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Surnmary

                                                 1
         An ecosystern is a complex system composed of many

species subject to various interactions. The number of

individuals in a population fluctuates annually or generation

to generation. There are two aspects in variations ef numbers

of individuals. It is known that some popu!ations exhibit

large fluctuations, in the form of periodic oscillations

or irregular outbreaks. However, in many populations,

fluctuations are not so severe and the numbers of individuals

keep nearly constant levels. Therefore, the numbers of
                                                       'individua!s may be regulated by some physical or biological

factors. An ecosystem seems to be a fairly stable system,

since its compositions exhibit persistent characteriVstics.
                                  'One of t"ne fundamental subjects in population ecology is

to study the way of regulating numbers oÅí individuals and

stabilizing ecosystems. Particularlyr we wUl pay our

attention to the effects of migration of populations and

spatial distribution patterns on the stability of ecosystems.
                                                           'In this paperr four mathematical models are presented in
                      'oxder to study relationS between migration of populations

and stability of ecosystems.

          The first model is on the effects of the population
                                 'pressure in a population which grows expQnentially in a

fertUe area surrounded by hostile areas. Zt is shown

that a popuZation dispersing in a density-dependent raanner

by the popu!ation pressure effect can establish a stationary
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distribution, without regard to the property of boundaries

of the region. Xt is also verified that the population
                                                   .                                                      'forms a stationary distribution also in a habitat ef a

limited size, while a randomly diffusing popuZation goes

to either extinction or explosion, depending on the size

of the region'.

          Secondly, we wUl consider spatial distributions
       '                                    '
of two competing populations, either of which becomes

extinct in the absence of migration. We will show that

these popuZations can coexist with spatialZy segregated

distrÅ}butions in a heterogeneous environmentr even if

one of the two species is far inferior to the other with

respect to the ability of migration.

     - The third problem is on asymptotic behavioUr of
          'densÅ}ties of prey and predator with interactions of the

Lotka--Volterra type. We will show that the densities tend

to exhibit respective spatially synchronized osciliations
                                 'in a homogeneous environmentr and that random diffusion
  '
cannot serve as a mechanism to produce stable spatially

heterogeneous distribution patterns.

          Finally, we consider the effects of emigration

   ttin a prey-predator system in which population densities
                        '                                                         'exhibit stable cyclic oscÅ}llations with large amplitudes.

We will show that emigration of predator to an unsuitable

region for growth of the population is a factor to enhance

stabUity of the system, since it dimÅ}nishes the amplitudes
                                      'of oscUlations and save the population densities from '
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extreme decrease.

         Therefore, migration of a population can be an
                                                 'important rnechanisrn to regulate the number ef individuals
                                                       'and to stabilize an ecosystem in a heterogeneous environment.
                                                       'There rernains need for further investigation as for the role "-

of migration in a homogeneous environment, since the efÅíects

ef migration on the dynamics of population densities with

stable periodic oscillations have not been studied. Zt wiZi

also be a future problem to investigate in what ecoZogical

situations heterogeneity of the environment pZays a

funda!nental role, since it has been known in some simple

model ecosystems that spatialiy heterogeneous distribution

patterns arise even in a homogeneous envÅ}ronment.

                                                  -e
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Chapter I. General rntroduction

         An ecosystem is a complex system cornposed of many

species which interact each other and with the natural
                                                'environment. rt is of critical importance to determine reZevan.t
                    'variabZes in order to study such a complex system. rn studying

an ecosystern, there may be a wide choice of variabies, for

example, the nurnber of various speciesi the number of

individuals in a population, or the energy in different

trophic levels. Population ecology is a field of ecology,

mainly concerned with the numbers of individuals in populations,

turning our attention to a population or a few populations

in a complex ecosystem. Xt should be noted that the word
                                                  'f"population" means a collection of individuals of a species

in a region, although it originally means the nuinber of the

people in a city or in a country, in demography. We can

understand importance to study the numbers of individualst

if we imagine red tide or outbreaks of pest insects, which

are seriogs social problems.

          rt is known that populations of many species

keep nearly constant numbers of individualsr although
the numbers of individuals fluctuate annually or generation

to generation. ThereEorer the numbers of individuals may be

regulated by some physical or biological factors and an
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ecosystem may be a fairly stable systemt since its compositions

exhÅ}bit persistent characteristics. Thus, regulation of the

number of individuals and stability of an ecosystem are

fundamental subjects in popuiation ecology. Many factorsr

for example, climatic factors such as temperature and 'N
humidity, diseases, biotic potential of the population itself,'

or interactions with other species, may be related with the
                                        'problem. Zt is a typical guestion in popuZation ecology what
                                                        'the rnost impoxtant factor is to determine the number of

individuals.
     '       '     '         The population density is also used frequently,

since a thousand individuals of pest insects per -are do much

more damage to crops than a thousand individuals per hectare.

To understand or to predict variations oE the population

density, we must know theÅ}r dynamics. Howevert it is very

difiicult to deterrnine from obsexvations what the most

important factor is on regulation of the popuiation densities

and stability of an ecosystem, since an ecosystem is a very

complex cornposite of rnany species and various interactions.

Therefore, a mathematical model forinulated from some simpZe

assumptions of ecologicaZ relevance serves as a met.hod to

understand general ideas. Xn principlet we can describe the

dynamics Å}n terms of ordinary differential equations or

difference equations, if we know the growth rate, or nataiity

and mortality as a function of population densities and

environmental parameters, and sometimes of time. Such an
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approach has been developed since the pioneering works by

Lotka(1925) and Volterra(l931), and it has made some

contributions to understanding of relations between types

of interactions and stability of an ecosystem. One may refer

some review articles, for exarnple, May(1973) and Maynard

Smith(l974), on details of classical modeZs.

         However, the description in terms of the popuiation

density might be an oversimplification, since there exist

some internal structures, for example, age structures and

size distributions, in populations. Particularly, we should

note that, in the rnajority of classical models, only

temporal variations of a population are considered and spatÅ}aZ

variations are not considered. In generalr a natural

environment is fluctuating both temporally and spatially,
                                                  t'
and a popuiation is perhaps making efficient use of

heterogeneity of the environment. A population ha$ more or less

a dispersing ability and extends the distribution. Spatial

distribution patterns also afÅíect stability of an ecosystem.
                                         'For examle, local extinction of a population doeS not lead

to extinction of the whole population of a species if the

populatÅ}on is dÅ}stributed in a iarge area, and competition

between similar species may be relaxed if they are spatia!ly

segregated. Migration oE a popuiation may be an important

mechanisrn to make efficient use of the heterogeneous

environment and it may sometimes lead to persistence of a

population in a fluctuating environment.

-- 3 -.



          :t is the purpose of this paper to study relations

between migration of a population and stability of an

eeosystem, by formulating and analyzing sorne rnathematical

models. Heret we shouZd turn our attention to the concept
                               '                                                     'of stability in ecology. It differs slightly from the

mathematical definition. In mathematicaZ usage, briefly

saying, Stability of a state means an abUity of the systern

to recover from disturbances. Suppose that the density of
                                                      'a population exhibits a cyciic oscillation in an ecosystem.

Then, the system Å}s sometirnes considered to be ecologically

unstable, even if the oscÅ}ZZation is mathematically stabXe.

For, at the rninimum density of the oscillation, the population

density becornes very low and the population may be exposed

to danger oÅí extinction, Since the population experi`e' nce
       'much darnage by fluctuaticns of environments and also chanee

of rnating may decrease. The difference in concepts of

stability may also be ascribed to 1Å}mitation of mathematicai

models, since the mathematical models tend to deal with

continuous variables, although the ecoZogical unit is an

individual. !n practice, ecological stability means the

persistence of a populationt or miZd fluctuations near

the suitable population density. We wiU use the term both

mathematically and eÅëologically, but this wilZ give rise to

no confusion.

          Finally, mathematical frameworks of this study

should be explained. Spatio-ternporal variations of populations

-4-



can be understood, if we know the rate of temporal variations

at any unit area in a region. The rate of variations in a small

area is determined by interactions of a popu!ation with the

environment and the other populations and migration through
             '          '                                                           'H.the area. The xate of migration may be suitablly described
                                          '                                         'in terms of the population fiux through a unit area. Let ui(x,

t) be the population density of the i-th species at position x
                                   'and time t and ji be the popuiation flux of the i-th species,

which may depend on population densities. Then. our fundamental

eguations are formulated as follows;
                '            au.
            atl = fi(Ulr....erUN7Yl,.....,Um) - Vjir (i)

                               i=1,.....,Nr
                                                     'where fi is the rate of increase(or decrease) by interactions
which depends on the densities of N populations and "

environmental parameters vlr.....rpmr and sometimes on

position x and time t. One may refer, for examplefto Mimura(l979),

on details of derivations of the eqiations (1). !f we specify

fi and ji in the equations (l) from some ecological assumptions,

a model can be constructed.

         The population flux is often assumed to be in

proportion to gradient of the population densityr that is,

            ji= ts' Di(Ul,e...e,UN) VUir .(2) -
                                                   '                              i=1,.....,N,

which mean that a population migrate from a crowded area to

a sparse area, if Di is positive. When Di is constant, the

equations <2) represent diffusion. which is considered to
                                       '                                '                                                        '    '                                     .t                          -5-



random motion of individuals, by the analogy of molecular

dÅ}ffusion in the inorganic world. If Di is an increasing
                                                   'function of population densities, it is called the population

pressure effectr since the dispersive force becomes stronger

as the population densities become larger.

          The above approach was initiated by SkeMam(1951)r

and many models have been proposed for the recent decade(for

example, SegeZ & Jackson. ,l972, Hadeler, an der Heiden & Rothe,

1974, Gurney & Nisbet,l975, Segel & Levin,l976t Rosen,1977,

Gurtin & MacCamy,l977, Shigesadar Kawasaki & Teramotorl978i

Mimura, Nishiura & Yamaguti,l979, Kawasaki & Teramoto,l979).

The equat:ions (1) with the equations (2) are often called

reaction(or interaction)--diffusion eguations and they have

been extensively studied not only in ecology but also as

models of chemical reactions, morphogenesis and nerve

conduction(for example, Turingrl952r Nagumoi Arimoto &

Yoshizawa,l962, Gierer & Meinhardt,1972, Nicolis & Prigogine.

I977, Maginu,l978). Therefore, in our framework, to

investigate the role of migratÅ}on is reduced to a study of

reaction-diffusion equations. The readers may refer the good
             'survey by A.Okubo(Okubo,l975) on other aspects of diffusion

phenomena in an ecosystem.

          Zt should be noted that the equations (l) deseribe

variations of population densities in a continuous

environment. However, an environment is sornetirnes considered
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as ' a patchy one composed of discrete patches; for exarnple,

islands or rocks in an intertidal zone. !t is alsQ important

to study the effects of migration in a patchy environment.

rf we assume random mbtion of individuals or diffusion of

populations, the fundamental equations are formulated, in

the case of a patchy environment, as foliows;

           dU•) e           dt- = fi)(ullree...ruNk;yl,eee.erpm)

                                             '                        - Di{(uij "b u?-i) + (uij - u?+l)},

                     i=lr.e...,Nr j=lte....,k, (3) '
where ui) is the density of the i-th species in the j--th

patch and we have assumed that k patches are linearly arranged

and that diffusion coefficients are spatially constant(Levin,
l974). We wiil use both the continuous version and tai e

discrete version of the reaction-diffusion equations.

          In the foUowing chapters, we will formulate and

analyze four :nathematical models, each of which corresponds

to a particular ecological situation. Details on speciÅíic

ecological situations and mathematical assumptions will be

explained in the begining of each chapter. The author is

afraid that there may be some duplications and some' conÅíusion

in expressions and notationsr since this paper is a collection

of four papers by the author. However, the content of Chapter

Ur is a result of a joint work by the author and Professor

Masayasu Mimura of Konan University. The author has taken
                             '
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Chapter ZI. Density-Dependent Dispersal and Spatial

Distributions of a Population

l. Introduction

                               Recentiy some authors(Gurney &
                                     'Nisbet,l975,Shigesada,Kawasaki & Teramoto,i979) have shewn
                      'that sorae dispersive forces with non-linear dependence on pop-- .
                   .ulation densities enhance stabiXity of an ecological system.
     However,there are two probleins which have beetii- iaid little ..

                                  'attention. [Che Eirst is concerned with the size oÅí a habitat.
                                                           '                                   'Kierstead & Slobodkin(l953) considered the growth of i' phyto-'

plankton population in a mass of water surrounded by water which

is unsuitable for survivai oÅí -the population. They showed that

there is a crÅ}tical minimum $ize for pZankten blooms and that
                                          za                                                            'a population in a habitat with a size sma12er than that goes to
                 'extinction. Similar models for various types of growth and for
                                           'prey-predator systems have been studied(See McMurtrie,Z978,for
                                              .                                                              '                                                           '     '                                                   Freviews). On the other hand,it is known that populations of sorne

mobile species grow explosive4y and serious overgrazing oecurs
       'when the popuiations are confined in some limited areas by a
                                                  '                                                    '                                               'geographical condition or an artificial enciosureCOdum,l971).

Zn such a case,there may be a critieal size such that a popula-
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tion in a habitat with a size larger than that can establish a
                                                 'stationary distribution,whereas a population in a habitat with

a size smaller than that grows explosively. We will say that
                                                             ..regulation of the population number is effective if the popuia-•
                                                tt                                               .t                                 tttion neither goes to extinction nor grows explosively. Thus ouilr
first problem is to Åíind a critical rninimum size 'for efÅíective

                                         '                                 '                                    t-                     '      The second is on the property of the boundary. With regard
                                                     '                                             'to the property of the boundary, many authors assurned refiecting
                                        'boundaries or absorbing boundaries(for example.Segel & Jaekson,
                                                       'l972,Hadeler,an der Heiden & Rothe,l974,McMurtrietl977). Seme

stationary distributions obtained as such are highly depending

on the boundary conditions. However,in sorne cases it rnay be moxe

natural that interactions between a dispersing popul4tion and

                                     t-a hetexogeneous enviromnent detexmine a stationary distribution
                                               '                                         'of the population which does not depend on boundary conditions.
                                                        '                                                       'Zn such a s"Lationary distribution,theace may be a boundary where

both the popuiation density gnd the flow of the density are
                    'zero. We wilZ call this a "natural boundaxy". We will show that
                     'a stationary distribution with natural.boimdaries iS Åíermed by
                                                   'density-dependent dispersal in a heteregeneous envirorment,with-
                                                  J                                                '                                              'out regard to the property of boundaries. '-
      Zn view of the above two problems,we wili study the models

by Gurney .& Nisbet(1975)tsince the models are very sknple and
 '                                                            'useful to study the relations between the types of animal dis-

persal and the above problems. rn the next section, we will in-

troduce the rttodeis by Gurney & Nisbet(1975). Then we wilX
            '                                     '
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consider the problems of the natural boundary and of the criti•-

eal mininum size for eifective regulation.

