

Title	Categorial Grammar and Type Ambiguity of Japanese Particles
Author(s)	Nishiguchi, Sumiyo
Citation	Osaka Literary Review. 2003, 42, p. 153-167
Version Type	VoR
URL	https://doi.org/10.18910/25221
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Categorial Grammar and Type Ambiguity of Japanese Particles

Sumiyo Nishiguchi

Abstract

The purpose of this article is to present a new type-shifting rule from $\langle a, a \rangle$ to $\langle a, \langle a, b \rangle \rangle$, which I call *d-rule*. This unknown raising is called for in view of the polymorphism of Japanese particles, *kakari zyosi*, such as *wa*, *mo*, *sae*, *dake* and *sika*, which undergo an extraordinary type-shift between $\langle e, e \rangle$, $\langle et, et \rangle$, $\langle t, t \rangle$, $\langle\!\langle et, et \rangle\!\rangle$, $\langle et, et \rangle\!\rangle$, $\langle e, \langle et, t \rangle \rangle$, as well as the determiner type $\langle et, \langle et, t \rangle \rangle$. None of the present type-shifting rules in the framework of Combinatory Categorial Grammar, or ‘Geach Rule,’ ‘Montague Rule,’ ‘argument lowering’ in Partee and Rooth (1983), or ‘z-rule’ (Jacobson 1999) in Flexible Categorial Grammar is applicable to these natural language phenomena. The fact that *kakari* particles undergo type-shift to determiner-type, as attested to by Weak Crossover effects, requires such a novel type-raising rule.

1 Introduction

Japanese *kakari zyosi*, such as *wa* (topic marker), *mo* ('also'), *sae* ('even') and *dake* ('only'), are polymorphic in that they can attach to CN, PN, VP, PP or S (Nishiguchi 2003). This indicates that they go through unusual type-shift between $\langle e, e \rangle$, $\langle et, et \rangle$, $\langle t, t \rangle$, $\langle\!\langle et, et \rangle\!\rangle$, $\langle et, et \rangle\!\rangle$, $\langle e, \langle et, t \rangle \rangle$, as well as the determiner type $\langle et, \langle et, t \rangle \rangle$, which is detected by the syntactic Weak Crossover (WCO) effects. In this paper, I suggest a new type-raising rule, because of the insufficiency of the combinatory

rules in Combinatory Categorial Grammar (CCG), and type-shift rules such as Geach Rule (Geach 1972) in the framework of Flexible Categorial Grammar. Although most of the type-shifts of these particles are explainable in the present analyses, another type-raising mechanism, which I call d-rule, should be constructed between $\langle e, e \rangle$ type and $\langle et, et, t \rangle$ type:

(1) *d-rule*

change type $\langle a, a \rangle$ to $\langle a, \langle a, b \rangle \rangle$

Fig. Type-raising of *kakari* particles

First, I will briefly overview the frameworks of Categorial Grammar (CG), starting from the Ajdukiewicz-Bar-Hillel calculus, Flexible Categorial Grammar and Combinatory Categorial Grammar. Then, the unique types of Japanese particles will be discussed.

2 Categorial Grammar

The original Categorial Grammar proposed by Ajdukiewicz (1935) and Bar-Hillel (1953) was based on fixed categories. Categories could be combined by a rule of functional application.

In the framework of Bar-Hillel (1953), e.g., the English sentence *Poor John sleeps* belongs to category s (for *sentence*),

John to the category n , *poor* to $\frac{n}{[n]}$, and *sleeps* to $\frac{s}{(n)}$, where n is approximately interpreted as the category of name-like strings. $\frac{n}{[n]}$ is the category of those strings with an n to their right forms a string belonging to the category n . $\frac{s}{(n)}$ is the category with n to the left which forms s .

In the current theory of CG, the corresponding notation is as follows:

(2)	<u>Poor</u>	<u>John</u>	<u>sleeps</u>
	NP/NP	NP	NP\S
	<u>NP</u>		
	<u>S</u>		

2. 1 Flexible Categorial Grammar

2. 1. 1 Montague Rule

Many attempts have been made to add various operations on the functions and arguments to the basic context-free apparatus. More flexible versions incorporating type-change have been proposed since then. For example, Montague Rule (Montague 1973) raises *John* (NP) to $S/(NP\S)$, which corresponds to $\langle et, t \rangle$ in type theory.

