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Abstract

Optical properties of surface Frenkel excitons have been
studied theoretically in terms of a simple model. Special
attention is paid to the influence of the geometrical anisotropy
caused by the presence of the surface upon the oscillator
strengths of the surface excitons. The dipole-dipole interac-
tions are partitioned into intralayer interactions, short-range
interlayer ones, and long-range interlayer ones. The effect
of the difference in excitation energies between the surface
atoms and the bulk ones is included in the model. An interplay
between the dipole-dipole interactions and the surface geometrical
anisotropy is one of interesting features of the model. The
properties of the surface excitons are analyzed by solving Dyson's
equation for the resolvent. Depending on the parameter values,
the-surface excitons can show two kinds of giant osgillator
strengths; one is'due to the short-range interlayer interactions
and the other is due to the long-range ones. The strong
polarization dependence of these effects are pointed out. In
addition to the usual surface excitons, the model predicts a
somewhat 'anomalous' surface localized mode. Its relation to

the familiar surface polariton is also discussed.
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§1 Introduction

1-1 Surface Elementary Excitations 1n Solids — Classification

If there is a certain kind of bulk elementary excitation

1

in solids, then there usually exists a corresponding surface
version, which is localized at or near the surface and 1s prop-
agating in the directions parallel to the surface. As such

a surface elementary excitation, we know for example, electronic
surface states, surface phonons, surface excitons, surface
plasmons, surface exciton (or phonon)-polaritons, surface

*)

polarons, and so on. They have two dimensional crystal momentum

= - . . .
K as a good quantum number, and their energies are in the

/7

¥) There is some confusion in the nomenclature of these surface

modes. Somne authorsl>

refer to surface exciton—pdlaritbns simply
as surface‘excitons and surface phonon-polaritons as surface
(optical) phonons. In this paper, we use the term 'surface
excitons' and 'surface phonons' as.eigenstates of the Hamiltonian
of a material in Coulomb gange which has no transverse electro-
magnetic fields, in order to discriminate them from 'surface
polaritons' that are solutions of the Maxwell equations. On
the other hand, 'surface plasmons' are universally used to mean
the solutions of the Maxwell equations; namely they are the

eigenstates of the Hamiltonian of material plus electromagnetic

field.



gap of the bulk band (for a given ﬁ//). In addition to these
truely localized states, there may sometimes arise a so called
surface resonance within the bulk band, the amplitude of

which, though i1t is an extended mode, is large in the surface
region.

In a conceptual experiment, we can create a surface, starting
with an infinite crystal, in successive two steps; first we
divide the infinite crystal into two parts by cutting the bonds
through some plane, and thus obtain two semi-infinite crystals
with ideal surfaces. Constituent atoms (or ions) in the surface
region now see different local environment from that seen by
bulk atoms, and the position of an atom is not an equilibrium
position any more. Therefore, next, atoms in the surface
region should move to new equilibrium positions (relaxation
and/or reconstruction). From atheoretical point of view, the
effect of this second step may be described by some appropriate
potential localized at a few atomic layers from the surface
seen by the elementary excitation in consideration. Thus 1t
comes that surface can be created from an infinite crystal by [I]
ideal cleavage and then [II ] adding a surface potential.

Each surface elementary excitation comes into existence either

in step [I] or in [IT J. -This fact leads us to an idea that
surface elementary excitations can be classified according to
whether their existence is attributed merely to cleavage (type [I])

or to the surface potential (type [II ]). For example, since



the dispersion relations of surface plasmons are calculated by the
use of a bulk dielectric function, they clearly belong to the
type [I]. On the other hand, (electronic) surface states are,
as 1s well-known, highly sensitive to surface atomic structures,
so they are members of the type [II J surface modes. According
to this rule, we can classify main surface elementary excitations
as in Table I.*) There exists an important difference between
the properties of the type [I] modes and of the type [II ]
modes that the former are essentially describable within a
classical theory of continuous media, although their details
may rely on quantum treatment, and theilr wave functions have
extension in a range of a few hundreds or thousands of atomic
distance from the surface, whereas the nature of the latter
depends on the atomic surface structure and they usually localize
in a range of a few atomic distances from the surface.

Generally speaking, the investigations of surface elementéry
excitations have been less numerous in comparison with those
of corresponding bulk counterparts. Experimentally, the
detection of these surface modes usually requires careful
preparation of a specimen with a well-controlled surface as well
as spectroscopic techniques of high surface sensitivity. In
some cases, specilal geometry to detect surface modes is required

%%
additionally. ) Also theoretical difficulties arise chiefly

*) It is also possible to discriminate the two types of surface modes simply
by spatial extention of their wave functions. In any case, there may be
intermediate ones difficult to discriminate.

¥#t) For example, since surface plasmons and surface polaritons

- 3 -



Table I: Classification of surface elementary
excitations in solids. The type [I] modes are
insensitive to the microscopic surface structures
and come into existence merely on cleavage, while
the type [II] modes are highly sensitive to them,

though they may exist at the stage of cleavége.

surface plasmon

surface exciton—polariton
[1] . surface phonon-polariton

surface polaron

Rayleigh wave

one-electronic surface state
[II] surface exciton

surface optical phonon




do not couple directly to the vacuum electromagnetic fields,

ATR (attenuated total reflection) geometry is frequently employed

to detect them.g)

because the Bloch theorem does not hold in the direction

perpendicular to the surface.

1-2 Surface Excitons

The above general statement, in fact, directly applies to
the case of surface excitons. In contrast to bulk excitons
in various solids that have a long history of both theoretical

3)

and experimental investigations, study of surface exciltons
started only a decade ago or so. Since then, existence of
surface exciﬁqps has been Verified experimentally in several
semicondﬁctors and insulators. Theories have been also developed
to give explanations of some of the features observed. It

seems, however, that as a whole, we are in an early stage of
development, and that much is yet to be studied in both theory
and experiment on this subject.

The necessity for studying surface excitons is as follows
besides interest in itself. Firstly, the nature of the transport
phenomena along surface may be influenced by the existence of
surface excltons. Secondly, it is pointed outu) that when the

energy level of a surface exciton lies below that of a bulk

exciton, then it may provide a main source of the damping of



a bulk exciton. Thirdly, since the unique determination

of atomic cofigurations on reconstructed (and/or relaxed)
surfaces in semiconductors are, in the present state of the art,
usually difficult both theoretically and experimentally, the
informations at hand relevant to surface atomic structure

would be useful in order to determine it correctly. As discussed
already, surface excitons are among the type [II ] modes, which

are sensitive to the surface atomic structure, and a detailed
investigation on them must provide useful informations about

it.

1-3 Wannier vs. Frenkel Pictures of Surface Excitons

5)bulk excitions can be classified into

As it 1s well-known,
two extreme types; the Wannier exciton and the Frenkel exciton.
In the Wannier case, an electron and a hole are bound lodsely
each other, and their relative motion is decribed by a
hydrogenic wave. function which extends over many unit cells.

In the Frenkel case, an electron and a hole are tightly bound

and stay in the same atomic site. ‘For most semiconductors,

and for at least the excited states of exciton of alkali halides,
the Wannier model gives a good description, while the Frenkel

model works quite well for organic molecular crystals. Excitons
in rare gas solids seem to be difficult to interpret with

either one of these two models, and belong to the intermediate

case.



The above classification is useful also for surface excitons.
A surface Wannier exciton was recently discussed by Del Sole
and Tosattié) They constructed a Wannier exciton of essentially
two dimensional character from a pair of surface state bands
and calculated the binding energy as a function of surface
state penetration depths. Experimentally, however, no evidence
has been obtained to indicate the existence of such a surface
Wannier exciton state so far. Influences of the presence of
surface on Wannier excitons constructed from bulk bands have
been discussed by many author57_11> in the context cof so called
ABC (additional boundary condition) problem, that has attracted
much attention in the recent polariton physics. According to
these theories, the presence of surface distorts the wave function
of the relative motion of an electron and a hole, and thus the
surface; in effect, acts as a repelling potential, resulting
in "surface dead layer"; namely, surface Wannier excitions
cannot exist in this case. On the other hand, surface excitons
found in organic molecular crystals are definitely those of the
Frenkel type.lz)ln fact, they can be thought of as the same as
bulk excitons, slightly perturbed by the difference in local
environment of the bulk and the surface. In the case of rare
gas solids, this may also be true for at least the ground state
of surface excitons. Surface core excitons observed in MgO are
known to be described fairly well by a localized excitation

13)

model, which suggests that these surface excitons are also of



the Frenkel type. In addition to these crystals, there is the
1)

evidence1 which shows that surface core excitons found on

GaAs should be thought of as the Frenkel excitons rather than

the Wannier excitons, although, in this case, these surface
excitons cannot be regarded simply as perturbed bulk excitons
(see the footnote on Page 24 in the next section). Therefore
most surface excitons so far observed on molecular crystals,
ionic crystals, and even semiconductors seem to be described
fairly well by the Frenkel model, although detailed understanding

of the stfuctures of these surface excitons recuire further

accumulation of experimental results.

1-4 Purpose of This Thesis

The above mentioned GaAs's experiment is conspicuous among

*)

the others performed on cubic crystals. It is the only case
where the polarization dependence bf optical excitations of
surface excitons is investigated. Thé fact that the surface
exciton transition is strongly dependent on the polariZation

of incident radiation was thus discovered. As it will be
discussed in some detail in the next section, at present, we

-~ have no theory to account for this observation. It is well-Xnown

that the dipole-dipole interaction causes L-T (longitudinal--

®) Turlet and PhilpottlS) measured polarized reflection

spectra on crystalline anthracene, a highly anisotropic crystal.



transverse) splittings of dipole~active (bulk) excitons. In
cubic crystals triply degenerate exciton states split into two

T (transverse)-modes that have transition dipole moménts perpen-
dicular to X (the three demensional wave vector) and one L
(longitudinal)—mode that has a dipole moment parallel to %.*)
Thus the dipole-dipole interaction brings about the anisotropy

of excitons with respect to f in cubic systems. The L-mode,
however, cannot couple with photons that are transverse in char-
acter, and is not detectable in optical measurements. Therefore
the optical spectrum is always isotropic independent of the
polarization of incident radiation, unless some anisotropic
perturbation i1s applied externally.

The presence of surface alters this situation. It is, in
itself, a strong anisotropic perturbation. In the similar way
of thinking as thg classification of surface elementary excita-
tions made in 1-1, it may be possible to classify the anisotropic
properties caused by surfaces into two types;

[I1] the geometrical anisotropy — this makes Kl (the normal
component of the wave vector) no more a good gﬁantum number,

and thus causes the classification into T- and L-modes to

®) Here and after, we consider ¥ to be finite, but vanishingly
small (optical selection rule). Otherwise, if X is large
enough, all three modes become L-T mixed modes for the general

. direction of K, and if ¥ is exactly zero, the shape of the

5)

specimen comes into discussion.



be less meaningful, and

[I[] the crystal-field anisotropy — due to reconstruction
and/or relaxation as well as the lack of half-space material,
surface atoms feel the crystal field whose symmetry 1s lower
than the original cubic symmetry; | | s

i.e. this is the anisotropy of microscopic origin. ‘

The second anisotropy mentioned above may cause not only
energy level splittings but also some anisotropy of surface
exciton oscillator strengths, but the changes in oscillator
strengths thus caused are probably expected to be of crder unity.
It is hard to expect that it, or at least it alone, is the main
origin of the observed 'giant anisotropy' of the surface excltons.
Inthe first step, we may put the type [II ] anisotropy out of our
analysis. On the other hand, as concerns the type [I] anisotropy,
we, of course, cannot drop it, which is caused merely by the
presence of surface. The purpose of this thesis is to study
how the interplay between the dipole-dipole interaction and
the surface gedmetrical anisotropy influences the surface optical
properties, above all, those of surface excitons on the basis
of a simple model, and to find a possible explanation of the
observed 'giant anisotropy' of the surface excitons.

In the next section, we give a brief survey of the studies
of surface excitons so far made including the study on Gahs,
with an emphasis on experimental aspects. Uncertainties in

assignments and unsettled ploblems 1n interpreting experimental

- 10 -



results will be pointed out. We set up our model, and derive

the Hamiltonian in §3. There, starting with the Frenkel

excitons on a slab-like lattice geometry, we rewrite the
dipole-dipole interaction in a layerwise form, and thus obtain
three kinds of interactions; intralayer, short-range interlayer,
and long-range interlayer interactions. Assuming small but
finite K// wilith optical excitations in mind, we introduce some
parameters to describe them. The long-range interaction 1is
shown to have an exponential dependence on the interlayer

distance, while the short range one is approximated by a

nearest-layer interaction. If we list up the elementary

features contained in our model, we have

(1) presence of surface,

(ii) surface potential, which is localized at the outermost
layer and is necessary to permit the existence of surface
excitons,

(1iii) nearest-layer coupling,

(iv) exponential coupling,

and finally

(v) vectorial character of excitations.

The features (i) and (v) provide the geometrical anisotropy,

whereas neglect of the crystal—field anisotropy means that the

surface potential in (ii) is assumed isotropic. Models
containing two, or at most three features mentioned above have

ever been treated in the past, either in the theory of the

- 11 -



16-18)

surface Frenkel excitons or in the context of 'ARC'

problem.19_2l) Inclusion of all the five features, however,
inhibits an application of the methods developed so far to the
present problem, and a different approach should be employed.
This is done in 84, where the Dyson equation for the resolvent
is solved. Our approach consists of (a) the integral equation
method, and (b) K//-expansion. In (a), the eigenmodes for the
bulk system with periodic boundary condition are utilized to
represent the Dyson equation and thus the kernel of the integral
equation is shown to become a sum of separable forms (or
degenerate kernels, in analytical languages), with which, in
principle, the integral equation can be solved. To suppress
the explosion of computational complexities, the K//—expansion
is proposed, since K// is a small parameter in our theory.

As will be shdwn explicitly, the K//—expansion is not a simple
one. A solution for exactly vanishing value of K// is different
from that for small but finite values of K//, Namely, our
solution is non?analytic near the point K//=0, which reminds

us of the non-analiticity of bulk exciton energy, 1.e. L-T
splitting. Of course, they stenf from the same origin — the
long range‘nature of the dipole-dipole interaction. Therefore
we should pay much attention to the behavior of the solution
near K//mO; otherwise the K//—expansion is similar to

the usual perturbation expansion. Using the solution for the

resolvent, we calculate the density of states and the absorption

Z 12 -



spectrum in §5. From the density of states we can clearly
identify at most three surface localized states. Two of them

are surface excitons in the usual sense; they owe their existence
to the surface potential and belong to type [II ] surface modes.
The other one is, in a sense, 'anomalous'; it owes its existence
merely to the cleavage, hence belongs to type [I] modes. The
absorption spectrum is calculated as a function of the polari-
zation direction of the incident radiation. How the exchange

of the oscillator strengths takes place between the surface
excitons and the bulk excitons as well as among bulk excitons
themselves is investigated and shown. A remarkable feature

is that the surface excitons can show giant oscillater strengths
depending on the. parameter values. There are two origins of
them; one is the short range interaction and the other is the
long range one. Moreover, the condition for the giant oscillator
strengths of the latter origin is examined in some detail with
respect to a polarization dependence. Section 6 is devoted

to discussions. Firstly, we study the behavior of the ‘'anomalous’
surface mode in detail, and its relationship to surface polariton
is pointed out. Then we try to interpret the observed giant
anisotropy of GaAs surface core excitons on the basis of our
results. Usefulness of polarization dependent spectroscopies

in the investigations of the surface excitons on solids other

than GaAs is also suggested. Limitations and possible extensions
of our model are discussed. Finally, we summarize the results
in §7.

- 13 -



§2 Survey of Surface Exciton Studies

In this section, we give a brief review of the investigations

so far made on surface excitons.

2-1 Organic Crystals

22)

There had been some controversy concerning the origins

of the fine structures seen in the reflection spectrum of the
b-polarized 0-0 transition of the first singlet of the crystalline
anthracene. Turlet and PhilpotéB) have performed careful
measurements of the spectra, and from the surface treatment
sensitivities of the fine structures they concluded that the two
sharp dips observed at low temperatures are due to the surface

and subsurface exciton transitions. They also proposed a model

' that explains the differences in energy between the surface and

12)

the bulk excitons in terms of the site shift energy. Struc-

tures probably due to the surface excitons have been observed

23)

in transmission spectra, too, and there i1s an evidence that

these surface excitons are also involved in the fluorescence
emissions first observed by Glockner and WOlf.ZD To date,

reflection minima attributed to surface excitons have been

25)

observed not only in anthracene, but also in tetracene and

26
naphthalene. )

Theories of surface excitons in molecular crystals have

16)

been developed independently by Hoshen and Kopelman, and by

- 14 -



Schipper}j) In both of their theories, the Koster-Slater

approach27) was employed and the surface was represented by
two kinds of localized perturbations (one is the cleavage and
the other is the surface relaxation, such as discussed in 1-1)
introduced into infinite (or periodic) crystal with a tight--
binding type model of exciton. They discussed the condition
for the existence of surface excitons in terms of the exciton
transfer energy and the site shift energy. Later, Ueba and
Ichimural8)extended the theory of Hoshen and Kopelman to the
case where there are two translationally nonequivalent molecules
per unit cell and showed that the Davydov splitting of surface
excitons can be smaller than that of bulk excitons. They
pointed out the possibility of interpreting the two sharp
reflectivity dips observed on crystalline anthracene as due to
the Davydov pair of the surface excitons. Though there is
little doubt about the existence of surface excitons in these
organic molecular crystals now, understanding of the details of

these states will require further theoretical and experimental

efforts.

