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Summary

An ecosystem is a complex system composed of many

species subject to various interactions. The number of

individuals in a population fluctuates annually or generation
to generation. There are two aspects in variations of numbers
of individuals. It is known that some populations exhibit
large fluctuations, in the form of periodic oscillations
or irregular outbreaks. However, in many populations,
fluctuations are not so severe and the numbers of individuals
keep nearly constant levels, Therefore, the numbers of
individuals may be regulated by some physical or biological
factors. An ecosystem seems to be a fairly stable system,
since its compositions exhibit persistent characteristics.
One of the fundamental subjects in population ecology is
to study the way of regulating numbers of individuals and
stabilizing ecosystems. Particularly, we will pay our
attention to the effects of migration of populations and
spatial distribution patterns on the stability of ecosystems.
In this paper, four mathematical models are presented in
order to study relationé between migration of populations
and stability of ecosystems.

The first model is on the effects of the population
pressure in a population which grows exponentially in a
fertile area surrounded by hostile areas. It is shown
that a population dispersing in a density-dependent manner

by the population pressure effect can establish a stationary
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distribution, without regard to the property of boundaries
of the region. It is also verified that the population
forms a stationary distribution also in a habitat of a
limited size, while a randomly diffusing population goes
to either extinction or explosion, depending on the size
of the region.

Secondly, we will consider spatial distributions
of two competing pcopulations, either of which becomes
extinct in the absence of migration. We will show that
these populations can coexist with spatially segregated
distributions in a heterogeneous environment, even if
one of the two species is far inferior to the other with
respect to the ability of migration.

_ The third problem is on asymptotic behaviour of
densities 6f prey and predator with interactions of the
Lotka~-Volterra type. We will show that the densities tend
to exhibit respective spatially synchronized oscillations
in a homogeneous environment, and‘that random diffusion
cannot serve as a mechanism to produce stable spatially
heterogeneous distribution patterns.

Finally, we consider the effects of emigration
in a prey-predator system in which population densities
exhibit stable cyclic oscillations with large amplitudes.
We will show that emigration of predator to an unsuitable
region for growth of the population is a factor to enhance
stability of the system, since it diminishes the amplitudes

of oscillations and save the population densities from



extreme decrease,

Therefore, migration of a population can be aﬁ
important mechanism to regulate the number of indi&iduals
and to stabilize an ecosystem in a heterogeneous environment.
There remains need for further investigation aé for the role
of migration in a homogeneous environment,bsince the effects
of migration on the dynamics of population densities with
stable periodic oscillations have not been studied. It will
also be a future problem to investigate in what ecological
situations heterogeneity of the environment plays a
fundamental role, since it has been known in some simple
model ecosystems that spatially heterogeneous distribution

patterns arise even in a homogeneous environment.
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Chapter I. General Introduction

An ecosystem is a complex system composed of many
species which interact each other and with the natural N
environment, It is of critical importance to detefmine relevant
variables in order to study such a complex system. In studying
an ecosystem, there may be a wide choice of variables, for
example, the number of vari&ﬁs species, the number of
individuals in a population, or the energy in different
trophic levels. Population ecology is a field of ecology,
mainly concerned with the numbers of individuals in populations,
turning our attention to a population or a few populations
in a complex ecosystem. It should be noted that the word
"population" means a collection of individuals of a ;pecies
in a region, although it originally means the number of the
people in a city or in a country, in demography. We can
~understand importance to study the numbers of individuals;
if we imagine red tide or outbreaks of pest insects, which
are serious social problems.

It is known that populations of many species
keep nearly constant numbers of individuals; although
the numbers of individuals fluctuate annually or generation

to generation. Therefore, the numbers of individuals may be

regulated by some physical or biological factors and an



ecosystem may be a fairly stable system, since its compositions
exhibit persistent characteristics. Thus, regulation of the
number of individuals and stability of an ecosysteﬁ'are
fundamental subjects in population ecology. Many factors,
for example, climatic factors such as temperature and
humidity, diseases, biotic potential of the population itself,:
or interactions with other species, may be related with the
problem, It is a typical question in population ecology_what
the most important factor is to determine the number of
individuals.

| The population density is also used frequently,
since a thousand individuals of pest insects per are do much
more damage to crops than a thousand individuals per hectare.
To understand or to predict variations of the population
density, we must know their dynamics. However, it is very
difiicult to determine from observations what the most
important factor is on regulation of the population densities
and stability of an ecosystem, since an ecosystem is a very
complex composite of many species and various interactions.
Therefore, a mathematical model formulated from some simple
assumptions of ecological relevance serves as a method to
understand general ideas. In principle, we can describe the
dynamics in terms of ordinary differential equations or
difference equations, if we know the growth rate, or natality
and mortality as a function of population densities and

environmental parameters, and sometimes of time. Such an



approach has been developed since the pioneering works by
Lotka(1925) and Volterra(l931l), and it has made some
contributions to understanding of relations between types
of interactions and stability of an ecosystem. One may refer
some review articles, for example, May(l1973) and Maynard -~
Smith (1974), on details of classical models.

- However, the description in terms of the population
density might be an oversimplification, since there exist
some internal structures, for example, age structures and
size distributions, in populations. Particularly, we should
note that, in the majority of classical models, only
temporal variations of a population are considered and spatial
variations are not considered. In general, a natural
environment is fluctuating both temporally and spatially,
and a population is perhaps making efficient use of‘
heterogeneity of the environment. A population has more or less
a dispersing ability and extends the distribution. Spatial
distribution patterns also affect stability of an ecosystem.
For examle, local extinction of a population does not lead
to extinction of the whole population of a species if the
population is distributed in a large area, and competition
between similar species may be relaxed if they are épatially
segregated. Migration of a population may be an important
mechanism to make efficient use of the heterogeneous
environment and it may sometimes lead to persistence of a

population in a fluctuating environment.



It is the purpose of this paper to study relations
between migration of a population and stability of an
ecosystem, by formulating and analyzing some mathematical
models., Here, we should turn our attention to the concept
of stability in ecology. It differs slightly from the
mathematical definition. In mathematical usage, briefly
saying, stability of a state means an ability of the system
to recover from disturbances. Suppose that the density of
a population exhibits a cyclic oscillation in an ecosystém.
Then, the system is sometimes considered to be ecologically
unstable, even if the oscillation is mathematically stable.
For, at the minimum density of the oscillation, the population
density becomes very low and the population may be exposed
to danger of extinction, since the population experience
much damage by fluctuations of environments and also chance
of mating may decrease., The difference in concepts of
stability may also be ascribed to limitation of mathematical
models, since the mathematical models tend to deal with
continuous variables, although the ecological unit is an
individual. In practice, ecological stability means the
persistence of a population, or mild fluctuations near
the suitable population density. We will use the term both
mathematically and ecologically, but this will give rise to
no confusion.

Finally, mathematical frameworks of this study

should be explained. Spatio-temporal variations of populations



can be understood, if we know the rate of temporal variations
at any unit area in a region. The rate of variations in a small
area 1s determined by interactions of a population with the
environment and the other populations and migration through

the area. The rate of migration may be suitablly described

in terms of the population flux through a unit area. Let ui(x,
t) be the population density of the i-th species at position x
and time t and ji be the population flux of the i-th species,
which may depend on population densities. Then, our fundamental

equations are formulated as follows;

ou,
§%i = fi(ul,.....,uN;ul,.....,um) - Vjir (1)
i=l,.e.¢..,N,
where fi is the rate of increase(or decrease) by interactions
which depends on the densities of N populations and )
environmental parameters ul,.....,um, and sometimes on
position x and time t. One may refer, for example, to Mimura(1979),
on details of derivations of the egiations (1). If we specify
fi and ji in the equations (1) from some ecological assumptions,
a model can be constructed.
The population flux is often assumed to be in
proportion to gradient of the population density, that is,
| ;= = Dy(uy,eennn,uy) Vu, (2)
i=l,..e..,N,
which mean that a population migrate from a crowded area to

a sparse area, if Di is positive. When Di is constant, the

equations (2) represent diffusion, which is considered to



random motion of individuals, by the analogy of molecular
diffusion in the inorganic world. If Di is an increasing
function of population densities, it is called the population
pressure effect, since the dispersive force becomes stronger
as the population densities become larger.

The above approach was initiated by Skellam(1951),
and many models have been proposed for the recent decade (for
example, Segel & Jackson,1972, Hadeler, an der Heiden & Rothe,
1974, Gurney & Nisbet,1975, Segel & Levin,1976, Rosen,1977,
Gurtin & MacCamy,1977, Shigesada, Kawasaki & Teramoto, 1978,
Mimura, Nishiura & Yamaguti,1l979, Kawasaki & Teramoto,1979).
The equations (1) with the equations (2) are often called
reaction (or interaction)-diffusion equations and they have
been extensively studied not only in ecology but also as
models of chemical reactions, morphogenesis and nerve
conduction(for example, Turing,1952, Nagumo, Arimoto &
Yoshizawa, 1962, Gierer & Meinhardt,1972, Nicolis & Prigogine,
1977, Maginu,1978). Therefore, in our framework, to
investigate the role of migration is reduced to a study of
reaction-diffusion equations. The readers may refer the good
survey by A.Okubo(Okubo,l975) on other aspects of diffusion
phenomena in an ecosystem.

It should be noted that the equations (1) describe
variations of population densities in a continuous

environment, However, an environment is sometimes considered



as a patchy one composed of discrete patches; for example,
islands or rocks in an intertidal zone. It is also important
to study the effects of migration in a patchy environment.
If we assume random motion of individuals or diffusion of
populations, the fundamental equations are formulated, in

the case of a patchy environment, as follows;

J
dui - £ J (u 1 k.u W)

- Di{(uij - uij—l) + (uiJ - ui3+1)},
i=l,.¢..,N, J=1,.....,k, (3)
where uij is the density of the i-th species in the j-th
patch and we have assumed that k patches are linearly arranged
and that diffusion coefficients are spatially constant (Levin,
1974). We}will use both the continuous version and the
discrete version of the reaction—diffusion equations.
In the following chapters, we will formulate and
analyze four mathematical models, each of which corresponds
td a particular ecological situation. Details on specific
ecological situations and mathematical assumptions will be
explained in the begining of eaéh chapter. The author is
afraid that there may be some duplications andvsome’confusion
in expressions and notations, since this paper is a collection
of four papers by the author. However, the content of Chapter
III is a result of a joint work by the author and Professor

Masayasu Mimura of Konan University. The author has taken



care that contributions by M.,Mimura are not included in

this paper as far as possible.



Chapter II. Density-Dependent Dispersal and Spatial

Distributions of a Population

1. Introduction

Recently some aﬁthors(Gurney &

Nisbet,1975,Shigesada,Kawasaki & Teramoto,1979) have shown
that some dispersive forces with non-linear dependence on pop-
ulation densities enhance stability of an ecological system.

However,there are two problems which have beeﬁ'ﬁaid littlek
attention. The first is concerned with the size of a habitat.
Kierstead & Slobodkin(1953) consideréd the growth of ; phyto;'
plankton population in a mass of water surrounded by water which
is unsuitable for survival of the population. They showed that
there is a critical minimum size for planktbn blooms and that
a population in a habitat with a size smaller than that goes to
extinction. Similaf models for various types of growth and for
prey-predator systems have been studied(See McMurtrie,1978, for
reviews). On the other hand,it is known that populations of éomé’
mobile species grow explosively and serious overgrazing occurs
when the populations are confined in some limited areas by a
geographical condition or an artificial enclosuré(Odum,lQ?l).

In such a case,there may be a critical size such that a popula-



tion in a habitat with a size larger than that can establish a
stationary distribution,whereas a.population in»a habitat with
a size smaller than that grows explosively. We will say that
regulation of the population numbér’is effective if the popula-—
tion neither goes to extinction nof grows ekploSivély. Thus oﬁi
first problem is to find a critical minimum size for effectivef
regulation.

The second is on the property éf the boundary. Wifh regérd
to the property of the boundary, many authors assumea feflecting
boundaries or absorbing boundaries (for exémple,Segel & Jackson,
1972,Hadeler,an der Heiden & Rothe,1974,McMurtrie,1977). Some
stationary distributions obtained as such are highly depending
on the boundary conditions., However,in some cases it may be mére
natural that interactions between a dispersing population and
a hete;ogeneous environment determine a stationary distribution
of the population which does not depend onrboundary conditions.
In such a stationary distribution,there may be a boundary where
both the population density and the flow of the density are
zero. We will call this a "n;tural boundary”. We will show that
a stationary distribution with natural boundaries is formed by
density-dependent dispersal in a heterogeneous environment,with-
out regard to the property of boundaries.

