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ベルシステム 24の金 水龍さんには，学生時代に株式会社ベルシステム 24「統計科学研究会」に
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こと細かに語ってくれました．また，著者に「時間を守ることの大切さ」をご教示いただきまし

た．興和株式会社の丸尾和司博士には，常日頃より著者のことを気遣っていただき，さまざまな

ご支援をいただきました．元垣内さんと一緒に白旗研のセミナーで著者ら学生をBRAに勧誘して
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Abstract

In this paper, we focus on three different topics. They are “Predictive performance of Bayesian

diagnoses”, “A preliminary evaluation about health guidance” and “The impact of the shape of

the underlying distribution of observations on test results”. The main results of this study are

as follows:

Predictive performance of Bayesian diagnoses. In a framework of Bayesian approach,

though we have an advantage which we select various prior distributions according to the situ-

ation, the number of the model which we have to evaluate is very large. When we make model

diagnoses, previously we need to confirm whether the model diagnoses meet our intended pur-

pose of model selection. We are often interested to data which will be gained in future. So

we consider two diagnostic methods that focus on prediction: Bayesian predictive information

criterion (Ando, 2007), prior and posterior predictive checking approach (Box, 1980; Rubin,

1984; Gelman, Meng and Stern, 1996; Daimon and Goto, 2007). We try to clarify the char-

acteristics of these approaches and express the situations of effective diagnosis. As the result,

models with strong prior information gave lower BPIC than models with weak prior information

totally. It means that BPIC prefer to models with strong prior information. Conversely, in the

framework of predictive checking approach, models with weak prior information gave higher pre-

dictive checking probability than models with strong prior information. It means that predictive

checking probability prefer to models with weak prior information. In our simulations, these

findings were unaffected by whether prior mean was true or not. So we have a concern that

it has possibilities of selecting not models with true prior mean but models with no true prior

mean in several situations. Therefore, to select model appropriately, it is important to clarify

the characteristics of these predictive model diagnoses in application situation and consider how

to find the operational characteristics of the diagnoses (including combination) before model

evaluation.
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A preliminary evaluation about Health Guidance Since April 2008, Ministry of Health,

Labor and Welfare of Japan has carried out Health Checkups and Healthcare Advice with a

particular focus on the Metabolic Syndrome which make it obligatory for person aged 40 through

74 to reduce medical expenses and prevent lifestyle-related diseases. However, Kondo (2004)

indicates a lack of foundation for health checkup. We also wonder about effect of making health

checkup compulsory. The Health Checkup that aims to prevent disease was carried out in April

2004 and a doctor classified subjects into uncontrolled, directed (teaching of better living) and

clinical group (includes medicine), based on their results. In this paper, we explore foundation

about the doctor’s judgment, especially classification of the directed group, attempting to figure

the doctor’s character, and further evaluate directed effect for the directed group. As a result, we

confirmed that the doctor classified subjects from their body types such as weight and BMI, and

that it reduced weight and BMI as the directed effect, but it gave increase of TG and decrease

of HDL which are likely to develop abnormal lipid metabolism. So, we found that adequate

evaluation about effect of health care advice leads to suggestion of scientific foundation for

health checkups and health advice.

The impact of the shape of the underlying distribution of observations on test re-

sults In clinical research, we consider difference between pre- and post-treatment observations

as an evaluation indicator for treatment effect. Then, though we generally focus on a normality

of the difference, the relation between distributions of these treatment observations and the

difference is not discussed in detail. In this paper, when it is assumed that pre- and post- treat-

ment observations follow bivariate power-normal distribution, we clarify the relation between

the distribution of these treatment observations and the distribution of the difference compre-

hensively and quantitatively, and evaluate the impact of the distribution of the difference on a

paired and two-samples t-test which require the normal assumptions. As a result, the skewness

of the difference of the distribution were very small compared to the distribution of these treat-

ment observations and approached to symmetry. Moreover, we gained certain findings that the

power in these tests remained high even if the normal assumption was violated a little, though

the power in a paired and two-samples t-test decreased as the potential distribution was right-

skewed. Thus we found that it is useful for the interpretation of the test results to focus on not

only the distribution of the difference but also the potential distribution which these treatment

ii



observations follow.
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Notations

notation definition

Chapter 2

θ parameter

p number of parameter

n sample size

y,ỹ data

yd,ỹd observed data

µ mean

σ2 variance

µ0 prior mean

σ2
0 prior variance

n0 prior sample size

p(θ) prior probability

p(y|θ) likelihood function of sampling distribution

p(θ|y) posterior probability

p(y, θ) joint probability of parameter θ and data y

p(ỹ, θ|y) Given y, joint probability of parameter θ and data ỹ

g(·) predictive checking function

Ω sample space

F any events

Ei measurable event

Pr(Ei) generated probability

Pr(Ei|F ) conditional generated probability

N normal distribution
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notation definition

Chapter 3,4

XB,XT pre- and post-treatment observation

∆ clinical effect

eB,eT error term of pre- and post-treatment observation

X,x probability variable and observed value on the original scale

X(λ), x(λ) probability variable and observed value on the transformed

ϕ probability density function of standard normal distribution

Φ cumulative density function of standard normal distribution

λ shape parameter

µ location parameter

σ scale parameter

ϵp 100p percent point

N normal distribution

PN power-normal distribution

MPN multivariate power-normal distribution
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1. Introduction

1.1 Background and motivation

In this paper, we focus on three different topics, they are “Predictive performance of Bayesian

diagnoses”, “A preliminary evaluation about health guidance” and “The impact of the shape of

the underlying distribution of observations on test results”. In this paper, we introduce their

backgrounds and motivations separately.

Predictive performance of Bayesian diagnoses In a process of Bayes inference which

formulates iterative procedure of scientific research, we select a prior distribution based on cu-

mulative experiences, experiments and knowledge, and compose a probability model under the

prior distribution. Then “Criticism” and “Estimation” which Box(1980) refer to are repeated.

After a model is composed from known data, it shows the necessary of data analysis for the

model and more data (predictive part), as the result of the analysis, a revised model is obtained

(posterior part). If the model is correct, we can make proper inferences about parameter using

a posterior distribution which is combination of prior information and data information. How-

ever, because the posterior distribution is composed using only a pair of data that has actually

occurred, it is important to make diagnosis/checking for the model. Then, we can diagnose the

model in the following three terms at least: (1) Sensitivity analysis for variation of prior distri-

bution and likelihood, (2) Appropriateness of posterior inference for the model in the context of

the actual application, (3) Fitness of the model to the data. In this paper, we notice on a model

diagnosis in terms of (3). In the framework of traditional model selection such as Bayesian in-

formation criteria (BIC) (Schwarz, 1978) and Bayes factor (BF), a model with highest posterior

model probability is selected. However, in fact, we are often interested to data which will be

gained in the future. Therefore, we consider two diagnostic methods that focus on prediction:

Bayesian predictive information criterion (BPIC) (Ando, 2007), prior and posterior predictive

checking approach (Prior- and Post-PCA) (Box, 1980; Rubin, 1984; Gelman, Meng and Stern,
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1996; Daimon and Goto, 2007).

BIC which is most familiar information criterion in Bayesian approach is a criterion of model

evaluation based on a posterior probability and select best model with the highest posterior

probability among several model candidates. Bayes factor, extended Bayesian information cri-

teria (Konishi, Ando and Imoto, 2004) are well-known as other model evaluation criteria in the

same position. Recently, BPIC has been proposed as new diagnosis method which evaluates

model fitness from a position of the prediction. BPIC selects a model with the highest expected

log likelihood.

By integrating model consisted of prior distribution of the parameter and joint probability

distribution of data in the parameter, we can get a predictive distribution (refer to it as “prior

predictive distribution”). Box (1980) proposed prior predictive checking approach which com-

pares the prior predictive distribution of future observations to the data that have actually

occurred and judge an appropriateness of the model. Then, we can consider whether data is

included in the prior predictive distribution, and can check the compatibility between prior

information and data information. However, in actual situation, it is desirable to develop the

diagnosis which focuses on selecting the model for meeting our intended purpose rather than

whether model is true (Tiao and Xu, 1993). So it is often necessary to assess not only the model

itself but also interesting indices such as sample mean, sample variance or on which the decision

making is based. In the framework of the prior predictive checking approach, it is also possible

to evaluate the interesting situation by setting an appropriate predictive checking function and

referring predictive probability of the predictive checking function obtained from the data that

have actually occurred to predictive distribution of the predictive checking function.

Rubin (1984) proposed Post-PCA as an alternative method of the prior predictive check-

ing approach. This approach focuses on compatibility between posterior information and data

information. An initial paper which defined the idea about this posterior predictive checking ap-

proach is Guttman (1967) and Dempster (1971). After that, Gelman et al. (1996) extended this

approach and proposed a method which conducts a posterior prediction by numerical calculation

as the diagnosis of fitness of the single model for directly measuring the diremption between data

and an assumed model. The characteristic of the model diagnosis is that a parameter of model

is not treated as a point estimator but is generated from a posterior distribution. This point is

different from a classical model diagnosis. Therefore, it is possible to diagnose a model taking
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into consideration uncertainly of parameter. Also, just like prior predictive checking approach,

we can calculate posterior predictive checking probability for interesting indices. For example,

even in many model diagnoses such as test for a outlier, residual plot and normal plot, it is

interpretable to measure the diremption between expected results under an assumed model and

actual data (Gelman, Carlin, Stern & Rubin, 2004).

In prior and posterior predictive checking approach, we can conduct the diagnoses for these

model from the two viewpoints which are “Exploratory data analysis” and “Confirmatory data

analysis”. From the viewpoint of “Exploratory data analysis”, it is possible to find the shape

of the predictive distribution of data and predictive checking function visually by showing data

and the value of predictive checking function. Also, from the viewpoint of “Confirmatory data

analysis”, it is possible to measure the significance of model as the prior and posterior predictive

checking probability which show the diremption between the model and data. Moreover, in the

case of that we use both prior and posterior predictive checking approach simultaneously, we can

get the following findings. For example, if it is suspicious for a model or an interesting index in

prior predictive checking approach, it doubts about the appropriateness of prior distribution. So

the posterior predictive checking approach based on the prior distribution become meaningless.

However, if it is suspicious for a model or an interesting index in not prior predictive checking

approach but posterior predictive checking approach, it means that the assumed model for

sampling distribution is unworthy of belief (Daimon & Goto, 2007).

Though the above BPIC and predictive checking approach are only a few diagnoses focused

on the prediction, the predictive performance remained unclear. So in chapter 2, we focus on the

above BPIC and predictive checking approach and evaluate the predictive performance under

various situations.

A preliminary evaluation about health guidance A prevalence and reserves of “lifestyle-

related disease (adult disease)” increase as the lifestyle habit changes and the number of elderly

people grows. “lifestyle-related disease” is a collective term of some diseases involving lifestyle

such as a smoking, diet, drinking, exercise and sleep. And the incidence of cerebral stroke and

ischemic cardiac disease increases as the risk factor of lifestyle-related disease such as hyperc-

holesteremia pile up.

Since April 2008, Ministry of Health, Labor and Welfare of Japan has carried out “Health
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Checkups and Healthcare Advice” with a particular focus on the Metabolic Syndrome which

make it obligatory for person aged 40 through 74 to reduce medical expenses and prevent lifestyle-

related diseases (Health Service Bureau of Health, Labour andWelfare, 2007). Though the aim of

“Health Checkups and Healthcare Advice” is “Reduction of medical cost” and “Prevention of the

lifestyle-related disease”, it is deeply concerned about the appropriateness of “Practice criteria”

and no evidence for “Prevention”（Ohgushi, 2006: 2007）. Also as Kondo(2004) indicates a lack

of foundation for health checkup, we wonder about making health checkup compulsory, too.