(3)	<u>Poor</u>	<u>John</u>	<u>sleeps</u>
	NP/NP	NP	NP\S
	<u>$(S/(NP\S))/(S/(NP\S))$</u>		
	<u>$S/(NP\S)$</u>		
	<u>S</u>		

(4) Montague Rule

change type a to $\langle\langle a, b \rangle, b \rangle$

Montague rule allows type $\langle e \rangle$ to be raised to $\langle et, t \rangle$, but type $\langle e, e \rangle$ is not allowed to shift to $\langle et, \langle et, t \rangle \rangle$, which Japanese *kakari* particles undergo, to be discussed in section 3.

2. 1. 2 Geach Rule

Another prominent rule adopted by flexible categorial grammar is the 'Geach Rule' (Geach 1972):

(5) *Geach Rule*

change type $\langle a, b \rangle$ to $\langle\langle c, a \rangle, \langle c, a \rangle \rangle$

This rule can be used, e.g., to lift cross-categorial connectives *and* or *or*, which can be conjoined with virtually every major category (Montague 1973; Partee and Rooth 1983):

(6) Bill and
 $\underline{S/(NP\backslash S)}$ $\underline{((S\backslash (NP\backslash S))\backslash (S/(NP\backslash S)))/(S/(NP\backslash S))}$
Nick are happy.
 $\underline{S/(NP\backslash S)}$ $\underline{(NP/S)/(NP/S)}$ $\underline{NP/S}$

(7) Polly dances and sings.
 \underline{NP} $\underline{NP\backslash S}$ $\underline{((NP\backslash S)\backslash (NP\backslash S))/(NP\backslash S)}$ $\underline{NP\backslash S}$

(8) Sue swims and Terri eats.
 \underline{NP} $\underline{NP\backslash S}$ $\underline{(S\backslash S)/S}$ \underline{NP} $\underline{NP\backslash S}$

By listing ordinary *and* in lexicon as $(S\backslash S)/S$, all other categories can be derived by "Geaching."

In the Japanese language, connective particles *to* ('and') and *ka* ('or') are also polymorphic, and Geach Rule, likewise, is eligible for generating all categories.

(9) Taroo-to/ka Hanako-ga odotta.
 Taroo-CON Hanako-NOM dance-PAST
 'Taroo and/or Hanako danced.'

(10) Taroo -to/ka
 $\underline{S/(NP\backslash S)}$ $\underline{(S/(NP\backslash S))\backslash ((S/(NP\backslash S))/(S/(NP\backslash S)))}$
Hanako -ga odotta
 $\underline{S/(NP\backslash S)}$ $\underline{(S/(NP\backslash S))\backslash (S/(NP\backslash S))}$ $\underline{NP\backslash S}$

(11) Taroo-ga odotta-ka Hanako-ga odotta.

Taroo-NOM danced-CON Hanako-NOM danced
 'Taroo danced or Hanako danced.'

(12) Taroo -ga odotta -ka Hanako -ga
 NP NP\NP NP\S S\((S/S) NP NP\NP
odotta.
 NP\S

However, "Geaching" by no means derives $\langle et, et, t \rangle$ out of $\langle e, e \rangle$, which is necessary for Japanese particles.

2. 1. 3 Partee and Rooth (1983)

Partee and Rooth (1983) suggests 'argument lowering':

(13) *Argument Lowering*

change type $\langle\langle a, b \rangle, b \rangle, c \rangle$ to $\langle a, c \rangle$

This changes, e. g., complex intransitive verbs of type $\langle\langle e, t \rangle, t \rangle$, $t \rangle$ to simple predicates of type $\langle e, t \rangle$ (van Benthem 1989: 231). But this rule is irrelevant to the type-shift of *kakari* particles.

2. 1. 4 z-Rule (Jacobson 1996, 1999)

Jacobson's z-rule enables variable-free semantics.

(14) *z-rule*

Let f be a function of type $\langle a, \langle b, c \rangle \rangle$. Then $\mathbf{z}(f)$ is a function of type $\langle\langle b, a \rangle, \langle b, c \rangle \rangle$ such that

$\mathbf{z}(f) = \lambda g[\lambda x[f(g(x))(x)]]$ (for g of type $\langle b, a \rangle$ and x of type b). (Jacobson 1996: 109)

For instance, \mathbf{z} can raise transitive verb *love* of type $\langle e, et \rangle$ to $\langle et, et \rangle$ type:

(15) $\mathbf{z}(\text{love}')$

$\text{love}' \rightarrow \mathbf{z} \text{ love}' ; \lambda f[\lambda x[\text{love}'(f(x))(x)]$

Nevertheless, z-rule does not enable any of the types $\langle e, e \rangle$,

$\langle et, et \rangle, \langle\!\langle et, et \rangle, \langle et, et \rangle\rangle, \langle e, \langle et, t \rangle \rangle$ to be raised to the determiner type $\langle et, \langle et, t \rangle \rangle$.

