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                            Abstract 

      Optical properties of surface Frenkel excitons have been 

studied theoretically in terms of a simple model. Special 

attention is paid to the influence of the geometrical anisotropy 

caused by the presence of the surface upon the oscillator 

strengths of the surface excitons. The dipole-dipole interac-

tions are partitioned into intralayer interactions ., short-range 

interlayer ones, and long-range interlayer ones. The effect 

of the difference in excitation energies between the surface 

atoms and the bulk ones is included in the model. An interplay 

between the dipole-dipole interactions and the surface geometrical 

anisotropy is one of interesting features of the model. The 

properties of the surface excitons are analyzed by solving Dyson's 

equation for the resolvent. Depending on the parameter values, 

the-surface excitons can show two kinds of giant oscillator 

strengths; one is due to the short-range interlayer interactions 

and the other is due to the long-range ones. The strong 

polarization dependence of these effects are pointed out. In 

addition to the usual surface excitons, the model predicts a 

somewhat 'anomalous' surface localized mode. Its relation to 

the familiar surface polariton is also discussed.
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§1 Introduction 

   1-1 Surface Elementary Excitations in Solids - Classification 

     If there is a certain kind of bulk elementary excitation 

in solids, then there usually exists a corresponding surface 

version, which is localized at or near the surface and is prop-

agating in the directions parallel to the surface. As such 

a surface elementary excitation, we know for example, electronic 

surface states,, surface phonons, surface excitons, surface 

plasmons, surface exciton (or phonon)-polaritons, surface 

polarons, and so on. *) They have two dimensional crystal momentum 

K as a good quantum number, and their energies are in the

     There is some confusion in the nomenclature of these surface 

modes. Some authors 1) refer to surface exciton-polaritons simply 

as surface excitons and surface phonon-polaritons as surface 

(optical) phonons. In this paper, we use the term 'surface 

excitons' and 'surface phonons' as eigenstates of the Hamiltonian 

of a material in Coulomb gange which has no transverse electro-

magnetic fields,in order to discriminate them from 'surface 

polaritons' that are solutions of the Maxwell equations. On 

the other hand, 'surface plasmons' are universally used to mean 

the solutions of the Maxwellequations; namely they are the 

eigenstates of the Hamiltonian of material plus electromagnetic 

field.
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gap of the bulk band (for a given K In addition to these 

truely localized states, there may sometimes arise a so called 

surface resonance within the bulk band, the amplitude of 

which, though it is an extended mode, is large in the surface 

region. 

      In a conceptual experiment, we can create a surface, starting 

with an infinite crystal, in successive two steps; first,we 

divide the infinite crystal into two parts by cutting the bonds 

through some plane, and thus obtain two semi-infinite crystals 

with ideal surfaces. Constituent atoms (or ions) in the surface 

region now see different local environment from that- seen by 

bulk atoms, and the position of an atom is not an equilibrium 

position any more. Therefore., next., atoms in the surface 

region should move to new equilibrium positions (relaxation 

and/or reconstruction). From atheoretical point of view, the 

effect of this second step may be described by some appropriate 

potential localized at a few atomic layers from the surface 

seen by the elementary excitation in consideration. Thus it 

comes that surface can be created from an infinite crystal by [I] 

ideal cleavage and then [III adding a surface potential. 

Each surface elementary excitation comes into existence either 

in step EII or in [Irj. This fact leads us to an idea that 

surface elementary excitations can be classified according to 

whether their existence is attributed merely to cleavage (type [I]) 

or to the surface potential (type [I1:1). For example, since
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the dispersion relations of surface plasmons are calculated by the 

use of a bulk dielectric function, they clearly belong to the 

type EII. On the other hand,, (electronic) surface states are ., 

as is well-known., highly sensitive to surface atomic structures, 

so they are members of the type [III surface modes. According 

to this rule ., we can classify main surface elementary excitations 

as in Table I. *) There exists an important difference between 

the properties of the type [I] modes and of the type EE:1 

modes that the former are essentially describable within a 

classical theory of continuous media, although their details 

may rely on quantum treatment, and their wave functions have 

extension in a range of a few hundreds or thousands of atomic 

distance from the surface ., whereas the nature of the latter 

depends on the atomic surface structure and they usually localize 

in a range of a few atomic distances from the surface. 

     Generally speaking, the investigations of surface elementary 

excitations have been less numerous in comparison with those 

of corresponding bulk counterparts. Experimentally, the 

detection of these surface modes usually requires careful 

preparation of a specimen with a well-controlled surface as well 

as spectroscopic tec-hniques of high surface sensitivity. In 

some cases ., special geometry to detect surface modes is required 

additionally.") Also theoretical difficulties arise chiefly

--) It is also possible to discriminate the two types of surface modes simply 

by spatial extention of their wave functions. In any case, there may be 
intermediate ones difficult to discriminate. 

      For example, since surface plasmons and surface polaritons 
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Table I: Classification of surface elementary 

excitations in solids. The type [I] modes are 

insensitive to the microscopic surface structures 

and come into existence merely on cleavage, while 

the type EIIJ modes are highly sensitive to them, 

though they may exist at the stage of cleavage.

I

[I]

surface 

surface 

surface 

surface 

Rayleigh

plasmon 

exciton-polariton 

phonon-polariton 

polaron 

 wave

EiII

one-electronic 

surface exciton 

surface optical

surface state 

phonon
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do 

ATR 

to

not couple directly 

 (at'tenuated total 

detect them. 2)

 to the vacuum electromagnetic fields, 

reflection) geometry is frequently employed

because the Bloch theorem does not hold in the direction 

perpendicular to the surface. 

1-2 Surface Excitons 

     The above general statement, in fact, directly applies to 

the case of surface excitons. In contrast to bulk excitons 

in various solids that have a long history of both theoretical 

and experimental investigations, 3) study of surface excitons 

started only a,decade ago or so. Since then, existence of 

surface excitons has been verified experimentally in several 

semiconductors and insulators. Theories have been also developed 

to give explanations of some of the features observed. it 

seems ., however, that as a whole, we are in an early stage of 

development, and that much is yet to be studied in both theory 

and experiment on this subject. 

     The necessity for studying surface excitons is as follows 

besides interest in itself. Firstly, the nature of the transport 

phenomena along surface may be influenced bythe existence of 

surface excitons. Secondly, it is pointed out 4) that when the 

energy level of a surface exciton lies below that of a bulk 

exciton ., then it may provide a main source of the damping of 
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a bulk exciton. Thirdly, since the unique determination 

of atomic cofigurations on reconstructed (and/or relaxed) 

surfaces in semiconductors are, in the present state of the art, 

usually difficult both theoretically and experimentally, the 

informations at hand relevant to surface atomic structure 

would be useful in order to determine it correctly. As discussed 

already, surface excitons are among the type [III modes, which 

are sensitive to the surface atomic structure ., and a detailed 

investigation on them must provide useful informationz about 

it. 

1-3 Wannier vs. Frenkel Pictures of Surface Excitons 

    As it is well-known, 5)bulk excitions can be classified into 

two extreme types; the Wannier exciton and the Frenkel exciton. 

In the Wannier case, an electron and a hole are bound loosely 

each other, and their relative motion is decribed by a 

hydrogenic wave.function which extends over many unit cells. 

In the Frenkel case, an electron and a hole are tightly bound 

and stay in the same atomic site. For most semiconductors, 

and for at least the excited states of exciton of alkali halides, 

the Wannier model gives a good description, while the Frenkel 

model works quite well for organic molecular crystals. Excitons 

in rare gas solids seem to be difficult to interpret with 

either one of these two models, and belong to the intermediate 

case.
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      The above classification is useful also for surface excitons. 

A surface Wannier exciton was recently discussed by Del Sole 

         6) 
and To.satti. They constructed a Wannier exciton of essentially 

two dimensional character from a pair of surface state bands 

and calculated the binding energy as a function of surface 

state penetration depths. Experimentally, however, no evidence 

has been obtained to indicate the existence of such a surface 

Wannier exciton state so far. Influences of the presence of 

surface on Wannier excitons constructed from bulk bands have 

been discussed by many authors 7-11) in the context of so called 

ABC (additional boundary condition) problem, that has attracted 

much attention in the recent polariton physics. According to 

these theories, the presence of surface distorts the wave function 

of the relative motion of an electron and a hole, and thus the 

surface in effect, acts as a repelling potential, resulting 

in "surface dead layer"; namely, surface Wannier excitions 

cannot exist in this case. On the other hand., surface excitons 

found in organic molecular crystals are definitely those of the 

Frenkel type. 12) In fact, they can be thought of as the same as 

bulk excitons, slightly perturbed by the difference in local 

environment of the bulk and the surface. In the case of rare 

gas solids, this may also be true for at least the ground state 

of surface excitons. Surface core excitons observed in MgO are 

known to be described fairly well by a localized excitation 

model,13) which suggests that these surface excitons are also of
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the Frenkel type. In addition to these crystals , there is the 

evidence 14) which shows that surface core excitons found on 

GaAs should be thought of as the Frenkel excitons rather than 

the Wannier excitons, although, in this case, these surface 

exciton-s cannot be regarded simply as, perturbed bulk excitons 

(see the footnote on Page 24 in the next section). Therefore 

most surface excitons so far observed on molecular crystals , 

ionic crystals, and even semiconductors seem to be described 

fairly well by the Frenkel model, although detailed understanding 

of the structures of these surface excitons require further 

accumulation of experimental results. 

1-4 Purpose of This Thesis 

     The above mentioned GaAs's experiment is conspicuous among 

the others performed on cubic crystals. *) Tt is the only case 

where the polarization dependence of optical excitations of 

surface excitons is investigated. The fact that the surface 

exciton transition is strongly dependent on the polarization 

of incident radiation was thus discovered. As it will be 

discussed in some detail in the next section, at present , we 

have no theory to account for this observation. It is well-known 

that the dipole-dipole interaction causes L-T (longitudinal--

     Turlet and Philp ,ottl5) measured polarized reflection 

spectra on crystalline anthracene, a highly anisotropic crystal. 
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transverse) splittings of dipole-active (bulk) excitons. In 

cubic crystals triply degenerate exciton states split into two 

T (transverse)-modes that have transition dipole moments perpen-
            _" 

(the three demensional wave vector) and one L dicular to K 

(longitudinal)-mode that has a dipole moment parallel to K. 

Thus the dipole-dipole interaction brings about the anisotropy 

of excitons with respect to K in cubic systems. The L-mode., 

however, cannot couple with photons that are transverse in char-

acter, and is not detectable in optical measurements. Therefore 

the optical spectrum is always isotropic independent of the 

polarization of incident radiation, unless some anisotropic 

perturbation is applied externally. 

     The presence of surface alters this situation. It is, in 

itself,, a strong anisotropic perturbation. In the similar way 

of thinking as the classification of surfac.e elementary excita-

tions made in 1-1, it may be possible to classify the anisotropic 

properties caused by surfaces into two types; 

[I] the geometrical anisotropy - this makes Ki (the normal 

  component of the wave vector) no more a good quantum number, 

  and thus causes the classification into T- and L-modes to

       Here and after, we consider ~ to be finite, but vanishingly 

 small (optical selection rule). Otherwise, if K~- is large 

 enough, all three modes become L-T mixed modes for the general 

 direction of ~, and if ~ is exactly zero, the shape of the 

 specimen comes into discussion.5) 
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   be less meaningful, and 

[III the crystal-field anisotropy - due to reconstruction 

   and/or relaxation as well as the lack of half-space material, 

   surface atoms feel the crystal field whose symmetry is lower 

   than the original cubic symmetry; 

i.e. this is the anisotropy of microscopic origin. 

     The second anisotropy mentioned above may cause not only 

energy level splittings but also some anisotropy of surface 

exciton oscillator strengths., but the changes in oscillator 

strengths thus caused are probably expected to be of order unity. 

It is hard to expect that it, or at least it alone, is the main 

origin of the observed 'giant anisotropy' of the surface excitons. 

Inthefirst step, we may put the type [I1 anisotropy out of our 

analysis. On the other hand, as concerns the type [I] anisotropy, 

we, of course, cannot drop it, which is caused merely by the 

presence of surface. The purpose of this thesis is to study 

how the interplay between the dipole-dipole interaction and 

the surface geometrical anisotropy influences the surface optical 

properties, above all, those of surface excitons on the basis 

of a simple model, and to find a possible explanation of the 

observed Igiant anisotropy' of the surface excitons. 

     In the next section, we give a brief survey of the studies 

of surface excitons so far made including the study on GaAs, 

with an emphasis on experimental aspects. Uncertainties in 

assignments and unsettled ploblems in interpreting experimental
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results will be pointed out. We set up our model, and derive 

the Hamiltonian in §3. There, starting with the Frenkel 

excitons on a slab-like lattice geometry, we rewrite the 

dipole-dipole interaction in a layerwise form, and thus obtain 

three kinds of interactions; intralayer, short-range interlayer, 

and long-range interlayer interactions. Assuming small but 

finite K // with optical excitations in mind, we introduce some 

parameters to describe them. The long-range interaction is 

shown to have an exponential dependence on the interlayer 

distance, while the short range one is approximated by a 

nearest-layer interaction. If we list up the elementary 

features contained in our model, we have 

(i) presence of surface, 

(ii) surface potential, which is localized at the outermost 

    layer and is necessary to permit the existence of surface 

    excitons, 

(iii) nearest-layer coupling, 

(iv) exponential coupling, 

and finally 

(v) vectorial character of excitations. 

The features (i) and (v) provide the geometrical anisotropy, 

whereas neglect of the crystal-field anisotropy means that the 

surface potential in (ii) is assumed isotropic. Models 

containing two, or at most three features mentioned above have 

ever been treated in the past, either in the theory of the
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surface Frenkel excitons 16-18) or in the context of 'ABC' 

problem. 19-21) Inclusion of all the five features', however 

inhibits an application of the methods developed so far to the 

present problem, and a different approach should be employed. 

This is done in §4,, where the Dyson equation for the resolvent 

is solved. Our approach consists of (a) the integral equation 

method ., and (b) K //-expansion. In (a), the eigenmodes for the 

bulk system with periodic boundary condition are utilized to 

represent the Dyson equation and thus the kernel of the integral 

equation is shown to become a sum of separable forms (or 

degenerate kernels, in analytical languages), with which, in 

principle, the integral equation can be solved. To suppress 

the explosion of computational complexities, the K //-expansion 

is proposed, since K // is a small parameter in our theory. 

As will be shown explicitly, the K //-expansion is not a simple 

one. A solution for exactly vanishing value of K // is different 

from that for small but finite values of K Namely, our 

solution is non-analytic near the point K 0. which reminds 

us of the non-analiticity of bulk exciton energy, i.e. L-T 

splitting. Of course, they stem from the same origin - the 

long range nature of the dipole-dipole interaction. Therefore 

we should pay much attention to the behavior of the solution 

near K // %0; otherwise the K //-expansion is similar to 

the usual perturbation expansion. Using the solution for the 

resolvent, we calculate the density of states and the absorption

. 12 
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spectrum in §5. From the density of states we can clearly 

identify at mostthree: surface localized states. Two of them 

are surface excitons in the usual sense; they owe their existence 

to the surface potential and belong to type [II] surface modes. 

The other one is, in a sense, 'anomalous'; it owes its existence 

merely to the cleavage, hence belongs to type [I] modes. The 

absorption spectrum is calculated as a function of the polari-

zation direction of the incident radiation. How the exchange 

of the oscillator strengths takes place between the surface 

excitons and the bulk excitons as well as among bulk excitons 

themselves is investigated and shown. A remarkable feature 

is that the surface excitons can show giant oscillater strengths 

depending on the parameter values. There are two origins of 

them; one is the short range interaction and the other is the 

long range one. Moreover., the condition for the giant oscillator 

strengths of the latter origin is examined in s-ome detail with 

respect to a polarization dependence. Section 6 is devoted 

to discussions. Firstly, we study the behavior ofthe 'anomalous' 

surface mode in detail, and its relationship to surface polariton 

is pointed out. Then we try to interpret the observed giant 

anisotropy of GaAs surface core excitons on the basis of our 

results. Usefulness of polarization dependent spectroscopies 

in the investigations of the surface excitons on solids other 

than GaAs is also suggested. Limitations and possible extensions 

of our model are discussed. Finally, we summarize the results 

in §7. 
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§2 Survey of Surface Exciton Studies 

     In this section, we give a brief review of the investigations 

so far made on surface excitons. 

2-1 Organic Crystals 

                                  22)       There had be en some controversy concerning the origins 

of the fine structures seen in the reflection spectrum of the 

b-polarized 0-0 transition of the first singlet of the crystalline 

anthracene. Turlet and Philpott15) have performed careful 

measurements of the spectra, and from the surface treatment 

sensitivities of the fine structures they concluded that the two 

sharp dips observed at low temperatures are due to the surface 

and subsurface exciton transitions. They also proposed a model 

that explains the differences in energy between the surface and 

the bulk excitons in terms of the site shift energy. 12) Struc-

tures probably due to the surface excitons have been observed 

in transmission spectra 23) too, and there is an evidence that 

these surface excitons are also involved in the fluorescence 

emissions first observed by Glockner and Wolf. 24) To date,, 

reflection minima attributed to surface excitons have been 

observed not only in anthracene, but also in tetracene 25)and 

naphthalene. 26) 

     Theories of surface excitons in molecular crystals have 

been developed independently by Hoshen and Kopelman, 16) and by
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Schipper. 17) In both of their theories, the Koster-Slater 

approach 27) was employed and the surface was represented by 

two kinds of localized perturbations (one is the cleavage and 

the other is the surface relaxation, such as discussed in 1-1) 

introduced into infinite (or periodic) crystal with a tight--

binding type model of exciton. They discussed the condition 

for the existence of surface excitons in terms of the exciton 

transfer energy and the site shift energy. Later, Ueba and 

Ichimura 18) extended the theory of Hoshen and Kopelman to the 

case where there are two translationally nonequivalent molecules 

per unit cell and showed that the Davydov splitting of surface 

excitons can be smaller than that of bulk excitons. They 

pointed out the possibility of interpreting the two sharp 

reflectivity dips observed on crystalline anthracene as due to 

the Davydov pair of the surface excitons. Though there is 

little doubt about the existence of surface excitons in these 

organic molecular crystals now, understanding of the details of 

these states will require further theoretical and experimental 

efforts. 

2-2 Rare Gas Solids 

     The first experimental evidence for the existence of 

surface excitons in solid Ar, Kr, and Xe was given by Saile and 

co-workers 4) in 1976. In their experiments, optical transmission 

and reflection spectra were measured on thin rare gas films by 
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means of synchrotron radiation. They found structures due to 

surface excitons at energies slightly below the well-known bulk 

exciton absoption bands. For these structures of surface 

origin, a splitting into two or three components is observed . 