The health checkup that aims to prevent disease was carried out in April 2004 and a doctor

classified subjects into uncontrolled, directed (teaching of better living) and clinical group (in-

cludes medicine), based on their results. After that, the teaching of better living or treatment

was conducted for the directed and clinical groups and how the clinical test results improve was

examined. Here the definition for the clinical group was based on the constant criterion value

and the definition for the directed group was based on the judgment of the doctor. By using

this data, we explore foundation about the doctor’s judgment, especially classification of the

directed group, attempting to figure the doctor’s character, and further evaluate directed effect

for the directed group.

The impact of the shape of the underlying distribution In clinical research, we consider

the difference between pre- and post-treatment observations as an evaluation indicator for treat-

ment effect. When we examine whether the treatment effect exists or not, it is often assumed

that the observations follow normal distribution, and a paired t-test in a one-sample problem and

two-samples t-test in a two-sample problem are applied for them. But a lot of endpoints exist

in the actual clinical research and the endpoints do not always follow the normal distribution.

When it is assumed that pre- and post-treatment observations follow various distributions, we

evaluate the impact of them on tests which require the normal assumptions. Because we often

conduct two-group comparison between actual group and placebo group in clinical research,

we consider not only one-sample problem but also two-sample problem. We evaluate the per-

formance of the paired t-test in one-sample problem and the two-samples t-test in two-sample

problem, but also use the Wilcoxon signed rank test in one-sample and the Wilcoxon rank sum

test as the comparison of the t-tests. To clarify the relationship and the structure between the

distributions of pre- and post-observations and the distribution of the difference, we especially
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focus on the following points.

(a) Relation between non-normality of distributions of pre- and post-observations and non-

normality of the distribution of the difference.

(b) Influence of non-normality of distribution of the difference on power in above tests.

(c) Availability of interpreting the test results corresponding to distributions of pre- and post-

treatment samples.

As an approach to (a), we assume that pre- and post-observations follow a bivariate power-

normal distribution (BPND: Goto and Hamasaki, 2002) in order to consider the relationship

between the distributions of pre- and post-observations and the distribution of the difference

comprehensively and quantitatively. The bivariate power-normal distribution is the bivariate

extended form of an univariate power-normal distribution (PND) which was proposed by Goto,

Matsubara and Tsuchiya (1983). The univariate power-normal distribution is defined as the

distribution which the observations before the power-transformation (Box and Cox, 1964) follow,

and contains various distributions including well-known normal distribution and log-normal

distribution, so can cover real situations to some extent and is useful to evaluate the discrepancies

between ideal (model and hypothesis) and reality (data) (Goto, Uesaka and Inoue, 1979; Goto

and Inoue, 1980; Goto, Matsubara and Tsuchiya, 1983). Moreover, because pre- and post-

observations have the correlated relationship, the bivariate power-normal distribution including

the correlation structure is suitable for assessing our problem. Because the PND express the

features of the distribution which the data follow even if the distribution is not known previously,

we notice on the PND in this paper. Additionally, to make clear the situation examined in this

paper, we identify the distribution of pre- and post-observations by using a shape parameter

(power-parameter) which expresses a skewness of the distribution and an indicator which express

a variation of the distribution defined later And we derive the distributions of the difference from

numerical integral in several situations and inquire the properties about the distributions of the

difference. As an approach to (b) and (c), we examine the impact of the shape of the potential

distribution on the results of the t-tests.
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1.2 Components of this paper

In chapter 2, we explain about BPIC and the predictive checking approach, and describe

the results and new findings obtained from the simulation to make clear the the predictive

performance. In chapter 3, we conduct a preliminary evaluation about health guidance for data

of 1,141 subjects who had the health checkup that was carried out in April 2004. And we

summarize the results of the data analysis. In chapter 4, we examine the impact of the shape

of the underlying distribution of observations on test results and specifically present occasions

where t-test works well. In chapter 5, we contain our concluding remarks about the findings

obtained from chapter 2,3 and 4.
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2. Predictive performance of Bayesian

diagnoses

2.1 Introduction

In a process of Bayes inference which formulates iterative procedure of scientific research, we

select a prior distribution based on cumulative experiences, experiments and knowledge, and

compose a probability model under the prior distribution. Then “Criticism” and “Estimation”

which Box (1980) refer to are repeated. After a model is composed from known data, it shows

the necessary of data analysis and more data (predictive part), as the result of the analysis, a

revised model is obtained (posterior part). If the model is correct, we can make proper inferences

about parameter using a posterior distribution which is combination of prior information and

data information. However, because the posterior distribution is composed using only a pair

of data that has actually occurred, it is important to make diagnosis/checking for the model.

Then, we can diagnose the model in the following three terms at least: (1) Sensitivity analysis

for changes of prior distribution and likelihood, (2) Appropriateness of posterior inference for the

model in the context of the actual situation, (3) Fitness of the model to the data. In this paper,

we notice on a model diagnosis in terms of (3). In the framework of traditional model selection

such as Bayesian information criteria (BIC) (Schwarz, 1978) and Bayes factor (BF), a model

with highest posterior model probability is selected. However, in fact, we are often interested

to data which will be gained in the future. Therefore, we consider two diagnostic methods that

focus on prediction: Bayesian predictive information criterion (BPIC) (Ando, 2007) and prior

and posterior predictive checking approach (Prior- and Post-PCA) (Box, 1980; Rubin, 1984;

Gelman, Meng and Stern, 1996; Daimon and Goto, 2007).

BIC which is most familiar information criterion in Bayesian approach is a criterion of model

evaluation based on a posterior probability and select best model with the highest posterior

probability among several model candidates. Bayes factor and extended Bayesian information

criteria (Konishi et al., 2004) are well-known as other model evaluation criteria in the same
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position. Recently, BPIC has been proposed as new diagnosis method which evaluates model

fitness from a position of the prediction. BPIC selects a model with the highest expected log

likelihood.

Prior-PCA provides checking models or indices by comparing data to the prior predictive

distribution. This approach contrasts the prior information and the data information, and checks

their compatibility. Post-PCA replaces the role of the prior distribution in Prior-PCA with it

of the posterior distribution. Main feature of Prior- and Post-PCA is to be able to check not

only a model itself but also interesting indices or statistics by setting proper predictive checking

functions. Therefore, we can judge whether the model is suitable for the specific occasion or

not. It is considered that this feature is quite effective because we do not always have to focus

on the model itself and can select a proper model which meets the purpose of the research.

Though Bayesian approach has the advantage that it is possible to select a prior distribution

according to an individual situation, there exists many models which should be evaluated. So

we consider that BPIC and PCA have a specified situation suitable for each model diagnosis.

But the profiles about BPIC and PCA have not been clarified enough yet. In this paper, our

purpose is to make clear the properties of BPIC and PCA and propose the effective diagnosis

situations.

In section 2.2, we explain BPIC and PCA. In section 2.3, we apply Bayesian predictive diag-

noses which were introduced in section 2.2 to data of triglyceride concentration in the plasma,

and evaluate the appropriate of several models. Several simulations are conducted to evaluate

the two diagnosis methods and some productive findings are summarized in section 2.4. Finally,

section 2.5 contains our concluding remarks.

2.2 Bayesian predictive diagnosis

2.2.1 Bayesian predictive information criterion

As the model diagnosis, Bayesian predictive information criterion (BPIC) is proposed by Ando

(2007). BPIC is defined as an estimator of the posterior mean of the expected loglikelihood of

the predictive distribution. In this criterion, we can evaluate the predictive distributions of hi-

erarchical and empirical Bayes model even when the assumed family of probability distributions

does not always contain the true model.
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Akaike’s information criterion (AIC; Akaike, 1973) and Generalized information criterion

(GIC; Konishi and Kitagawa, 1996) known well as information criterion selects the maximum

model of the expected loglikelihood using Kullback-Leibler information as the indicator for mea-

suring a distance between assumed statistical model and true model. However, BPIC evaluate

the statistical model composed of the posterior expected loglikelihood.

As notations, p(·) shows probability density function, where p(θ) is a prior probability which

represents the degree of confidence for θ before getting data y, p(y|θ) is the likelihood function of

the sampling distribution which data y (which generates from a parametric distribution) follow

and
∫
p(y|θ)p(θ)dθ is a normalized constant. The probability distribution of the posterior prob-

ability p(θ|y) is posterior distribution and the probability distribution of the prior probability

p(θ) is prior distribution.

Then, the posterior expected loglikelihood is given by

η(G) =

∫ {∫
log p(ỹ|θ)p(θ|y)dθ

}
dG(ỹ),

where G(ỹ) is true model, ỹ is future observation and y is observation. Though the posterior

expected loglikelihood is calculated from true model, the true model is actually unknown. So

we have to calculate the estimator of the posterior expected loglikelihood η(G).

By using the empirical distribution function as the nature estimator of the posterior loglike-

lihood, the following posterior loglikelihood is obtained.

η(Ĝ) =
1

n

∫
log p(y|θ)p(θ|y)dθ

However, the posterior loglikelihood η(Ĝ) is calculated from both the Bayes estimator and the

empirical distribution function, so the bias exists as the estimator of the posterior expected log

likelihood. Therefore we have to reduce the bias

b(G) =

∫ {
η(Ĝ)− η(G)

}
dG(y)

The estimator of the bias of the posterior loglikelihood η(Ĝ) is expressed by

b̂(G) ≈ 1

n

∫ [∫
log{p(y|θ)p(θ)}p(θ|y)dθ

]
dG(y)

− 1

n
log{p(y|θ0)p(θ0)}+

1

n
tr{S−1(θ0)Q(θ0)}+

p

2n

θ0 is a parameter to maximize a penalized expected loglikelihood∫
{log p(y|θ) + log p0(θ)}g(y)dy,
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where log p0(θ) = limn→∞ n−1 log p(θ). And Q(θ) and S(θ) is defined as

Q(θ) =

∫ [
∂ log{p(y|θ)p0(θ)}

∂θ

∂ log{p(y|θ)}
∂θT

]
dG(y),

S(θ) =

∫ [
∂2 log{p(y|θ)p0(θ)}

∂θ∂θT

]
dG(y).

In the actual calculation, we replace the true model G to the empirical distribution function Ĝ,

θ0 to θ̂n, S(θ0) and Q(θ0) to Qn(θ̂n) and Sn(θ̂n). Then

b̂(Ĝ) =
1

n

∫
p(y|θ)p(θ)p(θ|y)dθ

− 1

n
log p(y|θ̂n)p(θ̂n) +

1

n
trS−1

n (θ̂n)Qn(θ̂n) +
a

2n
,

and

Qn(θ̂n) =
1

n

n∑
i=1

[
∂{log p(yi|θ) + log p(θ)/n}

∂θ
·

∂{log p(yi|θ) + log p(θ)/n}
∂θ

∣∣∣∣
θ=θ̂n

]

Sn(θ̂n) = − 1

n

n∑
i=1

[
∂2{log p(yi|θ) + log p(θ)/n}

∂θ∂θT

∣∣∣∣
θ=θ̂n

]

Also, a is number of parameter and n is sample size.

Then, under the weak regular conditions (unimodal of the posterior distribution, consistency

of the posterior mode, asymptotic normality), BPIC is defined as follows:

BPIC = −2

∫
log{p(y|θ)}p(θ|y)dθ + 2nb̂(Ĝ) (2.1)

We select a lowest model of BPIC as well as other information criteria such as AIC.

