

Title	鉄鋼材料の使用環境における耐食性皮膜の状態分析と その性能発現機構の解明
Author(s)	土井, 教史
Citation	大阪大学, 2012, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/2519
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

鉄鋼材料の使用環境における耐食性皮膜の 状態分析とその性能発現機構の解明

2011年

土井 教史

目 次

第1章	序 論		1
1.1	表 面	, 界 面 の 分 析 手 法	1
	1.1.1	緒 言	1
	1.1.2	表面,界面の分析に使用される分析手法	2
	1.1.3	X 線 回 折 法	3
	1.1.4	X 線 光 電 子 分 光 法	4
	1.1.5	XAFS 法	5
	1.1.6	ラ マン 散 乱 分 光 法	6
1.2	本研	究の目的	7
	1.2.1	母材添加元素の腐食生成物中での存在状態分析...	7
	1.2.2	反 応 生 成 物–母 材 界 面 の 非 破 壊 分 析	8
	1.2.3	そ の 場 分 析 へ の 応 用	9
1.3	本論	文 の 構 成	12
参考	ううう すい しょうしん しんしょう しんしょう しんしょう しんしん しんしょう しんしょ しんしょ		14
第2章	耐 候	性 さ び 中 の Al 状 態 分 析	17
2.1	諸言		17
2.2	実験		18
2.3	結 果		20
	2.3.1	海 浜 地 域 曝 露 に お け る 腐 食 減 量 と さ び 構 成 物 質	20
	2.3.2	ラ マン 散 乱 分 光 法 に よ り 確 認 さ れ た さび 層 中 で の Al	
		分 布 状 況 と さび 成 分 の 関 係	23
	2.3.3	XANES 法 に よ る さ び 層 中 Al の 状 態 分 析	27
2.4	考察		30
	2.4.1	さび 層 構 造 と Al 分 布	30

	2.4.2	さび 層 中 に お け る Al の 存 在 状 態 と 構 造 へ の 影 響	33
	2.4.3	防 食 性 に 及 ぼ す Al の 役 割	36
2.5	結 論		38
参考	ううう すいしんしょう うちしん しんしょう しんしょう しんしょう しんしん しんしょう しんしょ しんしょ		39
第3章	HAXP	'ESによる Ni 基合金のスケール-母材界面の Cu 偏析挙動解析	41
3.1	緒言		41
3.2	実験		43
	3.2.1	試 料 お よ び 前 処 理 条 件.................	43
	3.2.2	HAXPES 法 に よ る 表 面 偏 析 の 検 討	44
3.3	結 果		45
	3.3.1	HAXPES 測 定 結 果	45
	3.3.2	HAXPES に よ る 角 度 分 解 測 定	47
3.4	考察		50
	3.4.1	層 構 造 モ デ ル に よ る Cu 偏 析 の 妥 当 性	50
	3.4.2	ス ケ ー ル–母 材 界 面 の 定 量 解 析	54
3.5	まとる	め	61
参考	ういちょう うち 献 しょうしょう ひょうしょう しょうしょう ひょうしょう しょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ		62
第4章	その	場分析技術の検討	64
4.1	大型	2 次 元 検 出 器 を 用 い た X 線 回 折 法 に よ る 鉄 ス ケ ー ル の	
	等温	変 態 挙 動	64
	4.1.1	緒 言	64
	4.1.2	実験	65
		4.1.2.1 試料および酸化条件	65
		4.1.2.2 XRD 測 定	66
	4.1.3	結 果	68
		4.1.3.1 各試料の保持温度に依存した XRDパターンの	
		変 化	68
		4.1.3.2 各 XRD ピークプロファイルの 経時 変化	68
	4.1.4	考察	77

		4.1.4.1	Fe_{1-x})分解	ぽ 挙動			••		• •	•••		•		•			•	77
		4.1.4.2	共 析	する	$Fe_{3-\delta}O_{\delta}$	₁ の	カラ	チオ	レ	欠	陥	ທ	変(Έ	•			•	81
	4.1.5	まとめ			••••					• •			•					•	84
<u>ہ</u> ۔	ا⊀ کہ +۱																		05
参す	与又敵				_ 、 _		—	_ ,	1	·					T 1				85
4.2	そのす	易 X 線 回	折 法	によ	るさて	ドの	電	気1	七字	的	相	変	化	羍	動	•	•	•	86
	4.2.1	緒言。			•••	•••	•••	••	•••	•••	•••	• •	•	•••	•	•••	•	•	86
	4.2.2	実験.	••••		•••	•••		•••	• •	•••	• •	• •	•	•	•		•	•	87
		4.2.2.1	電極	およ	び溶液	友.	•••	••	•••	•••	• •	• •	•	•••	•		•	•	87
		4.2.2.2	その	場 XR	D測定	E用	電	気亻	と 学	と	ル	• •	•	• •	•		•	•	87
		4.2.2.3	その	場 XR	D測定	Ξ				•••			•	•	•			•	88
	4.2.3	結果.			•••			•••		• •	•••		•	•••	•		•	•	90
	4.2.4	まとめ			••••			•••		•••			•	•••	•		•	•	93
参考	皆文 献																		96
4.3	ラマン	/ 散乱分	光法は	こよる	高温	高日	E 7K	溶	夜下	腐	食	そ	თ ±	易尼	5 J	䜣	分	析	97
	4.3.1	省景.																	97
	4.3.2	実験													_				98
		4321	セル	デザ	インオ	3 L	7ド	··· 装音	· · 皆 椿	 5.市			•		•		•	•	98
		4322	訂 料	お ょ	- ~ 。 7 ~ 家 泳	्र ह	0	11 1	a 1 1	÷ /•~	•	•••	•	•	•	•••	•	•	98
		1.3.2.2	リー	いあ	日分子	~ . と 宝	· ·	•••	•••	•••	•••	•••	•	••	•	•••	•	•	101
		4.3.2.3	ノ、宝路	ノ取	ас <i>у</i> ј <i>у</i>	L 7	心大	• •	•••	•••	•••	• •	•	••	•	•••	•	•	101
	122	4.3.2.4	大 秋 7 、 老 8	丁 /県 友	•••	•••	•••	•••	•••	•••	•••	• •	•	••	•	•••	•	•	101
	4.3.3	和未及	0.233	য়ই • • •	••••		• •	••	•••	•••	•••	•••	•	•••	•	•••	•	•	101
	4.3.4	まとの			••••	•••	• •	•••	•••	• •	•••	• •	•	••	•		•	•	107
参考	皆文 献																		108
第5章	総 括																		109
∔ क क	·) 88 /·	∞╶╈╴╸ᆠ⊓	(右 🏎	*															112
平 調 又	. に 关 1/	お9 る技	化向神	X															115
謝 辞																			115

第1章 序論

1.1 表面,界面の分析手法

1.1.1 緒言

エレクトロニクス材料をはじめとする多くの材料の高機能化に伴い, 材料の表面,界面の物理的,化学的特性の評価が重要になってきている. 鉄鋼材料を始めとする金属材料においても機能性を高めた材料開発が 進められ,使用環境での摩耗,吸着,密着性,触媒活性,腐食,酸化など の表面特性を理解する上で,環境と接する表面,界面の組成や生成物に 対する評価技術の重要性が高まっている.

材料が環境と接する表面,界面では反応生成物である腐食生成物や酸化物は,環境や鋼材成分により,組成,構造,厚さなどが異なった状態で 生成する.それら組成,構造,厚さなどには,材料の使用環境での耐食 性,反応性などの機能を反映した情報が集約されており,評価分析の際 には注意深く多くの情報を抽出することが必要とされる.

分析では "プローブ "となる粒子を,対象とする物質に照射,衝突さ せ,物質内での種々の相互作用に伴って放出される種々の粒子を情報とし て検出する方法が採られる.定量,微量元素,化学結合状態,結晶構造 や原子配列解析と,得るべき情報の範囲は広く,検討手法も必ずしも決 まっているわけではなく,その対象物,必要とする情報によって使い分け が必要である.

一般に,検出感度,装置上の制約から,プローブの種類や入射条件, 情報検出方法などが選ばれる.そのプローブや情報検出深さにより,物 質内部からの情報なのか,物質表面からのものかが選別され,表面や界 面近傍に絞った情報を得たい場合には,プローブ,情報深さ,入射,出射

角度などすべてに注意をはらう必要がある.

本章では,材料の機能発現に伴う表面,界面での組成,構造や添加元 素の存在状態の変化とその機能に関する検討を目的とした分析手法に ついて述べ,本研究で材料機能の解明を目的とした解析を実施する上 での分析手法としての適用性と問題点について概説し,最後に本研究 の目的および構成について示す.

1.1.2 表面,界面の分析に使用される分析手法

鉄鋼材料における耐食性皮膜に対する組成,構造の分析や機能発現を 促す添加元素効果の検証を目指して,環境と材料の界面での添加元素 の存在状態,機能を解明するための評価方法について一般によく用い られる手法について以下Table 1.1 に示す.

省略語	英語名	日本語名	特 徴
AES	Auger Electron Spectroscopy	オ ー ジェ電 子 分 光 法	局 所 , 元 素 分 析
AFM	Atoic Force Microscopy	原 子 間 力 顕 微 鏡	表 面 形 状 , 状 態 分 析
Ellipsometry	Ellipsometry	偏 光 解 析 法	皮 膜 厚 さ
EPMA	Electron Probe X-ray Microanalyzer	X 線 マ イ ク ロ ア ナ ラ イ ザ ー	元 素 , 分 布 , 状 態 分 析
ESCA	Electron Spectroscopy for Chemical Analysis	光 電 子 分 光 法	元 素 分 析 , 状 態 分 析
GDS	Glow Discharge Spectrosopy	グ ロ ー 放 電 分 光 法	元素分析,深さ方向分析
FTIR	Fourier-transform Infrared Spectroscopy	フ ー リ エ 変 換 赤 外 分 光 法	結 合 状 態 分 析
IRAS	Infrared Reflection Absorption Spectroscopy	高 感 度 赤 外 反 射 分 光 法	吸着種
KP	Kelvin Probe	ケルビンプローブ	仕事関数
RAMAN	Raman Spectroscopy	ラ マン 分 光 法	結 合 状 態 分 析
RBS	Rutherford Backscattering	ラ ザ フォード 後 方 散 乱 法	深さ方向分析
SEM	Scanning Electron Microscopy	走 査 電 子 顕 微 鏡	表 面 形 態 ,元 素 分 析
SIMS	Secondary Ion Mass Spectrosopy	二次イオン質量分析法	元素,状態,深さ方向分析
UPS	Ultraviolet Photoelectron Spectroscopy	紫 外 光 電 子 分 光 法	価 電 子 状 態
XAFS	X-ray Absorption Fine Structure	X 線 吸 収 端 微 細 構 造	局 所 構 造 , 電 子 状 態 解 析
XPS	X-ray Photoelectron Spectroscopy	X 線 光 電 子 分 光 法	元 素 分 析 , 結 合 状 態
XRD	X-ray Diffraction	X 線 回 折 法	結晶構造

Table 1.1. 材料の表面, 界面分析によく用いられる手法

Table 1.2 では,論文中で取り上げた手法について紹介するとともに,次 節以降に最近の鉄鋼材料への応用例も含め述べる.

分析方法	プローブ	検 出 対 象	特 徴
XRD	X 線	X 線 回 折	結 晶 構 造 や 原 子 配 列 の 定 量 的 な 評 価 が 可 能
XPS	X 線	光 電 子 , オ ー ジェ電 子	表面の組成,化学結合状態を定量的に分析可能
XAFS	X 線	X線吸収	局 所 構 造 ,電 子 状 態 など の 定 量 的 評 価 可 能
RAMAN	光(可視光)	フォノン	構 造 情 報 が 高 空 間 分 解 能(< 2µm)で 分 析 可 能

Table 1.2. 本 論 文 中 で 主 に 用 い た 分 析 方 法 の 特 徴

1.1.3 X線回折法

鉄鋼材料の多くは多結晶体の集合である.このような試料に単色のX 線束を当てた場合,入射X線は,試料中の結晶粒子の格子面によって 回折され,ブラッグ条件2*d*×*sinθ* = *nλ*(*d*は格子面間隔,θは格子面とX 線のなす角,λはX線波長)を満たす回折線を表す.X線回折法(X-ray diffraction,以下XRD法)は,この回折線のパターンが物質の組成,構造 により固有であることを利用した方法である.

例えば,測定された回折パターンをあらかじめ測定された既知物質の 回折パターンと比較し,測定対象に含まれる物質を同定することが 行われる.既知物質の回折パターンは,JCPDS (Joint Committee on Powder Diffraction Standards)などのデータベースにまとめられ,また文献など多 くのものと比較することがする.

鉄や鋼は,屋外に放置しておくと簡単に腐食し,その材料組成,腐食 環境に応じた非常に多くの種類の腐食生成物を生成する^[1].これらの生 成物も多結晶体の集合であり,それぞれ固有の回折パターンを示す.こ のような多くの相同定を行う際には,データベースが整備され,簡便に 構造を評価することができるXRD法が広く用いられている.

簡単な相同定ばかりでなく,定量的な評価を行うことで,耐候性鋼と よばれる低合金鋼の使用期間,腐食環境とさび構造に相関変化がある ことがXRD法で詳細に議論されている^{[2],[3],[4]}.XRD法で得られる結晶学 的な構造情報は,腐食のみならず酸化挙動を議論する上で,必須情報と なっている.

放射光などの高輝度光源を使用することで,表面近傍の多結晶相の構造解析も可能となってきている.入射角αによってX線の侵入深さを制御する^[5]ことで表面構造の回折ピークを得て,フーリエ変換することに

より表面の原子配列を確かめる方法^[6]がある.これは,表面X線回折法 とよばれ,ステンレスの不働態皮膜のような極薄皮膜の構造解析にも 用いられている^[7].

1.1.4 X 線 光 電 子 分 光 法

X線光電子分光法(X-ray photoelectron spectroscopy,以下 XPS法)は,X線 をプローブとして試料に照射し,放出される電子のエネルギーと強度 を測定する分光法である.

XPS 法における分析深さは,検出する光電子の非弾性散乱平均自由行程(inelastic-mean-free-path,以下IMFP)に依存し,通常用いられている励起 元である Mg Kα線(1253.6 eV)やAl Kα線(1486.6 eV)では,発生する光電 子の運動エネルギーはその光源のエネルギー以下であり,検出深さは, 数 nm 以下となる.

XPS法のような表面敏感な方法は,鉄鋼材料のバルクの定量的な分析 には適用しにくいが,結合状態情報,価数情報に敏感であり,腐食生成 物,酸化物の分析には最適である.EPMAやEDSと異なり,O,N,Cなど の軽元素を高感度で検出,定量でき,母材成分だけではなく,O⁻,Cl⁻, SO₄²⁻などの皮膜への吸着,もしくは取り込まれている状態もXPSで評価 可能である^[8].

腐食分野では, C. Laygraf^[9], 杉本^[10], 岡本ら^[11], J. P. Coad ら^[12]により, ステンレス鋼の不働態皮膜などの表面酸化皮膜の研究へ適用され,不 働態皮膜を形成するFe, Cr, Ni, Oが鋼材内部と表面では,異なる酸化 状態で存在していることが示されるなど,現在にいたる不働態皮膜の 基礎的な構造の実証研究に適用されれた.その後, I. Olejford^{[13],[16]}, P. Marcus^[14], K. Asami^[15]らにより,腐食分野への幅広い応用研究が展開さ れ,今では, XPS は腐食研究にはなくてはならないツールになっている.

XPSは化学結合状態の分析にも用いられる.ところで,深さ方向への 組成,状態分析を行いたい場合,Ar⁺によるスパッタリングが多用される ことが多いが,イオン照射により試料がダメージを受ける場合がある ^[17]ことに注意が必要である.そのため,深さ方向の情報が抽出したい

場合も,できるかぎりスパッタなどをせずに,非破壊で深さ方向分析を 行うことが望ましい.非破壊で深さ方向分析を行う際に,角度分解測定 ^[18]を行う場合がある.これは検出角度が大きくなると情報深さは浅く なり,表面敏感になることを利用している.

この角度分解測定で,不働態皮膜や表面偏析層の組成分析が,非破壊的に行われている^[19].この時の情報深さも,例えば95%情報深さ(全信号強度のうち95%を与える深さ)は3λ程度であるため,角度分解測定の適用はやはり数nm以内の表面層となるが,ステンレス鋼の不働態皮膜などの極薄皮膜の解析には威力を発揮する.最近は,このような角度分解測定を試料を回転させることなく,測定できるアナライザーを装備した機種も広く活用されるようになってきた.

1.1.5 XAFS 法

X 線 吸 収 微 細 構 造 法 (X-ray absorption fine structure,以下 XAFS 法) も プ ロ ー ブ に X 線 を 用 い て い る .固 体 内 部 物 質 が X 線 照 射 を 受 け,光 電 子 放 出 す る . そ の 光 電 子 の 物 質 内 で の 伝 播 状 況 に よ り 試 料 透 過 後 の X 線 強 度 に 振 動 構 造 が 現 れ る . こ れ が XAFS ス ペ ク ト ル で あ る .

測定は非常に簡単で,分光器で単色化された光を,試料前後の検出器で,それぞれの光強度を測定するが,その際,X線の波長をスキャンしながら吸光度, *ln*(*I*₀/*I*),を測定すればよい.分光器,試料,検出器の配置は,可視紫外や赤外の吸収スペクトル測定と同様である.

XAFS 法では,吸収端近傍のスペクトルから,目的元素周辺の対称性 などの構造情報,価数などの結合状態に関する情報などが得られ,対象 物の結晶性や存在形態(固体,液体,ガス)の制限なく評価可能である. こういった XAFS 測定は.実験室系で使用されるX線管球でも可能で あったが,幅広い波長で精密な測定を行う必要があるため,SR 光のよう な連続X線として質のよい光が使えるようになって広く普及した測定技 術である.

特に,吸収端から高エネルギー側1 keV あたりまでに現れるスペクトルは,広域X線吸収微細構造(extended X-ray absorption fine structure,以下

EXAFS)とよばれ,目的元素周辺の配位子の種類や配位数,距離などの 局所構造を明らかにするために利用される.このEXAFSスペクトルの解 析は,フーリエ変換とカーブフィッティングなどの信号処理手法がほぼ 標準化された結果,多くの市販製品を含むソフトウエアが準備されて おり,容易に実施することができる.解析に関しては,標準化への経緯 も含め,F.W. Lytle^[20]により詳しくまとめられている.

吸収端近傍に現れるスペクトルは,特にX線吸収端近傍構造(X-ray absorption near edge structure,以下XANES)と呼ばれる.XANESスペクトルには,吸収原子の価数や配位対称性など非常に多くの情報が含まれている.情報量が多い分,スペクトルの変化も複雑となり,スペクトルの解釈,情報抽出のためには,多くの参照物質となる既知のスペクトル構造を有する化合物スペクトルとの比較や,FEFF^[21]など第一原理計算から見積もられたスペクトルとの比較検討が必要とされる.しかしながら,XANESスペクトルはEXAFSスペクトルに比べて強度が大きく,また,測定に必要なエネルギー範囲も圧倒的に狭いことから,特に目的元素が希薄で,質のよいEXAFSスペクトルが得られにくい材料の評価には,XANES法が有用な場合が多い.

XAFS 法の腐食分野への応用例について述べる.XAFS 法は,多元素で 構成される腐食生成物であっても,知りたい元素の局所構造を選択的に 知ることができるため,腐食生成物の中に存在する結晶性が低く明瞭 な回折パターンを示さない添加元素のさび中での状態解析に適してい るといえる.M. Kimura ら^[23] や,M. Yamashita ら^[24] は,EXAFS 法を耐候性 鋼さびの構造解析に適用した.また,A. J. Davenport ら^[25] は,材料表面の 極薄皮膜の構造評価に XANES 法を積極的に適用してる.近年,放射光X 線をマイクロビーム化して EXAFS 法を適用することで,腐食生成物断面 からの局所構造解析が行われはじめている^[26].

1.1.6 ラマン散乱分光法

可視光をプローブとしたラマン散乱分光法も水酸化物,酸化物の分析 には多用される.試料に励起光としてのフォトンが入射すると,試料中 のフォノン(格子振動)により非弾性散乱を受ける.この散乱光のなか にはさまざまな周波数成分が含まれており,入射フォトンと同じ周波数 をもつ成分は,レイリー散乱光とよばれ,入射フォトンからフォノンの エネルギー分だけずれた周波数をもつ成分はラマン散乱光と呼ばれる. プローブ光として可視光が使用でき,最近のレーザー光源の発展と ともに,適用範囲が拡大してきた.腐食分野では,拡大光学系を併用す ることで,1–2 µm 程度の面分解能での構造評価^{[27],[28],[29],[30]}に適用され ている.また表面敏感であること,水酸化物,酸化物へのラマン活性が 高いことから,不働皮膜の分析にも適用されている^[31].水溶液存在下 でも十分な測定が可能であり.錯体^[32]や腐食生成物の分析が増加して きている.

1.2 本研究の目的

概説した手法の本研究での適用と現状の問題点について述べる.

1.2.1 母材添加元素の腐食生成物中での存在状態分析

腐食生成物に含まれる鋼材添加元素が,その腐食生成物の性状や性能に対して,重要な情報をもっていることが多い.母材にCr-Cu-Pが微量添加される耐候性鋼はその一例である^[33].最近では,耐候性鋼の採用が不適当とされる塩分飛来環境でも,母材にNiが添加された鋼材では耐候性が向上することが見出された.Niは,さび構造に作用することでその効果を発揮すると考えられている^[34].塩分飛来環境では,AIが添加された鋼材も耐候性にすぐれていることがよく知られている.その腐食生成物層には,AIが濃縮して存在していることから,AIもさび構造に作用していると考えられている.