                    '

 2. Gurney-Nisbet Model

                      '                        '            '                                          '      We introduce three models by Gurney & Nisbe't{l975). We

                                                         '
consider a single mobiZe species existing in a heteregeneous

environment. The population is grontng with a lpcal growth rate

G(x) which does not depend on the populatiion density and dis-

persing with a local population current density j(xtt),.where

x and t represent position and time respdctively. Then the pep-

ulation density u(x,t) satisfies the eguation '
         [l-ltit x" G(x,>u -- vj <x,t) . ' a)a
                                       '                                                 -- !                                                   'rGurney & Nisbet<1975) proposed three.models for the local popg-

Zation current density, according as motion of individuals depends
                                                  'on the population density u or do not. These are - .
                      ' '     (a> the randorn motion model .'i'.
                                  '                            '                                    '          j.. ..- DVut . `'
     (b) the biased random motion taodel

          j= -- dVu-vuVu ,
and
                   '
     (c) the directed motion model

          j = --A uVu ,

where D,d,u and X are pesitive constants. Mhe model (a) is

obtained frem the assumption ef randem motion of individuals

and called diffu$ion. They obtained the modeis {c) and
                                                    '            '    tt
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".

 (b) respectively from the micro$eopic assumptions that individ--

uals move down the gradient of the population den$ity and that

movement oE individuals is largely random but with some bias '
       'in the direction down the gradient of the populatien density(
                                       '                                         ' See Gurney & Nisbet,1975t1976tfor detaUs).'The modeis (b)
                                        '                                             'and (c) may aiso be considered as sorne kinds of the diffusion
                                '                                                    'model wit" co'efiicients depending on the popuiation density. ''

We wiil 'call them density-dependent dispersal raodels. ' .
                                                      .                                                        '                                                         '                                                 '                                                         t-     Gurney & Nisbet(l975> made an assumption on the' growth
'rate' G(x) that the environment is a iargely hostile(G(x)<O)'

        '                                   'i'universe!'centaining a single region of viabie hEibitat<G(x)>O)

 (Fig.l). They considered the equations in an infinite region

G(x)

o LpGGT x

                                       'Fig.l spatial dependence of a growth rate G<x). x=I3pG
po$ition where G(x)=O. The spatial average of the growth

                     'G(x) over (-LAGr+LAG) is zero. x=Lsm is a position of a

boundary in a statienary distribution.

                          - 12 --
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with the boundary condition that

      - u(x,t) -ot aslxl- +cor
and have shown that a population which goes to extinction or
          - p-grows explosiveZy when dispersing randomly ean establish a .' L. .

statienary distribution when dispersing density-dependent!y. .. 1

     !n the foilowing sections, we will consider the raodels in
                            '                                            'view of the problems of the natural boundaries and' of explosive
                                         .growth in a habttat with a lirnited size. We wiU pay eur
raain attention to the directed motion modeltsince we are inter--
                  -ested in the xole of density-dependent dispersal on $tability '

of an ecosystem.

 3. A Stationary Solution with Natural Boundaries

                                                        '                                                 '
     Zn the f.ollowing two sections,we consider the directed

 motion model

             '              •g-l/Ii= G(x)u + xv (uvu) . . (2)

                                         '         '
 For the present,we will restrict ourselves to the case that the

 dornain is a one-dimensionai interval (-Ls+L),where L is an
 adjustable pararneter that determines the size of a dornain. We '

 make simi!ar assumptions on G{x> as those by Gurney & Nisbet
                                                              ' (l975)tthat is,G(x) is positive onZy in a srrtaU bounded domain

 and otherwise G(x) is negative(Fig.1). For. simlicity,we raake

S.[:;rhXg :l: "gigg".g2a: gSgl,i; a,g.:ven functien,that is,G(..)

                       '
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                                    '                       2             G(x) == A-Bx, ' •, (3), ....•..,
which was used by Gurney & Nisbet(l975) for their numerical

calcula.tions. We need the specific assumption (3) Qnfy when we.

:go.v:.2xl,:tg:.c:-.:f,g.sxumatl;n,ggy, g::g:i2u.lg:g! otheryise we neeg

                                                             .     The stationary problem ot the eguation (2) can be described

as ,                                              '                                         '                            t1
                                      '            dd. 22 u. (x) 2 == - < G <x) u. (g) '. ` • (4)

                                        '                                              '                                                  'When G(x) satz'sfÅ}es the equation (3),we can find a very simple

solution of the equation (4). Zf we assume that. a polynomiaZ of

n-th order satisties Vne eguation (4) and put it into (4),then

we can obtain a soiution ll(x) of a fourth order polynomial by

co.Tnparison o'E orders and coefficients;

             iil<X) :2:x<x-LsT)2Cx+LsT)2 , (s)

where LsT-in V7A/B. The solution (5) is not q deSirable one because
                                      'E(x> + co as lxl ÅÄ co . However,we can construct a new solutipn
                                             t.t .of cl class from E(Å~) and a triviaz• solution po(x) = O. The

solution thus obtained is

                                           '                       o . Ixl>z,sT•
                                       '                                      '                                           '                                    '
                          -- l4 '-



Apparently from the construction, .
                  ' du            Us (Å}!JsT) " dxS {Å}Ls T) = O, .. (7 )" ..

and the stationary solution (6) represents a stationary distri.bN-
                                '                                                             'ution with natural -boundaries at x=Å}PsT. When we consider the /
                                                       'equation (2) or (4) in the dornaincontaining the interval (-LsTr
            '+LsT), the soiution (6) satisf.ies both zgro flux and zero fixed
                                                          '                                                 'boundary condÅ}tÅ}ons. UnfortunateXy we have been unable to solve
                                         .the equation (4) iox other forms of G(x). However some numerical

calculations show that a stationary solution with natural bound--

aries exists for a wider class of the growth rate G(x) which

satisfies the assumption at the beginning of this section.

Thus,we assume existence of a stationary selution us(x) with
                                                   -".natural boundaries at x=Å}LsT for any growth rates which satisfy

                                 ttthe assumption. -
     We now investigate stabÅ}lity ot the stationary selution

                    t.us(x). Gurney & Nisbet(1975) have shown stability of a every--
                                          ,where positive $tationary so!ution of the eguation (2) against
                                                         .small amplitude fZuctuations e<x,t),making use of a Lyapunov '
                                                   'functional of e. Since our stationary solution is not every--
                  '                                                           'where positive,we must modify the functional. . '
                                        '                                      '                                     '

             u(x,t) = us(x) + e(x,t),

then the iluctuation.e(x,t) satisfies -. - .-
                                                              '                                                '
                                                       '                                              '                                        ''

             g-i/ÅÄ = G(x)e +Ausv2e +xev2us +2xvusve , (s)

                           '                                                       =                                             '
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to first order in e. We define a positive definite functional

                                   '            V= Å} fix-I < r,sT Us(X)e(X,t>2dx

                                        '
                                              '                 ,' .+ 2i Axl > ,LsTe (x,t) 2dx. ' (g)

                                                 '                            '
By virtue of the eguations (8) and (4),
            '                       '                                         "
            [ll/l- = "'X A.I . z,sT[tis2.(ve,)2 + e2(vu.)2].d>f

              '                                             '                                                   '                                '                                            '                  +f G(x) e2dx, 'ao)
                      ixl ' LsT

since us(x)=O for lxl>LsT. Note that we need not use.boundary

conditions to obtain the equation <IO). dV!at is negative-
                                                            .t
definite,since clearly G(x)<O when lxl >LsT. The eguations (9)

and <iO) rnean that the g'mean sguare fluctuation" decreases with

time. Thus the stationary solution us(x) "is stable against smali

amplitude fluctuations. As we couldn't analytically prove N
                                           'stability against large amplitude perturbations,we solved the

eguation (2) numerically in an interval (-LsT,+LsT) with zero
                                              'Åílux boundary eonditions,using an explicit method. A few exam-
ples are ' shown in Fig.2. The fat line is the statienary distriT
                                                t.bution. Dashed lines indicate that a solution with the initial
                                                  '                                                              'distribution{t=O) cbnverges to the stationary solution as time
                                             'goes on. Three thin lines are exaraples of initial distributions
                                        'with which solutions converge to the stationary soiution. Thu$
                      '
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 Fig.2 A stationary distribution of a population exhibiting
 di re c`Led metion <G (x) =A-- Bx2 ,A=1 , B== 7/4 , X= l , and Iss{e== 2 . ) . 'Yhe .fat

 line is the stationary distribution. Dashed lines indicate that

 a solution with the initial distribution(t==O) converges to the
                                        ' stationary solution as time gees on. Three thin lines are exaTn--

 ples of initial distributions with which solutiens converge to
                                                  -- "-                                                    hL. .                           '                          ' the stationary solution. ' ,' '.                                                            .

we can conclude that the stationary so!ution ti (x) is also
                                             s                                               'stable against Zarge amplitude fluctuations. r''!'f -

4. Size of a Habitat and Explosive Growth

            '                '     ln this section,we consider the problem of the cxitical
                           t                                                            '                'mnimum s-ze for effective regulation. We investigate behaviour

                         - l7 --



              '                                       "of solutions of the eguation (2) in the dorpain (-L,+L),as L

                                                -ebeing a changing pararneter. We assume reflecting boundarles. .

                  t ttwhich correspond to the condition that a populgYion is cgnÅíined

inalimited hal)itat. - . .. :/                                        '                                             '                                tt.hi.hFOdgp[".rdtgfi:yag:igi;?;ll3 define two quantities "pG a.,if...]lrf.xG

                                     '                                         '

                   ) = O r             G (Å}L                 PG

                                              (li)
                                         ,                                              '                   +L •             2}AG f "LAG G<x>dx . e .

                     AG ,                               '

 The interval (-LpG,+LpG) is the region where the growth rate

 G(x) is positive,which is called the region of net growth by

 Gurney & Nisbet(Z975). 2LAG is the size of a domain where the

 spatÅ}al average of the growth rate is zeroiand if L is Zarger

 (resp.smaZier) than LAGr the spatiaZ average of the growth rate

 in the interval <-L,+L) is negative(positive>. As is shown

 later, LpG<LAG<LsT hold in general, where LsT is the position '

of a natural boundary in a stationary solution. rn,Sh.e special
                                                   -L                                          ' case when G<x) satisfies the equatiort (3), '' .
             LpG = vt7il/7i; r LAG = ,/iii17;/71i, !tsT = ,/:77I2;7iiiA/ .

                                            '                 '                    t .t                   '     We consider the equation <2),distinguishing three cases

 depending on the size of a region.

      (i) L<L               PG            s=

                        -l8-



     As G(x) is positive at any point in the domain (-Lr+L). any
                                                   '                                                       '                                                  'solution except the trivial solution uo.(x) = O diverges to
                                                    '                                                         'infinity as t ÅÄ +co. It is Verified by the eguation '

                                     t.                                           '                                                             ./                                          ' T.                                  '                     '                                             '                +L +L '- '             altl f.-L U dX " f-L G(x)u dx > o .

               '

     (ii) LpG <Lg LAG

                                        '                              tt                                                 t.                                                  '     cphough G(x) is negative in the demain lxl e(LpGrLAG)t any
                                      -esolution with a positive initial distribution diverges to
                                           'infinity as t"+co ,since ..                                           '                                                '
         ' altl f:: zog u dx =xf:: {i ( g: )2 dx +fll]llG(x)dx '

                                               '                        '
                           >o
                                    'Thus a positive stationary solution cannot exist in a domain

srnaller than (NXAG,+LAG)' -
                                            '                                        '     Frora the eguation <4),if us(x) is zero at x=xe,dus/dx is

aiso zero at the point and by an integration .
                 '            g:s . f: ..1 <g;s)2 d. = -.ik fli G(.} ak' 'r- . ..

hold. Thus if us(xo)=O, f:OG(x)dx'<O must tiold. This rneans that

                                      'LsT,the position of the natural boundary,must be iarger than
LAGt and a stationary solution which vanishes in s6me intervaZ

cannot exist either in a dorad-'n (-L,+L) with Z. svaaller than LAG.
                                                 ''

                                       '   (iii) LAG `L`LsT . ' -'
                  '     Zn this case ,as we couldn't obtain any analyticai resulti

                                                              '

                          - 19 -



UT
10

s

e.1

L=1.3

L ,1.4
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                         le 2o. t
                                '
Fig.3 Time development of the totaZ population numbesc UT Of a
                             'population exhibiting directed rnetion in a domain(-L,+L) with
                                          'L being an adjustable pararne.ter. Other parametexs are same as

in Fig.2.

we solved the eguation (2) numerica!ly. Results are shown in
Figs.3 and 4. The total population nurnber UT (=='fltll u dx )

converges to a limit for L==l.4(>LAd) as well as ior L=2.0(==ZssT)

and UT diverges to infinity fer rJ=Z.3(<LAG) as is shown ana-

lyticaliy(Fig.3). Fig.4 shows stable stationary solutions for

L,-2.0ti.6,l.4 and l.35. We obtained stable .stationary solutions

for L 4 l.35 > LAG : l.31,and we rnay consider that there exist

a stable stationary solution for any L Zarger than LAG. A popue

lation whose dispersaX is compZetely densitiy-dependent grows

explosively only when the spatiai average' oÅí the growth rate

is positive. Therefore,the critical minirrtum si2e for effe.ctive

reguiatien coincides with the size of a region in which the

spatial average of the growth rate is zero.
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Fige4    Stationary distributions

dSrected rnotion. Details are

of populations.exhibiting

 same as in Fig.3.