Calculation In section 2.3 and 2.4, when it is assumed that data y follow a normal distribution

N[µ, σ2] with known variance σ2, we set N[µ0, σ
2
0] as prior distribution of mean parameter µ.

Then, BPIC

BPIC = −2nη(Ĝ) + 2nb̂(Ĝ)

is calculated from the following posterior loglikelihood

η(Ĝ) = − log(2πσ2)

2
− 1

2nσ2

n∑
i=1

{(yi − µ̂n)
2 + σ2

n} (2.2)
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and bias

b̂(Ĝ) = −
{

σ2
n

2σ2
+

σ2
n

2nσ2
0

}
+

S−1
n (µ̂n)Qn(µ̂n)

n
+

1

2n
, (2.3)

where

µ̂n =
µ0/σ

2
0 +Σn

i=1yi/σ
2

1/σ2
0 + n/σ2

σ2
n =

1

1/σ2
0 + n/σ2

Qn(θ̂n) = Σn
i=1{(yi − µ̂n)/σ

2 + (µ0 − µ̂n)/(nσ
2
0)}2/n

Sn(θ̂n) =
1

nσ2
n

.

2.2.2 Predictive checking approach

Prior predictive checking approach

Given partition {E1, E2, . . . , En} of sample space Ω and any events F , if measurable event

E1, E2, . . . , En are mutually exclusive and
∪n

i=1Ei = Ω, we can obtain the following equation

using Bayes’ theorem.

Pr(Ei|F ) =
Pr(Ei)Pr(F |Ei)∑n
j=1 Pr(Ej)Pr(F |Ej)

, (2.4)

where Pr(Ei) is a generated probability of measurable event Ei, Pr(Ei|F ) is a generated proba-

bility (conditional probability) of measurable event Ei under the condition F .

Though the equation expresses the calculation of the conditional probability, in an inferential

problem for unknown parameter θ, by the Bayes’ theorem, we can get the posterior probability

p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. (2.5)

It shows the degree of the confidence for θ. Though we can get the posterior distribution by

connecting data to a prior distribution of parameter in Bayes’ theorem, it is suspicious for

the model in the case where it is difficult to consider that an actual data is generated from

an assumed model. When it is assumed that model including prior information is correct, a

distribution of all possible sample space is a prior predictive distribution. From now, using the

prior predictive distribution, we explain about a prior predictive checking approach (Box, 1980)

which is an approach checking compatibility between data and prior information.
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A model including prior and data information is showed by the joint probability function of

parameter θ and data y

p(y, θ) = p(y|θ)p(θ). (2.6)

This is calculated by the product between a prior probability p(θ) of θ and a likelihood function

of a sampling distribution. Then, prior predictive probability p(y) is given as a distribution of

all y in

p(y) =

∫
p(y, θ)dθ, (2.7)

where integral region is total parameter space of θ. The probability distribution of the prior

predictive probability is a prior predictive distribution.

For a known data yd,

p(yd, θ) = p(θ|yd)p(yd). (2.8)

Here index d represents the known data or statistic obtained from the known data. The first

factor in this equation is the posterior probability p(θ|yd) of θ given yd and we can get

p(θ|yd) = p(θ, yd)/p(yd).

For second factor, we can get

p(yd) =

∫
p(yd|θ)p(θ)dθ, (2.9)

and p(yd) represents prior predictive probability for actual data yd. Then, the model in prior

predictive checking approach can be checked by comparing p(y) to p(yd). So the comparison is

measured by the prior predictive checking probability

Pr[p(y) < p(yd)]. (2.10)

So in the prior predictive checking approach, a model is evaluated by comparing the prior predic-

tive distributions of future observations to the data that have actually occurred and calculating

the prior predictive checking probability (Prior-PCP). If the probability is small (i.e. <0.05),

we judge that data yd do not follow the model created by the prior distribution, and suspect

the reliability for the model.

It is also possible to evaluate not only the model itself but also interesting indices or statis-

tics by setting proper predictive checking functions. Then, we compare the prior predictive

probability p{g(yd)} of g(yd) to the prior predictive probability p{g(y)} of g(y) and evaluate
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the appropriateness of the model. The prior predictive checking probability of the predictive

checking function is calculated by

Pr[p{g(y)} < p{g(yd)}]. (2.11)

However, as the fault of the prior predictive checking approach, when it is assumed that the

parameter follow improper prior distribution, it is considered that the prior predictive distribu-

tion itself is improper and the occasion that we cannot check the model even if the posterior

distribution is not improper.

Posterior Predictive checking approach

Rubin (1984) proposed Post-PCA as an alternative method of the prior predictive checking

approach. In the posterior predictive checking approach, a model is evaluated by comparing the

posterior predictive distributions of future observations to the data that have actually occurred

and calculating the posterior predictive checking probability (Post-PCP).

Setting a posterior probability as p(θ|y), we have a Bayes model

p(ỹ, θ|y) = p(ỹ|θ, y)p(θ|y),

where ỹ are future observations.

Then, a posterior predictive distribution for the observations of the future, ỹ, is obtained by

p(ỹ|y) =
∫
θ∈Θ

p(ỹ, θ|y)dθ.

Given the actual data ỹd, Post-PCA for the model itself is calculated by comparing the density

function p(ỹ|y) to the posterior density at ỹd, p(ỹd|y), as the below:

Pr[p(ỹ|y) < p(ỹd|y)|y = ỹd] (2.12)

As the same in the prior predictive checking approach, if the probability is small (i.e. <0.05),

we judge that data ỹd do not follow the model created by the posterior distribution, and suspect

the reliability for the model. For even posterior predictive checking approach as well as prior

predictive checking approach, we can evaluate Post-PCA for interesting indices g(ỹ) as the below:

Pr[p{g(ỹ)|y} < p{g(ỹd)|y}|y = ỹd] (2.13)
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When we evaluate a model under both the prior predictive distribution in Pre-PCA and the

posterior predictive distribution in Post-PCA, the large difference in the prior and posterior

predictive checking probabilities indicates that the prior distribution is wrong.

In these prior and posterior predictive checking approach, without any specified model of

alternative hypothesis, we can evaluate the fitness of the single model. Also, we think that

these approaches are very useful for the selection of the model because we can also compare the

predictive checking probabilities between several candidate models simultaneously.

Interruption of predictive checking probability

From a practical point of view, if large diremption between model and data exists and the

predictive checking probability is near 0, the reliability of the model is suspicious because the

model do not express the event which the data expresses. So generally, an improvement to a

model with higher predictive checking probability is desirable. Also, because the prior predictive

checking approach evaluate the model under the prior predictive distribution and the posterior

predictive checking approach evaluate the model under the posterior predictive distribution, the

clear difference between prior and posterior predictive checking probability implies that the prior

distribution is suspicious.

However, we have to pay attention to what the predictive checking probability shows not “sta-

tistical significance” but “practical significance” (Gelman et al., 2004). So a goal at predictive

checking approach is not to reject the model but to judge whether data generate from the model.

Also, four major schools exist in statistical science. They are Neyman-Pearson, Fisher and

likelihood school along with Bayesian school exist (Oakes, 1986). Neyman-Pearson and Fisher

school criticize Bayesian school by reason of “Lack of objectivity for probability”. So “Neyman-

Pearson and Fisher school” and “Bayesian school” developed separately. But through the use

of predictive checking approach which is complementary role of “Criticism” and “Estimation”

repeated in a process of Bayes inference which formulate iterative procedure of scientific re-

search, the connection between Neyman-Pearson/Fisher and Bayesian schools would be possible

by interpreting the existing statistical method such as hypothesis test (Neyman-Pearson) and

significant test (Fisher) in the framework of Bayesian approach.
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Calculation As well as “Calculation” in section 2.2.2, we explain about how to calculate

Prior- and Post-PCP when it is assumed that data y follow a normal distribution N[µ, σ2] with

known variance σ2 and we set N[µ0, σ
2
0] as prior distribution of mean parameter µ.

Suppose that ȳ is ȳ =
∑n

i=1 yi/n, s
2 is s2 =

∑n
i=1(yi − ȳ)2/(n − 1).Then the likelihood is

expressed as

p(y|θ) =
1

(2πσ2)n/2
exp[{−n(ȳ − µ)2 +

n∑
i=1

(yi − ȳ)2}/2σ2].

Also, the prior predictive distribution is calculated by

p(y) ∝ 1

σn−1
(
σ2/n+ σ2

0

)1/2 exp[−{
n∑

i=1

(yi − ȳ)2/σ2 + (ȳ − µ0)
2/(σ2/n+ σ2

0)}/2].

Then, Prior-PCP is given by

Pr[p(y) < p(yd)] = Pr[χ2
n > g(yd)], (2.14)

where

g(yd) =
(ȳd − µ0)

2

σ2/n+ σ2
0

+
(n− 1)s2d

σ2

Moreover Prior-PCP for sample mean ȳ is given by

p(ȳ) ∝ 1

(σ2
0 + σ2/n)1/2

exp[−(ȳ − µ0)
2/{2(σ2

0 + σ2/n)}],

and

Pr[p(ȳ) < p(ȳd)] = Pr
[
z >

∣∣∣(ȳd − µ0)/(σ
2
0 + σ2/n)1/2

∣∣∣] , (2.15)

where z ∼ N[0, 1].

Also, the posterior predictive distribution is calculate by

p(ỹ|y) ∝ 1

σn−1(σ2/n+ σ2
n)

1/2
exp[−{

n∑
i=1

(ỹi − ¯̃y)2/σ2 + (¯̃y − µn)
2/(σ2/n+ σ2

n)}/2],

where

µn = (µ0/σ
2
0 +

n∑
i=1

yi/σ
2)/(1/σ2

0 + n/σ2)，

σ2
n = 1/(1/σ2

0 + n/σ2).

Then Post-PCP for model is given by

Pr[p(ỹ|y) < p(ỹd|y)|y = ỹd] = Pr[χ2
n > g(ỹd)|y = ỹd], (2.16)
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Table 2.1: BPIC and PCP for triglyceride concentration data (Wood, 1973)

　 Prior distribution µ ∼ N[µ0, σ
2
0]

　 N[125, 20] N[200, 20] N[125, 4000] N[200, 4000]

BPIC 40.35 41.36 41.98 41.98

Prior-model 0.527 0.000 0.528 0.461

PCP Post-model 0.527 0.003 0.528 0.527

Prior-mean 0.887 0.334 0.978 0.255

Post-mean 0.900 0.214 0.997 0.884

where

g(yd) =

n∑
i=1

(ỹd,i − ¯̃yd)
2/σ2 + (¯̃yd − µn)

2/(σ2/n+ σ2
n) + (n− 1)s2d/σ

2.

Moreover, Post-PCP for sample mean ¯̃y is given by

p(¯̃y|y) ∝ 1

(σ2
n + σ2/n)1/2

exp[−(¯̃y − µn)
2/{2(σ2

n + σ2/n)}]

and

Pr[p(¯̃y|y) < p(ȳd|y = ỹd)] = Pr[z > |(¯̃yd − µn)/(σ
2
n + σ2/n)1/2|y = ỹd].