In view of the above two problems,we will study the models
by Gurney & Nisbet(1975),since the models are very simple and
useful to stﬁdy the relations between the types of animal dis-—

persal and the above problems. In the next section, we will in-

troduce the models by Gurney & Nisbet(1975). Then we will
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consider the problems of the natural boundary and of the criti-

cal minimum size for effective regulation.
2. Gurney-Nisbet Model

We introduce three models by Gurney‘& Nisbe£(1975). We
consider a single mobile species existing in a heterdgeneous
environment. The population is growing with a local growth rate
G(x) which does not depend on the population density and dis-
persing with a local population current density j(x,t),where
x and t represent position and time respectively. Then the pop-
ulation density u(x,t) satisfies the eqguation |

9-% - G(x)u - V3 (x,t) . - (1)

-

Gurney & Nisbet(1975) proposed three models for the ibcal popu-—.
iation current density, according as motion of individuals dépends
on the population density u or do not. These are |
’ (2a) the random moﬁion model
j = - DVu, )
(b) the biésed random motion model
j = - dVu - puVu ’
and
(c) the directed motion model
3 = =AuVu '
where D,d,u and A are positive cdnstants. The model (a) is

obtained from the assumption of random motion of individuals

and called diffusion. They obtained the models {(c) and
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(b) respectively from the microscopic assumptions that individ-
uals move down the gradient of the population density and that
movement of individuals is largely random but with some bias
in the direction down the gradient of the population density(
See Gurney:‘& Nisbet,1975,1976,for detéils).'The models (b)
and (c) may also be considered as some kinds of the diffusion
model with coefficients depending on the population-dénsity.
We will‘ééll ﬁhem density~dependent dispersal médels. .

Gurney & Nisbet(1975) made an assumption oh thé grdhth
rate G(x) that the environment is a largely hostile (G(x)<0)-
"universe"containing a single region‘of viable habitat (G (x)>0)

(Fig.l). They considered the equations in an infinite region

G(x)

Fig.l Spatial dependence of a growth rate G(x). x=LPG is a
position where G(x)=0. The spatial average of the growth rate _

G(x) over (-L is a position of a natural

AG'+ ST
boundary in a stationary distribution.

LAG) is zero. x=L

- 12 -~



with the boundary condition that
- u(x,t) — 0, as|x|— +x,

and have shown that a population which goes to extinction or
grows explosively Qﬁen dispersing randomly can establish a
stationary distribution when dispersing density—dependeﬁtiy.

In the following sectiog;, we will conSidér £he models in
view of the problems of the natural boundaries and:of éxplosive
growth in a habitat with a 1limited size. We will pay our
main attention to the directed motion model,sihce we are inter-
ested in the role éf density—-dependent dispersal on stability

of an ecosystem.
3. A Stationary Solution with Natural Boundaries

In the following two sections,we consider the directed
motion model

au

3¢ = G(x)u + AV(uvu) . _ (2)

For the present,we will restrict ourselves to the césg that the
domain is a one-dimensional interval (—L,+L),wﬂére L is an |
adjustable parameter that determines the size of a domaiﬁ. We
make similar assumptions on G(x) as those by Gurney & vNisbet
(1975),thé£ is,G({x) is positive only in a small bounded domain
and otherwise G(x) is negative(Fig.l). For simlicity,we make

a further assumption that G(x) is an even function,that is,G(-x)

=G(x). We will also use a special form



G(x) = A-Bx?, (3

which was used by Gurney & Nisbet(1975) for their numeriéal-
calculations. We need the specific assumption (3) any when we
prove existence of a stationary distribution; Otherwise we’neéd
not use it except for numerical calculations.

The stationary problem of the.equation (2) can-be described

as

2 .
' ;% u 0? = 2 cmu (x) .0 (@)
X .

When G(x) satisfies the eguation (3),we can fina a very simple -
solution of the equation (4). If we assume that a polynomial of
n-th order satisfies the egquation (4) and putvit into (4),then
we can obtain a solution u(x) of a fourth order polynomial by

comparison of orders and coefficients;

u(x) =§%—(x—L

2

2
) (X+LST) ’ (5)

ST

where LST= Y7A/B, The solution (5) is not a desirable one because
u(x) - « as |x| - « . However,we can construct a new solution

1 — .. W :
of C7 class from u(x) and a trivial solution uo(x) = 0. The

solution thus obtained is

’

B o N2, 2 g
7ax (xlgp) " (xtlgy)” ,  Ixlsno

ﬁs(x) = : kA- o (é)

0 [xl>LST.

- 14 -



Apparently from the construction,

du
ug (#Lgp) = 3%

s -
(#Lgn) = 0, (7). .

and the stationary solution (6) represents a stationary distrib—

ution with natural boundaries at x=iLST. When we consider the

equation (2) or (4) in the domain containing the interval (~Lgmr
+LsT), the sdlution (6) satisfies both zero flux and zero fixed
boundary conditions. Unfortunately we have been unable to sblve
the equation (4) for other forms of G(x). ﬁowever some numerical
calculations show that a stationary solution with natural bound-
aries exists for a wider class of the growth>rate G (x) which
satisfies the assumption at the beginning of this section.

Thus,we assume existence of a stationary solution us(x) with

natural boundaries at x=iLsT for any growth rates which satisfy

the assumption.

We now investigate stability of the stationary solution
us(x). Gurney & Nisbet(1975) haVe shown stability of a every-
where positive stationary solution of the ééuation (2) against
small amplitude fluctuations e(x,t),making use of a Lyapunév
functional of €. Since our stationary solution is not evexry-—
where positive,we must modify the functional.

Let
u(x,t) = us(x) + e(x,t),
then the fluctuation e(x,t) satisfies
ET

2 2 ' a
3T = G(x)e +AusV £ +AeV u +2AVusVe ’ (8)



to first order in e. We define a positive definite functional

vV = —%— I S u (x)a(x,t)zdx
1 S : .
1=} < Lgq
+ L s e(x,t)%ax.  (9)
2 x| > L

ST

By virtue of the equations (8) and (4),

%% - ) [usz(Ve)z + €2 (vu_)?]dx
le < LST ° '

+ f G(X)Sde ’ " (10)
since u_(x)=0 for |x]>LST. Note that we need not use_boundary
conditions to obtain the equation (10). dv/dt is negative-

definite,since clearly G(x)<0 when |x]| >L The equations (9)

sT®
and (10) mean that the "mean square fluctuation" decreases with

~time. Thus the stationary solution us(x)°is stable against small
amplitude fluctuations. As we couldn't analytically prove
stability against large amplitude perturbatiéns,we solved the -

equation (2) numerically in an interval (-L ,+LST) with zero

ST
flux boundary conditions,using an explicit method. A few exam-—
ples are éhownvinvFig.Z. The fat line is the Stafionary distri-
bution. Dashed lines indicate that a solution Wifh the initial
distribution(t=0) converges to the stationary solutioh as time

goes oh., Three thin lines are examples of initial distributions

~with which solutions converge to the stationary solution. Thus
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Fig.2 A stationary distribution of a population exhibiting

2

directed motion(G(x)=A-Bx" ,A=1,B=7/4,A=1l,and L T=2.).The,fat

S
line is the stationary distribution. Dashed lines indicate that
a solution with the initial distribution(t=0)lconverges to the

stationary solution as time goes on. Three thin lines are exam—

ples of initial distributions with which solutions converge to

- ™
s

the stationary solution,

we can conclude that the stationary solution u (x) is also
[

-
—

stable against large amplitude fluctuations. T

4. Size of a Habitat and Explosive Growth

In this section,we consider the problem of the critical

minimum size for effective regulation. We investigate behaviour

- 17 -



of solutions ofrthe equation (2) in the ddmain (-L,+L),as L
being a changing parameter. We assume reflecting boundaries,
which correspond to the condition that a population is confined
in a limited habitat. T =
For further analysis,we defiﬁe two quéntities LPG'and._LAG

which depend only on G(x),by

G(sLyg) = 0,
(11)
) +1L
2 5 A gixyax =0 .
5T, .
AG o
AG

The interval (-L +LPG) is the region where the growth rate

PG’

G(x) is positive,which is called the region of net growth by

Gurney §& Nisbet(1975). 2LAG is the size of a domain where the

‘spatial average of the growth rate is zero,and if L is larger

(resp.smaller) than L the spatial average of the growth rate

AG’

in the interval (-1.,+L) is negative(positive). As is shown

later, L hold in general, where LST is the position

pG “TacFsr

‘of a natural boundary in a stationary solution. In.the special

case when G(x) satisfies the equation (3),
L,g = YA/B , Ly, = V3A/B, Lg, = Y7A/B .

‘We consider the equation (2),distinguishing three cases
depending on the sjize of a region.

(1) L 2 Ly,

- 18 -



As G(x) is positive at any point in the domain (-L,+L), any
solution except the trivial solution uo(x)‘= 0 diverges to

infinity as t » +«, It is verified by the equation

+L +L
J udx = S G(x)udx >0 .
-1 -I

el
B edier

(i) Lpg < L < Lo

Though G(x) is negative in the domain [x[ E(LPG'LAG)’ any
solution with a positive initial distribution diverges to

infinity as t + +« ,since -

+L +1, +1
3% J log u dx =AS % ( %%—)2 dx +f G(x)dx
-L -1 -1
>0

Thus a positive stationary solution cannot exist in a domain

ac’ tlag) - -
From the equation (4),if us(x) is zero at x=x0,dus/dx is

smaller than (-L

also zero at the point and by an integration

duS X 4 dus 2 1 X _—
0 s 0
X

hold. Thus if us(xo)=0, IOOG(x)dx<0 nmust hold. This means that
LST,the position of the natural boundary,must be larger than

L and a stationary solution which vanishes in some interval

AG’
cannot exist either in a doméinv(—L,+L) with L smaller than LAG

(iii) LAG < L < LST

In this case ,as we couldn't obtain any analytical result,

- 19 -



0.1' 4 A s A »
10 20 t

Fig.3 Time development of the total population numbex UT of a

population exhibiting directed motion in a domain(-L,+L) with

‘L being an adjustable parameter. Other parameters are same as

in Fig.2.

we solved the equation (2) numerically. Results are shown in

Figs.3 and 4. The total population number U, (éftilu dx )

converges to a limit for L=l.4(>LA¢) as well as for L=2.0(=LST)

and UT diverges to infinity for L=l.3(<LAG) as is shown ana-
lytically (Fig.3). Fig.4 shows stable stationary solutions for
L—2.0,1,5,1.4 and 1.35. We obtained stable stationary solutions
for L > 1.35 > LAG = 1,31,and we may considexr that tﬁere exist

‘a stable stationary solution for any L larger than LAG’ A popu-
lation whose dispersal is completely density-dependent grows
‘explosively only when the spatial average'df fhe growth rate

is positive. Therefore,the critical minimum size for effective‘
regulation coincides with the size of a region in which the

spatial average of the growth rate is zero.



Fig.4 Stationary distributions of populations.exhibiting

directed motion. Details are same as in Fig,3.

5. Random Motion Model and Biased Random Motion Model

We consider the relations between the size of a region
and behaviour of solutions in other two models (a) and (b)
by Gurney & Nisbet(1975). The equations describing these
models are

(a) the Random Motion Model

= G(x)u + DV2y, (12)

Wl
e
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and ’

(b) the Biased Random Motion Model

e

= G(xu + av?u + pW(uvw) . (13)

Wa consider these equations in a domain (~L,+L).with zero flux
boundary conditions,with the same assumptions on G(x) as before.
Similarly as in the previous section,we can prove that any |
positive solution of the equations(12) and (13) diverges to
infinity if the spatial average of the growth rate is pbsitive,
that is L < LAG . When L > LAG' we investigated behaviou; of
solutions by numerical calculations. We conéider only the case
when a randomly diffusing population goes to extinction in an
infinite region,since we are interested in,explosivewgrowth of

a population in a habitat with a limited size. Gurney & Nisbet

(1975) called such a population a random motion decreaser.

(a) {b)
Ur Ur
1 1
L=1.35
01 o1 L=1.4
N
L=1.8
LEL. Lite
0.01 '
0.01 30 .