5. Random Motion Model and Biased RandomMotion Model

          We consz'der the relations between the size of a

and behaviour of solutions in other two rnodels (a) and (b)

by Gurney & Nisbet(1975). The equations describing these

models are

   (a) the Random Motion Model

            ll-ltt =G(x)u+ Dv2u, a2)

reglon

- 21 --



     (b) the Biased Random Mot'ibn Model
                                           .
                                        tt                                                   '                                         '                                                     '                                           '                                               '              g•l't =G(x)u+ dv2u + pvcuvu) .. (i3j• .
                                                tt.                                          '                                                  '                                      - tt ./t- .t                                                 tt' We consider these eguations in a domain (-L,+L).with zero ilux

                                                                 ' boundary conditions,with the same assumptions on G(x) as before.
                                                              ' ' Similarly as in the previous section,we can prove that any '
                                           ' positive solution of the eguations(12) and (l3) diverges to

 infinity if the spatial average of the growth rate is pesitive,
 that is !) ;S LAG . When L > LAGr' we investigated behaviour of
                                                         -                                                             '  solutions by numerical calculations. We consider only the case

  when a randovaly difEusing population goes to extinction in an

  infinite region,since we are interested in, explosive..growth oÅí
                       '                                                               '  a population in a habitat with a lirnited size. Gurney & Nisbet

  (l975) called such a population a random motion decreaser. M

W
(e)

1

L"1.35

Lnt.4
O.1

L"l.45

L

.Ol 30t

UT
{b)

1

Lgl.35

O.1
Lnl.4

Lnl.45

Lnl•6
L 1.8

.Ol 30t
Fig.5 Time deveiopment of the totai popiilatiQn nu]uber U
                                                      T
of populations exhibiting <a) random motion and (b) biased randora
motion. G(x) =A-Bx2rA=l.B=714,D=d=1t v=1.and LAG:-"-•l.31..
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The condition for a population to be a random motion decreaser
is given by A < ,liiiS when G(x)=A-Bx2. pararneter' s are' chosen so as
                                                '                                            'to sa`Lisfy the condition. Time development of th6 total

population number is shoEvn in Fig.5. :n the randorn motien lih

modeZ, a solution diverges to infinity even when the spatial

average of the growth rate is negative(L==1.35,Z.4). Zn these

casestsolutions of the biased random motion rnodei converge to
                                             '                                                             .certain limits,Xn the biased random motion rnodel, a soluton

diverges to infinity only when the spa"Lial average •efr. the growth

rate is positive. But iÅí the size of a region is too larget -

UT

 1

o.t'

d=O.O1

d=O.1

d=O.4

d=O.6

duO.8

-30

".

                  e.ol                                   t

Fig.6 Dependence of grow"Lh of a population exhibiting biased
                                          ttrandom motion on the diffusion coefficient d. The pepulation
                 'is contined in a region (-L,+L) with l3=2.,O,except in the case

with d=O.Ol. Ti"hen d=O.Ol,L=2.5. 0ther parameters are sarae as
           'Fig.5 and y is fixed at l.C.
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the population goes to extinction. Dependence of solutions of

the biased random motion model on the diffusion coefficient d
                                                          '                                    'is shown in Fig.6. Heret L=2.0 except the case with d=O.Ol,and

                            t- -,,p is fixed at Z.O. Even when the size of a .r.egion is so iarge .
                                        .tthat seiutions with iarge d converge to the trivial solution
                                      'uo<x>=O, there are stable stationary solutions if eEfects of '

random dispersal a=e sufticiently srnaU. The biased random

raotion ofiers an effective mechanism for regulation if effects

of randorn dispersal are not too large.However, a stationary
                                                         'distribution in the medel does not have a natural boundary.

 6. Discussion

      Xn the previous consideration,we put sbrne restrictions.
                                               .t Firstly we assume that the environment is one--di:nensionaZ. '
                     ' When the environment is two dimensional,above conclusions also

 hold. Especially when the growth rate depends enZy on the axial
        ' cornponent.r of polar coordinates(r,e)apd G(r)=A-Br2, a statien-•

 axy solution with a natural boundary is analytically obtained

 in the directed motSon model;

                        '                     t.           '                         B .:                       32A (r-2!i;17ii;)2(r+2itC2;17i;)2, lrlgs2/:Ag7iilB,

              u<Y>= ' '               s
                                       '                        o, lrl>2!AIB.
                                 '                                           '                                          '
                        -24-



     The seconi d is that a stationary solutioin with natural

boundaries exists only when dispersal is completely density-

dependent. In the natuxal environment,even if a population is

dispersing in a highly density-dependent raanner,there may bg
                                                            t tt..tsome random factors. However,When the random effect is smaU(

the case with a sraaU diifusion coefEieient? in the biased -

random motion model)r we can scarcely distinguish the soZution

irora the one with d=O(Fz'g.6,d==O.Ol) and the size of a region

where the stationary solution with small d is ppsitive does not

depend on the boundary conditions. Therefore when dispersal is

highly density-dependent and the randora effect is very smallr
                                            'we rnay suppose in practice that a natv.ral boundary is formed.

     Density-dependent dispersal is an efÅíective mechanism for
                                  'regulation not only when the size of a habitat is so"'large.that
              '                                                             'a randomly diffusing population goes to ext+inction,but aZso

when the habitat is limited in a smali xegion and a randomly

diffusing population grows explosively. A population diEpersing
     '                                                      'in a highZy density-dependent manner can establish a stationary

distributien with natural boundaries in a heterogeneous envir-
                                      '           .orment,without regard to the property of the boundaries of the

region. Though our conclusions are only in terras ofi mathemati.-
                                                     '                                          'cal considerations without experimental evidences, we may

point out that density-dependent dispersaZ' piays an important
                                             'role for regulation of the pbpulation number and fermation of
                                                      '                                                              .                                      ' the spatial distribution pattern.
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Chapter IIr. spatial Distributions of Competing Populations

l. Introduction

                                                           '                                                 '                                                         '      rn' the natural environment, populations oÅí' rnany species
                                                     'exist and experience the struggle for existence. According to
                                         '                                                        'the competitive excZusion principie, (i> if two noninter- '
                                            '                                                             'breeding populations have simi!ar needs and habits(ecological

niche) and (ii) if they live in the same .habitatr then eithex
     '                              '          -oÅí the two populatÅ}ons becomes extinct(Hardin,1960). `!t was
   '                                           --                                                 '                                          '                                                    'pxedicted theoretically by the Lotka-volterra competitioh

                                                    'equations(Lotka,Z925,Volterra,1931i ) and was' exaxnined
                                        'experiTnentally by' Gause(l934a,l934b). op the oth.er hand,
  '                                                           'populations competing with populations of other species relax
         '                                    '                                                          'the interspecific competition by various types of niche .' .
                            . .t                                                        'diversification, or by evolving some forins of ecological.
                                   '   '
seperation in ioods, in time or in space. For exarnpler in
          'Gause's classical experiment(Gauseil934b, cited from Crombie,
                'l947>, Parameeium eaudatum and P.bursaxia are abie to survive
   '                                            'together in p mixed culture beeause they feed in diiferent parts
                             .in the suspension. Xack<l969) reported that, in the middle of
Europer six species of paceus coexist, segreghted partZy by

habitat and partly by Åíeeding stations and size of prey.

•-" 26 "



      Coexistence of two species by means of spatial segregation
                                                        'has been also o .f theoretical interest(Levi.ns & Ctilver,i971,Horn

& MacArthur,l972,Levin,l974,Gepalsamy,1977a,Z977b,Shigesadar
                                            'Kawasaki & Teramoto,l979,Mimura & Kawasaki,1979). Levin(1974)
                        .considered a spatiall.y discrbte version oE lrgaction-diffusien I"' '

                .                                                   '             .equations as a model for two competing species dispersing between

two patches of the same property. He showed that they can coexist
                                                                'in some cases, with spatially heter6geneous distributions,

aZthough either of the two species becomes extinct in a single

patch. However, if the initial ntmers of one of the specie$ axe
                                                     'smaUer in boeh patches, then it goes to extinction, aXthough
                                                    'Mi;rtura & Kawasaki<l979> showed that, if cross-popuÅ}ation
                                              'pressur-es are introduced into Levin's model. the stability
                                                  '                                                           'eondition and the restriction on the initial data fot'assuring
 'coexistence and spatial segregation can be weakened. Shigesada
                                          'et al.(l979) proposed an excellent model taking account of
                                                               '           .dispersive forces including population pressures and environmental

potential ferces. They showed, by computex simulationsr that .

coexistence of two similar and competing species, which ean not

coexist in the' absence of dispersal,is realized if the environmental

heterogeneity and the nonlinear dispersive forces are introduced.
         'However, they assumed that the environmentaZ heterogeneity modifies

only the dispersive forces and does not alter the growth rates '.
                                           '               'and the cornpetitive interactiorus. The growth rates and the ranks
                                                'of competitive ability a!so varies as the environ:nental conditions

                     • s-change<Park,l954) and some inferior competitors can survive in .
              '                                                   'heterogeneous environments, because of their wider tolerance to
the envirormental conditions<Connell,l961.MUIer)l964). '
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          rE two sirRilar species have slightly different preference

to the envirenmental conditions because of distinctive ' ' . '
                                     'adaptabilities, theice occurs severe competition only in the .
                                                .t.                                                                'oyerlapping zone when .their main habitats meet in some region ).
(Lack,l969,Mil•ler,1964). Zn this paper, we will d.eal with . ,'

corr }petition between populations whose habitats are partly
                                          'overlapping. We wiU consider the distributions of populations in
                                              '
the overlapping regionr where two cOmpeting populations are

dispersing with different dispersive rates. Our interest is to

study which species 'is the superior competitor . either the
                                                              'species dispersing faster which tends to extend t.he distribution
                                                               '                                                             '                                  'rapidiy, or the species with the faster growth rate, or do they '

coexist in the over!apping region.
    '                    '

2. Model

         We eonsider populations of two species Sl and 'S2. 'and
                        '             '                                                               .assume that the environment R is divided into three subregions
                          '                                           tt                                                      'Ri(i=l,2,3.)(Fig.1). The subregions Rl and R2 a!re respectively

the exclusive territories oS the species Sl and S2, with the '-.
                                                    '                                                                'equilibrium densities u* and V*, because of thd environmental '

             'conditions and the difÅíerences of physioZogical toierance oÅí
twe species. Thus, we fix densities of two populations at U* ana

                              t                                       'O in Rl and at O and V* Å}n R2. The two populations are corapeting
                                  'and dif-Fusing in the subregion R                                  We assume'that the local
                     'population dynamics is the Lotka-Volterra type and either of
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Fig.1.
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  The environment consisting of subre,gions Rl,R2 and R3.
                                      '                          '                  '                         '                                           'Rl and R2 are respectively exclusive territories of
                                'species Sl and S2e rn R3, populations of two $pecies

compete and dSffuse.

the two species becomes extinct, depending on the ipttiaZ
                        '                                             '                   '                                   t. t t                                                   'popu!ation densities, although each $pecies can ma'imtain their
                                             'eguilÅ}briurn densities u* and v* in the absence of the other
       '                                                          ...                                                       'species. Thust distributions oi the populations in the subregion
             '                         'R3 are determSned by competition and difiuslgn in the region and

immigration from the "population baths"e Rl and R2. We wUl

consider the siraple case where the region R3 is a one dim.ensional
               '                       '  'interval. We suppose that U(s,T) and V(s") are respectively
                                                   '                                           'population densities of the species Sl and S2, aÅí positÅ}on s and
           'time T. 5?hen, U and V.satisfy the following equations; .

- Tgi/ .. .bi l2.U2 + (ei -- dllu •- az2v)ui ''

                    - - (l)                                             '                      2•           "'t6:V)t=D2'tbi.2f.V+(e2-ct2iu-d2?v).v, ...

                                                       '                                                    '
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                                                            'Where DirÅíi and aij (i,j==l,2) are non-negative constants . we

reduce the numbers of parameters without loss of generality,
transEormÅ}nsi the vtiriables and parameteris by '  ..... •
         U =' f'ctLz/e2)U, V= <or22/e2)Vr t= s2T, x= viElti7i51E'2 s,

                                        '         d = D.i/D2, a = ei/e2r bi == cti21ct22, b2 = ct2i!ctn'

                                          '                                             '

                           -                                             '         - 'tb-l'i ==d'l:g+f(.,.)., ... H

             '• av •e2v -              :5"I = ax2 + 9(U t'v) v,

                    '             'where
                                  '
              f(u,v>u == (a - u - blv)uv
                                                     (4)
,-  g(u,v)v= (l -v" b2U)Ve
We will consider the equations (3> in
                              +              (Xrt) e (O,L) Å~ R                                                      <5)

with boundary conditions .
                                                     '                                                      '                            '   '.. . u(o,t) =. u*, u(L,t) = O, (6)
            • v(O,t) = O, vCL,t) = v*,

                                                   Jwhere u*=a and v*=i are the eguUibrium population densities

                                                        'which satisfy
                                                 t.      ' f(u"rO) '= O, g(O,v*) =O. ' ' .' •(7)
                                                '                          '                                             '                 .                     '                                           tt                    tt                                          '                                          '                                            .                  .           e ' Here we rnake two assumptions;, '
                    '             .(Al) 1/b2 <a< bl,
                                     '
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 '                                                      '              (A2) d= e2(e > o) is sufÅíiciently smau.
                                                            '                                                    .-           'The assumption (Al) ;neans that either of the two species goes to

::t.l:.cgi'g", ge,gsg:l::.,;",,r:g.i\ggj:l.g:g:lg.ti7x,gei!i'xigg',: the'- ••

 '                'mathematical simplicity, for dealing with a typical case when
                                                            .t                                                        '                           '                                                     .diffusions of the two species are extremely .d-'fferent, i.e. O ;S d
                                            g
                                                             '                                                                '                                                       '
          rn the first place, we consider the asymptotÅ}a behaviour

of solutions of the eguations (3) with d=O, so that we deal with

its stationary problem.

 v

  t' v

atb  1

          .t)-2I
.t 9Cu.v)aO

L f(uev)nO      r
o Vb2 "" u

Fig.2e  rsoclines of f(u,v)=O and gCu,v)=O and vector tieZd
(f (utv) u, g (u, v) v) .
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3. Stationary Problem (d==O)

          when d=O, the stationary problem of the equations (3)

can be written as
                                            .
                   f(u",e?u" - O, (s)
             d2G '               2 + g(u",e)e= o,
             dx

with boundary conditions .
            'v"(O)=O, v"<L) =v'. (9) .
From the first equation oÅí (8), we can solve u" as a function of

v" . In the phase plane (u,v), there are two branches where

Åí (u, v> u= O is satisfied (F ig.3) . The fi rst is u=ho <v> =' e, and the

second is u=hl(v)=a-blv. Frora the boundary conditions (g), both

branches rnust be used to solve the first of (8>. Therefore,we

 v
 •vt•

atbl

 p

 o

= hoCv)

u=hlCv)

Fig.3.   Branches u=h

and a patching

rtb2 0"

o(v) and u==hl

 value B(O E
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assume that there is a patching value B(O E B g a/bl) such that

                                         '             u- "- h(G) = [::[l.l")) :. g,- bi""' OB -{ V.". I.i S;, ao) -'

                                                             '
although u"=h(G) is defined in an intricated way such that severg.1
                                  '
patching values are used. Then, the foliowing problem is

formulated; '
             d2g" .,G(.t)=o, '. (ll.)
             dx

             G(v) =g(h (v),v>v ..
                     g (hi (v),v) v = [- (ab2- !) + (b lb2-- l) v] v,

                   = OEv< B, (l2)
                     g(he (V),V)V = (lkV)V, B < V !S., V'e

Here, we note that G(v) has a discontinuity of the first kind at
                                                              l
the point v=B, except for the value B=a/bl<Fig.4). As is shown i/
in Appendix Al, ehe problem (11),<l2> and (g)i , and hence the
                                            `

G{v)'

o ' ' '

  "-e- dex'
i /'

i,P,,t albl vS v

Fig.4. G (v) with a discentinuity at v=B.
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problem <8) and (9a) can be solved. The results are summarized

                                                'as follows;
                                  '                   (i> There exists a solution (G(x;B),v"(x;B))
            '                                              '        for any B (O g. B IS a/bl)t where u" (x;B) = h CG (x;B)) (Fig.