2. 2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) has been developed by Mark Steedman (Steedman 1987, 1988, 2000). CCG aims to generalize pure Categorial Grammar by Ajdukiewicz and Bar-Hillel. In order to allow coordination of contiguous strings, CCG includes certain further operations on functions related to Curry's combinators such as **B** (Curry and Feys 1958):

(16) *Forward composition(>B)*

$X/Y \quad Y/Z \Rightarrow_B X/Z$ (Steedman 2000:40)

Although there are a lot of composition rules having been developed (cf. Steedman 2000:169), none of them enables type-raising of *kakari* particles from $\langle e, e \rangle$ to $\langle et, \langle et, t \rangle \rangle$. A new rule is called for in order to account for the linguistic evidence relevant to *kakari zyosi*.

3 Polymorphic Aspects of *Kakari* Particles

In the Japanese language, not only coordination, but also *kakari* particles are polymorphic. In section 3.1., I will introduce the cross-categorial status of Japanese particles, part of which is explainable by present type-raising rules. Section 3.2 discusses syntactic evidence of quantification of noun phrases attached by *kakari* particles, which attests to the fact that these particles are of determiner type $\langle et, \langle et, t \rangle \rangle$. No existing theory can account for this extraordinary type-shift between $\langle e, e \rangle$ and $\langle et, \langle et, t \rangle \rangle$. I suggest, in section 4, a new type-raising rule, which is necessary to accommodate these natural language phenomena.

3. 1 Type Ambiguity of *Kakari* Particles

Japanese particles such as *wa* (topic marker), *mo* ('also'), *sae* ('even'), *dake* ('only') and *nomi* ('only') are polymorphic, as I argued in Nishiguchi (2002):

(17) Particles Attached to PN

- a. Taroo-*mo* hasitta.
Taroo-also ran
'Taroo ran, too.'
- b. $\frac{\text{Taroo}}{\text{NP}} \frac{-\text{mo}}{\text{NP}\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$
- c. Taroo-*wa* hasitta.
Taroo-TOP ran.
'Taroo also ran.'
- d. $\frac{\text{Taroo}}{\text{NP}} \frac{-\text{wa}}{\text{NP}\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$
- e. Taroo-*dake*-*ga* hasitta.
Taroo-only-NOM ran
'Only Taroo ran.'
- f. $\frac{\text{Taroo}}{\text{NP}} \frac{-\text{dake}}{\text{NP}\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \frac{-\text{ga}}{(\text{S}/(\text{NP}\backslash\text{S}))\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$
- g. Taroo-*sae* hasitta.
Taroo-even ran
'Even Taroo ran.'
- h. $\frac{\text{Taroo}}{\text{NP}} \frac{-\text{sae}}{\text{NP}\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$

(18) Particles Attached to CN

a. Inu-wa hasitta.

dog-TOP ran

'The dog ran.'

b.
$$\frac{\text{Inu}}{\text{NP}\backslash\text{S}} \quad \frac{-wa}{(\text{NP}\backslash\text{S})\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \quad \frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$$
c. Inu-mo hasitta.

dog-also ran

'The/a dog ran, too.'

d.
$$\frac{\text{Inu}}{\text{NP}\backslash\text{S}} \quad \frac{-mo}{(\text{NP}\backslash\text{S})\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \quad \frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$$
e. Inu-dake-ga hasitta.

dog-only-NOM ran

'Only the dog ran.'

f.
$$\frac{\text{Inu}}{\text{NP}\backslash\text{S}} \quad \frac{-dake}{(\text{NP}\backslash\text{S})\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \quad \frac{-ga}{(\text{S}/(\text{NP}\backslash\text{S}))\backslash(\text{S}/(\text{NP}\backslash\text{S}))}$$

$$\frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$$
g. Inu-sae hasitta.

dog-even ran

'Even the/a dog ran.'

h.
$$\frac{\text{Inu}}{\text{NP}\backslash\text{S}} \quad \frac{-sae}{(\text{NP}\backslash\text{S})\backslash(\text{S}/(\text{NP}\backslash\text{S}))} \quad \frac{\text{hasitta.}}{\text{NP}\backslash\text{S}}$$

(19) Particles Attached to Infinitive Verb

a. Taroo-wa taberu-dake-da.