For example, in the case of Ar, two prominent peaks at 11 .71 eV 

and 11.81 eV and a weak shoulder at about 11.93 eV below the 

bulk n=l (j=3/2) and n=11 Q=112) excitons *) that have the energy 

location of 12.06 eV and 12.23 eV .5 respectively, and two peaks 

at 12.99 eV and 13-07 eV below the bulk n=2 (13.57 eV) and n=21 

(13.75 eV) excitons are observed (Fig. 2-1). On the basis 

that the observed surface exciton splitting is too small in 

                                                              A2 E, 

                                       BULK nzi n=1. n=2 n=2*         201 . A
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z 

ui 
E 
z 
0 

a. 
cr 
0

 - J
LL~.n=" SURFACE

SURFACE 
n=2 T-,

Ar with Kr

Ar

                                       01 1 1 1 1 1 1 i                             11.0 12.0 13.0 14.0 
                                    PHOTON ENERGY (0) 

Fig. 2-1. Absorption spectrum of a clean Ar film and of the 

         same Ar film with a Kr overcoating. Those peaks which 

         are sensitive to the surface treatment was identified 

        as the surface exciton peaks (after Saile et al. 4) ) .

* ) Notations of the hydrogenic series are used; i .e. , n is 

the principal quantum number. In the parenthesis, j is the total 

ana-ular momentum of a hole in the p-like valence band .     CD
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comparison with the spin-orbit splitting of the corresponding 

bulk excitons ., they proposed, as a possible model, that it 

might not be the spin-orbit splitting but be a surface-crystal--

field splitting of the j=3/2 excitons. Even if we admit this 

conjecture, the question of why then the n=11 surface exciton 

is hard to see and why the n=21 surface exciton cannot be observed 

at all still remains to be answered. 

     On the contrary, Ueba 28) argued that the observed splitting 

of the surface exciton peaks could be explained in terms of the 

spin-orbit splitting, pointing out t.hat the spin-orbit splitting 

of surface excitons can be smaller than that of the corresponding 

bulk excitons. This argument, however, also have an apparent 

shortcoming that it cannot explain why three surface excitons 

appear from two (n=1 and n=11) bulk excitons. At present, we 

have no convincing assignments that account for all the observed 

features of the surface related transitions as a whole. 

2-3 Si 

     Among a lot of semiconductor reconstructed surfaces, Si 

(111) 7x7 surface has been the most controversial one with 

respect to its surface atomic geometry. Various models of 

reconstruction have been proposed, 29) but none have attained 

a general agreement. 

     In 1977, Margaritondo and Rowe 30) studied the L 2
,3 absorption 

edge on Si (111) 7x7 surface with electron energy loss spectro-
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scopy (EELS) and found a large excitonic effect for the Si 2p 

core level to empty surface state transitions. EELS was taken 

in the second derivative mode, and two peaks in the difference 

between the spectra with and without gallium overlayer were 

identified as surface transitions. From a careful comparison 

of the two peak energies with X-ray photoemission spectroscopy 

(XPS) data5 they concluded that the excitonic shifts for Si (2p) 

to empty surface state transitions are at least about 0.9 eV 

for the one peak and 2.1 eV for the other peak, in comparison 

v~ith about 0. 9 eV for the bulk L 2
,3 absorption edge. 

     In determining the atomic structure of reconstructed 

surface, one way is to calculate the surface electronic energy 

band by assuming a certain reconstruction geometry and compare 

it with experimental data (absorption, photoemission, electron 

energy loss, etc.). The observation of rather large excitonic 

shifts indicates the danger of interpreting experimental data 

in a simple one-electron scheme. Therefore detailed investi-

gations of the nature of surface excitons seem to be required 

before a sound comparison of band calculations with experiments 

can be made. 

     In order to qualitatively explain the observed large excitonic 

effects in surface core excitons .5 Altarelli et al. 31) performed 

a model calculation based on the Koster-Slater method, where 

two parameters were introduced to represent the core hole 

potential and the surface reconstruction, respectively, into a

- 18 -



tight-binding model. They found that, depending on the values 

of the parameters and on the positon of the core hole , in some 

situations a large enhancement of the binding energy near the 

surface results, and in other cases excitons are not allowed to 

be in the first few layers. Though their result is very , 

suggestive in elucidating the nature of the binding of an electron 

and a hole in the surface region, their model is too naYve to 

be applied to a real solid. In this connection, it may be 

pointed out that the most important, though most difficult, 

question to be answered urgently on semiconductor surface optical 

properties is how the bulk dielectric screening mechanism is 

modified near surface. Up to now, we have neither a first, 

principle theory such as developed by Sham and Rice 32) for bulk 

excitons, nor even a qualitative theory on this problem. 

2-4 GaAs 

     Recent development of synchrotron radiation sources has 

made photoemission spectroscopy one of the most useful techniques 

in the field of surface physics. In addition to measuring the 

conventional energy distribution curves (EDC), this source of 

variable frequency of light has made possible new modes of 

experiments such as constant initial energy spectroscopy (CIS) 

and constant final energy spectroscopy (CFS). So called partial 

yield spectroscopy is a kind of CFS that counts mainly secondary 

electrons as a function of photon energy by setting the kinetic

- 19 -
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energy window of the analyzer at relatively low energy. 

     Electrons that are excited deep in the bulk suffer repeated 

scatterings from the rest of the solid and, in effect, they cannot 

reach the surface. Only those electrons excited within the 

"escape depth ,33) from the surface are detectable . That is why 

ph6toemission spectroscopy is extremely suitable for the study 

of electronic surface properties. 

     By the use of these thechniques, numerous experiments have 

been made on GaAs, a material of recent industrial importance. 

In the light of these experiments, as well as several theoretical 

efforts,34-37) the overall features of the atomic geometry of 

GaAs (110) surface are now well-established: there is general 

agreement that it is lxl relaxed surface and that surface As 

atoms move outwards and surface Ga atoms move inwards, with about 

250 bond-angle rotation and a charge transfer from Ga to As 

surface atoms. 

     Using partial yield technics, Eastman and Freeouf38)detected, 

for the first time,, the existence of unoccupied surface states 

just below the bottom of the bulk conduction band on both Ge 

(111) and GaAs (110). Soon later, Lapeyre and Anderson 14) 

performed more extensive measurements on GaAs, using CIS 

techniques, and showed that the excitations observed by Eastman 

and Freeouf are not one-electron transitions from core levels to 

unoccupied surface states, but should be thought of as surface 

core excitons. Their CIS data are shown in Fig. 2-2, where
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Fig.2-2. Constant initial-energy spectra (CIS's) 

of GaAs(110) surface for four different geometries. 

The uppermost curve is for the case where the photon 

electric field vector E is nearly parallel to the 

Ga dangling bond, while the other three curves are 

for E perpendicular (or nearly so) to the Ga dangling 

bond (after Lapeyre and Anderson 14) ).
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the CIS's for four different angles of polarization of incident 

radiation are given. At relatively low photon energy, only a 

direct excitation of valence electrons to the conduction bands 

above the vacuum level is possible and the CIS's reflect the 

features of the conduction bands. When photon energy reaches 

or exceeds Ga 3d core level threshold, a new channel to excite 

valence electrons opens ; first a core electron is excited to 

form a surface exciton, and subsequently it decays via direct 

recombination or Auger process with the energy supply to excite 

valence electrons above the vacuum. level. The narrow pair of 

peaks near 20 eV in their CIS's is believed to be due to the 

enhancement caused by this second process. Many evidences have 

been reported showing that these structures are not due to simple 

one-electron trasitions but due to excitons, but here we mention 

only the following four points: 

(i) The exciton enhancement strongly depends on the polarization 

  of incident radiation ; it is dramatically larger for the case 

  where the Photon E (electric field)-vector has its largest 

  component parallel to the Ga dangling bond (the uppermost curve 

  in.Fig.2-2)than the other three geometries where the E-vector 

  is nearly perpendicular to the Ga dangling b6nd. 

(ii) The exciton enhancement appears as a doublet originated 

  from sPin-orbit splitting of Ga 3d level; the lower structure 

  corresponds to the d 5/2 orbital and the upper one to the d 3/2 

 .orbital. A remarkable feature is that the intensities of 

  the j=5/2 and 3/2 components are reversed from the 6:4 statis-
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  tical weight for the core states.' 

(iii) The doublet structures in the second curve of the CIS's 

  are minimums instead of peaks. 

(iv) The positions of the doublet also depends on the polari-

  zation. They shift as large as 0.5 ev. 

     The second point cited above can be explained by Onodera--

Toyozawa theory, 39) which shows that the oscillator strength of 

spin-orbit split excitons is strongly dependent on the electron--

hole exchange interaction. The third and the fourth points may 

be explained in terms of the Fano effect;40) the valence excitation 

continuum overlaps in energy with the surface excitons, and 

the interference effect among them can account for the appearance 

of such minimum structures as well as their shifts, although a 

question remains as to whether the Fano effect alone can explain 

such large shifts, twice as large a s the widths of the structures. 

On the other hand ., we have no theory to explain such a strong 

polarization dependence as mentioned in (i). In fact,, the Ga 

dangling bond has p Z_ like character and a simple calculation 

with use of Clebsch-Gordan coefficient yields that the oscillator 

strength ratio of the transition from d to p z orbital when the 

E-vector is parallel and perpendicular to the p z orbital is 4:3. 

Thus we can expect these surface exciton transitions to be 

almost isotropic, which is in sharp contradiction to the 

observation. 

     In contrast to the case of Ga 3d excitation, Zurcher et al. 41) 

obtained no evidence that the transition from As 3d core to
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empty surface states is excitonic in nature in the same manner 

of experiments. This is to be expected; it is well established 

that the surface relaxation causes charge transfer from surface 

Ga to As atoms, leaving Ga dangling bond states empty and those 

of As occupied 34-37 ~hus the only available final state in the 
transition is the Ga dangling bond state. Therefore the 

transition out of Ga 3d is intra-atomic in character, resulting 

in a strong binding of an electron and a hole, while the tran-

sition out of As 3d is inter-atomic ., resulting in a weak binding. 

In fact, this picture was recently verified quantitatively by 

Swarts et al.* )42) in their model cluster calculations and by 

Daw et al. 43) in their tight-binding calculations. Their 

results also suggest that the Frenkel model gives a good 

description for these surface excitons.

     Since dangling bond states are brought about by the 

presence of surface, surface excitons of the type presently 

considered have no bulk counterpart. In order to emDhasize 

this character ., Swartz et al. called them core surfastons. 

This nomenclature is, however ., not prevalent yet.
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§ 3 Model 

3-1 Hamiltonian 

     We consider a Bravais lattice of slab geometry composed of 

14 lattice planes (see Fig. 3-1). The lattice structure is 

assumed cubic. Following Heller and Marcus, 44) we arrange an 

identical atom on each lattice site,which has a s-like occupied 

orbital and a p-like unoccupied orbital in the ground state. 

We ignore electron spin and neglect the overlap of the orbitals 

on different lattice sites (extreme Frenkel limit). Thus we 

can use the classical oscillator model for excitons. Transfer 

of atomic excitation occurs only through the dipole-dipole 

interactions. We assume that the atoms on the first layer 

have an excitation energy different from that of the atoms on 

the remaining bulk layers by an amount 6. The origin of 6 

may be various, but we do not discuss about it here and simply 

treat it as a parameter. As a basis set, we take Frenkel 

excitons each of which is localized on one of the layers, say 

the Z-th layer, and propagates along the layer with a wave vector 

K One more suffix, v, is necessary to indicate its polari-

zation. Let us define a + _* (a as the creation                       ZV(K WK 
// 

(annihilation) operator of such a state. Since K // is a good 

quautum number, we proceed the calculation with a given in 

the following , and drop the index K // in these operators. 

Then the Hamiltonian of our model can be written as 
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            N I 

     H y a T + t 
           b a., a 1V a 1V                      V V 

           N t 

          + Y Y 
'P V V11 (k.,m) a kv a mp (3-1)                k,m=l V, 

where c b is the atomic excitation energy of the bulk atoms; 6, 

the surface potential; and V V-P (k,m), the dipole-dipole interaction 

between the v-polarized exciton localized on the k-th layer and the 

p-polarized one on the m-th layer. The express ion of V V~l (k,m) 

can be obtained by simple rearrangement of terms in the usual 5) 

dipole-dipole interactions of the Frenkel excitons in a layerwise 

form as 

      V vp (k,m) M V exp[i'K mi X 
                          S 131 

                  2 R 
               mjl 3('ki_~ mi )(Pti- mi         X 

jPki - P Mj15 M ]1 (3.2) 

where N s is the number of unit meshes in one layer (we assume 

that we have imposed periodic boundary conditions with respect 

to the directions parallel to the surface); 9 V (~ 
P ), the transition 

dipole moment associated with the v(p)-polarized single-atom 

excitation; I, the unit dyadic; and R Zi (R mi ), the lattice vector 

of the i(j)-th site on the k(m)-th layer. In the summation ., 

it is understood that when k=m, the term for i=j should be 

excluded. The difference ki- R mj may be rewritten as 

     Pki - Pmj = km + ~ // 1 (3-3) 
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where R km denotes the origin of the k-th layer relative to that 

P of the m-th layer, and R // is a two-dimensional lattice vector. 

Note that Rkm is not necessarily perpendicular to the layers. 

Then eq. (3.2) becomes 

       V VP (Z'm) = M V exp( -i K 

          R //12, 
          X 5 (3.4) 

where we have dropped the factor exp(-i~ km )-21. An exact 

treatment of the layerwise dipole sum of this kind was given by 

Mahan and Obermair 20) forthe special case of K // =0, and also by 

philpott, 45) who gave the f.ormula with inclusion of the retardation 

effects. Assuming that K // is small, we analyze the sum in 

eq. (3.4) and try to find a suitable form with some parameters, 

in the following subsections, so that our model is general and 

applicable to any surfaces of lattices (but cubic, of course). 

The cases of Z=m, and of khm will be examined separately in the 

next two subsections. 

3-2 intralayer Dipole-Dipole Interactions 

      First, we examine the case when Z=m. Equation (3.4) in this 

case simply reads 

                                  R 2 /I-3P // P 
      V (k,k) exp(-i~ (3-5)        V11 V P R 5 
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where the prime on the summation means to exclude the term P //~ 0. 

We replace the summation by the 2-D(two dimensional) integral 

outside the circle of some radius Ro, the value of which is to 

be determined later. We define the coordinate system such that 

the (x,y)-plane is in the surface layer with the x-axis parallel 

to K // and the positive direction of the z-axis points inward 

to the bulk (see Fig. 3-1). Then the summation in eq. (3-5) 

is replaced by the integral given, in a matrix form., by 

                                    -2X 2 +Y 2 -3XY 0 

  L exp( K R                                                            2_ 2 
  s ff dA 'xy X 2Y 0 (3.6)    ,I R5 

     R // >R 0 0 0 X 2 +Y 2 

Here Q s is the area of the unit mesh and (X,Y)=p This 

integral can be evaluated as a power series of K // R03 which will 

be made in Appendix A. Assuming that K // R 0 <<J ., we retain the 

terms up to linear in K and finally we obtain 

           7TIMI 2 K 0 
  V -VP (Pl'k) 03 -1/K // R03 0 (3-7) 

                            0, 0., 2/K // R 0- 2 

    In the case of3-D dipole sums., Heller and Marcus showed that 

the integral approximation gives a correct result when K2~0, 

which does not depend on the radius of the exclusion sphere as 

far as the condition KR 0 <<1 is fulfilled. In our 2-D case, 

however, the lowest order terms do depend on Rol and some means 

to determine the value of R is necessary. One possible way 0 

may be to require that the area of the exclusion circle be equal 
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I

2 t
o the area of the unit mesh; namely, wR 0 =~2 s The intralayer 

interaction, however, is not a quantity independent of the 

interlayer interactions, thus it is essential to make our choice 

of R 0 consistent with the approximations made for the interlayer 

interactions, which will be done later in subsection 3-3. 

      On the other hand, the next order terms are independent of 

R 0* We introduce the interlayer spacing d 11 and note the 

following two points; (i) 0 s d i is equal to the volume of the 

bulk unit cell Q., which is valid for arbitrary Bravais lattices, 

and (ii) the L-T splitting, A LTI of the bulk exciton is given 

by 4Trjmj 2 /E2. Then, we can express the terms next order in K 

in terms of the important physical quantity A LT; 

       2Tr1M1 2 = di A /2 > (3-8) 
                   LT 

s 

Now the general form of the intralayer interaction (3-7) may be 

written ., up to linear in K //, as 

                        +K d /23 01                     0 0, 

   V V
~l (k3k) = A LT 0, _~V 0" 3 (3-9) 

                     0. 0.~ 2~ 0-K // d 1 /2 

where ~ 0 =TrIMI 2 /Q s R 0 A LT is a dimensionless parameter. 

3-3 Interlayer Dipole-Dipole Interactions 

     Next we consider the case when kkm. We use the following 

2-D Fourier transform of the dipole transfer matrix which is 
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valid for zNO: 

     2 exp(-k,,Izl+ik r       r I-3rr 2 7r 

       r5 N s ~2 S k                   k 
// 

             k 2 k k +ik k                    x x y - x 

          X k k k 2 +ik k (3-10) 
               Y x y y 

               ±ik k ±ik//k .5 -K 2                // x Y 

where for + in the matrix we have the positive sign for z>O and 

the negative sign for z<O, and k x and k y are the x- and y-

component of the 2-D wave vector ~ //-I respectively. We could 

derive this formula most easily from the 2-D Fourier transform 

of 1/r: 

                      exp(-k r       1 2Tr //Izl+i 
        r N s Q s k 

             k // 

by operating the differential dyadic operator With the 

use of eq. (3-10) the sum over R // in eq. (3.4) is converted 

into the one over the 2-D reciDrocal lattice vectors G /P 

                    exp[i~ 

 VII s K 

2     (K // +G X) (K +G x )G y ±i(K +G X)IK //+G//I' 

                2 
/ 

  X G +iG K / +~ //1 (3-11) 

       (h.c.) 2 
                          -1 K //+~ //I
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where Z Pm is the z-component of ~ z
m.1 (G X~G y )=~ /P and (h.c.) 

means hermitian conjugate. In the above expression we have omitted 

the factor exp(iK* m )'_n. It-is convenient to discuss the 
   =0 term separately from the :~O ones. The 0 term gives 

                                      1 0 +i 

Vlong(, im) = A LT K // di exp(-K//Izz
ml) 0 0 0  VP 2 (3.12) 

                                            +i 0 _1 ~ 

where we have used eq. (3-8). We see this term depends 

exponentially on the distance of two layers. Since K // is 

small compared with the reciprocal of the interlayer spacing, 

it has a very long interaction range, although each term, in 

itself, is small, because the small quantity K // d I is also 

contained in the preifactor. 