                                                '                                          '                              tt          '                   (ii) Define a patching point Z(B) as a

       function of B, from the relation xf(e;B)=B.

        - (a) Z(B) is a monotone increasing function of Bt

        and takes the rnaximum vaiue at B=a/by where the

         solution (G(Å~;a/bl),G(x;a/bl)) is continuous.
              (bl) xf 6=a3b2/b12 < l, the rnaximum length Z(a/bi)

         is bounded independently oE !jr '
                                                              .         and '                                                     "/              (b2> if 6=a3b2/bl2 .>= l, the xnaximum length Z(a/bl)

         is a rnonotone increasing Eunction of !. and approaches

         to infinity as L goes to infinity.

  M

hl{ig)

hlCBtl

l

1

1

l

!
•l

;

t

1

e(x;B2) tCx;albt)

  :
  l "Cx;atbt)

;
albl

Fig.5.

 O l(Bl) 1(ts2)

Stationary solutions

           - 34 -'

t(atoP L

(u" <x; 3) , G (Å~; B) ) wh en d= O



          we can see that there exists remarkable heterogeneity.

in the solution 6{x;B), where G<x;B) is posStive only in the.
                'demain <O,Z (B)) and G(x;B)=O in (e (B)tl,) (Fig.5 }'. Froin an ;--
                                                . 'ecological point of viewr (Ore(B)) is the region where the species.
                                                      'Sl with the smaZler diffusion coefficient can survive and (Z (B),L)

is the dead region of Sl, although the other species S2 is living
                                                              'in the whole regiOn. From (bl) and (b2), we Åíind that the size ef
                                                 '                                              ithe region where the species sl can survive erucially depends on

the pararaeter 6. Later, we wUl conSidex this point more
        '                                      '         'precisely.

  4. Singular Perturbation Analysis . .
                                                           '                                                         '          We have obtained a B-famUy of solugions ojf (8} wich

spatial discpntinuities in u, where the value of u vaakes a sudden
                                            'jump .frorn the branch u=hl<v> to the one uf=ho(v} at x=Z(B)...

The next problem is to study the stationaxy problem oi (3) with
e2f o. one can exPect the existence oÅí an internai ttansition

ztiyer in th6 vicin{ty of x=z(6). Therefore, in order to study

this probZerrt, we wilZ use singuZar perturbation techniques(seei .
for example,FiEe,1976, or Murray,l977}. Supposing that' stationpry
solutions of (3> are expected such that ' E2a.2ulax2=o(o near x= '

                            '                                                              .                          'Z(B), we stretch the variable x by the transformation
                                  '

                          -• 35 -



Fig.6.

hi(B)

acx;B) "(x:B)

s;

KB) x

B

 An internai transition layer and stretch of the

coordinate.

             g='Å~""..je (B> • . (].3)'
                              .in the neighbourhood of x=e(B) (Fig.6). Since v does not have a
                                                    pt                                                   '                              t•            -large spatial gradient there, we may assume that v is independent
                                'Qf x and takes the constant value B near the'' distinguished
                                          '                                                         '                                .. .!                                                                 '                                     'i:r[:CeeioTrmh?refOre, the EirSt of the eguations (3) can be rgwritten

             t.                                                      ' , 'tba.eu .'a?g+f(.,B).. ' /' a4) •i .•-'
                           'The solution of .(l4) is the zeroth appxoximation to the inner .

soiution in the transition layer and u"(x;B) obtained ' previously
                    'is the zeroth apprexirnation to the outer sofution. Thus,'  the
                                                        'boundary conditions at g=Å}co for (l4) are imposed as follows;

                                                  '
                                        '             }i!.U(grt) = hl(,B), }ke.u(g,t> - ho(B), <is)

                                                           '
which will rnatch the outer solution. Note that the equation (l4)
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is the logistic equation with the diffusion term and that f(u,B)u
        '=O is satisfied if and only if u=ho(B) or u=hi(B). !Phe prob!em

(14) and (l5) is the elassical one which was already studied by

Fisher(1937) and Kolmogoroff,Petrovsky & Piscounoff(1937). Zt is
                                                              N                                      'well known that it has travellÅ}ng wave solutions u<g-ct;B) with

velocities c(B) g 2fa-biB > O for fixed Br if B < a/bl. It should
                                     'be noted that the velocities of the traveUing wave frontS are
                                            'posi`Live and of order e with respect to the original coordinate xf
                                                               '                                             'when B is fixed.
                      '                                                           '          We can confirm from numerical evidences that the equationS

(3 ) have a stationary solution (ue<x),ve(x)) with a parameter d '

=e > O, such that
  '
             21IS Ue(Å~) = U"<Å~;a/bl), almost everywhere I.n (o,L)

                               '             tllll Ve(X) = e(x;a/bl), uniforrrtly in <o,u.

                             '5. Pattern Forrnation

                                                        '                                          "•         We study a time-dependent solution of (3) fnyorn the

previous analysis and some numerical calculations(Fig.7). In the
                                            'first staget a solution with sufficiently smooth initial data

satisfies approximately the equations <3) with d=O, and
                                                        'approaches a sitiationary solution (u"(Å~;B),v"(x;B)). for some B,
                                                        'depending on the initial data(Fig.8). The large spatial gradient

develops in u in the neighbourhood of x=Z(B) and v becomes
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positive at any point in the domain (O,L), because of its fast

difÅíusion. Then, the surface where the transition Åírorn ehe one
         'state u=hl(v} .to the other u=ho(v) occurs, rdoves in such a rnanner
                                                    .              t .tthat u will increase and approaches the value hl<6)r slowiy '-.
                                                                'with the velo' ctty of order e. Whiie the surface is moving slowlY'r

the function v(x,t) is adjusting to this motion and' a.new -
                                                          '                                        'surface x=Z(.B') with slightly larger B' is formed(see Figs.7 and 8).
                                                        'The value of u near the surface decreases slightly bbcqusg bl(B)
                                                  t ..                                    .is a decreasing iunction of B. The surface whexe transition occurs

move successiveZy and finally the solution approaches the stationary

                  -•soiution (u6(x),ve(x)). in the stationary solution, The size ot
                                    '                                                             'the region (O,Ze) where u takes values larger than e has the .

following properties;

              (a) ee= e(a/bl)+O<e), -
and
                                         '                                                       '                                                                 '              (bl)' if 6=a3b2/bl2 < 1, ZE is bounded independentiy

                                                                 '         of the size of the whole region (O,L), '
             . (b2)' if 6 l i, i.t increases monotonously and

         approaches to infinity as L goes to infinity.
      Frorn an ecological point of view, the' gpecies with the far

                                               '                                   .smaUer dispersive rate can survive only in a. part of the region.
                                             '                                                -.However, when the intrinsic growth rate a oE the species sl is
                                            .                                                                   '                                  .--                                       '                                    +-sufficiently larger than that of the species S2, or when the '  .-
individuals of the species Sl suppress the growth of the populatioh
                                              'of the species S2 more than the latter do the forrnerCb2>bz). the'

                            'slowly dispersing species Sl can oecusy a fairly iarge areat in'
                                       '                                                                'proportion to the size of the whole region.'  ..
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6. The Case with Several Patching Points

          In section 3, we have considered a solution with

a single patching vaiuet of tl e reduced stationaxy problem

(8) and ( 9). In this section, we wiil briefly discuss the liM

case with several patching valuest since mathematically

interesting phenomena wUi arise and also it oEfers an example

to show stability oi the stationary solution (ue(x)rVe(x))

of the equations (3).

         Similarly as before, if we assume three patching
      '
values Bl,B2t and B3 (Fig.9), we can solve u" as a function of
v" from the first of the equations (8) as

                        hl (v"), O ,5 f< Bl,
                                                    '           u" - h'(v") - :l[.V."]1 :l .` ."." .` BBil `(is)

                        ho(v">, B3 < v" -E v*.

Fig.9.

 v
 pt

aibl

 ig•

 B2
 eq

 o

  u=hoCv)

'--"-'  '- ""'-

                 ' . u=hl(v)---)d--t----- -----e------------
.L.---.---- ------""'---r--"'--

   Bxanches

values Bl,B

   1lb2

 u=ho (v)

2 and B3

             f"

 and u=hl(v) and

(O ;iE, BL < B2 < B3
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Thenr the following problern is forraulated;

             2. .            dv                 + G' (v) = O,              2            dx

where

            G'(v) = g(h'(v),v)v ,

                     g(hi (v) tv) vt Ogv < Btt

                     g(ho(v)rv>V, Bi < V < B2,

                     g(hz (v),v)vt B2 < v < B3,

                    Lg (ho (v) ,v)v, B3 < vE v*.
                                       'Gt(v) has a discontinuities at the points v=Bl,B2,

we can solve the problem (!6), (17) and <9), and

problem (8) and (9), for any BlrB2 and B3t

proot' i's omitted, sÅ}nce it is simiZa.r- as in the

single patching point(Appendix A) and lengthy. A
                                            'shown in Fig.il, where el,e2, and Z3 are patching

defz'ned by v(Zl)=Bis v(e2)=B2 and v(l3)= B3e

(l6)

(l7)

        and B3(Fig.IO).

     hence the

although the

     case with a         •s
      solution is

      poznts

G(v)

o
..
!i

tpP' l-l   '   :
   t

'
'

'

s..B ? Pb./ al bl V v

Fig.IO. G"(v) with diseontinuities at v=Bl,B2 and B3.

-• 42 -



  v
  v'
hlCBI}

hl(B2J

Ntn3)

t

l
e

'
'
t

t
'
'
,
'

t
s
,
'
,

l

,
e
l

,

t

v
pt

B3

-G2
Bl

            O tl. t2 t3 L

Fig.ll. A stationary solution (rf(x),v"(x)) with

        three patching points, when d=O.

          We have obtaÅ}ned a family of solutions of the

equations (8) with spatial discontinuities in u at thr.ee

points. As in section 4, the singular perturbation technigue

can be used to analyze the equations (3) with efO, since the
                                                  'solutions are expected to posess strong spatial gradients.
                                                     '
The procedure is same as beforef and we can show existence

of travelling wave solutions in the neighbourhoeds of x=Zl,

x=Z2 and X=Z3e We should note that the sign of the
velocity of a travelling wave solution is determined by which

state, u=ho(v) or u=hl(v)r is dominant(Fife,1976). Therefore,

velocities of wave fronts are negative in the neighbourhood

of x==Z2 and positive in the neighbourhoods of x=2! and x=Z3,

since the state u=hl(v) is dominant.
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          Then, we compare the absolute values of velocities
                                                        'of wave fronts rlrr2 and T3 respectively in the neighbourhoods

oE x=el, x=Z2 and x=Z3. Let cl(Bl)t c2(B2> and c3(B3) be

minima of absolute vaiues of velocities of wave fronts ri,

r2 and r3, respectively. Then,

            Ci<Bz)'2!ag-bB!,

            c2<B2)=2,IEI:-STiillbB2, (is) .
            C3<B3) == 2 !a-blB3r

                            'and

            eL(Bl) ' C2(B2) > C3(B3)r (lg)
          '                             'since Bl < B2 < B3. !t may be important to consider minirnum

velocitiesg since it is known that solutions oE the equations

(l4) with a wide class of initia! data asymptotically .•

approach to the travelling wave solution with the g!inimum

velocity(see, forr e.xarnple, Kametaka,l977).

          Frorn the above analysist we can expect pattern

formations as Åíollows. Sirnilarly as beforet a so!ution with

smooth initial data develops Xarge spatial gradients at some

poÅ}nts, Å}n the tirst stage. Then, the surface whexe the

transitions occur move so as to increase the vaiue oE ut and

the function v(x,t) changes adjusting to iche motion. However,

in this case, the surfaces rl and T2 move in the opposite

directions and they wUl coZlide at some instance. The collision

is expected to occur before the'surface r3 reaehes ee, sinee

velocÅ}tSes of rl and r2 are faster than thg velocity ef T3

                                   '                    '
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in terms of the minimum velocÅ}tiest although we cannot

prove that the minimum velocities are realized. After the

collision of wave fronts rl and r2 occurs, the solution exhibit

similar behaviours as those considered in the previous section,

since there rernains only one wave fronts r3. Thereforer we

can expect collision and absorption of waves.

          To test these ideast we have done a numerical study

(see Fig.l2 and also Fig.l3). rt can be seen, in Fig.l2, that
                        '                                       '                                                        '

          u
          ut --                    -N-N ..                     IN                      -N -                     SI SN S                     " NN                         NN                          NN •s,                          NN                           SN ''                           NN •                            SN V                             NN '                             SNN pt                              NN                   12 lsi Ns .                               NN                                ss                                SsN                                 ss                                 ls s
                                    l
                                  tt
                         .t !                            lt                                  tl t"
                                  i SI
                            7tl                               '1 t. .                                  S 1 ,.,. .. .

Fig.i2e

  o

    .   Tzrne

same as

numbers

(1) t=7.

50r (6)

                             L

                          '                 '
developrnent of a solution. Details are

in Fig.7b, except the initial data. [Phe

beside lines indicate the tirne course;

5r (2) t=l5r (3) t=20, (4) t=25r (5> t=

t=100 and (7) t==l50.
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large spatÅ}al gradients have developed at three points, at

t=7.5. Then, these surfaces move and collision of two surfaces

occurs, as was expected. The solution asyrnptotically approaches

to the stationary solutiont simUarly as was shown in Figs.7
                                         'and 8. We should note thatt at any tr the solution (u(x,t),

v(x,t)) approxÅ}mateiy satisfies the stationary problem (8) and

<9) with d==O(Fig.i3). Therefore, above statements have been

verified from the numerical evidence.

