline registers are calculated. In the next section, cre-

ating gating signals for pipeline registers is discussed.

3.2.3 Generating Gating Signals with Minimum Execution Condi-

tions

To suppress the unnecessary activations of pipeline register p, a new control signal en,, with

additional logic AL, is introduced:

en,(inst) = stallsage, N ALp(inst), (3.19)
AL, (inst) = \/ Decgpe(inst) N Actvyg(inst), (3.20)
m € EC)

(ope,rg) =m
where EC,, is the derived execution condition in Eq.(3.18). The modified decoder model of

VLIW ASIP with AL, is shown in Fig.3.8.
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Here, correct execution is defined as that the execution result of an operation on the VLIW

ASIP generated by the proposed method is same as that by the traditional method.

Theorem 1. VLIW ASIPs clock-gated with en;, guarantee correct execution.

Proof. The new logic en;, does not prevent the data flow in 7 because every pipeline register
p € PREG,, is activated when m is dispatched. Therefore, the execution result of the VLIW
ASIP by the proposed method is same as that by the traditional method, i.e., correct execution

is guaranteed. [

Theorem 2. Let a minimum execution condition be an execution condition such that removing
one element from the execution condition causes incorrect execution of the generated VLIW

ASIP, execution condition Eq.(3.18) is minimum.

Proof. Consider that any m € EC), is removed, p is not activated when m is dispatched.
However, this removing causes incorrect execution because p € PREG,,. Hence, EC), in

Eq.(3.18) is the minimum execution condition. [l

Using execution condition EC}, 2 FEC, for Eq.(3.20) can correctly execute operations.
Therefore, the traditional VLIW ASIP generation method constantly deals with EC} as EC), =
M for all p. This generation strategy results in reducing area and delay because AL, can be

constantly treated as true.

Using Eq.(3.19), the gating signals of the pipeline registers in the VLIW data path illustrated

in Fig.3.7 can be calculated as follows:
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en'prpci (inst) = stally A {Decgyp (inst) A Actvrg, (inst)},
en'prpce(inst) = stally A {Decsyp(inst) A Actvrg, (inst)},
en’prpas(inst) = stally A {Decapp(inst) A Actvgrg, (inst)
VDecanpr(inst) A Actvrg,(inst)},
en’prpaa(inst) = stally A {Decapp(inst) A Actvgrg, (inst)},
en'prpcs(inst) = stally A {Decanpy(inst) A Actvrg, (inst)},
en’prpae(inst) = stalls A {Decapp (inst) A Actvrg, (inst)
VDecgyp(inst) A Actvpa, (inst)
VDecanpr(inst) A Actvrg,(inst)} .
en’prpar(inst) = stally A {Decapp(inst) A Actvgra, (inst)
VDecgyp(inst) A Actvga, (inst)

VDecanpr(inst) A Actvrg,(inst)} .

3.2.4 Generation of Scalar ASIPs

Scalar ASIPs correspond to the special case of VLIW ASIP: single slot, single resource group,
and single operation group. Therefore, the proposed method can be easily applied to generation

of scalar ASIPs.

3.3 Experiments

Two experiments were carried out using the integer subset of DLX [33] [34] to confirm the
effectiveness of the proposed method.

For each experiment, the following three types of ASIPs were generated:
NCG: Not clock gated VLIW ASIPs by the traditional generation method

PC: VLIW ASIPs clock gated by Power Compiler
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PM: VLIW ASIPs generated by our proposed method.

Note that clock gating was only applied to the pipeline registers in the data path of the gen-
erated VLIW ASIPs. The generated ASIPs were synthesized using Design Compiler under a
minimizing area constraint and physically synthesized by IC Compiler using a 0.18um CMOS
technology library operating on 1.8 V.

Programs were randomly generated based on the appearance rate of each instruction. The
appearance rates of the instructions in a compiled program are a much more dominant factor
than the instruction sequence in the case of using clock gating. Therefore, the characteristics
of the programs were modeled as appearance rate in this experiment. For instance, a low IPC

program can be modeled as a high NOP appearance rate.

3.3.1 Evaluation of Hardware Variation

In the first experiment, both single-scalar and VLIW type ASIPs were generated. The single-
scalar type ASIPs were extended with Multiply ACcumulate (MAC) instruction by varying the
pipeline depth from two to seven stages. The VLIW type ASIPs were designed on a single-
scalar ASIP of five stages and homogeneously expanded to two, four, and six slots. Note
that the 2-slot processor contains 65 pipeline registers, the 4-slot processor 124, and the 6-slot
processor 183; they are large-scale designs. In this experiments, the appearance ratios of the
program are as follows: load/store are 30%, multiplication is 3.5%, division is 1%, branch/jump
are 5%, and integer instruction is 60.5%. These rates were determined by reference to the
analysis report of the compiled SPEC benchmarks for MIPS processors [35]. All cache access
were assumed to hit in this experiment.

Note that applying Power Compiler to PM did not affect the circuits because Power Compiler
does not insert clock gating into the already gated registers. All pipeline registers of PM are
already clock gated by the proposed method.

The experimental results are shown in Table 3.2 and Table 3.3. The results show the area,
delay, and power comparison of the generated ASIPs. Slot # and the pipeline depth are the

number of parallel issues and the pipeline depth, respectively. Total power is the power con-
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Table 3.2: Power comparison on single-scalar DLX, varying number of pipeline stages.

