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Design of Multistage Gas-Liquid Reactor
Mikio Kawagoe, Katsumi Nakao, Tsutao Otake
Jour. Chem. Eng. Japan, 5, 149 (1972)
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plate  diameter hole free area
No. of hole spacing

(e} (em] [%]

i 0.1 1.0 0.621
2 0.2 .0 2.43
3 0.3 .0 5.59

Tablel Dimension of perforated plate
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5,16) 23)
dc 0.7
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2) Fig. 3
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Azbel4)
Kim?9)
Fr
Fr
18) Fr

(10) Fr
(2) hy 50 cm

15cm 3 cm/sec dc
(8) uc=10 80 cm/sec, do=1
3.5 mm

- uG +
Pe= 17u,+36 + 10 (11)

8) uc 1 40 cm/sec
de
bo (11)
Towell19) dc  ¢c Uuc/(2 uc+30)
(11)

5.3.2 hy
hqg hg 10 cm ht
hq

hg hg 10cm 2)hy
hs F factor =vpoc «w
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us=80 240
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hI Ld B
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hy Fig. 10
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Nomenclature

A; = cross-sectional area of column [cm?]
a b = constants in Eq.(8) [-1
D; = diameter of column [cm]
d, = diameter of hole in perforated plate [cm]
Fr = u,*/gh, , Froude number [-]
f = frequency of bubble formation [1/sec]
g = acceleration of gravity [cm/sec?]
hy = height of downcomer [cm]
hg = height of foam layer [cm]
h, = equivalent height of liquid hold-up (liquid
hold-up per unit cross sectional area of
floor of plate [cm]
h; = height of gas-liquid dispersion above
perforated plate [cm]
k, = rate coefficient concerning development of
foam layer [-]
k, = rate coefficient concerning collapse of
foam layer [1/sec]
Ly = liquid flow rate per unit length of weir

[cm®*/cm.sec]
= number of bubbles in gas-liquid dispersion [-]

= time [sec]
ug = average rising velocity of bubbles [cm/sec]
us, = superficial gas velocity [-1

Uge; = critical gas velocity for bubble flow region
[cm/sec]

36



critical gas velocity for froth region [cm/sec]

Ugco =
Uges = critical gas velocity for cellular foam
region [cm/sec]
Vg = average volume of bubbles [cm?®]
o, B = constants in Eq. (12) [-1
= local fractional gas hold-up [-1
¢; = average fractional gas hold-up for gas-liquid
dispersion above plate [cm]

0s, = average fractional gas hold-up for clear
liquid layer [cm]
os¢ = average fractional gas hold-up for foam

layer [cm]

W = ¢s/(1 - ¢5) , ratio of gas to liquid hold-ups [-]1
ps = density of gas [g/cm?®]
T = average residence time of bubbles [sec]
Subscript

0 = bubble flow region

I bubble-size class Vyg;
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a NaOH CO;
Kk *= VKGO

k D. 9)
Cs (2) kL*a
a
kLa NaHCO3 Na2COs3
COz kL*a = k|_a
2.2
a kLa
dc Uc Fig. 1
Fig. 2 Fig. 3 hq a kLa
Uc a
kLa Uc Uc
uUc hg
a
ko 23) kLa
hg
hg 30cm a kLa Uc
a krLa
Uc
Fig. 2 Fig. 3 (Tri-Cresyl phosphate:
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Fig. 4 16)

dv (5)
gp + 0.071
dy c—d'o 3 =294Ny, (5)
pi1 O Nw=
gl/ZdOS/ZUOpI/G
(5)
Uc
Uc
3.3
18)
Leibson 17) (6)
Dv = 0.29 do /2 (Reo)1/3 , Reo < 2100 (6)
Reo= (doUopg/pg) Reynolds
Calderbank 6)
2 cm Ho 14) 1 2 cm
1 2cm
3.4
Fig. 4 Uc
h,
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ke 0.019 cm/sec 1/2 1/3

kKL
1/10
23)
1/2 1/3
4.3
h/,
3) kL h,
k|_ kL
Calderbank 8) kL
kL
Dillon 10)
ko h,
Fig. 5 de h,
kL
DL 1/2 (ko /v DL) de
Fig. 8 h,
k,=75VD, d,°"™ (9)
k|_ de
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Fig. 9
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Aomenciaturs

cross-sectional area of column [em?]
cas-1igutd interfacial area per unit [cm‘fcr.n']
volume of gas-11quld dispersion

concentration of reactant 8 in Tiguid

diffusivity of gaseous solute in 11guid 2
phase , [em®/sec]
equivalent spherical bubble diameter [em]

effective bubble dismeter defined by Eq.{4 ) fom]

oriftice dlaneter of perforated plate [cm]
voluna avarzge diameter [em]
acceleration of gravity [¢m/sec?]
Herry's law constant [g=mo1/1.atm]
height of downcomer [em]
equivalent height of liquid hold-up (1iguid

‘hold-up per unit cross-sectional area of [tm)
floor of plate) '

height of gas-1iquid disperzion ahave Lca)
perforated plaie

second order rate-constant [Wg-m1-sec]
Tiquid-phase mass transfer coefficient [em/sec]
IR e T ey

volumeteric flow rate of Tiquid [@/sec]
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: §