さびの中での,Alのような鋼材添加元素の存在状態を調べることは, これまで困難とされていた.そもそも対象となるさびの結晶性がよく ないことからX線回折法では添加元素有無によるさびのX線回折パター ンの変化は明瞭でなく,また,さび中の添加元素の存在状態解析に多用 されるEXAFS法は,目的元素がAlの場合,X線吸収端が軟X線領域にあ

るため,解析に十分な EXAFS スペクトルを得ることが測定技術上困難で あることから適用には至っていない.

そこで本研究では,断面からの構造解析に有利なレーザーラマン散乱 分光法を用い,さび層中での局所的なさび相同定を試み,さらにXANES 法によりさび中のAlの存在状態を検討した.

XANES 法ならば,測定エネルギー範囲が狭くすみ,また,信号強度も 大きいので,微量添加元素に対しても測定できる可能性が高い.そこで 本研究では,XANES 法をAI存在状態解析に適用した.EXAFS のように解 析方法が確立されているわけではないため,スペクトルの解釈には,合 成さびなど標準となる物質のスペクトルとの比較が必要となる.

1.2.2 反応生成物-母材界面の非破壊分析

高温ガスプラントで使用されるNi基合金において,環境中に含まれる CO₂によるメタルダスティング^{[35],[36]}と呼ばれる腐食が進行する.合金添 加元素としてCuが有効であることはわかっていたが,そのCuの作用機構 に関しては,Cuの腐食界面での存在状態が不明確であったので未解決で あった.これまで,SIMSやAESなどの表面敏感な方法や,TEMなどを用い て深さ方向分析,断面観察がおこなわれたが,明確にできていなかった. そこで,非破壊分析による反応解明の観察をめざして検討を始めた.

深さ方向非破壊分析は,RBS法(Rutherford backscattering spectrometry)で行われる場合もあるが,合金成分は,Ni,Cu,Crが主であり,RBS法での分離分析は困難である.そこで,硬X線を励起源として用いるXPS法(Hard X-ray photoemission spectroscopy, HAXPES^[37])を用い,検討を行うこととした.

従来より,通常X線源のターゲットとして用いられるAIやMgの代わり にCuやTiから発生する硬X線を線源として使用することは,以前から よく用いられてきた.CuKa線を使えば8keV以上のエネルギーの光電子 を励起することができるため,原理的には,非破壊的に試料深部からの XPS スペクトルが得られる.例として,Fig. 1.1 にCu中光電子のIMFPに 対する運動エネルギー依存性を示した,8keVの運動エネルギーをも つ光電子のIMFPと,1keVのそれを比較すれば,試料深部からの信号

Fig. 1.1. TPP2M 式^[38] により計算されたCu中における光電子のIMFP.

が検出可能になることは容易に推測できる.しかしながら,Fig. 1.2に 示す^[39]ように,光イオン化断面積が小さくなるため,強力な放射光 (Synchrotoron Radiation,以下SR)光源を採用することで初めて実用分析に 適用できるようになってきた.

1.2.3 その場分析への応用

これまで,反応停止後の分析について述べた.しかし,材料機能に関す る界面の状態を,その使用環境中で評価することができれば,さらに情 報量が増加し,劣化メカニズムの解明に直結したり,寿命予測が容易にな ることが期待できる.このような手法を,一般には,その場分析と呼ぶ. しかしながら,その場分析には,かならずしも普遍的な方法,手順が 存在するわけではなく,その都度実験手順や雰囲気調整方法などの検討 を行うことが必要となってくる.本論文では実際に酸化や湿食による材 料の劣化挙動を対象に,その場分析技術の確立をめざした.

Fig. 1.2. 光イオン化断面積の励起エネルギー依存^[39]. Cuの内殻準位に関してプロットした.

本論文では,まず,気相における,鋼材の酸化現象のその場観察技術 について述べる.純鉄や低合金鋼の高温酸化スケールは,高温域では FeOが主成分であるが,温度が下がると分解し,FeとFe₃O₄が共析するこ とが知られている^[40].これをスケール変態と呼ぶが,この変態により, 母材とスケールの密着性が変化すると考えられている^[41].

鉄鋼材料の製造プロセスには脱スケールと呼ばれる工程がある.最終 製品の傷の原因となるスケール層を除去する工程であり,スケールと母 材の密着性は低い方がよい.このとき,処理条件や添加元素によりス ケール密着性がどう変わるのか,密着性とスケール変態挙動はどう関 連するのかが問題となっている.

従来,高温スケールが成長する温度から急冷した後の,断面を観察し ていたが,急冷時や試料作製時の試料へのダメージが問題であった.そ こで,その場観察を試みた.変態開始から終了まで数100秒で完結する 構造変化への追随性,数μm以上に成長する厚いスケール直下の母材の 観察が必要なため,光源に高輝度,高エネルギーの放射光X線を用いた XRD法を適用し,検出には高速の2次元ピクセル検出器^[42]を用いるこ とで,刻々と変化するスケール変態挙動の詳細な観察が可能となった.

湿食である大気腐食分野では,さびが乾湿繰り返しのなかで,構造変化するエバンスモデル^{[43],[44]}により,腐食の進行やさびの成長が理解されている.このエバンスモデルにおいては,生成したさびの電気化学安定性,密着性,環境遮断性能などが,その後の鋼の腐食挙動に大きな影響を及ぼすことになる.

鋼材添加元素は,しばしばさびの性状に作用することが指摘されている.例えば,Cr,Cu,Pを含む耐候性鋼^[33]がそうである.耐候性鋼表面の さび層やCu添加鋼のさび層の電気化学的安定性が向上する^{[45],[46]}との 指摘がある.また,Crの作用により保護性さびの主成分である*α*-FeOOH 生成が促進^[4]されることや,腐食反応におけるカソード反応である酸 素還元が抑制^[47]されるとの報告もある.

しかしながら,エバンスモデルで記述されるさび層の腐食反応への関 与は複雑であり,かならずしも全貌が明らかとなったわけではない.さ びの電気化学プロセスを停止させることなく,刻一刻とした変化が観察

できるその場分析は有効なツールになると考えらる.

そ こ で , さ び の 電 気 化 学 的 安 定 性 を 評 価 す る た め に , XRD 法 を 適 用 し た 水 溶 液 中 で の そ の 場 結 晶 構 造 観 察 技 術 の 検 討 を 行った .こ こ で は ,水 中 での散乱によるバックグラウンド上昇を抑えることが主な課題であった. 最後 に *,* ラ マン 散 乱 分 光 法 を 用 い た そ の 場 分 析 手 法 に つ い て 述 べ る . ラマン 散 乱 分 光 法 は , 光 源 に 可 視 光 が 使 え る た め , 例 え ば 水 溶 液 下 で の 測 定 へ の 展 開 は 比 較 的 ハ ー ド ル が 低 い と 考 え ら れ る . そ こ で 対 象 環 境 を,油井管や原子力材料が使用される高温高圧水下に絞り,その腐食環 境 下 で の そ の 場 観 察 及 び 分 析 を 目 指 し た .こ れ ま で の と こ ろ ,高 温 高 圧 水中でのこれら材料の使用環境中での観察はあまりおこなわれていな い.腐食の進行と,添加元素による抑制効果^[48]に関しては,模擬環境 での適用研究が多くある.しかしながら,やはり研究の主が,環境から 取り出してからの観察,評価,分析となるため,詳細な腐食挙動に関し て は ,あ ま り 明 ら か と なって お ら ず , 結 果 と し て , 添 加 元 素 の 作 用 機 構 に 関 し て も よ く わ かって い な い .そ こ で ,高 温 高 圧 水 下 腐 食 環 境 か ら 取 り 出 す こ と な く , 表 面 形 態 ,腐 食 生 成 物 の 分 析 を 行 い ,添 加 元 素 の 作 用 機構の検討を行った .

1.3 本論文の構成

本論文は,以上のような背景の中,次のような構成となっている.

第2章では,塩分飛来環境で生成する鋼上のさびの保護性に及ぼす添加元素効果について述べる.さびの微細構造に及ぼす鋼材添加Alの効果を,XRD法,EPMA法,ラマン散乱分光法,XAFS法を組み合わせ検討した結果を示す.

第3章では,高温環境で使用されるNi基合金の耐食性に及ぼす添加元素Cuの効果について,特に非破壊深さ方向分析という視点に基づき, HAXPESによって検討した結果を述べる.

第 4 章 で は , そ の 場 分 析 へ の 分 析 技 術 の 展 開 に つ い て 述 べ る .

まず,鋼の高温スケールであるFeOの,Fe,Fe₃O₄への変態挙動のその 場観察をめざし,XRD法と大型高速2次元検出器を用いて検討した結果 を示す.

次に,同じくXRD法であるが,気相ではなく,水溶液中その場分析への展開について述べる.X線は透過性が高く,ある程度の水溶液は透過できる.しかしながら,水はX線を散乱することでバックグラウンドを増加させ,測定対象物の散乱を隠す.本章では,電気化学反応を阻害しない程度の水が存在するなかで,水溶液からのバックグラウンドを低減する測定条件や安定して測定できる電気化学セルを作製し,連続的にXRD測定した.

最後に,水を透過できる可視光を光源として用いるラマン散乱分光法 により,腐食生成物の生成過程の解析を行った結果を示す.対象材料に低 合金油井管材料を選び,使用環境を模擬するため,高温高圧水セルを構 築し,分析を行った.

第5章で,本研究で得られた知見の総括を行う.

参考文献

- [1] 三沢俊平,防食技術,32,657(1983).
- [2] 三沢俊平,橋本功二,下平三郎,防食技術,23,17(1974).
- [3] T. Misawa, K. Asami, K. Hashimoto and S. Shimodaira, Corros. Sci., 14, 279(1974).
- [4] M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano and T. Misawa, Corros. Sci., 36, 283(1994).
- [5] 菊田惺志,表面科学,10,666(1989).
- [6] 森重国光,表面科学,7,52(1986).
- [7] 佐藤眞直,藤本慎司,材料と環境,57,250(2008).
- [8] K. Hirokawa and Y. Danzaki, Surf. Interface Anal., 4, 63(1982).
- [9] C. Leygraf, S. Ekelund and G. Schon, Scan. J. Metallugy, 2, 313(1973).
- [10] 杉本克久,岸興作,池田重良,沢田可信,日本金属学会誌,38, 54(1974).
- [11] 岡本剛,橘孝二,柴田俊夫,星野清,日本金属学会誌,38,117(1974).
- [12] J. P. Coad and J. G. Gunningham, J. Electron Spectrosc., 3, 435(1974).
- [13] I. Olefjord and H. Fischmeister, Corros. Sci., 15, 697(1975).
- [14] P. Marcus, J. Oudar and I. Olefjord, J. Microsc. Electron., 4, 63 (1979).
- [15] K. Asami, K. Hashimoto and S. Shimodaira, Corros. Sci., 16, 387(1976).
- [16] I. Olefjord, B. Brox and U. Jelvestam, J. Electrochem. Soc., 132, 2861(1985).

- [17] S. Hofmann, Surf. Interface Anal., 2, 148(1980).
- [18] S. Hofmann and J. M. Sanz, Surf. Interface Anal., 15, 175(1980).
- [19] 例えば, S. Suzuki, T. Kosaka, H. Inoue, M. Isshiki and Y. Waseda, Appl. Surf. Sci., 103, 49(1996).
- [20] F. W. Lytle, J. Synchrotron Rad., 6, 123(1999).
- [21] J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky and R. C. Albers, J. Am. Chem. Soc., 113, 5135(1991).
- [22] A. J. Davenport, H. S. Isaacs, J. A. Bardwell, B. MacDougall, G. S. Frankel and A. G. Schrott, Corros. Sci., 35, 19(1993).
- [23] M. Kimura, H. Kihira, N. Ohta, M. Hashimoto and T. Senuma, Corros. Sci., 47, 2499(2005).
- [24] M. Yamashita, H. Konishi, J. Mizuki and H. Uchida, Proceedings of the 15th International Corrosion Congress, Frontiers in Corrosion Science and Technology, Granada (Spain), p. 48, International Corrosion Council (2003).
- [25] A. J. Davenport, R. C. Newman and L. J. Oblonsky, ECS Meeting Abstracts, vol. 96-2, p. 322, The Electrochemical Society (1996).
- [26] S. Réguer, P. Dillmann and F. Mirambet, Corros. Sci., 49, 2726(2007).
- [27] T. Ohtsuka, J. Guo and N. Sato, J. Electrochem. Soc., 133, 2473(1986).
- [28] D. Neff, L. Bellot-Gurlet, P. Dillmann, S. Reguer and L. Legrand, J. Raman Spectrosc., 37, 1228(2006).
- [29] 上村隆之,土井教史,鹿島和幸,和暮憲夫,原修一,中原勝也,安藤隆一,幸英昭,材料,56,1035(2007).
- [30] 松田恭司,材料と環境,51,433(2002).
- [31] S. Ningshen, U. Kamachi Mudali, S. Ramya and B. Raj, Corros. Sci., 53, 64(2011).

- [32] H. Kanno and J. Hiraishi, J. Raman Spectrosc., 12, 224(1982).
- [33] 腐 食 防 食 協 会 編 , "防 食 技 術 便 覧", 日 刊 工 業 新 聞 社 , p.224 (1986).
- [34] H. Kihira, A. Usami, K. Tanabe, M. Ito, G. Shigesato, Y. Tomita, T. Kusunoki, T. Tsuzuki, S. Ito and T. Murata, Proceedings of the Symposium on Corrosion and Corrosion Control in Saltwater Environments, Honolulu, p.127, ECS(1999).
- [35] 例えば, F. A. Prange, Corrosion, 15, 619(1959).
- [36] Y. Nishiyama and N. Otsuka, Mater. Sci. Forum, 522-523, 581(2006).
- [37] K. Kobayashi, M. Yabashi, Y. Takata, T. Tokushima, S. Shin, K. Tamasaku, D. Miwa, T. Ishikawa, H. Nohira, T. Hattori, Y. Sugita, O. Nakatsuka, A. Sakai and S. Zaima, Appl. Phys. Lett., 83, 1005(2003).
- [38] S. Tanuma, C. J. Powell and D. R. Penn, Surf. Interface Anal., 21, 165(1993).
- [39] J. J. Yeh and I. Lidau, At. Data Nucl. Data Tables, 32, 1(1985).
- [40] 例えば, B. Gleeson, S. M. M. Hadavi and D. J. Young, Materials at High Temperatures, 17, 311(2000).
- [41]小林聡雄,占部俊明,大沢紘一,吉武明英,山田克美,佐藤馨,材料 とプロセス,11,1087(1998).
- [42] 豊川秀訓,兵藤一行,放射光,22,256(2009).
- [43] U. R. Evans, Corros. Sci., 9, 227(1969).
- [44] U. R. Evans and C. A. J. Taylor, Corros. Sci., 12, 277(1972).
- [45] I. Suzuki, N. Masuko and Y. Hisamatsu, Corros. Sci., 19, 521(1979).
- [46] M. Stratmann and K. Hoffmann, Corros. Sci., 29, 1329(1989).
- [47] T. Kamimura, S. Nasu, T. Segi, T. Tazaki, S. Morimoto and H. Miyuki, Corros. Sci., 45, 1863(2003).
- [48] A. Ikeda, M. Ueda and S. Mukai, Corrosion, 83, pp. 45(1983).

第2章 耐候性さび中のAI状態分析

2.1 諸言

Al や Si は鋼材耐食性を向上させる元素として良く知られており, 例え ば, Al および Si をステンレス鋼に添加することにより, NaCl 溶液中での 不働態保持電流が低下することから,従来からステンレス鋼における Cr代替元素としても注目されていた^[1].低合金鋼においても, Al や Si を 添加することで,屋外での耐食性,特に塩分飛来環境での耐食性向上に 顕著な効果があるとの報告が多くあり^{[2],[3],[4],[5]},最近注目されてい る.我々も上越市(直江津),宮古島など塩分飛来環境での低合金鋼の 曝露試験の結果から, Al および Si を含有した鋼材が良好な耐食性を有 し,特に Al が塩分飛来環境での低合金鋼の耐食性向上元素としての有 効性が高いことを確認した^[6].工業材料においては,希少な金属元素の 使用量をできる限り低減させることが望まれており, Al を含有すること により塩分飛来環境で耐食性が向上することは,将来の鋼材成分設計 や表面処理において大きな意味をもつものと考えられる.

塩分飛来環境での低合金鋼に対するAIの耐食性向上効果は,さび中に 取り込まれたAIが鉄さびに作用し,さびによる防食性を向上させるた めと考えられている^{[4],[6]}.鉄さび中でのAI存在状態に関しては,これま でいくつかの検討がなされており,例えば鉄さび中でのAIはFeとのスピ ネル型酸化物(FeAl₂O₄)を形成する^{[2],[3],[5]}と考えられている.その一 方で,AIはスピネル型酸化物中には存在せず,Feさび微細結晶と共存す るとの指摘もある^[4].他方,H.E.Townsendら^[7]によるAI含有鋼の工業地 帯への大気曝露結果では,AI添加の効果がみられていないとの報告も あり,低合金鋼に対するAIの腐食抑制効果およびそのさび中での存在状 態に関しては明確になっていないのが現状である. 著者らは,主に海塩粒子飛来地域である新潟県上越市(以下,上越市)および沖縄県宮古島(以下,宮古島)で,試験的に作製したAI含有鋼の曝露試験を行ってきた.曝露試験の結果から,作成したAI含有鋼材の耐食性を確認するとともに,それら試験鋼材の耐食性に及ぼすAIの効果を明らかにするべく,Electron Probe Micro-Analysis (EPMA)法,ラマン散乱分光法,X-ray Absorption Fine Structure (XAFS)法などを用い,さび中でのAIの存在状態を検討した.

2.2 実験

Al 添加量を変化させた5種類の鋼材を準備した.Table2.1に化学成分を 示す.いずれの鋼材も17kg真空溶解後, 鍛造, 熱間圧延により7mm厚の 鋼板とした.また, いずれもFe-Al 金属間化合物相が生成していないこ とは X-ray diffraction (XRD) で確認した.

それら鋼材を,60^w×100¹×6^t (mm³)の寸法の試験片に機械加工後,ショットブラスト処理し,新潟県上越市(日本海より離岸距離約1600m)および,沖縄県宮古島(海岸部)において最大2年間,水平から30度傾斜させ,南面向きに設置し,屋外大気曝露試験に供した.上越市については飛来塩分量は,土研式^[8]にて1996年4月から1997年3月にかけて測定した結果,0.4 mdd (NaCl:mg/dm²/day),また,宮古島(1997年度平均)では,1.1 mdd^[9]であった.

これら試験片は,所定期間曝露後,各種評価分析用に回収された.な お,上越市に曝露された0.5AI材は回収されていないため,調査対象外と した.上越市曝露材はすべて,さびは母材鋼に密着している状態で回収 された.一方,宮古島曝露材ではAIの添加されない0AIでは,腐食が激 しく母材鋼はほぼ消失しており,さび層の母材鋼側を評価対象とした. また,宮古島曝露材の0.5AI,2AIは層状剥離を生じていたため,母材鋼側 のさびのみを評価対象とした.

XRD 分析は,曝露試験片から採取されたさび層を粉末化して実施した. Co Kα線を使用した θ – 2θ法で測定し,定量はZnOを用いた内部標準法を用いた^[10].

さらに,宮古島2年曝露材および上越市1年曝露材を切断後,樹脂埋め 込み研磨した断面観察試料を準備した.研磨時,最終仕上げは,カーボ ンペーストによる研磨とし,同一試料をラマン散乱分光法およびEPMA 分析に供した.

ラマン散乱分光測定には,Jobin Yvon社のHR800を使用し,光源にLDレー ザー(532.5 nm),対物レンズには50倍のレンズを用い,発熱による影響 を避けるため,サンプル位置でのレーザー出力を0.3 mW以下に制限した. 本条件でのサンプル分析領域は <2 μmで,測定は4 μm ピッチで実施した.

EPMA 分析は JEOL JXA-8100 により,加速電圧 15 kV で実施した. EPMA 分 析時必須となるカーボン蒸着が,ラマン散乱分光法の場合障害となる ため,測定はラマン散乱分光法, EPMA 分析の順で実施した.

XAFS 法により, AI 周辺の局所構造を調べた.XAFS 法は,目的元素の 価数情報,結合状態,構造を反映した情報を元素選択的に得ることが 可能である.測定は,立命館大学 SR センター BL10 において,KTP 結晶 (KTiOPO4)を用い,検出は全電子収量法ないしは蛍光法にて実施した. X線エネルギーは,AI 箔を用い校正されている^[11].試料は,さび層を粉 末化し導電性テープに接着して使用した.今回のさび層中AI 含有量は 非常に少なく,Extended X-ray Absorption Fine Structure (EXAFS)スペクトル収 集は困難なことから,X-ray Absorption Near Edge Structure (XANES)スペクト ルのみ収集した.

また,Al量を変えた4種のAl置換α-FeOOHを,Fe(NO₃)およびAl(NO₃)を 出発物質として,U. Schwertmannら^[12]の方法に従い合成した.

それら合成さび中のFeに対するAl含有量をICP-AES法で定量し,10.4 at%, 7.0 at%,5.5 at%,1.5 at%であることを確認した.さらに,参照試料として, α-Al₂O₃(レアメタリック社製),γ-Al₂O₃(レアメタリック社製)および, γ-AlOOH(日産化学社製)粉末についてもXANESスペクトルを測定した.

2.3 結果

2.3.1 海浜地域曝露における腐食減量とさび構成物質

上越市,宮古島において,それぞれ2年間まで大気曝露した後の鋼材 腐食減量をFig. 2.1 に示す.上越市曝露材では,2 mass%Al添加材である2Al 材まではほとんど耐食性に変化は認められなかったが,それ以上の添加 である5Al鋼,さらに10Al鋼では耐食性の向上が顕著であった.宮古島曝 露材では,Al添加量の増加にともない耐食性に大きな向上が見られ, 10Al鋼では,腐食速度は40 µm/year以下となった.また,いずれのAl添加 鋼の1年あたりの腐食量も,2年目で減少する傾向であったことから,Al 添加鋼の耐食性は曝露期間と伴に向上すると考えられる.