Pipeline Total Pipeline Clock
depth Type Area Delay power  registers Delta tree Skew
[pm2] [ns]  [#W/MHz] [pW/MHZ] [%]  [#W/MHz] [ps]
3 NCG | 445255 20.09 169.1 17.4 32.8 46
PC 440625 20.09 147.3 85 -513 30.7 88
PM | 441330 20.43 146.5 3.1 -78.2 27.8 137
4 NCG | 446785 17.34 179.0 25.3 333 62
PC 440632 17.50 163.7 16.1 -36.6 30.6 105
PM | 442388 15.57 153.3 6.6 -73.9 304 106
5 NCG | 451319 17.33 185.8 31.5 34.9 67
PC 443782 15.57 169.1 22.8 -27.6 32.2 84
PM | 447188 15.57 155.3 82 -739 29.8 109
6 NCG | 512422 12.10 239.3 63.2 44.0 74
PC 496831 12.06 209.7 484 -233 38.6 107
PM | 503537 12.06 174.4 12.1 -80.9 324 113
7 NCG | 526083 12.10 250.1 68.0 44.9 68
PC 510137 12.06 218.7 49.2 -27.6 41.4 96
PM | 517711 12.06 183.5 124 -81.7 346 104
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Table 3.3: Power comparison on VLIW DLX, varying number of parallel issues.
Total Pipeline Clock
Slot # | Type Area Delay power  registers Delta tree Skew
[nm2] [ns]  [pW/MHz] [pW/MHz]  [%] [pW/MHz]  [ps]
1 NCG | 451319 17.33 185.8 31.5 349 67
PC 443782 15.57 169.1 22.8 -27.6 32.2 84
PM 447188 15.57 155.3 82 -74.0 29.8 109
2 NCG | 651106 12.06 300.7 97.9 54.1 100
PC 625762 12.06 262.1 80.3 -18.0 669 112
PM 631341 12.06 193.5 11.2 -88.6 38.3 123
4 NCG | 1074753 12.02 462.1 179.4 87.0 117
PC 1029118 12.07 395.5 1524 -15.1 81.4 140
PM | 1038249 12.07 265.8 20.8 -88.4 52.3 116
6 NCG | 1596043 12.08 659.3 263.6 118.9 78
PC 1530117 12.12 553.0 2334 -11.5 110.5 114
PM | 1544843 12.14 350.9 35.1 -86.7 639 133
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Figure 3.9: Area reduction by applying clock gating.

sumption of all circuits, and Pipeline registers stands for the power breakdown by the pipeline
registers. Delta is the ratio of the power reduction compared to NCG. Clock tree is the power

breakdown of the clock trees, and Skew is the global clock skew of the ASIPs.

As observed in Table 3.2, the power consumption of the pipeline registers of PM is reduced
approximately 80% compared to NCG in every case, and PC is reduced approximately 35 %.
In addition, the power consumption of every clock tree also decreased. The same trend is
observed in Table 3.3. These results show that the proposed method shuts off more redundant

clock supplies than the clock gated VLIW ASIPs by Power Compiler.

Area reduction (from NCG to the others) is confirmed because the multiplexers inside the
registers are removed. As shown in Fig 3.9, multiplexers are removed and a clock gate is in-
serted. In general, an N-bit register needs N multiplexers, and once clock gating is applied,
multiple multiplexers are replaced by one clock gate because the flip flops in a register shares

one clock source. Therefore, implementation area is reduced when clock gating is applied.
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Table 3.4: Power consumption of pipeline registers in 4-slot VLIW ASIP according to appear-

ance rate.
Case | Int. Multi Load/ NOP Citrl. Power
Cycle store [«W/MHz]

[%] [%] [%] [%] [%] | NCG PC PM
1 60.5 4.5 30 0 51201.2 197.0  49.8
2 90 0 5 0 51264.8 278.1 126.7
3 70 0 5 20 512469 265.9 1034
4 50 0 5 40 512413 262.1 85.9
5 84 6 5 0 51 190.4 1659 383

Area reduction is an innate advantage of clock gating. On the other hand, negligible area over-
heads occur owing to the implementation of the minimum execution conditions (from PC to
PM). The area overhead reflects the increase of operators in Eq.(3.19). Compared to Eq.(2.1),
Eq.(3.19) has more operators and terms to implement minimum execution conditions. Nev-
ertheless, the overheads are small. This is because the extra terms in Eq.(3.19) also exist in
the VLIW ASIPs generated by the traditional VLIW generation method; therefore they do not

affect the overheads. The extra operators only result in small area overhead.

Critical delay overheads are confirmed to be negligible. Besides being an innate disadvantage
of clock gating, clock skew increases in almost cases. Though the skew increases, the difference
of skew between PC and PM is small. The skew results suggest that the proposed method has

less extra effect on the clock skew.

For all the ASIPs, the overheads of the calculation time by the proposed method are within
several seconds on a workstation operating on 3 GHz using 4 GB memory. This shows that
the proposed method has little extra computational overhead compared to the traditional VLIW

ASIP generation.
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3.3.2 Evaluation of Software Variation

In the second experiment, to confirm the impact of various programs on the power consumption
of the pipeline registers, the appearance rates of the integer, multi-cycle, load/store, No OPer-
ation (NOP), and control operations were varied on the 4-slot VLIW ASIP. The multi-cycle
operations include multiplication and division, which take 32 cycles to finish operation.

Table 3.4 shows the results of the five cases. The differences of power reduction are due to
the differences of data path utilization in each program.

With respect to PC, the power consumption is increased from case 1 to 2 because no multi-
cycle operations were issued. This is because PC cannot reduce power consumption when no
multi-cycle operations are issued. In case 2, 3, and 4, the power overhead by the gating circuit
is just accumulated from NCG to PC. The combination of the traditional VLIW generation
method and Power Compiler worsens power consumption in such cases. By increasing multi-
cycle operation in case 5, power consumption of both PC and PM are reduced because pipelines
are stalled.

PM achieves substantial power reduction, as shown in Table 3.4. In cases 2, 3, and 4, power
consumption decreased, although no multi-cycle operations were issued, showing that gating
condition generated by the proposed method stopped unnecessary clock supplies while the
pipeline was not stalled. Power consumption decreased while the NOP rate increased because
NOP did not activate any data path modules.

The proposed method can reduce the power consumption of any programs because even a

well optimized program contains the unused registers.

3.4 Conclusion

In this chapter, a low-power VLIW ASIP generation method is proposed. The proposed method
automatically extracts the minimum execution conditions of the pipeline registers in the gen-
erated VLIW ASIPs and shuts off the excess clock supplies to the pipeline registers by clock
gating. The experimental results showed that the power consumption of the pipeline registers
in the VLIW ASIPs generated with the proposed method was reduced about 80% compared to
the VLIW ASIPs that were not clock gated, and about 60% compared to the VLIW ASIPs that
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were clock gated by Power Compiler with negligible delay and area overhead.



Chapter 4

Design of an SoC for Pressure

Sensing Capsules in AUM

In this chapter, the design of pressure sensing capsules for AUM is described. The almost
functions of the capsules are integrated in an SoC: Medical SOC (MeSOC). The MeSOC is
designed with an ASIP: MeDical Instruction-set eXtension type I (MeDIX-I).