Fig.5 Time development of the total popﬁlation number UT

of populations exhibiting (a) random motion and (b) biased random

motion. G(x)=A-Bx

. |
12=1.B=7/4,D=d=1, p=1,and L, %1.31.
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The condition for a population to be a random motion decreaser
is given by A < v¥BD when G(x)=A—Bx2. Parémeters are chosen so as
to satisfy the condition. Time development of thé total
population number is shown in Fig.5. In the ragdom motion -
model, a solution divergés to infinity even'whén the'spatial
average of the growth rate is negative(L=1.35,1.4). In these
cases,solutions of the biased random motion model converge to
certain limits.In the biased random motion model, a soluton
diverges to infinity only when the spatial average of the growth

rate 1is éositive. But if the size of a region is too large,

Uy
d=0.01
/f d=0.1
1
d=0.4
0.1
d=0.6
d=0.8
0.01 - -. 3-0 : -t

Fig.6 Dependence of growth of a population exhibiting biased
random motion on the diffusion coefficient d. The population
is confined in a region (-L,+L) with 1=2.0,except in the case
with d=0.01. When d=0.01,1=2.5. Other parameters are same as in

Fig.5 and py is fixed at 1.0.
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the population goes to extinction. Dependence of solutions of
the biased random motion model on the diffusion coefficient d.
is shown in Fig.6. Here, L=2,0 except the case with d=0.01,and
p is fixed at 1.0. Even when %he size of a region is so larxrge
that solutions with large d converge to the trivial solution,A
uo(x)=0, there are.stable stationary soiutions if éffects of
random dispersal are sufficiently small. The biased random
motion offers an effective mechanism for xegulation if effects
of random dispersal are not too large.Ho&evef, a stationary

distribution in the model does not have a natural boundary.

6. Discussion

In the previous consideration,we put some restrictions.
Firstly we assume that the environment is one~diﬁensional.
When the envi;onment is two dimensional,above-conclusions also
hold. Especially when the growth rate depends only on the axial
component r of polar coordinates(r,6)and G(r)=A—Br2,_a station-

ary solution with a natural boundary is analytically obtained

in the direcfed motion model;

B ;
325 (r-2/A7/B) 2 (r+2/A/E) 2, x| <2v/&/B,
us(i) = |

o |, | x|>2/E/B .
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The second is that a stationary solution with natural
boundaries exists only when dispersal is completely denéity—
dependent. In the natural environment,even if a population is
dispersing in a highly density-dependent manner,there may be
some random factors. However,when the random effect is sma;l(‘m
the case with a small diffusion coeffiéient in thé biased .
random motion model), we can scarcely distinguish the solution
from the one with d=0(rig.6,d=0.01) andvthe size of a region
where the stationary solution with small d is positive does not
depend on the boundary conditions. Therefore when dispersal is
highly density-dependent and the random effect is very small,
we may suppose in practice that a natural bouﬁdary is formed.

Density-dependent dispersal is an effective mechanism for
regulation not only when the size of a habitat is so’large_that
a randomly diffusing population goes to extinction,but also |
when the habitat is limited in a small region and a randomly
diffusing population grows explosively. A population dispersing
in a highly density-dependent manner can establish a stétionary
distribution with natural boundaries in a heterogeneous envir-
onment,witﬁout regard to the property.df the boundaries of the
region. Though our conclusions are only in terms of mathemati-
cal considerations without experimental eviaences, we‘may
point out that density-dependent dispersél‘plays an important
role for regulation of the population number and formation of

the spatial distribution pattern.



Chapter III. ‘Spatial Distributions of Competing Populations

1. Introduction

In the natural environment, populations of many specieé
exist and experience the struggle for existence. According to
the competitive exclusion principle, (i) if two noninter-
breedihg popﬁlations have similar needs and habits(ecological
niche) and (ii) if they live in the same»habitat, then‘either
of the two populations becomes extinct(Hardin,1960). It was
predicted theoretically by the Lotka—Volterfa competitioh .
equations(Lotka,lSZS,Volterra,l93l> and wasfekamined |
experimentdlly by Gause(1934a,1934b). On the other hand,
populations competing with populations of other species relax
the interspecific competition by various types of niche
diversification, or by-eVolving some forms of ecologicalA-
sepération in foods, in time or in space. For example, in
Gause's cléssical experiment (Gause,1934b, cited from Crombie,
1947), Paramecium caudatum and P.bursaria are able to survive
together in a mixed culture because they feed.in different parts
in the suspension. Lack(l9§9)’reported that, iﬁ the middle of
Europe, six species of Parus coexist, segregéted partly by

habitat and partly by feeding stations and size of prey.
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Coexistence of two species by means of spatial segregation
has been also of theoretical iﬁtereét(Levins & Culver,l1971,Horn
& MacArthur,i972,Levin,1974,qualsamy,l977a,lQ??b,Shigesada,.
Kawasaki & Teramoto,1979,Mimura &.Kawasaki,1979). Levink1974)
considered a spatially discréte version of ?eactionédiffusion
equations as a médel for two competing speciés_dispefsing betwéeh
two patches of the same property. He showed that they caﬁ coexist
in some cases, with spatially heterdgeneous distributions,
although either of the two species'becomes egtinct in a single
patch. However, if the initial numbers of one of the species are
smaller in both patéhes, then it goes to extinction; although
Mimura & Kawaséki(l979) showed that, if cross—population_
pressures are introduced into Levin's model, the stability
condition and the restriction on the initial data for*assuring
coexistence and spatial segregation can be weakened. Shigesada
et al. (1979) proposed an excellent model taking account of
dispersive forces including population pressufes and environmental
potential fdrces. They showed, by computer simulations, that‘
coexistence of two similar and compeﬁing species, which can not
coexist in the absence of dispersal,is realized if the enviroﬂméntal
heterogeneity and the nonlinear dispersive forces are introducea.
However, they assumed that tﬁe environmental'hetefogeneity modifies
only the dispersive forces and does not alter the growth rates
and the competiﬁive interactions. The growth rates and thé ranks

of competitive ability also varies as the environmental conditions

-
LY

change (Park,1954) and some inferior competitors can survive in
heterogeneous environments, because of their wider tolerance to

the environmental conditions(Connell,1961,Miller;1964).



If two similar species have slightly different preference
to the environmental conditions because bf distinbtive -
adaptabilitiés, there occurs severe‘coﬁpetition only in fhe
overlapping zone when their main habitats meet inrsome region -
(Lack,1969,Miller,l964). In this péper, wehwill deal with |
competition between populations whose habitats are partly
ovérlapping. We will consider the distributibns of populations in
the overlapping region, where two competing peopulations are
dispersing with differept dispersive rates. Our interest is to
study which species 'is the superior competitor  either the
species dispersing faster which tends to extend the distribution
rapidly, or the species with the faster growth rate, oxr do they |

coexist in tﬁe overlapping region.
2. Model

We consider populations of two species S, and S and

1 27

assume that the environment R is divided into three subregions

Ri(i=1,2,3,)(Fig.l). The subregions Rl and R2 are respectively

the exclusive territories of the species S and'Sé, with the

1
equilibrium densities U* and V*, because of the environmental

conditions and the differences of physiological tolerance of

two species. Thus, we fix densities of two populations at U* and

L4

0 in Ry and at 0 and V* in R,. The two populations are competing

and diffusing in the subregion R We assume that the local

3.
population dynamics is the Lotka-Volterra type and either of
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COMPETITION

- DIFFUSION

Ry Ry R2
Fig.l. The environment qonsisting of subregions Rl'RZ and R3.
Rl and R2 are respectively exclusive territories of

species Sl and Sz. In R3, populations of two species

compete and diffuse.

the two species becomes extinct; depending on the igitial
éopulation densities, although each‘species can maintain their
equilibrium densities U* and V* in the absence of the other
“species. Thus, distributions of the populations in the sﬁbrégion
R, are determined by compétition and diffusign in the region and

3

immigration from the "population baths"”, Rl and R2. We will

consider the simple case where the région R3 is a one dimensional
interval. We suppose that U(s, 1) and V(s, 1) are respectively

population densities of the species S, and Sz, at position s and

1l
time 1. Then, U and V satisfy the following equations;

) - 2
- 9U _ Y - - '
ot - P12 " (67 = 33U = o3,V
(1)
v 92y

a7 = P2 o7 T (f2 7 epn¥ T V)V
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where Di,gi and aij (i,j=1,2) are non-negative constants ., We can
reduce the numbers of parameters without ioss of generality,

transforming the variables and parameters by

u = (all/sz)Ul v = (0.22/€2)V’ t = EZT, X = V€2;D2 S,

d = D;/Dys a = €3/€y, by = a3,/0,,, by = dyy/04;.

Then, we obtain

2

"3u "9
'§Tt-= —-—“;-"*" f(u,V)u,
ox
(3)°
2
L9V 97 v .
a= = —5 +t g(u,v)v,
ot axz
where
f(u,v)u= (a - u - blv)u,

(4)
g(u,vlv= (1 - v - bzu)v.

We will consider the equations (3) in
(x,t) « (0,L) x RT (5)
with boundary conditions

u(0,t) = u*, u(L,t) = 0,
- (6)

v(0,t) 0, v(L,t) = v¥*,

where u*=a and v*=1 are the equilibrium population densities
which satisfy

£(u*,0) = 0, g(0,v*) = 0. N

Here we make two assumptions;

(A1) 1/b, < a < by,
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and

(a2) 4 = ez(s > 0) is sufficiently small.
The assumption (Al) means that either of the two spécies goes té
extinction depending on the initial population densifies, in the
absence of dispersal(Fig.Z). The assumption (AZ) is made for |
mathematical.simplicity, for dealing'with a typical case when ’

diffusions of the two species are extremely different, i.e. 0 < d

[

<<1.
In the first place, we consider the asymptotic behaviour
of solutions of the egquations (3) with d=0, so that we deal with

its stationary problem.

alb,

Fig.2. Isoclines of f(u,v)=0 and g(u,v)=0 and vector field

(£(u,v)u,g(u,v)v).
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3. Stationary Problem (d=0)

When d=0, the stationary problem

can be written as

Il

£(4,¢)a 0,

2
d éi + g (til )¢ =
dx

|
o
-

with boundary conditions

-¢(0) = 0, (L) = v*.

of the equations (3)

(8)

(9)

From the first equation of (8), we can solve U as a function of

¥. In the phase plane (u,v), there are two branches where

f(u,v)u=0 is satisfied(Fig.3). The first is u=h0(v)EO, and the

second is u=hl(v)=a—blv. From the boundary conditions (9), both

branches must be used to solve the first of (8). Theréfore,we

Fig.3.

v

alb‘

0 by v

and a patching value B (0 <

Branches u=h0(v) and u=h1(v) satisfying £ (u,v)u=0

B < a/by).



assume that there is a patching

h(¢) =

d =

{hl () =
hy(9) =

although Y=h(¥) is defined in an intricated way such

value B(0 < B < a/bl) such that

0 < ¥ <8,
(10)
B < ¥ < v*,

that several

patching values are used. Then, the following problem is

formulated; i
2 A
dv¥ e = o0,
dx
where
G(v) = g(h(v),v)v

g(hl(v),V)v

g(ho(V),V)v

il

i

(11)

[-(ab2—1)+(blb2—l)v]v,

0
(1-v)v, B < v <

Here, we note that G(v) has a discontinuity of the first kind at

the point v=g, except for the value 3=a/bl(Fig.4). As is shown

!

|

in Appendix Al, the problem (11), (12) and (9f, and hence the

Giv)

‘
LY
A Y
.
.
.
L
)
1]
\]
)
.l
¢
1 ;

-
-

Fig.4.

0\\\\1//}/.w'

G(v) with a discontinuity at v=8.

vy



problem (8) and (9a) can be solved. The results are summarized
as follpws;
(i) There exists a solution (£(x;8),¢(x;8))
for any B(0 £ B < a/bl), where @(x;8) = h(¢(x;8)) (Fig.
5). - ,
(ii)‘Define‘a patching point £(B) as a
function of B, from the relation W(£;8)=R.

(a) £(B) is a monotone increasing function of B,
and takes the maximum value at B=a/bl, where the
solution (ﬁ(x;a/bl),ﬁ(x;a/bl)) is continuous,.

(bl) If 6=a3b2/bl2 < 1, the maximum length Z(a/bl)
is bounded independently of L,

and

S

(b2) if 5=a3b2/b12 > 1, the maximum length L(a/bl)
is a monotone increasing function of L and approaches

to infinity as L goes to infinity.