さび層粉末のXRDスペクトルにおいては,内部標準法による定量の ために添加したZnOと鉄さび成分である α -FeOOH (Goethite), β -FeOOH (Akaganeite), γ -FeOOH (Lepidocrocite), Fe_{3- δ}O₄ (Fe₃O₄ (Magnetite)及び γ -Fe₂O₃ (Maghemite),両者はいずれもスピネル型構造を有しXRDでの判別は困 難)およびがX線的非晶質さび(XRA さび)確認された.XRD法により 定量されたさび構成物質の成分比を,Fig. 2.2 に示す.いずれの鋼材上に 生成したさびにおいても,XRA さびの比率が高かった.特に,AI添加量 の多い鋼材ではその比率が高くなる傾向にあった.明瞭に回折パターン の得られたさび成分は,宮古島曝露材では,海浜地域で一般的に観測さ れるFe_{3- δ}O₄ および β -FeOOHが多く検出される傾向を示した. β -FeOOHは pH1–3 程度の酸性塩化物溶液で生成するとされており局部的にpHが酸 性域にまで低下していることを示している^[13].鋼材添加AI量の増加に 従い,Fe_{3- δ}O₄の比率は減少し, α -FeOOH,非晶質さびであるXRA成分比率 が高くなる傾向を示した.上越市曝露材のさびからは, β -FeOOH,Fe_{3- δ}O₄ はほとんど検出されず, α -FeOOHおよび γ -FeOOHが多く検出された.

Fig. 2.1. Al 添加鋼の曝露期間による腐食減量変化(a)上越市及び(b) 宮古島.

Iable 2.1. 迺 杓 袒 成 (mass%).											
	steel	С	Si	Mn	Р	S	Cu	Ni	Cr	Al	Ν
	0A1	0.051	0.01	0.01	0.001	0.001	0.01	0.01	0.01	0.001	0.0007
	0.5Al	0.053	0.01	0.002	< 0.001	0.0002	0.01	0.01	0.01	0.49	0.0016
	2Al	0.053	0.01	0.002	< 0.001	0.0001	0.01	0.01	0.02	1.85	0.0015
	5Al	0.053	0.01	0.001	< 0.001	0.0002	0.01	0.01	0.02	4.99	0.0010
	10Al	0.056	0.03	0.002	< 0.001	0.0002	0.02	0.02	0.07	10.33	0.0009

1 1 o/ \

Fig. 2.2. 曝露場所によるさび成分比率の差(a)上越市において1年 及び (b) 宮古島において2年, それぞれ曝露.

2.3.2 ラマン 散乱 分光 法 により 確 認 された さび 層 中での AI 分 布状 況とさび 成分の 関係

XRD 測定で得られたように鋼材添加 AI 量によりさび成分が系統的な 変化を示すことから,鋼材に含有される AI が腐食環境で生成するさび 層の構造に作用する可能性が考えられる.そこで,さび構造への AI の作 用を明確にするため,さび層中でのさび成分と AI 存在部位との関係を, ラマン 散乱分光法および EPMA により調査した.

さび層断面に対する EPMA 分析の結果, Fig. 2.3–2.5 に示すように, Al はいずれの鋼材においてもさび層中に濃化して存在すること, さらに Fe 及びOの分布状況から, Al は鉄さびと共存して存在していることが確認 された.

Fig. 2.3. 上越市に1年曝露された 5% Al 添加鋼表面さび層断面からの分析 結果: (a) EPMA法による元素分布,(b)写真中1–5の部位に対応したラマン スペクトル.

Fig. 2.4. 宮古島に2年曝露された 5%Al添加鋼表面さび層断面からの分析結果: (a) EPMA法による元素分布,(b)写真中1–7の部位に対応したラマンスペクトル.

Fig. 2.5. 宮古島に2年曝露された0.5%Al添加鋼表面さび層断面からの分析結果: (a) EPMA法による元素分布,(b)写真中1–8の部位に対応したラマンスペクトル.

上越市曝露 5Al 鋼さび層中の各元素の分布状況を Fig. 2.3(a) に示す. Al は,主に母材鋼と接するさび層内層側に局在しているとともに, Cl はほ とんど存在しないことが確認された.

Fig. 2.3(a)SEM 像中の点 1 から点 5 まで 8 μm 間隔でラマン 散乱分光法に より測定した結果を Fig. 2.3(b) に示す. さび層内層 (Fig.2.3(a) 中位置 1,2) からは, XRA さびに酷似したスペクトル^[14]が検出された.さらに,外 層側にいくにしたがい, α-FeOOH成分が検出 (位置 3,4) され,最外層 からは γ-FeOOHが検出 (位置 5) された.この内層で非晶質相,外層で結 晶相が存在する傾向は,工業地域に曝露された JIS 耐候性鋼 SMA のさび 層に良く見られる傾向^[15]と一致する.また,その XRA さびの検出部と EPMA での Al 濃縮部はよく一致した.

Fig.2.4 に,宮古島で曝露された 5Al 鋼さび層の EPMA 分析結果および点 1 から点 7 まで 16 µm 間隔で採取したラマン散乱分光測定結果を示す. Fig.2.4(a) から,Al はさび層全体に広く分布していることがわかる.また, 上越市曝露材では宮古島曝露材のさび層中にはほとんど確認されな かった Cl がさび中に分布していることが確認された.一方,Cl の分布と, Al,Na の分布は一致せず,Cl は Fe 及び O と共存していた.

Fig.2.4(a)SEM 観察部の点 1 から点 8 まで 16 μm 間隔で採取したラマン散 乱分光測定結果をFig.2.4(b) に示す. 白線上のさび層上層部(位置6,7) のCl分布周辺からは,β-FeOOHが検出された.最上層(位置7)には, γ-FeOOHのスペクトルが確認された.さらに,Cl分布位置より内層側 (位置1-5)では,α-FeOOH およびXRA に典型的なラマンスペクトルが得 られ,それらとAlの分布とはよく一致した.本鋼材のさび構成は,Cl存 在部においてβ-FeOOHの存在が確認できた以外は,上越曝露材でのさび 層構造と共通点が多い.

次に,宮古島に曝露された,0.5Al 鋼さび層断面分析結果をFig.2.5 に示す.EPMAによる面分布結果(Fig.2.5 (a))から,さび層の内層部にAl が母 材鋼より濃縮して存在している部位もあったが,前出の上越市曝露5Al 鋼にくらべると,その局在傾向は小さいことがわかる.このようにAl 分 布がさび層の広範囲に広がる傾向は,宮古島曝露材共通のものと考え られる.Cl 分布に注目すると,一部は母材鋼近傍まで侵入していたこと

が 確 認 され , そ の Cl の 母 材 鋼 近 傍 へ の 侵 入 部 位 周 辺 さび 部 へ の Al 分 布 は 少 な い 傾 向 で あった .

Fig.2.5 (b) に,16 μm 間隔で採取したラマン散乱分光測定結果を示す. 内層部(位置1-6)からは,XRAおよび α -FeOOH(位置1,4,5)以外に, Magnetite(位置2,3,4,6)の特徴を持つスペクトルが得られた.Al分布 と,XRA, α -FeOOHの分布はほぼ一致した.また,さび外層のClが濃縮し た部位(位置7)からは, β -FeOOHのスペクトルが得られた.さらに,さ び層の最外層部(位置8)からは, α -FeOOHおよび γ -FeOOHが確認された. 本観察部位では,さび層の中層で,Fe₃O₄の分布が顕著であった.

以上のように,Al添加鋼表面のさび層は,その母材鋼組成,曝露環境 によりそれぞれ異なるAl分布,さび組成を有し,さび層中のAl濃縮部に は,XRA,α-FeOOHの分布が多いのが特徴であった.これらは,さび層中 に取り込まれたAlと鉄さびがなんらかの相互作用をした結果であると 考えられる.この事に関しては,後節で考察する.

2.3.3 XANES法によるさび層中AIの状態分析

海浜地域で高い耐食性を示した鋼材上のさび層中でのAI分布,濃度を 調べた結果,さび中のAIがさび層組成,防食性に大きな影響を及ぼす可 能性が考えられた.それらに対するAI効果を明らかにするために,さび 層中でのAI存在状態を明確にしておく必要がある.化学結合状態分析 にはXPS法などが利用されるが,AIはさび中での含有量が少なく,さら に酸化された状態で存在すると考えられるので,化学結合状態を識別 することは困難である.他方,Electron Energy-Loss Spectroscopy (EELS)スペ クトル,EPMAスペクトルおよび,EPMAによる特性X線の裾野に観測さ れるAI局所構造を反映したExtended X-ray Emission Fine Structure (EXEFS)スペ クトルで,塩分飛来環境で曝露したAI添加鋼上腐食生成物中のAIの 状態分析が試みられている^{[2],[3],[4]}.EELSやEXEFSは,局所で化学状態 を分析できる方法としては有用な手法である.しかし,AI添加鋼上の腐 食生成物中AIに対するそれら手法による分析の結果,AI₂O₃のスペクト ルと酷似していることから,AIはさび中で酸化した状態で存在してい ると報告されているのみで,共存するFeとの関連などは不明瞭なまま

Fig. 2.6. 曝露期間,場所の異なるAl添加鋼表面さび層中のAlK端XANESスペクトル.ピークA,B強度が曝露場所ごとに異なる.

である.Alの鉄さび中での存在状態を詳しく調べるためには,価数情報,さらに Al 周辺の構造情報を,高い SN 比ならびに高分解能で評価する必要がある.本研究では,鉄さび中の Al の存在状態を解析するため, Al K 端 XANES 測定を実施した.

上越市で曝露された5,10Al鋼および,宮古島で曝露された0.5,5,10Al 鋼上のさび中に取り込まれたAlからのK吸収端XANESスペクトルを Fig.2.6に示す.いずれの試料からのスペクトルも酸化物(Al³⁺)の状態と して検出され,1569 eV付近(Aピーク),1572 eV付近(Bピーク)に特徴 的な2本のピークを持つ.宮古島で曝露された試料は,全体にFig.2.6中B ピーク強度(1572 eV)が大きい傾向を示し,母材Al量が少ないほどその 傾向は強く現れた.

Fig.2.7 に , 参照試料のAl K 吸収端 XANES スペクトルを示す. Al が 4 配位 構造をとる場合, 1566–7 eV 付近に構造を持つ^[16]ことが知られている.

Fig. 2.7. γ -Al₂O₃, α -Al₂O₃ と γ -AlOOH4 の Al K 端 XANES スペクトル.

今回同時に測定した参照物質の中で,γ-Al₂O₃のみ,その4配位構造Al化 合物に特有のスペクトル構造を示した.これはγ-Al₂O₃が,スピネル構造 であり,その構造中にAlO4構造を一部持つためである.一方,今回得ら れたさび層中のAlK端スペクトルにはそのような構造はみられないこ とから,いずれも6配位構造を有する酸化物状態で存在していたと結論 できる.測定した参照物質の中では,γ-AlOOHのピーク構造が,鉄さび 中のAlからのスペクトル構造と近いことがわかった.さらに,γ-AlOOH 中に含まれるAlの周辺局所構造は,鉄さびの主成分ともなるα-FeOOH, γ-FeOOHの基本構造であるFe(O,OH)₆の八面体構造と同じ構造をもつこと も明らかとなった.

多くのAl, Fe水酸化物,酸化物は同一構造を有し,お互いに陽イオンサイトを置換する置換体の存在が知られている^{[17],[18]}. Fig.2.3–2.5に示したように,AlとFe及びOの分布は重なり,XRDではAl単体化合物は確認されていないことから,Alの存在状態として,さび層の主成分である鉄さび

の Fe サイトが Al で 置換された状態で存在している可能性が考えられる. 例えば,Al 置換型 α-FeOOH は天然にも産出し,その研究例は多い ^{[16],[17],[18],[19]}.Al 置換量とXANES スペクトルにおけるピークA (図中 1569 eV),B(図中1572 eV)強度比が,10–33 at%の範囲で調べられ,Al 含 有量が減少するとともにピークAが減少する傾向であることが指摘 ^{[16],[19]}されている.α-Fe_{1-x}AlxOOH(x=0.1-0.33)のスペクトル^[16]とさびの スペクトルを比較すると,大まかなピーク形状は一致した.しかし,著 者らが測定した曝露さび中のAl K端XANES スペクトルの多くは,それら と比較するとピークA強度が小さいスペクトルを示した.

合成した *α*-Fe_{1-x}Al_xOOH (Al含有量 1.5-10.4 at%)の AlK端 XANES スペクト ルを Fig.2.8 に示す. Fe に対する Al 置換量が少なくなるほど,ピーク B 強 度が増加する傾向を示した.それらスペクトルの特徴は,曝露材上のさ び粉末からの Al K端 XANES スペクトルの特徴とよく一致した.すなわ ち,さび中の Al は主に *α*-Fe_{1-x}Al_xOOH として存在している可能性が高い が,その置換量は,多くて 10%程度であると考えられる.また,さび中の Al K端 XANES スペクトル(Fig.2.6)のピークA,B比率の曝露場所,母材 化学成分による変化は,さび中 Fe の Al 置換量に対するピーク強度 A,B の強度比変化に対応するものと考えられる.一般に元素置換による格 子定数変化が XRD により検出,議論されるが,本さびに関しては,明瞭 なピークシフトは認められなかった.主成分である鉄さびの回折ピーク に隠されたためと考えられる.一方,XANES 法は特定元素に関する情報 を選択的に抽出でき,さび中に少量しか存在ない Al の存在状態の解析 に適した方法であることが確認された.

2.4 考察

2.4.1 さび層構造とAI分布

宮古島に2年,上越市に1年間大気曝露したAI添加鋼の腐食減量およびさび組成を調べた結果,特に宮古島の環境では,鋼中AI量が増加するに従い耐食性が著しく向上することが確認された.さび層におけるAIの分布は,曝露環境により異なっており,上越市では,母材鋼直上さび

Fig. 2.8. 合成した Al 添加さびの XANES スペクトル . ピーク強度 A, B は Al 含 有量で異なる .

Fig. 2.9. Al₂O₃·3H₂Oと Fe(OH)₃の溶解度のpH依存^[21].

層内層に分布する傾向を示すが, 宮古島においては, 広くさび層全体に Al が分布する傾向であった.

XRD 測定の結果 (Fig.2.2 (a)),上越市では,γ-FeOOHの比率が高いさび 層が生成していた.このγ-FeOOHは,中性域で生成することがよく知ら れていることから^[20],上越市の環境では,AI含有鋼の鋼材表面のpHは 中性に近い環境に保持されていたことが推測される.Fig.2.9にAl₂O₃·H₂O とFe(OH)₃の溶解度のpH依存性を示す.ここでは,Al₂O₃·H₂Oの溶解度は固 相成分により異なるが後でも述べるようにGibbsite型としての存在が示 唆されているため,Gibbsiteとして検討した.

低 pH 環境では,溶解度は Fe(OH)₃の方が小さいが,弱酸性から中性付近では,Al₂O₃·H₂Oの溶解度の方が Feより小さくなる.すなわち,鋼材表面近傍の pH がそれほど低下しないと考えられる上越市の曝露環境では,腐食,乾燥過程で,先に沈殿するのは Al であったと考えられる.このように考えると,上越市に曝露された Al 添加鋼の Al (Fig.2.3)がさび

内層に分布する傾向であったことが理解できる.一方,宮古島のような 飛来塩分量が1.1mddを越えるような腐食性の激しい環境では,鋼材の溶 解,さび形成過程での加水分解による鋼材pH低下^[13]は上越市より大き かったことが推測される.低pH環境ではFeより溶解度の大きなAIは結果 として,さび層全体に広がる傾向を持ったことが推測される.

また, さび層中のさび成分分布とAl分布を比較すると, γ-FeOOH, β-FeOOH, Fe₃O₄はAl分布とは重ならず, 主に XRA, α-FeOOHの分布がAl分 布と一致する傾向であった.

共存元素によりさび構造が影響を受けることは良く知られており,例 えば,JIS耐候性鋼においては,鋼材に含有されるCrがさび生成過程で, さび結晶の微細化^[22]およびα-FeOOHさび生成を促進^[15]する可能性が指 摘されている.Alもさび生成過程で共存する特定のさび成分,特にXRA およびα-FeOOHの生成に関して影響を及ぼした可能性が考えられる.

2.4.2 さび 層中における AIの存在状態と構造への影響

さび 成 分 へ の Al の 関 与 を , さび 中 の Al 存 在 状 態 か ら 検 討 す べ く , Al K 吸 収 端 XANES ス ペ ク ト ル を 検 討 し た 結 果 (Fig.2.6) , Al は , α-Fe_{1-x}Al_xOOH とし て 存 在 し て い る 可 能 性 が 高 い こ と が 判 明 し た .

すでに述べたように,Al 置換量とXANES スペクトルにおけるピーク A,B強度比の相関は確認^{[16],[19]}されており,ピークA,B(Fig.2.6)の強 度比を用いて,α-FeOOH中Al 置換量の定量的な議論が可能である.得ら れたスペクトルを,Y. Katoら^[23]の手順に従いピーク分離後,合成Al 置 換α-FeOOHのAl K端XANES スペクトルからピーク強度比(A/B)を見積 リ,Fig.2.10にプロットした.合成されたAl 置換α-FeOOHに含まれるAl 量と ピーク強度比(A/B)間にも良い相関があることを確認した.

Al 置換 α-FeOOH 中の Al 周辺局所構造について考えてみる.α-FeOOH 中 Feの Al 置換に伴うXANES スペクトル構造変化は,L.A. Bugaev ら^[24]によ る理論的な検討,さらに,P. Ildefonse ら^[19]による合成さびの検討によっ て,Al 置換量が少ない時はGibbsite型の局所構造を,多い時はDiaspore型 の局所構造を持つことが示されている.DiaspreはGeothite (α-FeOOH)と

Fig. 2.10. ピークA, B 強度とAl 含有率の関係.

Fig. 2.11. (a)Gibbsite 及び (b)Diaspore の 結 晶 構 造 ^[27].

同一の結晶型であり,また,α-FeOOH中にAlはFeに対して 33%まで置換 できることが確認されている^[19]. Gibbsite, DiasporeともにAl(O,OH)₆もし くはAl(OH)₆構造を有するが,その積層構造に差異があり, Gibbsiteでは, 隣あったAl(OH)₆ユニットはエッジのみを共有する構造をとるが, Diaspore は,エッジおよびコーナーを共有する. Gibbsite^[25], Diaspore^[26]の結晶構造 を Fig.2.11に示す. Al 置換量の少ないときのAl K 端 XANES スペクトルが Gibbsite 型のスペクトルを示すのは,主にさび中において,α-FeOOH 結晶 の外周に位置するエッジ共有のFe(O,OH)₆ユニット中のFeの一部をAl が置 換した状態であると考えることができる. Fe さびに対するAl 量の増加 に伴い,α-FeOOH構造中のFe サイトへのAl の置換量が増加し, Al 周辺局 所構造もDiaspore 型へと変化した結果が, Al K 端 XANES スペクトルに反 映されたと考えられる.

α-FeOOH 中への AI 置換量が少ないときは,Al(OH)₆ ユニットが鉄さび結晶の外周部に付着することで鉄さび結晶の粗大化を抑制し,AI 置換量が多い場合も鉄さび結晶中での特異点として機能することで,鉄さび結晶の成長を抑制する.その結果,AI 添加鋼のさび成分における XRA 成分が増加したと考えられる.

2.4.3 防食性に及ぼすAIの役割

さび中の Al の存在状態と鋼の耐食性の関連性を議論するため,各曝露 材のさびからの Al K 端 XANES スペクトルのピーク分離を実施し,曝露材 さび中に存在する Al 置換α-FeOOHの Al 置換率の定量的評価を試みた. Table 2.2 に得られたピーク強度比(A/B)を示す.

Table 2.2 に示すように,宮古島曝露された 0.5Al 鋼上さび層中Al から得ら れた XANES スペクトルのピーク強度比は,Al 置換量 1.5%の合成さびの値 より小さく,Al 置換率は,合成さびより低いものと考えられる.上越市に 曝露された 5Al 鋼さび層中Al K端 XANES スペクトルは,Al の平均置換量 として 10%程度に相当するピーク強度比であった.一方,宮古島で曝露さ れた 5Al 材のスペクトルから得られたピーク強度比は上越市で曝露され た 5Al 鋼上さびのAl 置換量より少ない.すなわち,さび中のAl 存在状態 は,母材 Al 量だけではなく,曝された腐食環境によって大きく変化する.

Townsend ら^[7]は,工業地帯では鋼材中に含有される AIの効果がないこ とを指摘しており,工業地帯のようなマイルドな環境では AIの効果は発 揮されにくいことが考えられる.飛来塩分量 0.4 mdd の上越市において も,Fig.2.1,Fig.2.2に示したように,5AI鋼までは,腐食量,さび構成とも 大きな差異は確認されなかった.しかし,10AI鋼では,その効果が発揮 され,大きな腐食減量の減少とともに,さび構成も大きく変化した. しかし,それらさび中に取り込まれている AIの XANES スペクトルは, Fig.2.6に示したように,5AIと 10AI鋼さびで本質的な違いはなく,同等の AI置換量を有する AI置換α-FeOOHが生成しているものと考えられた.す なわち,上越市での 5AI,10AI両鋼材さび層中で,AIはFeさび形態に影響 をおよぼす状態で存在はしたが,5AI鋼までは耐食性に大きな変化をも たらすことはなかったことになる.