First, technical requirements for pressure sensing capsule are clarified, and the pressure sens-
ing system and the capsule are described. Secondly, the design of the MeSOC is described.

Then, the designs of the digital systems, including MeDIX-I, are described.

4.1 Requirements for Pressure Sensing Capsules
Many reports in urodynamics suggest the requirements for pressure sensing devices. The tech-
nical requirements for the instruments in AUM are summarized as follows:

e To record the detrusor pressure, the pressure data of the bladder and rectum must be

measured simultaneously.

e For less invasive tests, the instruments must be sufficiently small to pass through the

urethra, the outer diameter of which is about 6.5 mm.

e The capsule should continuously operate for at least 72 hours to enable the investigation

of irregularly occurring symptoms [36] .

39
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Figure 4.1: Pressure measurement system and capsules.

e To create urinary diary, the pressure data can be self-monitored or automatically recorded

[37].

e According to the International Continence Society (ICS), a pressure range of 0-225

mmHg is necessary for correct measurement [38].

e For quality control, the instruments require calibration in the body before measurement

starts [16].

e For the same reason, the minimum time resolution required for recording is 15 Hz to
carry out cough tests [38]. Coughs should be recorded to ensure that abdominal and

intravesical pressures respond equally [16].

4.2 System Overview

In order to satisfy the strict requirements shown in Section 4.1, the less-invasive pressure sens-

ing system with tiny capsules is presented in this section. Figure 4.1 shows the biotelemetry
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Figure 4.2: The work flow of pressure sensing.

system with two capsules. To record pressure data, the tiny airtight capsules are inserted into
the bladder and rectum. The capsules communicate with a portable recorder attached on the
body and transmit data as the patient goes about his/her daily life. The capsule consists of four
components as shown in Fig. 4.1: a communication coil, a battery, a MEMS capacitive pressure
sensor [39], and the MeSOC. The MeSOC integrates the digital converter for the MEMS sen-
sor [40], which is called Capacitance-to-Digital Converter (CDC), a wireless transceiver [41],
and a digital system based on the MeDIX-I.

Work flows of the capsule are shown in Fig. 4.2 and 4.3. As shown in Fig. 4.2, to perform
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pressure sensing, the MEMS sensor in the capsule measures the bladder and rectum pressure.

The CDC in the SoC reads the MEMS capacitance and outputs the digital value of raw pressure

data. Then the digital system calibrates the raw data and stores them in the memory.

As shown in Fig. 4.3, to perform wireless transmission, the digital system reads the stored

pressure data and creates packets for wireless transmission. Then the digital system serializes

the packets. The transceiver converts the serialized packets to electrical pulses, and the data are

transmitted by using the coil in the capsule.

Since the CDC and transceiver have already been proposed, the main design challenges in

this thesis are the integration of all components in a single chip and the design of the digital
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system. First, all the components in the system must be integrated under the tight constraints
of a chip size of no more than 2.5 x 2.5 mm? to fit the capsule, and of operation time at least 72
hours powered by a tiny single battery. Secondly, a low-power digital system with the MeDIX-I
must be designed. Since the wireless protocol is complex and must be programmable for fur-
ther development in vivo, the instruction extension for wireless communication of MeDIX-I is
important. Additionally, the MeDIX-I contributes to the low-power design by means of special
instructions for wireless communication and sleep, because the special instructions reduce the

operation frequency and computation time of the MeSOC.

4.3 MeSOC Overview

In this section, design constraints, a task flow, and the power management system of the

MeSOC are described.

4.3.1 Design Constraints

Strict design constraints should be cleared for the design of the digital system. The MeSOC
size is limited to 2.5 x 2.5 mm?. The energy capacity of the adopted battery (SR421SW) is 12
mAh at 1.55 V in ideal conditions, i.e., the battery provides 166.6 A for 72 hours. Actually,
our prior experiments on this battery indicate that this battery actually can provide up to 150
(A for 72 hours at 1.55 V. Assuming the analog system consumes 57 A, power budget of the

digital system is under 93 pA.

4.3.2 MeSOC Task and Architecture

The typical task of the MeSOC is shown in Fig. 4.4. First, the analog system in the MeSOC
is initiated with wireless power supply. In wireless power mode, the frequency of the ring
oscillator is adjusted at 968.571 kHz (1/14 of 13.56 MHz) using carrier wave. Owing to the
lack of crystals, the source frequency of 968.571 kHz involves +1% error and 0.1% jitter. After
the digital system starts, target programs are downloaded. Then, the digital system switches

the power source to the battery. This power-on mechanism allows users to turn on the capsule
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Figure 4.4: Flow chart of a typical MeSOC task.
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system

without breaking the seal. In battery power mode, the CDC is interactively calibrated before
measurement starts. Then, the digital system goes to sleep state for waiting events such as
pressure measurement, receiving wireless data, and timers. The digital system is awaken by the

events, deals with them, and sleeps again.

The block diagram of the MeSOC architecture is shown in Fig. 4.5. The MeSOC is designed
as a mixed signal chip to integrate almost functions for the capsule. The digital system of the
SoC consists mainly of MeDIX-I processor, a 6 KB instruction ROM, a 8§ KB RAM shared
for instructions and data, a 16550 compatible UART for development and debugging, a clock
frequency divider, timers, a state machine for sleep and reset control, a context register for
special controls including power switching, and a digital modem for wireless communication.
They are all connected with 16-bit wishbone bus [42]. To satisfy the tight design constraints
while keeping high programmability, the MeSOC is MeDIX-I centric design. MeDIX-I effec-
tively processes CDC control, wireless communication, and power management with the help

of special instructions.
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4.3.3 Power Management

The operating frequency of MeDIX-I has a serious impact on power consumption. Assuming
the tasks shown in Fig. 4.4, the minimum operating frequency is estimated about 150 kHz to
meet the time constraint of the measurement. Taking account of frequency derivation from the

ring oscillator, 161.429 kHz is appropriate for clock frequency for the digital system.