.
v
hl(Bl) H ﬁ(x:ﬂz) ﬂ(x:a’lb,) "
: a’b‘
]
hy(8y) : .
! i
s [
! ! v{x;alby)
o KBy KAy amy) L
Fig.5. Stationary solutions (8&(x;B),¥¢(x;8)) when d=0
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We can see that there exists remarkable heterogeneity
in the solution 0(x;R), where i(x;B) is positive only in the
domain (0,2 (8)) and Gi(x;8)=0 in (£(B),L) (Fig.5 ). From an -
ecological point of view, (0,£(B)) is the region Qhere the»species_’
Sl with the smaller diffusion coefficient can su:Vive and (£ (B),L)
is the dead region of Sl' although the other species S2 is living
in the whole region. From (bl) and (b2), we find that the size of
the region where the species s; can survive crucially depends on

the parameter 6. Later, we will consider this point more

precisely;

4., Singular Perturbation Analysis

We have obtained a B-family of solutions of (8) With‘
spatial discontinuities in u, where the value of u makes a sudden
jump from the branch‘u=hl(v) to the one uéhb(v) at‘x#l(s),.
The next problem is to study the stationary problem of.(3) with
52# 0. One can exéect the existence of an internal tiansition
léyer in the vicinity of x=£(B). Therefore, iﬁ oxder to study
this problem, we will use singular perturbation techniques(see,
for example,Fife,1976, or Murray,1977). Supposing‘that.stationary

2,2 2

solutions of (3) are expected such that €73 u/ax =O(l) near x=

L(B), we stretch the variable x by the transformation
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% v{x:n)
/—_—_—
P f

- B) = ‘ X

An internal transition layer and stretch of the

Fig.6.
coordinate.
g= X - £ (B) : (13)

€

in the neighbourhood of x=£ (B) (Fig.6). Since v does not have a

o
-

larxge spatial.gradient there, we may assume that v is independent
of x and takes the constant value B near the‘aistinguished .
surface. Therefore, the first ofrthe eguatiéns f3) canvbe rewritteﬁ
in the form, |

2 B

9w _dTu R

The solution of (14) is the éeroth approximation to the inner
solution in the transition layer and @(x;B) obtained previously
is the ze:oth approximation to the outer solﬁtion; Thﬁs, the
boundary conditions at &=t~ for (14) are imposed as fbllbws;
éiTmu(E,t) = hl(B), éiTmu(E,t) = hO(B), (15)

which will match the outer solution. Note that the equation (14)
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is the logistic equation with the diffusion term and that f(u,B)u
=0 is satisfied if and only if u=h0(8) or u=hl(B). The problem
(14) and (15) is the classical one which was already studied by
Fisher (1937) and Kolmogoroff,Petrovsky & Piscounoff (1937). It is
well known that it has travelling wave solutions u(f-ct;B) with_
velocities c(B) > Z/E:BI§ > 0 for fixed B, if B < a/bl. It should
be noted that the velocities of the travelling wave fronts are
positive and of order e with respect to the original coordinate x,
when B is fixed.

We can confirm from numerical evidences that the equations
(3) have a stationary solution (uE(x),vs(x)) with a parameter d

=€2 > 0, such that

it

lim u_ (x)

ﬁ(x;a/bl), almost everywhere in (0,L)
e+0 .

and

lim v_(x) 6(x;a/bl), uniformly in (0,L).

>0

5. Pattern Formation

We study a time-dependent solutiog of (3) from the
previous analysis and some numerical calculations (Fig.7). In the
first stage, a solution with sufficiently smooth initial data
satisfies approximately the equations (3) with déo, and
approaches a stationafy solution (d(x;8),¥(x;B)) for some B,
depending on the initial data(Fig.8). The large spatial gradient

develops in u in the neighbourhood of x=£(8) and v becomes
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Stationary solutions(fat lines) and development of

solutions (thin lines) with the initial distributions

(broken lines), when (a) §=1/2 < 1 (a=1,bl=b2=2) and (b)
§=27/16 > 1 (a=3/2,bl=52=2). L=5.0 and €=0.01l both in (a)
and in (b).

The numbers beside thin .lines indicate time.
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alby
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Fig.8. Phase plane portraits of solutions (u(x,t),v(x,t)) at

(al) t=2.5, (a2) t=10 and (a3) t=+=(steady state).in the
case shown in Fig.7a, and also at (bl) t=5, (b2) t=100

and (b3) t=+=(steady state),in the case shown in Fig.7b.



positive at any point in the domain (0,L), because of its fast
diffusion., Then, the surface where the transition from the one

state u=hi(v)  to the other u=h0(v) occurs, moves in sgch a mannerxr
that u will inérease and approachesvthe‘value hl(B), slowly

with the velobity of order e. While the surface 4is moving slowlj}r
the function v(x,t) is adjustiné to this motion and a new

“surface x=£(B"') with siightly larger B' ié formed(see»Figs.7 and 8).
The value of u near the surface decreases slightly bécausg hl(B)

is a decreasing function of B. The surface where trénsition occurs
move successively.and finally the solution approaches the stationary
solution (u;(x),veix)). In the stationary solﬁtion, The size of

the region (O,LE) where u takes value$ larger.thén € has the
following properties;

(a) Zs

i

£(a/by) + O(e), :

and

3 2

(bl)*' if &=a b2/bl <1, 26 is bounded independently

of the sizé'of the whole region (0,L),
. (b2)' if 6 2 1, %t increases monotonously and

approaches to infinity as L goes to infinity.

-

From an ecological point of view, the‘species with the far -
smaller dispersive rate can survive.only in a part of the region.

However, when the intrinsic growth rate a of the species Sy is

sufficiently larger than that ofAthe'speéies_S or when the

27 .
individuals of the species Sl suppress the growth of the population

of the species 52 more than the latter do the former(b2>b1), the

slowly dispersing species S, can occupy a fairly large area, in

1l

préportion to the size of the whole region.
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6. The Case with Several Patching Points

In section 3, we have considered a solution with
a single patching value, of the reduced stationary problem
(8) and ( 9). In this section, we will briefly discuss the
case with several patching values, since mathematically
interesting phenomena will arise and also it offers an example
to show stability of the stationary solution (ue(x),ve(x))
of the equations (3).

Similarly as before, if we assume three patching
values 81,82, and 83 (Fig.9), we can solve G as a function of

¢ from the first of the equations (8) as

hl(\’z‘), 0 < ¥ < By
h_(¥), B, < ¥ < B8, .
G =nh'(¢) =1 © 1 2 (15)
~ A *
hO(V), 83 <V < v,

Fig.9. Branches u=h0(v) and u=hl(v) and three patching

values 81,82 and 83(0 < Bl < 52 < 83 < a/bl).
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Then, the following problem is formulated;

¥ s v =0, (16)
dx
where -
G'(v) = g(h'(v),v)v ,
g(hl(v)fv)vl 0 ; v < Bl’
g(h,(v),v)v, B, < v < B,
_ 0 ' 1 2 (17)
g(hl(v),v)v, 82 < v < 83,
G'(v) has a discontinuities at the points v=Bl,Bz, and 83(Fig.10).

We can solve the problem (16), (17) and (9), and hence the
problem (8) and (9), for any 81,82 and 83, although the
proof is omitted, since it is similar as in the case with a
singleApatching point (Appendix A) and lengthy. A solution is
shown in Fig.ll, where El,ﬂz, and 23 are patching points

defined by V(El)=81, v(£2)=82 and V(E3)= 83.

G{v)
-
1 ‘ /
'll : [ [4
0 !
B'J B‘;_) 3:3 S al bl v v
. ! H s
\'\-)"'

Fig.10. G" (v) with discontinuities at V=Bl,82 and 83.
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Fig.1l1l. A stationary solution (U(x),¥(x)) with

three patching points, when d=0.

We have obtained a family of solutions of the
equations (8) with spatial discontinuities in u at tﬁree
points. As in section 4, the singular perturbation technique
can be used to analyze the equations (3) with €#0, since the
solutions'afe expected to posess strong spatial gradients.
The procedure is same as before, and we can show existence
of travelling wave solutions in the neighbourhoods of x=£l,

x=L., and x=£ We should note that the sign of the

2 3°
velocity of a travelling wave solution is determined by which

state, u=h0(v) or u=hl(v), is dominant (Fife,1976). Therefore,
velocities of wave fronts are negative in the neighbourhood

of x=£., and positive in the neighbourhoods of x=£. and x=L

2 1 37

since the state u=hl(v) is dominant.



Then, we compare the absolute values of velocities

of wave fronts T.,T, and P3 respectively in the neighbourhoods

172
of x=£l, x=£2 and x=£3. Let cl(Bl), cz(Bz) and c3(63) be

minima of absolute values of velocities of wave fronts Fl, N

I, and F3, respectively. Then,
cl(Bl) = 2 /a—blﬁlr
and '

c (By) > c,(By) > c3(By), (19)

since Bl < B, < 8 It may be important to consider minimum

2 3°
velocities, since it is known that solutions of the eguations
(14) with a wide class of initial data asymptotically.
approach to the travelling wave solution with the minimum
velocity (see, for example, Kametaka,l1977).

From the above analysis, we can expect pattern
formations as follows. Similarly as before, a solﬁtion with
smooth initial data develops laxrge spatial gradients at some
points, in the first stage. Then, the surface where the
transitions occur move so as to increase the value of u, and
the function v(x,t) changes adjusting to the motion. However,
in this case, the surfaces Ii and Ié move in the opposite
directions and they will collide at some instance. The collision
is expected to occur before the surface F3 reaches £€) since
velocities of I, and P2 are faster than the velocity of T

1 3
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in terms of the minimum velocities, although we cannot

prove that the minimum velocities are realized. After the
collision of wave fronts Ii and Ié occurs, the solution exhibit
similar behaviours as those considered in the previous section,
since there remains only one wave fronts P3. Therefore, we

can expect collision and absorption of waves.

To test these ideas, we have done a numerical study

(see Fig.l2 and also Fig.1l3). It can be seen, in Fig.12, that

Fig.1l2. Time developmentlof a solution. Details are
same as in Fig.7b, except the initial data. The
numbers beside lines indicate the time course;
(1) t=7.5, (2) t=15, (3) t=20, (4) t=25, (5) t=

50, (6) £=100 and (7) t=150.
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(40 l =7.5

t{u,v) =0

alb‘

(2)t=15

flu,v)= 0

(4) 1= 25

f{u,v) =0

Fig.13.

case shown in Fig,l1l2,
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large spatial gradients have developed at three points, at
t=7.5. Then, these surfaces move and collision ofvtwo surfaces
occurs, as was expected. The solution asymptoticelly approaches
to the stationary solution, similarly as was shown in Figs.7
and 8. We should note that, at any t, the solution (u(x,t),
v(x,t)) approximately satisfies the stationary problem (8) and
(9) with déO(Fig.l3). Therefore, above statements have been

verified from the numerical evidence.

7. Discussion

We have considered spatialrdistributiohs of two competing
populations with quite difference in their diffusive velocities,
when their habitats are partly overlapping. At the first insight,

it seems that the fastly diffusing species S_, surpasses the

2
species Sl by the founder effect, because of the ability of rapid
_invasion. However, the slowly movingbspecies Sl can survive in
certain subregions, without regard to its intrinéic growth rate
or its competitive ability. The parémeters affect the size.of»thé

regions where the species Sl can survive in the stationary

" distribution. The markedly qualitative change occurs at 6=a3b2/bl2

2 2
=1 (5=[@21022 /(allalz )]°€l3/€23 in terms of the original

parameters) and the populations of the species S, can occupy a

1
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fairly large area if 6§>1. Especially, when the overlapping
region is an infinite region, it is known that the slowly

moving species S, can extend the distribution infinitely if

1
§>1 (Namba & Mimura,1980).The condition §>1 means that the

species S, is the slightly superior competitor in the following

1

sense; Sl has the greater growth rate (el 2),

of Sl supresses the growth of the population of §

> or the population

5 more than
the latter do the former(a21>a12), or the intraspecific

competition is milder in the species Sl(a This

11°%22) -
indicate mathematically that, in the absense of dispersal,
solutions with a wider class of initial wvalues approach the
stationary solution (u*,0), where the species 52 is extinct
(Fig.2) (Namba & Mimura,1980).