2-2 Rare Gas Solids

The first experimental evidence for the existence of
surface excitons in solid Ar, Kr, and Xe was given by Saile and
4)

co-workers in 1976. In their experiments, optical transmission

and reflection spectra were measured on thin rare gas films by

- 15 -



means of synchrotron radiation. They found structures due to
surface excitons at energies slightly below the well-known bulk
exciton absoption bands. For these structures of surface
origin, a splitting into two dr three components is observed.

For example, in the case of Ar, two rrominent peaks at 11.71 eV
and 11.81 eV and a weak shoulder at about 11.93 eV below the

bulk n=1 (j=3/2) and n=1' (j=1/2) excitons*) that have the energy
location of 12.06 eV and 12.23 eV, respectively, and two peaks

at 12.99 eV and 13.07 eV below the bulk n=2 (13.57 eV) and n=2"'
(13.75 eV) excitons are observed (Fig. 2-1). On the basis

that the observed surface exciton splitting is too small in

20

Ar with Kr

SURFACE
n=2 T

ABSORPTION (REL,UNITS}
=]
T

L oa=r

surFace /L1,
L 1 1 Il 1 L

1o 120 13.0 140
PHOTON ENERGY (eV) .

Fig. 2-1. Absorption spectrum of a clean Ar film and of the
same Ar film with a Kr overcoating. Those peaks which
are sensitive to the surface treatment was identified

as the surface exciton peaks (after Saile et al.u)).

¥) Notations of the hydrogenic series are used; i.e., n is
the principal guantum number. In the parenthesis, j is the total

angular momentum of a hole in the p-like valence band.

- 16 -



comparison with the spin-orbit splitting of the corresponding

bulk excitons, they proposed, as a possible model, that it

might not be the spin-orbit splitting but be a surface-crystal--
field splitting of the j=3/2 excitons. Even if we admit this
conjecture, the question of why then the n=1' surface exciton

is hard to see and why the n=2' surface exciton cannot be observed
at all still remains to be answered.

On the contrary, Ueba28)argued that the observed splitting
of the surface exciton peaks could be explained in terms of the
spin-orbit splitting, pointing out that the spin-orbit splitting
of surface excitons can be smaller than that of the corresponding
bulk excitons. This argument, however, also have an apparent
shortcoming that it cannot explain why three surface excitons
appear from two (n=1 and n=1') bulk excitons. At present, we
have no convincing assignments that account for all the observed

features of the surface related transitions as a whole.

2-3 Si

Among a lot of semiconductor reconstructed surfaces, Si
(111) 7x7 surface has been the most controversial one with
respect to its surface atomic geometry. Various models of

g,29)

reconstruction have been propose but none have attained

a general agreement.
In 1977, Margaritondo and Roweso)studied the L2 3 absorption
3

edge on Si (111) 7x7 surface with electron energy loss spectro-

- 17 -



scopy (EELS) and found a large excitonic effect for the Si 2p
core level to empty surface state transitions. EELS was taken
in the second derivative mode, and two peaks in the difference
between the spectra with and without gallium overlayer were
identified as surface transitions. From a careful comparison
of the two peak energiles with X-ray photoemlission spectroscopy
(XPS) data, they c¢oncluded that the excitonic shifts for Si (2p)
to empty surface state transitions are at least about 0.9 eV
for the one peak and 2.1 eV for the other peak, in comparison

with about 0.9 eV for the bulk L absorption edge.

2,3
In determining the atomic structure of reconstructed
surface, one way is to calculate the surface electronic energy
band by assuming a certain reconstruction geometry and compare
it with experimental data (absorption, photoemission, electron
energy 1oss,.etc.). The observation of rather large excitonic

shifts indicates the danger of interpreting experimental data
in a simple one-electron scheme. Therefore detailed investi-
gations of the nature of surface excitons seem to be required
before a sound comparison of band calculations with experiments
can be made.

In order to qualitatively explain the observed large excitonic
effects in surface core excitons, Altarelli et a1.31) - performed
a model calculation based on the Koster-Slater method, where

two parameters were introduced to represent the core hole

potential and the surface reconstruction, respectively, into a

- 18 -



tight-binding model. They found that, depending on the values

of the parameters and on the positon of the core hole, in some
situations a large enhancement of the binding energy near the
surface results, and in other cases excitons are not allowed to
be in the first few layers. Though their result is very |,
suggestive in elucildating the nature of the binding of an electron
and a hole in the surface region, their model is too naive to

be applied to a real solid. In this connection, it may be
pointed out that the most important, though most difficult,
question to be answered urgently on semiconductor surface optical
properties is how the bulk dielectric screening mechanism is
modified near surface. Up to now, we have neither a first:
principle theory such as developed by Sham and Rice32) for bulk

excitons, nor even a qualitative theory on this problem.

2-4 GaAs ?

Recent development of synchrdtron radiation sources has
made photoeﬁission spectroscopy one of the most useful techniques
in the field of surface physics; In addition to measuring the
conventional energy distribution curves (EDC), this source of
variable frequency of light has made possible new modes of
experiments such as constant initial energy §pectrosco§y (CIS)
and constant final energy spectroscopy (CFS). So called partial
yileld spectroscopy is a kind of CFS that counts mainly secondary

electrons as a function of photon energy by setting the kinetic

- 19 -



energy window of the analyzer at relatively low energy.
Electrons that are excited deep in the bulk suffer repeated
scatterings from the rest of the solid and, in effect, they cannot

reach the surface. Only those electrons excited within the

33)

photoemission spectroscopy is extremely suitable for the study

"escape depth" from the surface are detectable. That is why
of electronic surface properties.

By the use of these thechniques, numerous experiments have
been made on GaAs, a material of recent industrial importance.

In the light of these experiments, as well as several theoretical
efforts,3u-37) the overall features of the atomic geometry of
GaAs (110) surface are now well-established: there is general
agreement that it is 1x1 relaxed surface and that surface As
atoms move outwards and surface Ga atoms move inwards, with about
25° bond-angle rotation and a charge transfer from Ga to As
surface atoms.

Using partial yield technics, Eastman and Freeouf38)detected,
for the first time, the existence of unoccupied surface states
Jjust below thelbottom of the bulk conduction band on both Ge
(111) and GaAs (110). Soon later, Lapeyre and Andersonlu)
performed more extensive measurements on GaAs, using CIS
techniques, and showed that the excitations observed by Eastman
and Freeouf are not one-electron transitions from core levels to
unoccupied surface states, but should be thought of as surface

core excitons. Their CIS data are shown in Fig. 2-2, where

- 20 -



GaAs(110) CIS

&
|

\ p polorization

NO  —

s polarization

o

GaAs (110) CIS
‘ Ej=—l.2ev

W

s hv-Ef fixed) (counts per incident photon: arbitrary scale)

N(hv
NO - —

8 12 16 .20

hv (ev)
Fig.2-2; Constant initial-energy spectra (CIS's)
of GaAs(110) surface for four different geometries.
The uppermost curve is for the case where the photon
electric field vector E is nearly parallel to the
Ga dangling bond, while the other three curves are
for E perpendicular (or nearly so) to the Ga dangling

bond (after Lapeyre and Anderson l4)).
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the CIS's for four different angles of polarization of incident

radiation are given. At relatively low photon energy, only a

direct excitation of valence electrons to the conduction bands

above the vacuum level is possible and the CIS's reflect the
features of the conduction bands. When photon energy reaches
or exceeds Ga 3d core level threshold, a new channel to excite
valence electrons opens ; first a core electron is excited to
form a surface exciton, and subsequently it decays via direct
recombination or Auger process with the energy supply to excite
valence electrons above the vacuum level. The narrow pair of
peaks near 20 eV in their CIS's 1s believed to be due to the
enhancement caused by this second process. Many evidences have
been reported showing that these structures are not due to simple
one-electron trasitions but due to excitons, but here we mention
only the following four points:

(i) The exciton enhancement strongly depends on the polarization
of incident radiation ; it is dramatically larger for the case
where the photon E (electric field)-vector has its largest
component parallel to the Ga dangling bond (the uppermost curve
in Fig. 2-2) than the other three geometries where the E-vector
is nearly perpendicular to the Ga dangling bond.

(ii) The exciton enhancement appears as a doublet originated
from spin-orbit splitting of Ga 3d level; the lower structure
corresponds to the d5/2 orbital and the upper one to the d3/2
.orbital. A remarkable feature 1is that the intensities of

the j=5/2 and 3/2 components are reversed from the 6:4 statis-
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ﬁical weight for the core states. -

(iii) The doublet structures in the second curve of the CIS's
are minimums instead of peaks.

(iv) The positions of the doublet also depends on the polari-
zation. They shift as large as 0.5 ev.

The second point éited above can be explained by Onodera--
Toyozawa theory,39)which shows that the oscillator strength of
spin-orbit split excitons is strongly dependent on the electron--
hole exchange interaction. The third and the fourth points may
be explained in terms of the Fano effect;uo>the valence excitation
continuum overlaps in energy with the surface excitons, and
the interference effect among them can account for the appearance
of such minimum structures as well as theilr shifts, although a
" question remains as to Whether the Fano effect alone can explain
such large shifts, twice as large as the widths of the structures.
On the other hand, we have no theory to explain such a strong
polarization dependence as mentioned in (i). In fact, the Ga
dangling bond has pZ—like character and a simple calculation
with use of Clebsch-Gordan coefficient yields that the oscillator
strength ratio of the transition from d to p, orbital when the
E-vector is parallel and perpendicular to the P, orbital is 4:3.
Thus we can expect these surface exciton transitions to be

almost isotropic, which is in sharp contradiction to the

observation.

In contrast to the case of Ga 3d excitation, Zurcher et al.ul)

obtained no evidence that the transition from As 34 core to
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empty surface states is excitonic in nature in the same manner
of experiments. This is to be expected; it is well established
that the surface relaxation causes charge transfer from surface
Ga to As atoms, leaving Ga dangling bond states empty and those
of As occupied?#37%hus the only available final state in the
transition is the Ga dangling bond state. Therefore the
transition out of Ga 3d is intra-atomic in character, resulting
in a strong binding of an electron and a hole, while the trah—
sition out of As 3d is inter-atomic, resulting in a weak binding.
In fact, this picture was recently verified quantitatively by

¥
Yh2) in their model cluster calculations and by

Swarts et al.
Daw et a1.43) in their tight-binding calculations. Their
results also suggest that the Frenkel model gives a good

description for these surface excitons.

*) Since dangling bond states are brought about by the
presence of surface, surface excitons of the type presently
considered have no bulk counterpart. In order to emphasize
this character, Swartz et al. called them core surfastons.

This nomenclature is, however, not prevalent yet.
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§3 Model

3-1 Hamiltonian

We consider a Bravais lattice of slab geometry composed of
N lattice planes (see Fig. 3-1). The lattice structure is
assumed cubic. Following Heller and Marcus,uu) we arrange an
identical atom on each lattice site, which has a s-1like occupied
orbital and a p-like unoccupied orbital in the ground state.
We ignore electron spin and neglect the overlap of the orbitals
on different lattice sites (extreme Frenkel limit). Thus we
can use the classical oscillator model for excitons. Transfer
of atomic excitation occurs only through the dipole-dipole
interactions. We assume that the atoms on the first layer
have an‘excitation energy different from that of the atoms on
the remaining bulk layers by an amount 6. The origin of 6§
may be various, but we do not discuss about it here and simply
treat it as a parameter. As a basis set, we take Frenkel
excitons each of which is localized on one of the layers, say

the %2-th layer, and propagates along the layer with a wave vector
K
7a

. . + .
zation. Let us define alv(ﬁ//) (alv(ﬁ//)) as the creation

One more suffix, v, 1s necessary to indicate its polari-

(annihilation) operator of such a state. Since %// is a good
quautum number, we proceed the calculation with a given K// in
the following , and drop the index K// in these operators.

Then the Hamiltonian of our model can be written as

- 25 -



Fig.3-1.
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Schematic representation of the geometry
and the coordinate system. The x-axis
is so chosen that its positive direction

coinsides with the direction of ﬁ//.

- 26 -

~ow



N
i +
H=¢_ ) JYa, a, +67) al a
b t=1 v 'AVEES'AY) Ny v 71v
b :
+ V. (2,m) a a. (3.1)
L,m=1 v,p VH v T

%

 where €y is the -atomic excitation energy of the bulk atoms; 6,

the surface potential; and Vvu(l,m), the dipole-dipole interaction
between the v-polarized exciton localized on the 2-th layer and the

u-polarized one on the m-th layer. The expression of Vvu(z,m)

5)

can be obtained by simple rearrangement of terms in the usual
dipolé—dipole interactions of the Frenkel excitons in a layerwise

form as

_ 1 %
Vvu(l,m) = 5 N, g

J exp[1K, " (R ;-Ry )] x

»J

2 >

lﬁzi - ﬁm,le *
where Ns is the number of ﬁnit meshes in one layer (we assume
that we have imposed periodic boundary conditions with respect
to the directions parallel to the surface); ﬁv(ﬁu), the transition
dipole moment associated with the v(u}—polarized single-atom
excitation; I, the unit dyadic; and ﬁZi(ﬁmi>’ the lattice vector
of the i(j)-th site on the 2(m)-th layer. In the summation,
it is understood that when 2=m, the term for i=j should be

excluded. The difference ﬁzi_ﬁmj may be rewritten as

Ry - B =K, 4B, (3.3)
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where ﬁzm denotes the origin of the 2-th layer relative to that

of the m-th layer, and ﬁ// is a two-dimensional lattice vector.

Note that R m is not necessarily perpendicular to the layers.

L
Then eq. (3.2) becomes

> % L .
Vvu(z,m) = Mv'X exp(-lK// ﬁ//)

ﬁ//
> 2 :
% |R,Q,Il'l+§//l T - 3(ﬁ£m—ﬁ//)(§2m—§//)'ﬁ (3 14)
lﬁ + B |5 [V :
2m //
where we have dropped the factor exp(—i%//-ﬁzm)gl. An exact

treatment of the layerwise dipole sum of this kind was given by

20)

Mahan and Obermair for the special case of K//=0, and also by
phihxttﬁS)who gave the formula with inclusion of the retardation
effects. Assuming that K// is small, we analyze the sum in

eq. (3.4) and try to find a Suitable form with some parameters,
in the following subsections, so that our ﬁodei is general and
applicable to any surfaces of lattices (but cubic, of course).

The cases of %=m, and of 2%¥m will be examined separately in the

next two subsections.

3-2 Intralayer Dipole-Dipole Interactions

First, we examine the case when 2=m. Equation (3.4) in this

case simply reads

I-3R%, R
/7S 5
5 Mu , (3.5)

2
Y % R/
Vvu(z,z) = Mv-Z exp(—lK//-ﬁ//)

R
', /7
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where the prime on the summation means to exclude the term ﬁ//=0.
We replace the summation by the 2-D (two dimehsional) integral
outside the circle of some radius RO, the value of which is to
be determined later. We define the coordinate system such that
the (x,y)-plane is in the surface layer with the x-axis parallel
to ﬁ// and the positive direction of the z-axis points inward

to the bulk (see Fig. 3-1). Then the summation in eq. (3.5)

is replaced by the integral given, in a matrix form, by

L ~2x%4Y% -3xY 0
exp(-ik, ,-R,,)
1 [J a&,, 5// L/ _3xy x°-2Y° 0 . (3.6)
S R
770 z 0 0 x2+y°

Here Qs is the area of the unit mesh and (X,Y)=§//. This
integral can be evaluated as a power series of K//RO’ which will
be made in Appendix A. Assuming that K//RO<<1, we retain the

terms up to linear in K//, and finally we obtain

-1/K, R.+2, O, 0

V\)u(’Q/J'Q’) = _QS—— 03 _l/K//Roa 0 . (3'7)
o, 0, 2/K , Ro=2

In the case of 3-D dipole sums, Heller and Marcus showed that
the integral approximation gives a correct result when K=O0,
which does not depend on the radius of the exclusion sphere as
far as the condition KRO<<1 is fulfilled. In our 2-D case,
however, the lowest order terms do depend on RO, and some means

to determine the value of RO is necessary. One possible way

may be to require that the area of the exclusion circle be equal
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to the area of the unit mesh; namely, ﬂR§=QS. The intralayer

interaction, however, is not a quantity independent of the
interlayer interactions, thus it 1s essential to make our choice

of R, consistent with the approximations made for the interlayer

0
interactions, which will be done later in subsection 3-3.
On the other hand, the next order terms are independent of

R We introduce the interlayer spacing dlf and note the

0
following two points; (1) QS ql is equal to the volume of the
bulk unit cell @, which is valid for arbitrary Bravais lattices,
and (ii) the L-T splitting, Apms of the bulk exciton is given
by &n|M|2/Q. Then, we can express the terms next order in K//
in terms of the important physical quantity ALT;
anlul® 5 a g (3.8)

1 wre e |

§2
5]

Now the general form of the intralayer interaction (3.7) may be

written, up to linear in K//, as

_BO+K//dl/2’ 0, 0,
V\)u(ﬂ’sg‘) = ALT o: _BO’ o: 5 (3'9)
0. 0, 28K /2
where Bo=ﬂ|M[2/QSROALT is a dimensionless parameter.

3-3 Interlayer Dipole-Dipole Interactions

Next we consider the case when 2¥m. We use the following

2-D Fourier transform of the dipole transfer matrix which is
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valid for zX0:

PPIgtE 2 g exp(-k,  |z|+1k, v/ )
5 N_ Q k
r s's ¢ //
//
r .2 . \
K, k ko, ik k ,
2 .
x| kK, ke tikok, | (3.10)
. . L2
ilk//kx, ilk//ky, —K// »

\

where for + in the matrix we have the positive sign for z>0 and
the negative sign for z<0, and kx and ky are the x- and y-
compeonent of the 2-D wave vector E//, respectively. We could
derive this formula most easily from the 2-D Fourier transform

of 1/r:

1 an_ g SRl lElMR Y )
r

= £y
Ngllg 2 K,/

%/
by operating the differential dyadic operator V. With the
use of eqg. (3.10) the sum over ﬁ// in eq. (3.4) is converted

into the one over the 2-D reciprocal lattice vectors 5//,

X

. m - G ; exp[iC R, -1k, +C  []z) |]

VU Q > -
s |k, +G , |
a// YVANVY
( 2 . - > 3\
(K//+GX) s (K//+GX)Gy, il(K//+GX)|K//+G//I
2 A =
x e ile}K//+§//] ,  (3.11)

(h.c.)