Taroo-TOP eat-only-be

'Taroo only eats.'

b.	Taroo	<u>-wa</u>	taberu	<u>-dake</u>
	NP	NP\((S/(NP\S))	NP\S	(NP\S)\(NP\S)
<u>-da.</u>				
		(NP\S)\(NP\S)		

(20) Particles Attached to VP

a. Taroo-wa tumazuita-*dake*-da.
 Taroo-TOP stumbled-only-be
 'Taroo only stumbled.'

b.	Taroo	<u>-wa</u>	tumazuita	<u>-dake</u>
	NP	NP\((S/(NP\S))	NP\S	(NP\S)\(NP\S)
<u>-da</u>				
		(NP\S)\(NP\S)		

(21) Particles Attached to PP

a. Taroo-ga Makudonarudo-de-*wa* taberu-(koto)
 Taroo-NOM McDonald's-LOC-TOP eat-(fact)¹
 'Taroo eats only at Mc Donald's.'

b.	Taroo	<u>-ga</u>	Makudonarudo	<u>-de</u>
	NP	NP\NP	NP	NP\((NP\S)/(NP\S))
<u>-wa</u>				
		((NP\S)/(NP\S))\((NP\S)/(NP\S))	taberu-(koto)	NP\S

c. Taroo-ga Makudonarudo-de-*sae* taberu-(koto)
 Taroo-NOM McDonald's-LOC-even eat-(fact)
 'Taroo eats even at McDonald's.'

d.	Taroo	<u>-ga</u>	Makudonarudo	
	NP	NP\NP	NP	
<u>-de</u>				
		NP\((NP\S)/(NP\S))		

		<u>-sae</u>		taberu.
		((NP\S)/(NP\S))\((NP\S)/(NP\S))		NP\S

e. Taroo-ga Makudonarudo-de-sika tabe-nai-(koto)
 Taroo-NOM McDonald's-LOC-only eat-NEG-(fact)
 'Taroo eats only at McDonald's.'

f.
$$\begin{array}{c} \text{Taroo} \quad \underline{-ga} \quad \text{Makudonarudo} \\ \text{NP} \quad \text{NP}\backslash\text{NP} \quad \text{NP} \\ \text{-de} \\ \hline \text{NP}\backslash((\text{NP}\backslash\text{S}) / (\text{NP}\backslash\text{S})) \\ \text{-sika} \\ \hline ((\text{NP}\backslash\text{S}) / (\text{NP}\backslash\text{S})) \backslash ((\text{NP}\backslash\text{S}) / (\text{NP}\backslash\text{S})) \\ \text{tabe} \quad \underline{-nai} \\ \text{NP}\backslash\text{S} \quad (\text{NP}\backslash\text{S}) \backslash (\text{NP}\backslash\text{S}) \end{array}$$

g. Taroo-ga Makudonarudo-de-dake taberu-(koto)
 Taroo-NOM McDonald's-LOC-only eat-(fact)
 'Taroo eats only at McDonald's.'

h.
$$\begin{array}{c} \text{Taroo} \quad \underline{-ga} \quad \text{Makudonarudo} \\ \text{NP} \quad \text{NP}\backslash\text{NP} \quad \text{NP} \\ \text{-de} \\ \hline \text{NP}\backslash((\text{NP}\backslash\text{S}) / (\text{NP}\backslash\text{S})) \\ \text{-dake} \\ \hline ((\text{NP}\backslash\text{S}) / (\text{NP}\backslash\text{S})) \backslash ((\text{NP}\backslash\text{S}) / (\text{NP}\backslash\text{S})) \\ \text{taberu} \\ \text{NP}\backslash\text{S} \end{array}$$

As shown in above examples, Japanese *kakari* particles go through type-shifts between $\langle e, e \rangle$, $\langle e, \langle et, t \rangle \rangle$, $\langle et, et \rangle$, and $\langle\langle et, et \rangle, \langle et, et \rangle \rangle$. Geaching raises type $\langle e, e \rangle$ to $\langle et, et \rangle$ and to $\langle\langle et, et \rangle, \langle et, et \rangle \rangle$:

(22)
$$\begin{array}{c} \langle e, e \rangle \\ \hline \text{Geaching} \\ \langle et, et \rangle \\ \hline \text{Geaching} \end{array}$$

$\ll\text{et}, \text{et}\gg, \ll\text{et}, \text{et}\gg$

If we assume the associative law, we can deduce $\langle e, \ll e, t \gg, t \gg$ from $\ll\text{e}, \text{e}\gg, \text{t}\gg, \text{t}\gg$:

$$\begin{array}{c}
 (28) \quad \langle e, e \rangle \\
 \hline
 \qquad \qquad \qquad \text{Montague rule} \\
 \ll\text{e}, \text{e}\gg, \text{t}\gg, \text{t}\gg \\
 \hline
 \qquad \qquad \qquad \text{Associative rule} \\
 \ll\text{e}, \text{et}\gg, \text{t}\gg \\
 \hline
 \qquad \qquad \qquad \text{Associative rule} \\
 \langle e, \text{et}, \text{t} \gg
 \end{array}$$

The above type-shifts can be captured by Geach Rule, Montague Rule, plus Association Rule. However, *kakari* particles demonstrate another category which is problematic for present type-raising theories, which will be discussed in the next section.

3. 2 Quasi-Generalized Quantifiers: Unaccountable Type

There exists syntactic evidence that common noun phrases attached by *kakari* particles demonstrate Weak Crossover effects, proving quantification. This entails that the category of particles are $(NP \setminus S) \setminus (S / (NP \setminus S))$, whose semantic type is of determiner-type, $\langle \text{et}, \text{et}, \text{t} \gg$.

It was Kuroda (1970) that first pointed out the quantifier-like behavior of Japanese *kakari* particles. Since Hoji (1985), Weak Crossover effects have been used to detect quantification by Japanese quantifiers.² For example, phrases that contain *mo* / *nomi/sae* particles cannot be co-indexed with *so-ko* in (24):

(24) a. *So-ko_i-no bengosi-ga Toyota_i-nomi-o uttaeta.
 that-place-GEN lawyer-NOM Toyota-only-ACC sued
 'That place's lawyer sued only Toyota.'

- b. *So-ko_i-no bengosi-ga Toyota_i-mo uttaeta.
that-place-GEN lawer-NOM Toyota-also sued
'That place's lawyer also sued Toyota.'
- c. *So-ko_i-no bengosi-ga Toyota_i-sae-o uttaeta.
that-place-GEN lawer-NOM Toyota-even-ACC sued
'That place's lawyer sued even Toyota.'

Removing *mo/nomi/sae* improves grammaticality drastically:

- (25) So-ko_i-no bengosi-ga Toyota_i-o uttaeta.
that-place-GEN lawer-NOM Toyota-ACC sued
'That place's lawyer sued only Toyota.'

It is also the case with *dake*:

- (26) *So-it_i-no titioya-ga_i gakusei_i-dake-o kawaigatta
that-guy-GEN father-NOM student-only-ACC loved
'His father loved only students'

So-it_i (that-guy) cannot be co-indexed with *gakusei* (student), as bound variables. Thus, WCO effects detect quantification with particles.

4 New Type Shift Rule

As I have argued so far, the type $\langle et, \langle et, t \rangle \rangle$ cannot be derived by present type-raising rules. However, the existence of such cross-categorial words testifies unknown links between their types. Certain rule should permit the shift between $\langle e, e \rangle$ or $\langle et, et \rangle$ and $\langle et, \langle et, t \rangle \rangle$, which I call the *d-rule*:

- (27) *d-rule*
change type $\langle a, a \rangle$ to $\langle a, \langle a, b \rangle \rangle$

5. Conclusion

I have pointed out unknown phenomena in natural language which call for a new type-raising rule, the *d-rule*. This enables cross-categorial Japanese particles to raise between not only $\langle e, e \rangle$, $\langle et, et \rangle$, $\langle\langle et, et \rangle, \langle et, et \rangle \rangle$, and $\langle e, \langle et, t \rangle \rangle$, but also $\langle et, \langle et, t \rangle \rangle$ type. The fact that *kakari* particles, such as *wa*, *mo*, *dake*, and *sika* raise to determiner type was attested to by the syntactic evidence of Weak Crossover effects.