By using clock gating, the almost digital blocks shown in Fig. 4.5 can sleep according to the
timing generated by MeDIX-1. The main tasks of the MeSOC are pressure measurement and
wireless communication, and both tasks are periodical short-time task; therefore, such sleep
mechanism is effective for low power. Programmers can shut down the MeSOC with the sleep
instruction of MeDIX-I and the MeSOC wakes up according to the events shown in Fig. 4.4. In
other words, reducing calculation time with the help of the special instructions results in power

reduction.

Since the minimum size of the programs is difficult to determine, implemented RAM size
is large. In order to reduce power consumption of the unused RAM, the RAM is split in four

banks and each bank can be shut down independently.

4.4 Analog System

Following all analog modules have been proposed for the MeSOC: a CDC [40], a wireless
transceiver [41], a ring oscillator which generates system clock at 968.571 kHz +1%, and a
power controller. The CDC converts the capacitance of the MEMS pressure sensor, which is
electrically equivalent to a variable capacitance. The wireless transceiver controls the commu-
nication coil. The ring oscillator generates system clock at 968.571 kHz +1%. Since crystals
are not available due to assembly constraints of the capsule, there are large frequency error
and jitter. In order to remotely control a power switch, the power controller connects and dis-
connects the battery without mechanical switches. In following sections, the featured analog

modules, the CDC and the wireless transceiver, are introduced.
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A CDC directly converts capacitance value of the MEMS pressure sensor to digital value. Since
the CDC is small, low-power, and robust for voltage fluctuation to fit miniature size capsule,
it can be simply applied to the MeSOC. According to ICS, the pressure range of 0-225 mmHg
is adequate for measurement [38]. The pressure range of the MEMS pressure sensor and the
CDC are 0-280 mmHg and 0-300 mmHg, respectively. Therefore, the combination of them can
satisfy the ICS recommendation. On the other hand, the previous report indicates that converted
data include random error [43]; noise canceling mechanism is required for the digital system.

Besides, flexible asynchronous control system for the CDC is required for the digital system
because all control signal timings shown in Fig. 4.6 change depending on operating conditions.
The CDC converts data in asynchronous manner as shown in Fig. 4.6 [44]. To start conversion,
the CDC needs one sampling clock pulse at least 10 ps. After the sampling pulse is asserted,
the readout is available 30 us later at earliest.

From the aspect of the CDC, it is desirable that both offset capacitance and the capacitance
variation according to pressure change are several pF. If both capacitances are too large, the
implementation area of the CDC increases. On the other hand, if both capacitances are too
small, noise tolerance decreases. The choice of the MEMS sensor also depends on mechanical
issue of the capsule. Taking into account capacitance, pressure range, low power capability,

ease in handling, and size, the MEMS sensor by [39] is good for this application.
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Figure 4.7: Wireless circuit for the capsule sensor.

4.4.2 Wireless Transceiver

The simplified wireless transceiver circuit is shown in Fig. 4.7. The capsule communicates
with the outside recorder via inductive link, which is popular technique in RFID [45]. Since
lower frequency has better characteristic of penetrating water, i.e., human body [46] [47], the
transceiver selects 13.56 MHz as carrier wave from Industrial-Scientific-Medical (ISM) bands
[48]. In Fig. 4.7, capacitance C' and coil L generates a pulse with 13.56 MHz by LC oscillation.
This modulation circuit consumes less power, and good communication property at a distance
of 15 cm has been confirmed [41]. On the other hand, communication speed is slow; bit rate
is under 10 K bps. Therefore, digital modulation and communication protocol is important for
smooth communication. Additionally, in order to remotely power up the MeSOC in the airtight

capsule, the transceiver also provides wireless power transmission by inductive coupling. After
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Figure 4.9: RF signal receiving.
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the MeSOC is powered up by wireless power, the digital system needs to switch the power
source to the battery at proper timing.

Transmission procedure is as follows: first, negating C'harge for 1 us charges up capacitance
C. Next, asserting Charge connects charged C' and L, oscillating at 13.56 MHz for 1.2 ys.
Carrier cannot be continuously generated as shown in Fig. 4.8. With respect to receiving, digital
signals appear at Receive by On-Off-Keying (OOK) when 13.56 MHz carrier is detected as
shown in Fig. 4.9.

4.5 Digital Architecture

In this section, the architecture of MeDIX-I, the wireless modem, and wireless protocols are

described.

4.5.1 MeDIX-I

The block diagram of MeDIX-I is shown in Fig. 4.10. MeDIX-I is a 16-bit, 3-stage pipelined
ASIP with 44 instructions. Double fetch pipeline stage is dedicated to hide the latency of
the instruction memory. IF1 sends an address of Program Counter (PC) and IF2 stores an
instruction to Instruction Register (IR). To reduce implementation area, the instruction set is
small: 12 arithmetic and logical, 5 shift, 3 bit operation, 4 load and store, 6 branch, 3 CDC,
1 sleep, 7 Error Correcting Code (ECC), and 3 interrupt instruction. CDC control, wireless
communication modem, and power management are programmed on MeDIX-I.

MeDIX-I consists of an ALU, a barrel shifter, a Multi-Dimensional Parity Check (MDPC)
code module, and 16-bit 30 General Purpose Registers (GPRs). Normally, 16 GPRs are visible;
the remaining 14 registers are shadow registers to accelerate interrupt response. MDPC, which
is described later, is used for encoding and decoding of ECC. MeDIX-I does not comprise
divider and multiplier to reduce gate counts. MeDIX-I can handle 8 external interrupts and 1
exception. The exception provides a break mechanism for GDB, which is the GNU debugger

for development.
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4.5.2 CDC Control

The CDC requires noise canceling and asynchronous protocol. Before transmitting measured
pressure data, noise canceling should be performed because the outputs of the CDC contain
random noises in lower bits. For one pressure measurement, MeDIX averages 32 samples of
pressure data to cancel the noise. This is because, to reduce gate counts, the shifter can be
exploited for division.

For asynchronous control shown in Fig. 4.6, two major approaches are known: interrupt and
polling. Since the delay of CDC conversion is several cycles in MeDIX clock, the polling ap-
proach has advantage because the overhead cycles of the interrupt mechanism is considerable
for the wait in several cycles. To efficiently control the CDC, the dedicated port access instruc-
tions are implemented in MeDIX to directly access the CDC. Compared to general purpose I/O
module hooked on the bus, the direct access can reduce overhead cycles for bus communica-
tion. Such efficient CDC control mechanism can contribute to low power by increasing idle

time of MeDIX and decreasing implementation area.