> 2
-1k, 48|
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where sz is the z-component of ﬁlm’ (GX,Gy)=§//, and (h.c.)

means hermitian conjugate. In the above expression we have omitted
the factor exp(ii//-ﬁ m)’é’l. It. is convenient to discuss the
-
= 1 . =0 i
5// 0 term separately from the 5//#0 ones The G// term gives
1 0 +i
long LT // l _ .
VVU (2,m) = exp ( K//lzzml) o 0 01, (3.12)
i 0 -1
where we have used eq. (3.8). We see this term depends
exponentially on the distance of two layers. Since K// is

small compared with the reciprocal of the interlayer spacing,
it has a very long interaction range, although each term, in
itself, 1s small, because the small quantity K//dl is also
contained in the prefactor.

As to the 5//%0 terms in eq. (3.11), we may neglect the small
K// effecp. In addition, we assume that the symmetry of the
2-D lattice i1s high enough so that the cancellation of terms for
a pair of a// occurs. Then we can write the 6//%0 terms

as

short _ omm|? exp[iG, Ry -G, |Z, |]
V\) (2,m) = g z x
H s %, G,/
g, %0
a2 0 0
X
2
x| o g 0 2 . (3.13)

0 0 -65,

Due to the exponential factor exp(—G//]Zle) in the above
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expression, this interaction acts between relatively near layers.
We may retain only the nearest layer terms and neglect all the
other interlayer interactions. One more assumption concerning
the 2-D lattice structure that the x-direction be eguivalent

to the y-direction, as well as the requirement that the trace

of the dipole transfer matrix should vanish yields the general

form of the nearest layer interaction as

_81

yShort p i g41) = A -8, , (3.14)

VU LT
261
in terms of a dimensioﬁless parameter Bl'
In passing we note that when K// exactly vanishes, our model
dipole-dipole interaction contains only two parameters BO and
61 which describe the intralayer and the nearest layer inter-
actions, respectively. It might also be possible to include
in our model the next nearest layer interaction, the third
nearest layer one, and so on, with corresponding parameters 82,

This kind of layerwise dipole-dipole interactions for
20) wh

’3

the case of K//=O was treated by Mahan and Obermair, o)
calculated the B'sﬁp to 85 on the (100) plane of cubic lattices.
In order to showvto what extent the nearest layer approximation
is valid, we reproduce a part of their results in Table 3-1.

We see 82 falls off very rapidly as & increases, and 82‘3 are,

in fact, negligible on those surfaces. They also pointed out

that the whole BQ'S are not independent quantities but they
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should satisfy

where 1/3 comes from the Lorentz-Lorenz local-field factor.
In our model, since we have retained only BO and Bl, it seems

reasonable to require
BO + 281 = 1/3 (3.15)

It will be shown in the next subsection that this is indeed a
reasonable requlrement.
Table 3-1: The layer wise dipole-dipole coupling constant Bz*)

for the (100) plane of simple cubic (sc), body-centered

cubic (bee), and face-centered cubic (fcc) lattices

(after Mahan and Obermairzo))

sc bec fce
By, 0.35943 0.17972 0.25416
B,  -0.01303 0.08309 0.04021
B,  -0.000002208 ~0.0006515  -0.00006368

#) v(2) in their paper corresponds to our —82.

3-4 Eigenmodes of Periodic Bulk Lattice

From egs. (3.9), (3.12), and (3.14), we see that the y--

polarized excitons do not couple with the x- and z-polarized
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ones, so we can treat them separately. For simplicity of

notation, hereafter we use the parameters ro, rys A, and K

rather than BO, Bl, ALT’ and K//, that are defined, respectively
by
ry = Bg App o
ry = 2By bpp s
A= ALT/6 R (3.16)
and
= d, .
k=X,
Then the Hamiltonian for the y-polarized excitons is
N + ry N-1 -
Hy = (gy-rg) %=1a2y oy T 2 §=l(a£y Bp41y T 2ge1y Zay)
.I.
+ & a1y 21y - (3.17)

If we introduce the vector notations such that
a . .
> X >T _ T i
a, = [a ] , and a, = [aﬁx’ a,_J1 ,
2z ‘
then the Hamiltonian for the x-z polarized excitons can be

written in the matrix form as

) N > eb-r0+3AK, 0 : -
hx-—Z 1 z— az. ., \ .az
i=1 0, £, t2r,-3)K
N-1 -r.,/2 0
17 >
+ 2__ {az 244 +(h.c.)}
=1 0, rq
N .1 i
+ 9 3k e Kl&-m] g, A+
¢, m=1 i -1
(2>m)
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N > 1 -1 - >+ >

+ ] 31K e—Kll—m| az- ]-am + 8a.-a, . (3.18)
L,m=1 i )

(2<m)

In eq. (3.18) the first term contains the intralayer interactions,
the second one represents the interlayer short-range interactions,
the third and the fourth ones are the interlayer long-range
interactions, and the last one is the surface potential term.
We see, at once, that when K is exéctly zero, the x- and z~-
polarized excitons decouple with each other and the Hamiltonian
for the x-polarized ones becomes equivalent ¢to Hy' In the
following, we concentrate only on Hx-z and write it simply as
H, with no suffices. The solutions of Hy can be obtained from
those of H in the special case of K=0.

The above Hamiltonian is for the slab geometry. The
corresponding bulk.Hamiltonian, Hb, may be found (i) by dropping

the surface potential and then ({i) by imposing the periodic

boundary conditions on the N layers such that 31=3N+l‘ Thus
we get
N ‘€. -r.+3AK, 0
Hb = 2 g;v[ b O '32
=1 0, eb+2r0~3xK
‘3 {gz. 1 -§Q+l+(h.c.)} (3.19)
2=1 0, rq
N © R s +i
+7 1 ke KlAoml gt 2,
=1 m=-c +i, -1
(2%m)

where for + in the matrix of the last term, we have the positive
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sign for %>m and the minus sign for &<m. As concerns the last
term, an addittional remark may be worthwhile: We assume here,
and in the following alsd, that N is infinitely large so that,
as far as K is finite, NK is also infinitely large. Namely

if we want to take the limit K-+0, the limit N-»« should be taken
before K-0. This is consistent with the idea of the optical
selection rule, and enables the sum over m to extend from -«

to «» for a fixed value of 2, or vice versa. On the other hand,
it is also possible to consider the case when K is exactly zero.
In this case, the long-range term should be simply removed from
the Hamiltonian, because the prefactor K in that term vanishes.

We now proceed to calculate the bulk normal modes. We

start with the Helsenberg equations of motion for gg;

sb—ro+3AK—e, 0

} - [—1"1/2, 0 }(—> - )
«a, + a +a
% -1 “+1
0, sb+2ro-3kK~e 0, ry
! 1, i
+ 32k | e Klt-m] a2 =0, (3.20)
M=o +i, -1) ™
where € is the energy eigenvalue, and the prime on the
sum is meant to exclude the term m=2%. We assume the form
g, = =3 o IKE (3.21)
VN

where k=nm/N(n=0, £1, *2,...%X(N-1), N) is the z-component of the
wave vector reduced by the reciprocal lattice spacing l/dl.
The combination of XK and k defines the three dimensional wave

vector of the bulk exciton, §=(K,O,k). Substituting eq. (3.21)
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to eq. (3.20),

& ~ To 71
0,

and performing the summation, we obtain

cos k + 3XK -g, 0

g. + 2r +2r. cos k -3XK -¢

b 0"t
+ 30K (a(k)Vy + u(—k)VZ)}E =0, (3.22)
where
a(k) = —at (3.23)
R+ik >
e -1

is a function

First we

of k containing K as a parameter, and

i 1l -1

s V2 = . (3.24)
-1 -1 -1
consider the case where K vanishes exactly. The

X-polarized exciton is now transverse in character, while the

z-pclarized one is longitudinal. The energies of them are

easily obtaine

e (k)

az(k)
with the corre
g, (k)

Now we impose

d from eqg. (3.22);

=€ - Ty - Ty cos k
(3.25-a)
= Eb + 2r0 +2r:L cos k ,
sponding eilgenvectors,
1 5 0
0 1

the requirement that the difference 82(0)-et(0)

should be equal to the L-T splitting 6A, which ylelds
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r. + ry = 21 . (3.26)

Noting the relations (3.16), we see the above 'sum-rule' exactly
coincides with eq. (3.15). Therefore, 1f we fix the value of
A, which is itself a measure for the significance of the long--
range interaction, our model dipole-dipole interactions contain
only one independent parameter which can be a measure for the
relative importance of the long-range interaction versus the
short-range one.

Now we go back to the case where K is finite (but vanishingly
small, of course). The function a(k) plays a significant role
here, and 1t is useful to have its 'asymptotic expansion' in

terms of Kj
a(k) = pay scots - 2+ 0(K) (3.27)

where O0(X) means the collection of terms that are of the same

order of or higher order than‘K. Derivation of this formula will

be given in Appendix B. Using eq. (3.27) in eq. (3.22), we

obtain
€y — Tqo - rlcosk -, O
(0, € + 2r0 +2rlcosk-e
K k ||
+ ___2le £ cotk =0 . (3.28)
K™ +k k -K

Note that the K-linear terms in the intralayer interactions are
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exactly cancelled by those which arise from the long-range
interlayer interactions. It is convenient to introduce a wave

number kO such that (i) kois small encugh that it satisfies

kg<<l, but (ii) ko is large enough that the condition K/ko<<l

is fulfilled. If K is small enough, such k, will surely exist.

0
The region of k is divided into two, according to whether |k|

is smaller or larger than k We solve the eigenvalue eq.(3.28)

0"
in these two regions of k, seperately.  First we consider the
case when [klsko. We note that in this region
k k k2
L= - = s
5 cotz = 1 - 35 + T (3.29)

Thus eq. (3.28) is rewritten approximately as

b
cos 6(k) sin é(k) N
+ 6X cosH(k) u=20, (3.30)
sin 6(k) -cos 6(k)

where 6(k) is a function of k cotaining K as a parameter that
measures the angle between the wave vector @ and the x-axis
(see Fig. 3-2). In the following, we shall often omit the
argument k of 6(k), where there is no fear of confusion. With
the aid of the sum rule (3.26), this equation can be solved
easily and we obtain two modes; for the first one, the energy

and the eigenvector are given by
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Fig.3-2. Schematic diagram showing the definition

" of the angle 9.
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Eb - 22X

sin 8 } (3.31)

et(k)

a*tuc)

-cos ©

and for the second one,

ez(k) = €y + 4
N cos 6 (3.32)
u, (k) =

sin ©

Clearly, these two modes correspond to the T-exciton and the
L-exciton, respectively.

In the region where [klgko, the second term (long-range
term) in the curly bracket of eq. (3.28) can be neglected due

to the condition (ii) for ko, and we get simply

et(k) =€, - Ty —‘rl cos k

k/ | k| (3.33)
u, (k) =

0 5
and

ez(k) = €y + 2ro + 2r1 cos k
- 0 _ (3.34)
uy (k) x/|x|

Summarizing the results (3.31) to (3.34), we arrive at the
unified expressions of the bulk eigenmodes which work for

arbitrary values of k;

st(k) €, = Ty ~Ty cos k

b
{Sin ® ] (3.35)

-cos ©

(k)
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and

0 1
[cos e} (3.36)

sin ©

.sz(k) = €y + 2r, +2r. cos k

u, (k)

The energy band structures of these modes are schematically shown
in Fig. 3-3.

At this point, we mention two remarks on the results (3.35)
and (3.36). One is on the validity of the approximations made
to solve the eigenvalue problem. In the above discussions,
the somewhat artificial parameter ko has been introduced, which
hinders us from seeing to what order in K the above results are
valid. To check this 1s really important especially when we
want to try a K//—expansion, which we shall explain in the next
section. Instead of the above treatment, it 1s also possible
to make a somewhat more mathematical argument, in which all the
terms appearing in the Hamiltonian are expanded in the series
of K. This will be made in Appendix C. According to the
results there, the expressions of energies in egs. (3.35) and
(3.36) are correct up to the linear order in K, i.e., corrections
are of order K2. This is to be expected; the bulk exciton
energy cannot have K-linear terms, as far as inversion symmetry
exists. On the other hand, the eigenvectors have corrections
linear in K. In fact, cos 6 in at(k) and ag(k) should be
replaced by

r. +r

k
T+ g coi k % cot 3 x cos 6, (3.37)

1
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Fig.3~-3. Energy band structures of the T- and the L-

modes in the periodic lattice.
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in order for ut(k) and ul(k) to be correct up to linear order
in K. The Taylor expansion of the prefactor in the expression

(3.37) yields

r

cot £ =14 (7F- ) K%+ -e0 L (3.38)

rot Ty g
2

r0+r1 cos k

-

Therefore this correction becomes important only for a relatively
larger value of k such thatthel?—temncanmﬁ:be neglected. This
means that the bulk mode deviates from the pure T- or L-mode
and becomes rather the L-T mixed mode when k increases, which
is also a well-known phenomenon?) In this region of k, however,
the value of cos 6 itself is small (of order K), so the total
correction that arises due to the replacement of (3.37) is also
small. As it could be checked at each step of the calculations,
this correction of order K does not matter in the following
arguments at all. There}ore, hefeafter we employ the simple
expressions of egs. (3.35) and (3.36) for the eigenvectors
rather than‘thé complicated expression (3.37).

The second remark is on the conspicuous nature of the
long-range interactions. Noting that the energy eigenvalues
in egs. (3.35) and (3.36) coincide with those in eq. (3.25-a),
we see that the long-range interactions apparently play no role
in determining the energies (at least in the lowest order in K).
As to the eigenvectors, the situation is quite different.

This is most clearly understood by taking the k-0 limit. In

this limit, Et(k) in eq. (3.35) becomes (0,-1), which coincides
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with az(k) in eg. (3.25-b) (except for an unrelevant sign), and
U, (k) in eq. (3.36) with u (k) in eq. (3.25-b).  Thus the
existence of the long-range interactions, or the finiteness of
K, drastically alters the nature of the mode belonging to a
particular energy band especially where k is small. This
demonstrates clearly the 'non-analyticity' of our problem that

is brought about by the long-range interactions.
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§4 Method of Analysis

We calculate the resolvent Green's functon (in the following,
the resolvent Green's function is simply called as the resolvent)
from which the density of states and the optical spectra are most
easily obtained. We are interested in the surface induced
changes of the above quantities. These include (i) the
appearance of surface lacalized modes, (ii) the rearrangemeﬁt
of the density of states and the oscillator strengths among
the bulk modes, (iii) the .exchange of the oécillator strengths
between the surface localized modes and the bulk modes, and so
on. The advantage of using the resolvenﬁvover directly handling
the Schrddinger equation is‘that it eluéidates the above points
in the easiest possible manner. In this éection, we explain
the methods to solve Dyson's equation and derive a set of basic
equations that determines the resolvent. The actual solution

will be given in the subsequent section.

4-1 K-Representation of the Hamiltonian

The eigenmodes of the periodic bulk'crystal-obtained in
the last section serve as a complete basis set to expand the
'spinors' on the N layers in the slab crystal. Thus the

operator 32 can be expanded as

ike > . , |
) é e u,(k) b,(k) , (4.1)
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where v stands for t or 2, and the expansion coefficients bv(k)'s'
have the meaning of the annihilation operators of the bulk
normal modes. It is more convenient to use matrix notations
and we rewrite eq. (4.1) as
3, = =71 Mo B, | (4.2)
/N k

are defined,

where the 2x2 matrix U(k) and the vector operator gk

respectively, by

sind, . 0586 ;
U(k) = : (4.3)
-cosb, sinb6j ,
and
b, (k)
By = [ t ] | » | (4.h)
. bz(k) , | :

Strictly speaking, gz'é in the originai slab model are defined
only fof the layers from 2=1 to 2=N, but we may extend this
definition periodically to virtual layeres of 2£<0 and £2>N+1
according to eq. (4.2). This allows us to express the
Hamiltonian for the slab geometry (eq. (3.18)) as the.sum of
the Hmiltonian forvthe bulk crystal with the periodic boundary

condition (eq. (3.19)) and the remaining terms;

H=H +V__ +V,_ + vsp , , (4.5)
where
-r, /2, 0 -r. /2, O
- _zt 1 > ot 1 S
Vsrp = 89 {o N ] 17 % |, . ] TS (4.6)
? 1 2 1
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. N 0 o
V. = -1 3K o~ K| 2-m| a0 vpa +I vy3), ()
2=1 m=-—o m=N+1
and
_ ->-]-.+

The surface perturbations Vsr’ and V can be viewed as originated

Lr
from cutting the long-range interactions and the short-range

ones, respectively, at the two surfaces of the slab, while VSp

is the surface potential;vof course. With the use of eq. (4.2),
we can express each of the four terms in eq. (4.5) in terms of
the operators of the extended basis set, g; and gk' A straight-

forward calculation yields

: . e, (k), 0
: k 0, eg(k)
1 YL ik, iK'
V. =Tl L5 (e +e ") x
sr N ko 2
‘ (4.10)
St sin® sin®' - 2cosH cosd', sinb. cosé' +2cos6 sinb'|
x b _|b
K cos® sin®' +2sin6 cos6', cosH cos6' -2sind siné’ kt?
. - . . [] . '3
v, =77 3ak (1-e"FNy BT JEHKY [y aqir) 10 10 v
Lr N . k 1
k k
i : s Csan
+ BT (k) a(-kr) eI 710 v2} By, (4.11)
and
_ 1 -ik ik!
Vep = % E' S e e x
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+ sin® sind' +cosH cosb', sind cos6' —cosbd sind!