ところで,上越市で曝露された Al 添加鋼さび層の EPMA 分析の結果 (Fig.2.3(a)), 5Al 鋼では, Al はさび層の最内層に主に存在していたことが わかっている.上越市のような比較的穏やかな環境では, Al が先にさび 層内層に沈積することで, Al 効果がさび層全体には行き渡りにくかった 可能性が考えられる.一方, 10Al 鋼での耐食性の顕著な向上は, Al のさ び層中での絶対量が増加することにより, 耐候性効果を充分発揮できる

Table 2.2. AIK 端 XANES スペクトルにおけるピークA, B 強度比.

	0.5Al_miyako	5Al_miyako	10Al_miyako	5Al_jyoetsu	10Al_jyoetsu
Intensity ratio (A/B)	0.28	0.38	0.45	0.57	0.52

量の Al が さび に 供 給 され ,その 結 果 ,さび 層 成 分 で の γ-FeOOH の 減 少 , XRA,α-FeOOH 比 率 の 大 幅 な 増 加 など Al 添 加 効 果 が 顕 著 に 発 現 し ,防 食 性 が 向 上 し た と 考 え ら れ る .

γ-FeOOHは,電気化学的にFe₃O₄に還元される^[14]ため,保護性さびとしては必ずしも適していない.XRAさびも還元される可能性はあるが,さび結晶が微細なため,粒子間の凝集の促進,体積変動の抑制など耐食性には有効に働く機能をもつことが期待される.

宮古島環境で曝露された鋼材のさび層におけるAI分布は,さび層中 広範囲への分散が特徴であった.それらさび中では,スピネル型さび, γ-FeOOHの生成は減少し,XRAさび,α-FeOOH成分比率が増加した.一 方,0.5AI鋼でもAIがさび層中に広範囲に分布していることは確認され たが,腐食減量は多く,耐候性鋼材としては不十分な性能であった.

野田ら^[28]により, AIを含むさび層がカチオン選択透過性を示すこと が明らかとされているが, 0.5AI 鋼さび層へは, Fig.2.5 (a) に示すように, さび層内層へのCI 侵入が確認されている.すなわち, 母材鋼からのAI 供 給不足から, CI⁻ イオンの母材鋼近傍への侵入を抑止できるだけの充分 なAIをさび層中に取り込めていない可能性が考えられる.一方, 5, 10AI 鋼では, さび層全体にAIを多量に供給することができるため, 宮古島の ような厳しい環境においても, カチオン選択透過性を有することで CI⁻ イオンのさび内層への透過を抑制し, 優れた耐食性を発揮するさび層 が生成したものと考えられる.

海塩粒子飛来地域である上越市および宮古島で,試験的に作製したAl 含有鋼の曝露試験をい,鋼上に生成したさび層を種々方法で分析した. 特に,さび中に取り込まれたAlのさび中での存在状態を明確にすべく, AlK端XANES測定を行うことで,Alが,さび中でα-Fe_{1-x}Al_xOOH型さびを 形成していることが判明し,さびの成分を耐食性に優れるα-FeOOH型に 導く効果を発揮したことがわかった.

2.5 結論

Al 添加量を変えた試験鋼材を海浜地域に2年間大気曝露し,生成した さび性状について各種分析を行い以下の結果を得た.

- 海浜地域で曝露された鋼材さびのXRD測定の結果,鋼材中のAl添加量に伴い,さび成分が変化した.すなわち,Al量増加により, γ-FeOOH,スピネル型のさびは減少し,XRAさび,α-FeOOH型のさび 成分比率が増加した.
- 海浜地域で曝露された Al 添加鋼中の Al は腐食の初期段階からさび 層中に鉄さびと共存して存在し、さび形成過程に深く関与した.特に、Al が多く存在する部位の鉄さびは、XRA および α-FeOOH 型さび であった.
- AIK端XANESスペクトルから,鉄さび中のAIの存在状態を定量的に調べることが可能であることが確認された.海浜地域で曝露された鉄さび中でのAIは,主にα-Fe_{1-x}Al_xOOH型さび中のAIとして存在し,そのAI置換量xは,腐食環境と母材AI量により変化した.このようなAI置換α-Fe_{1-x}Al_xOOHの生成が,耐食性に優れるさび層の形成を促したと考えられる.

参考文献

- [1] S. Faty, C.R. Acad. Sci. Ser. IIB, 300, 603(1985).
- [2] T. Nishimura, A. Tahara and T. Kodama, Materials Transactions, 42, 478(2001).
- [3] T. Nishimura and T. Kodama, Corros. Sci., 45, 1073(2003).
- [4] 西村俊弥,日本金属学会誌,71,908(2007).
- [5] X. H. Chen, J. H. Dong, E. H. Han and W. Ke, Corrosion Engineering, Science and Technology, 42, 224(2007).
- [6] 和暮憲男, 鹿島和幸, 上村隆之, 幸英昭, 材料と環境討論会講演 集, B-210, 175(2004).
- [7] H. E. Townsend, Corrosion, 57, 497(2001).
- [8] 建設省土木研究所,(社)鋼材倶楽部,(社)日本橋梁建設協会,"耐候 性鋼材の橋梁への適用に関する共同研究報告書(XV)",(1992).
- [9] (財)日本ウエザリングテストセンター, "新発電システムの標準化に 関する調査研究成果報告書", (1997).
- [10] 岩田多加志,中山武典,泊里治夫,竹内俊二郎,横井利雄,森 弘,材料と環境'95 講演集,C-306,341(1995).
- [11] J. A. van Bokhoven, M. J. van der Eerden and D. C. Koningsberger, J. Am. Chem. Soc., 125, 7435(2003).
- [12] U. Schwertmann and R. M. Cornell, "Iron Oxides in the Laboratory", VCH, Weinheim, (2000).

- [13] 上村隆之,鹿島和幸,菅江清信,幸英昭,工藤赳夫,材料と環境'08
 講演集,C-302,335(2008).
- [14] U. R. Evans, Corros. Sci., 9, 813(1969).
- [15] 山下正人,幸英昭,長野博夫,三沢俊平,鉄と鋼,83,448(1997).
- [16] D. Li, G. M. Bancroft, M. E. Fleet, X. H. Feng and Y. Pan, American Mineralogist, 80, 432(1995).
- [17] R. W. Fitzpatrick and U. Schwertmann, Geoderma, 27, 335(1982).
- [18] U. Schwertmann and E. Wolska, Clays Clay Min., 38, 209(1990).
- [19] P. Ildefonse, D. Cabaret, P. Sainctavit, G. Calas, A. -M. Flank and P. Lagarde, Phys. Chem. Minerals, 25, 112(1998).
- [20] 三 沢 俊 平 , 橋 本 功 二 , 下 平 三 郎 , 防 食 技 術 , 23 , 17(1974).
- [21] M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solutions", NACE, (1974).
- [22] 木村正雄,鈴木環輝,重里元一,齋藤正敏,鈴木茂,紀平寛,田辺康児,早稲田嘉夫,日本金属学会誌,66,166(2002).
- [23] Y. Kato, K. Shimizu, N. Matsushita, T. Yoshida, H. Yoshida, A. Satsuma and T. Hattori, Phys. Chem. Chem. Phys., 3, 1925(2001).
- [24] L. A. Bugaev, P. Ildefonse, A. -M. Flank, A. P. Sokolenko and H. V. Dmitrienko, J. Phys.: Condens. Matter., 10, 5463(1998).
- [25] H. Saalfeld and M. Wedde, Z. Kristallographie, 139, 129(1974).
- [26] R. J. Hill, Phys. Chem. Minerals, 5, 179(1979).
- [27] Figure was drawn with VICS-II software developed by K. Momma and F. Izumi.
- [28] 野田和彦,西村俊弥,升田博之,小玉俊明,日本金属学会誌,64, 767(2000).

第3章 HAXPESによるNi基合金のスケール-母材界面のCu偏析挙動解析

3.1 緒言

将来のクリーン液体燃料として期待される,DME(ジメチルエーテル),GTL(gas to liquid)などの石油系燃料の代替燃料は天然ガスからの改質と合成により製造される.改質工程での合成ガス(CO-H₂-CO₂-H₂O)によりメタルダスティング腐食^[1]と呼ばれる厳しい腐食が合成ガス製造装置材料に生じることが問題となっている.

その腐食挙動は,合金組成毎に異なることが知られている.例えば, Feを主成分とする低合金鋼では合成ガス中での大きな炭素活量により, FeC₃が形成される.そのFeC₃上に合成ガスから分解した graphite がさら に堆積し,FeC₃は再分解され、その結果,Fe 微粒子が脱落する.この, FeC₃生成,分解の繰り返しで,腐食減肉が進行するといわれている^[2]. 一方,ステンレス鋼やNi基合金などCrを多く含有することで高温酸 化雰囲気中で高耐食性を発揮する鋼材では異なる腐食挙動を示す。それ ら鋼材は使用環境中でも,保護性の皮膜が生成するが、使用中に不可避 的に発生する皮膜の欠陥部を通して,鋼材中への浸炭が進行し,固溶限 を越えたCが直接 graphite として、鋼材表面に析出する.その結果,金属 が脱落し,pit 状の腐食が進行する^{[3],[4]},といわれている.

現在のところ,このような腐食環境で長期間適用可能な実用的工業材料は開発されておらず,高効率化のための合成ガス製造装置のデザイン 設計を阻んでいる.

一方、著者らは,最近,種々鋼材の実環境中での暴露試験の繰り返しの結果,Cuを添加されたNi基合金はこの環境でも腐食が進行しにくいことを見出した^[5].CuがCOの解離吸着に対して鈍感であるため,Cが合金中

に侵入しにくく,メタルダスティング腐食を抑制していると考えている. このCuの耐食性は,合金中の組成成分に大きく依存し,例えば,Cu-Ni

2 元系合金では,Cuを20 at%以上,Cu-Ni-Cr 3 元系合金では,Cuを2 at%以上含むことで有効な耐食性を発揮することを確認している^[6].

従来よりCu-Ni 2 元系合金においてCuは,高温環境中での表面偏析 元素として良く知られている^[7].また,この合成環境中において2 元系 ではCuが偏析することは確認^[8]していたことから,Cuのスケール中な いしは,スケール-母材界面でのCu偏析の可能性を考えた.しかし,これ まで実施した,TEMによる断面観察,SIMSによる深さ方向分析などでは, スケール中,スケール-母材界面でのCu存在状態を明確にできる結果を 得ることはできなかった.

これまでの検討で,Cuの存在が不明瞭であったのは,サンプル作成時 ないしは,分析時にサンプルに与えられるダメージに一因があると考 えられた.しかし,実環境中では,保護性のCr₂O₃を主成分とする酸化皮 膜が生成するため,スケール–母材界面の分析に非破壊的な分析手法は 適用しにくい状況であった.

一方,最近,大型放射光設備(SPring-8)で,そのX線エネルギー選択の 自由度の高さをXPS法に生かすためのアナライザーの導入,検討が精力 的に行われてきている^[9].入射X線のエネルギーとして例えば8–10 keV 程度のものが使用できれば,励起される光電子の運動エネルギーも約 8–10 keV 前後となり,非弾性平均自由行程が長く,数10 nm 程度の酸化層 なら十分透過,解析可能なデータが得られる可能性が高い.

そこで,本研究では,硬X線によるXPS法(Hard X-ray Photoelectron Spectroscopy, HAXPES法)を適用し,模擬環境下で生成するスケール中ないしは,ス ケール - 母材界面での元素存在状態の非破壊分析を実施することで, この鋼材の実環境中での耐食性発現メカニズム解明を目指した.具体 的には,保護性のスケールが生成した状態の試料に対して,角度分解 XPS測定^[10]を実施し,非破壊のまま,深さ方向の組成分布,化学結合状 態に関する情報を得ることで,Cuの存在状態を検討した.

3.2 実験

3.2.1 試料および前処理条件

試料には下記の組成の鋼材を選び,表面をバフ研磨ののち,実環境の ガス中炭素活量を模擬したガス雰囲気(60%CO+26%H₂+11.5%CO₂+2.5%H₂O (in vol%))中,最高923 Kで作製した.923 Kに保持した時間は300 s である. 本模擬環境では,alloy1 では,十分な耐食性が発揮されるが,alloy2の組 成では,腐食は進行していく^[6].

SPring-8 での XPS 測定は,アナライザーの耐圧仕様により 10 keV 以下の 運動エネルギーの光電子が測定対象となる.この運動エネルギーの光電 子は,その平均自由行程が鋼材および酸化層中では,10 nm 以下となる. その光電子を用いて角度分解測定を実施する場合,分析対象の厚さを十 数 nm 程度に制限する必要があると考えられた.本鋼材は,模擬環境中で 360,000 s で,1×10⁻⁷ mのスケールが生成することを実験的に確認してお り,その模擬環境中での酸化速度から,スケール厚さが十数 nm 程度に抑 制できる処理時間を見積った結果,本環境では,3600 s 以内なら十数 nm 以 下に抑制可能と考えられた.そこで,作製条件は2種,温度 923 K,保持 時間を 300 s (condition1) ないしは 3600 s (condition2) の 2 条件で作製した.

	С	Si	Р	S	Cu	Ni	Cr	Al	Ν
alloy1(at%)	0.047	0.060	0.002	0.001	1.86	75.79	22.23	< 0.001	0.002
alloy1(wt%)	0.01	0.03	0.001	0.0006	2.05	77.19	20.06	< 0.001	0.0006
alloy2(at%)	0.048	0.041	< 0.001	0.0005	1.01	76.91	21.99	0.008	0.002
alloy2(wt%)	0.01	0.02	< 0.001	0.0003	1.12	78.85	19.97	0.004	0.0006

Table 3.1. 母材組成

作製されたサンプルの確認のために断面 TEM 試料を作製し, TEM 観察 を実施した.FIB 加工に,日立製 FB-2100を使用した.TEM 観察には,日本 電子製 JEM-3010を用いた.Fig.3.1 に alloy1の TEM 観察結果を示す.condition1 で生成したスケールの厚さは,約10 nm 強であった.一方,condition2の試 料は,スケール厚さは20 nmを超えていた.また,alloy2 においても,同様 の厚さのスケールが生成していた.

Fig. 3.1. TEM 断面写真. 図中マーク1がスケール.2は母材.上: condition1, 下: condition2.

3.2.2 HAXPES法による表面偏析の検討

HAXPES 測定は,BL47XU(課題番号2005B947)およびBL39XU(課題番号2006A0187)において実施された.入射X線のエネルギーは7936.7 eV (BL47XU),7939.9 eV(BL39XU),アナライザーはGammadata Scienta社製の 高電圧対応半球型アナライザーを使用し,パスエネルギー 200 eVで測 定した . Au4f 束縛エネルギーピーク位置を 84.00 eV とし,光電子エネル ギーを校正した.

準備した試料に対して,それぞれCu 2p, Ni 2p, Cr 2p, S 1s, Si 1s, 2s, O 1s, C 1sスペクトルを収集した.測定された各光電子ピークは,バックグ ラウンド除去後, J. J. Yeh^[11]らの光イオン化断面積の理論計算値を利用 して規格化し,定量した.

本ビームラインにおいて,入射X線とアナライザーの位置関係は固定 されているが,試料は,入射X線に同軸に回転させることのできるマ ニュピレータ上に保持されており,試料のアナライザー,入射X線に対 する角度,位置を自由に設定することができる.試料表面とアナライ ザー光電子取り込み口とのなす角が80–15 deg.となる条件で角度分解測 定を実施した.検出角度に対する光電子強度の変化を比較することで, 非破壊で,深さ情報を抽出することが可能となる.例えば,ステンレス 鋼の不働態皮膜の研究に応用^[12]された例や,表面偏析の研究に応用さ れた例^[13]がある.

3.3 結果

3.3.1 HAXPES 測定結果

2種の処理時間にて作製した試料に対してHAXPES測定を実施した. Fig.3.2に,2種の条件で加熱したalloy1の測定結果を示す.比較のため,実 験室系のAl-Ka線でのcondition1加熱試料のXPS測定結果も示す.強度は, Cr 2p3/2強度で規格化した.ここで,Al-Ka線励起のスペクトルは,光電子 脱出角(take-off angle,以下TOA)90 deg.,一方,SPring-8にて8 keVで励起され たHAXPESスペクトルはTOA 80 deg.として測定された結果を示す.Al-Ka 線でのXPS測定ではCおよびCr酸化物のみが検出され,Cuは検出されな かった.同一試料に対してのHAXPES測定では,Fig.3.2に示すようにCuが 明瞭に観測された.HAXPES測定によって,10 nmを超すCrを主成分とす る酸化スケールの深部からのCu検出が可能であることが確認された. また,alloy1に対しては,condition1, condition2ともCuの検出可能であった が,condition2の試料からのCuスペクトルは強度が弱く,解析困難と判断

Fig. 3.2. Al-Kα線(1.486 keV)および高エネルギーX線(8 keV)によるXPSスペクトル.condition1は300 s 加熱, condition2は3600 s 加熱試料.

Fig. 3.3. alloy1 に お け る 各 元 素 の 角 度 分 解 光 電 子 ス ペ ク ト ル .

し,角度分解測定は実施しなかった.以下では,いずれも, condition1の試料に対して実施した結果を示す.

3.3.2 HAXPES による角度分解測定

Fig.3.3 に alloy 1 から得られた各元素のスペクトルを示す.これらは,光 電子脱出角度80,52,30,15 deg.で測定された.

Fig.3.3(a) に示すように, Cr 2p3/2 ピークでは, 光電子脱出角度が浅くなるにしたがい低エネルギー側の光電子ピーク比率が減少した.この低

エネルギー側のピークは,Cr 金属成分に,それより高エネルギー側の ピークはCr 酸化物状態に帰属される.このCr 金属成分は,光電子脱出角 度が浅くなるにしたがい減少した.すなわち,上層に主にCr 酸化物成 分,下層にCr 金属成分が存在する構造を有するためである.主に下層に 存在する成分は,光電子脱出角度が浅くなると,検出される光電子強度 がこのように低下する.

Fig.3.3(b)のNi 2p3/2 スペクトルは,金属状態と判断できるスペクトルであった.一方,Fig.3.3(c)に示すCuについては,一般に光電子スペクトルだけでは金属状態と酸化物状態を判別するのは困難であり^[14],サテライトピークやオージェピークと併用して判定される.今回の測定で,Cu 2pスペクトルは2価の存在に伴うサテライトピークを示さなかったことが確認できているため,2価まで酸化された状態の成分比率は小さいと判断できる.よって,Cuの存在状態としてありえる状態は,主に金属状態ないしは,1価の化合物と考えられる.ところで,本実験環境の酸素ポテンシャルは非常に低く(923 Kで*P*₀₂ = 4.6×10⁻²⁵ atm)Ni,Cuは酸化されにくいことが予想される.また,同一酸素ポテンシャルならば,Cuより酸化されやすいNiがほぼ金属状態を示すことから,Cuもほぼ金属状態として存在していると考えるのが妥当と判断できる.

Fig.3.3(e) のC1s スペクトルから,Cは2種以上の状態で存在することが 確認された.高エネルギー側(285 eV付近)の成分は,試料に吸着したハ イドロカーボン系のものであると考えられる.一方,低エネルギー側, 284.3 eV付近のピークは,ハイドロカーボン系付着物とは異なり,実環境 にさらされた結果生成した物質であると考えられる.Y. Mizokawa ら^[15] による各種カーボン材料についてのXPS測定の結果,graphiteが,284.2 eV に光電子ピークを有することが確認されている.本環境中では,graphite が生成することが指摘されている^[2]が,おそらく,実環境にさらされた 結果生成したgraphiteが検出されたものと考えている.

観測されたピークのうち, Cr は各成分に分離し, Yeh らの光イオン化断面積の理論計算値^[11]を用いて各検出角度ごとに定量した結果を図 Fig.3.4に示す.alloy1 (Fig.3.4(a)), alloy2 (Fig.3.4(b))ともほぼ同様な検出角度 依存性であった.それぞれの元素ごとに特徴的なプロファイルを示し,

Fig. 3.4. 定量値の光電子脱出角度依存性. (a) alloy1, (b) alloy2.

大きく分けると3種類のグループに大別される挙動であった.すなわち,光電子脱出角度が小さくなるとともに成分比が増大する傾向を示すハイドロカーボン系,graphite成分などC成分.光電子脱出角度30度までは,C成分と同様に光電子脱出角度が低くなるに伴い増加する傾向を示すが,30 deg.より低角では逆に減少する挙動を示すCr-Ox成分とO成分.さらに,光電子脱出角度の減少とともにその成分比率も減少する Cr-met 成分とCu,Ni成分である.このように,検出角度によって異なる挙動を示ことから,それら成分ごとに深さ方向での分布状態に差違があることがわかった.

3.4 考察

3.4.1 層構造モデルによるCu偏析の妥当性

角度分解光電子分光法で深さ方向の構造を議論可能であるが,解析す るためにはモデルとの比較が必要である.ここではず,TEMで得られた 情報と角度分解XPS法測定結果から,少なくともカーボンを主成分とす る堆積層/酸化物層/母材の3層構造を有していることが想定されることか ら,その3層構造モデルからの光電子プロファイルとの比較を試みる.

Fig.3.5のような,深さ方向に異なる組成を有する3つの層状の構造 (11,12,13)を考え,各層の組成はそれぞれC1,C2,C3,厚さはt1,t2,t3と し,また,厚さt1,t2の合計は,13に含まれる元素からの光電子の平均自 由行程に対して十分薄く,t3は十分厚いとする.

このような層状構造の各層に含まれる元素からの光電子強度は,以下のように表される^[13].

$$I_{l1} = C1 \cdot (1 - exp \frac{-t1}{\lambda 1 \cdot sin\theta})$$
(3.1)

$$I_{l2} = C2 \cdot exp \frac{-t1}{\lambda 1 \cdot sin\theta} \cdot (1 - exp \frac{-t2}{\lambda 2 \cdot sin\theta})$$
(3.2)

$$I_{l3} = C3 \cdot exp \frac{-t1}{\lambda 1 \cdot sin\theta} \cdot exp \frac{-t2}{\lambda 2 \cdot sin\theta} \cdot (1 - exp \frac{-t3}{\lambda 3 \cdot sin\theta})$$
(3.3)

λ1,λ2,λ3は,各層中での元素からの光電子の平均自由行程である.