2.3 Examination on some literature example

We applied these Bayesian predictive diagnoses which were introduced in section 2.2 to data of

triglyceride concentration in the plasma (Wood, 1973), and evaluated the appropriate of several

models. These data (sample mean 126.8, sample variance 3973) were measured to examine

whether improvement in lifestyles impact on the measurements by a team in Stanford University,

and we used the pre-treatment data here. The sample size was 30. We assumed that the data

followed N[µ, σ2] where the variance σ2 was known and the mean µ followed the normal prior

distributions N[µ0, σ
2
0]. We set the prior mean µ0 as 125 (close to sample mean 126.8) or 200

(not close to sample mean) and the prior variance σ2
0 as 20 (strong prior information) or 4000

(weak prior information). Then, we calculated BPIC and PCP for model and sample mean and

represented the results in Table 2.1. In the table, we gained the results that the model with the

prior distribution N[125, 20] (close to sample mean and strong prior information) had the lowest

BPIC, but the model with the prior distribution N[125, 4000] (close to sample mean and weak
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prior information) indicated higher Prior- and Post- PCP for sample mean than the model with

the prior distribution N[125, 20] in PCA. However, Prior- and Post- PCP for model were almost

the same probabilities together. Moreover, BPIC for the model with weak prior information

(N[125, 4000] and N[200, 4000]) had much the same value and there was no difference between

them.

2.4 Simulation

In this section, to clarify the situation that Bayesian predictive diagnoses select the model

including appropriate prior distribution, we conduct some simulations. Taking a notice on

making the interpretation of the results easy, we conduct a setting of simulation. It is important

to consider the amount of information of the prior distribution in advance because it is useful to

interpret the simulation results. So we express the amount of information of the prior distribution

(prior information) as “the number of observation which is required for obtaining the same

estimate accuracy as Bayes estimator” (Mori, 2010) and describe it as “prior samples”. In

this simulation, we assume that independent samples follow a normal distribution with known

variance, yi ∼ N[µ, σ2](i = 1, 2,…, n), and a prior distribution of mean µ follows a normal

distribution, µ ∼ N[µ0, σ
2
0(= σ2/n0)]. When we set a square error as a loss function, Bayes

estimator of mean µ (expectation of posterior distribution) is δ(y) = (nȳ + n0µ0)/(n+ n0) and

Bayes risk is E[E[(f(y) − µ)2|µ]] = σ2/(n + n0). Also, Bayes risk of a sample mean in adding

m observations,
∑m+n

i=1 yi/(m + n), is σ2/(m + n), so these Bayes risks are equal in m = n0.

Therefore, we can understand that the prior distribution N[µ0, σ
2/n0(= σ2

0)] has information

about n0 samples. We call n0/n “Proportion of prior sample”. Considered to the information

about prior sample, we plan simulations.

Moreover, to investigate the impact of diremptions from the true prior mean on the results,

we calculate µ0/σ (Prior mean/Standard deviation) and call prior effect size (Prior ES). In this

simulation, because we set that true prior mean µ0 is 0, the large prior ES mean that the prior

mean (which we use) is apart from true prior mean. About sample size n, because the difference

of the results between BPIC and PCP was expressed even in 30 samples from the results of

section 2.3, we set a broad range between n = 10 and n = 1000.
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2.4.1 Simulation (1)

Purpose

It is important to evaluate an impact of a prior distribution in Bayes predictive diagnoses

because Bayes model is composed by a prior distribution (or a posterior distribution) and a

likelihood.

The purpose of simulation (1) is to assess the models with several different prior distributions

in terms of prediction by calculating BPIC and PCP of these models from independent samples

which follow true distribution and clarify these characteristics.

Method

We assume that true distribution is normal distribution with known variance (σ2 = 100) and

mean prior parameter. We define several prior distributions taking into the prior information and

whether prior mean is true value or not. In detail, suppose that true value of mean parameter

µ is set at 0 and prior mean µ0 and prior variance σ2
0 take the value of µ0 = 0, 1.5 and σ2

0 =

0.005, 0.01, 0.025, 1. Then, prior samples are n0 = 100, 50, 20, 0.5.

For all pattern of prior distributions which are determined by a combination of prior mean

and prior variance, generate independent samples of sample size n = 5, 20, 50, 100 from true

distribution N[0, 0.5] and calculate BPIC and Prior- and Post-PCP for model and sample mean.

We repeat this process 10,000 times and summary the results.

Result

The results of BPIC were shown in Figure 2.1 and those of PCP shown in Figure 2.2- 2.5. The

horizontal lines in these figures represented 25, 50, 75% points of the simulation results from the

bottom. The numbers in x-axis represents the following prior distributions: µ ∼ (1) N[0, 0.005],

(2) N[0, 0.01], (3) N[0, 0.025], (4) N[0, 1], (5) N[1.5, 0.005], (6) N[1.5, 0.01], (7) N[1.5, 0.025], (8)

N[1.5, 1].

First we considered the results of BPIC. From the results in Figure 2.1, we found that BPIC

for the prior distribution (1) with true prior mean and the strongest prior information was

almost the lowest value compared to BPIC for other prior distributions. Also, by comparing

two cases ((1) and (5)) of the models with the strongest prior information, we observed that
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BPIC for the prior distribution with true prior mean was much smaller than BPIC for the prior

distribution with no true prior mean. On the other hand, by comparing two cases ((4) and (8))

of the models with different prior means and the weakest prior information, we observed that

there was not much difference between these BPIC. So these results indicated that BPIC was

suitable for model selection among models with strong prior information.

Next we considered the results of Prior- and Post-PCP. From the results in Figure 2.2 (n = 5),

we found that Pre- and Post-PCP of model and sample mean in four models composed by the

prior distribution with true prior mean were totally high, and especially Prior- and Post-PCP

for the prior distribution (4) with the weakest prior information of them were highest. For

the model composed of prior distribution (8) with no true prior mean and the weakest prior

information, Post-PCP of model and sample mean were higher than those of other models with

no true prior mean. Moreover, by comparing two models ((4) and (8)) with different prior means

and the weakest prior information, we could not see the difference between Prior- and Post-PCP

of model. However, Post-PCP of sample mean for the model (8) was much larger than Pre-PCP

of sample mean for it.

Because PCA has the characteristics that the large difference between the Prior-PCP and

Post-PCP indicates that the prior distribution is suspect as described in Section 2.2, it was

possible to distinguish these models ((4) and (8)) even in this small sample size. The results

from Figure 2.3 (n = 20) to Figure 2.5 (n = 100) were similar to those of Figure 2.2 (n = 5).

It meant that Prior- and Post-PCP of model and sample mean for the models with the prior

distributions ((1)-(4)) with true mean were totally high, especially Prior- and Post-PCP for the

models with the prior distribution (4) which has the weakest prior information were highest.

Moreover, as the sample size increased, Post-PCP of sample mean for the model composed by

the prior distribution (8) with no true prior mean and the weakest prior information increased,

but on the other hand, Pre-PCP of sample mean for the model (8) decreased. This implied that

the reliability for the prior distribution clarifies as sample size increased.

As a result, we gained a clear understanding of their characteristics. Main productive findings

which were obtained in our research are as follow. For models with weak prior information, BPIC

was more sensitive about model selection than PCP, so selection rates of correct model in BPIC

were higher than those in PCP. For models with strong prior information, BPIC was as sensitive

as PCP. Furthermore, when we evaluated models with weak and strong prior distributions
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simultaneously, we got much the same PCP for models with weak and strong prior information

including true prior mean, so we could not distinguish between them. On the other hand, BPIC

chose models with strong prior information including true prior mean more than models with

week prior information including true prior mean.
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Figure 2.1: BPIC by sample size

2.4.2 Simulation (2)

Purpose

We focus on specifying the characteristics of BPIC here.

The purpose of simulation (2) is to assess the models with several different prior distributions

in terms of prediction by calculating BPIC of these models from independent samples which

follow true distribution and clarify the characteristics.

Method

We assume that true distribution is a normal distribution N[µ, σ2] with a known variance

σ2 = 100 and a mean prior parameter. We define several mean prior distributions taking into

the amount of prior information and the prior mean. In detail, suppose that true value of mean
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Figure 2.2: Prior- and Post- PCP for model and sample mean (n=5)
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Figure 2.3: Prior- and Post- PCP for model and sample mean (n=20)

21



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model (Prior)

PC
P

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model (Post)

PC
P

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Mean (Prior)

PC
P

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Mean (Post)

PC
P

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.4: Prior- and Post- PCP for model and sample mean (n=50)
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Figure 2.5: Prior- and Post- PCP for model and sample mean (n=100)
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parameter µ is set at 0 and prior mean µ0 set the following three values. When prior ES is 0, 0.5, 2,

prior mean µ0 is µ0 = 0, 5, 20. Suppose that sample size is n = 10, 100, 1000 and variance σ2
0 is

calculated from the proportion of the prior sample n0/n = 0.001, 0.01, 0.1, 0.5, 1, 10, 50, 100, 1000.

We generate the samples of sample size n = 10, 100, 1000 from true distribution N[0, 100] for

combination of prior distribution and sample size and calculate BPIC for the models composed

by prior distribution. We repeat this process 10,000 times and summarize the results.

Result

For each sample size n, Figure 2.6 showed the results of 25%,50% and 75% points of BPIC.

Actual line was the case of that prior ES was 0 (µ0 = 0), broken line was the case of that prior

ES was 0.5 (µ0 = 5) and solid line was the case of that prior ES was 2 (µ0 = 20). When n0/n

was small by 0.1. Regardless of sample size n and prior ES, BPIC were almost same. However,

when we took a notice on the difference between prior ES, BPIC with the case of that prior

ES was 0 because larger than BPIC with the case of that prior ES was 0,5,2 as n0/n increased.

Also, Table 2.2 showed the main results of 50% of BPIC from Figure 2.6. This tables also show
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Figure 2.6: BPIC by proportion of prior sample (Prior ES:0[Actual]，0.5[Broken]，2[Solid])
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Table 2.2: Summary of Figure 2.6 - 50% points of BPIC

n n0/n prior ES BPIC

10 0.001 0 18.1

0.5 18.1

2 18.5

1 0 17.2

0.5 17.3

2 18.2

1000 0 16.4

0.5 16.6

2 20.4

100 0.001 0 108.4

0.5 108.4

2 108.4

1 0 107.4

0.5 107.5

2 108.4

1000 0 106.4

0.5 106.7

2 110.4

1000 0.001 0 1008.4

0.5 1008.4

2 1008.4

1 0 1007.4

0.5 1007.5

2 1008.4

1000 0 1006.4

0.5 1006.7

2 1010.4

that BPIC became smaller as n0/n increased when prior ES was 0.

Moreover, when prior ES was 0 and 0.5, because BPIC became small with high n0/n regardless

of sample size n, it implied that the model with strong prior information is preferable for BPIC.

Therefore, as the figure indicated, we have to pay attention to selection of the prior distribution

because the model with no true prior mean and strong prior information might be selected.

2.4.3 Simulation(3)

Purpose

Though we evaluated the impact of BPIC on model evaluation in Simulation(2), we focus on

specifying the characteristics of the PCP here. Because PCA can express the PCP between 0

and 1 in any cases, we can evaluate the impact of sample size spontaneously.
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Method

As well as Simulation(2), it is assumed that data follow true distribution N[0, 100], we set

prior distribution N[µ0, σ
2
0] of mean parameter µ. And we set that prior ES is 0, 0.5, 2, sample

size is 10, 1000 and σ2
0 is calculated from the proportion of prior sample for sample size.

We generate the samples of sample size n = 10, 1000 from true distribution N[0, 100] for

combination of prior distribution and sample size, and calculate Prior-PCP and Post-PCP for

the models composed by prior distribution. We repeat this process 10,000 times and summarize

the results.