=> >

‘cos@ sin6' - sinb cos6', cosb cosd' +sinb sing’

where 8' stands for 6(k'), and the definitions of a(k), Vl’ and

V.-are found in egs. (3.23) and (3.24). In the expression (4.11),

2
the terms containing the factor e_KN clearly represents the
interference effect between the surface on one side of the slab
and the surface on the opposite side, via the'long—range
interaction. Since we have assumed that KN is infinitely large,
these terms can be negleCted. A remarkable feature common to
the expressions (4.10), (4.11), and (4.12) is that all the

elementary terms contained in the summations are of the form

f(k)%g(kf), where f(k) (g(k')) is a'function only of k (k');

namely, they have a separable form. For a later use, it is
advantageous fo stress this point, and we rewrite.Vsr and VSp as
_1 n o, -ik, dik'y, 2 . o N :
Vo, = § E E'z (e”F+e™) bk‘(31ne sine' T__ + sin® cose' T_.
s Ay ' he )
+ cos® sing' T _ + cosb cosé ch) bk" (4.10)
_ 1 -ik _ik' >t . s Ay . .
VSp N E k'é e e b (sin® siné S g + 5iné cose' S_.
- ->
1 1] 1
+ cos@ sin® SCS + cos6 coso Scc) bk" (4h.12)°
where
1, O 0, 1
Tss - Tsc -
0, -2 , 2, O
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CS

[o, 2} [—2, o] (4.13)
T = ‘ T =

(1, © (0, 1)
SSS - ] SSC -

0, 1) , -1, 0,

(0, -1) (1, 0 (4.15)
SCS - ] SCC = '

1, O 0, 1)

In order to simplify the notations, we proceed to rewrite
the surface perturbations one step further.  We introduce a
6x6 matrix [M] each element of which is, again, a 2x2 matrix,
and a 6x1 column vector [f(k)] whose elements .are functions of

k. They are defined by

(0, 33KV, | | )
| ° | 0
3)KV,, -0 4
) | 0, r T /2 | 0, r T /2
= 0 ler s2, 85 ler s2, ss (4.13)
e "17ssl%r  T%ss T17sc’r TUse
. | 0, rch§/2 :O, rchc/2
. r1Tes/2s  85q |rchc/2’ 88ec >
and
ﬁf(k)]=t[d(-k)d716;bu(k)egflkele; sind, elksiﬁe; cosé, elkcose].
(4.16)
where t[ ] means transposition of the vector. Now the surface

perturbations can be written as
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1 >t > v
Ver ¥ Vsr T Vsp TR E E,bk Vikr Prr o (4.17)

and, with the aid of the matrix [M] and the vector [f(k)], ka,

in this expression are given compactly as
t. %
Viger = Lf (K)IMILE(k')T . | (4.18)

Note that the each element of [M] is a constant with respect
to the variables k and k', and that since it is a 2x2 matrix,
ka, is also a 2x2 matrix.

4-2 Dyson's Equation

In the last subsection, we have expressed the Hamiltonian
in the k-representation. Now we define the resolvent for the

Hamiltonian also in the k-representation as follows,

ez, arl (z) |
(4.19)
6ot (2), Gib ()] .,

G
Grger (2) =

1
where va,(z) (v,v'=t or %) in the right hand side is given by

kk

v 1 vt

| va'(z).= <0| b) == b o> . | (4.20)
Kk ' ' Pk z-w Pk e - '

In (4.20) |0> represents the ground state of the crystal and
z=e—io+. Hereafter, we shall often omit the argument z of

G If we take H_ as the unperturbed Hamiltonian, Dyson's

xir (20 b
equation for the resolvent can be written as

3 o




_ 1
= Go(k) 8 t5la )V

¢ Kk Ly

G (4.21)

Kk kk" Yk"k'

The unperturbed resolvent Go(k) is defined similarly as in egs.

(4.19) and (4.20), but with Hb instead of H. Since the operators.

gk and B; diagonalize the unperturbed:' Hamiltonian Hb’ the
Kronecker 6 has been extracted from its difinition. Clearly,
the explicit expression of Go(k) is given by

L 0

z—etiki’ _
Go(k) = 1 (4.22)
0 ——e
> z-el(k)- 2

where the energy of the bulk T(L)-mode exciton €t(k) (ez(k))

is given in eq. (3.35) (eq. (3.36)).
The importance of the k-representation lies in the fact

that in this representation, the kernel V of the integral

kk!'
eq. (4.21) is of the separable form (see eq. (4.18)). This

enables us to solve this equation with no difficulties in
principle. We proceed as follows: First let AGkk' denote the
second term in eq. (4.21). From egs. (4.18) and (4.16), we

see that the form of the k-dependencg of the terms in AGkk' is
expected to Be'one of the six functions {u(k)eie; oa(—k)eK"ike"ie
»sine,‘e—iksine,‘cose, e H¥eos0} multiplied by Go(k). Also,

the k'-dependence of them is exhausted by {a(—k')e—ie',

1 < 1 3 | 3 1
K+lkele , sine', etk sin6', cos6', etk cos6'} multiplied

>

a(k")e
by Go(k'), which can be easily checked by performing the Born
expansion of eq. (4.21) up to the first few orders. Accordingly,

AG can be expanded as a sum of the bilinear terms of the

kk'
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above two groups of functions. Since we have six functions
of k and also six functions of k', there arise thirty-six terms
in the expansion of AGkk" If we show a first few terms of
such an exparision, we have

G, (k)

> - 1 '3 . s [
AGkk' = N X{O‘(k)elea(—k')e 10 Al + oc(k)eK+lkeleoc(—k')e 16 A

. ot e
a(k)etO(oxryek-ik' -18",

-+

3

R St _aqn
a(k)eK+lkelea(—k')eK ik e 16!

<4

. 10 .,
Au + a(k)e  “siné Bl +

. },x 6 (k') . (4.23)

Here the expansion coefficients Al etc. are 2x2 matrices, -

each element of which is a function of z, although we have not
irdicated..it expiicitly, and is costant with respect to both
k and k'. Thirty-six such matrices are necessary in the

complete expression of AGkk" If we use the column vector [f(k)]

defined in eq.(4.16), this expansion of Gkk' of finite number
of terms can be written in a more compact form; by adding the
unperturbed term to this, the total resolvent becomes

D ' '
s = Go(0) 8y, + ~O PLe G0 INLE(6)] (k) 5 (H.2h)

Here the matrix [N] is defined as
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1 3] 71 311 ~3

B Ay 1By By 1€y €y

|~ T w
- Dl D3 l El E3 l Fl ‘3 ‘s
BN e

| T

P1 P3 l Ql Q3 I Rl R3

\ P2 P)-l I Qg Qu l R2 Ru ) s

and the expansion coefficients Al'bRu have beeg introduced.
Note that [N] is a 6x6 matrix each element of which is a 2x2
matrix, as is similar to the matrix [M] defined in eq. (4.15).
Substituting eqs. (4.18) and (4.24) to the right hand side of
Dyson's eq. (4.21), we obtain

G,(k)

_ ™) gk : :
G = Go(K) S + gy UL GOIMMILE(KN)T G (k)
Go(k) ¢ & |
+ 2= PLeT () JMICTIONICA (k') T Gy (k') (4.26)

-

where [I] is also a 6x6 matrix, with each element being a 2x2

matrix, and defined as
(1] = § L Go(x) [£()] et a0l . (k.27

‘We compare eq. (4.26) with eq (4.24). We notice that the six
functions of k in t[f*(k)] are linearly independent, and that

the same is, of courée, true for those in [f(k')], so that the
coefficient of the each bilinear function in eq. (4.26) should

coincide with that in eq. (4.24). This consideration yields

[N] = [M] + [MI[IQLN] . (4.28)
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This equation can be viewed as Dyson's equation in 'f(k)-
representation', where f(k) means the set of functions contained

in the vector [f(k)].

4—3VQK//—EXpansion

We have come .to the coupled linear equations (4.28),
and we are reédy to solve the integral equation (4.21).
In other words, if we obtain the solution [N] from eq. (4.28),
then by substituting it in eq. (4.24) we can obtain the resolvent.

)

There are, however, seventy-eight unknowns*;.ina[Nj and it is
a rather complicated'task to find out its éxact solution.”
Instead, we seek for an appfoximate solution, which will be
sufficient for our purpose, in the following.

We have a small parameter K‘(K is equal to K//Ql, as defined
before) in our theory, . which suggests the perturbation theoretical
approach to our problem. The éituation is, however, a bit
complicated. Behavior of the bulk eigenmodes discussed in
§3-4 implies- that the solution valuiup‘to first order in K may
not be continued smoothly from the zeroth order solution. It

also tells us that the finiteness of K is important especically

when k is small. Therefore, we have to be careful in the

%) Since [N] is a 12x12 matrix, there are 144 unknowns in it.
- . : ) B % - .
The reciprocity of the resolvent (Gkk,(z)= G;,k(z )) reduces

this number to 78.

~ 56 -




expansion with respect to K. For such a %b;exwﬂmiml we have the
first requirement to retain the guantity which measures the

relative magnitude of k (or k') and K. This quantity is, of

cuorse, 0. The angle 6 is contained in the six elements in
[f(k)]. The first two elements in [f(k)] have a factor oc(k)e19
(or its complex conjugate) in common. Using eq. (3.27), this

can be evaluated as

a(k) eie = % coseig cot%' - 2;3 + O(K) . (4.29)
Therefore, except for the trigonometric functions cosf® and
sinb , the first two elements in [f(k)] are of different order
in K from the remaining four elements; the formers are of order
K_l and the latters KO. Since the resolvent is expaﬁded in
bilinear terms of [f*(k)] and [f(k')], the coefficients of the
bilinear tefms composed of the first two elements of [f*(k)]
and [f(k')] should be evaluated at least up to the order of K2,

@

those composed of the last four terms up to KO, and thdse of
the cross terms up to Kl. This is the second requirement.
The small parameter K appears also in the matrix [I]..
There are twenty-one indépendent integrals in [I]. Most of
which cannot be integrated analytically, but we may evaluate
them in the expanded series of XK and retaih only the first few
terms. The second requirement determines up to what order in

K each intergral should be evaluated.

We should keep the above two requirements in mind, but
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otherwise we can go parallel to the conventional perturbation

expansion. The actual evaluation of the integrals to the
required order will be given in Appendix D. According to the

results there, all the intergrals in [I] can be related to the

following 2x2 diagonal matrices;

1
I=35 E Go(k)

J = % E eikGO(k) (4.30)
Y= £ ] Kla(0)|® 6,0k)

In order to simplify the notations, we introduce the following

matrices;

A, A
{A(z)} = [ 3 (4.31(a))
) A2> A}_; 5
0, 3V,
{V} = (4.31(b))
' 3>\V2> 0 B
0, r.T /2
{r)} = [ L7a8 ] (4.31(c))
r’lT 5/2’ GSss 4 |
(0, r. T /2]
{1,} = 1 se | | (4.31(d))
- riTge/2s 835, )
'o,' r. T /2) :
{1} = 1oes C(h.31(e))
(riTes/2s 88,5 ) s
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.

} _ 0, rlTCC/2

{Tu} = (4.31(£))
*rchc/Z’ 6Scc 2
'l, eK

{E;} = | « oK (4.31(g))
\e > € 5
(1, -1

B} = | } (4.31(n))
\13 -1 3
(1, 1 : '

{E3} = ] (4h.31(1))
L—lS -1 B ‘
I, J

{1} = [. ) , (4.31(3))
J, I

Curly brakets { } are put on these to emphasize that they are

2x2 matricés with each element being a 2x2 matrix, so the scalars
in {El}, {Ez}, and {E3} should be regarded as proportional to

the 2x2 unit marix. The uhknown matrices {B(z)}, {C(z)},

etc. are similarly defined as'{A(Z)} in eq. (4.31(a)) (there

are nine such matrices). Now the‘K//?expansion of eq. (4.28)
yields the basid set of equations that determine the complete
lowest order solution of eq. (4.28) with respect to K. With

the aid of the notations introduced above, these equations are

given as follows;

(a(2)} = x(v) + vHEE HA)) + 2L (510002} + KME HE(G)))

(4.32-1)
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(B(z)} = (v} + (VH(IE }B(2)} + IZHE,HE(2)} + kME Ha)])
| | (4.32-2)
(c(2)} = (v}(HE M) + L (B }F(2)} + kME MHR(2)))
(4.32-3)
{D(2)} = (T HINMD(2)} + (-3{1; }{ELIT +{T,}1{E 3} (a(2) ),
(4.32-4)
{E(2)} ={T;} + {7, HIME(2)} , (4.32-5)
(F(2)} = {T,} + {1, HIHF(2)} , (4.32-6)
(P(z)} = (T HIHD()} + (-HTHEDT + (03D A))
(4.32-7)
(Q(2)} = {5} + {THIME()} O (4.32-8)
and
(R(2)} = {1y} + {T,}{I}F(2)} . (4.32-9)

According to the second requirement in the K//—expansion, {A(z)}
" should be calculated up to the order ofsz, {B(z)}, {C(z)},

and {D(z)} up to K, and {E(z)}, {F(z)}, {P(2)}, {Q(z)}, {R(z)}
up to KO. These points will not be repeated when we actually
solve the equations. |

We now prove some general relations among these unknown

matrices, which will be useful in solving the above coupled

linear equations. We define a 2x2 matrix U such that
0, -1
U = (4.33)
_ 1, O .

This is a unitary matrix which represents a 90°-rotation in

the (x,z)-plane. From the definitions (4.13) and (4.14), we
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see, at once, that

T =0T

s g2 and Sc = U 3 . (4.34)

S Ss
Operating U to the whole equation of (4.32-5) on the left hand
side, and comparing it with eq. (4.32-8), we obtain, with the
help of eq. (4.34),

Q(z) =1UE(z) . (4.35)

In a similar way, we can prove the following relations,

{E(z)} U, {R(z)} = U {E(z)} *u ,

U{D(z)}, {C(z)} = {B(z)} ‘U

{F(z)}
{P(z)}

(4.36)

Othér relations come from the reciprocity of the resolvent:

= ot *
Gkk?(z) = Gy (2) (4.37)
which can be shown from the definitions of Gkk'(z>" With the

help of eqgs. (4.37) and (4.24), we obfain

{R(z*)}f,

{A(z)}

iy, E@Y = 8, R}

. (4.38)
{a(z .

oz, {cm)r = pGz ), Rz}

{B(z)}

il

It can be easily checked that the sélution of the basic

equations (4.32—1)%(&.32—9),‘which is the lowest order approxi-
mation with respect to K of the origihal Dyson's equation (4.28),
actually satisfies eq. (4.38). These general relations signifi-
cantly simplify the calculations. In addition, calculations

of the physical quantities such as the density of states and the
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absorption spectra do not require the complete solution, which

we shall see in the next sections.
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§5 Density of States and Absorption Spectrum

5-1 Evaluation of the Density of States

As we have seen in 8§83, in the crystal with the periodic
boundary condition, the energy dispersions of the eigenmodes
in our model Hamiltonian are described by the two branches of
band of cosine type k-dependence. The density of states (DOS)
of such a system is well-known, and it is needless to discuss.
Our concern here is in the surface-induced change of the DOS,
which we call D(e) in the following. This is conveniently
obﬁained from the second term of Dyson's equation (4.21). The
connection'between the DOS and the resolvent is given.by the

usual formula;

_1 | B
D(e) = + Im (tr E_A. Gy L . (5.1)
where tr means the trace of the 2x2 matrix. Note that this is

the DOS with a fixed K//. With the help of egs. (4.24) and

(4.27), this equation can be rewritten successively as

Il

3|

D) = & In (o § ] (G, (1))2 BLe" () IINILL) 1)

1 aGo(k) £ %

__1 '
=--1In {tr 5 ch —e— [f (x)IJIN]J[f(k) ]} (5.2)
= —'% lim  Im {tr Tr(ggr,[l(z')])[N(Z)] s

g'»re

where the cyclic property of the trace has been used in'the
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first line. In the last line, Tr means the trace of the 6x6
matrix, and the energy‘dependence of the matrices [I] and [N]

has been made explicit, where z' stands for e'—i0+.

We‘now make the lowest order approximation in the'K//—expansion.
‘Order estimate of the elements of [N] with respect to K can be
easily made with the aid of the set of the basic equations (4.32).
That of [I] can be obtained from the results of Appendix D.

As a result, we obtain the lowest order approximation to D(g)

as
> R d '13 ,
(g) = - T lim Im tr NeT {I(z') A(z)/K

g'»e

(5.3)
+ 1(2') (By (2)+E (2)) + J(2')(E,(2)+B5(2)))
where
4
A(z)=z A (2) . (5.4)

=1

i_l

Although there are K-linear terms and K-quadratic ones in A(z),
as is seen from eq. (4.32-1), we. have understood that the lowest
order (i.e. K-linear) terms are sufficient in the above formula.
Similarly, the lowest order (constant with respect to K) terms of
f(z') are sufficient. In I(z'), J(z'); and Ei(z)'s, we have
only terms constant in K. Cdnsequently, the change of the
DOS obtained in eq. (5.3) does not contain X.

We have found that only Ei(z)'s and the lowest order A(z)

are enough to evaluate D(e) in eq. (5.3). In the rest of this
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subsection we briefly sketch-how to obtain Ei(z)'s and A(z).