Fig. 3.5. 3 層モデル例.

Fig. 3.6.3層モデルを構成する各層の元素からの光電子強度のTOA依存性.

ここで具体的に,λ1 = λ2 = λ3 = 10nm(簡単のため,各元素からの光電 子の運動エネルギーの違いによるλの変化はないと仮定している)と し,t1 = t2 = 2nm,t3 = のような層状構造を考えると,各層に含まれる元 素からの光電子は,Fig.3.6のような光電子脱出角度依存性を示すことが わかる.

この3層モデルによる光電子強度の角度プロファイルを,今回の測定 結果と比較する.例えば,Fig.3.4に示すカーボン成分の角度依存プロ ファイルは,Fig.3.6における11層からと想定される成分と類似した角度 依存プロファイルを示しており,カーボンを含む成分が試料表面側に 偏って存在していることを意味している.Cr酸化物成分,O成分は,光 電子脱出角度が低くなるにしたがい増加したが,光電子脱出角度が30 度より低い角度では一転して成分比が小さくなる挙動を示した.これ は,Fig.3.6における12層からの光電子強度の挙動と一致する.

一方,Fig.3.4に示した,Cu,Ni,Crの各金属成分の角度依存性は,C,O, Cr酸化物成分とは異なり,角度が低くなるにしたがい成分比が低している.これらの挙動は,13層からと想定される光電子強度と同様であった.

以上のように,HAXPES測定結果と3層モデルの両者比較した結果, 最上層にCを主成分とする11層,その直下に,Cr,Oを主成分とする12 層,そして,母材成分を主成分とする13層が存在する構造を仮定する と,Fig.3.4の角度プロファイルがおおまかに説明できることがわかった. つまり,Cuは主に12層のスケールより下層に存在することが示唆される 結果であった.

さらに詳しく検討するために,Ni,Cu,Cr(Crは金属成分のみ)の3成 分のみでの成分比の光電子放出角度依存を算出しFig.3.7に示した.13層 に存在するNi,Cu,Cr(金属成分)はそれぞれ角度依存性が異なることが 確認された.例えば,13層中でのNi,Cu,Cr(金属成分)の深さ方向に対 する分布状況に偏りがなければ,この3成分では検出角度依存性は同 ーな挙動を示すはずであるが,実際にはそれぞれの元素ごとに深さ方 向に異なる分布を持っている可能性が考えられるプロファイルであった.

例えば, Fig.3.7から分かるように, Cr 金属成分は検出角度が低角になればなるほど成分比が低下する傾向を示すが, これより, 13層中におい

Fig. 3.7. Ni, Cu及びCr金属成分のみの定量結果の光電子脱出角依存性. (a)alloy1, (b)alloy2.

Fig. 3.8. Ni, Cuのみの定量結果.

て Cr 金属成分が主に下層側に分布していると考えられる.相対的に, Ni, Cuは,光電子放出角度が低くなるにつれて成分比が増加しているこ とから, Ni, Cuが l3層の上層に多く分布していることがわかる.Ni, Cu の深さ方向の分布状況を比較するために,さらに Ni, Cu 2 成分のみでの 角度依存を調べた.

Fig. 3.8に示すように, alloy1, 2で,光電子脱出角度が低角になるにしたがい, Niに対するCuの比率が増加することが確認された.これは, 13層において, NiとCuで異なる深さ方向分布を有していること, すなわち, Niに対してCuが上層側で多く存在する傾向であることを示す結果である.すなわち,母材-スケール界面で, Cuが偏析して存在する可能性が高いといえる.

3.4.2 スケール-母材界面の定量解析

先の3層モデルでの検討で,スケール-母材間で,Cuの偏析層が存在する可能性が高いことが確認された。母材組成の違いによるCu偏析挙動の差違,耐食性と界面組成の違いを明らかにするためには,母材(13)層についてCuの偏析層や,Crが酸化層に消費されることによる界面での

Cr 欠 乏 層 を 考 慮 し た 精 密 な モ デ ル と の 対 比 が 必 要 で あ る .

今回のHAXPES測定に使用したX線エネルギーで励起される光電子の 平均自由行程から、最低でも30 nm程度の深さまでの深さ方向の情報を 多く含んだ測定結果が得られていると考えられる。TEM観察の結果 (Fig.3.1)等から、11–13層厚さは合計15 nm程度であった。通常の実験室系 XPSならば、得られる情報深さとしては数3–4 nm程度を考えれば十分で あるが、本方法では、スケール直下20 nm程度までの母材表面組成も考 慮にいれる必要がある。そのため,以下のようなモデルを考えた.

Table 3.2. 解析モデル

11 層	C堆積層						
12 層	Cr ₂ O ₃ 層						
13 層	Cu 偏 析 層						
14 層	Cr欠乏層を含む母材						

ここで,定量的な解析に必要となる各層の光電子の平均自由行程は, 仮定される層状構造中の各層組成を念頭において,算出された値を使 用した^[16].13層(Cu偏析層),14層(Cr欠乏層,母材)は,それぞれに含 まれる元素濃度比にあわせて平均自由行程の加重平均を算出し用いた.

基本となる平均自由行程は, Table3.3 にまとめた.

Cu偏析層の厚さは,ここではCu-Ni合金におけるCu偏析層厚さとして 採用されているNi[110]面間隔である0.249 Å^[7]を採用し,単原子層での偏 析と考え,解析した.

14 層であるスケール直下の母材組成は、Crが鋼材表面に拡散し酸化層 を形成し,消費される結果,Crが減少したCr欠乏層となることが知られ ている.測定結果は、Cr欠乏層からの情報も含んでいるため、この層の プロファイルも考慮にいれる必要がある.Cr₂O₃のような保護性酸化皮膜 の成長過程での界面元素濃度は、C.Wagner^[17]により理論的な研究が行 われている.さらに,ステンレス鋼などの耐酸化性の高い鋼材では,界 面での酸化層成長速度が十分遅いことから以下のような簡便な式で表 すことができる^[18].

$$\frac{C - C_I}{C_B - C_I} = erf[\frac{x}{2(Dt)^{1/2}}]$$
(3.4)

ここで,Cは,界面から距離xの合金中の元素濃度,Dは鋼材中の拡散 係数,C_Bはバルク中での拡散元素の濃度,C_Iは、界面での酸化元素の 濃度である。γ相SUS鋼材中のCr拡散係数は,R.A.Perkins^[19]らや,C. Stawström^[20]により検討されており,923 Kでは,1.31×10⁻²⁰ – 1.09×10⁻¹⁹(m²/s) であると示されている.一方,Ni-20Cr合金中のCr拡散係数に関しては, K. Monma^[21]らによる測定結果(1042 – 1275K)があり,923 Kでは,1.54×10⁻²⁰ (m²/s)となる.これら値を参考にし,解析によって得られた界面のプロ ファイルと比較した.

また,界面のCr濃度C₁は、Crを消費することで生成するCr₂O₃層厚さと,式(4)から得られるCr欠乏層プロファイルと鋼材からの界面へのCr拡散によるCr供給量のマスバランス^[22]を考慮し決定した.実際には,このCr₂O₃層の厚さは,HAXPES測定結果の解析値として得られるため,逐次マスバランスを確認しながら,界面のCr組成を検討した.

具体的には,まず,偏析層(13)より上層に存在し,スケール-母材界面の各金属成分元素とは分離して存在することが想定されるカーボン層(11), Cr₂O₃層(12)の厚さ,組成をデータとのFittingで求めた.ここで,カーボン成分として2種存在することが,確認されているが,ほぼ同じ深さ方向分布を有していると考えられることから,一成分として扱った.その後,文献値^{[19],[20],[21]}にあるCrの拡散係数を参考に,"酸化層中Cr=界面からのCr供給量"となる値を見掛けの拡散係数として求めた.得られた拡散係数は,文献値^{[19],[20],[21]}にくらべて,一桁大きいが,923Kでの粒界拡散によるCr拡散^[23]効果,また,炉中でのサンプル冷却時のCr拡散などの影響で,拡散係数が大きく算出される結果となったと考えている.

検討した結果を,Table3.4 に示す.図3.9 に決定したCr欠乏層プロファイ ルを,また実際にFittingに使用したCr欠乏層各層組成をTable3.5 に示す. ところで,Cuが界面に偏析すると,偏析層直下の母材Cuが欠乏気味 になる可能性は考えられる.しかし,CuはCrと異なり消費されないこ と,Ni中での拡散係数はCuの方が大きいことから,Cu欠乏層の考慮は 必要無しと判断した.

Fig. 3.9. Cr 欠乏層を考慮し決定したスケール直下母材組成.8 層にわけ Fitting に反映.

以上のように算出された各種パラメータを用い,13層組成を,測定値 との残差の2乗和が最小になるように決定した.それら結果を,Fig.3.10 およびTable3.6に示す.alloy1では,母材1.86 at%に対して,偏析層では,50 at%を越えた比率で存在している可能性が示された.一方,alloy2では, 母材1.01%に対して,偏析層で20%となり,alloy1,2間で13層のCu量が大き く異なることが確認された.一方,Ni量は,alloy1,2ともやや多めに算 出される結果となった(Fig.3.10).解析に用いたCr欠乏層プロファイルに もっと急峻なモデルを用いれば,界面でのNi量の算出値が減少するた め,全体的に結果とは一致する傾向になると想定される.すなわち,鋼 中でのCr拡散係数は本鋼材では,想定した結果よりさらに大きい可能 性が考えられる.この算出値から求めたCu,Ni比をFig.3.11に示す.界面 でのNi量の見積りがやや多くなっているため,実験値に比べて,Cu比が 低下したが,傾向はよく一致し,Niに対して,Cuが界面で偏析傾向であ るとのモデルと実験結果は良く対応した.

HAXPESを用いることで,10 nm以上のスケール層直下の元素存在状態 分析を,非破壊的に行うことができた.界面のマスバランスを考慮した 層状モデルを用いて,測定結果を解析した結果,Cu偏析層,Cr欠乏層を 考慮したモデルを用いた解析結果が,測定結果をよく再現した.

本鋼材は、極初期より保護性のスケールおよび、界面のCu偏析層により耐食性が発揮される.先に述べたとおり,その耐食性は, alloy1, 2で

優劣があり^[6], alloy1では本実験環境では腐食は進行しない.今回の検討により, 1.86 at%の Cuを含有する Ni-Cr-Cu 合金(alloy1)は Cr₂O₃/母材界面で約50 at%の Cu 偏析層が存在することが,解析より見積もられた.一方, 1.01 at% Cu の alloy2 は,約20 at%の Cu 偏析層と見積もられた.この Cu 量の違いが,耐メタルダスティング腐食性に影響を及ぼしたと考えられる.

	lable 3.3. 組						
	BE (eV)	KE (eV)	$\lambda(C)$ (nm)	$\lambda(Cr_2O_3)$ (nm)	λ (alloy1) (nm)	λ (alloy2) (nm)	
C1s	285.0	7651.7	15.14	10.15	-	-	
O1s	531.0	7405.7	14.73	9.87	-	-	
Cr2p3/2	574.0	7362.7	14.65	9.82	7.80	7.80	
Ni2p3/2	852.7	7084.0	14.18	9.51	7.55	7.55	
Cu2p3/2	932.7	7004.0	14.04	9.42	7.48	7.48	

Table 3.3. 組成を考慮した各層の平均自由行程

Table 3.4. 検討したCrマスバランス (g/cm^2).

試 料	カーボン層厚さ	酸化層厚さ	酸化層成分	Cr 消 費 量	見掛けの拡散係数	Cr 供 給 量	C_{I} (wt%)
alloy1	1.06 nm	13.20 nm	Cr _{2.3} O _{2.7}	5.05e-6	$4.30e - 19m^2m^2/s$	5.05e-6	0
alloy2	0.67 nm	11.80 nm	Cr _{2.3} O _{2.7}	4.52e-6	$3.33e - 19m^2m^2/s$	4.52e-6	0

Table 3.5. Cr 欠 乏 層 を 考 慮 し た ス ケ ー ル 直 下 母 材 組 成 (at%), layer1-8 は , 図 3.9 に 対 応 .

	layer	l'1	1'2	1'3	1'4	1'5	l'6	1'7	1'8
	厚さ(nm)	2	2	2	3	3	5	10	
alloy1	Cr	1.24	3.60	5.95	8.73	11.82	15.33	20.00	20.00
	Cu	2.34	2.29	2.23	2.17	2.09	2.01	1.90	1.90
	Ni	96.41	94.11	91.82	89.10	86.08	82.66	78.11	78.11
alloy2	Cr	1.35	4.16	6.83	9.93	13.23	16.94	21.36	21.36
	Cu	1.28	1.24	1.21	1.17	1.12	1.08	1.02	1.02
	Ni	97.37	94.60	91.96	88.90	85.65	81.99	77.62	77.62

Fig. 3.10. Table 3.6の組成を仮定した角度依存プロファイル.マークは実験 値,破線は解析結果. 59

Fig. 3.11. Table 3.6 の 組 成 を 仮 定 し た Cu/(Cu+Ni) の 角 度 依 存 プ ロ ファイル . マークは 実 験 値 , 線 は 解 析 結 果 .

	Table 3.6. 4 層 モテルを 考 慮 し た と さ の 解 析 結 果								
		alloy1		alloy2					
	層	組成(at%)	厚さ(nm)	組成(at%)	厚さ(nm)				
11	C 層	100	1.06	1.0	0.67				
12	Cr:O(Cr ₂ O ₃ 層)	46:54	13.20	46:54	11.80				
13	Cu:Ni(Cu 偏析層)	50.8:49.2	0.249	22.7:77.3	0.249				
14	Cu,Ni,Cr(母材)	Table3.5	Table3.5	Table3.5	Table3.5				

3.5 まとめ

硬 X 線 光 電 子 分 光 法 を 用 い , 非 破 壊 で 酸 化 ス ケ ー ル ー 母 材 界 面 の 分 析 を 行った 結 果 , 以 下 の 知 見 を 得 た .

- 高い透過能力を有するHAXPES法により、30nm程度の深さ方向分析が可能となった.本手法を用いて、実環境で腐食された高Ni合金中のCuの分布状態を非破壊で明確にすることができた.その結果、本鋼材の高い耐食性が界面でのCu偏析にあったことが確認された.
- Cr 欠乏層も考慮した層状モデルで実験結果を検討した結果,スケールー母材界面の構造を定量的に議論することができ,鋼材ごとの耐食性を議論することができた.解析されたCu偏析量は,耐食性と良く一致し,そのCu偏析量の差が,耐食性に優劣をつけることが分かった.

参考文献

- [1] 例えば, F. A. Prange, Corrosion, 15, 619(1959).
- [2] H. J. Grabke, R. Krajak and Müller-Lorenz, Werkst. Korros., 44, 89(1993).
- [3] E. Pipple, J. Woltersdorf and R. Schneider, Mater. Corros., 50, 309(1998).
- [4] Y. Nishiyama, T. Kudo and N. Otsuka, Mater. Trans., 46, 1890(2005).
- [5] Y. Nishiyama, K. Moriguchi, N. Otsuka and T. Kudo, Matter. Corros., 56, 806(2005).
- [6] Y. Nishiyama and N. Otsuka, Mater. Sci. Forum, 522-523, 581(2006).
- [7] 例えば, P. R. Webber, C. E. Rojas and P. J. Dobson, Surface Science, 105, 20(1981).
- [8] Y. Nishiyama, T. Doi, K. Kitamura and N. Otsuka, Mater. Trans., to be submitted.
- [9] K. Kobayashi, M. Yabashi, Y. Takata, T. Tokushima, S. Shin, K. Tamasaku, D. Miwa, T. Ishikawa, H. Nohira. T. Hattori, Y. Sugita, O. Nakatsuka, A. Sakai and S. Zaima, Applied Physics Letters, 83, 1005(2003).
- [10] J. M. Hill, D. G. Royce, C. S. Fadley, L. F. Wagner and F. J. Grunthaner, Chem. Phys. Lett., 44, 225(1976).
- [11] J. J. Yeh and I. Lidau, At. Data Nucl. Data Tables, 32, 1(1985).
- [12] I. Olefjord and L. Wegrelius, Corros. Sci., 31, 89(1990).
- [13] S. Suzuki, T. Kosaka, H. Inoue, M. Isshiki and Y. Waseda, Appl. Surf. Sci., 103, 495(1996).
- [14] S. K. Chawla, N. Sankarraman and J. H. Payer, J. Electron Spectrosc. Relat. Phenom., 61, 1(1992).

- [15] Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib and C. W. Wilmsen, J. Vac. Sci. Technol. A, 5, 2809(1987).
- [16] S. Tanuma, C. J. Powell and D. R. Penn, Surf. Interface Anal., 21, 165(1993).
- [17] C. Wagner, J. Electrochem. Soc., 99, 369(1952).
- [18] H. E. Evans, D. A. Hilton and R. A. Holm, Oxidation of Metals, 10, 149(1976).
- [19] R. A. Perkins, R. A. Padgett and N. K. Tunali Jr, Metall. Trans., 4, 2535(1973).
- [20] C. Stawström and M. Hillert, J. Iron Steel Inst., 207, 77(1969).
- [21] 門間改三,須藤一,及川洪,日本金属学会誌,28,188(1964).
- [22] G. L. Wulf, M. B. McGirr and G. R. Wallwork, Corros. Sci., 9, 739(1969).
- [23] N. Otsuka, Oxidation of Metals, 32, 13(1989).

第4章 その場分析技術の検討

本章では,材料の機能した状態の直接分析を目指した,その場分析方法について述べる.XRD法や,ラマン散乱分析法を用いて,使用環境に近い環境のもとで,材料表面での反応過程を追跡した.

4.1 大型 2 次元検出器を用いた X 線回折法による鉄

スケールの等温変態挙動

4.1.1 緒言

鉄鋼材料は強度や靭性の確保のため高温で熱処理されるが、その過程 で不可避的にスケールと呼ばれる酸化鉄が表面に生成する.このスケー ルは、圧延工程時に傷や生産設備の摩耗などの影響を及ぼすため、熱間 圧延工程後、脱スケールと呼ばれる工程で表層に生成している鉄酸化物 層を取り除く.このとき、問題となるのが、スケールの鋼に対する密着性 であり、鉄スケールの剥離性を制御できる生産技術が求められている. 鉄スケールは、570 以上の高温ではFeOが安定であるが、それ以下の 低温では不安定となり、冷却過程でFeとFe₃O₄に共析変態する(ウスタイ ト変態)ことがよく知られている^[1].このウスタイト変態で形成される 変態組織は鋼の化学組成や冷却パターンに依存する.この時、スケール – 母材間の密着性もスケールの組成に応じて変化し、界面がFe₃O₄であ る方が密着性が向上するとの指摘^[2]がある.

このスケールの変態挙動に関してはこれまで多くの研究が行われているものの,変態後の観察分析による現象論的な研究が多く,変態過程を詳細に追跡した研究は少ない.白岩ら^[3]によるその場X線回折測

定(X-ray diffraction, XRD)による研究もあり,多くの情報を与えてくれ るが,主にFeOのみの観察結果であり,共析するFe₃O₄, *α*-Feに関する情 報は少ない.それは,もっともスケール変態の早いと考えられている, 400-420 付近^[1]では,スケール変態は,数十から数100sで終了し,変態 過程でのスケール-母材界面に含まれる多くの成分の状態,構造の変化 を同時に追跡することが困難だからである.

厚さ数μmに成長する鉄スケール直下の,スケール-母材界面を含めてのXRD測定,しかも,最低3成分(FeO,Fe₃O₄,α-Fe)の構造,組成変化の追跡をリアルタイムで実施するためには,高輝度の線源と,高速かつ高感度の検出器が必要である.そこで,高輝度,高エネルギーでありXRD 測定に適したSPring-8からの放射光X線と,大型高速2次元検出器の活用によるその場X線回折法を適用し,鉄スケール変態過程のその場分析を行った.

4.1.2 実験

4.1.2.1 試料および酸化条件

微量炭素を含む(0.048mass%C)鋼材,円板状試験片,20mm ×2mmt,を 準備し,湿式研磨(#1000)後,メタノール脱脂したのち,測定に供した.

その場X線回折測定を行うため,試料を加熱ステージ,Anton Paar DHS1100 (Fig.4.1)上に設置し,加熱しながら連続的にX線回折測定した.本加熱 ステージは,試料下部に設置してあるヒーターにより試料が加熱され る.温度は試料表面にスポット溶接した熱電対によりモニターした.昇 温速度は,90 /分,降温速度は93-75 /分の範囲であった.

加熱時の手順は,まず,スケールの生成として試料を675 で180s保持した.試料表面には,FeOからなるスケール層が10µm程度成長する.その後所定温度(500,450,400)に下げ,各温度に保持しながらXRD測定を行った.加熱処理は,大気開放下で行っている.例としてFig.4.2に,450

変態試料の温度推移を示す.本実験条件条件では,初期の675 加熱で,7–10µmの酸化層厚さとなるが,その後の等温過程では,厚さには大きな変化はないことを確認した上で,室温–675 加熱–冷却–定温保持–室

Fig. 4.1. 加熱ステージ上での試料加熱状況.

Fig. 4.2. XRD 測 定 時 の 試 料 表 面 温 度 推 移 .

温まで連続的に XRD 測定した .