     As to the kO terms in eq. (3-11), we may neglect the small 

K // effect. In addition ., we assume that the symmetry of the 

2-D lattice is high enough so that the cancellation of terms for 

a pair of G // occurs. Then we can write the 40 terms 

as 

   V short(k .,M) 27TIMI 2 expliG //' R zm- G//Iztmll X      V 11 Q 
s G                             G 

//_rO 

          G 2 0 0 x 

      X 0 G 2 0 (3-13) 
y 

             0 0 -G 2 

Due to the exponential factor exp(-G//IZ, , 1) in the above 
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expression, this interaction acts between relatively near layers. 

We may retain only the nearest layer terms and neglect all the 

other interlayer interactions. One more assumption concerning 

the 2-D lattice structure that the x-direction be equivalent 

to the y-direction, as well as the requirement that the trace 

of the dipole transfer matrix should vanish yields the general 

form of the nearest layer interaction as 

V short (Z k±l) = A (3.14)  V
P LT 1 

                                2~ 1 

in terms of a dimensionless parameter ~ 1* 

      In passing we note that when K // exactly vanishes, our model 

dipole-dipole interaction contains only two parameters ~ 0 and 

~l which describe the intralayer and the nearest layer inter-

actions, respectively. It might also be possible to include 

in our model the next nearest layer interaction, the third 

nearest layer one, and so on, with corresponding parameters ~ 23 

 3 '*** This kind of layerwise dipole-dipole interactions for 

the case of K //= 0 was treated by Mahan and Obermair, 20) who 

calculated the ~Isup to ~ 5 on the (100) plane of cubic lattices. 

In order to show to what extent the nearest layer approximation 

is valid, we reproduce a part of their results in Table 3-1. 

We see ~ k falls off very rapidly as k increases, and ~ 2 Is are ., 

in fact, negligible on those surfaces. They also pointed out 

that the whole Is are not independent quantities but they 
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should satisfy 

                                         CO 

                  + 2 0 

where 1/3 comes from the Lorentz-Lorenz local-field factor. 

In our model, since we have retained only ~ 0 and ~1.1, it seems 

reasonable to require 

             0 + 2~ 1 = 1/3 (3-15) 

It will be shown in the next subsection that this is indeed a 

reasonable requirement. 

Table 3-1: The layer wise dipole-dipole coupling constant 

             for the (100) plane of simple cubic (sc), body-centered 

             cubic (bcc), and face-centered cubic (fcc) lattices 

             (after . Mahan and Obermair 20) )

sc bcc fcc

0. 

-0 

-0

35943 

.01303 

.0000022o8

0.17972 

0.08309 

-0 .0006515

0. 

0. 

-0

25416 

04021 

.oooo6368

     vM in their 

3-4 Eigenmodes of 

     From eqs. (3. 

polarized excitons

 paper corresponds to our -~ V 

Periodic Bulk Lattice 

9), (3.12), and (3.14), we see 

 do not couple with the x- and 
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ones, so we can treat them separately. For simplicity of 

notation, hereafter we use the parameters - 0 . ri., X, and K 

rather than ~0.1 ~11 A LT , and K.., that are defined, respectively 

by 

             r 0 0 A LT 

            ri 2~ 1 A LT 

               A LT /6 (3.16) 

and 

              K K / I/ d 
Then the Hamiltonian for the y-polarized excitons is 

                       N r N-1                                     I T 1 
        Hy (E: -r a a - - (a' a + a' a             b 0 ty Ry 2 X ky k+ly k+ly ky 

                                                Z=l 

            + 6 a T a (3-17)                 l
y ly 

If we introduce the vector notations such that 

               a Zx 4. 
       a. and a' = [a' . a'            a ZZI -1 P, kx PIZ 

then the Hamiltonian for the x-z polarized excitons can be 

written in the matrix form as 

            N t F- b-r 0+3XK, 0 
    H

x-z a. a Y,              = 1 0.9 C b +2r 0- 3XKI 
           N-1 ~,t. -rlZ2, 0            + J

=. a k a P'+l +(h.c.)             k 1 03 r 11 
                N - -t . 1 i          + I 3XK e a k a m + 

                Z,M=l 
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                  N Kit -ml 1 - i -).. _~.J-. _~.          + I 3XK e- a a + 6a a (3 .18)           k1m=1 Z -i -11, m 1 
           (Z<m) 

In eq. (3-18) the first term contains the intralayer interactions, 

the second one represents the interlayer short-range interactions, 

the third and the fourth ones are the interlayer long-range 

interactions, and the last one is the surface potential term. 

We see, at once, that when K is exactly zero, the x- and z--

polarized excitons decouple with each other and the Hamiltonian 

for the x-polarized ones becomes equivalent to H Y* In the 

following, we concentrate only on Hx_z and write it simply as 

H,1 with no suffices. The solutions of H y can be obtained from 

those of H in the special case of K=O. 

     The above Hamiltonian is for the slab geometry. The 

corresponding bulk Hamiltonian, H b3 may be found (i) by dropping 

the surface potential and. then (1i) by imposing the periodic 

boundary conditions on the N layers such that a 1 =a N+l* Thus 

we a-et       CD 

           N t E; b-r 0+3XK, 0 
     H b a. a.             = 1 0, E b +2r O_3XK1 

              N

=l -rl/2, 0 _+          + a k a Z+l +(h.c.) (3-19)                          03 1 
               N co - Klk-ml -t . _a~'

m         + I I 3?,K e a k 
              k=l m=--            . 

(PkM) 

where for in the matrix of the last term, we have the positive
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sign for k>m and the minus sign for k<m. As concerns the last 

term, an addittional remark may be worthwhile: We assume here, 

and in the following also, that N is infinitely large so that, 

as far as K is finite, NK is also infinitely large. Namely 

if we want to take the limit K-0, the limit N-- should be taken 

before K-0. This is consistent with the idea of the optical 

selection rule, and enables the sum over m to extend from --

to - for a fixed value of k, or vice versa. On the other hand, 

it is also possible to consider the case when K is exactly zero. 

In this case., the long-rangeterm should be simply removed from 

the Hamiltonian, because the prefactor K in that term vanishes. 

     We now proceed to calculate the bulk normal modes. We 

start with the Heisenberg equations of motion for a.; 

 E: b-r 0+3XK-F- .l 0 -).- 
+ -rl/2, 0  03 E b +2r 0-3XK-61 a k .0, r 11( a -i+a k+l) 

             M)f - KIP,-Ml -
a 0    + 3XK X e (3.20) 

             M=-Co 

where c is the energy eigenvalue, and the prime on the 

sum is meant to exclude the term m=k. We assume the form 

            1 ikk          a
. = - u e (3.21)          Iff 

where k=n7/N (n= b, ±1 ±2, - (N-1) 3, N) is the z- component of the 

wave vector reduced by the reciprocal lattice spacing 1/d i* 

The combination of K and k defines the three dimensional wave 

vector of the bulk exciton, ~=(K,O,k). Substituting eq. (3.21)
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to eq. (3.20), and performing the summation, we obtain 

   C b - r 0 -r 1 Cos k + 3XK 0 

   0, E b + 2r 0 +2r 1 cos k -3XK -E:l 
    + 3XK (a(k)V 1 + a(-k)V 2 ) u = 0 (3.22) 

where 

       a(k) 
               e K+ik_ 1 (3.23) 

is a function of k containing K as a parameter, and 

    V 1 V2 (3.24) 

     First we consider the case where K vanishes exactly. The 

x-polarized exciton is now transverse in character, while the 

z-polarized one is longitudinal. The energies of them are 

easily obtained from eq. (3.22); 

           F- t (k) = E: b - r 0 - r 1 cos k 

                                                              (3.25-a) 
         6 k (k) = E: b + 2r 0 +2r 1 cos k 

with the corresponding eigenvectors, 

       ->- 11 uk(k) 01          u t (k) = (3.25-b) 

Now we impose the requirement that the difference E k (0)-E: t (0) 

should be equal to the L-T splitting 6X, which yields
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             r 0 + rl = 2X . (3.26) 

Noting the relations (3-16), we see the above 'sum-rule' exactly 

coincides with eq. (3-15). Therefore,, if we fix the value of 

~ ., which is itself a measure for the significance of the long--

range interaction, our model dipole-dipole interactions contain 

only one independent parameter which can be a measure for the 

relative importance of the long-range interaction versus the 

short-range one. 

     Now we go back to the case where K is finite (but vanishingly 

small, of course). The function a(k) plays a significant role 

here, and it is useful to have its 'asymptotic expansion' in 

terms of K; 

                 1 k k _ 1       a(k) = 
K+ik fcot _f _f + O(K) (3.27) 

where OCK) means the collection of terms that are of the same 

order of or higher order than K. Derivation of this formula will 

be given in Appendix B. Using eq. (3.27) in eq. (3.22), we 

ubLain 

 f[ 6 b - r 0 - r 1 cosk 0 
   (0, E: b + 2r 0 +2r 1 cosk -F-

         6XK k k K k ~ ->.       + - U = 0 3.28)         K 2 +k 2 2 'ot-f k _Kj 
Note that the K-linear terms in the intralayer interactions are
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exactly cancelled by those which arise from the long-range 

interlayer interactions. It is convenient to introduce a wave 

number k 0 such that (i) k 0 is small en.--,ugh that it satisfies 

k 2<<l, but (ii) k is large enough that the condition K/k <<l  0 0 
0 

is fulfilled. If K is small enough , such k 0 will surely exist. 

The region of k is divided into two, according to whether Jkl 

is smaller or larger than k 0' We solve the eigenvalue eq .(3.28) 

in these two regions of k ., seperately.' First we consider the 

case when jkj:~k 0* We note that in this region 

  k cot k + ru i   -f -f 1 - 
12 (3.29) 

Thus eq. (3.28) is rewritten approximately as 

      C b - r 0 - r 1- E: 0 

     03 E: b + 2r 0 + 2r 1 61 
                   cos O(k) sin e(k) 

      + 6X cose(k) 
sin 6(k) -cos e(k u 0 3 (3-30) 

where e(k) is a function of k cotaining K as a parameter that 

measures the angle between the wave vector ~ and the x-axis 

(see Fig. 3-2). In the following, we shall often omit the 

argument k of e(k), where there is no fear of confusion . With 

the aid of the sum rule (3.26), this equation can be solved 

easily and we obtain two modes; for the first one , the energy 

and the eigenvector are given by 
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          E t (k) E: b - 2X 

                     sin 8 

               t -Cos 

and for the second one, 

           6 k (k) = E b + 4x 

                         Cos e         lu P. (k) = sin el 
Clearly, these two modes correspond 

L-exciton, respectively. 

     In the region where Jkj,>,kO, the 

term) in the curly bracket of eq. (3 

to the condition (ii) for k031 and we 

             E t (k) = F- b - r 0 r 1 Cos 

                k/jkl 
      lu t (k) = 

                                                                                             _

0 

and

Summarizing the res 

unified expressions 

arbitrary values of 

         C t (k) 

     IU t (k)

E: (k) 

u (k)

(3. 31)

                 (3-32) 

to the T-exciton and the 

 second term (long-range 

.28) can be neglected due 

 get simply 

k 

                 (3-33)

   E b
. + 2r 0 + 2r 1 cos k 

 ~ 0    k1jkj] 
  ults (3-31) to (3-34), 

    of the bulk eigenmodes 

   k; 

   b - r 0 _r 1 cos k 

   sin e   -Cos el 3

we arrive at 

 which work

(3-34) 

the 

for

(3-35)
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in Fig. 

    At 
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to solve 
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hinders 

valid. 

want to 

section. 
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terms ap 

of K. 

results 

(3.36) a 

are of o 

energy c 

exists. 

linear i 

replaced

     C P, (k) E: b + 2r 0 +2r 1 cos k 

              Cos e (3-36) 

        sin el -
    gy band structures of these modes are schematically shown 

    3-3. 

    this point, we mention two remarks on the results (3.35) 

    6). One is on the validity of the approximations made 

     the eigenvalue problem. In the above discussions, 

    what artificial parameter k 0 has been introduced., which 

    us from seeing to what order in K the above results are 

     To check this is really important especially when we 

    try a K //- expansion, which we shall explain in the next 

       Instead of the above treatment, it is also possible 

    a somewhat more mathematical argument, in which all the 

    pearing in the Hamiltonian are expanded in the series 

    This will be made in Appendix C. According to the 

    there, the expressions of energies in eqs. (3-35) and 

    re correct up to the linear order in K, i.e., corrections 

2 
    rder K This is to be expected; the bulk exciton 

    annot have K-linear terms, as far as inversion symmetry 

      On the other hand, the eigenvectors have corrections 

    n K. In fact, cos e in u t (k) and u k (k) should be 

    by 

           0 1 k 'ot k X Cos e (3 -37) 
      r 0 + r 1 cos k 2 2 
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in order for u t W and u k (k) to be correct up to linear order 

in K. The Taylor expansion of the prefactor in the expression 

(3.37) yields 

       r 0 + r 1 k k r 1 
- 1 2 

     r 0 +r 1 cos k 2 cot ff = 1 + ( '4T 1-2) k + (3-38) 

Therefore this correction becomes important only for a relatively 

larger value of k such that the k 2_term cannot be neglected. This 

means that the bulk mode deviates from the pure T- or L-mode 

and becomes rather the L-T mixed mode when k increases, which 

is also a well-known phenomenon?) In this region of k, however, 

the value of cos e itself is small (of order K), so the total 

correction that arises due to the replacement of (3-37) is also 

small. As it could be checked at each step of the calculations, 

this correction of order K does not matter in the following 

arguments at all. Therefore, hereafter we employ the simple 

expressions of eqs. (3-35) and (3-36) for the eigenvectors 

rather than the complicated expression (3-37). 

     The second remark is on the conspicuous nature of the 

long-range interactions. Noting that the energy eigenvalues 

in eqs. (3-35) and (3-36) coincide with those in eq. (3.25-a), 

we see that the long-range interactions apparently play no role 

in determining the energies (at least in the lowest order in K). 

As to the eigenvectors, the situation is quite different. 

This is most clearly understood by taking the k-0 limit. In 
             _" (

k) in eq. this limit,, u t (3-35) becomes (0,-l), which coincides 
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with u k (k) in eq. -b) (except for an unrelevant sign), and                   (3.25 

U,(k) in eq. (3.36) with u t (k) in eq. (3.25-b). Thus the 

existence of the long-range interactions, or the finiteness of 

K, drastically alters the nature of the mode belonging to a 

particular energy band especially where k is small. This 

demonstrates clearly the 'non-analyticity' of our problem that 

is brought about by the long-range interactions.
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§4 Method of Analysis 

     We calculate the resolvent Green's functon (in the following, 

the resolvent Green's function is simply called as the resolvent) 

from which the density of states and the optical spectra are most 

easily obtained. We are interested in the surface induced 

changes of the above quantities. These include (i) the 

appearance of surface lacalized modes, (ii) the rearrangement 

of the density of states and the oscillator strengths among 

the bulk modes,. (iii) the exchange of the oscillator strengths 

between the surface localized modes and the bulk modes, and so 

on. The advantage of using the resolvent over directly handling 

the Schr6dinger equation is that it elucidates the above points 

in the easiest possible manner. In this section, we explain 

the methods to solve Dyson's equation and derive a set of basic 

equations that determines the resolvent. The actual solution 

will be given in the subsequent section. 

4-1 K-Reprbsentation of the Hamiltonian 

     The eigenmodes of the periodic bulk crystal obtained in 

the last section serve as a complete basis set to expand the 

Ispinors' on the N layers in the slab crystal . Thus the 

operator a can be expanded as 

                       i-k Y,     a
. e u V (k) b V (k) (4.1)             INT k 
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 where v stands for t or Z, and the expansion coefficients b V (k)'s 

 have the meaning of the annihilation operators of the bulk 

 normal modes. It is more-convenient to use matrix notations 

 and we rewrite eq. (4.1) as 

           1 X e ikk U(k) ~ (4 .2)       a. = - k 
                 VN__ k 

 where the 2x2 matrix U(k) and the vector operator b k are defined, 

 respectively, by 

                  sin8, cose       U(k) -cose'. sinOl (4-3) 
 and 

       4- b t (k) 
        k = (4.4)           b k (k)l 

 Strictly speaking, a Is in the original slab model are defined 

 only for the layers from Z=l to Z=N, but we may extend this 

 definition periodically to virtual layeres of k<O and ZLN+l 

 according to eq. (4.2). This allows us to express the 

Hamiltonian for the slab geometry (eq. (3.18)) as the sum of 

 the Hmiltonian for the bulk crystal with.the periodic boundary 

 condition (eq. (3.19)) and the remaining terms; 

       H = H b + V sr + V ir + V sp (4-5) 

 where 

               _r /2 , 0 _r /2, 0 
IV = -->.t 1 _* - t 1  sr a 0 a 1 a N I a N+1 (4.6)       0 ril 0 r
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         N 0 00 

V 3XK e a z (I V 1 a m + J
= V 2 a m (4-7)                                      m=_CO m N+l 

and 

           V sp = 6 a 1 . a (4.8) 

The surface perturbations V and V can be viewed as originated                               sr ir 

from cutting the long-range interactions and the short-range 

ones, respectively, at the two surfaces of the slab, while V sp 

is the surface potential, of course. With the use of eq. (4.2), 

we can express each of the four terms in eq. (4-5) in terms of 

the operators of the extended basis set, tt and A straight-
                                        k k' 

forward calculation yields 

H tt t (4.9) 
  b k k 0

3 k 

r 

V .1 (e-ik + eik' X  sr N 
k kI 2 (4 .10) 

         sine sine' -2cose cosel., sinO-cosOl +2cos6 sine'   X b k cosO sinO-1 +2sine cosel.5 cosO cosOI -2sine sinOll k13 
V -KN) -*t K+ik' ie ie,             3XK (1-e b e a(k) a(kl) e e V       N 

k kI k 

             + K-ik a(-k) a(-kl) e- ie e- ie, V b                                    2~ kT (4.11) 
and 

V 1 e- ik ik'  sp N 
k kI
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  -,.tfsine sine' +cose cose', sine cose, -cose sine' x bk[cose sine' -sine cose, cose cosel +sine sinell ~kll (4.12) 
where 61 stands for e(kl), and the definitions of a(k), Vl, and 

V2.,a-re found in eqs. (3.23) and (3.24). In t-he..expression (4.11), 

the terms containing the factor e_KN clearly represents the 

interference effect between the surface on one side of the slab 

and the surface on the opposite side, via the long-range 

interaction. Since we have assumed that KN is infinitely large, 

these terms can be neglected. A remarkable feature common to 

the expressions (4.10), (4.11), and (4.12) is that all the 

elementary terms contained in the summations are of the form 

fw>~ '(kl), where f(k) (g(kl)) is a function only of k (kl); 9 

namely, they have a separable form. For a later use, it is 

advantageous to stress this point, and we rewrite Vsr and Vsp as 

                ik ik' V 1 (e- +e b (sine sine' T + sine cosel T 
 sr N k kf2 k ss sc 

        + cose sine' Tcs + cose cosel Tcc) (4.10), 

       1 X _ik ik' -*t V
S p N 1 6 e e bk (sine sine' Sss + sine cosOl Ssc 

       k k' 

        + cose sine' Scs + cose cose, SCC) ~k" (4.12)1 

where 

     Tss Tsc 11           0.7 -21 23 0
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    T 03 21 T,,, = -23 01 (4-13)          cs               1 0 0
, 1 

       S ss 1.1 0 S sc = 03 11 
                0, 1 -1 0 

           0~1 -1 1, 01 (4.14) 
       S S = I       cs 

0 cc [ 0, 1 

     In order to simplify the notations, we proceed to rewrite 

the surface perturbations one step further.* We introduce a 

6x6 matrix EMI each element of which is, again, a 2x2 matrix, 

and a 6xi column vector Ef(k)] whose elements-are functions of 

k. They are defined by 

       0, 3XKV, 
0 0 
            3XKV 10 __O             2.