First we calculate Ei(z)'s. Substituting the definitions

(4.31(c)) and (4.31(3)) into eq. (4.32-5), we get the following

four equations;

r
B (2) = 55 T, (3 E (2) + I E(2)) , (5.5)
1
Ez(z) = 5 Tss(l + T El(z) + J Ez(z)) + 8§ SSS(J El(z)+I E2(z)),
(5.6)
1 ' ,
Eg(z) = 5= Tss(l + J E3(z) + I Ey(z)) , (5.7)
1
EM(Z) =M§—'Tss(1 E3(z) + J Eu(z)) + SSSS(l-+J EB(Z)'+I Eq(z))
(5.8)
We notice that El(z) and Ez(z) are decoupled from E3(z) and
EM(Z)’ In addition, since all the coefficient matrices (Ts53
Sss’ I, and J) are diagonal, El(z), say, is obtained in the
form;
Elt(z), 0o _
E (2) = . (5.9)
0, E, (2)).

~Instead of the energy parameters € and z, we prefer to use

b ry - and y =€ - ¢ - 2r0 s (5.10)

with the corresponding complex energies

v =x - 10" and W=y - 10t . _ (5.11)




Here x(y) is the energy measured from the center of the bulk
T(L)-band. Calculations are straightforward and we only show

the final results here;

r 2 —v+28+ © v2—r 2
B t(z) - 1 1
1 36 v o- X,
& & ry 25V—P12+26 ¢ v2——r12
E2 (Z) - E3 (Z) = '8?' v - XO (5.12)
¢ 1 4sz—rl2v—-25r12+(-46v+862+r12)c»/vz—rl2
Ey (z) = 8§’ v - X , >
Where the complex function C/vz—rl2 is defined as
, 2 2
- /x%-r, .- X<—|rl]
c /2 2 L2 2 ~
voior,© = § -i/r;%-x “e |x{<|r1l (5.13)
2 2
| Vx"-ry x> |,
and
X. = & + v °/hs (5.14)
O . l L] .v

The expressions of Eiz's are obtained from the above formulae

by simply replacing ry and v by 2rl and w, respectively. Note.
that Xq is also replaced by
_ o 2
Yo = s + ry /S . (5.15)
Now we go on to the calculation of A(z). We define {A(l)(z)}
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such that it satisfies
a @y =tvr + vy ¥ Wy . (5.16)

If we multiply this equation by K, and subtract both sides of

it from those of eq. (4.32-1), we obtain
a1 = e, ¢ 1 0 o) 1+ ntE D (2)3, (5

wherevﬂﬁz>(z)}is defined so that it satisfies

2

taz)r =k (a1 + k2 @y L (5.18)

In deriving eq. (5.17), we have used one of the relations in
(4.36). Since {D(z)} is of order K, as can be seen from eq.
(4.32-4), {6(®)(2)} is of order kK°. The lowest order of
{A(l)(Z)} is also K0 but it has Kélinear’térms, too. For our
purpose here, 1t is enough to evaluate {A(l)(z)} in its lowest
order. For a mbment, however, we examine eq. (5.16) up to

the order of K for a later use. In terms of the elements of

{A(l)(z)}, eq. (5.16) is rewritten as

1

a, P = Eav e, Ve v K, Py, (5.19)
A2(l)(z) = 3AV, + 3AV2T(z)(Al(l)(Z) + eKAg(l)(Z)) , (5.20)

AS(l)(z) = 3AV1 + eKBAVlT(z)(A3(1)(z) + eKAu(l)(Z)) , (5.21)

Au(l)(z) 3xv2i(z)(A3(1)(z) + eKAu(l)(z)) . (5.22)

We notice that A (1)(2) and A

(1)(2) are decoupled from A
1 3

2
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and Au(l)(z). Multiplying the both sides of eq. (5.20) by eK,

and subtracting it from eq. (5.19), we get

Al(l)(z) PR A2<1)<z) - ngxvz+eK6ﬁ’f(z>(Al(1)(z> +eKA2(l)(z)) ,

(5.23)

where

V=3 ( y = | ° (5.24)

V== (V, +V = 5.2

2 V1 2 0, -1] .

This equation can be solved to give
A M@ ref Py ma-FavientEnv, . (5.25
Similarly, we have, from egs. (5.21) and (5.22),
3, Py +ef a, Py =a-fo v ienT v, . (5.26)

These results will be used when we calculate the ébsorption
spectra. As we have already ﬁentiohed; it is enough to evaluate
’Ai(l)(z)'s in the lowest order with respect to K for our present
purpose. Using the lowest order expression for %(z) (see

Appendix D) and also taking the limit eK*l, finally we get from
egs. (5.25) and (5.26)

b ' -
APy =] 4, P =86 oy v (5.27)
i=1
5-2 Density of States — Results and Discussion

As we have mentioned in §1, from theoretical point of view
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the effects of the presence of the surface may be classified

into two kinds — [I] the effects of the cleavage and [II ]

those of the surface‘potential. As concerns the surface-induced
change of the DOS, discrimination between these two effects

can be achieved by first letting the surface potential § vanish

and then by taking the difference, namely we devide D(e) as

D(e) = D(e) +AD(e) , (5.28)

where

5(8) D(e ; 8-0) . (5.29)

Both 5(8) and AD(e) can be obtained from eqs. (5.3), (5.12)

and (5.27). The results are as follows;
D(e) = 26(8-—€b-l)-—6(€-—sb +2k)-—6(€-—eb-41)
e(rlz—xz) 1
o—_— 5 {6(x—r1) +5(X+I’1)} (5.30)
2 2
TYr, “-x

G(Mrlz—y2)

ﬂvurlz—yz

+ - % {S(y—zri) + 5(Y+2P1)} s

AD(e) = §(x-x,) +—28 = X e(rlz—xz)
2H(X~XO)/P12—X
(5.31)
+ 8(y-yq) t efo ¥ e(4rl2—y2)

2fn(y—yo)ﬂlr12—y2

SOBEN
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where we have used three energy parameters e, x, and y for conve-

nience; that are all mutually related (see eqg. (5.10)), and X

and v, are defined in egs. (5.14) and (5.15), respectively. The
above expression of AD(e) is for the case when |8|>|r;|.  When

|r1/21<|6|<|r the term §(y-y,) is missing, and when |6|<[rl/2|,

s
both 6(X—XO) and G(y—yo) are missing. The total number of states
must not be changed by introducing the surface into the periodic
crystal, which leads to the sum rules;

de D(e) = 0 , (5.32)

- 00

el

de AD(e) = 0 . (5.33)

- 00

In particular, we can actually show that eq. (5.33) is valid
for an arbitrary value of [§].

The result for 5(8) is shown in Fig. 5-1, where we have
taken rl/A=l.O. This value of rl'roughly simulates the nearest
layer short-range coupling parameter on bcc(100) surface (see
Table 3-1 and relations (3.16)). In this figure, as well as
in all the following ones, the energy is measured from €y and in
units of A. The arrows on the figure stand for §-functions,
the intensities of which are indicated near the pdints of the
arrows. We see that 6-function like decrease in the DOS occurs
at the edges of both the bulk T- and L-band, where the bulk
DOS diverges, as is well-known. This decrease is partly compen-

sated by the increace in the DOS within the bulk band, which

exactly simulates the bulk DOS (1/N of the bulk DOS). A
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remarkable feature is the existence of the d-function peak
within the L-band, whichrsuggests the existence of a surface
localized mode. The factvthat this peak is infinitely sharp'
does not necessarily mean that this localized mode has no
interaction with the bulk L-modes at all. It means only that
the lifetime broadening caused by the interaction with the bulki
modes are at -most of the order of K, since we have made the
lowest order approximation in the K//—jexpansionf In this
sence, it should have been called a surface resonance mode,
although we keep to call it simply a surface localized mode 1in
the followlng. The intensity of this peak is 2, which means
that there is one such state on each surface of the slab.

As r

1
peak position remains unchanged. Since we have fixed the

decreases, the bulk band widths decrease, whereas the

value of the L-T splitting (ALT=6X1=6), the position of the top
- of the L-band remains constant, while the L-band bottom goes
upwards. When ry becomes smaller_than 3x/4, the L-band bottom ‘
goes higher than the location of the peak. In this situation,
the mode in consideration becomes a ﬁruely docalized mode.
Anyhow, the behavior of this mode does not depend on the value
of the short-range interaction parameter rys as far as the lowest
order approximation to the DOS in thé K//—expansion is concerned.
An insignificant effect of r, on this mode is discérnible in

its wave function (see the next section).

In 81 we have made the classification of surface elementary
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excitations into two types.  Surface excitons were classified
as type [II ] modes, whose behaviors are sensitive to the surface
potential. In this sense, the above mentioned localized mode,
which owes its existence merely to cleavage, is quite anomalous.
We term it 'surface polariton' rather than surface exciton, the
reason of which will be discussed in the next section, where
we shall analyze the behavior of this mode in some more detail
and point out its relation to the usual surface polariton mode.
The results of the 6-induced change in the DQS for five values
of ¢ with rl/k=l.0 are shown in Fig. 5-2 ((a) - (f)). When ¢
is large enough (see Fig. 5-2 (a)), there are two localized
modes whose energies are given in egs. (5.1#) and (5.15).
The one at the higher energy is split out of the top of the bulk
L-band, .and the other at the lower energy is split out of the
T-band top. The latter one is located within the L-band (for
the present choice of the value of §; §/A=1.25) with the .
infinitely sharp peak, which means, again, that the lifetime
broadening of this mode is of higher order than K. Clearly,
these two modesvbelong to the type [II ] modes and are the surface
excitons in the usual senée. In Appendix E, we shall
briefly examine the nature of the Wave functions of these modes.
In accordahce with the results there, the wave function of the
surface mode with higher energy is composed mainly of those of
the bulk L-excitons with a small T-exciton contributions of

order K. On the other hand, the wave function of the lower
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cne mainly consists of the T-exciton with a small L-exciton
contributidn. Since it is completely meaningless to call the
surface excitons 'L-like' or 'T-like', we rather term the upper
surface exciton 'z-polarized' mode and the lower one 'x-polarized!'
mode. This nomenclature is reasonable because in the most
range of the value of k (kgko, where'ko has been introduced in
§3-U4) the L-mode (T—mode) is almost z-polarized (x-polarized)
(see egs. (3.33) and (3.34)). In the following, we abbreviate
them as 'z-pol.' mode and 'x-pol.' mode. The increase in the
DOS due to these surface localized modes 1is compensated by the
decrease in that of the extented modes, the spectralyfeatﬁre of
which is rather assymmetric with respect to the center.of the
IL- and the T-band. When § becomes larger, the energy position
of the 'x-pol.' surface exciton goes up higher and finally it
gets beyond the top of the L-band, resulting in a truely .
localized mdde. Since there arises no qualitative change in
the feature of AD(e), we do not show the figure corresponding
to this case.

When § becomes smaller, first the 'z-pol.' surface exciton
disappears (Fig. 5-2 (b)) and then the 'x-pol.' one disappears
(Fig. 5-2 (e¢)). Corresponding change within the L-band and
the T-band also occurs sussessively. When § is negative and
| 8] bevomes larger, AD(e) repeats the above mentioned behaviors
in a reverse order (Fig. 5-2 (d)-(f)).

The energies of the 'x-pol.' and 'z-pol.' surface excitons
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are shown in Fig. 5-3 (a)(;y%=l.0) and (b)(rf%=0.5) as functions
of §. They are almost proportional to & when 8| is sufficiently
large. The excistence of the 'x(z)-pol.' mode is forbidden
within the bulk T(L)-band. Just outside the both edges of the
band its enefgy shows a bending, which indicates a strong |
interaction betwéen the 'x(z)-pol.' surface exciton and the

bulk T(L)-band. The criteria for the existences of the surface
excitons are shown from the statement after eq. (5.31). We

have

§| > [r,/2 for 'x-pol.' mode ,
1
(5.34)

[§] > |r for 'z-pol.' mode

1
Let us compare the above results for the DOS with those

when K=0. When K exactly vanishes, the bulk T(L)-mode becomes

equivalent to the x(z)-polarized extended mode. The long-range

interaction V is missing in the Hamiltonian.(M.S) and since -

r
sinb6=1 and cos6=0, all the other interactions become diagonal
as can be seen from egs. (4.10) and (4.12). It is straight- .

forward to show that the terms

28(e - ¢ -A)—é(e—eb+2>\)—6(€v—ab—ll)\) - (5.35)

b

are missing from 5(5) in eq. (5.30), with AD(e) being unchanged.
As far as the §-induced change AD(e) which includes the surface
exciton contributions is concerned, the finiteness of X apparently

plays no role. In fact, the surface :exciton energies given in
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"Tig.5-3.  Energies of the 'x-pol.' (el) and the 'z-pol.' (82

surface excitons as functions of & (e, Ty and §

are in units of XA and € is measured from Eb"

r.=1.0, (b) r.=0.5.

1
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egqs. (5.14) and (5.15) as well as the criteria for their‘
existences given in eq. (5.34) are equivalent to the results of

Schipperl7) 16)

and of Hoshen and Kopelman, who have taken no long--
range interaction into account. The only difference exists

thet we  have  two apparently independent systems, namely

x-pol. and z-pol. modes. A qualitative difference from the

K=0 results, however, is found in 5(&). The 'surfece polariton'
mode at the energy eb+k cannot be expected from the K=0 theory.
If we notice that 5(8) in eq. (5.30) is of the zeroth order in

K, we see that the non—enaliticity of our model is explicit in
B(E). The finiteness of K influences more on the behavior of
the wave functions or the properties related to'them rather

than the energies of the modes, which we shall see in the

following subsections.

5-3 Evaluation of the Absorption Spectrum

Let us assume that a p-polarized external electromagnetic
field with a frequency e/h and a wave vector (reduced by the
inverse lattice spacing) 5=(K,O,k) is‘applied to the crystal.

The perturbation caused by this field may be decribed by
£.P (-Q) exp(-iet/n) , (5.36)
where € i1s the unit vector perpendicular to 5 and

-> > >¥ 3+ ik % |
B(-Q) = — ] I (M, ay (K, ) +H ay (R, ) e, (5.37)

1
L
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is the (—5)—Fourier component of the polarization operator.
Since €=(sin6, 0, -cosb) (0 is defined similarly as in Fig. 3-2),

£-P(-Q) in eq. (5.36) can be rewritten as
e-B(-) =M (k) + M b0, (5.38)

where we have used eq. (4.2).- Strictly speaking, bt(—k) in
this eguation is the operator in the '(—ﬁ//)—subspace‘, but
this does not matter in the following argument. The absorption

spectrum is given by the familiar golden rule formula

A B A 2
! |<e| &-P(-Q)[0>]7 &(e-e) , (5.39)
e
apart from the numerical factors. Here |e> is the excited
state of the crystal, and €q its excitation energy. This

formula can be rewritten successively as

Lm<o| e.37(-8) —2— e.3(-Q}o>
T : st
e-H-i0
M| 2 1 ¥
= Im <0| b, (k) ———— b, (k)|0> , - (5.40)
m t e—H—iO+ t ‘

2
M| £t
a Im Gy (2)

Our interest is in the surface i1induced change of the absorption

spectrum, which is given by

2
T(e) = lﬂ%—-lm A Gii(z) . (5.41)

Thus the calculation of the absorption spectrum is done by that
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of the resolvent, again. We assume lai is finite but vanishingly
small and let K, k»0, with the angle 8 being fixed. The

formula (5.41) gives the absorption spectrum as a function of

0. Due to the refraction effect, the complementary angle of

6 does not usually coincide with the incident aﬁgle of radiation,
but rather symbolically we shall call 6 the incident angle,
because the one-to-one correspondence between them may be expected.
With this respect, we should point out that the so-called
polariton effects are completely neglected in our theory.
Questions as to the applicability of our model that arise due

to the neglect of the polaritbn effects will be briefly discussed

in the next section. Now from eqs. (4.24) and (5.41) we get
5 v
1(e) = M m cfan? Crefuoimicrton,, . (5.42)

where the subscript tt means the (1,1)-component of the 2x2
matrix and we have omitted the factor 1/N for simplicity.
According to the argument given above we consider the k-0 limit.

Following expressions are available:

-K

(B(-k)B(k) % 95— cos?8
K
3 5 K,k -+ 0
(a)yv(-k)B(k), B(-k)y(k) X —5 cos”® o
X 0 : fixed
eK 2
Y (-k)y(k) & =5 cos“e
K
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" .
B(-k)sin®, y(-k)sin®, B(—k)el“sine, Y(—k)elksin65¥lcosesine,

K
(b) ik ik 1 2
B(—k)cose, y(-k)cose, B(-k)e “cosh, y(-k)e coseltipos o
sin2e etk N sin@ s
o (5.13)
(c){sinB6cos 6 e A sin6cos 6,

cos’e etk ¥ cos?e s

where B(k)=oc(—k)e_l-e and Y(k)=a(k)eK+lke19 are the first two

elements of the vector [f(k)]. Except for the trigonometric
functions, the above expressions (a), (b), and (c) are correct

up to the order of gkt 0

((a) and (b)) and of K~ ((c)), which
can be verified by the use of eq. (4.29) and the theorem proved
in Appendix C. With the aid of these relations, eq. (5.42)

can be rewritten as follows,

2 " .
I(e) = IMJ Im (E:E%TET)E {sin26 E(z)
+ sin 6 cos © (QLEA%QLQL + F(z) + Q(z)) . (5.44)
o e A ()AL (2) 4 (2)+e A, (2) oLy Lpc
+ cos 0 (—— L L2 5 3 — + &(2) : z) +R(Z))}tt’
K K
where
L
E(z) = ] E;(2), (5.45)
i=1

and the other quantities B(z), C(z), and so on are defined
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similarly.