 7. Discus's!on

                                         '                 '          We have considered spatial distributions of two cQmpeting
                                      t. populations with guite differeBce in their diffusive velocities.
                                                                 '                                        ' when their habitats are partly overlapping. At the first insight,
                                               '                                           --                                                             ' it seems that the fastly diffusipg species S2 suxpasses the '' -

 species Sl by the founder effect,.because of the ability of rapid

 invasion. Howevert the siowly rnoving species Sz ean survive in .
                                                .- certain subregions, without regard to its intrinsic growth rate .
   '                                                          - or its cornpetitive ability. The parameters afEect the size of the

 regions where the species Si ean survive in the statienary
                                  '' distribution. The Tnark.edly qualitative change occurs at 6=a3b2/b12

                         '                                                       '                                       '   '                                ' =l <6=[ct2ict2221{ctnorl22)]'el31E23 in terras of the original .

 parameters) and the populations of the,species Sl can occupy a
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faÅ}rly large area if 611. Especially, when the overlapping

region is an infinite region, it is known that the slowly

moving species Sl can extend the distribution infinitely iE

6;ll(Namba & Mimura,1980).The condition 6;lll means that the

species Sl is the slightly superior cornpetitor in the followipg

sense; Sl has the greater growth rate (el>e2), or the population

of Sl supresses the growth of the population of S2 rnore than

the latter do the former(ct21>ctl2), or the intraspecifiC

competition is rnilder in the species Sz(orn<ct22). ThiS

indicate mathematically thatr in the absense of dispersal,

solutions with a wider class of initial values approach the

stationaxy solution (u*,O), where the species S2 is extinct

                                                           '(Fig.2) <Namba & Mimura,1980). -
          "iihe second point we would iike to emphasize is thatr
                                                   sin the statiomary distributions,populations oÅí two speeies

exhibit spatial segregation. Thus, competition bwtween two

populations is largely reduced. Coexistence oÅí two competitive

populations with spatially segregated distxibutions is realized

simp!y by random dispersal in a heterogeneous environmentr such
                               .as considered in this paper, though it is known that spatial

segregation is realized if population pressures are introduced

(Shigesada et al.,l979, Mimura & Kawasakir1979>. Although Levin

(l974) has shown that coexistence of populations, which cannot

coexist in the absence of dispersal, is possible in a
                                                      '
homogeneous environment, when random diffusion is taken into

consideration, the stationary distribution obtained there is

stable only locaUy and some restrictions must be imposed
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on the initial distributions for the populations to coexist.

!t is verified by some numerical calculations that our

stationary distributions are globally stable. And the way of

approaches to the stationary distributions is very interesting

<Fig.7). Tt is known that one species competing with the other

species extends its distribution, slowly at the expense of

habitats of the other species, when the environmental

conditions permit its existence(Miller,1964). Though we can't
                                                             'compare the detailsr since our model is too simple, the model
                                         'may have some relevance to such situations.
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Chapter IV. Asyrnptotic Behaviour of Solutions of the

Diffusive Lotka-Volterra Equations

l. Introduction

           The diffusive Lot'Ka-Volterra eguations have been

studied extensively(Hadeler, an der Heiden and Rethe,l974,
Dubois,1975,Jorn5 and Carmi,.l977). The syste!n oi eguations

has its origin in ' the famous Lotka-Volterra eguations which

describe the population dynamics of prey and predator on the

assurnption ef uniforTa distributions of populations. The Locka-
               'Volterra eguations with crowding effects both in the pxey

popuiation and in the-.predator popuZation are

            {ll/- = (a'-Ku-bv"iu;.

                                          '              '                             - " 'a)'
                                         tt             [l+t = (kc-Lv+du)v, '' -
            .                    '                        '                  '
where u and v are densities of the pxey populaYion and the

predator population respectively and all the parameters are
                                   'non-negative constants..K and L are coefticients oE crowding
effects or intraspecific competition. Here we ' assume that
                                       '                        '                   'K<ad/c so that the system (l) may have a positive statienary
soiution (u* ,v* ),where u*=(La+bc)1(KL+bd> and vt='(ad-cK)1(KL+
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bd). It is well-known thatr when there are no crowding effects

(K=L=O),solutions of the system <l) exhibit sustaining

        .t                                  .oscillations,and that when there exist some crowding effects
                       '                                          '(K7SO or l)7!O),the stationary solution (u*,v*). is globally
                                                     '                                 '                                      'stable. Taking account of effects of dispersal in a continuous

environraent,the diffusive Lotka-Volterra equations are formulated
                                          'by adding diffusion terms to the system (l.);'
                                    '                         '            g;/+ = (a-Ku-bv)u + div2u. . •' . ,l
                              '                                        I' (2) '
                            '                '            '{ltt = <-e-Lv+du)v+ d2V2v,

                                                       'where the diffusion coe'fficients dl and d2 are both non-negative
                                                            4                                                      '                           .                                 '                                      '
                 '                               T.      Steele(l974) proposed the system (2> without crosvding

effects(K=L=e) to explain the patchy distribution of planktonic

populations in a turbulent sea. He considered the system

with zero flux boundary conditions and conjectured that spatial

inhomogeneities would appe.ax by the balanee of non-linear
                           t               'interactions and diffusion effects. Murray(l975) considered the
             '                                             tt                                               'sarne probleni as steele's on the assurnptiort of same difÅíusion

                   '                                                   '                                      .tcoefficientsfdl=d2=d, and showed that spatial inhomog,e'neities

                                                        'would disappear asymptotically. Zn other words,he denied

Steele's conjecture. "
                          '                 '      Since then,various authors have shown asynptotical

spatial homogeneity oi solutions oE the system (2). Iimen
                                                     t.
crowding eÅífects exist(KfO or LfO), global stabiMty of the
sPatial!y homogeneous equilibrium solution has been shown
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<Leung,l978,Hastings,l978). When there exist no crowding
                                                       '                                      'effects(K= L==O),sorne authors gave sufficient conditions for
                                                 'stabilSty of the spatially homogeneous ,eguilibrium solution of

                     - .-1/-(2) with eguilibrium boundary conditions(Rothe,Z976,Mirnura

and Nishida.l978) and for convergence to. spatiaily homoge-n gOus .
           '          'but temporaZZy oscillating soZutions in the case of zero flux
                                       .tboundaxy conditions(Wiliiams and.Chow,1978,Mimura,1979). But

they re$tricted their attention te the case of same diffusion
                                                   '            'coeEficients,dl=d2=dror to the case of ene--dimensional space,

or te the case with some restrictions on the initia! data. The
                                             'reason is that we must have an apriori bound fer solutions

of the eguations (2) to use their method and it is very

difficult to obtain it,since the corresponding spatiaUY - 1..
               'homogeneous systeTa (l) has infinitely many closed orbits.
      '                                        t tt-                                             '                                                  '                .                                                          J      Some authors considered effects of dispersal in a patchy

environment(Levin,l974,Segel and Levin,l976.Kawasaki and Teramotor

l979). An environment is sornetimes consisting of discrete
               '
patches and in a continuous environment artificial division
       'into patches is also taken' place for sampling by an investigator.

Thus when we consider a model taking account oÅí effeets ef

dispersal,a spatially diScrete model should aZso be considered.
                                                            '                                             '                                                           '                                                              -Hastings(l97s) censidered the spatially discrete version of ,1/.

(2) with crowding effects and showed that the 'spatially '
                                          t t ttt                                    'homogeneous eguilibrium soZution is stable r rri this paper.

we wilZ also consider the spatially discrete version of (2).
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we wUl show that all the solutions become spatially homo-

geneous asymptoticaUy without regard to cacowding eÅífects.
                  '              '                                                '                                 .Our results are analogous to those by Roth'e(l976) and Mimura

and Nishida(1978) in the spatiaUy continuous model. However,.

we wiU put no restrictions on diffusion coefticients, '
dimension of space and initial values. EspeciaUy,diffusion
                                                    'coefficients for one of the two species may be identically

zero. The regson is that we will need only a• Mapunov f.unction
                 '                                                       .and will not need an apriori bound,since we deai with the -
                                         '                                                   '$ystem ef ordinary differential eguations rather than the

system of partial differentiaX equations.

2. Model
                                                   ",

      We consider a patchy envixonrnent which consists of N
                                                             'cornpartments(Fig.l). We assume that,in the absence oÅí dispersal
                                                           'of populations between compartments,population dynamics of

prey and predator can be qescribed by the Lotka-Volterra
                         •.t                                                       '                                                  -equations Ci) in any compartment. Adding diffusion terms to
       'the system (1>,the following systera of ordimary diEfer'entiai
                                        . t.                                    'eguations with 2N variables is obtained(Hastings,l978); '
                  '                                           '                                      '            .'.du. N . ' ••. '' attlS- .= (a--Kurbvi)ui - j41Dg•j(ui'-Uj)r' '- . '

                   '• . (3)
            ..dv. N- .            'dtZ f (-c-Lvi+dui.)vi - SiD\•j(vi-kij),

                            i=lre..;.tN,
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compartment and the j--th are connected,that is,individuals of

prey or predator can move between these compartments. A dashed

                     t tt                                              '                                                 'array means that there are some other compartments between those

•

where ui and vi are respeetively population densities oE
prey and predator in the i-th cempa;trnent and D:.j and D\.j are

non-negative diffusion coeÅíficients. D\.j .S o (tesp. Dl.(j > o)

means that individuals of prey(predator) spe'cies can randornly
                        'move between the i-th compartmenti and the ' j-tih.When at least
           'ene of the diffusion coefiieients Dl:.j or Dl:.j is positive,we

           'wUi say that the i-th compartment and the j-th are connected.
         .
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     Here we inake two assurnptions;
                                                '                                  '    (A!) Dl.tj = Dl;.i and Dl:.j == .Dl;.i for any i,.i. ..'. ''

    (A2) There are no isolated compartments which are not

 connected with.any other compartments,and no isoiated groups .-

                            .                                                              '        '                                                         '     We deEine two subset$ of the set of indices '{Z,.....tN},

 depending on diffusion coefticients..The first is
                                                              '                                                            '     S = {ili e {lte••e.,N} and for any i in s.there exists an

          integerj in S,such that D\.j> O.} , '

                                                              '     Mi ='{iii E {l,eo...,N'} .and for any i in T,there exists an

          integer )" in T,such that D\.j > O..} ..

       '     s(resp.'i") may be divided into disjOint SUbSetS SI't••••.rSm
 ([rl,e••-•t!Vh)• Sk EOr k in {1,.....,in} is defined as'

                                       '     for any i,j in Sk,there exists a sequence'oi distinct integers
                                              .                                               '                                           '. ,pi,...e.,pstsuch tha? pl•lpi >. O, DpUip2. ?. er..e..,.Dgsj l, .9.

                                                             ' Sirnilarly Mk is defined for k in'{l,.....,n} as ' '

' for any i,j in Tk,there exists a sequence of distinct

      integexs qlr.....,gttsuch that Dl•:ql > O. D;llq2 > 9r"'''r

       gt] .- . The set of co;npartrnents whose indices are.in Si(resp.Ti) is a
        '
 local region where individuals of prey(predator) species can
                                 ' move, and the set of compart!ttents whese indices are in S
 (resp.T> is the whole region whete the populatien of prey

                                                     ' (predator> species can !nove. For example,if an environment
   '                                             '                                                      '
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Fig.2 An exarRp!e of regions where populations of prey er

predator can diffuse. A fat Zine rneans a barrier fox the

population. An array rneans that a population can diffuse across

                                                             .                                                               '

                                                    'is suewh as in Fig.2,then
                                                '                                               '                                          '     S!={lr"e.e-ti}i ''' .                                                             o                                          .     S2 ={jr.....,N}, ' .                             '                                              '                                          '                                        '
                                       ttt                                                               '                                             '                                                     '     S= SI U S2 = {l,e....rirj,....e,N} , .
             '

     T= {i,..•.•rj}• '                                         '
     Frora the assumption <A2),next Lemma immediately follows.

                                  .                       '                                       '                                                   '                                                         '               '                                                               'Lemma 'Assume (Al) and (A2). Then, either of the foUowing'
two

  (

 cases
'D s i.s  em ty and T 6oincides with the set {lt.....rN}

    e..er vzce versa. .
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(ii) Both S and T are not' empty and 'at' least one integer

belongs 'both to s and to T.. zf thexe' 'a're' some' disjoint

subsets,Sl,.....,Sra ,in S and -Tlt ' ' " ", Tn  .ein Tr then for

e.a.ch Si (resp..T" ,there. exi,s,t.sl ,at, .le.as.t ,a .s.et. .T ..<S ..). .s.uch

,that one integer belongs b.o.th      (.T . ). and.to S    i'       x
to T. (S .) .
    ]

      No`Le that S(resp.T) is empty raeans that diffusion

coefficients for prey(predator> species are identically ze=o.
                                        :t

                                           '                                                         '                                                             '       we consider the system (3) in the positivg or..thant sk -

in 2N--d.ivaensional phase space. st is expZicitly written as ,

    st = { (Uz,...e-tuN,vl,..e-.rvN>I ui e (O,+co),vi e (Ot+ca)
                                       . tt.for all i}k . -. 'i                                                         '                                  '                                                '                                                           'We will use an al3reviated notation (u,v> Åío-r a point <Uiree•
                          '                                                       '                                                      'ee,UN,Vl,....-,VN) in st o Clearly the positive orthant st is
                  'an invariant set of the system (3). The systeTn (3) has only
               'one spatiaUy ' homogeneous eguilibrium solution (u*,v') in se,
                                                        '          '                                                    '                         '                                                 twhere ui=u"=(La+be)/(KL+bd) and vi=v"=(ad-cK)/(KL+bd) for '  .'
                  '                             '                                          '                                   '
                     '
      We consider three types of boundary cenditions.
                                                            -                                                  '     (i) EguiZibrium boundary condition. . ''

        Ui=U* Or vi=v* for sorne i.
                   '
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     (ii> Periodic boundary condition.
                                                           '                                          t.         '     There exist sorne circulaf reZations in the.connectivity
                    'of compartrnents,that is,there exists a seqvence of distinet
integers,Pl,.;...,pc,such that . '' , .''''1- ' /'  1 .' .'
            1 .. Dl; ipi+1 5 O{ fOr i i4 { lf •• e'. rfg"i} 'i

                               '          . . ..                             t tt                                        '                                 '
                           '              'k '•'         - D >O,                PcPl

where the subscript k takes u or v.
                                      '     (iii) Zero flux boundary condition.
            '                                  '                   '                                       '     We make no conditions on the connectivity and the values

of state variables. MÅ}hen the systern consisting of N.. compartments

                                  .-is a closed system and there are no fluxes from and into the

                    '                                 '            '
                                      '                                   '                                                  '                                            '      Hastings(1978) showed global stability oE the spatia!ly

homogeneous.equÅ}librium solution of (3) with zero flux

boundary conditions, when crowding effects, exist. Therefore

our main interest is in the case without erowding efÅíects.-
                                                        '                        ' t'                                       'Sortte authors(Jorne and Carmi,1977,Hastings,l978tMiTnura and
                                          t.                                                  'Nishida,1978) dealt with a more general prey•-predator systern

consisting of many species. Howevertsince the essential feature.

of the problem can be appreciated in the simple two species

system, we will deal with only the two species systera.
        '                                  '                                                              .                    '                                                 '                                       '
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3. Result

      To study global

construct a Liapunov
c6nseucvative guantity

Let v<u,v) b9

                  N.
         V(uev) = Z
                 i=l

 behay. iou] of solutions ef (3),we

function V which has its origin in
                     -•                        ' of the eguaaL-ions (l) with K=L--Oi
                    '

                          '{d[<uru*)-u".Zog uYu*] -

the ---

+b[(vi'-v')-v" ieg vYv+]} .