- - - - - - - - - - - - - - - - - -

 IM] 0 0' 1 ss /2 0, 1 sc /2 (4 -15) 
                  r T /2 6S r T /2 6S                        1 ss ss 1 sc se 

              0 0., r 1 Tcs/2 0, r 1 T cc /2 
                    r 1 T CS /23 6S CS ir 1 T cc /2 .1 6S cc 

  and 

                ie- K+ik iO ik ik t--f(1<)1=tEa-(-k)d- a(k)e.. e sine, e sine, cosO, e cosel. 

                                                      (4.16) 

where means transposition of the vector. Now the surface 

perturbations can be written as 
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    V + V + V b t V (4                        I = 1 1 1 - 3 .17)       tr sr sp N k k1 k -kk1 ky 

and,, with the aid of the matrix EM] and the vector Ef(k)], V                                                          kkl 

in this expression are given compactly as 

         V kkl = t Ef * (k)][M][f(kl)] (4.18) 

Note that the each element of EM] is a constant with respect 

to the variables k and k1,1 and that since it is a 2x2 matrix, 

Vkk1 is also a 2x2 matrix. 

4-2 Dyson's Equation 

     In the last subsection, we have expressed the Hamiltonian 

in the k-representation. Now we define the resolvent for the 

Hamiltonian also in the k-representation as follows, 

               I G tt 
G tz 1(z), 

     G kkl(z) kk kk (4
.19) 
               G kt G kk                    kk kkt(z) , -1 

        VVI 
where G kk I (Z) (v,vl=t or k) in the right hand side is given by 

     G VVI (z) = <01 0 1 bV:t 10> (4.20) 
        kkl k z-H k 

In (4.20) 10> represents the ground state of the crystal and 

Z=E-iO Hereafter, we shall often omit the argument z of 

G kkl(z). If we take H b as the unperturbed Hamiltonian, Dyson's 

equation for the resolvent can be written as
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   G -': G (k) 6 + 1 G (k) V tj G (4.21)     kk' 0 kk' N 
kly 0 kk klIk' 

The unperturbed resolvent G 0 (k) is defined similarly as in eqs. 

(4.19) and (4.20), but with H b instead of H. Since the operators 
4- -*t b 

k and b k diagonalize the unperturbed-. Hamiltonian H b-1 the 

Kronecker 6 has been extracted from its difinition. Clearly, 

the explicit expression of G 0 (k) is given by 

                        Z-E: (k)-I 
         G 0 (k) t 1 (4.22) 

                              0, Z-C 
Y, (k-) - .1 

where the energy of the bulk T(L)-mode exciton E t (k) (c P. (k)) 

is given in eq. (3-35) (eq. (3-36)). 

     The importance of the k-representation lies in the fact 

that in this representation, the kernel V kkI of the integral 

eq. (4.21) is of the separable form (see eq. (4.18)). This 

enables us to solve this equation with no difficulties in 

principle. We proceed as follows: First let AG kkI denote the 

second term in eq. (4.21). From eqs. (4.18) and (4.16), we 

see that the form of the k-dependence of the terms in AG kkI is 

expected to b e one of the six functions Ja(k)e ie , a(-k)e K-ik e -i6 

        ik 
sine, cose, e- ik cosel multiplied by G (k). Also, 0 

the kl-dependence of them is exhausted by {a(-kl)e- ie, 

a(kl)e K+ik e iel , sine', e ik' sine', cosOl, e ik' cosell multiplied 

by G 0 (M), which can be easily checked by performing the Born 

expansion of eq. (4.21) up to the first few orders. Accordingly, 

AG kkI can be expanded as a sum of the bilinear terms of the 
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above two groups of functions. Since we have six functions 

of k and also six functions of k1, there arise thirty-six terms 

in the expansion of AG kkl* If we show a first few terms of 

such an expansion, we have 

 AG !'- G 0 (k) X ot(k)e ie a(-kl)e- iel A + a(k)e K+ik e iO a(-kl)e-ie, A    kk' N 2 

        + a(k)e ie a(-kl)e K-ik' e- ie, A 3 

       + a(k)e K+ik e ie a(-kl)e K-ik' e-ie, A 4 + a(k)e ie sin61B + 

             x G 0 (k') (4 .23) 

Here the expansion coefficients A 1 etc. are 2x2 matrices, 

each element of which is a function of z, although we have not 

iridicatedL-it explicitly, and is costant with respect to both 

k and k'. Thirty-six such matrices are necessary in the 

complete expression of AG kkl* If we use the column vector Ef(k)] 

defined in eq.(4.16). this expansion of G of finite number                                       kk' 

of terms can be written in a more compact form-, by adding the 

unperturbed term to this, the total resolvent becomes 

G G (k) 6 + G 0 (k) t Ef*(k)]EN]Ef(kl)l G (kl) (4.24)   kk' 0 kk' N 0 

Here the matrix ENI is defined as
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            A 1 A 3 B, B 3 Cl C3 

             A 2 A 4 B 2 B 4 C2 C4 

     ENI (4.25)              D
2 D 4 E2 E4 F 2 F 4 

                          T ----
             P 1 P 3 Ql Q3 11 R 3 

             P P R R 5             2 4 Q2 Q4 2 4 

and the expansion coefficients A 1 bR 4 have been introduced. 

Note that [N] is a 6x6 matrix each element of which is a 2x2 

matrix, as is similar to the matrix [M] defined in eq. (4.15). 

Substituting eqs. (4.18) and (4.24)'to the right hand side of 

Dyson's eq. (4.21), we obtain 

  G kkI ~-- G 0 (k) 6 kkt + N t Ef*(k)]EM]Ef(kl)l G 0 (kt) 

       G 0 (k) t 
      + N Ef (k)1EMIEIIEN1Ef(kt)j G 0 (kI) (4.26) 

where [I] is also a 6x6 matrix5 with each element being a 2x2 

matrix, and defined as 

     EII = 1 1 G (k) Ef(k)] t Ef*(k)] (4.27)            N k 0 

We compare eq. (4.26) with eq (4.24). We notice that the six 

t f
unctions of k in Ef (k)] are linearly independent, and that 

the same is, of course, true for those in Ef(kl)], so that the 

coefficient of the each bilinear function in eq. (4.26) should 

coincide with that in eq. (4.24). This consideration yields 

     [N] = Eml + Em]Ei]EN] (4.28) 
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This equation can be viewed as Dyson's equation in If(k)-

representation', where f(k) means the set of functions contained 

in the vector Ef(k)]. 

4-3 K //-Expansion 

      We have come-to the..coupled.linear equations (4.28.), 

and we are ready to solve the integral equation (4. 21). 

In other words,-if.we obtain the solution EN] from eq. (4.28), 

then by substituting it I in eq. (4.24) we can obtain the resolvent. 

There are,, however, seventy-eight unknowns :.in:,EN] and it is 

a rather complicated task to find out its exact solution.' 

Instead, we seek for an approximate solution, which will be 

sufficient for our purpose, in the following. 

     We have a small parameter K (K is equal to K // d as defined 

before) in our theory,.which suggests the perturbation theoretical 

approach to our problem. The situation is ., however, a bit 

complicated. Behavior of the bulk eigenmodes discussed in 

§3-4 irnplies-'that the solution valid up to first order in K may 

not be continued smoothly from the zeroth order solution. it 

also tells us that the finiteness of K is important especically 

when k is small. Therefore, we have to be careful in the

    Since EN] is- a 12xl2 matrix, there are 144 unknowns in it. 

t The reciprocity of the resolvent (G kkl(z)"z 'kfk(z reduces 

this number to 78. 
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expansion with respect to K. For such a K xpansion we have the 

first requirement to retain the quantity which measures the 

relative magnitude of k (or kl) and K. This quantity is , of 

cuorse, e. The angle e is contained in the six elements in 

Ef(k)]. The first two elements in Ef(k)] have a factor a(k)e ie 

(or its complex conjugate) in common. Using eq. (3.27), this 

can be evaluated as 

  a(k) e ie = 1 cose ~~ cotk, + O(K) (4 .29) 
                         .2 2 2 

Therefore ., except for the trigonometric functions cose and 

sinO , the first two elements in Ef(k)] are of different order 

in K from the remaining four elements; the formers are of order 
 -1 0 

K and the latters K Since the resolvent is expanded in 

bilinear terms of [f (k)] and Ef(kl)], the coefficients of the 

bilinear terms composed of the first two elements of Ef (k)] 

and Ef(kl)l should be evaluated at least up to the order of K 2 

0 those composed of the last four terms up to K 
, and those of 

the cross terms up to K This is the second requirement. 

     The small parameter K appears also in the matrix [I]. 

There are twenty-one inde pendent integrals in EII. Most of 

which cannot be integrated analytically, but we may evaluate 

them in the expanded series of K and retain only the first few 

terms. The second requirement determines up to what order in 

K each intergral should be evaluated. 

     We should keep the above two requirements in mind, but
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otherwise we can go parallel to the conventional perturbation 

expansion. The actual evaluation of the integrals to the 

required order will be given in Appendix D. According to the 

results there, all the intergrals in Eil can be related to the 

following 2x2 diagonal matrices; 

        1 1 X G (k) 
             N k 0 

        1 1 1 e ik G (k) (4-30) 
              k 0 

            1 Kja(k)j 2 G (k)             N k 0 

In order to simplify the notations, we introduce the following 

matrices; 

      {A(z)j = A1.11 A 31 (4-31(a)) 
                    A 2-1 A 4 -

             01 3XV1 
(4-31(b)) 
              3XV21 0 1 

       {T O> ss /2 (4-31(c)) 
                 r 1 T ss /23 6S ss 3' 

       {T 2 0, 1 sc /2 (4-31(d)) 
                r 1 T sc /23 6S sc 

      {T 3 03 r,TCS/21 (4-31(e)) 
                 r 1 T cs /25 6S cs
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                    0 .1 r T /2        f
T 4 1 cc (4-31(f)) 

                r 1 T cc /2 6S cc 

                          1 ., e K        f
E 1 K 2K (4-31(g)) 

                    e e 

       {E 21 (4-31(h)) 

       IE 3 1 (4-31(i)) 

                                              (4-31(i)) 

Curly brakets are put on these to emphasize that they are 

2x2 matrices with each element being a 2x2 matrix, so the scalars 

in {E 1 1, {E 2 1. and {E 3 1 should be regarded as proportional to 

the 2x2 unit marix. The unknown matrices fB(z)}, {C(z)}, 

etc. are similarly defined as {A(z)j in eq. (4.31(a)) (there 

are nine such matrices). Now the K //- expansion of eq. (4.28) 

yields the basic set of equations that determine the complete 

lowest order solution of eq. (4.28) with respect to K. With 

the aid of the notations introduced above, these equations are 

given as follows; 

{A(z)} = K{VI + IV}(T{E }{A(z)l + iKI {E }fD(z)l + KT{E }{P(z)})                      1 2 2 1 

                                                             :(4-32-1) 
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{B(z)} = {V} + {V}(TIE }{B(z)l + iKI {E I{E(z)j + KT{E }{Q(z)})                     1 2 2 2 

                                                            (4-32-2) 

{C(Z)J = IVI(TiE }fC(Z)} + LK-I fE )JF(z)} + KT{E I{R(z)})                           2 2 1 

                                                        (4-32-3) 

{D(z)} = {T }{II{D(z)j + (+T ME JI +{T ME }T){A(z)},           1 1 3 2 1 

                                                        (4-32-4) 

{E(z)l ={T +{T 1 MIME(z)l (4-32-5) 

{F(z)j = {T 2 1 + {T 1 1 {I I {F (z .).j (4-32-6) 

{P(Z)l = {T I{I}{D(z)l + (-ifT ME }I + fT ME }T)fA(z)j 
         3 2 3 3 4 

                                                          (4-32-7) 

{Q(Z)} = {T 3 1 + {T 3 }{II{E(z)l (4-32-8) 

and 

{R(z)l = {T 4 1 + {T 3 IfII{F(z)l (4-32-9) 

According to the second requirement in the K //-expansion , fA(z)l 

should be calculated up to the order of K 2 , {B(z)J , JC(z)}, 

and ID(z)} up to K 1 , and {E(z)j, {F(z)l, {P(z)j, {Q(z)) , IR(z)} 
0 up to K These points will not be repeated when we actually 

solve the equations. 

     We now prove some general relations among these .unknown 

matrices ., which will be useful in solving the above coupled 

linear equations. We define a 2x2 matrix U such that 

                                      0 .1 -1 
              U = (4-33) 

                       1, 0 

This is a unitary matrix which represents a 900-rotation in 

the (x,z)-plane. From the definitions (4 .13) and (4.14), we 
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see, at once, that 

        T cs = U Tss, and Scs = U s ss (4-34) 

Operating U to the whole equation of (4-32-5) on the left hand 

side, and comparing it with eq. (4-32-8), we obtain, with the 

help of eq. (4-34), 

            Q(z) U E(z) (4-35) 

In a similar way, we can prove thefollowing relations, 

  JF(z)j = IE(z)l t U, IR(z)) = U IE(z)l t U 

  JP(z)) = U{D(z)), {C(z)j = {B(z)j tU (4-36) 

Othe.r relations come from the reciprocity of the resolvent: 

        G kkl (z) = Gt (z (4-37)                         k1k 

which can be shown from the definitions of G kkl (z). With the 

help of eqs. (4-37) and (4.24), we obtain 

 {A(z)l = fA(z*)l t {E(z)l = [E(z*)l t {R(z)} = {R(z*)l t                                                                  
.(4 -38) 

               t t  {B(z)l = {D(z )I {C(z)l = {P(z {F(z)j = {Q(z )I 

It can be easily checked that the solution of the basic 

equations (4-32-1),u(4-32-9), which is the lowest order approxi-

mation with respect to K of the original Dyson's equation (4.28), 

actually satisfies eq. (4.38). These general relations signifi-

cantly simplify the calculations. In addition, calculations 

of the physical quantities such as the density of states and the 
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absorption spectra do not 

we shall see in the next

 require the 

sections.

complete solution ., which

.V,
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§5 Density of States and Absorption Spectrum 

5-1 Evaluation of the Density of States 

     As we have seen in §3, in the crystal with the periodic 

boundary condition ., the energy dispersions of the eigenmodes 

in our model Hamiltonian are described by the two branches of 

band of cosine type k-dependence. The density of states (DOS) 

of such a system is well-known, and it is needless to discuss. 

Our concern here is in the surface-induced change of .the DOS, 

which we call D(E) in the following. This is conveniently 

obtained from the second term of Dyson's equation (4.21). The 

connection between the DOS and the resolvent is given by the 

usual formula; 

     D(F-) 1 Im (tr I A G (5-1)               7r k kk 

where tr means the trace of the 2x2 matrix. Note that this is 

the DOS with a fixed K //* With the help of eqs. (4.24) and 

(4.27). this equation can be rewritten successively as 

  D(E:) 1 Im {tr 1 (G (k)) 2 t Ef (k)JEN1Ef(k)jI            7T N 
k 0 

                 1 3G 0 (k) t            I m itr N a
e Ef (k)1EN1Ef(k)1j (5.2) 

            lim Im Itr Tr( EI(z')])[N(z)]                T 
6 E: a F_ 

where the cyclic property of the trace has been used in the
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first line. In the last line, Tr means the trace of the 6x6 

matrix, and the energy dependence of the matrices [I] and [N] 

has been made explicit, where z' stands for 61-iO 

We now make the lowest order approximation in the K //-expansion. 

Order estimate of the elements of ENI with respect to K can be 

easily made with the aid of the set of the basic equations (4-32). 

That of [I] can be obtained from the results of Appendix D. 

As a result, we obtain the lowest order approximation to D(c) 

as 

D(e) lim Im tr {T(zl) A(z)/K 
                    E: '-'6 

                                                     (5-3) 

      + I(zl)(E 1 (z)+E 4 (z)) + J(zl)(E 2 (z)+E 3 (z))} 

where 

4 
          A(z) I A.(z) (5.4) 
                     j=l I 

Although there are K-linear terms and K-quadratic ones in A(z), 

as is seen from eq. (4-32-1). we-have understood that the lowest 

order (i.e. K-linear) terms are suffi.cient in the above formula. 

Similarly, the lowest order (constant with respect to K) terms of 

T(z') are sufficient. In I(zl), J(zl), and E i (z)'s, we have 

only terms constant in K. Consequently, the change of the 

DOS obtained in eq. (5-3) does not contain K. 

     We have found that only E i (z)'s and the lowest order A(z) 

are enough to evaluate D(e) in eq. (5.3). In the rest of this
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subsection we briefly sketch how to obtain E i (z)'s and A(z)~. 