4.1.2.2 XRD 測 定

XRD 測定は, SPring-8 BL19B2 において行われた.10 μm 程度の比較的厚 めのスケールとなることから,十分な透過能力を有する28 keVのX線を 使用した.ビームサイズは,1.0×1.0 mm に調整し,X線入射角は6度,回 折パターンの測定には,大型2次元ピクセル検出器^[4]Pilatus 2Mを使用し た.本検出器は,最高10 msごとのデータ読み出しが可能である.今回は 30 s積算したデータを読み出し,記録した.

Fig. 4.3.2次元検出器で観測されたデバイリング.

測定時のカメラ長は,あらかじめLaB₆結晶の回折パターンで校正した ところ,608.79 mmであった.本測定条件では,2θ角度に換算して,6–22度 の範囲(Cukα(波長1.54Å)使用時なら83度までに相当)のデバイリング (Fig.4.3)を,2θスキャンすることなしに,一度に測定できる.

このデバイリングのうち,解析に必要な部分のみ(2θ =約11.5–12.7度)を fit2d^[5]を用いて,切り出し,方位角方向に積分して,1次元化し,主成分 であるウスタイト(Fe_{1-x}O)の(220)ピーク,マグネタイト(Fe_{3-δ}O₄)の(400) ピーク, α -Feの(110)ピークのXRDパターンを求めた.ウスタイト,マグネ タイトとも,カチオン欠損によりFe濃度の異なるものが共存しているこ とはよく知られており,以降,それぞれ,Fe_{1-x}O^[6],Fe_{3-d}O₄^[7]と表記する.
4.1.3 結果

4.1.3.1 各試料の保持温度に依存した XRDパターンの変化

準備した試料を 675 で 180 s 保持の後,400 ,450 ,500 に温度を 下げ,定温保持した際の構造変化をその場 XRD 法で追跡した.室温から の経過時間に対する Fe_{1-x}O (220)ピーク, Fe_{3-δ}O₄ (400)ピーク, α-Fe (110)ピー クの XRD パターン変化を Fig.4.4 に示す.

Fig.4.4(a) に示す400 保持試料は,加熱開始後400 s付近からFe_{1-x}Oピー クが現れ始めた.ほぼ同時に試料温度は675 に到達し,180s保持の後 400 へ向けて冷却された. α -Fe, Fe_{1-x}Oピークが高角側にシフトするの は,この時の熱収縮のためと思われる.さらに,Fe_{1-x}Oピークは,400 に到達直後,2つに分裂した.分裂後,もとのピーク(高角側)は速やか に消滅した.分裂により生じたピークは,その後しばらくしてから消滅 した.Fe_{1-x}O消滅の過程で α -FeおよびFe_{3- δ}O₄ピーク強度が増加した.

450 保持試料(Fig.4.4(b))では,Fe_{1-x}Oに明確なピーク分裂はみられなかったが,450 定温到達後.ピークは徐々に低角側にシフトする挙動を示した.その後,Fe_{1-x}Oピーク消滅し,*α*-Fe,Fe_{3-δ}O₄が増加した.

500 保持試料(Fig.4.4(c))では、 $Fe_{1-x}O$ に大きなピークシフト、分裂はみられなかった、 $Fe_{1-x}O$ ピークが消滅し、 α -Fe、 $Fe_{3-\delta}O_4$ が増加するのは同様であった.

4.1.3.2 各 XRD ピークプロファイルの経時変化

Fig.4.4 に示した XRD パターン 変化から一定時間ごと XRD パターンを取り出し, Fig.4.5 に示す.

XRD パターンは,保持温度ごとに異なる挙動を示し,例えば Fe_{1-x}O ピークに注目すると,Fig.4.5(a) に示す様に,400 保持試料では Fe_{1-x}O ピーク分裂が明瞭に観察された.XRD ピーク位置から,組成の異なる2 つの構造が存在すると判断できる.Fe_{1-x}Oが変態過程で,異なる格子定 数を持つ Fe_{1-x}Oの共存を示すものと考えられる.450 保持試料におい ても,Fig.4.5(b) に示すように,Fe_{1-x}O ピークが非対称かつブロードにな り, さらに保持時間の進行とともにピークシフトが見られることがわ

Fig. 4.4. 各温度での構造変化概略. (a) 400 等温変態, (b) 450 等温変態, (c) 500 等温変態.

Fig. 4.5. 1 次元化後のXRDパターン. (a) 400 等温変態, (b) 450 等温変 態, (c) 500 等温変態.

かった.400 保持試料ほど明確ではないが,定温保持中に400 保持試料と同様の相分離が進んだものと考えられる.500 保持試料において も,シフト量は少ないがFe_{1-x}Oピークには低角度側への一定のピークシ フトが確認された.

他の *α*-Fe や Fe_{3-δ}O₄ ピークも,増減やピークシフトなどそれぞれの保持 温度で異なる変化を示している.スケール変態過程での,この様な XRD ピーク変化を理解するため,1次元化した XRD ピークを Vogit 関数 を用いピークフィッティングし,ピーク位置,積分強度の推移を求めた.

Fig.4.6 には,400 等温変態中の Fe_{1-x}Oの XRDパターンから得られた ピーク位置,積分強度の推移を示す.本条件では,等温保持中明らかに
2 つのピークに分離する様子が見られたため,2 相存在すると仮定して Fitting した.

Fig.4.6(a) にピーク強度, Fig.4.6(b) にピーク位置を示す.400 での等温保持は,約800-2800 sの間である.

2 相それぞれのピークは異なる強度変化を示し,高角度側のピークは 400 へ試料温度が下がるとともに(約800s),速やかに強度が減少し, さらに低角度側へピークシフトしながら減少した.一方,低角度側の ピークは高角度側のFe_{1-x}Oピークの減少につれ強度増加し,高角度側の ピーク消滅ののち,低角側ピークは減少に転じた.おそらく,高角側の Fe_{1-x}Oが低角側のFe_{1-x}Oに転じ,最終的に分解されたものと考えられる. Fe_{1-x}Oが低温の分解過程で,2相に分離することは,白岩ら⁽³⁾により指 摘されている.以下,白岩らにならい,675 加熱時より存在した高角 側成分を高温相(図中ではhighと表記),等温保持中に出現した低角度 側成分を低温相(図中ではlowと表記)と呼ぶ.

Fe_{1-x}Oの等温保持下での分解,減少に対して, α -FeやFe_{3- δ}O₄ピークも対応するような変化を示した.Fig.4.7に α -Fe (110)とFe_{3- δ}O₄ (400)ピークに対するFitting結果を示す. α -Feピークには,等温保持中に大きなシフトはみられなかった(Fig.4.7(a))が,Fe_{3- δ}O₄は,1400s付近でわずかながら低角側へのシフトが見られた(Fig.4.7(b)中,1400-2000s付近).ピーク積分強度は,Fe_{3- δ}O₄では,400 での等温保持開始から約2200s付近まで連続的な増加を示した. α -Feピークは,等温開始から1400s付近までは積分強度に大き

71

Fig. 4.6. 400 で 等 温 変 態 中 の Fe_{1-x}O ピ ー ク 中 心 角 度 お よ び ピ ー ク 積 分 強 度 の 推 移 .(a) ピ ー ク 角 度 ,(b) ピ ー ク の 積 分 強 度 .

Fig. 4.7. 400 で 等 温 変 態 中 の Fe , Fe_{1-δ}O₄ ピ ー ク 中 心 お よ び 積 分 強 度 の 推 移 . (a)Fe ピ ー ク 位 置 , (b)Fe_{3-δ}O₄ ピ ー ク 位 置 , (c) 両 ピ ー ク の 積 分 強 度 .

 Fig. 4.8. 450
 で 等 温 変 態 中 の Fe_{1-x}O ピ ー ク 中 心 お よ び 積 分 強 度 の 推 移 .

 (a) ピ ー ク 位 置 , (b) 積 分 強 度 .

な変化はみられなかったが,その後2200s付近まで積分強度が増加する 傾向を示した.約2200s以降は,α-Feに大きな変化はみられなくなった. Fig.4.8に,450 の等温(約800s以降)下でのFe_{1-x}OのXRDパターンの ピーク位置,積分強度の推移を示す.本条件では,等温保持中,ピーク が非対称な形状(Fig.4.5(b))を示したため,400 の場合と同様2相共存を 仮定してFittingした.Fig.4.8(a)に示すように,450 保持開始直後,低角 側に低温相と思われるピークが出現した.その後等温保持中,高角側, 低角側両ピークはいずれも低角度側にシフトし,高角側ピーク,低角側 ピークの順に消滅した.高角側の高温相Fe_{1-x}Oは,低角側の低温相の Fe_{1-x}Oへ移行し,消滅したと考えられる.

FeとFe_{3-δ}O₄ピークの挙動をFig.4.9に示す.Fig.4.9(a)のα-Feピークに大き

Fig. 4.9. 450 で 等 温 変 態 中 の Fe , Fe_{3-ð}O₄ ピ ー ク 中 心 お よ び 積 分 強 度 の 推 移 . (a)Fe ピ ー ク 位 置 , (b)Fe_{3-d}O₄ ピ ー ク 位 置 , (c) 両 ピ ー ク の 積 分 強 度 .

Fig. 4.10. 500 での等温変態中の Fe_{1-x}Oピーク中心および積分強度の推移. (a) ピーク位置, (b) 積分強度.

なシフトはみられなかったが,Fe_{3-∂}O₄ピークには,400 等温試料ほどシ フト量は大きくないが,4000 s付近で低角側へシフトする挙動を示した.

Fig.4.9(c) に両ピークの積分強度変化を示す. 等温保持中のα-Fe強度は, 3000 s 付近まで目立った変化を示さなかった.しかし,その後急激に増加 する傾向を示し,それは5500 s 付近まで続いた.一方, Fe_{3-δ}O₄ピークは等 温保持開始から5500 s 付近まで,連続的に増加した.

最後に,500 等温保持試料の各成分の挙動を示す.本条件でのFe_{1-x}O ピークは,ほぼ対称ピークであったため,1本のピークとしてFittingし た.この時のFe_{1-x}Oは,675 で加熱中に生成したFe_{1-x}Oとほぼ同じもの と考えることができ,高温相であると考えられる.

Fig.4.10(a) に Fe_{1-x}Oピーク位置の推移を示す.500 等温開始直後(Fig.4.10(a)

中約800s),少し低角へ,その後3000s付近からは再度高角へシフトする 傾向を示した.その変化は400 ,450 等温保持試料と比較して小さ かった.積分強度は,Fig.4.10(b)に示すように,500 等温開始直後から連 続的に減少する傾向にあった.

ー 方, α-Fe, Fe_{3-δ}O₄は,等温中大きなピーク位置の変動はみられなかった.α-Feの積分強度は,等温開始直後–3500s付近まで大きな変化はなかったが,その後大きく増加する挙動を示した.Fe_{3-δ}O₄の積分強度は等温保 持開始直後から一定の割合で増加し,その挙動は,約4000sまで続いた.

実験で得られた各XRDピーク強度の温度推移を比較しやすくするため,等温に到達した時間を0sとし,さらに,各ピークの積分強度の最大値を1として規格化し,成分ごとにFig.4.12に示す.

Fig.4.12 において, Fe_{3-δ}O₄ ピーク及びα-Fe ピークが規格化ピーク強度の 10%を上回る時間を共析開始時間と定義し,また,ピーク強度の100%には じめて到達した時間を変態完了時間と定義し, Fig.4.13 にプロットした.

Fe_{3-δ}O₄の析出開始時間には大きな温度差はなかったが,α-Fe析出までの時間は,温度が高くなるに従い,長くなる傾向であった.

4.1.4 考察

4.1.4.1 Fe_{1-x}O 分 解 挙 動

XRDその場観察で得られた結果から,Fe_{1-x}O分解挙動について検討する.400 ,450 では中間相と考えられる2相のFe_{1-x}Oが共存しながら共 析変態がすすんだ.それぞれ,Fe_{1-x}O (200) 面間隔をFig.4.14に示す.高温相 Fe_{1-x}Oの (200) 面間隔は低温相のFe_{1-x}Oより狭い.400 および450 で等 温保持することで高温相Fe_{1-x}Oは,徐々に低温相に構造変化した.

試料間での面間隔の差を生み出す要因は保持温度の違いによる熱膨 張以外に,Fe_{1-x}Oのカチオン欠陥の変化が考えられる.Fe_{1-x}Oが,カチオ ン欠陥の量の異なる幅広い組成で存在することはよく知られている^[8]. 例えば,高温相のFe_{1-x}Oに対して低温相をFe_{1-y}Oとする.ここで,x>y.そ れら,高温相Fe_{1-x}Oと低温相Fe_{1-y}Oが等温保持初期には同時に存在し, 等温保持の過程で低温相Fe_{1-y}Oへの組成変化が連続的に進行するとする

Fig. 4.11. 500 で等温変態中のFe, Fe_{3-ð}O₄ピーク中心および積分強度の推移. (a)Feピーク位置, (b)Fe_{3-ð}O₄ピーク位置, (c)両ピークの積分強度.

 Fig. 4.12. 400, 450, 500
 での変態開始からの時間と各相の積分強度変化.

 化.それぞれの最大値を1として規格化.(a) Fe1-xO, (b) Fe3-δO4, (c) Fe.

Fig. 4.13. Fe_{1-x}O 共 析 変 態 に 伴 う Fe_{3-δ}O₄ , Fe 析 出 開 始 時 間 と 変 態 完 了 時 間 . ×:Fe_{3-δ}O₄ 析 出 開 始 ,⊗: Fe 析 出 開 始 , ∆: Fe_{3-δ}O₄ 析 出 完 了 , □: Fe 析 出 完 了 .

Fig. 4.14. 等温過程でのFe_{1-x}O (200)面間隔推移. 図中highは,高温相, lowは低温相を示す.

と,Fig.4.14 中の Fe_{1-x}O (200) 面間隔の温度推移が説明できる.すなわち, カチオン欠陥の大きな高温相 Fe_{1-x}Oから欠陥の少ない低温相 Fe_{1-y}へと等 温保持の間変化した.低温相の Fe_{1-y}Oは,その過程でさらに Fe 含有量が上 昇することで面間隔が大きくなったと考えられる.

この時の, α-Fe (Fig.4.7), Fe_{3-δ}O₄ (Fig.4.9)は, Fe_{1-x}Oの変化に対応した 挙動を示している.Fe_{3-δ}O₄の積分強度は,400,450 保持のいずれの条 件においても,等温保持開始と同時に連続的に増加する傾向を示した. この時,等温保持初期のスケールにおいては主成分は高温相Fe_{1-x}Oであ ることから,Fe_{3-δ}O₄は,この高温相Fe_{1-x}Oから低温相Fe_{1-y}Oとともに共析 した可能性が高い.同様の挙動は,W.A.Fischerら^[9,10,11]によっても指摘 されており,450 以下の低温ではFe₃O₄がまず析出し,この時,FeO中の 鉄量が増加するとの結果が示されており,よく一致する,

高温相 Fe_{1-x}Oの分解が進行し,低温相 Fe_{1-y}Oが主成分となると,α-Feが 析出する傾向が得られている.これは,Fe_{1-y}O中のFe濃度を越えて過飽 和となった結果,α-Feの核が形成されたと考えられる.

500 等温保持試料では,Fe_{1-x}Oが明確に相分離する傾向は得られな かったが,450 以下で等温保持した場合と同様に,500 等温開始直後 から Fe₃₋₆O₄ 析出が認められた(Fig.4.11).その後,α-Feが析出したが,今 回実験した中では,もっとも遅い析出であった(Fig.4.13).400,450 とは 異なる機構が働いていたと考えられる.

4.1.4.2 共析する Fe₃₋₆O₄のカチオン欠陥の変化

いずれの保持温度においても,Fe_{1-x}O変態過程でFe_{3-ð}O₄は等温保持開 始直後から連続的に析出することがわかった.400,450 等温保持では, Fig.4.7,4.9に示したように,僅かながらFe_{3-ð}O₄ (400) ピークがシフトするこ とがわかった.一方,500 等温試料では大きなピークシフトはみられて いない(Fig.4.11).そのピークシフトから見積もったFe_{3-ð}O₄ (400) 面間隔の 経時変化を,Fig.4.15に示す.

Fig. 4.15. 等 温 過 程 で の Fe_{3-δ}O₄ (400) 面 間 隔 変 化

Fe_{3-ð}O₄が生じている可能性が高い.しかしながら,これまで,Fe_{1-x}O 変態過程で,Fe_{3-ð}O₄ (400)面間隔が変化するとの報告例はない.XRDピーク のシフトが微小であるため,今回のように連続的な観察でなければ,差 異が生じることを認識することが困難であったためと思われる.

Fig.4.14 および Fig.4.15 から読み取った,Fe_{1-x}O (200) とFe_{3-δ}O₄ (400) の面間隔をTable 4.1 にまとめた.400,450 等温保持試料で観測された,カチオン欠陥が少ない Fe_{3-δ}O₄ を Fe_{3-δ'}O₄ ($\delta' < \delta$)として示す.400,450 のときのFe_{1-x}O (200) は,高温相,低温相とも等温保持中,連続的に面間隔は変化した.ここでは,低温相 Fe_{1-y}O については,もっとも大きな面間隔,すなわち α -Fe が析出する時の値を,一方,高温相 Fe_{1-x}O では,もっとも小さな値,すなわち等温保持開始直後の値を代表値として採用した.500 保持試料における Fe_{1-x}O (200) の面間隔については最大値を採用した.Fe_{3-δ}O₄ (400) ピークは,400,450 保持試料において明確なピークシフトを示した.そのピークシフト前が Fe_{3-δ}O₄ ,シフト後は Fe_{3-δ'}O₄ としてTable 4.1 に示した.

今回観測された保持温度の異なる試料間の面間隔差には,等温保持された温度差による熱膨張起因の面間隔変化と,カチオン欠陥変化に伴う組成変化の両者を反映されている.ここでは,カチオン欠陥の変化に伴う構造情報のみ抽出するために,まずは熱膨張による面間隔変化を補正する.Fe_{1-x}OとFe_{3-δ}O₄の線熱膨張係数には,それぞれ,12.1×10⁻⁶⁽¹²⁾,

15×10^{-6[13]}を採用した.温度差50 に相当する面間隔の変化は,それぞれ,0.0013Åおよび0.0015Å程度となる.

Table 4.1. 各温度での $Fe_{1-x}O(200)$, $Fe_{3-\delta}O_4(400)$ 面間隔.

400

450	500
450	500

低温相 Fe _{1-x} O (200) 面間隔 (Å)	2.1733	2.1714	-
高温相Fe _{1-x} O (200)面間隔(Å)	2.1575	2.1594	2.1606
Fe ₃₋₆ O ₄ (400) 面間隔 (Å)	2.1061	2.1079	-
Fe _{3-o'} O ₄ (400) 面間隔 (Å)	2.1072	2.1085	2.1098

Table 4.1 に示すように,500 で等温保持した試料でのFe_{1-x}Oは,400, 450 での試料でいうところの高温相Fe_{1-x}Oに対して熱膨張係数補正を 考えると,妥当な値であった.一方,500 試料のFe_{3-δ}O₄は,400,450 試 料では,変態後半に出現する面間隔の大きな相,すなちカチオン欠陥の 少ない,つまりFe含有量の多いFe_{3-δ}O₄(δ' < δ)の組成での析出と考える と妥当な結果であった.

以上の検討から,675 で生成する鉄スケールが,400 から500 に 保持することで生じる等温変態過程は以下のように進むと考えている. 400,450 変態試料では,等温変態初期にカチオン欠陥を含むFe_{3-δ}O₄が, 同じく欠陥の多い高温相Fe_{1-x}Oから,Fe_{1-y}Oとともに共析する.カチオ ン欠陥の少ない低温相Fe_{1-y}Oへの移行が進み,主成分となった後,Fe_{1-y}O 中で過飽和となったFeがFe_{1-y}O周辺に核形成し,α-Feの析出が始まる.そ の際,Fe_{1-y}Oからは,カチオン欠陥の少ない,すなわちFe含有量の多い Fe_{3-δ'}O₄が析出する.

500 等温試料では,400,450 試料とは異なって,カチオン欠陥の多 いFe_{1-x}Oからカチオン欠陥の少ないFe_{3-δ'}O₄が初期から析出した.Fe_{1-x}O が相分離しなかったのは,例えば,500 ということで比較的高温のた め,Fe_{1-x}Oとしての安定性が高いためと考えられる.この時,Fe_{1-x}Oから はFe_{3-δ'}O₄が共析した.500 等温保持試料での,Fe_{1-x}O中のFe量は,がカ チオン欠陥の多いFe_{1-x}Oからの欠陥の少ないFe_{3-δ'}O₄であったため,Fe_{1-x}O 中のFe 量の上昇が抑えれることが,α-Fe の析出の遅延,すなわち,ス ケール変態に時間がかかる一因と考えている.

4.1.5 まとめ

SPring-8の高輝度X線と大型2次元検出器を使用したXRD測定により, スケール生成一変態過程での多くの相の構造変化を同時に検出するこ とができた.その技術を用い,675 で生成したFe_{1-x}Oを400-500 に等 温保持しつつ,その場XRD測定を行った結果.下記の知見を得た.

- 1. 450 以下の等温保持では、Fe_{1-x}Oは、複数の中間相(高温相および低温相)に分離する.その高温相からは、低温相Fe_{1-y}Oおよび、Fe_{3-δ}O₄が共析する.その後、低温相Fe_{1-y}Oからは、α-FeおよびFe_{3-δ'}O₄が共析した.カチオン欠陥の少ない低温相Fe_{1-y}O中のFeが過飽和に近づく過程で、α-Feの析出が始まるものと考えられた.
- 2. 500 では、カチオン欠陥の多い高温相Fe_{1-x}Oのほぼ単相であった.
 500 等温初期には、Fe_{1-x}Oから、カチオン欠陥の少ないFe_{3-δ'}O₄が析出した.その後、α-Feおよび、Fe_{3-δ'}O₄の共析が進行する.Fe_{1-x}Oと Fe_{3-δ'}O₄の組成が近いことが、Fe_{1-x}O中のFe含有量を過飽和以下に抑え、結果として、α-Feの析出を抑制した.