                (4)

Using (3) and rearranging,we obtain . .
        gl/ÅÄ = '-- iltii[dK(ui-u*)2 + bLcvj-v*)2],

                                       '                                         '
                                                             '                                           '                                                      '            - i;j ldu"D:• j <ui- uj) 2/ (uiuj ) + b v*D\. j (vi- vj ) 2! {vivj ),]

                                               (5)

where' the sum Z is taken for j e'{l,......N--l} and for
              -t              z>J '                                                       'i>j, and we also used the assumptien (Al). The function V is.
                                         '                     '                      '                                                 tt                                          '            '                 'positive-definite,but dVldt is not necessarily negative-definite.
                                        '     t.Thus the following theorem by La Salle and Lefshetz(1961>
                                            'should be noted. ' '
                        - 59 -
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Theorem1 (!ja Salle and Lefshetz)

  Consider the autonomous system

     "= x(Å~), x<o) =o. -
  Let V<x) be a sca!ar fuinction' with eont'i nuous first

partial ,derivatives. Let
t. .. t

str desÅ}gnate the 'domain of x where

V(x) < r  Assume-• that rsc is bounded and :ithin str

v(x) > O for xf O, and "(x) < o.

Let R be the set of aU points within st
        r' where .v (x)=o and

M be the largest invariant 'set 'in R. Then' e've'ry selutien

    x(t) in shr tends to M as t-N-oo.

                                                       '            '                                             '                                                      '                                                  .I,
          .
do e' xVii :td:ilt:gnUo=:l] tWO Cases accordmg as crowdzng efEects

                                           '      (i) KfO or L7tO. 1 . '
which sa:lsXOtXheerg2tatio:g Theorem i conslsts of aii points

                              '                                           E'' 'and Ui=U* fOr alli . . .. .
                                                   I                                               ' ' vi=vj for any irj in Tk,k=l,.....rn.
     From Yhe first eguation oÅí (3),next reiatÅ}ons must be

l:SR,SatiS :ifi-9,.l:.ii.iiZ.:I:.l?.ihe,::rg:;t,,tnvana"t set "i .
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ThereEore vi=v* must also hold for any i and M consists of

onZy the spatially homogeneo.us equilibrium solutien (u*,v*).
                  'Global stability of (u*,v") is a direct consequence of Theorem

l.  on the other handrif LfOrsimiiar argumentS hOid. . .'. '  r

                                         '
                                                   '                      '     Zn this case,we consider two subclasses depending on T
boundary conditions. '"- "
                                      '   ' <a> Eguilibrium boundary cendition. .

     Suppose that the value of uz is fixed at u* and that l

is in Sl. From the equation (5) all points in R must satisfy

                                             .                                        ' '                                             '                                           '   . ui=u*,for any i in Sl, -
                                                 ' 't'
' • Pi7Uj,for any itj in Sk,k=2,.....tmr , . .
                                     '
                   '                              '               '.. vi==vj,for any irj in Tk,k=l,.....,n.
         'Zf i is in Si,vi=v* must also hold in tbe invariant set M in
                      '         '                                                        'R as before. Frora the eguations <3) •
             du.               i= (a-Ku,-bv•)u• '             dt i-i ,
                                            '                                        '                                                  tmust take the same value for any i in each Sk and

             glli = (--c-Lv"du?vl.

                                   '                                       .must take the sarne value for any i in each Tk.
          ttThus,in the inVariant set M . ' '
        e                                              '                                    '                                                       .                                                    '             u.=u. and v.=v. ' .              -,]. Z] .'. .                                                   '
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must be satisÅíied for any i,j in each Sk and Tk. Zt follows

from Lemma that ui=u" and viv* fox aZZ i in the invariant
                                                            'set M,which rneans giobal stabilÅ}ty' of the spatially h6mogeneoUs
                                                           .  '                                          '                                    '                           tequiZibrium soZution (u*,v*). ' . ' '  , ..
                                                  '                                                              '                                           t. .                                                  '                                                  '                                         '                                                            .     (b) Periodic and zero flux boundary conditions. •
                                                   '    All points in R must satisfy the relations
                                            '           '         ui=uj,for any i,j in Skrk=lr.....,mt - .
                              '                  '
                         •Sr            '                           t         vi=vjrfor any i,j in rek,k=ls.....,n. .
                                    'By simUar arguments as those in (a),all'points in the invariant
                                            '                                     'set M must sgtisÅíy the ucelations

         u.=u. and v.=v.           -) 1) . -.   '                                             .for any iej.

     Thus,
                                         '                    .t        ME =-{(uev)i ui=u(t>evi==v(t) ior any i and uk) and

              v(t) satisfy the systern (l) with K==L=O.} .

By Theorem l,we can conclude that any so!ution must converge
                                                     .to a spatially homogeneous and teTnporally oscillating solution.

This means asymptoticaZ spatia! homogeneity oÅí soiut,ions of

the System (3). ..
                      '
           '                                           '                               -                             '      '         '          Our results are summarrized as follows.
                                        '                                              '                                            '

                           -- 62 -



Theorem 2

     sy!tem (3)

Assume (Al) and (A2) . Then an soiution of the

-becomes s atial! horaogeneous
as mptoticti'l'

ly

and

  a) if either Kfe or LfO,or K=L==O ' and a't' 'Zeast ene
bouridary conditio/n fixes u s. or v. at its

    z
eguilibriurn

vaZuetthen the s atiall homogeneousequiilibrium soZutien

(u*tv*) is globally stable.

(ii) zf K=L=Oand the boundary condi'tion's 'are periodic

br z'ero flux,then asyrnptotical solutions 'are spatÅ}al'ly

homogeneousand temporall oscillating,though they depend.

     on initial values. 'f.
                           .

                                        " g'Rernark Note that above conclusions are valid for any positive

     initial values and'that diffusion coefficients oL=.one of
                                                          '                                               '                                            '     two species may identically vanish. -
                     t-                                                .                                       '           '                                        '                  tt                      '                        '    -t4. Discussion .
                     ..                                 '      We could cenclude that any solution ofi the s'ystern (3)

         '                                                 f'is spatially homogeneous asyTnptoticalZy without restrictions

On diffusion ceefficients,dimension of space and initial
                                           I-values. However, those asymptotical. solutions are temporally
          'oscillating and dispersal of populations oE prey and predator
                          '                              '                                              'interacting according to the Lotka-Volterra eguations cannot

                                tt                           '                                                       '
                     '       '                                 '
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stabilize the system in a homogeneous enyixonment. Kawasaki
                                                  'and Teramoto(l979) considered a spatially disc2 ete version of
                '                                                 'the diffusive Lotka-Volterra equations in a heterogeneous
                           'environment and showed thab solutions converge to a spatiaUy -

heterogeneous stationary solution. rn the'' previous section,-'  J'
we assumed positive initial values. "Then some initial values

are zero and diffusion coeEticients oE either speeies are zeyo

between some cornpartments,behaviour of soZutions is very different
                                                             '(Kawasaki an,d Terarnoto,l979). For examplerif ul(O)=O and D\j=O. .

                                          'for aU jtthen ul(t)=O for t>O ana the soZution will nevey.

become spatially homogeneous. This may oEfer a new interesting

probleva for us.

                             t                                                    -:
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Chapter V. Emigration of a Population and Stability of

             a Prey-Predator System

l. Zntroduction.

                                                   '          rt is known that population densities of some

species undergo large fluctuations in simple ecosystems
                                                         'consisting of a few species, especially in eonmunities Å}n
                                '
the Arctic Circle or in artificiaUy forested woods(Odurn,
                                         'l971). Some populations exhibit periodie osciliations and

others do irregular outbreakes. Lepus amerieanus and its

predator Lynx eanadensis(MacLulÅ}ch,1937>, and lemmings

and foxes which eat lemmings(Elton,l924) are farnotis species

whose densities oscillate periodicaZZy. Populations oÅí
   'some insects, for exampler the grey larch budmoth Zei?opheva

diniana(G.) in the European Alps(Baltensweiker,l964,Auer,

l971) and the blackheaded budworm AeZe?is vaipiana(Fern.) in
                                                      'Canada(Morris,!959), also exhibit cyclic oscillations. The

spruce budworm Chontstoneuua fumifeuana(CZem.) in Canada

experience rather irregular outbreaks(Pilon & Blais,l961).

          Mass migrations at peak densities are one of the

characteristic phenomena which are known in such popu!ations

(Baltensweiler,l964, Pilon & Blais,l961). Lemmings in Nerway

<Elton,l942, cited from Odum,l971) may be the most famous

example. Owls in North America which eat lemmings also make

southward migrationsr and cyclic invasions of owls to the
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United States which correlate with cyclic regressions of lemming
                                                  '                                                '                                                              'populations, have been observed(Shelfordrl943,Grossr1947r the

latter is cited from Odum,l971). Such emigrations from the crowded
habitats have definite directions and few individuals return t6X
                                       'their habitats. Regions invaded by the populations are not so '
                                           'tit for growth of tihe populations as their habitats(Odum,1971).
                                   '                                        '          !t is an ecologicaZly interesting problem to study

what role emigration plays on stability of an ecosystem in which

.population densities oscillate periodically. Odum(1971) said
      'that emigration from crowded regions is a facter of crash, or
                                                        'sudden decrease of population densities. However, if the population
                                             '                                                          'does not disperse from the crowded habitatsrlack of foods
                                                           'becornes severer and crash of the populations may occur. On the
                                             'other handt many theoretical workers(for examp!e,Comins &. Blattr
                                                             'l974, Shigesada,Kawasaki & Terarnoto,1978t Kawasaki & Teramoto,

l979) have suggested that animal dispersal and heterogeneity of

the environrnent enhance stability of some ecosystemts. Therefore,
                                                            'we will study, in this paper, the role of emigrarion in populations

whose densities oscillate pexiodically.

2. Model

          We consider populations of two species, prey and
   'predator, or piant and herbivorous animal. For simplieity, we

will call them prey and predator in both cases. Periodic

oscillations of densities of prey and predator was predieted

t.heoretically by the Lotka-Volterra equations(Lotka,1925,Volterra,
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1931). However, many questions have been proposed on possibility

that obsexved cyclic oscUlations are simply due to interactions

of prey and predator(Cole,l951, Ito & Kiritanir1971). On the

other handt it is known in laboratory experiments that, in a
                                                             'simple two species systems of prey and predator(LuckinbilZ,1973),

and of host and parasite(Utida,l957), population densities

osciZ!ate periodically, even if the environmental conditions

are kept physically constant. !t is aZso suggested that
cyclic osciUations of population densities of Lepus amenteanus

and Lynx eanadensis may be explained by interactions of prey

and predator(Zto,1978). Therefore, we will consider the case when

periodic oscillations are due to interactions oi prey and

predator.

          We assume that interactions of prey and predatox are
of Hoi-ling type(Holling,l959), instead of Lotka-voltbrra t\pe.

                                                       'The f' irst reason is that the former is derived from more
                                 '
realistic assumptions and the second is that amplitudes of

periodic solutions of the Lotka-Volterra equations crucially

depend or, initial population densities. We also assume that

dynamics of the prey population is described by the logistic

equation in the absence of predator. As is shown later, we can

prover from the above assumptions, that densities of prey and

predatgr oscillate periodically. We will consider the case where

only individuals of pred,ator can rnigrate from the habitat Rl to

the other region R2, especially when the population density

is high in the habitat Rl(Fig.1). [rhe region R2 is not suitable

                                                                'for growth of the population, since it cannot make use of its
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                      RR                       i2

                    prey u

                 predator vl => predator v2

              limÅ}t cycle emigration

       Fig.1. An environment where populations of prey and
                                         '                                '                                                   '            predator live.

main prey. Thus, the g-r.owth rate of the population in R2 is
negative, although some individuals can live in the }egion.

Further, we assume that ernigration is described by diffusion,

that is, individuals of the population move randomly, and the

rate of emigration is in proportion to the difference of

densities in two regions, since there is no evidence to show

that emigration is restricted in a period at the peak density

and there are no avaUable data on relations between popul' ation
                                '                                        .) densities and rates of ernigration. For example, ieinmings do

seasonal migrations even at low densities, and at high densities

emigration is not so extensive as was previously considered(!to
                                 '& Kiritanirl971). Thereforet we assume random motion of

individuals, which rnay be the simplest assumption.
                                                 '          Let u,vl and v2 be population densities of prey in Rl
                                             'and of predator in Rl and R2, respectively(Fig.Z). Then, from
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the above assumptÅ}ons, we can formulate the equations satisfied

by u,vl and v2;

                           bv                             l            du            crt = (a h KU - eu+l)Ur

                             '            gll = (-Åë + .glll)vl -- D.(vl - v2)t '' (1) -

                                  '            ddVt2 = -cv2 - Dv(v2 - vi)t ' - ' '' "

where parameters a,b,c,dretK and Dv are non-negative constants

we have assumed that death rates of predator in Rl and R2 are
            '                                     'same.

         We are interested in the case when the equations (1)
        '
with Dv=O have a stable limit cycie. Our probiem is how stability

of the system changes when emigration of predator is taking

into consideration. Zn the next sectionr we will inve.stigate the

eguations (l) with Dv=O, as a preliminary study.

                                         '3. Stability of a Prey-Predator System without Emigration

                                        '                  '                                                     '
                                         '          When Dv=Or the equations (l) can be reduced to

                                               '                           bv            td/ = (a `' Ku - eu+l)ut

                                               (2).
            dv                         du               l             dt = (-C + eu+i)Vi'
                                                          '
since v2 asymptotically becomes zero, independently of u and vl.

Investigating isoclines du/dt=O and dvl/dt=O in the phase plane

(u,vi)<Fig.2), we can distinguish following two cases depending

on the value of u=c/(d-ce);

                             -• 69 -



vi

Ab

n

;-•! L
J L

f

                      o cr i?.- u

      Fig.2. Isoclines du/dt=O and dvl/dt==O, and directions

            of the vector field, when ae-K>O and O<u<uo=(ae-K)/
                       '            2eK.

             (l) When ul;a/K, the eguations (2) have two critical

       points, the origin (O,O) and (a/K,O). - • . .,

             (2) When O<E<a/K, Qr a(d-ce)-cK>O, the equations (2)

       have three critical points, the origin (O,O),(a/K,O) and

        (urvl), where u=c/<d-ce) and vl=(a-Ku>(eu+1)/b.

         From an ecoZogical point of view, the origin is a
                                               'steady state where both species are extinct, and the population

of predator is also extinct at the steady state <a/K,o). By

linear stability analysis, we can confirm that the origin is .

unstable in both cases. Thenr we study stability of the critical
                   '                                                       'pbint <a/K,O). Mnearizing the equations (2)near (a/K,O)r

eigenvalues of the coefficient matrix are .. '
                    a(d-ce)-cK                               e ' (4>            X = -a,                       ae+K                                               '
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comparing the eigenvalues and the condition for the critical

point (u,vl) to exist with positive values, we can see that,
                   '             [1] if the critical point (if,Vl) does not exist,

        the critical point (a/K,O) is stable,

and that

            [ZX] if the former exist, the latter is unstable.