Now we must solve the set of basic egs. (4.32-1)~n(4.32-9).
We notice that (i) all that is necessary is to obtain the sum
of each four matrices such as shown in eq. (5.45) except for
Ai(z)'s, and that (ii) only the (1,1)-components of these
matrices are relevant. These considerations greatly simplify
our calculations. The solutions for Ei(z)fs and the lowest
order approximations to Ai(z)‘s have been already obtained in
eq. (5.12) and egs. (5.25) and (5.26), respectively. We
express the unknown matrices in terms of these known ones.
We analyze B(z)+D(z) first. Comparing eq. (4.32-4) with

(4.32-5), we obtain
D(2)} = K (B2} (- @)+ o™ Y En aB@y . 5.6

We rewrite this equation in terms of the elements of the matrices

and sum up the elements of D(z) . The result is

D(z) = K{(El(Z)+E2(Z)—.E3(Z)—E4(Z))(—%I-)+E(z) U*“f} 2 ()
: (5.47)
Using the relations in eq. (4.38), we get

B(z)+D(z) = K A2 (2) YU B(z) + x E(z) uT ¥ AP (z) . (5.18)

Since A(l)(z), ?, and E(z) are diagonal, B(z)+D(z) has only
off-diagonal elements, which do not contribute to‘I(e). In
a similar manner, we can show that F(z)+Q(z) is off-diagonal.

Hence we find that there are no terms proportional to sinbcosb
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in I(e). Next we examine A(2)(z). Comparing eq. (5.17) with
(5.16), we get

A =M@y gy ZrE) Ty o) . (549

Substituting eq. (5.46) into (5.49), we can express A(2)(z)
(l)(z)

in terms of A and E(z) . After some manipulations,

we obtain

1) (z) - —{( 1)2(E) (2)-E, (2)-B4 (2)+E <z>>+(3)2UEU+}A(1)<z> ,

(5.50)
where the subscript 4 for A(E)(z) denotes the diagonal part of

the matrix. We can obtain C(z)+P(z) using relations in egq.

(4.38) and. .~ eq. (5.47). The result for the diagonal part is
(C(z) + P(z))y = 2 K U B(z) ul ¥ A(l)(z) : ~ (5.51)

Finally R(z) can be expressed in terms of E(z) by the use of
one of the relations in eq. (4.36).

After all,'I(s) can be written in the form
_ .2 : 2
I(e) = Is(e) sin“ 6 + Ic(e) cos“0 , (5.52)

where the normal incidence spectrum Is(s) and the grazing angle

indidende spectrum I (g) are giVen respectively by

r (o) = M o Gmeray)” B2 (5.53)

-K, (1) (1) (1) K, (1)
e TA. T/ (z)+A (z)+A (z)+e A (z)
M | 21 2 73 4
Ic(e) Im (z €y (O)) { K
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+(IA(1)(Z)

2

)2(E1<z>-E2(z)-E3(Z)+Eu(z))+UE(Z>UT<EA<1><z>+1)2}tt.

(5.54)

5-4 Absorption Spectrum — Results and Discussion

Similarly to the DOS, the absorption spectrum can be

divided into two contributions;
I(e) = I(e) + AI(e) , , (5.55)

where f(s)=I(e;6+O) is the change in the absoption spectrum due
to the cleavage and AI(e) is the one due to the surface potential.
Both Is(e) and Ic(s) can be divided in the same manner.
Substituting egs. (5.12), (5.25) and (5.26) into egs. (5.53)

and (5.54) (Ei(z)'s are obtained from Eg(z)'s by the procedure
| described just below the equation (5.12)), we can get the
expressions for ES(E), Ec(e), AIS(E), and AIc(e) that are the
lowest order apprdximations in.the K//-expansiont lTheir explicit
expressions are rather lengthy and will be given in Appendix
- F. in experimental measurements surface excitons afe often
identified by the contamination sensitivity of their peaks (or
more moderate'structures) in absorptionvspectra._ It isv
natural that those peaks, which remain in the difference
between the spectrum measured on a clean surface and the one
on a contaminated surface, are identified as surface exciton

peaks. It is AI(e) that has a direct correspondence to such
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a difference spectrum in the experimental contamination test.
Therefore we concentrate on AI(e) in the following discussions.
Fig. S—ﬂ ((a)-(d)) shows the 68-induced change of the

normai incidence spectrum AIS(€) for four values of § and
rl/A=l.O. In the case of normal incidence of radiation, only
the x-polarized modes (equivalent to the T-modes in this case)
can be excited and no changes occur within the L—bahd region.
We should remember that the so-called bulk éxciton absorption

is located at the edge (the bottom when r.>0 and the top when

1
r1<0) of the T-band with its intensity being proportional to

N (if we neglect the spatial damping of radiation). We see

in Fig. 5-4(a) that a part of the oscillator strength of this
bulk exciton absorption is rearranged within the T-band due to
the surface potential § and that a part of it is given to the
_x~pol. Surface exciton. When |&|is sméll enough so that the
surface exciton cannot exist (Fig. 5-4 (b) and (c¢)), the
rearrangement of the oscillator-strength'still takes place,

and the feature of which 1s critically dependent on the sign

of §. Fig. 5-4 (d) is for the case when the surface exciton
exists below the bulk band. We see that the osicillator
strengths of the extended states are transferred to the surface
exciton due to ¢. Such a behavior of the oscillator strengths
is in fact reported in the recent experiments performed on the
surface of solid Kr,u6) although our model seems to be too

crude to make a quantitative comparison.
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We show the d§-induced change of the grazing angle incidence
spectrum in Figs. 5-5 and 5-6. In the case of oblique incidence
of radiation the bulk L-modes as weil as the 'surface polariton'
take a part in AIC(e).. Fig 5-5 1s for the case rl/k=1.0,
where the 'surface polariton' 1s located within the L-band.

The é-function like structure at the energy (e—sb)/k=1.0
represents the change in the absorption due to the 'surface
polariton', which originally has a large oscillator strength
of order 1/K (see the expression for EC(S) in Appendix F).

The other sharp structures are related to the surface exciton
absorption.. We see that the L-mode absorption is drastically
altered especially around the 'surface polaritén} energy.
Overall features of AIC(a) are determined by the sign of S8,
although the oscillator strengths of the surface excitons
depend so much’on the value of 6. This 1s also true of the
case rl/A=O.5, wherebthe 'surface polariton' energy is in the
gap of the bulk band (Fig. 5-6). In this case the absorption
spectrum within the L-band fegion suffers no significant changes.

Our main interest here is the oscillator strengths of the
surface excitons. Apart from an insignificant factof, these
are given by the absorption intensities of the surface excitons.
With the aid of the explicit expressions of AI(e), the oscillator
strengths of the 'x-pol.' and the 'y-pol.' surface excitons as

functions of 6 are given, respectively, in the form

fl(G)/lM|2 =1 sin®e + fcl_cos26 , ' (5.56)
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fg(e)/lMI2 = f.5 cos26 , (5.57)

where the coefficients fsl’ fcl’ and fc2 are given by

268 - I"l .
fs1 = 73 o (5.58)
£, = : - 5 s _ (5.59)

(3x -ry - XO) (28 + rl)

2,2 2

(8§ = r,)°(8° = r.°) _
foo = =3 1 12 e (5.60)

S (2rl'— 3x - yO)

Figs. 5-7 show these coefficients f (panel (a)), and f,, and

1
fc2'(panel (b)) as functions of § for the case rl/x=1.0.

When the absolute value of § becomes sufficiently large, these

coefficients approach - the isolated single layer values:
f,1=1, £ 10, and F_,=1. In the region |6]<|r /2] the 'x-pol.!
- surface exciton cannot exist. At the lower side of this region,

the‘oscillator strength of the 'x—pol.' surface exciton (fsl
and fcl) shows the significant_enhancement. The region of §
where the values of fsl and fcl deviate considerably from their
asymptotic values coinside with the région where the energy of
the 'x-pol.f surface exciton as a function of § shows a mafked
bending (see Fig. 5-3). In ﬁhis situation the surface exciton
suffers a strong mixing with the bulk excitons via the short
range interaction and its wave function extends rather deep
into the bulk. It is interesting to note here that the

oscilllator strength of the surface exéiton is strongly correlated
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we -

with the spatial extension of its wave function. In the
following we show this in a simplified model where the excitons
have transition dipole moments in only one (x, say) direction.
We neglect the long-range interaction and assume that the wave

function of the surface exciton has the form

v(L) = éQK—l e—KR (k>0)

, - (5.61)

where the normalization conditon %—1lw(2)]2=1 has been taken
into account. The constant 1/k measures the spatial extension.

The transition dipole moment MS is given by
M, = <o] (J () a, ) P _(-&) |o> (5.62)
S < Lx X ? : »

in which the polarization operator PX(—Q) can be obtained from
eq. (5.37). If we assume that the wave number Q of the external

electromagnetic field is negligibly small compared with k, then

M, o« /e2K 1 7 (eF-1) . (5.63)

The oscillator strength f is propotional to IMSIZ. If the
surface exciton has a large spatial extension, K is small

compared with 1. Expanding e with respect to kK, we get
f e« 1/ . (5.64)

Therefore the deeper the surface exciton extends into the bulk,
the larger the oscillator strength becomes. This corresponds

to remarkable enhancement of the oscillator strength of the
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'X—éol.' surface exciton just below the inhibited region
|6|<[rl/2|. The constant Kk is determined from the ratio of

1 to the energy separation between
the 'x-pol.' surface exciton and the T-band edge. This kind

the short-range interaction r

of enhancement is similar in nature to the well-known giant

oscillator strength of the impurity—tfapped excitons in semi-

conductors and insulators.u7)
When the energy of the surface exciton is located Jjust

above the top of the T-band, its wave function is mainly

composed Qf those of the bulk T-excitons at the Brillouin zone

boundary (k=1m). Correspondingly, the wave function may be of
the form
V() = VelK_1 eTKE oFITL (5.65)

A straightforward calculation yields
f <k, (5.66)

which is vélid for small k. Therefore the reduction of the
oscillator strength takes place in this region of 6§, which is
clearly seen in the figure.

Another enhancement of fcl is also observed (panel (b)).

Divergence of fc occurs for the value of § with which the

1
energy of the 'x-pol.' surface exciton coincides with that of
the 'surface polariton'. Since this énhancement is seen only

in the oblique incidence spectra, it is clearly the effect of

the long-range interaction. This phenomenon can be qualitatively
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explained with the simple model as follows: When the long—-
range interaction of the form K e_KQ as well as the short-range
one exist (as is the case for our model), the wave function of

the surface exciton may be expressed as the sum of the rather

swiftly damping function e—K'Q and the extended function K e—KK
(we have assumed k>>K);
p(L) = ¢e2K -1 (e_Kz + ¢ K e_Kg) , (5.68)

where ¢ is some constant, which we assume positive without loss

of generality. Note that the normalization factor is determined
solely'by the first term in the bracket, which is correct as

far as k>>cK holds. Therefore, for a value of Kk being not so
small, ¢ can become very large without affecting the nbrmalization.
The oscillator strength is obtained as

fa /2251 (2 4 ) . (5.69)

ek -1

We see that the larger the value of c¢ becomes, thé larger the
oscilltor strength. Now we apply thisbsimple argument to our
case. As we shall see explicitly in the next section: the wave
functon of the 'surface polariton' is composed mainly of the
long-range term e—Kl; When the energy of the 'x-pol.' surface
exciton approaches that of the 'surface polariton', the wave
function of the surface exciton more resembles that of the
'surface polariton', and correspondingly c becomes large.

This is the reason for the enhancement of fc In contrast

1°
to the 'x-pol.' surface exciton, the energy of the 'z-pol.'
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one cannot reach that of the 'surface polariton' for the case
rl/k=1.0, and therefore ch does not show drastic enhancement
but only shows a rather moderate maximum structure.

As we have seen above, there are two kinds of mechanisms
for the giant oscillator strengths of the surface excitons in
our model. One is due to the short-range interaction and the
other is due to the long-range one. We can vary the relative
magnitude of the short-range interaction vs. the long-range one
by varying the value of Ty Behaviors of the oscillator
strengths for the case rl/k=0.5 are shown in Fig. 5-8. This

value of r., simulates the nearest layer coupling on fcc(100)

1
surface (see Table 3-1). We see that the enhancement of the
oscillator strengths due to the short-range interaction is
confined to the rather narroWer region of § compared with Fig.
5-7, and that, on the contrary, the region of the enhancement

due to the long-range interaction becomes broader. A qualitative
difference from the case of Fig. 5-7 is that also fc2‘shows the
giant oscillator strength, which is possible, because in this

case the 'z-pol.' surface exciton can approach the 'surface
polariton'in energy. Fof comparison we also show the case

where r. is negative (rl/x=—0.2) in Fig. 5-9. This value of

1
rq roughly corresponds to the nearest layer coupling parameter
on scc(1l00) surface (see Table 3-1). All the behaviors of the
oscillator strengths in this figure can be interpreted similarly.

A remarkable feature common to the above three cases is the

- 99 -




MM sy
I
- > 1
F|=(15 ;"4
|
: I
(@) 13
J :"2
]
I
II/,/”——
1
t ! >,
-6 -3 0 3 6 §

Fig. 5-8. Oscillator strengths of the surface excitons
as functions of § for the case r,=0.5 (6 and

r., are given in un;ts of A): (a) fsl’ (b) fcl

1

and fcz.

- 100 -




A fs
r1:—0.2 4..
(a) 3
21
ﬂ“;
-6 -3 0 3 6 5
Nt
T T T T
=-0.2 ! b8
; / |
fC1 / Ity 5
———fe ! Fr
/ It |
/ ey A
/
( t):) / I 5l
T
e et
oL b
/ \ |
. /;__/g:“’ >
-6 -3 0 3 6 s
Fig. 5-9. Oscillator stfengths of the surface excitons

as functions of 6 when ry=-0.2(8 and r, are
given in units of A): (a) fsl,_(b) fcl and
ch'

- 101 -~




strong O-dependence of the surface exciton oscillator strengths.
Since the enhancement of the oscillator strengths due to the
short-range interaction occurs only in the relatively narrow

region of & around 6=0, the sum fcl+fc2 exceeds fsl for most values
of 6. Therefore we can expect that the surface excitons are

more easy to be excited by the obligue incident p-polarized

radiation than by the normal incident one in most cases.
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§6 Discussion

6-1 Analysis of the 'Surface Polariton' Mode

In §5-1 we have pointed out the existence of the 'anomalous'
surface localized mode, which we have called 'surface polariton'.
Here the term 'anomalous' means that this mode belongs to the
typé [I] surface modes, which is in contrast to the usual
surface excitons being the type [II ] modes. In this subsection,
first we study the behavior of this mode in real space in some
detall and then discuss the relation of this mode to the surface
polariton of the usual sense.

For simplicity, we consider the case where ry is not so
large that the energy of the 'surface polariton' is located
within the bulk band gap (rl/x<3/4)*). The Hamiltonian in the
re%;~space representation is given in eq. (3.18). As we have

shown in the arguments about the DOS, the surface potential

*) On (100) surfaces of cubilc lattice structure ry/) is at
most nearly unity (see Table 3-1) and the relations (3.16).
When rj/i exceeds unity, the bulk T- and L-bands overlap each
other in our model. We do not know the exact value of rj on
other surfaces such 7P (111) and (110) surfaces. The work

by Heller and Marcus ) may be of some help, who calculated

the three dimensional dipole sum with the wave vector in <111>,
<110>, and <100> directions in fcc crystal using Evald's method
extended by Born and Bradburn.48) According to thelr result,
there are no cases where the T- and L-bands overlap. We had
better think of rj as the parameter into which the next (third,
and so on) nearest layer short-range interactions are renormal-
ized. Therefore it seems reasonable to assume that rj;/) is
less than unity. The condition rl/x<3/u is a bit tighter than
this condition.
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has littel influence on this mode, so we may omit 551-31 from

the Hamiltonian. Also the K-linear terms in the intralayer
interaction may be neglected since they play no significant

roles. The Heisenberg equation of motion for 2 yields the

L
eigenvalue equation;

€ -r.-€, 0 -r s O
[ o0 }gz'*[ L J(§2_1+§£+1)
0, €b+2r0—€ 0, ry
4-d -K|2-m] > -K|2-m|, 2
+3AK{ ] e v, a ) e A\ } =0
m=1 T m=0+1 m
(2¥1) (6.1)
[eb—rO-e, 0 - T3 /2, 0 2
1 2
0, ab+2ro—e 0 rl
+nr ] KMy 7 oo (2=1) , (6.2)
- m .
m=2
where we have considered the limit N-e, We assume that the

R-dependende of 3 is represented by the sum of two terms; one

L
is extended rather deep into the bulk (slow decay in space)

+

and has the form Ee-h2 where R is positive and of the order of

K, and the other is some function gz' which swiftly damps in

space:
- —
g = ﬁ e + a ! . (6'3)

We call the first term the slowly damping part and the second
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one the swiftly damping part. We note that

o0

g 7 e Kl[t-m dr = oK) . (6.1)

This means that the swiftly damping part produces only a weak

long-range field on any layer, which can be neglected. We
consider a sufficiently deep layer £ such that gk has a negligible
amplitude. For such % eq. (6.1) approximately becomes
€ -2x-g, O > (R-K)¢
o ] T + 3)K {9:—~———:l A
0, €b+MA—€ LK _ 4
, 1 >
+ — V?_} u =0, (6.5)
X+K
e -1
where we have used the sum rule r0+rl=2k. In order for this

equation to hold for any (large) %2, we must have

l, i >
= [ ] u=20, (6.6)

i, -1

ciy

vy

which has the solution

1, | |
> (6.7)

i

=z
u

If we substitute this into the vector equation (6.5), we obtain
two equations that should be satisfied at the same time.