The secoﬁd point we would like to emphasize is that,
in the stationary distributions,populations of two gbecies
exhibit spatial segregation. Thus, competition bwtween two
populations is largely reduced. Coexistence of two competitive
populations with sPatiaily segregated distributions is realized
simply by random dispersal in a heterogeneous environment, such
as considered in this paper, thohgh it is known that spatial
segregation is realized if population pressures are introduced
(Shigesada et al,,1979, Mimura & Kawasaki,1979). Although Levin
(1974) has shown that coexistence of populations, which cannot
coexist in the absence of dispersal, is possible in a
homogeneous environment, when random diffusion is taken into

consideration, the stationary distribution obtained there is

stable only locally and some restrictions must be imposed



on the initial distributions for the populations to coexist.
It is verified by some numerical calculations that our
stationary distributions are globally stable. And the way of
approaches to the stationary distributions is very interesting
(Fig.7). It is known that one species competing with the other
species extends its distribution, slowly at the expense of
habitats of the other species, when the environmental
conditions permit its existence (Miller,1964). Though we can't
compare the details, since our model is too simple, the modei

may have some relevance to such situations.



Chapter 1IV. Asymptotic Behaviour of Solutions of the

Diffusive Lotka-Volterra Equations

l. Introduction

The diffusive Lotka-Volterra equations have been

studied extensively(Hadeler, an der Heiden and Rothe, 1974,
Dubois,lQ?S,Jorné and Carmi,1977). The system of equations

has its origin in the famous Lotka-Volterra equations which
describe the population dynamics of prey and predator on the
assumption of uniform distributions of populatiqns. The Lotka-—
Volterra equations with crowding effects both in the prey

population and in the predator population are

-

= - — \ .’
—-— = (a-Ku-bv)u, . |
* (l) -
-_— —-— —
,iT'" (-c~Lv+du) v,

where u and v are densities of the prey population and the
predator population respectively and all the parameters are
non-negative constants. K and L are coefficients of érowding
effects or intraspecific competition. Here we assume that
vK<ad/c so that the system (1) may have a.pcsitive stationary

* * * ’ *
solution (u ,v ),where u =(La+bc)/(KL+bd) and v ={ad-cK)/(KL+



bd). It is well-known that, when there are norcrowding effects
(K=L=0) ,solutions 6f the system (1) exhibit sustaining
oscillations,and thét when there exist some crowding effects

(X#0 or 1#0),the stationary solution (u*,v*) is globally

stable. Taking account of effects of dispersal in a continuous
environment,the diffusive Lotka-Volterra equations aré formulated
by adding diffusion terms to the system (l)}

2

«— = (a=-Ku-bv)u + 4,V7u,

1
(2)

3t = (~c~Lv+du)v + dzvzv,

where the diffusion coefficients dl and dz are both non-negative
constants., .

Steele(1974) proposed the éystem (2) without crqwding
effects (K=L=0) to explain the patchy distribution of planktonie
populations in a turbulent sea. He considered the system
with zero flux boundary conditions and conjectured that spatial
inhomogeneities would appear by the balance of non—lineér
interactions and diffusion e%fects. Murray (1975) considered the
same problem as Steele's on the assumption of saﬁe diffusion
coefficients,dl=d2=d, and showed that spétial inhomogeheitigs
would diéappear asymptotically. In other words,he denied
Steele's conjecture. |

Since then,various authors have shown asyﬁptotical‘
spatial homogeneity of solutions of the system (2). When
crowding effects exist(K#0 or L#0), glqbal stability of the

spatially ,homogeneous equilibrium solution has been shown
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(Leung,1978,Hastings,1978). When there exist no crowding
effects (K=L=0) ,some authors gave sufficient conditions fbr
stability of the spatially homogeneous .equilibrium solution of
(2) with equilibrium boundary conditions(Rpthe,1976;Mimuré} -
and Nishida,1978) and for convergence tp_spatially homogene¢us
but temébraily oscillating solutions.in the case of zero flux.
boundary conditions(Williams_and,Chow,l978,Mimura,l979); But
they restricted their attention to the case of same diffusion -

coefficients,dl=d =d,or to the case of one-dimensional space,

2

or to the case with some restrictions on the initial data. The

reason is that we must have an apriori bound for solutions

of the equations (2) to use their method and it is very

difficult to obtain it,since the corresponding spatially

homogeneous systém (1) has infinitely many closed orbits.
Some_authofs considered effects of dispersal iﬁ a patéh&

environment (Levin,1974,Segel and Levin,1976,Kawasaki and Teramoto,

1979). An environment is sometimes consisting of discrete

patches and in a continuous environment artificial division

into paﬁches is also taken'pléce_for sampling by an investigator.

Thus when we consider a model taking account of effects of ‘

dispersal,a spatially discrete model should also be considered.

Hastings (1978) considered the spatially diséréte version of o

(2) with crowding effects and showed that the'spatialiy

‘homogeneous equilibrium solution is stable. In this paper,

we will also consider the spatially discrete vetsion of (2).



We will show that all the solutions become spatially homo-
geneous asymptotically without regard to crowding effects.

Our results are'anélogous to those'by Rothé(1976)vand Mimura
and Nishida(1978) in the spatially qdntinuous;model. Howevér,\
we will put no restrictions on diffusion coefficients,
dimension of space and initial values. Especially,diffusion
coefficients for one of the two species may be identically
zZero. The.reason is that we will need only a Liapunov function
and will not need an apriori bound,since we deal with fhé
system of ordinary differential equations ?ather than the

system of partial differential equations.

2. Model

We consider a patchy environment which consists of N
compartments (Fig.1l). We assume that,in the absence of dispersal
of populations between compartments,population dynamics of
prey and predator can be Qesgribed‘by the Lotka;Volterra
equations (1) in any compartment. Adding diffusion ferms to
the system (1),the following system of ordinary-diffefential

equations with 2N variables is obtaihed(Hastings,lQ?S);

‘Efi-= (a-Ku,-bv.)u. - g Du.(u.—u )
dt S ] ijti 3f!
A (3)
dvi N v
T = (-c-Lv.+du.)v, - jﬁlDij(vl—vj)'

- 53 -



u . g Uz U3
v} v V3
i I "I"”
Vi \ Llj
o1 \"\ V]
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k [¥~ = UN
Vk ~“\‘\_ UN-1 VN
YN-1 N
N-1 4

Fig.1l A patchy eﬁvironment consisfing oé N compartments. u,
and v, are respectively population densities of prey and
predator in the i-th compartment. An array means that the i-th
compartment and the j-th are connected,that is,individuals of
prey or predator can move between these compartments. A déshed
array means that theré are somevother compartmeﬁtsvbetﬁéen those

cdmpartments.

where u and v, are respectively population densities of
prey and predator in the i-th compartment and D?j and Dz. are

u ' v
. >0 .p". >0
j (resp. Dj )

non-negative diffusion coefficients. Di
means that individuals of prey(predator) species can randomly

move between the i~th compartment and the j-~th.When at least

v oo A
. or D.,. 1s positive,we
J 13

will say that the i-th compartment and the j-th are connected.

one of the diffusion coefficients Dg
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Here we make two assumptions;
v

(A1) ng = Dgi and DZj =.Dji fdr any’i}j.
(A2) There are no isolated compartments which are not
connected with any other compartments,and no isolated groups
of comparﬁments.
We define two subsets of the set of indices {1,.....,N},
depending on diffusion coefficients.The first is
s = {i]i e {1,..... N} and for any i in S,there exists.an
integer j in S,such that ng > 0.},
and the second is
T = {i]i e {1,..... ,N} ,and for any i in T,there exists an
int;ger 3 in T,such that ng > 0.} .
S(resp.T) may be divided into disjoint subsets Sl;.....,sm
(Tys-----,T ). S_ for k in {1,.....,m} is defined as

for any i,j in Sk,there exists a sequence of distinct integers

,pl,.....,ps,such that D? > 0, DY > O,.....,Du

. > 0.
lpl : plp2' ) PSJ .

Similarly T, is defined for k in {1,.....,n} as

k
for any i,j in Tk,there exists a sequence of distinct

. \'4 \'A
integers ql,.....,qt,such‘that Diq > 0, Dq a > 0,ceccoy
1 1=2
\'"
D . > 0.
I

The set of compartments whose indices ére.in Si(resp.Ti) is a
local region where individuals of prey(predator) species can
move, and the set of compartments.whose indi@es are in S
(resp.T) is the whole region where the population of prey

(predator) species can move. For example,if an environment
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UI bt iliatedaindiie 1ot Ui """"" Uj f’ gy UN -
v1 —————— vi > - Vi e VN
Fig.2 An example of regions where populations of prey or

predator can diffuse. A fat line means a barrier for the
population. An arfay means fhat a population can diffuse across

the boundary;

is such as in Fig.2,then

Sl::{l’o-é-.'i} ¥

52={j'oo¢0-’N} r

and

S=51U sz={l,..o--'i’j,co-.olN} 4
and

T={i'.o.0-’j}o

From the assumption (A2),next Lemma immediately follows..
Lemma " Assume (Al) and (A2). Then, either of the following’

two cases hold;

(i) s §§ empty and T doincides with the set {1,.....,N}

or vice versa.
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(ii) Both S and T are not empty and at least one integer

belongs both to S and to T. If there are ‘some disjoint

4subsets,Sl,.....,Sm,in S and Tl"""'Tn'in T, then forxr

.each.si(resp.mif there exists at least a set Tj(sj).such ‘

. that one integer belongs both to Si(Ti).and to Tj(Sj).

Note that S(resp.T) is empty means that diffusion
coefficients for prey (predator) species are identically =zero.

We consider the system (3) in the positive orthant VQ

in 2N-dimensional phase space. Q is explicitlyiwiitéén as
Q= { (ﬁl,.....,uN,vl,....;,vN)l u, € (O,+m),vi e (0,+x)

for all i}-. |
We will use an abreviated notation (u,v) for a pdint (ul,...>
“'uN'Vl"""'VN) in . Clearly the positive orthant Q is
an‘invariant set of the system (3). The 3ystem (3) has only
one spatially homogeneous equilibrium solution (u*,v*) in Q,
where ui=u*=(La+bc)/(KL+bd) and vi=v*=(ad—cK)/(KL+5d) for
any i. | | | |

We consider three types of boundary conditions,

(i) Equilibrium boundary condition.

ui=u* or vi=v* for some i.
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(ii) Periodic boundary condition.

Theré exist some circular relations inbtheAconnectivity:
of compartments,that is,there exists a sequence of distinct
integers,pl,.....,pc,such that |

k

D 5 0,for i in { 1,.000.,c-1} ,
P;Pina - ‘ IR

and‘

where the subscript k takes u or v.

(iii) Zero f£flux boundary condition.

We make no conditions on the connectivity and the values
of state variables. Then the system consisting of N compartments

is a closed system and there are no fluxes from and into the

system.

Hastings (1978) showed global stability of the spatially
homogeneous equilibrium solution of (3) with zero flux
boundary conditions, when crowding effects exist. Therefore
our main interest is in the case without crowding effecés.-
Some authors (Jorne and Carmi;1977,Hastings,1978,Mimura and
Nishida,1978) dealt with a more general preffpredator system
consisting of many species. However,since the essential featuré_
of the problem can be appreéiated in the simple two species

system, we will deal with only the two species system.



3. Result

To study global behayiour of solutions of (3) ,we
construct a Liapunov function V which has its origin in the -
conservative quantity of the eguations (1) with K=L=0.

Let V(u,v) be
v(u,v) = Z {d{(u -u*) - -u* log u, /u*]
i=1
+b{(vi—v*)~v* log vi/v*]} .

(4)

Using (3) and rearranging,we obtain

: N
dV .~ % [aR(u.-u*)? + bL(v.-v*)2]-
dt i=1 i 1

_ 2 LV o2
‘ lzj{du*D J(ui uj)_/(uiuj) + bv Dij(vi vj) /(vivj)],

(5)

where the sum I is taken for j ¢ {1,.....,N-1} and for
i>3 ,

i>j, and we also used the assumption (Al). The functlon V is
positive-definite, but av/dt is not necessarlly negatlve—deflnlte.