     First we calculate E i (z)1s. Substituting the definitions 

(4-31(c)) and (4-310)) into eq. (4-32-5), we get the following 

four equations; 

        E (Z) = rl T (J E (z) + I E (z)) (5-5)            1 2 
ss 1 2 

E (Z) ri T (1 + I E (z) + J E (Z)) + 6 S (J E (z)+I E (z)),  2 2 ss 1 2 
ss 1 2 

                                                       (5.6) 

r 

        E 3 (z) = 2 T ss (1 + J E 3 (z) + I E 4(z)) (5-7) 

E (z) r' T (I E (z) + J E (Z)) + 6S (1 +J E (z) +I E  4 2 ss 3 4 
ss 3 4(z)) 

                                                     (5.8) 

We notice that E 1 (z) and E 2 (z) are decoupled from E 3 (z) and 

E 4(z). In addition, since all the coefficient matrices (T
ss.1 

Sss, I, 'and J.) are diagonal, E (z), say, is obtained in the 

form; 

           E 1(Z) (5-9)                01) E W1. -
Instead of the energy parameters c and z, we prefer to use 

         X = E - E b + r 0 and Y = 6 - C b - 2ro (5-10) 

with the corresponding complex energies 

          v = x --io and W = Y - io (5-11)
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Here x (y) 

T(L)-band. 

the f inal

E1t (Z) =

E 2 t (Z) =

   t 1 1 1   E 
4 z v - x 0 

                     /-2f: 2 v Where the complex function v _r- is defined 

                    J/~x ~2 ~2 x<-Irl]                              r 1 

v v                                      r_ _x ... 
     c /7 -2 jxj<jr

lI         -:;r r x 

                1-22 2 

x 

                          x ~--r 1 ... x>lrll 

and 

       X0 + r 1 2 /46 

The expressions of Ei ZIS are obtained from the 

by simply replacing r 1 and v by 2r 1 and w, res 

that x 0 is also replaced by 

         YO = '6 + r 1 /6 . 

Now we go on to the calculation of A(z). We

is the energy measured from the center of the bulk 

   Calculations are straightforward and we only show 

results here; 

      / 2 

v 

  2 2  r v+26+ c v ~-r-
 1 1  -8-6* 

v - x 0 

                    2 c
,/r2 2 

v 

               r 26v-r ..4-26 v --r-    t 1 1 
-- 1  E 

3 (Z) U-6- v x (5.12) 

       2_ 2 2 2 2 c /-2Z 2 

v 

    46v r v-26r +(-46v+86 +r v ~-~r-

1

as

(5 - 13)

1 

(5.14)

    above formulae 

   pectively. Note.

def ine

  (5-15) 

{A(l) (Z)
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i.

such that it satisfies 

       {A (z)} ={V1 + {V1 {E {A '(z)} (5.16) 

If we multiply this equation by K, and subtract both sides of 

it from those of eq. (4.32-1), we obtain 

{A (2) (z)} = i{Vl({E A-I +_{E }T U)JD(z)l+{VIT{E }{A (2) (z)}, (5.17)               K 2 2 . 1 1 

where {A(2)(z)j is defined so that it satisfies 

      {A(z)l,= K {A(l) (z)} + K 2 {A (2) (z)j (5-18) 

In deriving eq. (5.17), we have used one of the relations in 

(4-36). Since {D(z)} is of order K, as can be seen from eq. 
         (2) 0 (4-32-4), {A (z)) is of order K The lowest order of 

 (1) 0 {A (Z)1 is also K but it has K-linear terms , too. For our 

purpose here, it is enough to evaluate {A (1)(z)l in its lowest 

order. For a moment, however, we examine eq. (5.16) up to 

the order of K for a later use. In terms of the elements of 

{A(l)(z)}, eq. (5.16) is rewritten as 

   A 1 (1)(z) = e K 3XV 1 T(z)(A 1 (1) (Z) + e K A 2 (1) (z)) (5-19) 

   A 2 (1) (z) = 3~V2 + 3XV2 T(z)(A 1 (1) (z) + e K A 2 (1) (z)) (5.20) 

   A 3 (1) (z) = 3XV 1 + e K 3XV1 T(z)(A 3 (1)(z) + e K A 4 (1) (z)) (5.21) 

   A 4 (1) (z) = 3XV2 T(z)(A 3 (1)(z) + e K A 4 (1) (z)) . (5.22) 

We notice that A 1 (1) (z) and A 2 (1)(z) are decoupled from A8 (1) (Z) 
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and A 4 (1)(z). Multiplying the both sides of eq. (5.20) by e K 31 

and subtracting it from eq. (5.19), we get                                                                  C) 

  (1) K (1) K K,- (1) K (1) A W + e A 
2 W = e 3XV2 +e bV"'I-I(z) (A W + e A 2 (z)) 

                                                     (5.23) 

where 

                                        13 0          V (Vl + V2) 0, -,1 (5.24) 
This equation can be solved to give 

A 1 (1)(z) +e K A 2 (1)(z) =(l -e K 6X V T(z))- 1- e K 3X V2 (5.25) 

Similarly, we have, from eqs. (5.21) and (5.22), 

A 3 (1) (z) + e K A 4 (1) (z) = (1 - e K 6X V- T(z))- 1 3X V1 (5.26) 

These results will be used when we calculate the absorption 

spectra. As we have already mentioned, it is enough to evaluate 

A i (1)(z)ls in the lowest order with respect to K for our present 

                                               T(
z) (see purpose. Using the lowest order expression for I 

Appendix D) and also taking the limit e K finally we get from 

eqs. (5.25) and (5.26) 

        A(l) (Z) A (1)(z) G 1 (0) V- (5.27)                              i Z-X 0-

5-2 Density of States Results and Discussion 

     As we have mentioned in §1, from theoretical point of view 
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the effects of the presence of the surface may be classified 

into two kinds - [I] the effects of the cleavage and []I] 

those of the surface potential. As concerns the surface-induced 

change of the DOS, discrimination between these two effects 

can be achieved by first letting the surface potential 6 vanish 

and then by taking the difference, namely we devide D(c) as 

               D(E) D(E:) + AD(E:) (5.28) 

where 

                 D(E) D(E: ; 6-+0) (5.29) 

Both 5(e) and AD(c) can be obtained from eqs. (5.3). (5.12) 

and (5.27). The results are as follows; 

        D(E:) 26(E - E: b - X) 6(c - 6 b + 2X) - 6(F- - E: b 4?,) 

             + E)(r 1 2_x 2 Mx-r 1 ) +6(x+r 1)} (5-30) 

           72:x2                'ff /r 1 x 

             Wr i 2_ y 2 
             + 2 16(y-2r I + 6(y+2r 

1 
                          _v                'ff Ar

l y 

        AD(E) =6(x-x 0 ) + 26 - x 6(r 1 2 _x 2 

x 

                          2,ff(x-x 0 )vlr 1 x 

                                                      (5-31) 

               + 6(y-yo ) + 26 - y - __2~ e(4r, 2_Y 2 
                     27(y-yo) /4rj-y 
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where we have used three energy parameters e, x, and y for conve-

nience, that are all mutually related (see eq. (5-10)), and x 0 

and y 0 are defined in eqs. (5.14) and (5-15), respectively. The 

above expression of AD(e) is for the case when 161>1r1j. When 

Ir 1 121<161<1ril, the term 6(y-y 0 ) is missIng, and when 161<1r 1 /21, 

both 6(x-x 0 ) and 6(y-yo) are missing. I The total number of states 
must not bechanged by introducing the surface into the periodic 

crystal, which leads to the sum rules; 

            F00 de D(c) = 0 (5-32) 

           f de AD(E) = 0 (5-33) 
                            0

-000 

In particular, we can actually show that eq. (5-33) is valid 

for an arbitrary value of 161. 

     The result for D(e) is shown in Fig. 5-1, where we have 

taken r 1 /X=1.0. This value of r 1 roughly simulates the nearest 

layer short-range coupling parameter on bcc(100) surface (see 

Table 3-1 and relations (3.16)). In this figure, as well as 

in all the following ones, the energy is measured from c b and in 

units of X. The arrows on the figure stand for 6-functions, 

the intensities of which are indicated near the points of the 

arrows. We see that 6-function like decrease in the DOS occurs 

at the edges of both the bulk T- and L-band, where the bulk 

DOS diverges, as is well-known. This decrease is partly compen-

sated by the increace in the DOS within the bulk band, which 

exactly simulates the bulk DOS (11N of the bulk DOS). A
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remarkable-feature is the existence of the 6-function peak 

within the L-band, which suggests the existence of a surface 

localized mode. The fact that th. is peak is infinitely sharp 

does not necessarily mean that this localized mode has no 

interaction with the bulk L-modes at all. It means only,that 

the lifetime broadening caused by the interaction with the bulk 

modes are at most of the order of K, since-wehave made the 

lowest order approximation in the K //_ expansion. In this 

sence ., it should have been called a surface resonance mode-

although we keep to call it simply a surface localized mode in 

the following. The intensity of this peak is 2, which means 

that there is one such state on each surface of the slab. 

As r 1 decreases, the bulk band widths decrease, whereas the 

peak position remains unchanged. Since we have fixed the 

value of the L-T splitting (ALT=6X=6), the position of the top 

of the L-band remains constant, while the L-band bottom goes 

upwards. When r 1 becomes smaller than 3X/4, the L-band bottom 

goes higher than the location of the peak. In this situation, 

the mode in consideration becomes a truely localized mode. 

Anyhow, the behavior of this mode does not depend on the value 

of the short-range interaction parameter rl, as far as the lowest 

order approximation to the DOS in the K expansion is concerned. 

An insignificant effect of r 1 on this mode is discernible in 

its wave function (see the next section). 

     In §1 we have made the classification of surface elementary 
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excitations into two types. . Surface excitons were classified 

as type [JI] modes, whose behaviors are sensitive to the surface 

potential. In this sense, the above mentioned localized mode, 

which owes it,s existence merely to cleavage., is quite anomalous. 

We term it 'surface polariton' rather than surface exciton, the 

reason of which will be discussed in the next section, where 

we shall analyze the behavior of this mode in some more detail 

and point out its relation to the usual surface polariton mode. 

     The results of the 6-induced change in the DOS for five values 

of 6 with r 1 /X=1.0 are shown in Fig. 5-2 ((a) When 6 

is large enough (see Fig. 5-2 (a)), there are two localized 

modes whose energies are given in eqs. (5-14) and (5-15). 

The one at the higher energy is split out of the top of the bulk 

L-band,.and the other at the lower energy is split out of the 

T-band top. The latter one is located within the L-band (for 

the present choice of the value of 6; 6/X=1.25) with the . 

infinitely sharp peak, which means, again, that the lifetime 

broadening of this mode is of higher order than K. Clearly, 

these two modes belong to the type Ell] modes and are the surface 

excitons in the usual sense. In Appendix E, we shall 

briefly examine the nature of the wave functions of these modes. 

In accordance with the results there, the wave function of the 

surface mode with higher energy is composed mainly of those of 

the bulk L-excitons with a small T-exciton contributions of 

order K. On the other hand, the wave function of the lower 
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one mainly consists of the T-exciton with a small L-exciton 

contribution. Since it is co-ripletely meaningless to call the 

surface excitons IL-likel or IT-like', we rather term the upper 

surface exciton Iz-polarized' mode and the lower one Ix-polarized' 

mode. This nomenclature is reasonable because in the most 

range of the value of k (k;~,ko., where k 0 has been introduced in 

§3-4) the L-mode (T-mode) is almost z-polarized (x-polarized) 

(see eqs. (3-33) and (3-34)). In the following, we abbreviate 

them as Iz-pol.1 mode and Ix-pol.1 mode. The increase in the 

DOS due to these surface localized modes is compensated by the 

decrease in that of the extented modes, the spectral feature of 

which is rather assymmetric with respect to the center of the 

L- and the T-band. When 6 becomes larger, the energy position 

of the Ix-pol.1 surface exciton goes up higher and finally it 

gets beyond the top of the L-band, resulting in a truely 

localized mode. Since there arises no qualitative change .in 

the feature of AD(e), we do not show the figure corresponding 

to this case. 

     When 6 becomes smaller, first the Iz-pol.1 surface exciton 

disappears (Fig. 5-2 (b)) and then the Ix-pol.1 one disappears 

(Fig. 5-2 (c)). Corresponding change within the L-band and 

the T-band also occurs sussessively. When 6 is negative and 

161 bevomes larger, AD(E) repeats the above mentioned behaviors 

in a reverse order (Fig. 5-2 (d)-(f)). 

      The energies of the Ix-pol.1 and Iz-pol.1 surface excitons 
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are shown in Fig. 5-3 (a)(rj/~,--1.0) and (b)(r,/X=0.5) as functions 

of 6. They are almost proportional to 5 when 161 is sufficiently 

large. The excistence of the lx(z)-pol.1 mode is forbidden 

within the bulk T(L)-band. Just outside the both edges of the 

band its energy shows a bending, which indicates a strong 

interaction between the lx(z)-pol.1 surface exciton and the 

bulk T(L)-band. The criteria for the existences of the surface 

excitons are shown from the statement after eq. (5.31). We 

have 

          161 > Ir 1 /21 for Ix-pol.1 mode 
                                                   (5-34) 

          161 > Irli for Iz-pol.1 mode 

     Let us compare the above results for the DOS with those 

when K=O. When K exactly vanishes, the bulk-T(L)-mode becomes 

equivalent to the x(z)-polarized extended mode. The long-range 

interaction V Zr is missing in the Hamiltonian .(4-5) and since 

sine=l and cose=O,, all the other interactions become diagonal 

as can be seen from eqs. (4.10) and (4.12). It is straight-. 

forward to show that the terms 

     26 ( E - E: b 6(c - F_ b + 2X) - 6(c E: b - 4X) (5-35) 

aremissing from D(E) in eq. (5-30). with AD(c) being unchanged. 

As far as the 6-induced change AD(E) which includes the surface 

exciton contributions is concerned, the finiteness of K apparently 

plays no role. In fact, the surface ..exciton energies given in
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eqs. (5-14) and (5.15) as well as the criteria for their 

existences given in eq. (5-34) are equivalent to the results of 

Schipperl7) 16)               and of Hoshen and Kopelman, who have taken no long--

range interaction into account. The only difference exists 

that we have two apparently independent systems, namely 

x-pol. and z-pol. modes. A qualitative difference from the 

K=O results, however, is found in D(E). The surface polariton' 

mode at the energy 6 b +X cannot be expected from the K=O theory. 

If we notice that D(c) in eq. (5-30) is of the zeroth order in 

K., we see that the non-analiticity of our model is explicit in 

D(E). The finiteness of K influences more on the behavior of 

the wave functions or the properties related to them rather 

than the energies of the. modes, which we shall see in the 

following subsections. 

5-3 Evaluation of the Absorption Spectrum 

     Let us assume that a p-polarized external electromagnetic 

field with a frequency e/-h and a wave vector (reduced by the 

inverse lattice spacing) _>~=(K,O,k) is*applied to the crystal. Q 

The perturbation caused by this field may be decribed by 

                        exp(-iE:t/-h) (5-36) 

where is the unit vector perpendicular to ~ and 

                                 t ikP,                   (M-'- 
V a K a R.V(K e (5-37)        IN k 

                       8o



is the (4)-Fourier component of the polarization operator. 

Since ^6=(sine, 0, -cose) (0 is defined similarly as in Fig. 3-2), 

C-P(-Q) in eq. (5-36) can be rewritten as 

       2-P(-Q) = M b t (-k) + M b t T (k) (5-38) 

4 where we have used eq. (4.2). Strictly speaking, b t (-k) in 

this equation is the operator in the '(-K // )-subspace', but 

this does not matter in the following argument. The absorption 

spectrum is given by the familiar golden rule formula 

        X I<ej ^F-.-P"-(--Q>')10>1 2 6(c-c e) (5-39) 

e apart f--om the numerical factors. Here Ie> is the excited 

state of the crystal, and E e its excitation energy. This 

formula can be rewritten successively as 

            1 t 1 - .-+ -* To>                    E: P C P Q         Im <01 Q 
                                  E:-H-i 0+ 

          2 1 
       IM r Im <01 b (k) b (k)10> (5 .40) 

             Tr t E:-H-iO + t 

2 
       IM r Im Gtt(z) 

           7T kk 

Our interest is in the surface induced change of the absorption 

spectrum, which is criven by                                     C) 

                 I(C) = -M 2 Im A G tt (z) - (5.41)                             7T kk 

Thus the calculation of the absorption spectrum is done by that
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of the resolvent, again. We assume JQJ is finite but vanishingly 

small and let K, k-*O, with the angle e being fixed. The 

formula (5.41) gives the absorption spectrum as a function of 

0. Due to the refraction effect, the complementary angle of 

6 does not usually coincide with the incident angle of radiation, 

but rather symbolically we shall call 0 the incident angle, 

because the one-to-one correspondence between them may be expected. 

With this respect, we should point out that the so-called 

polariton effects are completely neglected in our theory. 

Questions as to the applicability of our model that arise due 

to the neglect of the polariton effects will be briefly discussed 

in the next section. Now from eqs. (4.24) and (5.41) we get 

     I(E) = IMI 2 Im (Gt(k) )2 (t [f * (k)JENI [f(k)]) (5.42) 
               IT 0 tt 

where the subscript tt means the (l,l)-component of the 2x2 

matrix and we have omitted the factor 1IN for simplicity. 

According to the argument given above we consider the k-+O limit. 

Following expressions are available: 

                          Cos 
               K 2 

                                                                                               K.~ k ->-.0 
 (a)-y(-k)~(k), ~(-k)y(k) 2                             r T2 Cos 

e :fixed 

    y(-k)y(k) ~~ e Cos 2 e 
               K 2
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     ~(-k)sine, y(-k)sine, ~(-k)e ik sine, y(-k)e ik sin6n".' osesine,                                        KC 

 (b)                                         I -K 
cose, y(-k) ik 1 2 0 .,      ~(-k)cosO, y(-k)cose, ~(-k)e e cosertRcos 

     sin 2 e e ik % sin 2 e 

                   ik r~, (5.43)  (C" sin ecos e e sin 8 cos e 

          2 i k ,, 2     Icos e e "V Cos e .10 
where ~(k)=a(-k)e- ie and y(k)=a(k)e K+ik e ie are the first two 

elements of the vector Ef(k)]. Except for the trigonometric 

functions ., the above expressions (a), (b), and (c) are correct 

up to the order of K-1 ((a) and (b)) and of K 0 ((c)), which 

can be verified by the use of eq. (4.29) and the theorem proved 

in Appendix C. With the aid of these relations ., eq. (5.42) 

can be rewritten as follows, 

           IM12 1 2 2                - 'ff Im ( Z-E: t(O) sin 0 E(z), 

           + sin e cos 0 ( B(z)+D(z) + F(z) + Q(z)) (5.44) K 

                                -,K K 
                e A (z)+A (z.)+A (z)+e A (Z) 

        + cos~ 2 8 1 2 3 4 C(z)+P(z) +R(z) 
                           K 2 K 

where 

4 
           E(z) E i(z) (5.45) 

and the other quantities B(z), C(z), and so on are defined 
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similarly. 

     Now we must solve the set of basic eqs. (4-32-1)-,(4.32-9). 