Result

25%, 50% and 75% points of Prior-PCP and Post-PCP for model and sample mean were

shown in Figure 2.7. In the case of that prior mean was true (prior ES was 0), Prior-PCP and

Post-PCP for model and sample mean were almost same values within the same proportion of

prior sample regardless of sample size n. However, strictly the difference between Prior-PCP and

Post-PCP was about 0.1 at maximum when we compare 50% points of Prior-PCP with those of

Post-PCP. Then sample size was 10. Also, PCP for model showed the almost same values with

broad range at the same sample size n regardless of n0/n (proportion of prior sample). However

even in this case, strictly PCP increased as n0/n decreased when we compared Prior-PCP and

Post-PCP between n0/n, and the difference was about 0.1 at maximum. Also, PCP for sample

mean showed the high value with small n0/n. These results implied that the models with weak

prior information were preferable in the models with true mean at the evaluation of PCP for

sample mean.

In the case of that the prior ES was 0.5 or 2 (prior mean was not true), Prior-PCP and Post-

PCP for model and sample mean were low when n0/n (proportion of prior sample) was high

and n was large. When we compared different prior ES at the same n0/n and n, Prior-PCP

and Post-PCP for model and sample mean were almost same at the lowest n0/n and n = 10.

However, except for the case, totally PCP with the case of that prior ES was 0 were lower than

PCP with the case of that prior ES was not 0. Moreover, it is possible in predictive checking

approach to conduct not only the comparison between the models but also diagnosis for one

model by comparing Prior-PCP with Post-PCP. In the case of that the prior ES was 0.5 and 2,

the difference between Prior-PCP and Post-PCP for sample mean increased as n0/n increased,
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Figure 2.7: Prior-PCP and Post-PCP for model and sample mean by proportion of prior

sample
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Table 2.3: Summary of Figure 2.7 - 50% points of Prior-PCP and Post-PCP for model and
sample mean

Prior- Post- Prior- Post-

Prior-ES n0/n n model model mean mean

0 0.001 10 0.593 0.593 0.983 1

100 0.536 0.536 0.983 1

1000 0.506 0.506 0.983 1

1 10 0.545 0.579 0.641 0.788

100 0.514 0.523 0.629 0.780

1000 0.512 0.514 0.617 0.991

1000 10 0.502 0.502 0.515 0.515

100 0.499 0.499 0.502 0.502

1000 0.502 0.502 0.500 0.500

0.5 0.001 10 0.588 0.588 0.960 1

100 0.528 0.529 0.874 0.997

1000 0.511 0.514 0.617 0.991

1 10 0.428 0.536 0.264 0.519

100 0.208 0.405 0.000 0.042

1000 0.004 0.183 0 0

1000 10 0.317 0.317 0.121 0.122

100 0.049 0.049 0 0

1000 0 0 0 0

2 0.001 10 0.596 0.600 0.841 0.996

100 0.512 0.514 0.617 0.991

1000 0.470 0.506 0.046 0.964

1 10 0.001 0.121 0.000 0.001

100 0 0 0 0

1000 0 0 0 0

1000 10 0.000 0.000 0.000 0.000

100 0 0 0 0

1000 0 0 0 0

(n = 100 is newly included.)

especially more than 0.1. It implied that the models were suspicious. The difference made clear

as n0/n increased. Also, Table 2.3 showed the main results of 50% points of Prior-PCP and

Post-PCP from Figure 2.7. It also included the cases of n = 100 which did not be shown in

Figure 2.7. Again from the results of n = 100, it implied that the models with weak prior

information were preferable in the models with true prior mean at the evaluation of PCP for

sample mean.

Therefore when we conduct model diagnoses in the framework of PCA, we have to take notice

on that it is possible to give high PCP for models with weak prior information. Then we pay

attention to the difference between Prior-PCP and Post-PCP and judge the appropriateness of

the model. These results are different from the findings of BPIC obtained from Simulation(2)
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(select the models with strong prior information).

Moreover, at the evaluation of PCP for sample mean, we considered about a reason that

Prior-PCP and Post-PCP were high for the models with small prior information. From (2.12)

which calculate Prior-PCP, it was found that the variance of prior predictive distribution which

sample mean ȳ follow is larger in the models with weak prior information than in the models

with strong prior information. So for the models with weak prior information, the values of the

standardization approach to 0 and Prior-PCP becomes large. Also, from (2.14) which calculate

Post-PCP, it was found that the variance of posterior predictive distribution which sample mean

ȳ follow is larger in the models with weak prior information than in the models with strong prior

information, and the mean of posterior predictive distribution approaches to sample mean ¯̃y.

So for the models with weak prior information, the values of the standardization approach to 0

and Post-PCP becomes large.

2.5 Conclusion

In this chapter, we focused on BPIC and PCA which evaluate models from the position of the

prediction and conducted some simulations as a purpose of clarifying the features of these model

diagnoses. Through our simulations, we found that regardless of whether prior mean is true or

not, totally Bayesian predictive information criterion has low values in the cases of the models

with strong prior information, and predictive checking probability has high value in the case of

the models with weak prior information. Therefore, Bayesian predictive information criterion

may select the model with strong prior information and no true prior mean than the model with

weak prior information and true prior mean. Also, the predictive checking approach preferred

the model with weak prior information and no true prior mean to the model with strong prior

information and true prior mean in some cases of the situation defined in Simulation(2). So we

have to have the findings in mind, by taking notice on the difference between prior and posterior

predictive checking probability and calculating the predictive checking probability of specially

interesting indices, it is very important to judge whether the model appropriately expresses the

interesting occasions or not.

Though Bayesian predictive information criterion and predictive checking approach applied

for relatively simple occasions here, the results were different clealy. Actually, we have to

diagnose some models under various situations, however it is possible for even the cases of that
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we treat another distributions and more than two parameters to capture the characteristics of

these Bayesian predictive model diagnoses through the similar simulation with section 2.4. It is

important to specify the characteristics of Bayesian predictive model diagnoses previously and

it leads the improvement of the model selections.
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3. A preliminary evaluation about health

guidance

3.1 Introduction

A prevalence and preliminary of “lifestyle-related disease (adult disease)” increase as the

lifestyle habit changes and elderly people increases. “lifestyle-related disease” is all-inclusive term

of diseases due to lifestyle such as a smoking, diet, drinking, exercise and sleep (Display.3.1), and

as the risk factor of lifestyle-related disease such as hypercholesteremia piles up, the incidence

of cerebral stroke and ischemic cardiac disease increases.

Since April 2008, Ministry of Health, Labor and Welfare of Japan has carried out “Health

Checkups and Healthcare Advice” which make it obligatory for person aged 40 through 74 to

reduce medical expenses and prevent lifestyle-related diseases (Health Service Bureau of Health,

Labour and Welfare, 2007). Though the aim of “Health Checkups and Healthcare Advice” is for

“Reduction of medical cost” and the prevention of the lifestyle-related disease, it is concerned

with the lack of “Foundation for enforcement” and “evidence for Prevention” (Ohgushi, 2006:

2007). Also as Kondo (2004) indicates a lack of foundation for health checkup, we wonder about

a meaning of making health checkup compulsory, too.

In this chapter, we treat data of the health checkup aims to prevent disease was carried out in

April 2004 and a doctor classified subjects into uncontrolled, directed (teaching of better living)

and clinical group (includes medicine), based on their results. And the teaching of better living or

treatment was conducted for the directed and clinical groups and an improvement of the clinical

test results was examined after that. Here the definition for the clinical group were based on

the constant criterion value, the definition for the directed group were based on the judgment of

the doctor. Based on this data, we explored foundation about the doctor’s judgment, especially

classification of the directed group, attempting to figure the doctor’s character, and further

evaluated directed effect for the directed group. In section 3.2, we summarize the purpose of the

analysis conducted for this data and make a clear our motivation. In section 3.3, we examine
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the effect of the doctor’s teaching of better living. In section 3.4, we conduct the statistical

diagnoses for the analysis results and consider the stablity of the results. Finally, section 3.5

contains our concluding remarks.

3.2 Analysis for the data of the health checkup

The laboratory test items used in this paper were Weight, BMI, Systolic blood pressure,

Diastolic blood pressure, Total cholesterol (TC), Triglyceride (TG), High-density lipoprotein

(HDL). A doctor classified subjects into uncontrolled, directed (teaching of better living) and

clinical group (includes medicine), based on their results. After that, the teaching of better

living or treatment was conducted for the directed and clinical groups. The subjects were 1,141

(Male 543, Female 598). As mentioned before, the definitions for the clinical group were based

on the constant criterion value (Systolic blood pressure: >=160 and Diastolic blood pressure:

>=100, TC: <90 or >=260, TG: >=250, HDL: <=25), the definition for the directed group

were based on the judgment of the doctor. However, because 11 subjects of the total subjects

were missing in more than one of TC, TG and HDL, these subjects were excluded from the

analysis set in this paper. Because one subject in the uncontrolled group and three subjects

in the directed group had the measurements which exceed the criterion values, these subjects

were also excluded. Moreover, any clinical test results for 7 subjects in clinical groups did not

Display 3.1. Diagram related to lifestyle diseases
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Display 3.2．Subject profile

Pr Sex Year Uncontrolled Directed Clinical

1 Male 10～30 76 3(3) 2

2 Male 30～40 119 26(14) 14

3 Male 40～50 81 45(34) 19

4 Male 50～ 82 42(38) 28

5 Female 10～30 149 3(2) 1

6 Female 30～40 100 3(3) 2

7 Female 40～50 96 14(12) 4

8 Female 50～ 145 32(28) 34

　 Male 358 116(89) 63

　 Female 489 52(45) 41

(∗) The number of the subjects who had the health checkup for follow-up after 4 months.

meet the constant criterion value, so these subjects were also excluded. Subject profile (Sex,

Year) in the uncontrolled, directed and clinical group was indicated in Display 3.2. The number

in parentheses of the directed group expressed the number of the subjects who had the Health

Checkup for follow-up after 4 months. Also, of subjects in the clinical group, those with the

blood pressure more than the constant criterion values were 2, those with TC and TG more

than the constant criterion values were 60 and 44.

The aims of the analysis in this paper are the following.

1 Explore foundation about the doctor’s judgment for especially classification of directed

group, attempting to figure the doctor’s character.

2 Evaluate directed effect for subjects in the directed group.

3 Conduct the statistical diagnosis for the models used in this paper in the purpose of

examining the appropriateness of the analysis results.

To achieve these purposes, following to Maruo, Shirahata, Goto and Komazawa (2008), we take

note of preserving a logic consistency in the overall flow of the analysis.
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3.3 A process in statistical data analysis

We assume that the clinical laboratory test result measured in the health checkup follow a

power-normal distribution because the clinical laboratory test is generally positive. Then, a

diagnosis of an outlier (Sample diagnosis) is conducted in the following method: 1. A method

that observations beyond sample mean ± 3SD are excluded. 2. Data-adaptive probability plot

(Shimokawa and Goto, 2002) 3. A method based on Dixon ratio ([Absolute deviation between

largest (smallest) and second largest (smallest) observation]/[Range of total observations includ-

ing extreme value]) (Dixon, 1953). Method 1 is a traditional evaluation method for an outlier.