Thus the following theorem by La Salle and Lefshetz(1961)
should be noted.
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Theorem 1 (La Salle and Lefshetz)

" Consider the autonomous system

X = X(x), X(0) = 0. | -

" Let V(x) be a scalar function with continuous first

. partial derivatives. Let designate the domain of x where

z

v{x) < r. Assume that Qr is bounded and Within.Q¥

V(x) > 0 for x # 0,_and V(x) < 0,

. Let R be the set of all points within Qr where ﬁ(x)=0 and

M be the largest invariant set in R. Then every solution

x(t) in Qr tends to M as t>tw,

. We distinguish two cases according as crowding effects

do exist or do not.
(i) XK#0 or L#0.
If K#0,the set R in Theorem 1 consists of all points
which satisfy the relations | '
ui=u* for all i
and
viévj for any i,j in Tk,k=l,.....,n.‘
FromAthe'first equation of (3),next relations must be

also satisfied at all points in the largest invariant set M.
in R;

0o = du* _ (a-Ku*~bv.)u* for any i
at i any i.
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Therefore vi=v* must also hold for any i and M consists of
only the spatially homogeneous equilibrium solution (u*,v¥*).
Global stability of (u*,v*) is a direct consequence of Theorem

1. On the other hand,if 1#0,similar arguments hold.

(ii) K=L=0.
In this case,we consider two subclasses depending on

g

boundary conditions,
(a) Equilibrium boundary condition.

Suppose that the value of u; is fixed at u* and that 1

is in Sl‘ From the equation (5) all points in R must satisfy

the relations

ui=u*,for any i in Sl’
ni=uj,for any i,3j in Sk,k=2,.,...,m,
and

v

i=vj,for any i,Jj in Tk,k=l,.....,n.

If i is in Si,vi=v* must also hold in the invariant set M in
R as before. From the equations (3)

dui
I = (a—Kui—bvi)ui .

must take the same value for any i in each Sk and

dvi . :
T = (--c--Lvi+dui)vi
must take the same value for any i in each Tk'

Thus,in the invariant set M

u.=u. and v.=Vv,
r J i 3



must be satisfied for any i,j in each S, and T, . It follows

k k
from Lemma that ui=u* and vi=v* for all i in the invariant

set M,which means global stability of the spatially homogeneous

equilibrium solution (u*,v¥).

(b) Periodic and zero flux boundary conditions.
All points in R must satisfy the relations |
ui=uj,for any 1,3 in Sk,k=l,.....,m,
and | .
vi=vj,for any i,j in Tk,k=lf.....,n.
By similar arguments as those in (a),all points in the invariant
set M must sgtisfy the relations |
ui=uj and Vi=Vj
for any i,j.
Thus,
M= {(u,v)] ui=u(t),vi=v(t) for any i and u(t) and
v(t) satisfy the system (1) with K=L=0.} .
By Theorem 1l,we can conclude that any solution must converge
to a spatially homogeneous and temporally oscillating éolution.
This means asymptotical spatial hombgeneity of solutions of

the System (3).
Our results are summarized as follows.



Theorem 2 Assume (Al) and (A2). Then any solution of the

system (3) becomes spatially homogeneous asymptotically
and

(i) if either X#0 or L#0,or K=L=0 and at’leaSt one

- boundary condition fixes u;, or v, at its équilibrium

" value,then the spatially homogeneous equilibrium solution

(u*,v*) is globally stable.

(ii) If K=IL=0 and the boundary conaitions'are periodic

" or zero flux,then asymptotical solutions are spatially

homogeneous and temporally oscillating,though they depend.

on initial wvalues. .

rd

«

Remark Note that above conclusions are valid for any positive
initial values and that diffusion coefficients of one of

two species may identically wvanish.

4, Discussion

We could conclude that any solution of the System (3)

is spatially homogeneous asymptotically without restrictions

on diffusion coefficients,dimension of space and initial
values. However, those asymptotical solutions are temporally-
oscillating and dispersal of populations of prey and predator

interacting éccording to the Lotké—Volterra equations cannot



stabilize the system in a homogeheous enyironment. Kawasaki

and Teramoto(1979) considered a spatially discreté version of
the diffusive Lotka-Volterra equations in a heterdgénebus
environment and showed thatbsolutions converge.to a spatially -
heterogeneous stationary solution. In the previous section,'

we assumed positivé initial values. When some initial values

are zero and diffusion coefficients of either species are zerxo
between some compartments,behaviour of solutions is very different
(Kawasaki and Teramoto,1979). For example,if u1(0)=0 and D§j=0_
for all j,then ul(t)=0 for t > 0 and the solution will never _
become spatially homogeneous. This may offer a new interesting

problem for us.



Chapter V. Emigration of a Population and Stability of

a Prey-Predator System
1. Introduction.

It is known that population densities of éome
species undergo large fluctuations in simple ecosystems
consisting of a few species, especially in communities in
the Arctic Circle or in artificially forested woods (Odum,
1971). Some populations exhibit periodic 6sci11ations and
others do irregular outbreakes. Lepus americanus and its
predator Lynx canadensis(MacLulich,1937), and lemmings
and foxes which eat lemmings(Elton,1924) are famois species'
whose densities oscillate periodically. Populations of
some insects, for example, the grey larch budmoth Zeirophera
dintana(G.) in the European Alps (Baltensweiler,1964,Auer,
1971) and the blackheaded budworm 4dcleris variana(Fern.) in
Canada (Morris,1959), also exhibit cyclic oscillations..The
spruce budworm Choristoneura fumiferana(Clem.) in Canada
experience rather irregular outbreaks(Pilon & Blais,1961).

Mass migrations at peak densities are one of the
characteristic phenomena which are known in such populations
(Baltensweiler,1964, Pilon & Blais,1961). Lemmings in Norway
(Elton,1942, cited from 0dum,1971) may be the most famous
example. Owls in North America which eat lemmings also make

southward migrations, and cyclic invasions of owls to the



United States which correlate with cyclic regressions of lemming
populations, have been observed(Shelford,l1l943,Gross,1947, the
latter is cited from Odum,1971). Such emigrations from the crowded
habitats have definite directions and few individuals return to
their habitats. Regions invaded by the pbpulations are not so
fit.for growth of the populations as their habitats (0dum,1971).

It is an ecologically interestiﬁg problem to study
what role emigration plays on stability of an ecosystem in which
jpopulétion densities oscillate periodically. Odum (1971) said
that emigration from crowded regions is a factor of crash, or
‘'sudden decrease of population densities. However, if the population
does not disperse from the crowded habitats,laék of foods
becomes severer and crash of the populations may occur. On the
other hand, many theoretical workers (for example,Comins & Blatt,
1974, Shigesada,Kawasaki & Teramoto,1978, Kawasaki & Teramoto,
1979) have suggested that animal dispersal and heterogeneity of
the environment enhance stability of some ecosystems. Therefore,
we will study, in this paper, the role of emigrarion in populations

whose densities oscillate periodically.
2. Model

We consider populations of two species, prey and
predator, or plant and herbivorous animal. For simplicity, we
will call them prey and predator in both cases. Periodic
oscillations of densities of prey and predator was predicted

theoretically by the Lotka-Volterra equations(Lotké,lQZS,Volterra,



1931). However, many questions have been proposed on possibility
that observed cyclic oscillations are simply due to interactions
of prey and predator (Cole,1951, Ito & Kiritani,1971). On the
other hand, it is known in laboratory experiments that, in a
simple two species systems of prey and predator(Luckinbill,1973),
and of host and parasite (Utida,1957), population densities -
oscillate periodically, even if the environmental conditions

are kept physically constant. It is also suggested that
cyclic oscillations of population densities of Lepus americanus
and Lynx canadensis may be explained by interactions of prey

and predator (Ito,1978). Therefore, we will consider the case when
periodic oscillations are due to interactions of prey and
predator.

We assume that interactions of prey and predator are
of Holling type(Holling,1959), instead of Lotka-Volterra type.
The first reason is that the former is derived from more
realistic assumptions and the second is that amplitudes of
periodic solutions of the Lotka-Volterra equations crucially
depend on initial population densities. We also assume that
dynamics of the prey population is described by the logiStic
equation in the absence of predator. As is shown later, we can
prove, from the above assumptions, that densities of prey and
predator oscillate periodically. We will consider the case where
only individuals of predator can migrate from the habitat R, to

1

the other region R especially when the population density

2’

is high in the habitat Rl(Fig.l). The region R, is not suitable

2

for growth of the population, since it cannot make use of its



prey u

predator v =>| predator v

1 2

limit cycle emigration

Fig.l, An environment where populations of prey and

predator live,

main prey. Thus, the growth rate of the population in R2 is
negative, although some individuals can live in the ;egion.
Further, we assume that emigration is described by diffusion,
that is, individuals of the population move randomly, and the
rate of emigration is in proportion to the difference of
densities in two regions, since there is no evidence to show
that emigration is restricted in a period at the peak density
and there are no available data on relations between population

. ‘
densities and rates of emigration. For example, lemmings do

seasonal migrations even at low densities, and at high densities
emigration is not so extensive as was previously considered(Ito
& Kiritani,1971). Therefore, we assume random motion of
individuals, which may be the simplest assumption.

Let u,vy and v, be population densities of prey in R

1

and of predator in R1 and R2, respectively(Fig;l). Then, from



the above assumptions, we can formulate the equations satisfied

by u, vy and v

5%
bv

du _ _ _ __l_
gt - (a - Ku oarT) W
dv

1_ ., du _ _
gt = et e Ve T Dyivy T Vo)
dv2
gt = "CVy T D,lvy - vy),

(1) -

where parameters a,b,c,d,e,K and Dv are non-negative constants

We have assumed that death rates of predator in Rl

same,

2

are

We are interested in the case when the equations (1)

with DV=O have a stable limit cycle. Our problem is how stability

of the system changes when emigration of

predator is taking

into consideration. In the next section, we will investigate the

equatibns (1) with DV=O, as a preliminary study.

3. Stability of a Prey-Predator System without Emigration

When Dv=0’ the equations (1) can be reduced to

bv
du _ - 1
at (a - Ku = 37w,
(2) .
dv
B du
g = ¢t s vy
since v, asymptotically becomes zero, independently of u and Ve

Investigating isoclines du/dt=0 and dvl/dt=0 in the phase plane

(u,vl)(Fig.2), we can distinguish following two cases depending

on the value of u=c/(d-ce);
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Fig.2. Isoclines du/dt=0 and dvl/dt=0, and directions
of the vector field, when ae-K>0 and 0<ﬁ<u0=(ae—K)/

2eK.

(1) Whenzﬁza/K, the equations (2) have two critical
points, the origin (0,0) and (a/K,0).

(2) When O<u<a/K, or a(d-ce)-cK>0, the equations (2)
have three critical points, the origin (0,0), (a/K,0) and
(E,Vi), where u=c/(d-ce) and §i=(a—KE)(eﬁ4l)/b. ‘

From an ecological pdint of view, the origin is a
steady state where both species are extinct, and the population
of predator is also extinct at the steady state (a/K,0). By
linear stability analysis, we can confirm that the origin is
unstable in both cases. Then, we study stability of the critical
pbint (a/K,0). Linearizing the equations (2)near (a/K,0),

eigenvalues of the coefficient matrix are

a (d-ce)-ck (4)

A= -ay ae+K °
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Comparing the eigenvalues and the condition for the critical
point (u,vl) to exist with positive values, we can see that,
[1] ifvthe critical point (E,?i) does not exist,
the critical point (a/K,0) is stable,
and that

[TI] if the former exist, the latter is unstable.

Above arguments show that, when we consider u as a
bifurcation parameter, the critical point (a/K,0) loses
stability at u=a/K, and that a new critical point (5,51) will

bifurcates (Fig.3a)

Then, we examine linear stability of the critical
point (E,Vl). The eigenequation of the coefficient matrix of

the linearized equations near (E,Vl) is

a0 O A SRR

5]

2
K

Fig.3. Schematic bifurcation diagrams when (a) DV=O and

(b)DV>0. Amplitudes of v, in stable stationary

1
solutions or stable limit cycles are shown.