4.5.3 Wireless Modem

The analog transceiver provides OOK modulation and demodulation; however, it is not suffi-
cient to complete a wireless communication system. The digital system needs the additional
upper layer protocols as shown in Fig 4.11. In this section, digital baseband modulation, packet

format, and ECC coding are described.

4.5.3.1 Digital Baseband Modulation

The SoC adopts Bi-phase Mark Code (BMC) [49] for fundamental baseband coding. BMC is
used floppy disks, optical digital audio interface (S/PDIF), and recently IEEE standard for long
wavelength wireless network protocol (IEEE 1902.1) [50]. Figure 4.12 shows the relationship
between BMC and Non Retruns to Zero (NRZ). In BMC, there are transitions, which is called
timing edges, at the beginning and at the end of the NRZ bit period. When NRZ bit is zero,

there is additional one transition, called a data edge, at the middle of the NRZ bit period. On
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Table 4.1: Use of baseband coding
Uplink Downlink

Wireless power | (none) MBMC
Battery power | BBMC BMC

the other hand, there is no additional transitions when NRZ is zero. BMC provides low DC

bias, easy clock deriving, and good noise tolerance; it is suitable for this transceiver.

Though BMC can be used in down-link communication on battery power mode, it is not
suitable for up-link communication because the transceiver can only generate very short-term
and weak carrier. Similarly, BMC is not suitable for down-link communication on wireless
power mode. To handle those cases, two new line codes, Burst BMC (BBMC) and Modified
BMC (MBMC), are proposed.

As shown in Fig. 4.13, BBMC can be used for data transmission by generating series of the
pulses while BMC is high. In contrast, MBMC can be used for down-link in wireless powered
mode by generating pulses at the position of edges of BMC. The assignments of those coding

are shown in Table 4.1.
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4.5.3.2 Oversampling Decoder of BMC

To accurately decode BMC signal, Clock and Data Recovery (CDR) is required. The policy of
oversampling based CDR [51] is appropriate because Phase-Locked Loop (PLL) is not suitable
for this MeSOC. The strategy to decode BMC with timing adjust is simple; the decoder checks
the signal inversion at appropriate clock cycles after detecting a timing edge, then, the decoder
waits the next timing edge. Oversampling rate for digital nature CDR affects jitter tolerance
and power consumption; higher oversampling rate has higher signal jitter tolerance and higher
oversampling rate consumes higher power. There is a trade-off between jitter tolerance and

power consumption. For low power design, the optimum oversampling rate must be calculated.

Owing to the characteristics of the transceiver and the ring oscillator, timing degradation of
received signal occurs as shown in Fig. 4.14. In Fig. 4.14, EL, E},, and EZ are the timing edge
of BMC bit, the data edge of BMC bit, and the timing edge of the next BMC, respectively. The
time of these edges are E. = 0, E}, = T/2, and E3 = T where T is a baseband period. ¢,

and At represent the latency to check signal inversion of the signal and a timing error due to
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sampling clock error 6 i and jitter oo k. ts and At are described as follows:

T
t, = R 4.1
s = Cos Nos 4.1)
Aty = (0cLk + dcrk) - ts 4.2)

where Cpg is the cycle count of sampling clock and Npg is an oversampling rate. The received
signal is accompanied by 10 % of Duty-Cycle Distortion jitter (DCD), which is denoted as
AE}, AE}, AEZ and

AE}L = AE}, = AE2 = opep - T. (4.3)

Initial timing error denoted as T//Npg due to oversampling also must be taken into account,
where Npg is an oversampling rate. The condition to accurately decode is to guarantee two

timing slacks:

0<TS™ = (t; — Aty) — (EL, + 2AE}) (4.4)

T
0< TSt = (E} —2AE7) — (ts + Ats + N_os) (4.5)

where T'S™ is the worst case timing slack between E}, and t,, and T'S™ is the worst case timing
slack between t, and E% The minimum Nog satisfying 7S~ > 0 and 'St > 0 is the optimum
oversampling rate.

The ideal sampling latency ¢i% is the center of the timing margin T};:

T
Ty = (E%_QUDCD‘T_ N_) — (Ep+20pep - T)
0s
1 1
—7 (> dopop T — ——
(2 0DCD Nos)

| T
fideal — (BL 4+ AEL + AEL) + TM

T(3 1
= <§_N_os)' (4.6)

Cos can be calculated by using (4.6).

Cos = {tideal - L J = fNOS - EJ 4.7)
Nos

4 2
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Figure 4.15: Packet error rate on jitter rate.

As aresult,
_ 3Nos 1| 1—ocrx —dcLx
TS =T ——1- — (0542
{ { 4 ZJ Nos (054 20n0)
1 3Nos 1| 1—ocLk —dcLk
TST=TS (1-2 — — — =1~
5 { ( opep NOS> { i 2J Nos
Here, by empoying given value ocrx = 0.001, écrx = 0.01, opep, following formulas are
obtained.
_ 0.989 |[3Nps 1
TS~ =T . ——| —0.714 4.8
( Nos { 4 QJ ) 49
1 1.011 |[3Nps 1
TSt =T<(0.786 — — . - = 4.9
{ ( NOS) Nos { 4 QJ } 49

Consequently, Nps = 36 and Cpg = 26 are the optimum value.

Figure 4.15 shows the simulation result of packet error rate according to jitter. As shown in

Fig. 4.15, the decoder tolerates 11 % jitter injection, and it is enough to applicate for this SoC.
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Figure 4.16: Packet format.

4.5.4 Packet Format

As shown in Fig. 4.16, packet format is designed as flexible to provide customize capability.
Preamble format is configurable in 8 bit. Packet length is variable in 32 bit x N where 0 <
N < 8. Basic packet format composed of 10-bit ECC, 2-bit Blk, 2-bit Typ, 2-bit No, and
16-bit data is shown in Fig. 4.16. Blk is the number of packet sequence. If packets are lost in
communication, MeDIX-I can figure out the lost packets and request data again. Typ is a type
flag, which indicates control (1) or data (0) packet. No is a capsule number and the capsules
identify packet destination by it. ECC is Single-Error Correction and Double-Error Detection
(SEC-DED) code. The detail of the ECC is described in the next section.