We notice that (i) all that is necessary is to obtain the sum 

of each four matrices such as shown in eq. (5.45) except for 

A i (z)1s, and that (ii) only the (l,l)-components of these 

matrices are relevant. These considerations greatly simplify 

our calculations. The solutions for E i (z)'s and the lowest 

order approximations to A I (z)'s have been already obtained in 

eq. (5.12) and eqs. (5.25) and (5.26), respectively. We 

express the unknown matrices in terms of these known ones. 

We analyze B(z)+D(z) first. Comparing eq. (4-32-4) with 

(4-32-5), we obtain 

  {D(z)l = K {E(z)j (-!-I {E I + U_' {E 1) fA(l)(z)l (5.46)                    2 3 1 

We rewrite this equation in terms of.the elements of the matrices 

and sum up the elements of D(z) The result is 

  D(z) = K (E (z)+E (z)-E (z)-E4(z)) (-!-,)+E(z) Ut Tj A(') (z)                  2 3 2 

                                                  (5.47) 

Using the relations in eq. (4.38), we get 

  B(z)+D(z) = K A(l)(z) T U E(z) + K E(z) Ut T A(l) (z) - (5.48) 

Since A (1) (z), T, and E(z) are diagonal, B(z)+D(z) has only 

off-diagonal elements, which do not contribute to I(E). In 

a similar manner, we can show that F(z)+Q(z) is off-diagonal. 

Hence we find that there are no terms proportional to sin0cose
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in I(e). Next we examine A (2) (z). Comparing eq. (5-17) with 

(5.16), we get 

      (2) 1 (1)      A (z) {A (z)J ({E + {E U) {D (z) (5 .49)                     R - 2 1 

Substituting eq. (5.46) into (5.49), we can express A (2) (z) 

in terms of A (1)(z) and E(z) After some manipulations, 

we obtain 

A-:(?) 1 (1)2 (E (z)-E (z)-E (z)+E (z))+( T)2 UEUt~A(')(Z)             2 2 4  d K 1 3 

                                                    (5-50) 

where the subscript d for A (2) (z) denotes the diagonal part of 

the matrix. We can obtain C(z)+P(z) using relations in eq. 

(4-38) and..- eq. (5.47). The result for the diagonal part is 

     (C(z) + P(z))d = 2 K U E(z) U t T A(l)(z) - (5-51) 

Finally R(z) can be expressed in terms of E(z) by the use of 

one of the relations in eq. (4-36). 

     After all, I(e) can be written in the form 

                     2 2 
       .I(E) = I s (e) sin e + I c (6) Cos e (5-52) 

where the normal incidence spectrum I S. (6) and the grazing angle 
incidence spectrum I c (e) are given respectively by 

2 
    I (E:) = IMI' Im 1 )2 E (z) (5-53) .        S 7T Z-F- t (0) t 

          2 e-K A (1)(z)+A (1)(z)+A (1)(z)+e K A (1) (z) 
 I (E;) = IMI' Im 1 )2 2 3 4   c Tr Z-E: 

t(O) K 
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   +( IA(l) (Z) ) 2 (E (z)-E (z)-E (z)+E t (TA(l) (Z)+1)2        2 1 2 3 4(z) )+UE(Z)U Itt, 
                                                   (5-54) 

5-4 Absorption Spectrum - Results and Discussion 

     Similarly to the DOS, the absorption spectrum can be 

divided into two contributions; 

          I(E) = I(E) + AI(E:) (5-55) 

where is the change in the absoption spectrum due 

to the cleavage and AI(c) is the one due to the surface potential. 

Both I s (6) and I c (e) can be divided in the same manner. 

Substituting eqs. (5.12), (5.25) and (5.26) into eqs. (5-53) 

and (5-54) (E W's are obtained from E t (z)'s by the procedure i 

described just below the equation (5.12)), we can get the 

expressions for I s c (E), AI S (e), and AI c (e) that are the 

lowest order approximations in the K //-expansion. , Their explicit 

expressions are rather lengthy and will be given in Appendix 

F. In experimental measurements surface excitons are often 

identified by the contamination sensitivity of their peaks (or 

more moderate structures) in absorption spectra. It is 

natural that those peaks, which remain in the difference 

between the spectrum measured on a clean surface and the one 

on a contaminated surface, are identified as surface exciton 

peaks. It is AI(e) that has a direct correspondence to such 

                        86 -



a difference spectrum in the experimental contamination test. 

Therefore we concentrate on AI(e) i-n the following discussions. 

     Fig. 5-4 ((a)-(d)) shows the 6-induced change of the 

normal incidence spectrum AI s (6) for four values of 6 and 

r /A=1.0. In the case of normal incidence of radiation S only 

the x-polarized modes (equivalent to the T-modes in this case) 

can be excited and no changes occur within the L-band region. 

We should remember that the so-called bulk exciton absorption 

is located at the edge (the bottom when r 1 >0 and the top when 

r 1 <0) of the T-band with its intensity being proportional to 

N (if we neglect the spatial damping of radiation). We see 

in Fig. 5-4(a) that a part of the oscillator strength of this 

bulk exciton absorption is rearranged within the ,T-band due to 

the surface potential 6 and that a part of it is given to the 

x-pol. surface exciton. When 161is small enough so that the 

surface exciton cannot exist (Fig. 5-4 (b) and (c)), the 

rearrangement of the oscillator strength still takes place, 

and the feature of which is critically dependent on the sign 

of 6. Fig. 5-4 (d) is for the case .when the surface exciton 

exists below the bulk band. We see that the osicillator 

strengths of the extended states are transferred to the surface 

exciton due to 6. Such a behavior of the oscillator strengths 

is in fact reported in the recent experiments performed on the 

surface of solid Kr, 46) although our model seems to be too 

crude to make a quantitative comparison.
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     We show the 6-induced change of the grazing angle incidence 

spectrum in Figs. 5-5 and 5-6. In the case of oblique incidence 

of radiation the bulk L-modes as well as the 'surface polariton' 

take a part in AI c (c).. Fig 5-5 is for the case r 1 /X=1.0, 

where the 'surface polariton' is located within the L-band. 

The 6-function like structure at the energy (E-E b )/X=1.0 

represents the change in the absorption due to the 'surface 

polariton'.. which originally has a large oscillator strength 

of order l/K (see the expression for Ic (c) in Appendix .F). 

The other sharp structures are related to the surface exciton 

absorption.. We see that the L-mode absorption is drastically 

altered especially around the 'surface polariton-.1 energy. 

Overall features of AI c (6) are determined by the sign of 6, 

although the oscillator strengths of the surface excitons 

depend so much on the value of 6. This is also true of the 

case r 1/X=0.5, where the 'surface polariton' energy is in the 

gap of the bulk band (Fig. 5-6). In this case the absorption 

spectrum within the L-band region suffers no significant changes. 

     Our main interest here is the oscillator strengths of the 

surface excitons. Apart from an insignificant factor, these 

are given by the absorption intensities of the surface excitons. 

With the aid of the explicit expressions of AI(E), the oscillator 

strengt.hs of the Ix-pol.1 and the ly-pol.1 surface excitons as 

functions of e are given, respectively, in the form 

     f 1 (0)/IMI 2 = f S, S in 2 e + f cl Cos 2 0 (5-56) 
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        f 2 (e)/IM12 = f c2 Cos 2 e (5-57) 

   where the coefficients f sl-' f cl, and -C c2 are given by 

          f 26 - r (5-58)           sl 26 + r 

                   aX 2 (26 - r 
          f cl 2 5 - 5 

               OX -r 1 x 0) (26 + r 1) 

        f 1) 1 (5.60)           c2 
6 2 (2r 1 3X - YO) 2 

   Figs. 5-7 show these coefficients f sl (panel (a)), and f cl and 

   f c2 (panel (b)) as functions of 6 for the case r 1 /X=1.0. 

   When the absolute value of 6 becomes sufficiently large, these 

   coefficients approach the isolated single layer values: 

   f sl= 1, f cl= 0, and F c2= 1. In the region 161<1r 1 /21 the Ix-pol.1 

  -surface exciton cannot exist . At the lower side of this region, 

   the oscillator strength of the Ix-pol.1 surface exciton (f sl 

   and f cl ) shows the significant enhancement. The region of 6 

   where the values of f and f deviate considerably from their 
                           sl cl 

   asymptotic values coinside with the region where the energy of 

   the Ix-pol.1 surface exciton as a function of 6 shows a marked 

   bending (see Fig. 5-3). In this situation the surface exciton 

   suffers a strong mixing with the bulk excitons via the short 

   range interaction and its wave function extends rather deep 

   into the bulk. It is interesting to note here that the 

   oscillator strength of the surface exciton is strongly correlated 
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all .

with the spatial extension of its wave function. In the 

following we show this in a simplified model where the excitons 

have transition dipole moments in only one (x, say) direction. 

We neglect the long-range interaction and assume that the wave 

function of the surface exciton has the form 

                                        -KY, 
                         e (K>O) (5.61) 

                                                  00 2 = where the normalization conditon 1 has been taken 
k 

into account. The constant 11K measures the spatial extension. 

The transition dipole moment Ms is given by 

        Ms = <01 (I ~(k) a Yx) t P X(4) 10> (5.62) 

in which the polarization operator P x (-M can be obtained from 
eq. (5.37). If we assume that the wave number Q of the external 

electromagnetic field is negligibly small compared with K, then 

             F2_K, K_              M
s cc Ye -1 (e (5.63) 

The oscillator strength f is propotional to IM s 12. If the 

surface exciton has a large spatial extension, K is small 

compared with 1. Expanding e K with respect to K, we get 

                       f - 11K (5.64) 

Therefore the deeper the surface exciton extends into the bulk ., 

the larger the oscillator strength becomes. This corresponds 

to remarkable enhancement of the oscillator strength of the 
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Ix-pol .1 surface exciton just below the inhibited region 

161<1r 1 /21. The constant K is deter-mined from the ratio of 

the short-range interaction r 1 to the energy separation between 

the Ix-pol.1 surface exciton and the T-band edge. This kind 

of enhancement is similar in nature to the well-known giant 

oscillator strength of the impurity-trapped excitons in semi-

conductors and insulators. 47) 

     When the energy of the surface exciton is located just 

above the top of the T-band, its wave function is mainly 

composed of those of the bulk T-excitons at the Brillouin zone 

boundary (k=±ff). Correspondingly, the wave function may be of 

the form 

                    2 _K, Kk ±i7k                 *0 1) = T/e -1 e e (5.65) 

A straightforward calculation yields 

                        f (x K (5.66) 

which is valid for small K. Therefore the reduction of the 

oscillator strength takes place in this region of 6, which is 

clearly seen in the figure. 

     Another enhancement of f 
cl is also observed (panel (b)). 

Divergence of f occurs for the value of 6 with which the                   cl 

energy of the I x-pol. I mirface exciton coincides with that of 

the 'surface polariton'. Since this enhancement is seen only 

in the oblique incidence spectra, it is clearly the effect of 

the long-range interaction. This phenomenon can be qualitatively 
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2~

explained with the simple model as follows: When the long--

range interaction of the form K e- KZ as well as the short-range 

one exist (as is the case fo r our model), the wave function of 

the surface exciton may be expressed as the sum of the rather 

swiftly damping function e -Kk and the extended function K e-K' 

(we have assumed K>>K); 

                /e2K (e -Kk + c K e -Kk) (5.68) 

where c is some constant,, which we assume positive without loss 

of generality. Note that the normalization factor is determined 

solely by the first term in the bracket, which is correct as 

far as K>>cK holds. Therefore, for a value Of K being not so 

small, c can become very large without affecting the normalization. 

The oscillator strength is obtained as 

               f cc A 2,~_~l K 1 + c) (5.69) 

We see that the larger the value of c becomes, the larger the 

oscilltor strength. Now we apply this simple argument to our 

case. As we shall see explicitly in the next section, the wave 

functon of the 'surface polariton' is composed mainly of the 

long-range term e- K9_. When the energy of the Ix-pol.1 surface 

exciton approaches that of the 'surface polariton', the wave 

function of the surface exciton more resembles that of the 

'surface polariton'
, and correspondingly c becomes large. 

This is the reason for the enhancement of f 
cl* In contrast 

to the Ix-pol.1 surface exciton, the energy of the Iz-pol.1 
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one cannot reach that of the 'surface polariton' for the case 

r 1 /X=1.0, and therefore f c2 does not show drastic enhancement 

but only shows a rather moderate maximum structure. 

      As we have seen above ., there are two kinds of mechanisms 

for the giant oscillator strengths of the surface excitons in 

our model. One is due to the short-range interaction and the 

other is due to the long-range one. We can vary the relative 

magnitude of the short-range interaction vs. the long-range one 

by varying the value of r 1* Behaviors of the oscillator 

strengths for the case r 1/X=0.5 are shown in Fig. 5-8. This 

value of r 1 simulates the nearest layer coupling on fec(100) 

surface (see Table 3-1). We see that the enhancement of the 

oscillator strengths due to the short-range interaction is 

confined to the rather narrower region of 6 compared with Fig. 

5-7, and that, on the contrary, the region of the enhancement 

due to the long-range interaction becomes broader. A qualitative 

difference from the case of Fig. 5-7 is that also f c2 shows the 

giant oscillator strength, which is possible, because in this 

case the Iz-pol.1 surface exciton can approach the 'surface 

polaritonlin energy. For comparison we.also show the case 

where r 1 is negative (r 1 /X=-0.2) in Fig. 5-9. This value of 

r 1 roughly corresponds to the nearest layer coupling parameter 

on scc(100) surface (see Table 3-1). All the behaviors of the 

oscillator strengths in this figure can be interpreted similarly. 

A remarkable feature common to the above three cases is the 
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strong O-dependence of the surface exciton oscillator strengths. 

Since the enhancement of the oscillator strengths due to the 

short-range interaction occurs only in the relatively narrow 

region of 6 around 6=0, the sum f 
cl +f c2 exceeds f sl for most values 

of 6. Therefore we can expect that the surface excitons are 

more easy to be excited by the oblique incident p-polarized 

radiation than by the normal incident one in most cases.
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§6 Discussion

6-1 Analysis of the 'Surface Polariton' Mode

     In §5-1 we have pointed out the existence of the 'anomalous' 

surface localized mode, which we have called 'surface polariton'. 

Here the term 'anomalous' means that this mode belongs to the 

type [I] surface modes, which is in contrast to the usual 

surface excitons being the type EIII modes. In this subsection, 

first we study the behavior of this mode in real space in some 

detail and then discuss the relation of this mode to the surface 

polariton of the usual sense. 

     For simplicity, we consider the case where r 1 is not so 

large that the energy of the 'surface polariton' is located 

within the bulk band gap (r 1 /X<3/4) The.Hamiltonian .in the 

real-space representation is given in eq. (3.18). As we have 

shown in the arguments about the DOS, the surface potential

     On (100) surfaces of cubic lattice structure rl/X is at 
most nearly unity (see Table 3-1) and the relations (3.16). 
When rjA exceeds unity, the bulk T- and L-bands overlap each 
other in our model. We do not know the exact value of rl on 
other surfaces such as (111) and (110) surfaces. The work 
by Heller and Marcus4_4) may be of some help, who calculated 
the three dimensional dipole sum with the wave vector in <111>, 
<110>, and <100> directions in fcc crystal using Evald's method 
extended by Born and Bradburn.48) According to their result, 
there are no cases where the T- and L-bands overlap. We had 
better think of rl as the parameter into which the next (third, 
and so on) nearest layer short-range interactions are renormal-
ized. Therefore it seems reasonable to assume that ri/X is 
less than unity. The condition ri/X<3/4 is a bit tighter than 
this condition.
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I                                                                                                 -*T
. has littel influence on this mode, so we may omit 6a 

1 a 1 from 

the Hamiltonian. Also the K-linear terms in the intralayer 

interaction may be neglected since they play no significant 

roles. The Heisenberg equation of motion for a* P
, yields the 

eigenvalue equation; 

      C b- r 0- 6 0 -r 1/2' 0 

    0.1 C b +2r 0- Ej a k + 0, ril (a Z-1 +a Z+l) 
                        -1 CO

where we hav 

k-dependence 

is extended 

and has the 

K, and the o 

space:

        k - KIk-ml 
V - I - Klk-MIV - +3XK~ I e a m + e 2 a M~ 0           m=l m=k+j 

                                                       (6.1) 

 E; r E, 0 0  b- 0- 
E;j a + 1/2, a 2              F- b +2r 0 0 r 1 1 

              K(m-1)   + 3XK 

m=2 e I V 2 a m = 0 (k=l) (6.2) 

         e considered the limit N--. We assume that the 

          of a k is represented by the sum of two terms; one 

         rather deep into the bulk (slow decay in space) 

              ft _Rk -         form ue where K is positive and of the order of 

         ther is some function a which swiftly damps in

We call

               ->- :t 
       a. = u e 

the first term

-Kk

the

+ a. (6-3) 

 slowly damping part and the second
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one the swiftly damping part. We note that 

            K I - Kjk-mj                  e a' = O(K) (6.4) 
                              00 

                m=1 m 

This means that the swiftly damping part produces only a weak 

long-range field on any layer, which can be neglected. We 

consider a sufficiently deep layer k such that a' has a negligible 

amplitude. For such k eq. (6.1) approximately becomes 

      E: b- 2X-F-3 0 1 :t ~e (R-K)Z_l Vl                           u + 3XK 
         0., E; b +4~-E e K-K- 1 

1              + V U 0 (6 -5)                  _R+K 1 2~ 

where we have used the sum rule r 0 +r,=2X. In order for this 

equation to hold for any (large) k, we must have 

            V 1 U U 0 (6.6) 

which has the solution 

                                                         (6-7) 

u If we substitute this into the vector equation (6-5), we obtain 

two equations that should be satisfied at the same time. 

This condition determines both c and R as 

                  E; = E; b + X , (6.8)
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              K = (1+2K) e- K I              e 
% :. R I K (6-9) 

We notice that the energy of this mode is determined solely by 

the slowly damping part. Now for sufficiently small k such 

that the swiftly damping part has a significant amplitude, eqs. 

(5-1) and (5.2) can be rewritten approxiamtely as 

 6 b-r 0- E: 0 -~. I -r 1/2' 0 
(-~. I ->. I  0, E b +2r O-El a k + 0., ril a k - 1 +a,+l)=o (k*l) 3 (6.10) 

 E; b-r 0- 63 0 
'1 + -rl /21 011 _*, = -r 1/2-1 0 11- 03 6 b +2r 0- 0, r 2 0.1 r 

                                                      (6.11) 

                                                -Ls represented by We assunie tha-t the Z-dependence cIP 

            u exp[(-K +iff)zl 
                x 1      a P, ~ f 3 (Kl.IK 2 >0) (6.12) 

            ~u z exp[(-K 2 +i7T ) k 

Substitution of this expression into eq. (6.10) determines K 1 

and K 2' A straightforward calculation yields 

                K 1 = cosh-1 ~(3X-r )/r 1 1 3 

                                                       (6.13) 

                K 2 = cosh-1 f(3X-2ri )/2r 11 

                                         - I 
where the positive branch of cosh - should be taken in order 

for K and K Lo be positive. As far as 'Ghe condition     1 2 

r 1/X<3/4 holds, K, and K 2 are finite, which is consistent with 

the assumption that a is swifty damping. Finally substitution 

of the expression (6.12) into eq. (6.11) determines ux and uz.