Acknowledgments

I express my heartfelt gratitude to Norihiro Ogata for valuable help and guidance. I also benefited greatly from conversation with Pauline Jacobson and Mark Steedman. Thanks go to Andrea Koike and Alana Miller for stylistic improvement.

References

Ajdukiewicz, Kazimierz (1935) "Die Syntaktische Konnexität a t," Storrs McCall, ed., *Polish Logic 1920-1939*, 207-231, Oxford University Press, Oxford. Translated from *Studia Philosophica* 1, 1-27.

Bar-Hillel, Yehoshua (1953) "A Quasi-Arithmetical Notation of Syntactic Description," *Language* 29, 47-58.

Barwise, Jon and Robin Cooper (1981) "Generalized Quantifiers and Natural Language," *Linguistics and Philosophy* 4: 159-219.

van Benthem, Johan (1989) "Semantic Type-Change and Syntactic Recognition," Gennaro Chierchia et al. (eds.), *Properties, Types and Meaning 1*, 231-249, Kluwer, Dordrecht.

Curry, Haskell B. and Robert Feys (1958) *Combinatory Logic I*, North Holland, Amsterdam.

Dowty, David (1993) "'Variable-Free' Syntax, Variable-Binding Syntax, the Natural Deduction Lambek Calculus, and the Crossover Constraint," in *The Proceedings of the Eleventh West Coast Conference on Formal Linguistics*, 1992, Stanford, 161-176.

Geach, P. T. (1972) *Logic Matters*, Blackwell, Oxford.

Hoji, Hajime (1985) *Logical Form Constraints and Configurational Structures in Japanese*, Doctoral dissertation, University of Washington.

Hoji, Hajime, Satoshi Kinsui, Yukinori Takubo and Ayumi Ueyama (2000) "Demonstratives, Bound Variables, and Reconstruction Effects," *Proceedings of the Nanzan GLOW: The Second GLOW Meeting in Asia*, 141-158.

Jacobson, Pauline (1996) "The Syntax/Semantics Interface in Categorial Grammar," in Shalom Lappin ed., *The Handbook of Contemporary Semantic Theory*, 89-116, Blackwell, Oxford.

Jacobson, Pauline (1999) "Towards a Variable-Free Semantics," *Linguistics and Philosophy* 22, 117-184.

Kuroda, S.-Y. (1970) "Remarks on the Notion of Subject with Reference to Words Like *also*, *even*, *and* *only*," Part II. Annual Bulletin, Research Institute of Logopedics and Phoniatrics, University of Tokyo, 4, 127-152. [Reprinted in Kuroda, S.-Y. (1992) *Japanese Syntax and Semantics*, Kluwer, Dordrecht]

Montague, Richard (1973) "The Proper Treatment of Quantification in Ordinary English," J. Hintikka et al. ed., *Approaches to Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar and Semantics*, Dordrecht, D. Reidel Publishing Company, 221-42.

Nishiguchi, Sumiyo (2003) "Logical Properties of Japanese *Kakari Zyosi*," *Osaka University Papers in English Linguistics* 7, Osaka University.

Partee, Barbara and Mats Rooth (1983) in Rainer Bauerle et al. ed., "Generalized Conjunction and Type Ambiguity," *Meaning, Use, and Interpretation of Language*, Walter de Gruyter, Berlin, 362-383.

Steedman, Mark (1987) "Combinatory Grammars and Parasitic Gaps," *Natural*

Language and Linguistic Theory 5, 403-439.

Steedman, Mark (1988) "Combinators and Grammars," in Richard T. Oehrle, Emmon Bach and Deirdre Wheeler ed., *Categorial Grammars and Natural Language Structures*, D. Reidel, Dordrecht, 417-442.

Steedman, Mark (2000) *The Syntactic Process*, MIT Press, Cambridge, Mass.

Szabolcsi, Anna (1989) "Bound Variables in Syntax," in Renate Bartsch, Johan van Benthem and P. van Emde Boas ed., *Semantics and Contextual Expression*, Foris, Dordrecht, 295-318

Ueyama, Ayumi (1998) *Two Types of Dependency*, Doctoral dissertation, University of Southern California. [Distributed by GSIL Publications, USC, Los Angeles]

Notes

- 1 I add *koto* 'the fact that' at the end of these sentences in order to avoid the unnaturalness resulting from the lack of a topic.
- 2 See Ueyama (1998), Hoji et al. (2000) and others.