4.5.5 Error Correcting Code

Our prior experiment on a prototype program of MeDIX-I shows that over 50% of energy is
consumed by wireless communication, especially, ECC calculation. Therefore, implementation

of the special instructions for ECC calculation is effective to reduce of total power consumption.

MDPC codes [52] is adopted in this SoC. MDPC is a SED-DED code dealing with AM
data bits: MDPC(AM). MDPC is defined as geometrical generalization of single-parity check
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Table 4.2: MDPC calculation of 22
D[3] | D[2] | D[1] | D[O]

U2.2 Uz, 1 Uy ,2 Uy 1

P11 ©® &)

P12 S5 )

P21 & &5
D22 S5 &5
codes [53]:
Pm.j = Z o Z Z T Z Wiy ey 1, s bt 150 (4.10)
1 Im—1 tm+1 (3%
where p,, ; is a parity bit, u,, _;, is a data bit, M > 1, 7y,...,7) range from 1 to A, m =

1,2,...,M,and j =1,2,..., A.

Owing to the systematic construction, the calculation process of MDPC has recursiveness.
The calculations of MDPC(2%) and MDPC(23) are shown in Table 4.2 and 4.3. Table 4.2
shows that parity bit p,, ; is calculated by XOR of data bits u;, ;, indicated by @, e.g., p1 1 in
Table 4.2 is calculated as p; ; = u1 2 @ uy 1. D[X] named u;, ;, stands for data of x-th bit. With
respect to Table 4.3, the calculation of parity bits from ps; to ps 2 corresponds to MDPC(22).
Accordingly, MDPC(2?) is composed of MDPC(2?) and additional XORs. By exploiting this
recursiveness, the pseudo-code of a loop calculation algorighm for MDPC is shown in Fig. 4.17.

In Fig. 4.17, MDPC(2M) is calculated by using MDPC(2™) calculation module where m <
M. Dix] is source data, p is the parity of D[z], function zero(p) sets p to zero, and function
binary(x) returns a binary form of x. Function MDPC,, (x) returns parity p’ of MDCP(2™)
and additional parity pa’.

Figure 4.18 shows the MDPC(2®) unit employing MDPC(2?) in accordance with Fig. 4.17.
After resetting counter b, by consecutively inputting 16-bit data fragments, the unit can calcu-
lates MDPC code of 16-bit to 256-bit wide data.

By exploiting the MDPC(2®) unit shwon in Fig. 4.18, MeDIX-I can calculate variable length
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Table 4.3: MDPC calculation of 23
D[7] | D[6] | D[5] | D[4] | D[3] | D[2] | D[1] | D[O]

U222 | U221 | U2,1,2 | U2,1,1 | U122 | U121 | Ur,1,2 | UL,1,1

P11 SP) S ) D

P12l D S5 ©® )

D21 2] S S S
D22| @ ) D D

D31 D S S 52
D32l D S S 3]

1: zero(p)

2: zero(pa)

3: for (b= 0:b< M —m;b+b+1) do

4. (p/,pa’) « MDPCp(D[2 - (b+1) — 1 : 2 . b))

5. for (i+ L;i<m;i<+i+1) do

6: j=M—-m+1)
7 Pi1 = Pj1 EBPQJ
8: Pj2 =12 D Diy

9: end for

10:  for (i< ;i <M —m;i<i+1) do

11: if binary(b)[i — 1] =0 then
12: Pi1 < pig & pa

13: else

14: Pi2 < pi2 & pa

15: end if

16:  end for

17:  pa = pa @ pad’
18: end for

19: return(p, pa)

Figure 4.17: MDPC(2M) calculation algorithm.
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Figure 4.18: MDPC(28) calculation circuit by using MDPC(24).
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MDPC in a few cycles. The special instructions for MDPC are implemented in MeDIX-
I: MDPCGEN, MDPCCHK, MDPCFIX, and MDPCINIT. MDPCINIT sets internal counter
b and must be call before MDPC calculation. MDPCGEN calculates MDPC code by using
MDPC(2?) unit. MDPCCHK checks errors and specifies the location of the errors. MDPCFIX
fixes the data according to the result of MDPCCHK. By using the instructions, the ECC of 16n
bit where n = 1,2, 3, ..., 16 can be calculated in a few cycle. For instance, MDPC calculation

of 32 bit data are shown below.

1: MDPCINIT
2: XOR 13,13
3: MDPCGEN 13, r1
4: MDPCGEN r3, r2

Assuming the lower 16 bit and the upper 16 bit are stored register r1 and r2 respectively, after
initialization (line 1, 2), the MDPC is calculated with two MDPCGEN instructions (line 3,
4), thus the result is in register r3. This flexible ECC generation scheme is useful for actual
development in vivo because this mechanism offers programmability that can control the trade

off between error tolerance and communication speed.

4.5.6 Communication Protocol

A communication timeline is shown in Fig 4.19. The communication control is based on
master-slave model. A master recorder attached on the body communicates with the multi-
ple capsules. The capsules send the pressure data at every measurement. The master recorder
requests pressure data to each capsule and the capsule returns measured data to recorder. If the
request or response is lost due to bad channel conditions, the capsule buffers data in memory un-
til the channel recovers. After the channel recovers, the capsule returns the stored multiple data
to the recorder. Such data storing is important for increasing patient’s comfort in AUM because
the mechanism allows patients to detach recorder. For example, in the case of taking a bath,
data sending fails because the patients detach the recorder. The MeSOC can store the pressure

data during data sending fails and transmit the data after the patient attach the recorder again.
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Figure 4.19: Communication timeline.
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Table 4.4: Power consumption of the digital block

No. MDPC Sleep | Sensing | MeDIX-I | Memory | Digital block
enc. Freq. [WW] [WW] [WW]

C1 RISC No 30 Hz 17.2 66.1 102.0

C2 RISC Yes | 30Hz 4.8 30.9 46.7

C3 | MDPCISA | Yes | 30Hz 4.0 29.3 43.7

C4 | MDPCISA | Yes 15 Hz 2.8 27.2 39.7

4.6 Experimental Results

In this section, simulation results and implementation results of the MeSOC are described.