- 1o6 -



We get 

U 
x 

U 
z 

The swiftly 

interaction 

become infi 

the amplitu 

damping par 

say that th 

is composed 

its wave fu 

'b
y this Da-r 

s 

V 1 u de-scrib 

moment u di 

at a layer 

On the cont 

layer produ 

meaning of 

the motion 

that it pro 

that layer. 

near the su

ri

r 1 exp-(-2K 1 )-2(3X-r exp(-K 

            ir 1

       r 1 exp(-2K 2)-(3X-2r 1 ) exp(-K 2) 

                                                                                          -.>. I 

        damping part a k is related to the shc 

            In fact, if r 1 vanishes, K 1 and K 

        nite and as a result a vanishes for e 

       des u and (u 
x , u Z) of the slowly and t 

       ts are of the same order with respect 

       e main body of the 'surface polariton' 

         of the slowly damping part. The nox 

       nction as well as its energy are detei 

       t (in the lowest order with resDect tc 

        L teresting to note the property of u.                 -Ln" I U -L -1 L, 

       es the macroscopic electric field whic 

        stributed on a layer on the surface si 

       on the bulk side (see the Hamiltonian 

       rary, V 2 u describes the field at a sui 

       ced by u on the bulk side layer. The 

        eq. (6.05) is that in the 'surface pole 

       of the dipole moment on one layer is s 

       duces no macroscopic field at any laye 

          This makes possible for this mode t 

        rface.

               (6.14) 

          rt-range 

          in eq. (5.13) 

         ny k. Since 

        he swiftly 

          to K., we can 

          wave function 

         malization of 

         mined soley 

       K). 

            In general, 

        h the dipole 

         de produces 

       (3-18)). 

        face side 

        refore the 

         riton' mode 

         o determined 

        rs deeper than 

         o localize

- 107 -



     We note that when r 1/~>3/4 (but r 1 /X<l; see the footnote on 

page 103 ) the argument of cosh- 1 for K 2 in eq. (6.13) becomes 

less than unity. In this case K 2 becomes pure imaginary (=ik 2) 

and the z-component of a is no more a decaying but propagating 

function. As far as Ik 2 1>>K holds, however, the estimate given 

in eq. (6.4) is still true and also the separation of a Z into 
   KY, ue and a 

k so as for u to satisfy eq. (6-5) is possible. 

So the argument given above suffers no significant modifications 

except for the propagating property of a In this case the 

mode in cosideration becomes a surface resonance state. 

      Now let us find the connection between the mode in consider-

ation and the surface Dolariton in the usual sense. Since the 

short-range interaction plays no role in determining the energy 

,of the 'surface polariton' , we assume r 1 =0 in the following 

argument, although this is not an inevitable assumption.. We 

consider the dielectric function X(w) of the bulk (i.e. with 

the periodic boundary condition being imposed) crystal in our 

model. This is given by 

         XM = 1 + 6X (6.15)                              E 
b- 2X-'hw 

This expression can be obtained from the first principle 

calculation in which the linear response theory is applied to 

the system with the Hamiltonian H b of the bulk crystal."

     In so doing, the treatment of the long-range interaction in Hb should 

require some care.49) Probably the easiest way to obtain eq. (6.15) is to 
                                    ;+,~ jmj21(E, [) -!~W) and then to relate it to start with the atomic polarizalbil- 1~ , i \ -

X(w) with the Lorentz-Lorenz local iield correction being taken into account. 

                           lo8



Here we satisfy ourselves only to note that X(w) in eq.(6.15) 

gives correctly the T-mode energy (c b- 2X) and the L-mode one 

(E: b +4X) from the familiar formulae X(w)=- and X(w)=O, respectively. 

It is well-known that the dispersion relation w(K of the 

surface polariton is obtained from 

            (cK//)2 X(w) (6.16)                  W l+X(W) 

where c is the light velocity. If we are to neglect the 

retardation effects (polariton effects), we are allowed to put 

c=- and eq. (6.16) becomes 

               1 + X(W) = 0 (6.17) 

using the expression (6.15) for X(w), we get the solut-ion of 

this equation as 

                -hW = C b + X (6.18) 

This is exactly the energy of the 'surface polariton' in our 

model. Thus we have found that the 'surface polariton' as we 

have called is the usual surface polariton, but without the 

retardation effects. This is to be expected, since we have 

no transverse electromagnetic fields (i.e. photons) in our 

Hamiltonian. 

6-2 Applications of the Model 

     Although our model seems too naive to be applied to real
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solids, we now try to interpret the experimental data, especially 

those obtained on GaAs(110) surface on the basis of our results. 

In §2-4 we have mentioned the observation of Lapeyre and Anderson 

that the surface core excitons on GaAs(110) surface show the 

giant anisotropy in the CIS measurement (see Fig. 2-2). 

Because of the high surface sensitivity of the CIS technique 

and probably because of its nature that only those core excita-

tions which are easy to decay into valence excitation continuum 

can be detected in the CIS's, there can be seen no structures 

due to the bulk core excitations in their CIS's. On the other 

hand, the bulk core excitations are more easily observed in 

reflection spectra. Fig. 6-1 shows the second derivative of 

the reflection spectrum on the GaAs(110) surface measured by 

Skibowski and Spriissel.50) The four structures at higher 

energies were identified as due to the bulk core excitons 

associated with transitions from Ga 3d to L and X points in the 

conduction band. The lower two structures correspond in energy 

to the surface core excitons observed in the CIS~s. 

     We have three parameters in our model; the surface potential 

6. the L-T splitting A LT (=6X), and the short-range interaction 

parameter r l' In order to apply our theory to the GaAs core 

excit,ons with such rather complicated structures, we must make 

some avaraging procedures. As the average energy separation 

between the two surface excitons and the four bulk excitons we 

may roughly take the value of 0.5 eV, which we use as the value
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of -6. Estimation of A LT is difficult. In the case of excitons 

located within the fundamental band gap, the width of the 

reflection spectrum gives a good measure for A LT* The average 

width of the structures shown in Fig. 6-1 is roughly estimated 

to be 0.2 eV, although it is quite dangerous to expect that, 

the width of the structure of the second derivative spectrum 

gives a measure of A LT* If we assume the transitions in 

consideration to be purely atomic, we tan make a crude estimate 

of the dipole-moment M associated with transitions from five 3d 

orbitals to three 4D ones with the aid of the Slater orbitals.51) 

Then A LT is obtained from the formula A LT~ 4Trm 2 /0 where Q is the 

volume of the unit cell. In this way we made the estimate that 

A LT'uO.3 eV, which is not so far from the previous one. Therefore 

we may adopt 0.3 eV as the value of A LT' The value of r 1 /X 
                           44) on fcc(110) surface is around 0.2. If we calculate the 

polarization ratio of the oscillator strength (f cl +f c2)/fsl 

from the formulae (5-58),,(5.60) using these values,, the result 

is very near to its asymptotic (i.e. 161->--) value 1. That is, 

we cannot expect such a large anisotropy of the surface exciton 

transitions as observed in the CIS's. 

     The situation is not so simple, though. The reflection 

spectrum shown in Fig. 6-1 is for the near normal incidence 

case. As we have mentioned in §2-4, the energy positions of 

the surface exciton peaks in the CIS's are highly sensitive to 

the polarization of the incident radiation. Their shifts amount
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to 0.5 eV which is about twice as large as the full width at 

half maximum of the peaks. The Fano effect alone may be 

difficult to explain this large polarization dependence of the 

peak positions. Another possibility to explain this phenomenon 

is the crystal field splitting of the surface excitons. Since 

the symmetry of the (110) surface of a zincblende crystal is very 

low (Cs with only one mirror plane),52) more or less such 

splitting must take place. If the peak shift of 0.5 eV is 

attributed to the crystal field splitting, the energy of the 

surface exciton excited by p-polarized radiation can come very 

near or even above some of the bulk exciton energies. In terms 

of the parameters in our model, 161 may be smaller than A LT-' 

which results in a large anisotropy of the oscillator strengths 

as can be seen in Figs. 5-7"-5-9. In other words, it is possible 

to relate the observed large polarization dependence of the CIS 

peak intensities to that of the CIS peak shifts on'the~basis of 

our model. We point out that the observed fact that the peak 

intensities for p-polarized radiation are larger than those for 

s-polarized one is at least not contradictory to the results 

of our simple model, although a quantitative or even a further 

qualitative argument is beyond the scope of our model. A 

quantitative argument will require us to take account of 

i) the effect of interactions between the surface core 

  excitons and the valence excitation continuum (Fano effect), 

ii) the effect of the surface atomic geometry including relaxation 

  on the anisotropy of valence excitations which are the final 
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   states in the CIS, as well as on that of the surface core 

   excitons, 

iii) the difference in character of the wave functions between 

  the surface core excitons and the bulk ones, if the interaction 

  between them is effective (see the footnote on page 24), 

and so on. In addition,, the main drawback of our simple model 

is that the retardation effects are not taken into account in 

it. This point will be discussed in the following subsection. 

Till now ., however, we have no theory concerning how effectively 

the retardation effects work in the energy region of the core 

excitation. 

      Our model predicts the large polarization dependence of 

the surface exciton oscillator strengths depending on the 

parameter values. It suggests which experimental geometry is 

favorable to observe surface excitons in optical measurements 

as well as the usefulness of polarization-resolved technique 

to study the detailed nature of surface excitons. Our model 

also tells us that in some cases two surface exciton levels 

associated with one bulk exciton level can be observed by 

oblique incident p-polarized radiation. Perhaps the systems 

to which our model can be applied rather directly are the surface 

excitons in rare gas solids, since the Frenkel model gives a 

relatively good description for both the bulk and the surface 

excitons in these solids.
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6-3 Limitations and Extensions of the Model 

     As we have already noted, the retardation (or polariton) 

effects are not taken into account in our model. Neglect of 

these effects are allowed for large values of K // such that 

K // >>w/c holds. However, since w/c for the optical frequency 

region is usually quite small compared with the dimension of the 

Brillouin zone, there may still exist the region in the (w, K 

plane where the neglect of the retardation effects and the use 

of the K //_ expansion as we have made are justified at the same 

time. In such a region our results for the DOS is valid. 

The effects on the results of the absorption spectrum might be 

severer. We have shown that the 'surface polariton' in our 

terminology corresponds to the surface polariton in the usual 

sence but without the retardation effects. This means that 

the surface polariton is a composite particle of the photon 

and the 'surface polariton'. As is well-known., the dispersion 

curve of the surface polariton can exist only in the larger K // 

side of the dispersion line w=cK // of the light and thus cannot 

be excited directly by the vacuum radiation, which contradicts 

to our result that the 'surface polariton' has a large absorption 

intensity proportional to l/K. However, it does not necessarily 

contradicts to the fact that the 'surface polariton' has a large 

oscillator strength proportional to l/K. We have shown that 

the oscillator strength is a measure of the spatial extension 

of the wave function. The 'surface polariton' as a constituent
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of the surface polariton can, in fact, have such a large spatial 

extension. The above mentioned fact that the usual *) absorption 

measurement cannot detect the 'surface polariton' only means 

that the retardation effects prevent the 'surface polariton' 

from coupling with the vacuum radiation. However ., we have no 

a priori reason to think that the retardation effects inhibit 

the surface excitons from coupling with the vacuum radiation. 

Therefore we can expect that the results on the oscillator 

strengths of the surface excitons on which we have made the 

rather detailed discussion do not suffer significant modifications 

even if we take the retardation effects into consideration. 

     However, it is in itself an interesting question to ask 

how the retardation affects the system containing the surface 

excitons. It may be in the reflection spectrum that the retar-

dation effects show themselves most explicitly, because the 

reflection spectrum is directly related to the structure of the 

dispersion curves of polaritons. As we know, much theoretical 

and experimental attention has been attracted by the so-called 

'ABC' problem in recent polariton physics . If we rephrase 

the previous question along this line, it may be 'how the 

additional boundary conditions are influenced by the existence 

of the surface excitons?'. Since our model is simple enough, 

to answer it on the basis of our model will provide a deeper 

physical insight about the 'ABC'. Here we want to point out 

that the resolvent which we have used in the calculations is 

essentially the polarizability tensor in the k-representation.

See the second footnote on page 3. 
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Its Fourier transform into the real space representation gives 

the non-local inhomogeneous polarizability, which is known to 

                              53) be useful in solving for the 'ABC's' . Therefore our formalism 

will give a good starting point to an3wer that question. 

     Finally we want to give some comments about the possible 

variations of the model: 

(i) Among the surface-induced anisotropies we have considered 

   only the surface geometrical anisotropy. The surface 

   crystal-field anisotropy may be easily incorporated into the 

   model by replacing the surface potential 6 by a tensor 

   quantity. 

(ii) The absorption spectrum is usually taken on a thin crystal. 

   When the crystal thickness is of the order of or less than 

   the wave length of the incident light, the interference term 

   in the long-range interaction between the two surfaces of 
                                         CD 

   the slab, which we have omitted , should be retained. 

(iii) As we have already mentioned, the wave functions of the 

   surface excitons on semiconductor surfaces have usually 

   different characters from those of the bulk excitons. One 

   simple way to represent this effect is to make the magnitude 

   of the dipole moment on the surface layer to be different 

   from those on the bulk layers. 

(iv) The spatial dispersion effect (the wave vector dependence 

   of the exciton energies) caused by the dipole-dipole inter-                                                  CD 

   action alone is usually too small to affect the reflection 

   spectrum. 20) In real solids, however, the overlaps of the 
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   one-electron wave functions on near neighbor atomic sites 

   are usually more important origins of the short-range 

   interactions than those arising from the dipole-dipole 

   couplings. We can represent this effect by enlarging the 

   value of the short-range interaction parameter r 1 and at the 

   same time disregarding the sum rule r 0 +r,=2X. 

(v) The bulk and surface excitons in real solids are frequently 

   composed of multiplets, so the extension of the model along 

   this direction is required in such cases. 

     Some or all of these modifications will be more or less 

inevitable when we want to apply the model to real solids and 

to make a quantitative analysis even in the cases where the 

Frenkel's model gives a good description of the excitons.

- 118 -



§7 Summary 

     How the interplay between the diDole -dipole interactions 

and the surface geometrical anisotopy influences the optical 

properties of the surface Frenkel excitons has been investigated 

with the use of the simple model. The dipole-dipole interactions, 

expressed in the layerwise form, consist of the intralayer terms, 

the interlayer short-range ones, and the interlayer long-range 

ones which are represented by the parameters r03 r 1 and X. 

respectively. Internal consistency of the model requi res the 

sum rule: r 0 +r,=2X. Together with the surface potential 6. 

our model is characterized by three independent parameters. 

Dyson's equation for the resolvent Green's function has been 

solved. The detailed analyses have been made with the aid of 

the K - expansion. How the exchanges of the DOS and the 

oscillator strengths between the surface localized states and 

the bulk band states as well as their rearrangement within the 

bulk bands occur through the presence of the surface has been 

clarified for various values of the parameters. Our lowest 

order solution in the K //_ expansion suggests that the existences 

and the energy positions of the surface excitons are insensitive 

to the presence of the long-range interaction, while their 

oscillator strengths are highly sensitive to it. The particular 

feature to be noted is the enhancement of the oscillator strengths. 

That is, depending on the values of the parameters, the surface
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excitons show giant oscillator strengths, the origin of which 

can be attributed either to the short-range interactions or to 

the long-range ones. In addition, this phenomenon especially 

of the latter origin is strongly depe-~'Ident on the polarization 

of the excitation radiation. On the basis of these results, a 

possible explanation has been given to the recently observed 

giant anisotropy of the CIS structures due to the GaAs surface 

core excitons. Besides the usual surPace excitons., our model 

predicts the 'anomalous' surface localized mode, which has been 

identified as the surface polariton mode without retardation 

corrections.

- 120 -



Appendix A: Integral Approximation of the Intralayer 

              Dipole-Dipole Interactions 

     We evaluate the following two-dimensional integrals in 

power series of k: 

                              -2x 2 +y 2 -3xy, 0 

               exp(-ik-r) 2 _ 2  I ff dr r 5 3xy, x 2y 3 0 (A-1)        r>r 0 
.03 0, x 2 +y 2, 

where r=(x,y,o) and k=(k,0,0). Since the integral containing 

xy as a factor of its integrand vanishes by symmetry, we only 

need to know the following two integrals; 

                               exp(--ik-r 2         Ixx ff dr r 5- x (A-2) 
                    r>r 0 

                           exp(-ik.r 2         Iyy ff dr r5- - y (A-3) 
                     r>ro 

Using the polar coordinates (r,e), we rewrite I xx as 

                                CO -27T 

         I xx = f dr f de e- ikr cose cos 2 e (A-4) 
                      r 0 1 0 

Integration with respect to e yields 

                       1 0 (kr)-i 2 (kr)           I xx = Trk F dr 2 31 (A-5) 
                       r 0

* ) A 

ref.
part 

54).

of the results in this appendix is also found in 
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 where J 0 and J 2 are the 0-th and the 2nd order Bessel functi ons, 

 respectively. As to the first term in (A-5) , integration by 

 parts yields 

            1 0 (kr) 1 0 (k-r 0) 3,(x) 

      f dr 2 kr 0 f dx L x (A-;6) 
        r 0 kr 

0 

where we have used the formula dJ 
0 (x)/dx=J 1 W (1 1 is the lst 

order Bessel function). Expanding the first term of eq . (A-6) 

with respect to krO3 and retaining up to first order in kr
V 

we have 

            1 0 (kr 0) 1 
+ Icr 0 (A-7)             k ro - Er-o -4 

The second term of eq. (A-6) is rewritten as 

                                kr                     J,(x) f 0 1 l(x)      f dx x f dx x dx X (A-8) 
       kr 0 0 0 

The first term of this equation can be evaluated analytically 

as 

          i l(x) F(112) 
       dx - = = 1 (A -9)      fm x 2r(3/2) 

0 where F is the gamma function. As for the second term of 

eq. (A-8), first we expand the integrand with respect to x
, and 

then integrate it over x . Thus we obtain
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            kr 

         f 0 1 1 (x) kr 0                dx 2 

0 

From eqs. (A-6),~,(A-10), we have 

             dr 1 0 (kr) 1 + kr 0        f 2 kr 0 
               ro 

Next we evaluate the second term in eq. 

rewritten as 

r          1 2 (kr) 1 2 (kr) f 0      f "0 dr 2 f CO dr 2 d-
       r o 0 0 

Similar Drocedure to that of getting eq. 