                             '

          Above arguments show that, when we consider u as a

bifurcation parameter, the criticai point (alK.C) loses

stability at Ei=a/K, and that a new critical point (ff,Vl) will

 bifurcates(Fig.3a)

          Then, we examine linear stability of the critical
                                                             '      t/
point (13,Vl). The eigeneguation of the coefficient matrix of

the linearized equations near (u,vl) is
                                                     -.

     Vl
               a. Dv = O
                                  VI         vs b. Dv >O          t 1/•          t             •l         / I U,s
                                    tl       i

o
 .. .. - -uO

Fiq. .3.

E

I
t

E

   .ft. rr o uc 'i}
    '
 Schematic bifurcation diagrams when

(b)Dv>O. Arnplitudes of vl in stable

solutions or stable limit eycles are

             - 7i --

       i
       l•
       l
       l

       i
       I
  u-'

 (a) Dv==.O

stationary

 shown.

and



             A2 .' ae/-.. i3eK" {i x + SgiiiiK):) - o• (5)

If ae-K < O, the critical point (EitK71) is stable, since
da(a-KU)/(eli+l)2 > o and [(ae-K)-2eKil]u/(eEi+l) < O. when ae-K

                                                  'l O, the eigenvalues become pure imaginary at .

   . E= uo =' g2gfsg K, • (6)
and they have negatÅ}ve real parts if E > uo and have positive

real parts if E < uo. Therefore, Hopf biEurcation occurs at
--u = uo, and periodÅ}c soiutions bifurcate from the stationary

solution (u,vl)(seer foac example, Marsden & McCracken,1976).

We can also show that the bifurcation is supercritical, and that

stable periodic solutions exist in the parameter region where

t.h.e stationary solution (u,vl) is unstable(u < uo)(see, Appendix

B). An exaraple of a stable limit cycle is shown in Fig.4. '

Above resutts are sumrnarized as follows(see. also Fig.3a);

             (E) IÅí il l a/K, or O < d Sc(ae+K)/a, the critical

        point (a/K',O) is stable and the population of pacedator

        goes to extmctzon.

             (S) !f a/K > u > uo, or c(ae+K)/a < d < ce(ae+K)/

                                    --        (ae--K), the critical point (u,vl) is stable, and '

        densities of prey and predator approach positive

                                  '        stationary values.

             (U) XÅí uo > if > Or or ce(ae+K)/(ae-K) < d, the

        critical point (ffrVl) is aiso unstable and a stable

        !irnit cycle exists,and densities of two populations

        oscillate periodically.
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Vl

Dv= O

Dv=O. 4,

       t-tKa, vTl ) 'Cl,vl,o )

             o .ft.u
                                 '
        Fig.4. Projections of limit cycles on the plane

              (Urvl) (a=b=c=d=1,e=l/2 and K=1/lo).

                     '                                     '                                     '                                 '                                           '
         Thus, ii` the predation rate is too large, that z's,
                                                          '                                                       'predation is too effective, the steady state where two
populations coexist becomes unstable, and densities oi two

populations oscillate periodically, although the population
          '                                                       'of predator becomes extinct if the predation rate is too

small. We should note that we can prove global stability of
                                                           '
the critical points (a/K,O) and (u,vl), when they are linearly

stable, by constructing Liapunoff functions(Appendix C). We

can also prove existence of large amplitude per.iodic solutions

by applying Poincare-Bendixson Theorem, although. those proved

by the bifurcation theory are only small arnplitude ones in the

neighbourhoed of the bifurcation point(Appendix D).
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4. Emigration and Stability of the Systern

                                                 '
          In the previous sectiont we have shown that the

equatÅ}ons (1) with Dv = O have stable periodic solutions when

ae-K >O and il < uo are satisfied. Our next problem is how ...

stability changes when emigration of predator is taking into

consideration. Hereafter, we wUl consider only the case with

ae-K > O.

         Let
                                                    '           ' . c(c+2D )            Ri' =c(d-ce)+(X-2ce)D (7)
                   'be a bifurcation pararnete-r. Note that Zi' is a monotone increasing

function of Dv and that Vi' coineides with IS when Dv=O. $imilarly as

before, the following two cases should be distÅ}nguished depending

on the value of if,'; w                                                         '             (i) when KS' 2L a/K, the equations (1) have two critical
                        -
             '               the "' (OOO) and .       points, orzgzn ,, <a/KrO,O)
                                                      '                                                        '             (2) When O < U' < a/Kt the equations (1) have three

       critical points, the origin (O,O,O),(a/K,O,O) and (u'tvl'

       V2'), where
                    c(c+2D )
            {f' = c(d--ce)+(X--2ce D '
                                v
            vl' = (a--Ku') (eu'+1)/b, (8)
                   D ''            V2g =' 'c+VD Vl'. .
                     v
The origin is unstable in both cases. As in the previous sectiont

we study linear stability ef the criticai point (a/K,O,O). The

eigenequation of the coeÅíÅíicient matrix of linearized equations
                      'in the neighbourhood of the point is
                               '

                         -74-

'



                       2c(ae+K)-ad+2(ae+K)D             (X+a){X2 + ae+K ' VA
                                     '                                                   '
                      a[c(d-ce)+(d-2ce)D ]-cK(c+2D ) '                    - ae+K V V}==O. (9)
                                  'If
                                              '
            a[c(d-ce)+(d-2ce)Dv] - cK(c+2Dv> < Oe (iO) ,.
or ii' > a/K, the cm'tical point is stable and it is unstable if

the ineguality of (IO) is reversed. Therefore,

             [!] if the critical point (u' vl',v2') does not

        exist, the cxitical point (a/K,O,O> is stable,

and

             [II] if the former exist, the latter is unstable.

Thust there occurs a bifurcation phenornenon at ff'=a/K, and the

critÅ}cal point (Iii',Vl',V2') bifurcates from the branc.h (a/K,O,O)

(Fi'g.3b). We should note that g!obal stability of (a/K,O,O) can

be also shown when u'>a/K(Appendix c).

         Our final problem Å}s at what-point periodic solutions

biEurcate when the value of {i' varies. When we linearize the

eguatÅ}ons (l) near the critical point (U',vl'tv2'), the eigen-

equation of the coefficient matrix Å}s
                                               '
             A3 +A A2 +B A+ c= o, - '                                                   (ll)

            A . 2eKU'-(ae-K) Ei, + c + D + Dv2

                   'e'iEi'+1 V C+Dv'
                                                  '
            B= 2eKliiiiÅÄSe-K) {i, (c + D. + 2\D.)2 . a2)

                             a-Kui C(C+2Dv)
                           +.                                     c+D t                             eu'+! v
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and

             c ., S!:':.!1!ELI•K -U' c(c+2D ) .

                eifv+1 V
              '                                                      'According to the criterion by Routh and Hurwitz(see, for example,
                                                      '                                                               '                                      'Cesari,l971), if all of the inequalities ' .h

                                                       '             '                                               '            A.>o, c> o, AB-c>o, • a3)
                                     'a.s"e satÅ}sfied, aU the soluticns of (ll> have negative xeal parts

and the critical poin`L (if',Vl',V2') is linearly stable. !f at

                                                             'least one of the inequalSties (13) is not satisfied, then the

criticaÅ} point is unstable. By the condition u' < a/Kr C is

always positive. Facom the equations (l2)

            AB-c = 2eKgtliSe-K) Ei, {2eKIiiiÅÄ8e-K)'lirt(c+D.+211D.)

      - +(c+D.+g\i.)2 + g-:\gi •c(g'.gev) }$

                               2                     a-KEi' CDv (C+2Dv)
                   +et['+1' (c+D )2 ' • (l4)
                                v
When ae--K > O, there exists a unique uc and AB-C becomes zero at

            u'=uc<uo, (l5) '
and then A and B are positive, at least when D v is small. .

Therefore, the equations (il) have two pure imaginary roots and

one real roo`L having negative real ' part, and the critical point

(if',X7V,V2') is stable if Ii' > uc and unstable if U' < uc. Thus.

a Hopf bifurcation occurs at if'=uc and periodic solutions

bifurcate. We have also verified from numerical evidences that
                                              '                  '                                                   'the bifurcation is supercritical and that pexiodic solutÅ}ons are

stable.
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                   i

                   t ' ''                  il 'E '' ', 'L''
               1l •,/                               '                  t'                  t                                                       '                            '                                     '                  t                 uls -l'                  ,l
                  II

               ok eK
                      '                                     '
Fig.5. Stable regions of stationary solutions in the

      para!rteter space (K,Dv). The region E is the stable

      region of (a/K,O,O) and the region S is the stable

      regi•on oi= (u',vl'ev2'). In the region U, both

      solutions are unstable and there exists a stable

      limit cycle(a=b==c=d=1 and e=l/2).

 summ.ary <Fig. 3b),

     (E) if Vr' > a/K, the crÅ}tical point (a/K,OrO) is

stable and the populations of predator become ex!inct.

     (S) !f a/K > tt' > uc, the critical point (u'rvl'r

V2') is stable and densities of prey and predator

approach positive stationary values. .
     (U) !f if' < uct both critical points are unstable

and there exists a stable limit cycle. Thus, densities

of two species oscillate periodically.

                                                 '
 Although , behaviour of solutions of the eguations (1)
         '                                               '
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         a. Dv=O VI b. Dv
                       . Xss
 -
    N

                            '     Kc t.- K o---K'c"'--e.
           '                               ..                      '                                  '                                     '                                 '  Fig.6. Schematic bifurcation diagrams as

        parameter on the iines (a) Dv=O and

        see also FÅ}g.5).
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    SE
S D9 Dv

Fig.7 . Schematic bifurcation diagrams as D                                        being a
                                      v
 parameter on the line K=1/IO. Datails are same

 as in Fig.5.
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has been understoodr it is not so easy to see the relation

between stab"ity and the rate of movement(or the value of Dv)

from the above analysis. Then, we investigate the relatÅ}on .

between stability and the value of D , by dividing the parameter
                                  v
space (KrDv)r depending on stabUÅ}ty of the c]riticaZ points N

(Fig.5). Tn Fig.5, the letters, E, S, and U attatched to three

regions correspond te the headings of the previous summary.

Fig.6 is bifurcatz'on diagrarns which show arnplitxides of vl in

stationary solutions and periodic solutions, as K being a

parameter on the lines (a) Dv=O and (b> Dv=1/2.in Fig.5. We
                                                      'can see that, in the interval Kc' < K < Kcr periodic osciZlations

are stopped by introducing emigration of predator. The

stabUizing effect of emigration can be most clearly seen from

Fig.7, which is a bifurcation diagram as Dv being a p.arameter

on the line K=l/IO in Fig.5. Arnplitudes of periodic solutions

decreases as the value of Dv increases, and the critical point

(U',Vl'rV2') becoraes stable if Dv exceeds the critical value
                                               'DVC, although the c-rttical point (a/K,e,O) which corresponds
              'to the steady state where predator is extinct becomes stable

if D is too larae.

5. Discussion

         We have considered a mathematieal modei to study
                                      'the role of emigration to an unsuitable regiop for growth of
                                                          'a population. We have shown that amplitudes of cyelic

oscillatÅ}ons can be reduced by emigration. From an ecoXogical

point of view, in the absence of emigration, the population
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densities exhibit cyclic oscilZations with large amplitudes

and the populations experience crashes. Thereforer they are

exposed to danger of extinction at low densitiest by' ' some

stochastic factors such as decrease of chance of mating. Since

decrease of amplitudes of osciUations means increase of the .x
                                             'minimum density, the population can escape extinction if the

population of predatox rnakes errtigration. Therefore, ernigration

enhances chance ef persistence ef populations and it is a

stabiZizing factor and not a factor of crash. On the other handr

it has been so.rr,etz'mes said that emigration of excessive

individuals is a cause of crash of a population(Odum,i971). rt
                                     'is difficult to compare results of our theoretical model and

field observations, since our modei is very simples and in

field observations we cannot compare the case with emigration
                                                    '        'and wi;'hout emigration. However, we believe that ernigration

i$ at least a part of important factors for regulation of

populations whose densities expexience large fZuctuations(Ito

.& Kiritani,l971).

          There Taay exist sorne objections against our model,

especially to the assumptÅ}on that emigration is described by

simple diffusion. However, there are no available data on clear

reiations between densities oE populations and nUmbers of

emigrating. individuals. Therefore, we should use the simplest

assumption which serves as a mode! for a wider situation. We

believe that random motion of individuals is such an assumption.

Howeverr we ean consider effects of alternative assumptions on
                                                    'emigration. For example, we can imagine the case where the rate
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  of emigration depends only on the density of predator in its habitat
                                                       'h habitat. Then, the zniddle of the eguations (1) becomes

                               '                                        '              dv                          du                1              dt - ('-C + eu+1) Vl '- J(V l), (l6)

  if we assume that the yate of emigxation is described by J<vl).'
                                         '  We consider effects of two assumptions on J(vl). The first is

  that J<vl) is directly proportional to vl, that ist J(vl)=,Dxge1.

  Zn this caset apparently emigratz'on of predator stabilizes the

  system, since Å}ntroduction of emigration is identical to

  increase of the death rate c. The second is the case where there
   is a threshold, that is, J(vl)=kH(vl - vlC)t where Ktx)=O if
                                                            '  x < O and H(x)=x if x > O. If vlC is smaller than the maximum

  density in the oscillation, emigration serves as a stabilizing

  factor also in this case, aZthough the critical point.(u,vi)
  is unstable without regard to the value of ki if viC > Vl.

           Thereforer the stabilizing role of emigration does

  not depend on detaiZs of types of emigration, although there may

  exist more aZternative assumptions. We may conclude that

  emigration of predator is a stabilizing agent in a prey-predator

  system in which population densities exhibit cycZic oscillations.

  We hope further development of researches ior relations between

  population densities and rates of emigration.

{
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Chapter VI. Final DiscusSion

         We have considered four mathematical models to
                                        'study the effects of migration, or the relation between '-'

migration of populations and stability of ecosysterns. We

have shown that migration of a population is a stabiiiz ng

factor in a hetexogeneous environment. Two eompetitive

populations, either of which becomes extinct in the absence'

of migration, can coexist in a heterogeneous environment,

if random diÅífiusion of the two populations wis introduced

<Chapter X!I). In a prey-predator system in which densities

of two populations exhibit periodic osciUations with larcge

arnplitudes, emigration of predator decreases the amplitudes

and chance of extinction of two' populations may be reduced, '

since their densities does not decrease extremely low<Chapter

V). However, we should note that random motion of individuals

sometimes leads to extinction of the population, if the rate

of migration is too large(Chapters ZI and V). A population

which grows or decays exponentially at any point in a

habitat can establish a stationary distribution, iC the

population is dispersing according to dispersive forces

including the population pressure(Chapter r:>. The population
                                             '                                                     'can form a stationary distribution also in a lirnited area,

even if a randomly diffusing population grows explosively.
                                      '                                                        '
                                               '
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The idea that rnig-ration of a population enhances stabUity of

an ecosystern has been also suggested by some authors(Comins

& Blattrl974r ShÅ}gesada, Kawasaki & Teramototl978, Kawasaki

& Teramoto,l979). Therefore, we may conclude that migration

of a population is an important mechanisrn to regulate the

number oÅí individuals in a population and that it stabilizes

an ecosystem in a spatially heterogeneous environment.