This condition determines both ¢ and K as

e =€+ X (6.8)
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et = (1+2K) Pt s i

=i
ne

K . (6.9)

We notice that the energy of this mode is determined solely by
the slowly damping part. Now for sufficilently small £ such
that the swiftly damping part has a significant amplitude, egs.

(5.1) and (5.2) can be rewritten approxiamtely as

(e.-r -, O I ~ry 55 O . .
b0 2,4 Y (3, 1+8,,,)=0 (2%1) , (6.10)
0, €b+2PO—EJ 0, ry
€pTp€> O =, [_rl/2’ 0 ] 2t [‘r1/2’ 0 ]g
1 2
.0, eb+2ro—€J 0, ry 0, ry
(2=1) , (6.11)
]
We assume that the fL-~-dependence of g is represented by
L
|
u. expl[(-k +im)2],) :
i, = | * R . (k) ,K,>0) (6.12)
(u, exp[(-k +im)L]

Substitution of this expression into eq. (6.10) determines Kl

and Ko A straightforward calculation yields

Ky cosh—l{(3x—rl)/rl} s
(6.13)

Ko cosh—l{(BA—Zrl)/Zrl} R

=1
where the positive branch of cosh = should be taken in order
for Kq and Ky to be positive. As far as the condition

r1/1<3/u holds, and kK, are finite, which is consistent with

K1

?
the assumption that 2 is swifty damping. Finally substitution

'3
1 1
of the expression (6.12) into eq. (6.11) determines Uy, and u,
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We get

' r
Uy ry exp(—QKl)—%(3k—rl) exp(—Kl) >
. ir (6.14)
Ug ry exp(—2K2)-(3A-2rl) exp(-Kz)
The swiftly damping part 5; is related to the short—range
interaction. In fact, if ry vanishes, Kq and P in eq. (5.13)
become infinite and as a result g; vanishes for any 2. Since

the amplitudes g and (u;, u;) of the slowly and the swiftly
damping parts are of the same order with respect to K, we can
say that the main body of the 'surface polariton' wave function
is composed of the siowly damping part. The normalization of
its wave function as well as its energy are determined soley

by this part (in the lowest order with respect to X).

->
It 1s interesting to note the property of u. In general,
- .
Vlﬁ describes the macroscopic electric field which the dipole

-
moment u distributed on a layer on the surface side produces

at a layer on the bulk side (see the Hamiltonian (3.18)).

On the contrary, Vzﬁ describes the field at a surface side
-
u on the bulk side layer.  Therefore the

layer produced by
meaning of eg. (6.0) is that in the 'surface polariton' mode
the motion of the dipole moment on one layer is so determined
that it produces no macroscopic field at any layers deeper than

that layer. This makes possible for this mode to localize

near the surface.
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We note that when rl/k>3/4 (but rl/x<l; see the footnote on
page 103 ) the argument of cosh"1 for K2 in eq. (6.13) becomes

less than unity. In this case Ko becomes pure imaginary (=ik2)

1
and the z-component of 32 is no more a decaying but propagating

function. As far as ]k2l>>K holds, however, the estimate given

in eq. (6.4) is still true and also the separation of 52 into

> 1
ue KL and gﬂ

So the argument given above suffers no significant modifications

+
so as for u to satisfy eq. (6.5) is possible.

except for the propagating property of 3;. In this case the
mode in cosideration becomes a surface resonance state.

Now let us find the connection between the mode in consider-
ation and the surface polariton in the usual sense. Since the
short-range interaction plays no roie in determining the energy
of the 'surface polariton', we assume rl=O in the following
argument, although this is not an inevitable assumption.. 'We
consider the dielectric function x(w) of the bulk (i.e. with
the periodic boundary condition being imposed) crystal in our

model. This is given by

x(w) =1 + E;:g%jﬁa . (6.15)

This expression can be obtained from the first principle

calculation in which the linear response theory is applied to

¥
the system with the Hamiltonian H,_ of the bulk crystal. )

b

*) In so doing, the treatment of the long-range interaction in Hy should

require some care.'9)  Probably the easiest way to obtain eq. (6.15) is to
start with the atomic polarizebility |M|2/(e,-hw) 2nd then to relate it to
X(w) with the Lorentz-Lorenz local field correction being taken into account.
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Here we satisfy ourselves only to note that x(w) in eq.(6.15)
gives correctly the T-mode energy (eb—ZA) and the L-mode one
(€b+MA) from the familiar formulae X(w)=~ and y(w)=0, respectively.
It is well-known that the dispersion relation w(K//) of the
surface polariton is obtained from

cK‘

//y2 - _xX(w)
where ¢ 1s the light velocity. If we are to neglect the

retardation effects (polariton effects), we are allowed to put

c=» and eq. (6.16) becomes
1 + x(w) =0 . (6.17)

using the expression (6.15) for x(w), we get the solution o

b

this equation as
hw = e + X . (6.18)

This is exactly the energy of the 'surface polariton' in our
model. Thus we have found that the 'surface polariton' és we
have called is the usual surface polariton, but without the
retardation effects. This is to be expected, since we have
no transverse electromagnetic fields (i.e. photons) in our

Hamiltonian.

6-2 Applications of the Model

Although our model seems too naive to be applied to real
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solids, we now try to interpret the experimental data, especially
those obtained on GaAs(110) surface on the basis of our results.
In §2-4 we have mentioned the observation of Lapeyre and Anderson
that the surface core excitons on GaAs(11l0) surface show the
giant anisotropy in the CIS measurement (see Fig. 2-2).
Because of the high surface sensitivity of the CIS technique
and probably because of 1its nature that only those core excita-
tions which are easy to decay into valence excitation continuum
can be detected in the CIS's, there can be seen no structures
due to the bulk core excitations in their CIS's. On the other
hand, the bulk core excitations are more easily observed in
reflection spectra. Fig. 6-1 shows the second derivative of
the reflection spectrum on the GaAs(110) surface measured by
Skibowski and Sprﬁssel.SO) The four structures at higher
energies were identified as due to_the bulk core excitons
associated with transitions from Ga 3d to L and X points in the
conduétion band. The lower two mxucmﬂes correspond in energy
to the surface core excitons observed in the CIS's.

We have three parameters in our model; the surface potential

§, the L-T splitting A (=61), and the short-range interaction

LT
parameter rq- In order to apply our theory to the GaAs core

excitons with such rather complicated structures, we must make
some avaraging procedures. As the average energy separation

between the two surface excitons and the four bulk excitons we

may roughly take the value of 0.5 eV, which we use as the value
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Fig. 6-1. Second derivative of the GaAs reflection
spectrum assciated with Ga3d excitation
for two different temperatures. The
four minimums at higher photon energies
have been assigned as due to transitions
to the X and the L points in the conduction
bands, and the two (or tree) minimums as
due to the surface core exciton (after

Skibowski and Spriisse1°°2)).
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of -§6. Estimation of ALT is difficult. In the case of excitons

located within the fundamental band gap, the width of the

reflection spéctrum gives a good measure for A The average

LT

width of the structures shown in Fig. 6-1 is roughly estimated
to be 0.2 eV, although it is quite dangerous to expect thab
the width of the structure of the second derivative spectrum

gives a measure of A If we assume the transitions in

LT®

consideration to be purely atomic, we ¢can make a crude estimate

of the dipole-moment M associated with transitions from five 3d

orbitals to three Up ones with the aid of the Slater orbitals.Bl)

Then A is obtained from the formula ALT=MwM2/Q where Q is the

LT
volume of the unit cell. In this way we made the estimate that

ALT%O.3 eV, which 1s not so far from the previous one. Therefore

we may adopt 0.3 eV as the value of A
’ un

LT The value of rl/k

~on fce(1l1l0) surface 1s around 0.2. If we calculate the
polarization ratio of the oscillator strength (fcl+fc2)/fsl
from the formulae (5.58)v(5.60) using these values, the result
is very near to its asymptotic (i.e. |8|==) value 1. That is,
we cannot expect such a large anisotropy of the surface exciton
transitions as observed in the CIS's.

The situation is not so simple, though. The reflection
spectrum shown in Fig. 6-1 is for the near normal incidence
case. As we have mentioned in §2-4, the energy positions of

the surface exciton peaks in the CIS's are highly sensitive to

the polarization of the incident radiation. Thelir shifts amount
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to 0.5 eV which is about twice as large as the full width at
half maximum of the peaks. The Fano effect alone may be
difficult to explain this large polarization dependence of the
peak positions. Another possibility to explain this phenomenon
is the crystal field splitting of the surface excitons. Since
the symmetry of the (110) surface of a zincblende crystal is very

52)

low (Cs with only one mirror plane), more or less such
splitting must take place. If the peak shift of 0.5 eV is
attributed to the crystal field splitting, the energy of the
surface exciton excited by p-polarized radiation can come very
near or even above some of the bulk exciton energies. In terms
of the parameters in our model, [8| may be smaller than A,
which results in a large anisotropy of the oscillator strengths
as can be seen in Figs. 5-7v5-90. In other words, 1t is possible
to relate the observed lérge polarization dependence of the CIS
peak intensities to that of the CIS peak shifts on"the basis of
our model. We point out that the observed fact that the peak
intensities for p-polarized radiation afe larger than those for
s-polarized one 1s at least not contradictory to the results
of our simple model, although a quantitative or even a further
qualitative argument is beyond the scope of our model. A
quantitative argument will require us to take acéount of
i) the effect of interactions between the surface core
excitons and the valence excitation continuum (Fano effect),

ii) +the effect of the surface atomic geometry including relaxation

on the anisotropy of valence excitations which are the final
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states in the CIS, as well as on that of the surface core
excitons,

iii) the difference in character of the wave functions between
the surface core excitons and the bulk ones, if the interaction
between them is effective (see the footnote on page 24),

and soO on. In addition, the main drawback of our simple model

is that the retardation effects are not taken into account in

it. This point will be discussed in the following subsection.

Till now, however, we have no theory concerning how effectively

the retardation effects work in the energy region of the core

excitation. |

Our model predicts the large polarization dependence of
the surface exciton oscillator strengths depending on the
parameter values. It suggests which experimental geometry is
favorable to observe surface excitons in optical measurements
as well as the usefulness of polarization-resolved technique

fo study the detailed nature of surface excitons. Our model

also tells us that in some cases two surface exciton levels

associated with one bulk exciton level can be observed by

oblique incident p-polarized rédiation. Perhaps the systems

fo which our model can be applied rather directly are the surface

excitons in rare gas solids, since the Frenkel model gives a

relatively good description for both the bulk and the surface

excitons in these solids.
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6-3 Limitations and Extensions of the Model

As we have already noted, the retardation (or polariton)
effects are not taken into account in our model. Neglect of
these effects are allowed for large values of K// such that

K, >>w/c holds. However, since w/c for the optical frequency

//
region is usually quite small compared with the dimension of the
Brillouin zone, there may still exist the region in the (w, K//)—
plane where the neglect of the retardation effects and the use

of the K//—expansion as we have made are justified at the same
time. In such a region our results for the DOS is wvalid.

The effects on the results of the absorption spectrum might be
severer. We have shown that the 'surface polariton' in our
terminology correspohds to the surface polariton in the usual
sence bu@-without the retardation effects. This means that

the surfacée éolariton is a coﬁposite particie of the photon

and the 'surface polariton'. As is well-known, the dispersion
curve of the surface polariton can exist only in the larger K//
side of the dispersion line w=cK// of the light and thus cannot
be excited directly by the vacuum radiation, which contradicts

to our result that the 'surface polariton' has a large absorption
intensity proportional to 1/K. However, it does not necessarily
contradicts to the fact that the 'surface polariton' has a large
oscillator strength proportional to 1/K. We have shown that

the oscillator strength is a measure of the spatial extension

of the wave function. The 'surface polariton' as a constituent
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of the surface polariton can, in fact, have such a large spatial

)

extension. The above mentioned fact that the usual* absorption
measurement cannot detect the 'surface polariton' only means
that the retardation effects prevent the 'surface polariton'
from coupling with the vacuum radiation. However, we have no
a priori reason to think that fthe retardation effects inhibit
the surface excitons from coupling with the wvacuum radiation.
Therefore we can expect that the results on the oscillator
strengths of the surface excitons on which we have made the
rather detailed discussion do not suffer significant modifications
even 1f we take the retardation effects into consideration.
However, it is in itself an interesting question to ask
how the retardation affects the system containing the surface
excitons. It may be in the reflection spectrum that the retar-
dation effects show themselves most explicitly, becéuse the
reflection spectrum is directly related to the structure of the
dispersion curves of polaritons. As we know, much theoretical
and experimental attention has been attracted by the so-called
"ABC' problem in recent polariton physics. If we rephrase
the previous question along this line, it may be 'how the
additional boundary conditions are influenced by the existence
of the surface excitons?'. Since our model i1s simple enough,
to answer it on the basis of our model will provide a deeper
physical insight about the 'ABC'. Here we want to point out

that the resolvent which we have used in the calcuiations is

essentially the polarizability tensor in the k-representation.

*) See the second footnote on page 3.
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Its Fourier transform into the real space representation gives

the non-local inhomogeneous polarizability, which is known to

be useful in solving for the 'ABC's'.SB) Therefore our formalism

will give a good starting polint to answer thét question.
Finally we want to give some comments about the possible
variations of the model:

(1) Among the surface-induced anisotropies we have considered
only the surface geometrical anisotropy. The surface
crystal-field anisotropy may be easily incorporated into the

" model by replacing the surface potential 8§ by a tensor
quantity. |

(1i) The absorption spectrum is usually taken on a thin crystal.
When the crystal thickness is of the order of or less than
the wave length of the incident light, the interference term
in the long—range interaction between the two surfaces of
the slab, which we have omitted,#should be retained.

(iii) As we have already mentioned, the wave functions of the
surface excitons on semiconductor surfaces have usually
different characters from those of the bulk excitons. One
simple way to represent this effect 1s to make the magnitude
of the dipole moment on the surface layer to be different
from those on the bulk layers.

(iv) The spatial dispersion effect (the wave vector dependence
of the exciton energies) caused by the dipole~dipole inter-
actlon alone is usually too small to affect the reflection

0)

2
spectrum. In real solids, however, the overlaps of the
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one-electron wave functibns on near neighbor atomic sites
are usually more important origins of the short-range
interactions than those arising from the dipole-dipole
couplings. We can represent this effect by enlarging the
value of the short-range interaction parameter ry and at the
same time disregarding the sum rule r0+rl=2k.

(v) The bulk and surface excitons in real solids are frequently
composed of multiplets, so the extension of the model along
this direction 1s required in such cases.

Some or all of these modifications will be more or less
inevitable when we want to apply the model to real solids and
to make a quantitative analysis even 1in the cases Where the

Frenkel's model gives a good description of the exciltons.
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§7 Summary

How the interplay between the dipole -dipole interactions
and the surface geometrical anisotopy influences the optical
properties of the surface Frenkel excitons has been investigated
with the use of the simple model. The dipole-dipole interactibns,
expressed in the layerwise form, consist of the intralayer terms,
the interlayer short-range ones, and the interlayer long-range
ones which are represented by the parameters rys Ty and A,
respectively. Internal consistency of the model requifes the

sum rule: r +r1=2k. Together with the surface potential ¢,

0
our model is characterized by three independent parameters.
Dyson's equation for the resolvent Green's function has been
solved. The detalled analyses have been made with the aid of

the K xpansion. How the exchanges of the DOS and the

/175
oscillator strengths between the surface localized states and

the bulk band states as Well as theilr rearrangement within the
bulk bands odcur through the presence of the surface has been
clarified for various values of the parameters. Our lowest
order solution in the K//—expansion suggests that the existences
and the energy positions of the surfacevexcitons are insensitive
to the presence of the long-range interaction, whiie their
oscillator strengths are highly sensitive to 1it. The particular

feature to be noted is the enhancement of the oscillator strengths.

That is, depending on the values of the parameters, the surface
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excitons show giant oscillator strengths, the origin of which
can be attributed either to the short-range interactions or to
the long-range ones. In addition, tris phenomenon especially
of the latter origin is strongly dependent on the polarization
of the excitation radiation. On the basis of these results, a
possible explanation has been given to the recently observed
giant anisotropy of the CIS structures due to the GahAs surface
core excitons. Besides the usual surface excitons, our model
predicts the 'anomalous' surface localized mode, which has been
identified as the surface polariton mode without retardation

corrections.
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Appendix A: Integral Approximation of the Intralayer
%)

Dipole-Dipole Interactions

We evaluate the following two-dimensional integrals in

power series of k:

. "2X2+y2: —3Xy: 0
5 exp(-ik-T) 2 .2
T = J[ ar =XP g 22| _3xy, x“-2y°, 0 (A-1)
r
o 0, 0, xwt)
where §=(x,y,0) and §=(k,0,0). Since the intégral containing

xy as a factor of its integrand vanishes by symmetry, we only

need to know the following two integrals;

> >
T _ JJ a exp(~ik-.r) <2 , (A=2)
XX r5
r>rg
s
I = JI g exp(-ik-r) .2 (A-3)
yy 2
r>r,
Using the polar coordinates (r,0), we rewrite IXX as
: w 2m
-~ dr —-1kr cos® 2
Ixx = [ ] J as e cos" 9 . (A1)
0
Yo
Integration with respect to 6 yields
o Jo(kr)—J2(kr)
I, = K J dr 5 R (A-5)
5 r
0

#) A part of the results in this appendix is also found in
ref. 54).
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where JO and J2 are the 0-th and the 2nd order Bessel functions,
respectively. As to the first term in (A-5), integration by

parts yields

(A-6)

J r2 Kro
0 0

®© J . (kr) J (kr.) r o0 J, (x)
fdro -OO-de*

where we have used the formula dJO(x)/dx=Jl(x) (J1 is the 1st

order Bessel function). Expanding the first term of eq. (A-6)
with respect to kro, and retaining up to first order in kro,
we have
JOikrO) . kl N kZO (3-7)
o o
The second term of eq. (A-6) is rewritten as
kr
(e Jl(X) o Jl(x) 0 Jl(x)
j dx X = J dx 3 - J'dx = . (A-8)
kro 0 0 -

The first term of this equation can be evaluated analytically

as
ood:X Jl(X) _ T(l/2) I (A_g)
X 2r(3/2) ? o
0
where I' is the gamma function. As for the second term of

eq. (A-8), first we expand the integrand with respect to x, and

then integrate it over x. Thus we obtain
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0 J.(x) kr

1 0

J'dx — It = (A-10)

0

From eqs. (A-6)~(A-10), we have

o J . (kr) kr
0 N L 0]

J dr ——>— 2 = - 1+ o~ . (A-11)
r 0

T

Next we evaluate the second term in eq. (A-5), which can be

rewritten as

© J,(kr) ©  J,(kr) "0 J,(kr)
[ar 22050 [ 22U (73, 7200 .
& r

0 0

Similar procedure to that of getting eq. (A-11) yields

e

© Jz(kr) 1 kro
J dr ——“-—-2--—‘ *3— - —8—— . (A—13)

P r
0

From egs. (A-5), (A-11), and (A-13), we obtain

o143
X_X ﬂk(ﬁ‘a—§+8—kl"

e

I (A-1L)

0)

similarly, we can also evaluate that

kro

Yok (e + % + =) . (A-15)

Using egs. (A-14) and (A-15), we arrive at the final result;
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———l—+2—%kr

kr 0°

=
e

mk o,

0,

which is correct up to first order in kro.