2 _‘ae;ﬁ;ieKn T+ duié-Kg) - 0. (5)
(eu+l)

If ae-K < 0, the critical point (E,?l) is stable, since

dﬁ(a—Kﬁ)/(eﬁ+l)2 > 0 and [ (ae-K)-2eKulu/(eu+l) < 0. When ae-K

> 0, the eigenvalues become pure imaginary at

B ‘ae—K

U= Y = 3R | (6)

and they have negative real parts if u > u, and have positive

0

real parts if u < u Therefore, Hopf bifurcation occurs at

0
u = Uy, and periodic solutions bifurcate from the stationary
solution (E,Vl)(see, for example, Marsden & McCracken,1976).
We can also show that the bifurcation is supercritical, and that
stable periodic solutions exist in the parameter region where
the stationary sclution (E,Vl) is unstable(u < uo)(see, Appendix
B). An gxample of a stable limit cycle is shown in Fig.4.
Above results are summarized as follows (see. also Fig.3a);

(E) If u > a/K, or 0 < d < c(ae+K)/a, the critical

point (a/K,0) is stable and the population of predator

goes to extinction.

(s) If a/K > u > u,, or c(ae+K)/a < d < ce(ae+K)/

0’
(ae-K), the critical point (G,Vl) is stable, and
densities of prey and predator approach positive

stationary wvalues.

(U) If u, > u > 0, or ce(ae+K)/(ae-K) < d, the

0
critical point (ﬁ,?l) is also unstable and a stable
limit cycle exists,and densities of two populations

oscillate periodically.



Fig.4. Projections of limit cycles on the plane

(u,v (a=b=c=d=1,e=1/2 and K=1/10).

)
Thus, if the predation rate is too large, that is,

predation is too effective, the steady state where two

populations coexist becomes unstable, and densities of two

populations oscillate periodically, although the population

of predator becomes extinct if the predation rate is too

small. We should note that we can prove global stability of

the criticalvpoints (a/X,0) and (u,vl), when they are linearly

stable, by constructing Liapunoff functions (Appendix C). We

can also prove existence of large amplitude periodic solutions

by applying Poincare-Bendixson Theorem, although those proved

by the bifurcation theory are only small amplitude ones 2in the

neighbourhood of the bifurcation point (Appendix D).
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4. Emigration and Stability of the System

In the previous section, we have shown that the
equations (1) with D, = 0 have stable periodic solutions when

ae-K > 0 and u < u are satisfied. Our next problem is how

0
stability changes when emigration of predator is taking into
consideration. Hereafter, we will consider only the case with
ae~K > 0.

Let
_ c(c+2Dv)
c(d—ce)+(d—2ce)DV

(7)

be a bifurcation parameter. Note that u' is a monotone increasing
function of D and that u' coincides with U when D _=0. similarly as
before, the following two cases should be distinguished depending
on the value of u';
(1) when u' > a/K, the equations (1) have two critical
points, the origin (0,0,0) and (a/k,0,0).
(2) When 0 < u' < a/K, the equations (1) have three
critical points, the origin (0,0,0), (a/K,0,0) and (E',?l',

52'), where

_ c(c+2DV)
u' = c(d—ce)+(d—2ce)DV ’
V)' = (a-KU') (eU'+1) /b, ' (8)
. D
V' = oo 1
v

The origin is unstable in both cases. As in the previous section,
we study linear stability of the critical point (a/K,0,0). The
eigenequation of the coefficient matrix of linearized equations

in the neighbourhood of the point is
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5 Zc(ae+K)—ad+2(ae+K)DV

(A+a) {r™ + A

ae+kK

a[c(d—ce)+(d—2ce)DV]—cK(c+2DV)

- ae+K } =0. (9)

If

a[c(d—ce)+(d—20e)DV] - cK(c+2DV) <0, (10)
or u' > a/K, the critical point is stable and it is unstable if
the inequality of (10) is reversed. Therefore,

[I] if the critical point (u' v ',?2') does not

1
exist, the critical point (a/K,0,0) is sﬁable,
and
[II] if the former exist, the latter is unstable.

Thus, there occurs a bifurcation phenomenon at u'=a/K, and the
critical point (ﬁ',?l',Gz') bifurcates from the brancP (a/K,0,0)
(Fig.3b). We should note that global stability of (a/K,0,0) can
be also shown when u'>a/K(Appendix C). |

Our final problem is at what point periodic solutions
bifurcate when the value of u' varies. When we linearize the

equations (1) near the critical point (ﬁ',vl',vz'), the eigen-

equation of the coefficient matrix is

Mirari+Barc=o0, ' (11)
where _ : 5 5
-"_ — —
A = 2eRu’-(ae-K) 4, + ¢+ D+ e,
eu'+l v
— D2
'— — —
B = 2eKF~ (ae-K) T (c + DV + _%B_)Z (12)
eu'+l T
, a-Ku' .c(c+2Dv)
14
eu'+l C+Dv



and

R
C = a-kKu_ c(c+2DV) .

eu'+1

‘According to the criterion by Routh and Hurwitz {see, for example,
Cesari,1971), if all of the inequalities

A >0, C>0, AB-C > 0, (13)
are satisfied, all the solutions of (ll) have negative real parts
and the critical point (ﬁ',?l',vz’) is linearly stable. If at
least one of the inequalities (13) is not satisfied, then the
critical point is unstable. By the condition u® < a/K, C is

always positive. From the equations (12)

, 2
AB-C = 2eKu'- (ae-K) o {ZeKG'—(ae—K)'E,(c+D +Dv )
eu'+1 eu'+l v c+D,
2
D _w=y c(c+2D )
+(c+D +-Y 2 , azKul 7 V.. }-
- v ¢+D - c+D
v eu'+l v
2
w1 ¢D_"(ct+2D_)
+ a“Ku . v . v . ‘ (14)
eu'+l (C+DV)

When ae-K > 0, there exists a unique u, and AB-C becomes zero at

u'!' = uci<-u0, (15)

and then A and B are positive, at least when Dv is small,
Therefore, the equations (11) have two pure imaginary roots and
one real root having negative real part, and the critical point

(—73' lvl

a Hopf bifurcation occurs at E'=uc and periodic solutions

',Vé') is stable if u' > u_ and unstable if u' < u,. Thus,

bifurcate. We have also verified from numerical evidences that
the bifurcation is supercritical and that periodic solutions are

stable.



Fig.5. Stable regions of stationary solutions in the
parameter space (K,DV). The region E is the stable

region of (a/X,0,0) and the region S is the stable

region of (E‘,Vl‘,gz').

solutions are unstable and there exists a stable

In the region U, both

P

limit cycle (a=b=c=d=1 and e=1/2).

In summary (Fig.3b),
(E) if u' > a/K, the critical point (a/K,0,0) is
stable and the populations of predator become_extinct.
(s) If a/K > u' > us the critical point (E',Vl',
52') is stable and densities of prey and predator
approach positive stationary values.
(U) If ' < u,, both critical points are unstable

and there exists a stable limit cycle. Thus, densities

of two species oscillate periodically.
Although , behaviour of solutions of the equations (1)
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Fig.6. Schematic bifurcation diagrams as K being a
parameter on the lines (a) D_=0 and (b) D_=1/2(

see also Fig.5).

Fig.7. Schematic bifurcation diagrams as D_ being a
v
parameter on the line K=1/10. Datails are same

as in Fig.5.



has been understood, it is not so easy to see the relation
between stability and the rate of movement (or the value of Dv)
from the above analysis. Then, we investigate the relation
between stability and the value of Dv' by dividing the parameter
space (K’Dv)’ depending on stability of the critical points -~
(Fig.5). In Fig.5, the letters, E, S, and U attatched to three
regions correspond to the headings of the previous summary.

1 in

stationary solutions and periodic solutions, as K being a

Fig.6 is bifurcation diagrams which show amplitudes of v

parameter on the lines (a) DV=O and (b) Dv=l/2.in Fig.5. We

can see that, in the interval Kc' < K < Kc, periodic oscillations
are stopped by introducing emigration of predator. The
stabilizing effect of emigration can be most clearly seen from
Fig.7, which is a bifurcation diagram as D, being a parameter

on the_line K=1/10 in Fig.5. Amplitudes of periodic solutions
decreases as the value of DV increases,.and the critical point
(ﬁ',Vl',VZ') becomes stable if D, exceeds the critical value
DVC, although the critical point (a/k,0,0) which corresponds

to the steady state where predator is extinct becomes stable

if Dv is too large,
5. Discussion

We have considered a mathematical model to study
the role of emigration to an unsuitable.region for growth of
a population. We have shown that amplitudes of cyclic
oscillations can be reduced by emigration. From an ecological

point of view, in the absence of emigration, the population



densities exhibit cyclic oscillations with large amplitudes
and the populations experience crashes. Therefore, they are
exposed to danger of extinction at low densities, by some
stochastic factors such as decrease of chance of mating. Since
decrease of amplitudes of oscillations means increase of the
minimum density, the population can escape extinction if the
population of predator makes emigration. Therefore, emigration
enhances chance of persistence of populations and it is a
stabilizing factor and not a factor of crash. On the other hand,
it has been sometimes said that emigration of excessive
individuals is a cause of crash of a population{(Odum,1971). It
is difficult to compare results of ourbtheoretical model and
field observations, since our model is very simple, and in
field observations we cannot compare the case with emigration
and without emigration. However, we believe that emigration
is at least a part of important factors for regulation of
populations whose densities experience large flucfuations(Ito
& Kiritani,1971).

There may exist some objections against our model,
especially to the assumption that emigration is described by
simple diffusion. However, there are no available data on clear
relations between densities of populations and numbers of
emigrating individuals. Therefore, we should use the simplest
assumptibnvwhich serves as a model for a wider situation. We
believe that random motion of individuals is such an assumption.
However, we can consider effects of alternative assumptions on

emigration. For example, we can imagine the case where the rate



of emigration depends only on the density of predator in its habitat.

h habitat. Then, the middle of the equations (1) becomes

dv du
gt = (-c + m) Vl - J(Vl), (16)

if we assume that the rate of emigration is described by J(vl).\
We consider effects of two assumptions on J(Vl). The first is

that J(vl) is directly proportional to v that is, J(v1)=Dv1.

1’

In this case, apparently emigration of predator stabilizes the

system, since introduction of emigration is identical to

increase of the death rate c. The second is the case where there

is a threshold, that is, J(vl)=kH(vl - vlc), where H/x)=0 if

X < 0 and H(x)=x if x > 0., If vlc is smaller than the maximum

density in the oscillation, emigration serves as a stabilizing

factor also in this case, although the critical pointr(ﬁ,gi)

is unstable without regard to the value of k, if vlc > Vl'
Therefore, the stabilizing role of emigration does

not depend on details of types of emigration, although there may

exist more alternative assumptions. We may conclude that

emigration of predator is a stabilizing agent in . a prey-predator

system in which population densities exhibit cyclic oscillations.

We hope further development of researches for relations between

population densities and rates of emigration.



Chapter VI. Final Discussion

We have considered four mathematical models to
study the effects of migration, or the relation between
migration of populations and stability of ecosystems. We
have shown that migration of a population is a stabiliz ng
factor in a heterogeneous environment. Two competitive
populations, either of which becomes extinct in the absence
of migration, can coexist in a heterogeneous environment,
if random diffusion of the two populations .is introduced
(Chapter III). In a prey-predator system in which densities
of two populations exhibit periodic oscillations with large
amplitudes, emigration of predator decreases the amplitudes
and chance of extinction of two populations may be reduced,
since their densities does not decrease extremely low{Chapter
V). However, we should note that random motion of individuals
sometimes leads to extinction of the population, if the rate
of migration is too large (Chapters II and V). A population
which grows or decays exponentially at any point in a
habitat can establish a stationary distribution, if the
population is dispersing according to dispersive forces
including the population pressure (Chapter II). The population
can form a stationary distribution also in a limited area,

even if a randomly diffusing population grows explosively.



The idea that migration of a population enhances stability of
an ecosystem has been also suggested by some authors (Comins

& Blatt,1974, Shigesada, Kawasaki & Teramoto,1978, Kawasaki

& Teramoto,1979). Therefore, we may conclude that migration
of a population is an important mechanism to regulate the
number of individuals in a population and that it stabilizes
an ecosystem in a spatially heterogeneouS‘eﬁvironment.