4.6.1 Simulation Results

The MeSOC consists of the digital system, which is proposed in this thesis, and the analog
systems proposed in [40,41]. In order to evaluate detail power breakdown of the proposed
digital system, power consumption was estimated based on simulations. Since the power data
of 0.18 um standard cell library was based on the rated voltage 1.8 V, the simulations were
performed on 1.8 V. Simulations were carried out using the programs which measured pressure,
received requests, created packet with ECC, then sent data to the transceiver.

The measurement conditions are in the following cases:

C1 measures pressure in 30 Hz without sleep control, encode MDPC with RISC instructions,
C2 measures pressure in 30 Hz with sleep control, encode MDPC with RISC instructions,
C3 measures pressure in 30 Hz with sleep control, encode MDPC with the special instructions,

C4 measures pressure in 15 Hz with sleep control. encode MDPC with the special instructions,

Note that, according to ICS, 15 Hz is adequate for pressure measurement. Typical sampling
rate is set to 30 Hz as double as the recommendation.
The estimated power consumptions of the digital system are shown in Table 4.4. Power

consumption of the digital block in C2 is reduced 54 % compared to C1. This reduction shows
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Table 4.5: Chip summary

Technology 0.18 pm 1P6M Mixed Signal
Die size 2.5 mm x 2.5 mm
Supply voltage 1.55V
Logic gates 28.2 K gates
ROM 6 K bytes
RAM 8 K bytes
Clock frequency 161.429 kHz
Working power 93.5 uW

the effect of the sleep control. Compared to C2, power consumption of MeDIX-I in C3 is
reduced 17 %. This is because, faster calculation by the MDPC instructions increases sleeping
time. Shorter working time results in less power consumption. As the same reason, power
consumption of MeDIX-I in C4 is less than 30 % because the sampling rate is less than C3. This
result suggests that the MeSOC offers programmability of controlling the trade off between
power consumption and sensing resolution.

On the other hand, the power consumption of the analog system was also estimated in sim-
ulation. The simulation results reported that the power of the analog system is approximately

60 11W.

4.6.2 Implementation Results

The MeSOC was fabricated as 2.5 x 2.5 mm? under 0.18 zm mixed-signal CMOS technology.
The micrograph of the MeSOC is shown in Fig. 4.20. In Fig 4.20, the analog block is upper
left and the other area is the digital system. I/Os were implemented in bump form for chip
size packaging. The detail of the fabricated MeSOC is summarized in Table 4.5. As shown in
Table 4.5, the actual total power consumption of the MeSOC is 93.5 W in the same condition
of C4 in Table 4.4 except for supply voltage. By using the MeSOC, the capsule is able to run

over seven days. The systems are designed so that it can operate on 1.55V, which is the supply



66 CHAPTER 4. DESIGN OF AN SOC FOR PRESSURE SENSING CAPSULES IN AUM

@lllluulll@ |

@@@lm@w@@E@
@-@@@-@-@@@@@

:@?ﬁﬁﬁﬁﬁﬂ@ﬁ @
h EEEEEEECEE06 9

Figure 4.20: Chip micrograph.

voltage of the battery. And the systems have been confirmed that they could operate on 1.55V.
The MeSOC was tested on an evaluation board and wireless communication was confirmed. By
using GDB, the program was loaded via wireless link and interactively debugged. The pressure

measurement with the MEMS sensor was also confirmed.

The simulation result shows that the digital system consumes 39.7 W in case C4 of Ta-
ble 4.4 and analog systems does 60 W, and implementation result shows that total power
consumption of the MeSOC is 93.5 W, nearly equal to the sum of simulation results. In sim-
ulations, power consumption of the analog block was measured by multiplication of voltage

and current in the power-supply line. The simulation result shows that power consumption
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Figure 4.21: Photo of an assembled capsule prototype.

is approximately 60 W . Implementation results were measured by inserting testers to the
power-supply line. The implementation result shows that power consumption is 57 uW . Both

values are near, and the implemented analog block was confirmed that it properly operates.

We assembled a capsule prototype with the communication coil, the battery, the MEMS
sensor, and the fabricated MeSOC. The photograph of the prototype is shown in Fig. 4.21. The
diameter and length of the prototype are 6 mm and 18 mm, which satisfy the requirement for
urethra insertion. The weight of the capsule is 0.53 g, which is enough light to float in urine.
A thin string of nylon, which is connected to the right side of the capsule, is used for pulling
out the capsule from the body. As shown in Fig. 4.21, the form and size satisfy the medical

constraint for insertion.

Pressure measurement was tested on the test environment as shown in Fig. 4.22. The results
are shown in Fig. 4.23. The test environment consists of a syringe, a pressure meter, a MEMS

pressure sensor, and a MeSOC evaluation board. By pushing a plunger, air pressure changed,
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Figure 4.24: Test environment of wireless communication.

and the pressure meter measured correct value, then the MEMS sensor and MeSOC measured
the pressure data. As shown in Fig. 4.23, in most range, CDC readout is confirmed to be linear.

Wireless communication was also confirmed on the test environment as shown in Fig. 4.24.
The values of L and C' of the antenna were 0.74 pH and 186.8 W in vitro experiments. By
using those values, 0.15 meter communication was confirmed. However, actual values of L
and C of the antenna should be determined in vivo experiments and that is our future work.
By using GDB, The program was loaded via wireless link and interactively debugged. The
measured pressure data was uploaded to master controller and confirmed to be correct.

The comparison of the pressure sensing devices is shown in Table 4.6. The power consump-
tion shown in Table 4.6 contains the digital block, the analog block, and the antenna. Power

consumption of the antenna is calculated as follow:
P=fov?

where P is power consumption, f is switching frequency, C' is capacitance, and V' is operating
voltage. As a result, power consumption of the antenna is 0.55 W because f is approximately
1.0 Kbps in this system, C' is 186.6 pF, and V is 1.55 V. Power consumption of the MEMS
pressure sensor is negligible because the capacitance of the sensor is few pF and sampling
frequency is 30 Hz. Therefore, total power consumption of the capsule is 94.1 yW. Compared
to related work [31], the proposed capsule consumes 1/10 less power. Compared to related
work [30], the proposed capsule consumes 10 times more power. However, the system [30]

cannot be used in AUM, because the system [30] needs incision to implant, cannot calibrate
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Table 4.6: Comparison of the pressure sensing systems

This work [31] [30]
Shape cylinder sphere box
Size (mm) $p=65h=12 ¢ =25 7x4x15
Weight (g) 0.53 4.1 unknown
Pressure range (mmHg) 0-280 0-1019 0-183
Pressure resolution (mmHg) 0.27 15.9 0.74
Sampling frequency (Hz) 0-30 (variable) 0.22 (average) 10
Communication bi-direction uni-direction  uni-direction
Com. distance (m) 0.15 1.00 0.30
Operating Voltage (V) 1.55 3.0 unknown
Battery (mAh) 12x1 T0x4 3x1
Power (uW) 94.1 1250 8.6
Life time 7 days at 30 Hz 14 days rechargeable
Setup insertion incision incision
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sensors in vivo, and cannot simultaneously measure bladder and abdominal pressure.