          Zn a spati'ally homogeneous environment, population

densities of prey and predator exhibit synchronized

oscillations and random migration cannot stabilize the
system in an ecological sense. One of the reasons may be that
                                           '
the !otka-Voiterra equations without crowding effeets are

structually unstable, and that they lack ecoiogical reality.
TheMref,-oret we must consider the effects of migration' in the

case when there exists a stable limit cycle. The effects of

diffusion on the dynamics of biochemical oscillators have

been also studied(see, for exampler Nicolis & Prigoginer

l977) and it has been shown that the synchronized oscillation

can be unstable and that a nonuniform steady state or an

asynchronous oscillation can arise, when diffusion of one

species is slow enough(Ashkenazi & Othmer,1978). However,
                                                         'such a rnodel has not been studied in ecology and we are in

need of a future studyr before drawing conclusions.

          It is known, as the Turing idea(Turing,1952), that

a spatially constant stationary solution can be unstable, and
                        'that a new stab!e spatially heterogeneous stationary solution
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bifurcates, in biochernical activator-inhibitor systerns(Gierer

& Meinhardt,l972, Auchmuty & Nicolis,l975, Herschkowitz-

KauEfman,1975) and in prey-predator systerns(Mirnura & Murray,

1978, Mimura, Nishiura & Yamaguti,1979). RecentZy, Mirnura
         'and Kawasaki(i979) have shown that cross--diffusion instability
                                                              '
occurs in a system composed of two competitive populations

and that new stable states exhibiting segregation phenomena

bÅ}iurcate. Therefore, diffusion and the population pressure

are important mechanisms to produce heterogeneous spatial

distribution patterns, in spatially homogeneous environments.

Formation of spatial patterns in a homogeneous environrnent

may be xe!ated with the potential ability to adapt a

population to a heterogeneous environment(Mimura, personal
cormundcaticn). Thereforet it wiU be a future probl` ern to

study in what ecoiogical situations spatial heterogeneity is

of fundamental importance.

          !n conclusionr studies on effects of migxation is

far from complete and we need furthex refinement and extension

of models. For exampler effects of migration in two-dÅ}mensional

environments, in three-species systemr in fiuctuating

environments and in system.s with time-delays in interactions,

have been hardly studied. Furthert we should give. not only

gualitative descriptions but also quantitative descriptions

of particuiar ecological situations. Recently, Shigesada(l979)

has demonstrated that results derived frora a model taking

account of the self--population pressure exhibit a good fit
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with the data obtained fxom an experiment on

antZions by Morishita(Z954). Such a work will

zmportant.'

dispersal of
 ' b  ecome moxe
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Appendices

A. Existence of a stationary solution when d=O, in Chapter IIr.
            '
       '                                                              -' we cons' ider the problern (ll),(12) and (9 ). The eguation
                                                          '            .(li> has the first integral - . ' .
                                            '              (deldx)2= ct- H("v), '- ''' "' (Ai) .
                                             'where '.
             H(v) = 2 f8 G(z)dz

                              '                       '                                            '                                                       '           . ' '..'g (bib2-i)v3 -- (ab2--i)v2, osvE6,

                                              '                  = ., (A2)                           '                     -g (v-o2<2v+i> +Åë(B), BgvEv", .
                                                    t                                                 '              O(B) ='III- (2blb2B3 -3ab2B2 + l), (A3)

                                                    '                                           'and
                                                        '                                                              t-.t             a == (dv"/dx(o))2                                                     (A4)

is an adjustable parameter to be determined later. As the right

hand side of (Al) must be non-negative,or must satisfy the

                              t'conditionS
                  '                                           ' '

                =-                           - .. (A5)      . d> Åë( B) • '                == •   '                                                        '                                  -T(see Fig.Al)..We can soZve the equaEion (Al), using another

adjustable  par KaDrn(2;e.r lBl.WhiCh SatiSfieS ' / '' . IA'6) '. -

 '
The implicit solul ion s7(x;B) is expxessed as fol!ows;
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a-•H(v

Na a-"CB)
    o

-- --  - tt
t...""' x    Nx

B pt v

Fig.Al. Dependenceof ct-H(v) on v.

                          '             fg" {- g (bib2-i)z3 + (ab2ri)z2' 4ct}- l dz = x,

                                    osxsZ(o s v"'s B>
                                           ti k
             f\A* { `II• (z-ti)2(2z+i) + a -- Åë(B)}' 2 dz --•--: L•--x,

                                                       '
                                    ZgxEL(B ;s e-.s-- v*).

For the solution actually to satisfy (Al) and-(9a), the next
                                              '

             foB {pt i (blb2-l)z3 + (ab2-l)z2'+ a} '2.dz = z,

                                                        '                                                 '                   tt tt                       ' . •(A8)                         ' .l•                                             pt ---                              '             fX" { ill• (z-i)2(2z+L) +'ct -- Åë(B)} 2 dz = L-.e,

                                          '
must be satisfied. We define the functions ll(ct;B) and R(ct;B)

                                 'by the quantities of the left sides of the equations (A8) and
                    .                                  '                                                 '

             L(ct;B) =Z(or;B) +R(ct;B). (A9)

(A7)
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Thenr the condition (A8) is refor.mulated as
          '                                                     '                             '     '              L= L(ct;B). (AIO)                                                          '
If we can determine ct as a function of Bt from the relation

{AIO>, Z is also determined by tthe first of (A8) as a function
                                                    'of B, through the relation ct= or(B). Wd will use the following 'E''
                                           "
properties to prove that ct(B) is determineo" uniguely frorrt the

condition (AIO); - •
        (pl) L(ct;B> is a monotone decreasing function of or for

fixed B and approaches zero as ct goes to infinity.

        (P2) [f 4)<B) > O, then
                                    '             lirn R(a;B) = 2im L(a;B) = +oo,
           ct"b•Åë (B) ct•cb (B)

       and if Åë(B) Åí O, then

              lim Z(ct;B) = lim L(ct;B) = +co.
              ctÅÄO a->o . .•
         (P3> Fo]r fixed or, 2(or;B) Ss a monotone increasing
                                        'function of B and.L<ctIB) is a monotone decreasing Åíunction of B .,
                                                               '                                                          '         (P4)bÅë(B> is a rnonotone decreasing functionCETig.A2) and

i

3

ecB

lt3
'

o
nt abt n

1•-6)

Fig.A2. Dependenceof Åë(B) on B,
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distinguishing the two cases according as 6 <l or 6. Il. Therefore,

if we Åíix L, the size of the region,ct is determined uniquely for
                                                               'any B. Then, we can deteirnine Z=Z(B) by the first ecluation oii (A8),,

and (A7) is a soZution of the equation (Al), in terms of ct(B) ' '
                                                              '                                                          '                                 'and Åí(B). By the above arguments, we could prove thae the problem
            '(Al) and (9a) has a unigue solution for any B, and so the problem

(ll),(l2) and (9a). With respect to the patehing point, we can
 .                                                   '                                           'see that Z(B) is a monotone increasing functii6n and takes the

maxiraum value when B=a/blr since Z(ct;B) is !nonotone increasing as
                                                      '                                    tta function of B r and monotone decreasing as a function of ct,

and a==a(B) is a monotone decreasing function oi B.' The maxim.um
                                                   ':efnz}.h e(a/bt) has a qualitative difference depending ?,n the vaiue

                                         '                                                   '                                             .-         (i) if 6 < l, e(a/b" is bounded wiyhout regard te the
                     -                                   '     size of the region (O,L),. - ' -'
                                                     '                                               '                                                     '                                                              '
                                            '
         <iS) if 6 2; l, it is a monotone increasing function Of L

     and goes to infinity as LÅÄÅÄco. '
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B. Stability of bifurcating periodic solutions when Dv=Ot

    in Chapter V.

                                                         '                                                              -         zn section 3, we have shown that there occurs a Hopf N,

bifurcation at u=uo(or d=c(ae+K)/a) as u(or d) being a

bifurcation parameter. Here, we study stability of these
                                      'periodic solutions(or closed orbits in the pha,se plane).
                                        '         We consider a closed erbit y. Let ct be a"point qn

p!ane S which is transversal to the closed oscbit y. A trajectory

which start or at t=O rnay intersect with the plane S at sorne

points as time goes on. Let B be the first of such points. [Phen,

the Poincare map P is a rnap P(ct)==B. Let S be a half line deEined

by vl==vl and u>u, in our case. Thenr we can consider a Poincare
                                                   T
map P(u;u) depending on the parameter ut since our ,closed orbits

depends on the bifurcatÅ}on parameter E. A displacement map V is

defined by
               .t            v(u7'u-) = p(u;'u-) - u.

Let g be

            g . a3x,i(t;-u")•

                3u
Then, it is known (Marsden & McCracken,1976) that

            if g < Or periodic solutions bifurcate in the
                                           ,        region where the critical point is unstable, and that

        they are stable.

            Zf g > O, periodic solutions bifurcate in the

        region where the critical point is stable and that

        they are unstable. ' '
                                         '
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In ouy case,
       '                    beK (ae-K)            g="6T c(ae+K)2 <O.r ..
and it can be seen that the bifurcation is supercritical and

that these periodic solutions are stable. We can also consider K

stability of periodic solutions as a,d or K being a bifurcation.
      '                                          '            'parameter. -.
C. Global stability of the critical points when Dv=O,
                                                   '     in Chapter V.

                                                   '
          !n the foliowing, we will show that the critical

points of the equations (2) are globally stable, if they are

linearly stable, by the Liapunoff's rnethod. Liapunoff functions

used below is due to Nakajir.na(l978).
                                                   t

(Bl) StabUity of (a/K,O) when u 2z a/K

         Let Hl(u,vl) be a function

            Hl(U,Vl) = bvl + (d-ce)[(u-a/K) - (a/K) log u/(a/K)]

                                                            '                          t.Hl(Urvl) is positive-definite and it becomes zero if and only

if u=a/K and vl=O. From the equations <2),

            g:i .'- gGI2 [K(.- ft)2(.u+i) + b(ii- ft)v,]

                .s O,

and the eguality is satisfied if and only if u=alK and vl=O.

Thereforet Hl(urvl) is a Liapunoff function and giobal stability

of the critical point is a direct consequence. The above analysis

is easiiy extended to analysis of stability of the critical
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point (a/K,O,O) of the equations (1), making use of a function

                                                  '                                  D                                   v            H2 (ui virv2) = bvi + b c+D v2 - , -
                                    v
                          c(d-ce)+(d--2ce)D ' ' .
                        + c+Dv ' V [(uptf})-ftZog -(s}/;i(s-],

                                                            x                                            'instead of H.l(UrVl). . '' '  ''                                                             tt
                                                   '

(B2) Stability Of (UrVl) .
                                      '         we consider stability of the criticaZ point (E,Vl)r

when ae--K > O and u > uo. We define H(u,vl) by

            H(u,vi) = viP[(u-Kii) - {I iog u/E]

                                 vi
                          + dgce L (s-'Vi)sP-i ds,
                                 Vl '
whexe p is a parameter defined later. H(u,vl) is also. positive-

definite and vanishes if and only if u=u and vl==vl. By the

equations (2)

            g+/ = giil(U-if) {(d-..)p[(u-if)-tt log (u/u)l

                     '                 + (a-Ku)(eu+1) - (a-KE)(eE+l)}.

VVe define E<u) by
                                          '            Åí(u) = (d-ce)p[(u-if) - G log (u/ff)]

                       + (a-Ku)(eu+1> - (a-KIii)(eEi+1) .

Then, i(u)=O , and if we set

            p = (ae-K)/(d--ce),
                                       '
f(u) is a rnonotone decreasing function. Therefore,

             (u--u)f(u)< O,

and the equalzty is satisfied if and only if u=u. This means that

 '
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            dH            Tt E O,
                              '                                 - --and that the above equality is satisfied if and only if u==u.
                                              'Therefore, giobal stability of (i5,Vl> can be proved by the theorem

by La Salle and Mefshetz<l961)(see section rV-3).
                                                             ....                                         '                              '     '                          '           '                                            '
D. Existence of periodic solutions with large amplitudes

     when Dv=O, in Chapter V.

                                                      '
          By the bifurcation theory, we can only prove existenee

of periodÅ}c solutions with smail amplitudes, in the neighbourhood

of the bifurcation point. Xn the jiollowing, we wilZ show that a
                                                'stable pericdic solution always exists if the-critical point
                                          '<u,vl) is linearly unstable, that is, if u < uo. Firstly, we
                                                   sdefine -f• ive curves in FÅ}g.Dl as foilows;

Vl

l

 3.
  st
 lt
 it

it

tt

tt

C4 .C5

C2

ci

Fig.Dl

  O if .9..u                   K

An invariant set of the eguations (2).
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Kl

by

On

o
rK  2

the

the

Then,

when u

On the

sznce

On the

  Cl; u= a/K.
                           '
  C2; Kl(u,vl) = (d-ce) + bvl
                        o ••                    .Kl '' ' '
  C3; K2(u,vl) = (d-ce){(u-Ei) - Ei log(u/ti)] + bvl

                        o                    .K2' ' '
  C4; K3(utvl) == d[(u--ii) - Vr log(u/IS)]

                     + b[(vl-vl) •- vl log(Vl/Vl)]

                        o•                    =K3e , .
                  o  C5; Vl = Vl S
O,K30 and vlO are adjustable parameters defined later.

    Then, we investigate directions of the flow defÅ}ned

 equations (2), on these curves. On the curve Cl,

      du - (ab/K)      a:tr n - (ae/K)+lvl < O•

                                             -curve C       2'

      'g:l = efi+l[d-cCe u(a-Ku)(eu+l) + (d--ce)u - KIO].

                                       '                  o,if the value of Kl is sufficiently iarge,
                          '
      dK        l      dt < Or
 < u < a/K.

 curve C        3r

      dt3 = d("-"{r){K(if-") + (.if+z?7..+1)<Vl""EiVl)

                           '
          E O,

u E u and u l (U/Vl)Vl.

 curve C        5r
                          o      ddVtl = (d-ce) <u-if).Xli L Or
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since u > u.
        rf we take sufficiently large KzO, other parameters K20r

K30, and vlO can be determined by continuity of those curves,

                                                            'and aZl of the above inequalities are satisfied. Theicefore, ••'

we consÅ}der the region suxrounded by these curves, the flow is

in the inward direction on boundaries of the region. Thus, the

                                   t.region is a p invariant set of the eguations (2). So, it can be

                                      '                                        --shown that if the only critical point (u,vl) in the region :s

unstable, there exists at !east a stable cZosed orbit, by the

poincare-Bendixson theoxem(see, for example, Cesari,l971).

s
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