Method 2 is visually an evaluable method whether the data merely exists in the tailed parts

of the distribution or is an outlier. Method 3 is an evaluation method which is suggested in a

guideline of National Committee for Laboratory Standard: NCCLS, current CLSI (Clinical and

Laboratory Standards Institute) (Sasse, Doumas, Miller, D’Orazio, Eckfeldt, Evans, Graham,

Myers, Parsons and Stanton, 2000) and eliminate the extreme observation when Dixon ratio

is over 1/3. After the diagnosis of an outlier, by Classification and Regression Tree (CART)

(Breiman, Friedman, Olshen and Stone, 1984: Sugimoto, Shimokawa and Goto, 2005) which

optimally find explanatory variables which have an effect on data to capture interaction and

nonlinear effect of explanatory variable and data-adaptive discriminant analysis (Hatanaka, In-

oue and Goto, 1981: Seo, Shimokawa, Daimon and Goto, 2002: Shimokawa and Goto, 2004)

which are known as indicating high correct discriminant ratio when data follow multi-variable

power-normal distribution, we explore the clinical test items which contributes to the clarifi-

cation between the uncontrolled group and the directed group. Moreover, when it is assumed

that clinical test results before and after the doctor’s teaching of better living for subject char-

acteristics follow bivariate power-normal distribution (Goto and Hamasaki, 2002), we identify

the shape of the distribution and the extend of variation before and after the doctor’s teaching,

and evaluate directed effect for the directed group.
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3.3.1 Power-normal distribution

As the distribution which the clinical test items follow, we set a power-normal distribution.

A power-transformation of positive variable X is defined as

X(λ) =


(Xλ − 1)/λ， λ ̸= 0

logX， λ = 0

(3.1)

(Box and Cox, 1964). Aiming to the normality of the transformed variables {X(λ)}, the power-

normal distribution was proposed as the distribution of the observation X on the original scale

when assuming the linearity(the additivity) of model on {X(λ)} and the uniformity of variance

(Goto, Uesaka and Inoue, 1979：Goto, Matsubara and Tsuchiya, 1983). The probability density

function is

fPN(x;λ, µ, σ) =


xλ−1ϕ

{
(x(λ) − µ)/σ

}
/A(λ, µ, σ)， x > 0

0, x ≤ 0,

(3.2)

where ϕ(·) is a probability density function of standard normal distribution and A(λ, µ, σ) is a

probability proportionality constant term

A(λ, µ, σ) =


Φ {−(λµ+ 1)/λσ} , λ < 0

1, λ = 0

Φ {(λµ+ 1)/λσ} λ > 0,

(3.3)

where Φ(·) is a cumulative distribution function of standard normal distribution. λ, µ and σ are

respectively the parameter of shape, location and scale. By changing λ according to the obser-

vation X on the original scale, the power-normal distribution include several distributions. The

power-normal distribution with λ = 1 expresses normal distribution, The power-normal distri-

bution with λ = 0 expresses log-normal distribution. The main advantages of using the power-

normal distribution are able to comprehend the discrepancies between ideal (model, hypothesis)

and reality (data) appropriately and conduct data-adaptive analysis, and be also available for a

lot of traditional methods based on normal distribution.

When the observationX1, X2, . . . , Xn follow the power-normal distribution fPN independently,

the log-likelihood is expressed as

lPN(λ, µ, σ) = −n

2
log 2π−n log σ− 1

2σ2

n∑
i=1

(x
(λ)
i −µ)2+(λ−1)

n∑
i=1

log xi−n logA(λ, µ, σ). (3.4)
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Because it is generally difficult to estimate the parameter considered to A(λ, µ, σ), referring to

the estimation method of Box and Cox (1964), we set A(λ, µ, σ) = 1 and calculate the maximum

likelihood estimator of µ and σ2 as A(λ, µ, σ) = 1 from

µ̂(λ) =
1

n

n∑
i=1

x
(λ)
i , σ̂2(λ) =

1

n

n∑
i=1

(x
(λ)
i − µ̂(λ))2. (3.5)

In replacing (3.5) to (3.4), the log-likelihood can be expressed as the function of λ. So we can

get the maximum likelihood estimator λ̂ of λ based on the Newton-Raphson method. Moreover,

in replacing λ̂ to (3.5), the maximum likelihood estimators µ̂(λ̂)，σ̂(λ̂) of µ，σ2 given λ = λ̂ can

be calculated.

When the power-transformed observations x(λ) = (x
(λ1)
1 , x

(λ2)
2 , . . . , x

(λp)
p )T) for the non-negative

p-variate observations x = (x1, x2, . . . , xp)
T follow the p-variate normal distribution approxi-

mately, the p-variate power-normal distribution is defined as the distribution which the observa-

tion x before power-transformation follow (Goto et al., 1979：Hatanaka et al., 1981: Shimokawa

and Goto, 2004). A probability density function fMPN(x|λ,µ,Σ) of x is given in

fMPN(x|λ,µ,Σ) =

∏p
i=1 x

λi−1
i

(2π)p/2|Σ|A(λ,µ,Σ)
× exp

{
−1

2
(x(λ) − µ)TΣ−1(x(λ) − µ)

}
, (3.6)

where λ = (λ1, λ2, · · · , λp)
T is p × 1 power parameter vector, and µ and Σ are respectively

mean vector and variance-covariance matrix when the transformed z follow p-variate normal

distribution approximately. A(λ,µ,Σ) is a probability proportionality constant term

A(λ,µ,Σ) =

∫
R
· · ·

∫
1

(2π)p/2
exp(−1

2
vTv)dv1 · · · dvp. (3.7)

Here, v = Σ−1/2(x(λ) − µ) is p × 1 probability vector. R = {v : x > 0} is the integrated

range. As the same in the single variable case, it is difficult to estimate the parameters con-

sidered to A(λ,µ,Σ), so we estimate the parameters based on the Newton-Raphson method as

A(λ,µ,Σ) = 1.

3.3.2 Data-adaptive discriminant analysis

In this section, we explain about data-adaptive discriminant analysis used for exploring the

clinical test items which contribute to the classification of uncontrolled and directed group. It is

supposed that the non-negative p-variate observations {xli}nl
i=1 are generated from two p-variate

power-normal population Πl(l = 1 : uncontrolled group，l = 2 : directed group), where nl is
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the subject’s number included in Πl. When λl,µl,Σl is known, a data-adaptive discriminant

function is given by

g(x) = log fMPN(x|λ1,Σ1,µ1)− log fMPN(x|λ2,Σ2,µ2)

=
1

2

{
(x(λ2) − µ2)Σ

−1
2 (x(λ2) − µ2)− (x(λ1) − µ1)

TΣ−1
1 (x(λ1) − µ1)

}
+

p∑
i=1

(λ1i − λ2i)
1

2
log xi − log

|Σ2|
|Σ1|

. (3.8)

Then, for newly obtained x, the subject is clarified to Π1 in the case of g(x) > 0 and Π2 in the

case of g(x) < 0. Because λl,µl,Σl are unknown, they are replaced to the maximum likelihood

estimator normally.

Also, the effect that pr of p exploratory variables contribute to the discrimination is evalu-

ated using Are Under Curve (AUC) of ROC curve. Given group variable l (Πl; l = 1, 2) and

exploratory variable vector x, A sensitivity FTP(g, u) and a specificity FTN(g, u) are respectively

given by

FTP(g, u) = Pr(g(x) > µ|l = 1),

FTN(g, u) = Pr(g(x) < µ|l = 2).

ROC curve is obtained by plotting (FTP(g, u), 1− FTN(g, u)) for any u (−∞ < u < ∞). More-

over, AUC is calculate from

AUC =

∫ ∞

u=−∞
FTP(g, u)dFFP(g, u), (3.9)

where FFP(g, u) = 1− FTN(g, u).

3.3.3 Exploration of clinical test items which contributes to the classification

of uncontrolled and directed group

Diagnosis of outliers: Data-adaptive discriminant plots for the clinical test results in un-

controlled and directed group by sex were in Display 3.3 and Display 3.4. A circle in Display

3.3 and Display 3.4 points the observation eliminated in Method 1. However, it found that most

observations eliminated in Method 1 exist in the tailed area of the distribution. The maximum

value of HDL in Female (uncontrolled group) was apart from the transformation curve, but

because Dixon ratio based on this observation was 0.179 < 1/3, it was impossible to be judged

as an outlier from Dixon ratio. From the above results, we use all observation in the following

analyses without any removal.
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CART method: Using CART method where the explanatory variables were Weight, BMI,

SBP, DBP, TC, TG, HDL, Age and Sex, we investigated a divergence pattern between uncon-

trolled and directed group (Display 3.5, Display 3.6). We used a cross-validation for selection

of the optimum tree. As the result, the branches of the tree were in order of BMI, Weight and

Age. So the classification expressed the feature of the body type clearly. However, the clinical

test results in directed group might be actually affected by the criterion value because directed

Display 3.3. Diagnosis of an outlier: Male
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and clinical group are divided by the criterion value. Then the misclassification rate for the

uncontrolled and directed group was 13.69%. We investigated a divergence pattern between the

uncontrolled and the directed/clinical group (Display 3.7). From the result, we found that not

only BMI, weight and age but also TC and TG existed in the divergence pattern. Incidentally

TC or TG in the clinical group exceeded the criterion value for most subjects. The classifica-

tion result of TC was almost the same with the criterion value (>= 260) for clinical group, the

classification result of TG was lower than the criterion value (>= 250). Therefore, the doctor

might take account of TG when the doctor classified subjects into directed group.

Data-adaptive discriminant analysis: To confirm the above classification results, we

conducted data-adaptive discriminant analysis. For Weight, BMI, SBP, DBP, TC, TG and

HDL, we explored and evaluated the clinical test item which contributed to the classification

Display 3.4. Diagnosis of an outlier：Female
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Display 3.5. Subject profile extracted in CART (Classification for uncontrolled and directed
group)

Termination node BMI Weight Age uncontrolled group directed group

＜ 24.35 ≧ 24.35 ＜ 62 ≧ 62 ＜ 30.5 ≧ 30.5

uncontrolled 1 ○ 　 　 　 　 　 712 54

uncontrolled 2 　 ○ ○ 　 　 　 36 4

uncontrolled 3 　 ○ 　 ○ ○ 　 22 4

directed 　 ○ 　 ○ 　 ○ 77 106

between the uncontrolled and directed group. Though the sex did not express in the divergence

pattern in the CART method, we referred to the analysis results that the factor of sex have an

effect on TC, TG and HDL in Maruo et al (2008), and conducted data-adaptive discriminant

analysis by sex. The correct classification rates in the case of using the above seven clinical

test items were Male 76.0% (uncontrolled group: 74.3%, directed group: 81.0%), Female 83.6%

(uncontrolled group: 83.0%, directed group: 88.5%). Also, the highest combination of variables

in AUC of ROC curve were BMI, SBP, TC in Male and BMI, DBP, TC in Female (Display 3.8).

We conducted data-adaptive discriminant analysis using the selected variables. Then the correct

classification rates were Male 76.0% (uncontrolled group: 73.5%, directed group: 83.6%), Female

81.2% (Uncontrolled group: 80.2%, Directed group: 90.4%). Therefore, the doctor might have

clearer judgment criterion for Female than Male. Again, to measure the effect on the censored

value of clinical test items in the directed group, we conducted data-adaptive discriminant

analysis for the uncontrolled and directed/clinical group. The correct classification rates in the

case of using the above seven clinical test items were Male 81.2% (Uncontrolled group: 83.8%,

Directed group: 95.7%), Female 85.7% (Uncontrolled group: 83.8%, Directed group: 95.7%),

and these rates were higher than those for the uncontrolled and directed group. Again, we

conducted data-adaptive discriminant analysis using BMI, SBP, TC in Male and BMI, DBP,

TC in Female. As the results, the correct classification rates were Male 76.4% (Uncontrolled

group: 74.3%, Directed group: 80.5%), Female 84.2% (Uncontrolled group: 83.0%, Directed

group: 90.3%) and these rates were also higher than those for uncontrolled and directed group.