In a spatially homogeneous environment, population
densities of prey and predator exhibit synchronized
oscillations and random migration cannot stabilize the
system in an ecological sense, One of the reasons may be that.
the Lotka-Volterra equations without crowding effects are
structually unstable, and that they lack ecological reality.
Therefore, we must consider the effects of migration in the
case when there exists a stable limit cycle. The effects of
diffusion on the dynamics of biochemical oscillators have
been also studied(see, for example, Nicolis & Prigogine,

1977) and it has been shown that the synchronized oscillation
can be unstable and that a nonuniform steady state or an
aéynchronous oscillation can arise, when diffusion of one
species is slow enough(Ashkenazi & Othmer,1978). However,
such a model has not been studied in ecology and we are in
need of a future study, before drawing conclusions,

It is known, as the Turing idea(Turing,1952), that
a spatially constant stationary solution can be unstable, and

that a new stable spatially heterogeneous stationary solution



bifurcates, in biochemical activator-inhibitor systems (Gierer
& Meinhardt,1972, Auchmuty & Nicolis, 1975, Herschkowitz-
Kauffman,1975) and in prey-predator systems (Mimura & Murray,
1978, Mimura, Nishiura & Yamaguti,1l979). Recently, Mimura

and Kawasaki (1979) have shown that cross-diffusion instability
occurs in a system composed of two competitive populations
and that new stable states exhibiting segregation phenomena
bifurcate. Therefore, diffusion and the population pressure
are important mechanisms to produce heterogeneous spatial
distribution patterns, in spatially homogeneous environments.
Formation of spatial patterns in a homogeneous environment
may be related with the potential ability to adapt a
population to a heterogeneous environment (Mimura, personal
communication). Therefore, it will be a future probl;m to
study in what ecological situations spatial heterogeneity is
of fundamental importance.

In conclusion, studies on effects of migration is
far from complete and we need further refinement and extension
of models. For example, effects of migration in two—dimensidnal
environments, in three-species system, in fluctuating
environments and in systems with time-delays in interactions,
have been hardly studied. Further, we should give not only
qualitative descriptions but also quantitative descriptions
of particular ecological situations. Recently, Shigesada(1979)
has demonstrated that results derived from a model taking

account of the self-population pressure exhibit a good fit



with the data obtained from an experiment on dispersal of
antlions by Morishita(1954). Such a work will become more

important.
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Appendices

A, Existence of a stationary solution when d=0, in Chapter III.

We consider the problem (11),(12) and (9 ). The equétion

(11) has the first integral

(@0/ax)? = a- H(®), (a1)
where
H(v) = 2 IX G(z)dz
- 2 (blbz—l)v3 - (abz—-l)yz, 0<v<B8,
- - (A2)
1 2 .
-3 (v=1)"(2v+1) + ¢(8), B < v 2 v*,
9(8) = 5 (2b10,87 - 3aby8” + 1), (23)
and
o = (av/dx(0))? (n4)

is an adjustable parameter to be determined later. As the right

hand side of (Al) must be non-negative, 4 must satisfy the

’

conditions

o 01 A S

v

.  (a5)
a > ¢(p) |

(see Fig.Al). We can solve the equagion (Al), using another
adjustable parameter £ which satisfies
V() = B o - | (A6)

The implicit solution v¥(x;B) is expressed as follows;
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a-~H{v)

T -
.~ Lo ™~

a ]
a-$(B) 1
0 n A
Fig;Al. - Dependence of a~H(v) on v.
f§ {- 2 (b.b —l)z3 + (ab —l)z2 %a}— %' dz = x
0 3 172 2 !
0 < x 2 £(0 2¥v'28)
1
* Y
S (2P 2z + e - 9(®)) 2 az = Lx,

N

L 2 x 2 LB 2V < v¥).

For the solution actually to satisfy (Al) and (9a), the next

relations
- 1
/8 - 2 (bb,m1)z? 4 (aby-)z? 4 o) 2 dz = g,
‘ . (A8)
| |
0L (z-1)2(22+41) + o - ¢(8)} 2 az = 1-£,

B 3
must be satisfied. We define the functions ﬂ(afB)'and R{c;B)
by the quantities of the left sides of the equations (A8) and
let . | |

L(o;B) = £(a;B) + R(a;B). (n9)

- 95 -

(A7)



Then, the condition (A8) is reformulated as
L = L(a;B). ' (A10)

If we can determine o as a function of B, from the relation
(Al10), £ is also determined by the firét of (A8) as a function
of B, through the relation o= a(B). We will usebthe following i
properties to prove that a(B) is determined uniquely from the
condition (AlQ);

(P1l) L(c;B) is a monotone decreasing function of o for
fixed B and approaches zero as o goes to infinity;

(P2) If ¢(B) > 0, then

lim R(a;B) = lim L{a;B) = +«,
a>¢ (B) a->¢ (8)

and if ¢(B) < 0, then

lim £(a;B) = lim L{c;B) = +w,
o>0 o0 .

(P3) For fixed a, £(o;B) is a monotone increasing
function of 8 and L(c;B) is a monotone decreasing function of B .

(P4)-¢(B) is a mondtone decreasing function(Fig.A2) and

(5
113\
0

B l.b'//-n
1
-3~(1-8)

Fig.A2, Dependence of ¢(B) on 8, when & > 1.

- 96 -~



L(G; )

\ (a)

--_-./7_,._—-—

4

-
¢.——'-----—.- - /-
]

Y
0 $laidy 9 900

1
1
1
v
)

Hasti B=n* {v)

D (U

e

o #(3) R 1))

]

Fig.A3. The schematic representations of relations between o and

L(a;B’, when (a) 6 < 1 and (b)é > 1, and of determination

of a.

if 6=a3b2/b12 <1, $¢(B) > 0 for any B.
If § > 1, there exists a unique B* such tﬁat
$(B) > 0 for 0 < B < B%,

and ¢(B) < O for g* < B < a/b,.

In view of the above properties, we can draw the relations

between o and L{a;B) schematically as shown in Fig.A3,
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distinguishing the two cases according as ‘6 <l or & >1. Therefore,
if we fix L, the size of the region,o is determiﬁed uniqﬁely for
any B. Then, we can determine £=£(B) by the first equation of_(Aé),
and (A7) is a solﬁtion of the equation (Al), in terms of a(B)
and £(B). By the above arguments, we could proVe that the pfobiem
(Al) and (9a) has a unique solution for any B, and so the problem
(11), (12) and'(9a). With respe;t to the patching poinﬁ, we can
sée that £(B) is a monotone increasing funcﬁién and takes . the
maximum value when B=a/bl, since E(d;B) is monotone increasing as
a function of B , and monotone decreasing as a function of o,
and d=d(8) is a monotone decreasing function of B. The maximum
length £(a/bi) has a qualitative difference depehding on the value
of §; ' : -
(i) if 6 < i, £(a/bl) is bounded wi?hout regard to the

size of the regién (o,1),

and

(ii) if § > 1, it is a monotone increasing function of L

and goes to infinity as Lo+,
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B. Stability of bifurcating periodic solutions when DV=0,

in Chapter V.

In section 3, we have shown that there occurs a Hopf \.
bifurcation at u=u0(or d=c (ae+K)/a) as u(or d) being a
bifurcation parameter. Here, we study stability of these
periodic solutions (or closed orbits in the phase plane).

We consider a closed orbit y. Let o be a point on
plane S which is transversal to the closed orbkit y. A trajectory
which start o at t=0 may intersect with the plane S at some -
points as time goes on. Let B be the first of such points. Then,
the Poinqare map P is a map P(a)=B. Let S be a half line defined
by vl=fi and u>u, in our case. Then, we can consider ? Poincare
map P(ﬁ}ﬁ) depending on the parameter u, since our‘clbsed orbits

depends on the bifurcation parameter u. A displacement map V is

defined by
V(u;u) = P(u;u) - u.
Let g be
3
Ve —
g = .§_.._3.(u;u) .
au

Then, it is known (Marsden & McCracken,1976) that
if g < 0, periodic solutions bifurcate in the
region where the critical point is uﬁstable, and that
they are stable.
If g > 0, periodic solutions bifurcate in the

region where the critical point is stable and that

they are unstable.
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In our case,

T beK (ae~K)
c (ae+K)

g = -6 <0,

and it can be seen that the bifurcation is superxcritical and
that these periodic solutions are stable. We can also consider

stability of periodic solutions as a,d or K being a bifurcation

parameter,

C. Global stability of the critical points when Dv=0’

in Chapter V.

In the following, we will show that the critical
points of the eguations (2) are globally stable, if they are
linearly stable, by the Liapunoff's method. Liapunoff functions
used below is due to Nakajima (1978).

(Bl) Stability of (a/X,0) when u > a/K

Let Hi(u,vl) be a function
Hl(u,vl) = bvl + (d-ce)[(u-a/K) - (a/K) log u/(a/K)].

Hl(u,vl) is positive~definite and it becomes zero if and only

if u=a/K and v.=0., From the equations (2),

1
dH
’ 1 _ _ d-ce _ a2 = a .
I = ot 1 [K(u K) (eu+l) + b(u K)Vl]
20,

and the equality is satisfied if and only if u=a/K and v.,=0.

1
Therefore, Hl(u,vl) is a Liapunoff function and global stability
of the critical point is a direct consequence. The above analysis
is easily extended to analysis of stability of the critical
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point (a/K,0,0) of the equations (1), making use of a function

D
H2(u,vl,v2) = bv, + b

2

c(d-ce)+(d-2ce)D -
+ Y [(u-2)-2log +—r1,
c+DV K’ K (a/xK)

instead of Hl(u,vl).

(B2) Stability of (E,Vl)
We consider stability of the critical point (5,51),
when ae-K > 0 and u > u,. We define H(u,v;) by

H(u,vl) = vlp[(ufﬁ) - u 1log u/ul
v

1

c —
- por=ry I (s—vl)s
Vi

where p is a parameter defined later. H(u,vl) is also positive-

-

p-1l ds,

definite and vanishes if and only if u=u and v By the

17V
equations (2)

| %% = Zéi—(l—l:f)—'{(d—ce)p[(u—ﬁ)—ﬁ log (u/u)l
eu+l
+ (a;Ku)(eu+l) - (a-Ku) (eu+l)}.
We define f(u) by
£(u) = (d-ce)pl[(u-u) - T log (u/T)]

+ (a-Ku) (eu+l) - (a—-Ku) (eu+l) .
Then, £(u)=0 , and if we set
p = (ae-K)/(d-ce),
f(u) is a monotpne decreasing function. Therefore,
(u-u) £ (u)< O,

and the equality is satisfied if and only if u=u. This means that
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ol
ot @

=0,

and that the above equality is satisfied if and only if u=u.
Therefore, global stability of (E,Vl) can be prowved by the theorem

by La Salle and Lefshetz (1961) (see section IV-3).

D. Existence of periodic solutions with large amplitudes

when DV=0, in Chapter V,

By the bifurcation theory, we can only prove existence
of periodic solutions with small amplitudes, in the neighbourhood

of the bifurcation point. In the following, we will show that a

stable periodic solution always exists if the-critical point
(3,51) is linearly unstable, that is, if u < ug. Firstly, we
define five curves in Fig.Dl as follows;
Ca
¢y
Cs
-0 u Ta(‘u
Fig.Dl An invariant set of the equations (2).
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C.; u = a/K.

1
C2; Kl(u,vl) = (d-ce) + bvl
= Klo.
C3; Kz(u,vl) = (d-ce) [(u-u) - U log(u/u)] + bvl
= KZO.
Cus K3(u,vl) = d[(u-u) - u log(u/u)]
+ b[(vl—Vl) - Vl log(vl/Vi)]
= K30.
CS; vy = Vlo.
KlO,Kzo,K3o and vl0 are adjustable parameters defined later.

Then, we investigate directions of the flow defined

by the equations (2), on these curves. On the curve C

ll
du _ (ab/K)
at = " T@e/Ry+rn1 < O
On the curve C2,
dK
' 1l _ c d-ce _ _ N 0
5 = suril e u(a-Ku) (eutl) + (d-ce)u - K "].
Then, if the value of Kl0 is sufficiently large,
dKl <o
dat ’

when 4 < u < a/K.
On the curve C3,
dK, o
I = d(u-u) {K(u-u) +

be
(eu+l) (eu+l)

(vlu—uvl)_

<0
since u < 1 and u > (a/v;)v,.

On the curve C

5!
dvl Vv 0
ge = (dree) (wwlggy 2 0,
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If we take sufficiently large Klo, other parameters Kzo,

K30, and vlO can be determined by continuity of those curves,
and all of the above inequalities are satisfied. Therefore,

we consider the region surrounded by these curves, the flow is
in the inward direction on boundaries of the region. Thus, the
region is an invariant set of the equations (2). So, it can be
shown that if the only critical point (E,Vi) in the region is
unstable, there exists at least a stable closed orbit, by the

Poincare-Bendixson theorem(see, for example, Cesari,1971).
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