参考文献

- [1] 例えば, B.Gleeson,S.M.M.Hadavi and D.J.Young, Mater. at High Temperatures, 17, 311(2000).
- [2]小林聡雄,占部俊明,大沢紘一,吉武明英,山田克美,佐馨藤,材
 料とプロセス,11,1087(1998).
- [3] 白岩俊男,松野二三朗,住友金属,19,33(1967).
- [4] 豊川秀訓,兵藤一行,放射光,22,256(2009).
- [5] A. P. Hammersley, ESRF Internal Report, ESRF97HA02T(1997).
- [6] T. G. Owe Berg, J. Amer. Ceram. Soc., 44, 131(1961).
- [7] R. Dieckmann and H. Schmalzried, Z. Phys. Chem. N. F., 81, 344(1977).
- [8] L. S. Darken and W. R. Gurry,"Physical Chemistry of Metals", p.351, McGraw-Hill Book Company, New York(1953).
- [9] W.A.Fischer and A.Hoffmann, Arch Eisenhüttenwes., 30, 15(1959).
- [10] W.A.Fischer, A.Hoffmann and R. Shimada, Arch Eisenhüttenwes., 27, 521(1956).
- [11] W. A. Fischer and A.Hoffmann, Arch Eisenhüttenwes., 29, 107(1958).
- [12] A. S. Khanna, "Introduction to High Temperature Oxidation and Corrosion", ASM International, (2002).
- [13] M. I. Manning and E. Metcalfe, "Steamside Spalling from Type 316 Superheater and Reheater Tubes", CEGB Report RD/L/N15/75(1975).

4.2 その場X線回折法によるさびの電気化学的相変 化挙動

4.2.1 緒言

鋼の大気腐食は,もっともよく見られる電気化学反応の一つである. 水が存在する中性環境では.下記の反応が進行し,鉄は腐食し,さび が析出する.

$$Fe \to Fe^{2+} + 2e^{-} \tag{4.1}$$

$$\frac{1}{2}O_2 + H_2O + 2e^- \to 2OH^-$$
(4.2)

U. R. Evans ら^{[1],[2]}は,乾湿繰り返しの大気腐食環境では,鋼のさびの電気化学的還元が,重要なカソード反応を担うことで鉄や鋼の腐食が促進されることを指摘した.

$$Fe \to Fe^{2+} + 2e^{-} \tag{4.3}$$

$$Fe^{2+} + 8FeOOH + 2e^{-} \rightarrow 3Fe_3O_4 + 4H_2O$$
 (4.4)

$$3Fe_3O_4 + \frac{3}{4}O_2 + \frac{9}{2}H_2O \to 9FeOOH$$
 (4.5)

すなわち,乾湿繰り返しの環境では,生成したさび自身が還元されることで,鉄や鋼に対して酸化剤として機能する.その後,多くの研究者が,大気腐食によって形成されるさびの還元挙動の研究を報告^{[3],[4],[5],[6]}している.

ところで,鋼材に添加されるCuやCr,Pのような合金元素は,鋼の腐食中に溶出し,さび形成過程でさび中に取り込まれる^[7]ことがよく知られている.従って,Cr,Cu,Pを含む耐候性鋼などでは,これらの添加元素が,さび中に濃縮することで,さびが保護性能をもつと考えられている.

鋼の添加元素が,さび性状に及ぼす効果を検討するために.さびの電気化学安定性を評価する研究が多く実施されてきた^{[4],[5],[6]}.しかしながら,さびの構造変化に及ぼす添加元素の効果には未だ明らかとされていないことが多く,電気化学反応中のさびの相変化挙動をその場分析により測定することが必要であると考えた.

最近,多くの研究者により放射光が固一液界面の研究に使用され, 様々な種類の電気化学セルが提案され^{[8],[9],[10],[11],[12]},溶液中でのXRD測 定に使用されている.しかし,電気化学環境を制御したさびの電気化学 的還元には,溶液抵抗を下げて均一な反応をおこさせるために大量の 水溶液下での検討が必要であり,従来提案されているセルおよび測定方 法では,満足できる測定は行えない.さらに,自然水酸化物層をもつ鋼 板サンプルは ,工業製品から切り出すことになるため,比較的大きな サイズとなることも,従来の提案されてきたセルの適用を困難にして いる.さびの電気化学還元挙動をその場分析するために,面内での均一 な反応を阻害しない電気化学セルの開発を行い,適した測定方法を検 討することとした.

この研究の目的は,電気化学的還元環境下でのさびの相変化挙動の研究をするための技術開発である.均一な電気化学反応を起こさせるのに十分な水溶液が存在する条件の元でのXRD測定に適用できる電気化学セルと光学条件の検討を行った.

4.2.2 実験

4.2.2.1 電極および溶液

鉄さび粉末を以下のように調整し,試料として用いた. β -FeOOHはFeCl₃の加水分解で合成し, α -FeOOHはRare Metallic Co. LTD.製を準備した.それらさびを20mass%と,グラファイト粉(Wako Pure Chemical Industries, LTD.)を混合し,直径10mmのペレット化した.これらペレットを厚さグラファイトプレート (Showa Denko K. K.) にグラファイトペーストを使って接着して試料とした.試料の合計厚さは,約1.4mmであった.電解液として,脱気した0.03 M NaCl (Wako Pure Chemical)を用いた,測定温度は25 とした.

4.2.2.2 その場 XRD 測定用電気化学セル

多くの測定条件を検討するため,透過法用にデザインしたXRD測定用の電気化学セルを作製した.その場セルの模式図をFig.4.16に示す.カウン

ター電極にはPtを,参照極には飽和Ag/AgCl電極を用い,セル中に配置した.2つの窓の間の距離は6mmである.その空間には水溶液を満たした.

4.2.2.3 その場 XRD 測定

水溶液中の試料に対するXRD測定技術上の問題はいくつかある.X線 の水溶液中での減衰と散乱である.減衰は,使用するX線のエネルギー を高くすることである程度回避可能であり,これについては後述する. より大きな問題は,水溶液あるいは水分子により散乱されたX線による バックグラウンドノイズの上昇である.この問題を解決するために,X 線による水溶液部分の照射領域を減らすことを考えた.解決策として, 2つの回避方法があると思われる.

- 1. 試料表面の水溶液厚さ,量を減らすことで,水溶液からのX線散乱 を減少させる
- 2. 試料と試料周辺の視野を制限することで,水溶液成分からのX線散 乱が検出器に入るのを極力防ぐ

前者のアプローチでは.水溶液自身の量を減らすことになるため,還 元電流にとって大きな抵抗成分となる.その結果,作用極である試料表 面の還元電流が不均一となりやすいというデメリットがある.よって, 本研究では,後者のアプローチを検討した.

水溶液によるX線の減衰をさける目的で10keV以上ののX線を使用で きるように,また,先ほど述べたように,X線による水溶液の散乱を最 小にするために,幅広い光学調整が可能な,SPring-8のBL46XUを利用し た.本ビームラインは,フーバー製の多軸回折計を備えている.Fig.4.17 に,実験装置のレイアウトを示した.XRD信号の測定には,NaIシンチ レーションカウンターを用いた.XRDプロファイルは,ゴニオのアーム上 に据え付けた,NaIカウンタの位置をスキャンすることで行った.散乱信 号は,X線ビームに対して法線方向の成分を測定した.散乱X線を, Fig.4.17に示すようなダブルスリットで制限することにより,角度分解能 を担保した.電気化学セルは,遠隔操作できる電動ステージの上に設

Fig. 4.16. 透過X線回折用電気化学セル模式図.

置し,適宜調整した.X線波長が1.0Å,すなわち12.4 keVのX線を用い, ビームサイズを,縦0.1 mm×横1 mm とした.

Fig.4.17 中右側に,サンプル周辺の断面図を示した.観測領域は,入射 X線ビームの縦サイズと,検出器前のダブルスリットの縦サイズで制限 される.水溶液からの散乱X線を減らすために,ダブルスリットの縦サ イズを制限した.今回,用いた試料の厚さを考え,ダブルスリットの縦 サイズを,0.1 mmに決定した.試料位置の調整はグラファイト(002)ピー ク強度をモニタしながら,試料を設置された電気化学セルを前後に動 かすことで行い,試料の中心位置を割り出した.実際の測定の際は,水 溶液と試料電極表面の界面から,0.2 mm試料内部に入った位置に観測体 積の中心位置を設定して測定を行った.

β-FeOOHを含んだグラファイトペレット電極からのXRDスペクトルを Fig.4.18に示す.XRD図中には、ダブルスリットの代わりに、ソーラース リットを使うことで平行光学系を担保し、検出器の視野制限を解除(13 mm)した一般的なXRD光学系でのXRDスペクトルも示した、グラファイト(002)ピーク強度で規格化した結果、ソーラースリットを使用した光学 系では、水溶液からのX線散乱が強く、目的とするさびであるβ-FeOOHか らのXRDパターンが隠れているのがわかる、一方、ダブルスリット光学 系を用いた条件では、検出器に入る水溶液からのX線散乱を効果的に減 少させることで、β-FeOOHのXRDプロファイルが明瞭に観察された、

4.2.3 結果

Fig.4.19 に,β-FeOOH の 電 気 化 学 的 還 元 挙 動 を 示 す.β-FeOOH ペレット を, Ag/AgCl 電 極 基 準 で-1.2 V の 電 位 に 制 御 し な が ら ,2θ=6 –25 度 の 範 囲 を 繰 り 返 し 連 続 測 定 を 行った.一 回 の ス キャン は ,750 s 程 度 で ,全 体 の 測 定 に は.3000 s 程 度 を 要 し た.

β-FeOOHピーク(図中b)強度は,徐々に減少し,spinelタイプ鉄さびに相当するピーク位置のピーク強度が増加した.β-FeOOHの還元後,spinelタイプの鉄酸化物が生成したものと考えられる.スピネルタイプの,鉄酸化物である,Fe₃O₄とγ-Fe₂O₃,はXRD上の区別は困難であるため,ここで

Fig. 4.17. Huber 多軸回折計模式図. 右に試料に対する観察部分模式図を示す.

Fig. 4.18. 受光部スリットを 13 mm から 0.1 mm まで変化させた際の,0.3 M NaCl 中でのβ-FeOOHのXRDスペクトル.グラファイト(002)ピーク強度で, データ強度を規格化した.

はそれらの総称としてスピネルタイプ鉄酸化物と称す.

同様に,*α*-FeOOH も-1.2 V(Ag/AgCl)で還元しながら,XRD 測定を行った.Fig.4.20に結果を示す.*α*-FeOOH ピーク強度(図中a)は,測定時間中目 立った変化はなかった.*γ*-FeOOH は還元され,スピネルタイプ鉄さびを形 成する一方で,*α*-FeOOH は,電気化学的に難還元性であることは良く知 られている^[4].今回,*β*-FeOOH も,*α*-FeOOH に比べて,容易に電気化学的 に還元されることが確認された.

4.2.4 まとめ

本研究の目的は,さびの電気化学的還元環境での相変化測定へのその場XRD法の適用である.高精度に調整されたダブルスリット光学系を用い,水溶液からのX線散乱によるバックグラウンドの上昇を効果的に抑えることで,水溶液中のさびのX線回折測定が可能となった.

その技術を用い,0.03 M NaCl 溶液中で,α-FeOOH とβ-FeOOHの電気化学 的還元挙動のXRD 測定を行った.その結果,α-FeOOH とβ-FeOOHで,電気化 学的還元挙動が異なることが明らかとできた.今後,この技術を鋼上の さびにも展開し,さびの還元挙動に関して.さらに詳しく検討したい.

Fig. 4.19. -1.2 V (vs Ag/AgCl)に保持しながら測定した XRD パターン. b:β-FeOOH, sp:*spinel* さび, graphite:グラファイト

Fig. 4.20. -1.2 V(vs Ag/AgCl)に保持しながら測定したXRDパターン.a:α-FeOOH, graphite:グラファイト

参考文献

- [1] U. R. Evans, Corros. Sci., 9, 227(1969).
- [2] U. R. Evans and C. A. J. Taylor, Corros. Sci., 12, 277(1972).
- [3] M. Cohen and K. Hashimoto, J.Electrochem. Soc., 121, 42(1974).
- [4] I. Suzuki, N. Masuko and Y. Hisamatsu, Corros. Sci., 19, 521(1979).
- [5] M. Stratmann, K. Bohnenkamp and H. -J. Engell, Corros. Sci., 23, 969(1983).
- [6] M. Stratmann and K. Hoffmann, Corros. Sci., 29, 1329(1989).
- [7] T. Misawa, K. Asami, K. Hashimoto and S. Shimodaira, Corros. Sci., 14, 279(1974).
- [8] M. G. Samant, M. F. Toney, G. L. Borges, L. Blum and O. R. Melroy, J. Phys. Chem., 92, 220(1988).
- [9] Z. Nagy, H. You, R. M. Yonco, C. A. Melendres, W. Yun and V. A. Maroni, Electrochim. Acta, 36, 209 (1991).
- [10] F. Brossard, V. H. Etgens and A. Tadjeddine, Nucl. Instr. Methods Phys. Res. B, 129, 419(1997).
- [11] O. M. Magnussen, K. Krug, A. H. Ayyad and J. Stettner, Electrochim. Acta, 53, 3449(2008).
- [12] B. Ingham, B. N. Illy, M. F. Toney, M. L. Howdyshell and M. P. Ryan, J. Phys. Chem. C, 112, 14863(2008).

4.3 ラマン散乱分光法による高温高圧水溶液下腐食 その場局所分析

4.3.1 背景

水溶液腐食は,材料と水溶液の接する界面で進行する.そのような界 面をその場観察,分析することが広く行われ,腐食メカニズムの解明や 材料開発のための重要な情報となっている.しかしながら,腐食のその 場分析の多くは,室温から90 程度の常圧で実験できる範囲内に限ら れている.一方,エネルギー分野,例えば油井管や原子力分野に使用さ れる鉄鋼材料は,高温高圧水溶液環境で使用されるものが多い.これら の環境で使用される耐食材料においても,腐食による劣化挙動のその 場追跡は重要なテーマとなっている.

高温高圧水溶液環境を実現するためには,特殊な耐圧容器が必要となる.いくつかのグループでは,その場分析に使用できる容器を開発し, 288–350 ,10 MPa 以上の高温高圧水溶液下で試料表面に生成する腐食 生成物のラマン散乱分光法による構造解析が実現されている^{[1],[2],[3]}.し かしながら,高温高圧水溶液下での耐食材料においても,孔食や SCC な ど局部的に進行する腐食現象が問題とされることが多いが,それら高 温高圧水溶液下での腐食その場分析装置およびセルは,かならずしも 局所的な情報を得ることを目的として設計されているわけではない. エネルギー分野を支える油井管や原子力材料などの材料開発において も,孔食の進展や結晶粒レベルでの腐食挙動の差を充分識別できる空 間分解能でのその場分析技術が必要と考えられる.

現在,高温高圧水溶液下での構造材料の腐食劣化挙動その場分析を目 指し,特に顕微分光分析可能なセルの開発をおこなっている.このセル を使用して,炭酸ガス含有の高温高圧水溶液腐食環境での鋼材表面の 腐食生成物の生成挙動追跡を行った.高温高圧炭酸ガス腐食環境で使用 される油井管材料の腐食は広く研究されているが,腐食生成物がその 場分析された例はあまり知られていない.これまでの研究で,約150 以上では,環境に存在する炭酸によりFeCO₃が生成することで腐食が抑

97

制される^[4]こと,さらに鋼材にCrを添加することにより腐食が抑制される^[5]ことから,Cr添加も有効であることもわかっている.しかしながら,そのCrの作用に関してはよくわかっていない.今回,高温高圧水溶液下で進行するFe--Cr合金の腐食挙動を,その初期段階から観察,分析することで,Crの作用について検討した.

4.3.2 実験

4.3.2.1 セルデザインおよび装置構成

試料表面を局所観察,もしくは,ラマン散乱分光分析ができることを 目指したセルの開発を行った.市販の顕微鏡用高倍対物レンズを使用し た観察を考えるならば,作動距離(WD,レンズ先端から試料表面までの 距離)を10mm程度に抑える必要がある.また,試料のある程度の面積 を走査しながら測定する必要もあるため,窓にはある程度の開口径も 必要である.サファイア製窓を用いることで,厚さ2mm,開口径5mm で 十分な強度が得られることがわかった.サファイア窓の採用により,窓と 試料の間には5mm以上の溶液で満たされる空間が確保できた.

セル概略図をFig.4.21(a)に,写真をFig.4.21(b)に示す.試料はセルと絶縁 されているとともに,電気化学測定もできるように,外部と電気的に接 続できるようになっている.試料周囲に8個の接続口を有しており,溶液 の注入,循環,また対極および参照極を設置可能なようにデザインし た.セルは縦置,横置どちらでも配置できる.

試験設備概略図をFig.4.22 に示す. 試験溶液は外部ポンプによりセル内 へ注入,もしくは循環できるようになっている. 高温高圧水下での腐食 試験に耐え得るように,セルを含めた接液部はC276合金を基本材料と して製作した.

4.3.2.2 試料および溶液

試料は,ボタン溶解で作製した,Fe-0Cr材(<0.01%Cr,以下0Cr材)及び, Fe-2Cr材(2.06%Cr,以下2Cr材)の2種である.表面を#2000までのエメ

Fig. 4.21. (a) その場セルの断面. (b) 光学ステージ上のその場セル写真.

Fig. 4.22. 高温高圧水セル周辺機器システム図.

リー研磨紙で研磨後試験に使用した.

試験溶液は,CO2ガスを含む,5 mass% NaCl溶液とした.

4.3.2.3 ラマン散乱分光実験

水溶液中での腐食生成物のその場分析を考えた場合,可視光が使用で きるラマン散乱分光法は最適な方法の1つである.これまで,多くの腐 食その場分析に活用^{[6],[7]}されており,腐食生成物検出感度も高い.ラマ ン散乱分光実験には,HORIBA Jobin Yvon社HR-800型ラマン散乱分光装置 を用いた.光源にLDレーザー(532.05 nm)を,また600本/cmの回折格子分 光器を用い,各点30s測定を2回行い,積算した.

4.3.2.4 実験手順

高温高圧水セルに試料を設置後,セル内をCO2ガスで置換する.さらに,ポンプにより調液タンクから試験溶液をセル中に送液し,セル内を溶液で満たす.この溶液は,事前に調液タンクに注入後,CO2ガスで脱気し,さらに,CO2ガスで加圧されている.この時のCO2ガス圧力は,サファイアガラスへの気泡付着を避けるため,腐食試験温度,圧力でのCO2の溶解度^[8]以下となるよう,100,150 及び200 のとき,それぞれ,1.0 MPa,0.75 MPa,0.45 MPaに設定した.試験中,溶液はポンプにより常時供給され,今回の実験では,1.0 ml/minの流量とした.セル内圧は,背圧弁により試験圧力である3 MPaに調節され,温度は,セルに備え付けているヒーターにより所定温度に制御した.観察および分析は,10倍もしくは,20倍の対物レンズを通して行った.調液タンクの容量の制約により試験温度での保持時間は1時間とした.

4.3.3 結果及び考察

まず Cr 添 加 の な い 0Cr 材 の 腐 食 挙 動 の 観 察 及 び 腐 食 生 成 物 の 分 析 を 行った.室 温 か ら ,それ ぞ れ 100°C,150°C,200°C に 加 熱 し な が ら 顕 微 鏡 観 察し,目標温度に到達後,ラマンスペクトルを収集した.目標温度へは いずれも10分以内に到達した.

Fig.4.23(a) に,0Cr 材の100°C 昇温後の写真を示す.昇温過程で,黒く変色していく様子が観察されたが,腐食生成物の明瞭なラマンスペクトルは得られなかった(Fig.4.24 中1).腐食進行による表面荒れの結果,黒く変色したと考えられる.

Fig.4.23(b) に,0Cr 材の150°C 昇温後10分経過後の写真を示す.100°C 試料 と同様,当初黒く変色を始めた.そのような部位からは,明瞭な腐食生 成物のラマンスペクトルは得られなかったことから,腐食進行による表 面荒れの結果,黒く変色して見えたものと考えられる.しかし,そのま ま観察を続けると,部分的に黒色の粒が観察され始めた.Fig.4.23(b) はそ の時観測された粒子の写真である.それら粒子部からは,Fig.4.24 中 2 に 示すように,FeCO₃ に特徴的なピーク(1086 cm⁻¹)^[9]が観測されたことか ら,FeCO₃ が生成しているものと考えられた.

Fig.4.25 には,(a) 室温,(b) 約 185°C(200°Cへ昇温中,開始から約5分後) の写真を示す.200°C到達直前から,黒い斑点が目立ち始めた.200°C到 達後,各部をラマン散乱分光法で分析した結果,黒い斑点部からは, Fig.4.26 中スペクトル1 に示すスペクトルが得られた.そのスペクトル は,FeCO3 のスペクトルとよく一致した.その後,時間が経過するとも に,その黒点部は範囲を拡大し,約20分後には試料全体を覆った.

2Cr 材では,200°Cへの昇温開始から約5分後(約180°C)では,0Cr 材で観察されたような黒い斑点は確認されなかったが,全体に薄く青や赤系の色を呈する状態となり,200°C到達後もその状態が継続した.Fig.4.27(b)には200°C到達後の写真を示す.Fig.4.27中の有色部からは,Fig.4.28に示すような660 cm⁻¹や530 cm⁻¹付近にピークをもつスペクトルが得られた.スピネル酸化物であるFe₃O₄は,530–560 cm⁻¹付近に弱いピークと660–670 cm⁻¹付近に強いピークを示し^{[10],[11]},Fe₂CrO₄は,680 cm⁻¹付近に強いピークを示すことが知られている^[12].試料には,Fe,Cr が含有されることから,それらを含んだ酸化物である可能性が考えられる.高波数側のピーク位置からは,主成分はFe₃O₄である可能性が指摘できるが,結晶性が悪いためかピークプロファイルがプロードであり,組成の同定は困難であ

102

Fig. 4.23. 炭酸ガス含有5 mass% NaCl 溶液中での0Cr 材腐食表面. (a) 100°C, (b) 150°C.