The capsule implemented with the MeSOC shows sufficient characteristics with respect to
size, weight, pressure range, pressure resolution, life time, and less-invasive capsule setup.
However, communication distance is shorter than other systems and communication may not
stabilize in fat patients. Therefore, the communication protocol should be optimized in actual

development in vivo.

4.7 Conclusion

In this chapter, the design of the MeSOC for less-invasive pressure sensing capsules for AUM
is studied. To install the MeSOC to the capsules, the strict constraints are imposed on the
SoC: low power, small area, bi-directional wireless communication, and programmability. The
digital system is designed with MeDIX-I, which is the ASIP dedicated to this SoC. All systems
including the CDC and the transceiver are integrated in the SoC.

The MeSOC was fabricated as 2.5 x 2.5 mm? under 0.18 pm mixed-signal technology. The
experimental results showed that the power consumption of the MeSOC is 93.5 yW at 1.55 V

and the capsule can continuously run over seven days.
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Chapter 5

Conclusion and Future Work

This chapter describes the conclusion and future work of this thesis.

5.1 Conclusion

This thesis describes a low power VLIW ASIP generation method and the design of the SoC
called MeSOC for pressure sensing capsules in AUM. The MeSOC is designed with the MeDIX-
I, which is the ASIP customized for the MeSOC.

The low power VLIW ASIP generation method uses clock gating to reduce power con-
sumption of pipeline registers. The power reduction by clock gating depends on execution
conditions, and the proposed method automatically extracts the minimum execution conditions
in ASIP generation procedures. By using the minimum execution conditions, the low power
VLIW ASIP generation method creates the gating signals, and achieves maximum power re-
duction by clock gating. Experimental results show that the power consumption of the pipeline
registers is drastically reduced. Compared to the ASIPs which are clock gated by Power Com-
piler, the ASIPs generated by the proposed method achieves 60% power reduction. This is
because the gating control signals using the minimum execution conditions stops unnecessary
clock supply to the pipeline registers. The delay and area overhead due to the low power VLIW
ASIP generation are confirmed to be small. Therefore, the proposed method can provide low
power VLIW ASIPs to designers.

To design the SoC which integrates almost functions in the pressure sensing capsule is im-

73
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portant for realizing AUM. The MeSOC mainly consists of a CDC, a wireless transceiver,
digital modem, and MeDIX-I. In order to design small and low power MeSOC, MeDIX-I has
the special instructions for CDC control, ECC decode and encode, and control sleep mecha-
nism. Experimental results show that the fabricated MeSOC satisfies the constraints and the
correct operations of pressure sensing and wireless communication. The power consumption
to calculate ECC is reduced by MeDIX-I. A prototype capsule is assembled with the MeSOC.
The MeSOC can be implemented in a tiny airtight capsule for pressure sensing, and the size
is small enough to pass through the urethra. The power consumption of the capsule including
the MeSOC is confirmed to be low and the the capsule can run over seven days. Therefore, the

pressure sensing capsule with MeSOC can be used in AUM.

5.2 Future Work

The future work includes the following items.

5.2.1 Future Work on the Low Power VLIW ASIP Generation

Applying clock gating causes Design For Test (DFT) problems. Since the number of inner
states of circuits increases, the calculation time of test pattern generation increases. In order to
apply the low power VLIW ASIP generation method to industrial productions, DFT problems
due to clock gating must be handled.

The use of clock gating is studied in this thesis. However, clock gating reduces only dynamic
power consumption. The progress of semiconductor manufacturing technology decreases gate
size. As aresult, leakage power consumption is also the big concern in recent embedded system
design. Power gating is a technique to reduce leakage power consumption [54] by shutting
power supply according to idle conditions. The extraction method of the minimum execution
conditions is applicable to power gating. However, fine-grain gating control such as the low
power VLIW ASIP generation is not suitable for power gating because fine-grain power gating
is difficult to layout and additional wake up controls are necessary. To handle leakage power
reduction using power gating is indispensable for future VLIW ASIP generation.

An ASIP generation method with operand isolation is useful in design of small ASIPs. In
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small ASIPs, they may have big functional blocks to implement special instructions. To stop
excess switchings to those blocks can contributes to low power design. Since the operand isola-
tion is a high-overhead technique in terms of area and power, to determine candidate functional
blocks for power reduction is a difficult task. Extraction of isolation conditions with profiling

data of programs is the key to implement operand isolation.

5.2.2 Future Work on the Design of an SoC for Pressure Sensing

Capsules

The basic functions of the pressure sensing capsule are confirmed in vitro in this thesis. In
order to advance the pressure sensing system to the next step, in vivo development and test
must be performed. In vivo development, calibrations are performed in wireless communica-
tion and pressure sensing. For such calibrations, programmable MeDIX-I can be a great help.
If pressure sensing timing changes, re-program MeDIX-I to handle new timings. If wireless
communication is not stabilized, increase error tolerance by using the ECC instructions. There-
fore, the pressure sensing capsule with MeSOC is applicable to in vivo development, and actual
use.

However, the size of RAM should be reduced in the next fabrication. The size of RAM in
MeSOC contains extra memory to prepare re-programming in vivo development. After in vivo
development, reducing the extra size of RAM can contribute power and size reduction.

Development of an outside recorder is the another future work. The outside recorder collects
data from the capsules in a body and automatically creates a urinary diary to diagnose LUTS.
As the same reason of the pressure sensing capsule, the size of the recorder must be small in

AUM. An SoC design with ASIPs is also the key to design such small recorder.
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