                 J,(kr) 1 kr 0 

       f dr 2 7-
             r 0 

From eas. (A-5). (A-11). and (A-13), we 

           I Tr k ( 1 -~ 4 + 3 kr             x x kr 0 3 -9 0 

similarly, we can also evaluate that 

         I k ( 1 + 2 + kro) 
            yy !Er-o -3 8 

Using ecs. (A-14) and (A-15). we arrive 
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(A-5), 

i 2 (kr) 

2 r 

 (A-11) 

obtain 

at the

          (A-10) 

          (A-11) 

which can be 

          (A-12) 

 yields 

         (A-13) 

         (A-14) 

         (A-15) 

final result,:



I !-' 7r k

which is 

terms u-c 

becomes

   1 +2 -2kro 0!~ 0  ~
ro 8 

                       kr 

                      kr 0 

                               2 kr  0 0
, kr 

0 2- 2 

 correct up to first order in kr 0* If we 

to linear in k (note the factor k in the 

ecuivalent to eq. (3-7) in the.text.

      (A-16) 

0 

retain the 

front), this
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Appendix B: Approximate Expression of a(k) 

     We prove the following approximate formula for a(k)= 
                                                                  e K+ik_l' 

      a(k) 1 k cot k _ 1 + O(K) (B-1)             K+ik 2 2 2 
$ 

where O(K) means a collection of terms that are of the order 

of or higher order than K and, at the same time, analytic with 

respect to k in the domain lkl<Tr. We make use of the Laurent 

expansion 

                          + f(z) (B-2) 
                  e Z- 1 z 

where f(z) is a power series of z starting from a term linear 

in z (expansion coefficients of f(z) are expressed by Bernoulli 

numbers, although the detailed form of f(z) does not matter in 

the following argument The radius of convergence of the 

expansion (B-2) is 27. Using eq. (B-2), we have 

            a(k) = R-+ik -f + f(K+ik) 

                                                          (B-3) 
                 = -j~

+ -ik -f + f(ik) + O(K) 

We rewrite f(ik) in this equation as 

        f(ik) = K f(ik) + 'k f(ik) (B-4)                  K+ik K+ik 

The first term in the above equation is rewritten to give 
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       K - f (ik) K (f(K+ik) + O(K)) (B-5) 
       K+ik K+ik 

Since f(z)/z is analytic in the region lzl<2ff, we can make the 

estimate., from eq. (B-5), such that 

              K f(ik) = O(K) (B-6) 
             K+ik 

From eqs. (B-4) and (B-6), we obtain 

             f(ik) - ik f(ik) + O(K) (B-7)                       K+ik 

By applying the formula (B-2) to the function f(ik) in the                C> 

right hand side of this equation, we get 

      f(ik) 'k ( 1 - 1 + 1) + O(K) (B-8)                   K+ik 
e ik_ 1 1-k -f 

Substituting ea. (B-8) into eq. (B-3), we have 

      a(k) 'k ( 1 + 1) - 1 +O(K) (B-9)                K+ik e ik_ 1 2 2 

A straightforward manipulation of this equation yields the 

desired result (B-1).
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Appendix C: Bulk Eigenmodes 

      In this appendix, we solve the eigenvalue problem (3.28) 

which appeared in the text, with the .-3pecial attention paid to 

the order with respect to K. The solution is correct up t1o 

the first order in~K. First we prove the following theorem: 

Theorem 

   Let f(k) be a function of k that is analytic near k=O and 

   does not contain K. Then, within the region where f(k) is 

   analytic, 

   (i) if f(k) is an even function of k. we can make the estimate 

   such that 

             cos 2 6 f(k) = cos 2 0 f(O) + O(K 2 

   (ii) otherwise, we have 

             cos 2 6 f(k) = cos 2 e f(o) + O(K) 

   where 8 is defined in the text. 

It is easy to prove this theorem. In the case of (i), f(k) . can 

be exDanded as 

                                2n 
                                                            co 

            f(k) f(O) + c n k                                  n=1 

Therefore, we have 

       cos 2 8 f(k) Cos 2 0 f(O) + K 2 - CO c k 2n                           2 2 1 n 
                                       K +k n=1 
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                                                                                    00 

                    cos 2 0 f(O) + K 2 sin 2 a I c n-1 k 2n 
                                                  n=0 

             2n Si
nce Z = c k is also analytic in the region where f(k) is        n 0 n -l 

analytic, we obtain the densired result, at once. The proof 

for the case (ii) can be similarly made. 

     Now we examine the eigenvalue equation (3.28). With the 

                                  k k 
aid of the power series expansion of 7cot-f (see eq. (3.29) in 

the text), as well as the above theorem, eq. (3.28) can be 

rewritten as 

   E: b - r 0 - r 1 cos k - F-, 0 

  0, E b +2r 0 +2r 1 cos k -61 
            Cos 6, sin 6 O(K 2 O(K) 

                                                     U= 0 (C-1)  + 6X cos a sin 631 -Cos 61 + O(K) 3 O(K 2 
If we are to evaluate the eigenvalues up to first order in K, 

the diagonal terms of order K 2 and the off-diagonal terms of 

order K are unrelevant, and we can neglect the third term in 

the curly bracket of eq. (C-3.) . In order for non-trivial 

solutions to exist,, the determinant of the matrix should vanish. 

After some manipulations we get 

     E 2 _ E 2 (k) + 4X cos 2 e E(k) -4x 2 Cos 2 0 = 0 (C-2) 

where we have defined E(k) and E as 

        E(k) (r 0 + r 1 cos k)/2 3 (C-3) 

and 

        E -c b E(k))/3 (C-4) 
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 respectively. If we apply the above theorem to the thi
rd term 

 in eq. (C-2), with keeping the sum rule (see eq . (3.26) in the 

 text) in mind, we can show that the last two terms can cel each 

 other (up to first order in K) . Finally we obtain 

          E = ± E(k) + O(K 2 ) - (~-5) 

 Now we seek for the eigenvector corresponding to the ei
genvalue 

E(k). From the original eigenvalue eq'uation (3 .28), we see 

that u -must satisfy 

              2 k   [ -E(k) + ~ cos e cot~~ 
U 0- (C-6)                     -ff 2 cose sin e k cotk 

Using the theorem as well as the sum rule (3 .26), we can show 

that 

          E(k) = E(k)(sin 2 e + Cos 2 e) 

               = E(k) sin 2 6 + Acos 2 0 + O(K 2 (C -7) 

and also that 

          2 k k 2 2         Cos 8 
7 cot f = A cos e + O(K (C-8) 

Substitution of eqs. (C-7) and (C-8) into eq . (C-6) yields 

                       X cose k cotk        (-E(k) sin8 , 2 7 ) u 0 (C -9) 

which is valid up to first order in K. This equation is solved 

to give 
                r 0 +r 1 k k 

           Ir 0 +r 1 Cos T f cotf cose, 
         U = (C-10) 

                     sin8
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We point out that u is normalized correctly up to the order of 

K; 

                1 + O(K 2 (C-11) 

this can be proved with the help of the theorem, again. The 

eigenvector corresponding to the eigenvalue -E(k) can be similarly 

obtained. 

      If we use the original energy parameter 6, our results 

are summarized as follows; the energy eigenvalues and the 

eigenvectors of the bulk excitons are given by 

        E t (k) = F- b - r 0 - r 1 cosk + O(K 2 

                         sinO 2 
      ~ut(k) = r 

0 +r 1 - k cot k cose + O(K (C-12) 
                  0 +r 1 cos k 2 2 

and 

       E:,Z(k) = 6 b + 2r 0 + 2r 1 cosk + O(K 2 

                  0 1 
7 k cot k cose,                  r 0 +r 1 Cos 2 2     lu k (k) = sinO + O(K (C-13) 

In the text we have adopted the function cosO in place of the 
                                 r 0 +r 1 k k 

rather complicated function r 
0 +r 1 coE-k- 7 cot-ff cose in U t (k) and 

and u Z (k). We note that the corrections due to this 

replacement are of the order of K. This can be easily proved 

in the same way as the proof of the theorem mentioned above.
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Appendix D: Evaluations of the Integrals 

     In this appendix, we express the integrals appearing in 

the matrix [I] in the text in terms of the following integrals, 

the result of which will be correct up to the order required 

for each integral in the K // -expansion: 

         I t 0    I 'ZI fdk GO(k) (D-1) 
                 0 .1 1 

        1 0 " 
T fdk e ik GO(k) (D-2)     ~0' i 

          Otl K - fdk Ja(k) 12 G (k) (D-3)                     ru T7T 0 
             03 1 

where the range of integration is from -7 to 7 in all cases. 

These six integrals can be evaluated eAily with the aid of the 

residue theorem. It is convenient to use the two energy 

parameters x and y with the corresponding complex energies v 

and w. as well as the complex square root function cV-_ which 

are defined in eqs. (5-10). (5.11) and (5-13) respectively. 

                            t t The explicit expressions for 1 3 1 3 and It are as follows; 

      I t = 1 (D-4) 
          c/_27:_2 

v 

      i t = (1-VI t )/rl (D-5)

- 131 -

I



       Tt = K e- K (-. 1 + r I t             2( v+r 1 cosh K) sinh K 1 
(D-6) 

                 e -K t 2          = 
2(v+r 1) (1+K r 1 1 ) + O(K 

In the last line of eq. (D-6) we have expanded coshK and sinhK 

in terms of K. We may of course expand e- K . too, but we use 

it as it stands for a later calculational convenience. The 

exDressions for I i and I can be obtained by simply replacing 

r 1 and v in the above expressions with -2r 1 and w, respectively. 

      There are twenty-one independent integrals in the matrix 

[I]. Here we examine only some of them. The others can be 

examined similarly. Typical integrals appearing in the matrix 

[I] are 

2 (a) Icc = 1- fdk G (k) cos 8 
              2 Tr 0 

(b) Isc = 1 fdk G (k) sin 2 e                     -
7F 0 

(c) 1 1 fdk G (k) y * (k) ~(k) 
      Y T 0 

1 (d) ic~ fdk GOW cose ~(k) 

(e) is~ -f7 fdk Go(k) sinO ~(k) 

where ~W=a(k)e ie and y(k.)=a(-k)e- ie e K-ik are the first two 

elements of the vector [f(k)] defined in the text. In the 

following we examine these integrals. 

For (a): Since cos 2 e has significant values only in the small
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region of k around k=O the width of which is roughly K, we 

immediately obtain 

                 I O(K) (D-7) 
                         cc 

For (b): Using the above estimate, we get 

            I = 1 fdk GO(k) (l,cos2e) 
                   ss 7F 

                                                           (D-8) 
                  = I + O(K) 

For (c): We can approximate y (k) as 

                       ie K+ik 
                                K+ik -1 

                    e (a(k)+l) (D-9) 

                       cosO k k ie 
                       K 2 cotf + e 2 + O(K) 

                       e -ie a(-k) + cos8 a(k) e ie + O(K) 

In the third and the fourth lines we have mada use of the 

estimate (4.29) in the text. Thus we have 

  y (k) ~(k) = ja(k)l 2 + cosO a(k) e ie + a(k) e ie xO(K) (D-10) 

We introduce a notation O(K) which means that it is a function 

of k and that when integrated over k it becomes of the order 
                                            ie A 0 of K. It is easy to show that a(k)e O(K Therefore the 

third term in the last line in eq. (D-10) is written as O(K). 

Concerning the second term, we can rewrite it as 
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                     ie Cos 2 e          cosO a(k) e = + O(K) 

                    = Kja(k)l 2 + O(K) 

Therefore eq. (D-10) is rewritten as 

                      12 +        y (k) ~(k) = (1+K)Ia(k) O(K) 

                 = e K ja(k)l 2 + O(K) 

Finally we get 
K               e 

+ O(K) K 

For (d): Using eq. (D-11), we immediately obtain 

        I C~ = T + O(K) . 

For (e): First we rewrite the integrand as 

                          (oose k k cose sine        sine ~(k) = sine K 2 - OtT - 2 

Since G 0 (k) is the odd function of k, the first and the 

terms in the bracket do not contribute to the integral. 

               i I + O(K) 
          s~ 2 ss 

               I + O(K) 
2 
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I

(D-12)

(D-13)

0 (K)

second 

  Hence
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Appendix E: The Wave Functions of the Surface Excitons 

      The wave functions of the surface excitons are obtained 

by directly solving the Schr3dinger equation. We can do this 

in the real space representation in the same manner as in §-6-1 

for the 'surface polaritons' assuming that the k-dependence of 

the wave functions is of the form given in eq. (5.68). Instead., 

in the following, we briefly sketch the outline of solution in 

the k-space. 

      The Schr6dinger equation in the k-representation reads 

          6 t (k)-F_ .1 0                         C
k) +IX V kkv (k1) = 0 (E-1)       0, (k)-c-1 k 

where V kkl is given in eq. (4.18) in the text and 

               <01 b t (k) IV>         Ck) = ~<Oj bt(k) 1~> (E-2) 
is the surface exciton wave function. Since V is of the                                               kkl 

separable form, there arise no difficulties in principle. 

The method to solve eq. (E-1) is similar to., but simpler than 

 that to solve Dyson's equation. We introduce a six-dimensional 

 column vector [~] with each element being a two-dimensional 

 vector defined by 

                   f (k) Ck) (i=1n,6) (E-3) 
                  k i 

where f i (k) is the i-th element of the vector [f(k)] given in 
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eq. (4.16) in the text. If we are to seek for a truely 

localized mode, we may assume that its energy c is located out 

of the bulk band c t (k) and c k (k). T'nen eq. (E-1) can be 

rewritten as 

         (k) = G 0 (k) t[f*(k)][M][~] (E'-4) 

We multiply the both sides by f i (k) and then sum over k. The 

result in the matrix representation is 

         M = IIHMIE~l (E-5) 

This eauation determines both c and [~] at the same time. 

Substitution of the solution [~] into eq. (E-4) yields the wave 

funation. The K expansion is possible and we assume at the 

outset that 

                        O(K 0              13 23 ~35 ~4 

                                                           (E-6) 

          ~53 ~6 = O(K 

These assumptions can be ascertained self-consistently after 

we solve the problem. The energy eigenvalues have been given 

in the text. We only show the final result of the wave 

functions in the lowest order approximations in the K //-expansion; 

     //72~2 
                  _r

l             46 r 1 r 1    ~(k) = _ ( + 6e- ik ) G 0 (k;E) x 
        / T6__~ _M '~_ 

        X 3X ij cos e + sin ell ...,x_pol.l            ~ 6-6 b- 1 Cos 6
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  ~(k) 

X with the understanding 

mode. In deriving th 

estimates (5.43). Si 

of k except for very s 

Ix-pol ., (1z-pol.1) su 

bulk T(L)-excitons. 

     Finally we point 

the other one such tha 

                         1-1 2 

               33 ~41 4 

leads to the solution 

can be ascertained th 

final solution.

'~---2 (E-7) 
   rl 

e- ik_r 1 ) G 0 (k;c) x 

                    Cos e + - Co's ... 1z-pol.1 
                       sin 

            that e is the energy eigenvalue of each 

           e above results we have made use of the 

            nee cose is nearly zero 'for most values 

          mall values (jkj,<,K), we can say that the 

           rfaceexciton is mainly composed of the 

           out that instead of the assumption (E-6) 

t 

         O(K 0 
                                               (E-8) 

4 

        5 6 O(K 

            of the 'surface polariton'. It also 

          at this assumption is consistent with the
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Appendix F: Explicit Expressions of the Absorption Spectrum 

      The final results for the four 3omponents 1 S (6), 1 c (6), 

AI (c) and AI (c) of the absorption s- , )ectrum are as follows: 
  s c 

                        2Z_~x 2                 r7 x 
                                1 2 _ 2      I 

s (c) 6(x+r 1 + 7T(x+r 
1 2 e(rl X (F-1) 

     (C) 2 + 1 + 9 X 2 ~ 'l -      c (X 
1 2_r 1 2 ) 3/2 +r 2 

                + 2 6(E-C b-

              /X 2 2_ 4r 1 2 

              + [- 2 + 9X 2 6(x+r (F-2)                  K 
(X 1 +r 2 1 

              + - qX 2 (r 1- X) 
)2 7:x2 6(r 2_ X 2               Tr(r +X)(X-X /r7 x 

                            _2_v2 
            + - Ar y 2 e(4r 1 2_ y 2 (IX 2 1>12r,l) 

                  TF ( Y- X 2 ) 

          (6) 26-r 6(x-x r 1 +26 6(x-r         s 26+r 0 2( .r 1 +x 0) 1 

                 72 ~-2 (F-3) 

x 

                 1 -T 6(r 2_ X 2 (161>1r /21) 
                 27r(x-x )(x+r, 1                    0 1 
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AI c (C) =

9X2 (26-r 1 )

(X 1- x 0 ) 2 (26+r 1) 

(6-r 1) 2 (6 2_ r 1 2 )

6 (x-x

6 2 ( x 2-yo) 2

9), 2 x 0 
 +r 0 1 

-x 
0 x 1 +r 1 2

-26

 (Y-yo) 

     26+r 

2 +r 
1) 2 

r

i

2(x    -x 0

+

      2 2 2 2 
 i- x 0) 1 1 

 I (6-r 1 ) 2 (6 2 2 2

(F-4 )

+

     26 2 ( x 0- x 2) 2 

(2r 1- x 0)(-Xo x 1 +4r 1 2

2 /X 2 2 _ 4 r 1 2

2 2- x 0 ) /X 2 

   2/ 2 
   gx r 1 _ x

2 2 _ 4r 
1 2

 6(Y-X 2)

27T(x-X 1 ) 2 (x+r 1 )(x-x 0 

2 (Y-2r ) Ar7 y 
     1 1

0 (r
1 2_x 2 )

Here we have

2 7T (Y- X 2 )

 defined 

+ 

2

2
(Y-yo)

 x and 

ro 

2r 0

X 2 as

e(4r 1 2_ y 2 ) -
16 1 > I ri 1 

lx2 1 > 12r111

(F-5)
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Note that X 1 (X 2 ) is the energy of the 'surface polariton' 

measured from the center of the T(L)-band. The above expressions 

hold when 161>lrll and IX2 1>12r1j. When 161 <Irll, the term 

containing 6(y-y 0 ) should be removed trom the expression (F-4), 

and when 161<1r 1 121, also the terms containing 6(x-x 0 ) should 

be removed in the expressions (F-3) and (F-4). On the other 

hand, if Ix 2 1<12r,l the terms containing /?, 2 2 -4r 12 as a factor 

should be omitted in the expressions (F-2) and (F-4).
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