0, 0 )
_ 1 _+kr0 0
kro g
. 2 2_1‘1"0)
3
kro 2

(A-16)

4

If we retain the

terms up to linear in k (note the factor k in the front), this

becomes =quivalent to edq.

(3.7) in the. text.
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Appendix B: Approximate Expression of a(k)

1

We prove the following approximate formula for u(k)=—K¢%E——:
_ . _
_ 1 ok .k _1 _
o(k) = Riik > cot 5= 53 + O(X) , (% 1)

where C(K) means a collection of terms that are of the order

of or higher order than K and, at the same time, analytic with

respect to k 1n the domain [kliﬂ. We make use of the Laurent
expansion
1 _ 1 1
- —E_§.+f(z) > (B-2)
e -1

where f(z) is a power series of z starting from a term linear
in z (expansion coefficients of f(z) are expressed by Bernoulli

numbers, although the detailed form of f(z) does not matter in

the following argument ). The radius of convergence of the
expansion (B-2) 1is 2m. Using eq. (B-2), we have
_ 1 1 :
alk) = ik = 2 + f(K+ik)
, (B-3)
L L4+ r(ik) + O(K)

K+ik ~ 2

We rewrite f(ilk) in this equation as

£ik) + —K_ £(ik) . (B=1)

£(ik) = K+ik

K
K+ik

The first term in the above equation is rewritten to give
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K
K+ik

K

= (£(K+ik) + O(K)) . (B-5)

r(ik) =

Since f(z)/z is analytic in the region |z|<2m, we can make the

estimate, from eq. (B-5), such that

K .
m f(lk) = O(K) . (B'—6)

From egs. (B-4) and (B-6), we obtain

= 2K p(ik) + 0(K) . (B-T)

£(ik) = g33g

By applying the formula (B-2) to the function f(ik) in the

right hand side of this equation, we get

(1K) = pre (gp— - 7=t 3) + 0(K) . (B-8)

Substituting eq. (B-8) into eq. (B-3), we have

ik ( 1

a(k) = P ) - & +0(X) . (B-9)

+
helle

A straightforward manipulation of this_equation yields the

desired result (B-1).
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Appendix C:  Bulk Eigenmodes

In this appendix, we solve the eigenvalue problem (3.28)

which appeared in the text, with the special attention paid to

the order with respect to XK. The solution is correct up to
the first order in- K. First we prove the following theorem:
Theorem

Let £(k) be a function of k that is analytic near k=0 and
does not contain K. Then, within the region where f(k) is
analytic,
(1) if f£(k) is an even function of k, we can make the estimate
such that :

cos®s £(k) = cos?® £(0) + 0(K°) ,
(ii) otherwise, we have

cos®o £(k) = cosZe £(0) + O(K) ,

where 06 is defined in the text.

It is easy to prove this theorem. In the case of (i), f(k) can

be expanded as

£(x) = £(0) + 7 c k2D

n=1 n

Therefore, we have

00528 (k) = 00526 £(0) +
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(oo

cos®8 £(0) + K° sin‘e ) ¢ k

I

n=0 n-1
Since §=Ocn—lk2n is also analytic in the region where f(k) is
analytic, we obtain the densired resu.t, at once. The proof

for the case (il) can be similarly made. ,
Now we examine the eigenvalue equation (3.28). With the
aid of the power series expansion of %cot% (see eq. (3.29) in

the text), as well as the above theorem, eq. (3.28) can be

rewritten as

{[eb-ro-rl cos k-€, O }

0, €y +ar0 +2rl cos k -¢
cos 8, sin © O(Kz), 0(K) N

+ 6 cos © + 5 u= 0 (C-1)
sin 6, -cos® 0(K), 0(K™) )} -

If we are to evaluate the eigenvalues up to first order in K,
the diagonal terms of order K2 and the off—diagonal terms of
order K are unrelevant, and we can negleét the third term in
the curly bracket of eq. (C-1). In order for non-trivial
solutions to exist, the determinant‘of the matrix should vanish.

After some manipulations we get

E2 - Eg(k) + L 00326 E(k) —MKE 00526 =0, (Cc=2)
where we have defined E(k) and E as
E(k) = (ro + r, cos k)/2 , (C-3)
and
E = (E—eb - E(k))/3 , (C-4)
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respectively. If we apply the above theorem to the third term
in eq. (C-2), with keeping the sum rule (see eq. (3.26) in the
text) in mind, we can show that the last two terms cancel each

other (up to first order in K). Finally we obtain
E =1t E(k) + 0(XK%) . (C-5)

Now we seek for the eigenvector corresponding fo the eigenvalue
E(k). From the original eigenvalue eduation (3.28), we see

that U must satisfy

[-E(k) +2a cosge % cotg -X cosh sin®

k Ky > _ e
5> cot§] u=0.. (C-6)

2

Using the theorem as well as the sum rule (3.26), we can show

that
- L2 2
E(k) = E(k)(sin“9 + cos 8)
= E(k) sin°o + X cose + O(K2) 5 | (c-7)
and also that
kcosze % cot% = Acosze + O(K2) . (C=8)

Substitution of egs. (C-7) and (C-8) into eq. (C-6) yields

(-E(k) sin® , X cos® %'cot§~) =0 , (C-9)
which is'valid up to first order in XK. This equation is solved
to give

r0+rl Kk tE .
r0+rlcoslc 2 Coty coso,
sin® s
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We point out that 4 is normalized correctly up to the order of

K;
a] =1+ 0(k%) , (C-11)

this can be proved with the help of the theorem, again. The
eigenvector corresponding to the eigenvalue -E(k) can be similarly
obtained.

If we use the original energy parameter €, our results
are summarized as follows; the energy eigenvalues and the

eigenvectors of the bulk excitons are given by

et(k) =€, - Try - Ty cosk + O(K2)
N - 8in6 , 2
W (e = | L, + 0(K%) (c-12)
0 1 K cotE coso
r . tr.cos k 2 2
01 ,
and
g (k) = e + 2ry + 2r) cosk + 0(K9)
r.+r
0 1 k k
N ,ro+rlcosl< 3 cotyz cosb, 5
uz(k) = + O(K%) . (C-13)
sin®

In the text we have adopted the function cos6 in place of the

r.+r
0 "1 k k .
W § COt§ cosf in ut(k) and

and Eﬁ(k). We note that the corrections due to this

rather complicated function

replacement are of the order of K. This can be easily proved

in the same way as the proof of the theorem mentioned above.
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Appendix D: Evaluations of the Integrals

In this appendix, we express the integrals appearing in
the matrix [I] in the text in terms of the following integrals,
the result of which will be correct up to the order required

for each integral in the K//—expansion:

(T 3\
I°, 0
- - 1 .
I = 2] = 3= fak Gy(k) (D-1)
10, 1) :
(-t \
Jv, 0 . :
_ _ 1 ik ,
J = o = 55 fdk e Gy (k) (D-2)
\03 J J
vt 3
. v, o ok 5
|, oy T fax a()|® 6ok) , (D-3)
\ b J . .

where the range of integration is from -m to m in all cases.
These six integrals can be evaluated eééily with the aid of the
residue theorem. It is convenient to use the two energy
parameters x and y with the correspondiﬁg complex energies‘v
and w, as well as the éomplex square root function ¢/~ which
are defined in egs. (5.10), (5.11) and (5.13) respectively.

The explicit expressions for It, Jt, and %t are as folloWS;

It = ————————-—1 s » | (D—u)

(D-5)

cy
1]
~—~
'._J
1
<
[
ct
e
~
2]
)
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K

£t Ke” 1 &
1" - 2(v+rlcosh.K)(sinhI( trylh)
. (D-6)
-K
e t 2
—- = )
S D) (14K r, I) + O(K%)

In the last line of eq. (D-6) we have expanded coshK and sinhK
in terms of K. We may of course expand e_K, too, but we use

it as 1t stands for a later calculational convenience. The

L

[AY} .
expressions for Iz, J, and Iz can be obtained by simply replacing

rl'and v in the above expressions with —2r1 and w, respectively.
There are twenty-one independent integrals in the matrix
[I]. Here we examine only some of them. The others can be
examined similarly. Typical integrals appearing in the matrix
[I] are
1 2
(a) Ice = 5= [dx G,(k) cos®6
- 1 . 2
(®) I, = 3= fdk G,(k) sin%e
= 2 Gy (k) ¥ (k) B(K)
(c) IYB = 55 fdk 0 )y R s
_ 1
(@)  I.g =35 [dk Gy(k) cos® B(k) ,
_ 1 :
(e)  Igg = 57 [dk G,(k) siné B(k) ,

where 8(k)=a(k)ele and Y(k)=a(—k)e_leeK_lk are the first two
elements of the vector [f(k)] defined in the text. In the

following we examine these integrals.

For (a): Since 00528 has significant values only in the small
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region of k around k=0 the width of which 1s roughly K, we

immedlately obtain

I, = O(K) . (D-T7)

For (b): Using the above estimate, we get s

_ 1 0 v . 2
I, = 5= [dk G (k) (l-cos”e)
(D-8)
= I + 0(K)
*
For (c): We can approximate vy (k) as
. K+ik
¥ _ 16 e
v (k)= ety
e -1
= % (a(x)+1) (D-9)
cosbB k k eie
_ =ie® - ie
= e a(-k) + cos® a(k) e + O(K) .
In the third and the fourth lines we have mada use of the
estimate (4.29) in the text. ‘Thus we have
® ' i i
Yo (k) B(k) = |a(k)]|® + cosd a(k) er® + a(x) efx0(k) . (D-10)

We introduce a notation 6(K) which means that it is a function
of k and that wheh inﬁegrated over k it becomes of the order
of K. It is easy to show that a(k)eie=a(KO). Therefore the
third term in the last line in eq. (D-10) is written as a(K).

Concerning the second term, we can rewrite it as

- 133 -



2

cos® o(k) e1f - CES 4 0(K)
(D-11)
= Kla(x)|® + O(K)
Therefore eq. (D-10) is rewritten as
% 2 ~ !
vy (k) B(k) = (1+K)|a(k)|® + O(K)
= K [a(k)l2 + 0(K)
Finally we get
eK ¥
= = + . D-
IYB R 0(K) (D-12)
For (d): Using eg. (D-11), we immediately obtain
I,g = ¥ + o(x) . | (D-13)
For (e): First we rewrite the integrand as
. = s cosb k k cos6 _ . sind .
sin® B(k) = siné (—K—_ 5 cot2 —— -1 .) + 0(K)

Since Go(k) is the odd function of k, the first and the second

terms in the bracket do not contribute to the integral. Hence
- 1
ISS > Iss + 0(K)
(D-14)
= _ 1
= =3 + 0(K)
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Appendix E: The Wave Functions of the Surface Excitons

The wave functions of the surface excitons are obtained
by directly solving the Schrodinger equation. We can do this
in the real space representation in the same manner as in §6-1
for the 'surface polaritons' assuming that the 2-dependence of
the wave functions is of the form given in eq. (5.68). Instead,
in the following, we briefly sketch the outline of solution in
the k-space.

The Schrddinger equation in the k-representation reads

e, (k)-e, O
¢ ]?ﬁ(k) +3 ] Vo B =0, (B-1)
0, eg(k>‘€ k!
where Vk“,'is given in eq. (4.18) in the text and
n =
| 0] b (k) |y>
Tk = [ ¢ (£-2)
<0 by (k) [v>
is the surface exciton wave function. Since V is of the

kk'
separable form, there arise no difficulties in principle.

The method to solve eq. (E-1) is similar to, but simpler than
that to solve Dyson's equation. We introduce a six-dimensional
column vector [¢] with each element $i being a two-dimensional

vector defined by

=+

L Ty (k) P(x) (i=1n6) (E-3)
K

¥, =

1

where fi(k) is the i-th element of the vector [f(k)] given in
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eq. (4.16) in the text. If we are to seek for a truely
localized mode, we may assume that its energy € is located out
of the bulk band et(k) and eﬂ(k). Then eq. (E-1) can be

rewritten as
T = 6,00 Fret (o IMILe] (E-1)

We multiply the both sides by fi(k) and then sum over k. The

result in the matrix representation is’

[v] = [T1(MILv] . (E-5)

This eguation determines both £ and [v] at the same time.
Substitution of the solution [y] into eq. (E-U) yields the wave
function. The K//—expansion is possible and we assume at the

outset that

Ts Tps By By = 0K
(E-6)
@5: $6 = O(Kl) :
These assumptions can be ascertained self-consistently after
we solve the problem. The energy eigenvalues have been given
in the text. We only show the final result of the wave
functions in the 1owest order approximations 1in the K//—expansion;

1 _ik ,
("2— +38e ) Go(k,s) X

-3 i sin 6
X{ -é—_—é—-—}\ cOS e + } ...'X_pol.l s
b 1

cos 6

- 136 =



(E-T)
-ik

(§ e —rl) Go(k;e) x

~3x 1 -cos © l
PURP cee 'z- '
X{ P | cos 0 + ] z-pol.' ,

b -1 sin 86

$

with the understanding that € is the energy eigenvalue of each
mode. In deriving the above results we have made use of the
estimates (5.43). Since cos® is nearly zero for most values
of k except for very small values (|k|[gK), we can say that the
' x-pol.' ('z-pol.') surface exciton is mainly composed of the
bulk T(L)-excitons.

Finally we point out that instead of the assumption (E-6)

the other one such that

- - 0
wl, wg, = 0(K") ,
(E-8)
-> - -> > 1
¢3, WQ, WS: w6 = Q<K ) )
leads to the solution of the 'surface‘polariton'. It also

can be ascertained that this assumption is consistent with the

final solution.
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Appendix F: Explicit Expressions of the Absorption Spectrum

The final results for the four components Ts(e), Tc(e),

AIS(E) and AIC(e) of the absorption spectrum are as follows:

%

2 2
r. =X 5 2

e -x%) (F-1)
m(x+r,)

Ny
Is(s) G(x+rl

) +

1t

A
= 2 2 1 : 1
Ic(e) [K+£L+9A { 5 5377 }

+ — ] é(e—sb—k)

2
+[-2 4 ——QA———§ 1 8(x+ry) (F-2)
(ll+rl)
9A2(rl—X)

+
ﬂ(rl+x)(x-Xl)2¢r12-x2

2

e(rlz—x )

7D
hry -y 2
+ —_— e(Mrl -y

m(y-hy)°

DI BN

26—r1 r1+26
MIg(e) = zgp, S(x%o) ~girray STy

(F-3)
Vo 2ox®

1 2 2
- 2ﬂ(x—xo)(x+r1) 6(rl =X7) ([6|>|r1/2])
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9x2(26_r1)
AIC(E) = 5 6(x—x0)
(Al—xo) (26+rl)
(8-v,)%(6%-r, %)
+ S(y=yq)
52(k —y )2 0
2 70
N 9)\2 { XO—25 N 26+1"1
2(x+r.) 2 2
2 .
-X A tr r
+ 0L 1 - L }a(x-xl)
2 /2 2 2 2
(Xl—xo) Xl -ry (Xl+rl)VX1 -ry
(F-1)
2, .2 2
N 1 (G—Pl) (¢S -ry ) A2
27 082(x-2)? ) > 5
X -
0 "2 2 XZ -url
(Zrl—xo)(—xokl+url2)
+ ’ }S(y—x )
2( A, =X )2 X Z—Mr 2 ?
VApTXg) VAo T
9A2/§ 2—x2
1 2 2
- 6(rl -x7)

2m(x-2) % (xry ) (x-%0)

- 6(hr, "-y")
2m(y-1,)°(3-7 ) '

(y-2r e Py® 5, [|a|>|r1|}
|
1

[A2|>]2r

Here we have defined Al and X2 as

>
[l
>
+
=3

(F-5)
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Note that Al (kg) is the energy of the 'surface polariton'’

measured from the center of the T(L)-band. The above expressions

hold when |§]|>|r,]| and |x2[>]2r when |§] < |r the term

| - s
containing é(y—yo) shouid be removed “rom the expression (F-4),
and when |6|<|r1/2[, also the terms containing 68(x-x,) should

be removed in the expressions (F-3) and (F-4). On the other

hand, if [A2l<|2rl| the terms containing VA22—Mr12 as a factor

should be omitted in the expressions (F-2) and (F=14).
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