From the result in CART and data-adaptive discrimitant analysis, we can consider that the

doctor mainly provided guidance about body type and blood type for the subjects in directed

group.
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3.3.4 The shape of the distribution and the change for the clinical test result

before and after direction

To measure the direction effect of the doctor for the subjects classified to directed group,

we assume that the pre- and post-observations in the clinical test item follow bivariate power-

normal distribution. In Display 3.9, the estimators of the power-parameter λ̂Pre, λ̂Post for pre-

and post-observations were showed. From the results, as generally considered, the shapes of

the distribution which pre- and post-observations were almost same, but the estimated power-

parameters of pre-observations for DBP and TC in Male, HDL in Female were much different

from those of post-observations and it implied that the observations before and after direction

BMI 24.35

62

30.5

13.69%

Display 3.6. Classification for uncontrolled and

directed group in CART

TC 246.5

35.5

TG 178.5

BMI 24.35

TG 203.5

62

12.15%

Display 3.7. Classification uncontrolled and

directed/clinical group in CART

A
U
C

A
U
C

Display 3.8. Classification for uncontrolled and directed group: AUC (1.Weight，2.BMI，3.SBP，

4.DBP，5.TC，6.TG，7.HDL)
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Display 3.9. Estimators of the power-parameter before and after the doctor’s direction: directed

group

Weight BMI SBP DBP TC TG HDL

λ̂Pre λ̂Post λ̂Pre λ̂Post λ̂Pre λ̂Post λ̂Pre λ̂Post λ̂Pre λ̂Post λ̂Pre λ̂Post λ̂Pre λ̂Post

Male 0.31 0.29 0.23 0.15 0.49 0.81 1.11 2.04 1.54 0.65 0.04 -0.11 -0.51 -0.16

Female -0.21 -0.41 -0.19 -0.39 0.59 0.42 1.51 1.71 1.46 1.50 -0.35 -0.22 0.70 0.17

followed separate distributions.

For the clinical test items that the shapes of the distribution were almost unchanged before and

after the doctor’s direction, we conducted the paired two-samples t-test (One-side: α = 0.05) by

noticing to the normality after power-transformation for pre- and post-observations. From the

results in Display 3.9, it assumed that pre- and post-observations followed the bivariate power-

normal distribution with λPre = λPost = 0.5 (Square root transformation) for Weight and SBP

in Male and SBP in Female, λPre = λPost = 0 (Log transformation) for BMI and TG in Male,

λPre = λPost = −0.5 (Inverse square root transformation) for HDL in Male and Weight, BMI

and TG in Female, λPre = λPost = 1.5 (1.5 power transformation) for DBP and TC in Female.

We set µPre and µPost as the means of pre- and post-observations after the power transformation.

We conducted the paired two-samples t-test (One-side) with null hypothesis H0 : µPre =

µPost, alternative hypothesis H1 : µPre > µPost if λPre = λPost ≥ 0 and alternative hypothesis

H1 : µPre < µPost (H1 : µPre > µPost [only HDL in Men]) if λPre = λPost = −0.5. As the results,

Weight, BMI and SBP in Male and Weight and BMI in Female decreased significantly. But in

the results which conducted the paired two-sample t-test (One-side) for the converse alternative

hypothesis H1 (i.e. alternative hypothesis H1 : µPre < µPost if λPre = λPost ≥ 0), TG in Male,

SBP and TG in Female increased significantly, HDL in Male decreased significantly. Moreover,

we showed sliding square plot for DBP and TC in Male and HDL in Female which were indicated

that pre- and post-observations followed different distributions separately in Display 3.10. We

found that HDL in Female was decreased after the direction especially.

3.3.5 Consideration

In section 3.1, we found that the characteristics of the body shape were mainly related to the

classification between uncontrolled and directed group. Moreover, because it could be considered
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that SBP, DBP and TC were also related to the classification from AUC in Display 3.8, we guess

that the doctor conducted the directions about their body shapes for them in directed group.

Also, because the correct classification rates in data-adaptive discriminant analysis were higher

in Female than in Male, the doctor might have the clearer judgment criterion for Women. In

section 3.2, we investigated the effect of the doctor’s direction for the subjects in directed group.

As the result, though Weight, BMI and SBP in Male and Weight and BMI in Female decreased

significantly and they were improved by the direction, TG and HDL in Male and SBP, TG

and HDL in Female deteriorated. Though we could not judge the efficacy of the direction only

in these results, we have to pay attention that TG and HDL which lead to abnormal lipid

metabolism deteriorated though Weight and BMI (Body shape) which were related much to the

classification in both Male and Female decreased. From the above, it was found that embodying

the subject characteristics was useful to interpret the direction effect.

Display 3.10．Sliding square plot: directed group
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3.4 Statistical diagnosis and validity of results

3.4.1 Statistical diagnosis

In section 3.1, we assumed that the clinical test item followed the power-normal distributions

and explored the clinical test item which contributed to the classification between uncontrolled

and directed group. However, statistical diagnosis (sample diagnosis, structural diagnosis) is

important to ensure the results (the findings) obtained in data analyses. Because the sample

diagnosis (the diagnosis of an outlier and an influential observation) has already done, we con-

duct the structural diagnosis for the models (the power-normal distributions) here. We can

visually judge the fitness of the power-normal distributions for clinical test results from the

data-adaptive discriminant plot in Display 3.3 and Display 3.4. We found that every clini-

cal test items fit power-normal distributions because the diremptions between the observations

and the transformation curves were small. Moreover, we check the median (50% point) of the

power-normal distribution in the following procedures.

Check 1. Estimate the median of the clinical test item from the power-normal distribution

Check 2. Calculate the medians from bootstrap samples 1000 times

Check 3. Create the histogram of the medians calculated in Check 2 and compare it to the median

based on the power-normal distribution in Check 1.

The results were showed in Display 3.11 and Display 3.12. The center line within these Displays

was the median estimated from the distribution. In uncontrolled group, for clinical test items

except for SBP, HDL in Male and SBP, DBP in Female, we can judge that the power-normal

distributions were appropriate (for the medians) as the underlying distribution because the

medians of the bootstrap samples existed near the medians estimated from the distributions.

However the medians estimated from the distributions for SBP, HDL in Male and SBP, DBP in

Female were located to the right-tailed parts in the histograms of the medians of the bootstrap

samples, so the appropriateness of the power-normal distributions might be suspicious, but it

would appear that the actual phenomenon (data) did not differed from the model (power-normal

distribution) substantially because the variation of the medians of the bootstrap samples was

small. In directed group, the medians of the bootstrap samples were closed to the medians
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estimated from the distributions for most clinical test results, but compared to uncontrolled

group, the variations of the medians of the bootstrap samples were larger due to smaller subjects.

3.5 Conclusion

In this chapter, based on the results of the health checkup that aims to prevent disease

was carried out in April 2004, we explored foundation about the doctor’s judgment, especially

[Center scale shows a median estimated from power-normal distribution.]

Display 3.11. Median plot: uncontrolled group
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classification of directed group, attempting to figure the doctor’s character, and further evaluated

directed effect for directed group. Through a process of data analysis which are conscious of logic

consistency, we gained the findings of an evaluation and consideration for health care advice from

“Set of cold figures” (the health checkup data) (Goto, 1986). An evaluation method showed in

this paper is applicable for the occasion that it would like to express the characteristics of group

where clear definition does not exist. However, when the censoring exists in upper and lower

limit like in directed group, we have to pay attention to the effect. To clarify the direction effect

Display 3.12. Median plot: directed group
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for better living and the prevention effect for illness, it is important to examine the effect of

health care advice in particular based on the subject characteristics which was obtained through

the process of data analysis which are conscious of logic consistency. However, as showed in

section 3.4, we should select model for small sample carefully, so we have to approach from

various viewpoints in actual application occasion.
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4. The impact of the shape of the

underlying distribution of observations

on test results

4.1 Introduction

In clinical research, we consider the difference between pre- and post- treatment observations

as an evaluation indicator for treatment effect. Then, pre- and post- treatment are paired,

not independent. For example, when pre- and post- treatment observations are measured for I

subjects, pre- treatment observation XBi and post- treatment observation XTi for i-subject can

be expressed by

XBi = µ+ Si + eBi, (4.1)

XTi = µ+ Si +∆+ eTi, i = 1, . . . , I (4.2)

(Bonate, 2000), where µ is a population mean, Si is i-subject effect, ∆ is a clinical effect, eBi

and eTi are the error terms which follow the distributions with the expectation 0 and variances

σ2. Then, the difference is presented by

XT i −XBi = ∆+ eT i − eBi, i = 1, . . . , I (4.3)

∆ = 0 means no treatment effect and ∆ ̸= 0 means treatment effect. When we examine

whether the treatment effect exists or not, it is often assumed that the observations follow

normal distribution, and a paired t-test in a one-sample problem and two-samples t-test in a

two-sample problem are applied for them. But a lot of endpoints exist in the actual clinical

research and the endpoints do not always follow the normal distribution. For example, the

analysis results for 1141 subjects participating in a health checkup which was conducted at a

company in 2004 (Isogawa, Ikebe, Sakamoto and Goto, 2011) and for 8815 subjects participating

in a complete physical examination which was conducted at a clinic in 2003 (Maruo, Shirahata,

Goto and Komazawa, 2008), the blood pressure and many items in the clinical laboratory test
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did not follow the normal distribution. By now, the impact of non-normality of the potential

distribution on the paired and the two-samples t-test have been discussed in several papers. Blair

and Higgins (1985) compared the power in the paired t-test to it in the Wilcoxon signed rank test

in small sample size when the observations follow several potential distributions. In the paper,

normal distribution, uniform distribution, double exponential distribution, truncated normal

distribution, exponential distribution, mixed normal distribution, log-normal distribution, chi-

square distribution and Cauchy distribution were used as the potential distributions. And Yand

and Tsiatis (2001) focused on the occasions that we apply the paired and two-samples t-test

under the semi-parametric situations where the distributions of pre- and post- observations do

not need to be specified, and inquired about the asymptotic efficacy between the sample variance

and the variance estimator led by central limit theorem. However, as discussed, because we treat

various endpoints in clinical research, it could be well considered that the endpoints follow the

distributions without the above distributions. Also, we treat finite observations, so there are

many situations that the asymptotic properties cannot be available. In this paper, when it is

assumed that pre- and post- treatment observations follow various distributions, we evaluate

the impact of them on tests which require the normal assumptions. Because we often conduct

two-group comparison between actual group and placebo group in clinical research, we consider

not only one-sample problem but also two-sample problem. We evaluate the performance of

the paired t-test in one-sample problem and the two-samples t-test in two-sample problem, but

also use the Wilcoxon signed rank test in one-sample and the Wilcoxon rank sum test as the

comparison of the t-tests. To clarify the relationship and the structure between the distributions

of pre- and post-observations and the distribution of the difference, we especially focus on the

following points.

(a) Relation between non-normality of distributions of pre- and post-observations and non-

normality of the distribution of the difference.

(b) Influence of non-normality of distribution of the difference on power in above tests.

(c) Availability of interpreting the test results corresponding to distributions of pre- and post-

treatment samples.