Fig. 4.24. 0Cr 材のその場ラマン散乱スペクトル.スペクトル1は, Fig.4.23(a)の試料からのスペクトル,スペクトル2は, Fig.4.23(b)の試料からのスペクトル.

Fig. 4.25. 炭酸ガス含有5 mass% NaCl 溶液中での0Cr 材腐食表面.(a)室温, (b) 200°C 到達前,185°C 付近.

Fig. 4.26. 200°C 度 到 達 し た Fig.4.25(b) の 0Cr 材 の そ の 場 ラ マン 散 乱 スペ クト ル . スペ クト ル 1 は 黒 色 部 , スペ クト ル 2 は 黒 色 部 以 外 .

る.ここでは, M₃O₄ (M=Fe,Cr)と表記する.

2Cr材では,0Cr材で見られたFeCO₃が確認されなかった.さらに詳細に 観察するため,高倍の20倍の対物レンズに取り替え観察したところ,黒 色の粒子が分散して存在している様子が観察された.その粒子にレー ザー光を照射することで,Fig.4.28中2に示すFeCO₃と思われるスペクト ルが確認された.

しかしながら,このFeCO3は,0Cr材と異なり,測定時間内に全面を被うことはなく,今回の測定時間内で,2Cr材表面に主として確認されたのは,薄く存在するM3O4であった.

今回得られた,0Cr材での腐食生成物のその場ラマン散乱分光分析の結果,特に150°C,200°CではFeCO₃のスペクトルが腐食初期より明瞭に得られ,これまでよく知られている炭酸ガス腐食環境での炭素鋼の腐食挙動^[4]とよく一致する.今回の実験では,炭酸ガス腐食環境をうまく再現でき,開発したセルはうまく機能していることが確認できた.

2Cr材の200°Cでの腐食挙動と0Cr材の200°Cでの腐食挙動をその場分析 し比較することで,0Cr材と2Cr材では,腐食初期からその腐食挙動が大 きく異なることが初めて明らかになった.すなわち,0Cr材では,先ほど述 べたように腐食初期からFeCO3の沈殿が始まり,全面を覆う.2Cr材では, その場観察の結果,腐食初期からスピネル型酸化物であるM3O4の薄い腐 食生成物層が広範囲に観察されている.FeCO3の観測は部分的であった.

生成する腐食生成物に関しては,多くの研究によって詳しく調べられており, FeCO₃ 析出には Fe²⁺の臨界濃度が存在すること^{[13],[14]}や, Cr 含有鋼においては, FeCO₃-Cr(OH)_x系の非晶質防食皮膜が形成される^[15]ことが指摘されている.

本研究で検討した,高温高圧水下分光分析セルとラマン散乱分光法を 組み合わせることで,200度,3 MPa下の高温高圧水下での油井管低合金 鋼の腐食生成物生成挙動が追跡できるようになった.本手法をいくつか の試料に適用した結果以下の知見を得た.

2Cr 材表面でラマン散乱分光法により観測されたスピネル型酸化物層が,従来より指摘されていたCr(OH)_xを含む非晶質防食皮膜に相当する可能性が考えられる.すなわち,上記防食皮膜は結晶性の悪い薄膜であった

Fig. 4.27. 炭酸ガス含有5 mass% NaCl 溶液中での2Cr 材腐食表面.(a)室温, (b)約200°C.

Fig. 4.28. 2Cr 材のその場ラマン散乱スペクトル.スペクトル1および2は, Fig. 4.27(b)からのスペクトル.スペクトル2は,局所的に得られた.

ことから,これまでのX線回折測定では明瞭な回折パターンを示さず, 組成,構造ともあまり詳しく議論されてこなかった.しかしながら,酸 化物,水酸化物に感度の高いラマン散乱分光法の適用により,スピネル 型酸化物としての存在が確認できた.2Cr材においては,腐食初期にお いて,今回確認されたスピネル型酸化物層が初期から表面を覆うこと で,FeCO3 析出の臨界濃度以下にFe²⁺の濃度を抑えたものと考えられる.

今後,多くの系統的な実験を行うことで,Crの初期皮膜中での存在状態や防食作用については,さらに詳細な検討を要する.

4.3.4 まとめ

高温高圧水溶液下での鋼材の腐食その場研究を目的とした高温高圧 水セルを試作し,顕微鏡観察とラマン散乱分光法による腐食生成物分 析を可能とした.

試作したセルを,炭酸ガス腐食環境のその場分析に適用した.腐食の 初期段階から材料腐食表面の観察,分析を行った結果,鋼材組成により 異なる腐食生成物の成長挙動を詳細に議論できるようになり,炭酸ガス 腐食環境において,Cr添加有無での腐食挙動の差異を直接示すことが できた.今後,さらに系統的な検討を行い,Crによる防食メカニズムを 明確にしたい.

開発した,セルおよび周辺機器を含む,高温高圧水溶液下分析システムは,油井管や原子力材料の研究開発にとって有効なツールとなるものと考えられる.

参考文献

- [1] C. A. Melendres and J. J. McMahon, J. Electroanal. Chem., 208, 175(1986).
- [2] J. H. Kim and II. S. Hwang, Nuclear Engineering and Design, 235, 1029(2005).
- [3] C. S. Kumai and T. M. Devine, Corrosion, 63, 1101(2007).
- [4] A. Ikeda, M. Ueda and S. Mukai, Corrosion, 83, pp. 45(1983).
- [5] A. Ikeda and M. Ueda, "CO₂ Corrosion Behavior of Cr-containing Steels", EFC Publications Nunber 13, p. 59(1994).
- [6] T. Ohtsuka, J. Guo and N. Sato, J. Electrochem. Soc., 133, 2473(1986).
- [7] J. T. Keiser, C. W. Brown and R. H. Heidersbach, J. Electrochem. Soc., 129, 2686(1982).
- [8] Z. Duan and R. Sun, Chemical Geology, 193, 257(2003).
- [9] F. Rull and J. Martinez-Frias, J. Raman Spectrosc., 34, 367(2003).
- [10] T. Ohtsuka, K, Kubo and N. Sato, Corrosion, 42, 476(1986).
- [11] J. L. Verble, Phys. Rev. B, 9, 5236(1974).
- [12] 山中和夫,松田恭司,防食技術, 39, 254(1990).
- [13] A. Ikeda, M. Ueda and S. Mukai, "Advances in CO₂ Corrosion", Vol. 1, p. 39, NACE(1984).
- [14] R. H. Hausler, "Advances in CO₂ Corrosion", Vol. 1, p. 72, NACE(1984).
- [15] A. Ikeda, M. Ueda and S. Mukai, Corrosion, 84, pp. 289(1984).

第5章 総括

本研究では,鉄鋼材料表面に使用環境中で生成する耐食性皮膜の機能 解明を目指し,対象物の特性や得るべき情報について検討しながら,測 定,解析を行った.

特に, ラマン散乱分光法, XAFS法, HAXPES法, XRD法を用い, 耐食性 皮膜の機能を解明するための研究を展開し, 以下の結論を得た.

第2章 耐候性さび中のAl状態分析

屋外大気腐食環境では,耐候性鋼などCr-Cu-Pなどを微量添加された低 合金鋼が使用されることが多いが,塩分飛来環境では耐候性が低下す るという問題があった.一方,塩分飛来環境においては,Alを添加され た鋼材の耐食性が高いことはよく知られていた.しかしながら,鋼に添 加されたAlの役割や作用機構はあまり調べられていなかった.実用材と しての開発に先駆けて,塩分飛来環境での鋼材耐食性に及ぼすAlの効 果の検討を行った.

塩分飛来環境において Al 添加鋼表面に生成するさび層に対して ラマン散乱分光法,XAFS法を用いた解析を行った.その結果,Alは, α-Fe_{1-x}Al_xOOH型さびを形成することで,さび層の塩分飛来環境での保護 性を向上させることを明らかとした.

第3章 HAXPESによるNi基合金のスケール-母材界面のCu偏析挙動解析 ガス改質プラントなどCO成分を含む高温環境では,メタルダスティン グと呼ばれる激しい腐食が見られる.プラント寿命,信頼性向上のた め,Cuを添加されたNi基合金が開発された.しかしながら,メタルダス ティング腐食環境での,Cuの作用機構には不明確な点が多く,合金成分 の最適化のためにも,作用機構の解明が必要となった.

種々手法を用いた分析の結果,酸化層--母材界面近傍にCuが存在するこ

とが分かってきた.さらに詳細なCuの存在状態を調査するため,HAXPES 法を用いて非破壊的な分析を行った.その結果,CuはCr₂O₃層と母材の界 面に偏析して存在していることを見出し,Cuの偏析層が,腐食環境に 存在するCOの解離性吸着を抑制することで,耐メタルダスティング性 を向上させるものと考えた.

第4章 その場分析技術の検討

使用環境中の材料表面の変化を直接調べることは,腐食,酸化反応に 及ぼす添加元素の効果,作用機構を理解するうえで有効であると考え られる.

本章では,特に鋼の高温酸化環境中のウスタイト変態挙動,大気腐食 反応において重要なさびの電気化学的還元挙動,油井管材料における 高温高圧の水溶液環境での腐食挙動の追跡を,XRD法やラマン散乱分 光法を用いて行い,その適用性を検討した.

 1. 大型2次元検出器を用いたX線回折法による鉄スケールの等温変態 挙動

高温で生成する鉄スケール層は,高温ではウスタイトが安定し て存在するが,570 以下ではウスタイトはα-Feとマグネタイトに 共析的に分解される(ウスタイト変態)ことがよく知られている. この時の酸化層内部の組成や構造は,鋼の成分や冷却パターンに 依存する.高温環境で生成する酸化層がその後の圧延工程で傷や 設備の摩耗の原因となるため,脱スケール処理される.この際,ス ケールの下地鋼に対する密着性は,ウスタイト変態の進行具合によ り異なることから,スケール変態過程の詳細解析が必要とされた.

570 以下の温度で連続的に進行し,保持温度により異なる挙動 を示すスケール変態過程を詳細に追跡するためには,その場分析 の実施が有効であると考え,放射光(SPring-8)による高輝度X線と 高速2次元検出器を適用し,その場XRD測定を行った.

スケール変態過程の XRD 連続測定結果から,ウスタイト,マグネ タイト双方の格子定数が,等温保持中に変化すること,その変化挙 動が保持温度により異なることを見出した.すなわち,等温変態の 過程で,カチオン欠陥の異なる複相のウスタイト,マグネタイトが 中間相として共存するが,これら複相の酸化物の存在比率により, α-Feの共析挙動が異なることがわかった.スケール変態過程に対す るその場測定は,これまであまり行われたことはなく,高輝度X線 と高速2次元検出器の組み合わせによるその場XRD測定の結果,多 くの知見が得られた事は,本手法のスケール変態研究に対する適 用性が高いことを示している.

2. その場X線回折法によるさびの電気化学的相変化挙動

大気腐食環境下での鋼の腐食は,不可避的に生成するさびが,そ の後の鋼の腐食を進行させるための酸化剤として機能する,すな わちさび自身は還元されるというエバンスモデルにより理解され ている.多くの研究者によりこのエバンスモデルを基にした腐食 メカニズムにより,鋼材の腐食が研究されているが,このモデルで 重要なさびの還元挙動はこれまで詳しく検討されていなかった.

さび還元挙動を研究するため,X線を用い,電気化学的還元環境下でのさび相変化追跡を行うことのできる電気化学セルおよび光学条件の検討を行った.その結果,XRD法を用いたさびの電気化学的相変化挙動追跡が行える測定条件,セルの開発に成功した.

本手法を用いた結果,これまで明確にされていなかった,α-FeOOH とβ-FeOOHの電気化学的還元性に関して,β-FeOOHの方が電気化学 的に還元されやすいことを明確に示すことができた.

3. ラマン散乱分光法による高温高圧水溶液下腐食その場局所分析 油井管や原子力材料などエネルギー分野の配管材料は高温高圧 の水溶液腐食環境にさらされる.一般に,高温高圧水下での腐食 試験は,オートクレーブと呼ばれる耐圧容器の中で行われている ため,適用材料の腐食進行状況の追跡は困難であった.

そのような高温高圧水腐食環境下で,腐食進行中の材料の局所 観察および腐食生成物分析を目指し,高温高圧水下局所分光分析 セルを開発した. 開発したセルを用い,油井管炭酸ガス腐食環境下でのCr含有の低 合金鋼におけるCrの作用について検討した.Crにより腐食は抑制 される傾向であることはわかっていたが,詳細な挙動には不明な点 が多い.腐食生成物の分析には,ラマン散乱分光法を用い,局所観 察しながら,腐食環境中で生成,沈殿する腐食生成物を分析した. この結果,Crは,腐食初期において,FeCO3 生成を抑制し,スピネル 型酸化鉄の生成を促すことが分かった.すなわち,Crは腐食初期過 程に作用し,Crを主成分とする水酸化物を形成することで,Fe 溶 出抑制作用を発揮する可能性が高い.従来行われていた長期腐食 試験後の評価では,腐食生成物に差異を求めることは困難であった が,腐食初期過程から連続的に観察,分析することでCr作用が明確 にできた.本手法は,高温高圧水下腐食挙動研究に有効である.

以上のように,各種環境で使用される鉄鋼材料の表面に生成する耐食 性皮膜の機能解明を目指した研究を展開した.特に,分析方法,用いる プローブの特性,情報検出深さに注意をはらい,解析対象ごとに,分析 方法を選択し,測定条件や解析方法の検討を行いながら,耐食性,保護 性に関する皮膜の性能発現機構の検討を行った.

本論文で用いた手法は,幅広く多くの材料評価に応用でき,材料開発 に貢献できる.今後本研究成果を生かした,研究開発により材料開発が 加速されることが期待できる.

本論文に関係する投稿論文

- 土井教史,来村和潔,中西康次,鹿島和幸,上村隆之,幸英昭, 太田俊明,山下正人, "塩分飛来環境におけるAI含有鋼さび中のAI状態分析",日本金属学 会誌,74,10–18(2010).
- 2. T. Doi, K. Kitamura, Y. Nishiyama, N. Otsuka, T. Kudo, M. Sato, E. Ikenaga, K. Kobayashi and T. Hashimoto,

"Analysis of Cu segregation to oxide-metal interface of Ni-base alloy by HX-PES", Surf. Interface Anal., 40, 329–333(2008).

- T. Doi, K. Kitamura, Y. Nishiyama, N. Otsuka, T. Kudo, M. Sato, E. Ikenaga, S. Ueda and K. Kobayashi, "Analysis of Cu segregation to oxide-metal interface of Ni-base alloy in a metal-dusting environment", Surf. Interface Anal., 40, 1374–1381(2008).
- 4. 土井教史,大塚伸夫,東田泰斗,日高康善,正木康浩,佐藤眞直,小金沢智之,
 "大型2次元検出器を用いたX線回折法による鉄スケールの等温変態挙動のその場観察",鉄と鋼,投稿準備中.
- T. Doi, T. Kamimura and M. Sato,
 "XRD for in Situ Measurement of Electrochemical Phase Transition of Rusts", Materials Transactions, 投稿中 .
- 6. 土井教史, 来村和潔, 工藤赳夫, 藤本慎司,
 "ラマン散乱分光法による高温高圧水溶液下腐食その場局所分析",
 材料と環境, 60, 445–448(2011).

その他,関連論文

1. H. Nagano, T. Doi and M. Yamashita,

"Study on Water Adsorption-Desorption on Metal Surfaces and the Early Stage of Atmospheric Corrosion in Steels", Proc. of 6th International Symposium on Electrochemical Methods in Corrosion Research (Trento, Italy, August 25-29, 1997), Materials Sciecnce Forum, 289/292, 127-134(1998).

- 2. 土井教史,山下正人,長野博夫,
 "金属表面における水の吸着挙動とケルビン電位変化",日本金属学会誌,62,64–70(1998).
- 山下正人,土井教史,長野博夫, "ケルビンプローブによる吸着·薄膜水下の低合金鋼の腐食挙動測 定",材料と環境,47,384–390(1998).
- 4. 長野博夫,土井教史,山下正人,
 "大気腐食に関する電気化学測定法-薄膜溶液中での電気化学測定法(1)
 ケルビン法"[解説],電気化学および工業物理化学,66,493-497(1998).
- 5. 土井教史,

"大気腐食にて生成するさびの性状に及ぼす薄膜水の化学的因子", 材料,48,1234–1238(1999).

- 6. 幸 英昭,上村隆之,土井教史,山下正人,三澤俊平,
 "耐候性鋼の保護性さび生成促進表面処理(ウエザーアクト処理) 技術の開発",まてりあ,41,39–41(2002).
- 7. 上村隆之,土井教史,鹿島和幸,和暮憲夫,原修一,中原勝也,安藤隆一,幸英昭,
 "耐候性鋼保護性さび生成促進処理上に生成したさび層の解析",材料,56,1035–1041(2007).

謝辞

本論文は,大阪大学大学院工学研究科教授藤本慎司先生より全体の 構成から個々の記述にいたるまで詳細なご教示をいただいて完成を見た ものであり,ご指導に対し心より感謝申し上げます.また,本論文をま とめるにあたり,大阪大学大学院工学研究科教授荒木秀樹先生,大阪大 学大学院工学研究科教授山下弘巳先生には格別のご教授をいただき厚 く御礼申し上げます.

本研究の一部は,放射光施設を光源としたX線を利用した実験成果で あり,第2章では,文部科学省先端研究施設共用イノベーション創出事業 [ナノテクノロジー・ネットワーク]の支援を受け,立命館大学SRセンター BL-10において実施させていただきました.実験の遂行に対してご指導 及びご配慮を賜りました元立命館大学SRセンター・センター長教授岡 本篤彦博士(現公益財団法人科学技術交流財団コーディネーター),同SR センター・センター長教授太田俊明先生,同SRセンター・研究員中西康 次氏に感謝いたします.また,第3章および第4章1,2節は,SPring-8 において重点産業利用課題として実施させていただいた成果の一部で ある.SPring-8での実験に際して,課題申請から実施にいたるまで多く の助力を頂いたJASRI(Japan Synchrotron Radiation Research Institute)産業利用推 進室副主幹研究員佐藤眞直博士,同産業利用推進室コーディネーター 橋本保博士をはじめとする産業利用推進室の各位に感謝いたします.

本研究は,住友金属工業株式会社総合技術研究所において行った研究 を基としており,社会人ドクターとして大阪大学大学院工学研究科マ テリアル生産科学専攻博士後期課程に入学し研究を深める機会を与え てくださいました元 同社常務執行役員総合技術研究所所長三宅貴久 氏(現鋼管カンパニー和歌山製鉄所長)に感謝し御礼申し上げます.ま た,本研究の遂行及び論文の発表に対して御理解,御承認賜りました同 社 常務執行役員 総合技術研究所長 赤羽 裕氏,同研究所副所長 五十嵐 正晃博士,同研究所主監部長研究員 大塚伸夫博士,同研究所厚板·条鋼 研究開発部部長 岡口秀治氏,同研究所鋼管研究開発部部長 近藤邦夫 氏,元 同研究所物性·分析研究開発部部長 大橋善久氏(現株式会社大阪 チタニウムテクノロジーズ 高機能材料部 担当部長),同研究所物性·分 析研究開発部部長 香月太博士,同社 鋼管カンパニー和歌山製鉄所カス タマー技術部継目無管材料開発室室長 天谷 尚博士に感謝いたします.

元 同研究所 上席研究主幹 長野博夫博士 (現 株式会社材料·環境研究所 代表取締役)には,腐食研究のきっかけを作っていただくとともに御指導 いただいたこと深く感謝いたします.また,入社以来長年直接の上司と して御指導,御鞭撻いただくとともに,多くの有益なコメントをいただ いた元 同研究所 日野谷重晴博士 (現 住友金属テクノロジー株式会社 研 究支援事業部技術参与)ならびに元 同研究所 薄木智亮博士 (現 住友金属 テクノロジー株式会社 研究支援事業部副事業部長)に感謝いたします.

社会人ドクターとして入学の後押しをしてくださるとともに,本研究の推進にあたり,幅広く終始多大なる御指導,御教示賜りました元 同研 究所主監部長研究員工藤赳夫博士に深く感謝します.

研究の遂行に際して,数々の助言,助力を賜りました元 同研究所物性・ 分析研究開発部部長研究員八内昭博氏(現中央電気工業株式会社機能 材料事業本部技術開発部部長),元同研究所松田恭司氏(現住友金属テ クノロジー株式会社関西事業部技術部部長),元同研究所山下正人博 士(現株式会社ミツワハイテック取締役社長),同研究所厚板・条鋼研究 開発部 幸英昭博士,上村隆之博士,鹿島和幸氏,和暮憲夫氏,同研究所 鋼管研究開発部正木康浩博士,西山佳孝博士,日高康善博士,東田泰斗 氏,同社和歌山製鉄所カスタマー技術部継目無管材料開発室高部秀樹 博士,同研究所物性・分析研究開発部高山透博士,神田修氏,来村和潔 氏,石井忠男氏,大阪大学大学院工学研究科技官中田淳二先生には,こ こに深く感謝の意を表します.また,日常の議論を通じて多くの知識や 示唆を頂いた同研究所物性・分析研究開発部の皆様に感謝します.

最後に,社会人ドクターとして大阪大学に入学することを理解し,支援してくれた妻陽子,長女奈那美,長男俊平に心より感謝します.