2 A
e T

n = number of bubbles per unit volume of
gas-1iquid dispersion

Py * logarithmic mean pariial pressure of
camponent A

Rep = dnuapg!ug

UB = average rising velocity of bubbles
Uﬁ = superficial gas velocity

U = gas velocity through orifice

B = viscosity

v = stoichiometric coefficient
p = density

o = surface tension of liquid
¢ ™ surface shape factor

g - average fractional gas hald-up
Subscripts

g = gas
L = liquid
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Fig. 1
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rn = kCACB
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Na
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=v Kn B8 CBZ (8)
k.~ Can
A Yan = (Yan + Yan+1)/2
CAn*
c. o H P Van ©
An —
H + *1 - B kLO
Ke B kL
P kg
K K=k a0, B’
Nan Can=0 kL°Can’
Nan/ki °Can’
n
Ran/@a Nan nn=1
A
(7) nn>1
nn<l
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2.1

(1) (2)
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Na
k':l‘/:cA* =B

_ Y //1+(_)( 1-p == ") coshy /1+(—)( 1-B

CAL:0

Van Krevelen

_i

9)

sinhy /1+(—)( 1-8

CBL

’YZV kCBLDA/kLO

Ra

XL

RA :f kCACB dX + kCALCBL (1 _aXL)
0

_CAL)

Y
g=DgCg/DaACa*

ke (1 () e o)
coshy A/lJ’(T(l_B —z_ig) _E_

x thy/1+(—é)(l—g—i_§)
oy (25)y (=g ~1)
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ax_=aDa/k.° (1-ax.)

(11) A
n

Ra (1+ 2 ") coshy /1+(—)( 1-B8 *_i) 1

an, - N =

coshy A/l+(T)( 1-p _E_iL)

A/1+(%(1— *_& (CAL )(ax —1)snhy/1+(q)(1_ *_C_:L)
coshy /1+(—)( 1-p *_i) _ S

Ca

(12)
2.2
By A
n
) B
Y
n
(10) B * y
(Cac/Ca’) Fig. 2
Fig. 2 55 A
Y (CaL/CA)
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Fig.2 Modified reaction factor for second-order
reaction as a function of Y withC Ai.mi

and q as parameters, calculated according
{o Eq.(10)
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MAvex )

Fig.3 Ratio of absorpiion rate b overall reaction rate

as afunction of v with cal.ti , qand Ihk‘L

as parameters, calculated aceording to Eq. (12)
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Fig. 4

(i)
y/tanh v Cen
(6) (9)
YA n+1
YA n+1 (14)
CAn*
Cgn-1
()
Can =HP1(=
B" B v
(Cen/Cg0)
3.3
(6),(8),(9) (14)

76

(10)

)

CAn

CAn:O
(Cg n-1/Cg0)

Yn On

Cgn Cgn-1



HPT FLCBO
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2.5 CO2

1M NaOH CO;
0.1 NaOH 0.5M 6lcm
112 |/sec 20 1 atm
11 cm?*/cm?

H=2.8x 102 g-mol/l.atm, Da=1.3x 10> cm?/sec,
k=9500 |/g-mol.sec, kg'=2.1 cm/sec, k. °=0.035 cm/sec,
a=2.91 cm™

ks’

(v ) v=2
CO; + 2 OH - CO3” + H,0
(FL) FL=4.22 |/sec
K=k a0, =7.4
Y
Y o= Ak CpgDa/k °=10 y n= Ak CgyDalk =71
YN D Can ' Yn
Odn Onv DgnCan/vDaCan 360 On  Yn
Can’
(6).(9) (14)
; 5 ) Cen
Can _ 28x10°+672x 10" 1- T

Ceo 1+266x 107y
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Can Can=0
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Fig.5 An example of graphical solution
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CAn CAn:O
YN S
YN O
CAn:O
Ca n-1=0
Fig. 2 Fig. 3 B
q q
B’ n
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N (7) CAn
CAn 1
' 2 1 sinhy
Can coshy ,+ vy, lX 1 L y\:\
1
2 1 1
1+y n aXL 1 + <
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Nomenclature

x

interfacial area per unit volume of 1iquid [em™]
concentration in 1iquid bulk [g-me1/1]
concentration of A at interface [g-mo1/1]
diffusivity [em?/sec)
volumetric flow rate of liguid ' [lksec]
mean molzr flow rate of gas [g-mo1/sec]
Hernry's law constant [g-mo1/1-atm]
second order rate-constant . [l/g-mol-sec]
gas-phase mass transfer [g-mol1/cm?-sec-atm]
coefficient

liquid-phase mass transfer coefficient [em/sec]

non~dimensional 1{iquid residence time defined [ -]
as kg

total number of stages [ -]

absorption rate of A per unit

]
interfacial area [9-ma1/¢cm®-sec]

total pressure _ [atm]
L ]
DgCa/V,Cy (-1

overall reaction rate of A per unit

]
volume of Viquid [g-mol/cm’-sec]

volume of liquid per unit interfacial area [cm]

distance beneath interface {em]
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X = liquid film thickness
¥, = mole fraction of component A in gas bulk

*
B* = npdified reaction factor defined as Hh}kECA

= 0
LA it:laL':'pf’ k.

ratio of overal] reaction rate to absorption
rate defined as RA!ﬂHn

3
1]

=]
]

L mean residence time of 1iquid

v = stoichiomeiric coefficient

Subscripts

A = component of A {gas-phase component)

B = component of B {liquid-phase component)
n = n-th stage

L = Viquid
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