As an approach to (a), we assume that pre- and post-observations follow a bivariate power-

normal distribution (BPND: Goto and Hamasaki, 2002) in order to consider the relationship
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between the distributions of pre- and post-observations and the distribution of the difference

comprehensively and quantitatively. The bivariate power-normal distribution is the bivariate

extended form of an univariate power-normal distribution (PND) which was proposed by Goto,

Matsubara and Tsuchiya (1983). The univariate power-normal distribution is defined as the

distribution which the observations before the power-transformation (Box and Cox, 1964) follow,

and contains various distributions including well-known normal distribution and log-normal

distribution, so can cover real situations to some extent and is useful to evaluate the discrepancies

between ideal (model and hypothesis) and reality (data) (Goto, Uesaka and Inoue, 1979; Goto

and Inoue, 1980; Goto, Matsubara and Tsuchiya, 1983). Moreover, because pre- and post-

observations have the correlated relationship, the bivariate power-normal distribution including

the correlation structure is suitable for assessing our problem. In fact, to analyze the health

checkup data for 1141 subjects and the complete physical examination data for 8815 subjects

as previously discussed, the blood pressure and the clinical laboratory test were assumed to

follow the PND, and these data fitted the PND well. Because the PND express the features

of the distribution which the data follow even if the distribution is not known previously, we

notice on the PND in this paper. Additionally, to make clear the situation examined in this

paper, we identify the distribution of pre- and post-observations by using a shape parameter

(power-parameter) which expresses a skewness of the distribution and an indicator which express

a variation of the distribution defined in 2.2. And we derive the distributions of the difference

from numerical integral in several situations and inquire the properties about the distributions

of the difference. As an approach to (b) and (c), we examine the impact of the shape of the

potential distribution on the results of the t-tests.

In Section 2, we briefly describe statistical methods used in this paper. In Section 3, we

examine the properties of the distributions of the difference to examine (a). In Section 4, small

scale simulations are provided to examine (b), (c) and consider the results. Finally, in Section

5, we summarize some productive findings obtained by Section 3 and 4 and conclude with some

further developments.

4.2 Statistical Method

It is assumed that prior- and post-observations follow the BPND.
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4.2.1 Univariate power-normal distribution (PND)

The power-transformation of positive variable X is defined as

X(λ) =


(Xλ − 1)/λ, λ ̸= 0

logX, λ = 0

(4.4)

(Box and Cox, 1964). The power-normal distribution on original scale X is proposed (Goto,

Uesaka and Inoue, 1979: Goto, Matsubara and Tsuchiya, 1983) and the probability density

function is given by

fPN(x;λ, µ, σ) = xλ−1ϕ{(x(λ) − µ)/σ}/A(K), x > 0 (4.5)

where ϕ is a probability density function of standard normal distribution and A(K) is a proba-

bility proportional constant term given by

A(K) =


Φ{−K}, λ < 0

1, λ = 0

Φ{K}, λ > 0

(4.6)

1−A(K) presents truncated probability where K = (1+λµ)/(λσ) and Φ(·) is cumulative distri-

bution function of standard normal distribution. If the probability proportional constant term is

small, it is well-known that the data cannot preserve the normality after power-transformation.

Parameter λ, µ and σ are respectively called shape, local and scale parameter and the power-

normal distribution for X is identified by changing λ corresponding to X. Here, X follows the

normal distribution in λ = 1 and the log-normal distribution in λ = 0. The advantage of using

the power-normal distribution is that it is a comprehensive model to be able to comprehend

the diremption between the ideal (model and hypothesis) and the real (data), analyze real data

adequately and use many traditional methods based on normal distribution.

Also, the 100p percent point ξp is presented by

ξp =


{λ(µ+ σzp∗) + 1}1/λ , λ ̸= 0,

exp (µ+ σzp) , λ = 0

(4.7)

(Maruo & Goto, 2008), where zp, zp∗ are the 100p, 100p∗ percent

p∗ =


1−A(K)(1− p), λ > 0,

A(K)p. λ < 0

(4.8)
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Because the truncated term happens in anything but λ = 0, A(K) is not always 1. However, in

this paper, for the interpretation of the results ease, we focus on the cases of A(K) = 1, that is,

we assume the non-truncated situation.

4.2.2 Expression of parameter transformation

Though we consider various distributions in the framework of the PND, it is difficult to

interrupt µ and σ directly because these parameters change much according to λ. Therefore,

in this paper, we specify the distribution in {λ, ξ0.5(Median), τ(Variation of distribution)} and

calculate {K,µ, τ} using the following relationship. Here we express variation of one distribution

τ as

τ = (ξ0.75 − ξ0.25)/ξ0.5. (4.9)

Given {λ, ξ0.5, τ}, {µ, σ} can be derived from

µ = (1 + z0.5∗/K)−1
[
(ξλ0.5 − 1)/{λ− z0.5∗/(λK)}

]
, (4.10)

σ = (1 + λµ)/(λK) (4.11)

We calcucate {λ, ξ0.5, τ} from {K,µ, σ} in grid search method. The relationship between the

variation of the distribution (τ) and the standard deviation (SD) was shown in Figure 4.1. It

was almost proportional relation regardless of λ, so we use the variation of the distribution as

the alternative of the standard deviation (SD).

the p-moment of p < |λ| does not exist in the power-normal distribution with λ < 0. So we

use

η = (ξ0.975 − ξ0.5)/(ξ0.5 − ξ0.025) (4.12)

as the skewness indicator of the distribution. η approaches to 1 as the distribution is closed to

the symmetry (η > 1 in the right skewed distribution and η < 1 in the left skewed distribution).

The relationship between the variation of the distribution and the skewness indicator was

shown in Figure 4.2. It was found that the distribution was skewed to the right as λ decreased

and τ increased.
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4.2.3 Bivariate power-normal distribution (BPND)

An extension of PND to two-dimensional case is the bivariate power-normal distribution

(BPND). Expressing power transformed variables of two positive variables (X1, X2) as (X
(λ1)
1 , X

(λ2)
2 ),
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Figure 4.1: Relationship between τ and SD [λ = 0(cross),0.5(circle),1(plus)]
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Figure 4.2: Relationship between τ and η

[λ = −1(diamond),−0.5(asterisk),0(cross),0.5(circle),1(plus)]
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then we can define joint probability density function of (X1, X2) as

g(x1, x2) = xλ1−1
1 xλ2−1

2 f(x
(λ1)
1 , x

(λ2)
2 )/A(K), x1, x2 > 0 (4.13)

(Goto and Hamasaki, 2002), where

f(x
(λ1)
1 , x

(λ2)
2 ) =1/(2πσ1σ2

√
1− ρ2) exp[−{Q(x

(λ1)
1 , x

(λ2)
2 )/2],

Q(x
(λ1)
1 , x

(λ2)
2 ) =1/(1− ρ2)[{(x(λ1)

1 − µ1)/σ1}2 − 2ρ{(x(λ1)
1 − µ1)/σ1}

{(x(λ2)
2 − µ2)/σ2}+ {(x(λ2)

2 − µ2)/σ2}2] (4.14)

and ρ is the correlation parameter. Also, A(K) is a probability proportional constant term of

BPND given by

A(K) =

∫ b2

a2

∫ b1

a1

ϕ(x1, x2 : ρ)dx1dx2 (4.15)

where ϕ(x1, x2 : ρ) is joint probability density function of bivariate normal distribution which

the margin distribution is a standard normal distribution. Putting kj = (λjµj +1)/λj(j = 1, 2),

aj and bj are presented by aj = −kj , bj = ∞ if λj > 0, aj = −∞, bj = ∞ if λj = 0 and

aj = −∞, bj = −kj if λj < 0. The counter plots of some BPNDs were shown in Figure 4.3.

We set λ as −1, 0, 1, τ as 0.1, 0.35, median of pre-observation XB as ξB0.5 = 100 and median

of post-observation XT as ξT0.5 = 95 and correlation coefficient parameter as ρ = 0.75. As the

figure shown, it was found that the distribution was skewed to the right as λ decreased.

4.3 Distribution of the difference

It is assumed that pre-observation XB and post-observation XT follow the BPND. Because

it is often considered that the distributions which XB and XT follow are the same and the

variations of them are also the same, we set that λ (power-parameter) and τ (variation of the

distribution) in XB and XT are equal in this paper.

When it was assumed that the potential distributions of the health checkup data in Isogawa

et al.(2011) and the complete physical examination data in Maruo et al.(2008) were the PNDs,

most of these data followed the right skewed-distribution, so we consider about the cases that

pre- and post-observation follow the PNDs with λ ≤ 1. The median of the pre-observation XB

is set as ξB0.5 = 100, the median of the post-observation XT as ξT0.5 = 100 and the correlation

parameter as ρ = 0.75, 0.9. The densities of the difference p(D) were shown in Figure 4.4. When
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Figure 4.3: Counter plots of some bivariate power-normal distributions (ρ = 0.75)
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pre-observation XB follows the normal distribution (λ = 1), at the range between 0.1 and 0.35

in τ , the standard deviation (SD) of XB vary between 11.1 and 25.9 and it diserves to the range

between 0.111 and 0.259 in the coefficient of the variation (CV).

Though the distributions of the difference with λ = −1, 0 were more convex than those

with λ = 1 in τ = 0.1, 0.35 and ρ = 0.75, there did not exist large differences among these

distributions. These distributions of the difference were almost symmetry. Moreover, by using

the numerical integral, we calculated the skewness indicator of the distributions which the pre-

observation XB and the difference D follow. The results were shown in Figure 4.5. Regardless

of the coefficient parameter, the skewness of the distribution of the difference approached to the

symmetry compared to pre-observation even in the case but λ = 1. Especially, we notice on the

fact that the skewness of the difference indicated the almost symmetrical distribution regardless

of that the skewness of the pre-observation with λ < 0 was very large.
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4.4 Simulation

4.4.1 One-sample problem

Purpose We examine the impact of the distribution of the difference on the paired t-test

which assumes normality.

For details, we assume that the pre- and post-observations follow several BPNDs. We conduct

the paired t-test for the pre- and post-observations and those after the power-transformation. By

comparing the powers of the paired t-test for the pre- and post-observations and those after the

power-transformation, we can evaluate the loss of information about the distribution. Because

it focuses on the occasion that the pre- and post-observations do not follow normal distribution,

we also provide further insights into the Wilcoxon signed-rank test (a typical non-parametric

test) which is selected as alternative of the paired t-test in the cases of that the data do not

follow the normal distribution.

Method Set the pre- and post-observations as those generated from the BPNDs whose medi-

ans of the pre- and post-observations are 100 and 95.

In each case of the BPND with λ = −1,−0.5, 0, 0.5, 1, τ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and ρ =

0.75, 0.9, we calculated the minimum sample size that the observations after power-transformation

indicate more than 90% power in the paired t-test. However, the cases with τ = 0.1 were elimi-

nated in ρ = 0.75, 0.9 because the sample size were less than 10 with τ = 0.1 and ρ = 0.9. The

sample size in each simulation was indicated in Table 4.1.

We generated the pre- and post-observations from each BPNDs and calculated the type I

errors and the power in the paired t-test and the Wilcoxon signed rank test for the pre- and

post-observations and the paired t-test for those after the power-transformation.

Then the type I error was calculated as follows: After getting the observations of the pre- and

post-observations from the above BPNDs whose medians of the pre- and post-treatment were

100, we conducted the above three tests for the observations. The procedures were repeated in

50,000 and the proportion that the null hypothesis was rejected in each test was calculated as

the type I error. The power was also calculated in the same way of the type I error except for

that the medians of the post-treatment was 95. These results were showed in Figure 4.6-4.9.
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Table 4.1: Sample size in each simulation

　 One-sample Two-sample

　 τ τ

λ ρ 0.15 0.2 0.25 0.3 0.35 0.15 0.2 0.25 0.3 0.35

1 0.75 25 45 69 100 136 51 91 142 204 277

0.9 11 18 28 41 55 21 37 57 82 112

0.5 0.75 25 44 69 99 135 51 89 140 201 273

0.9 10 18 28 40 54 21 36 56 81 110

0 0.75 25 44 69 99 133 50 88 137 197 266

0.9 10 18 28 40 54 20 35 55 79 107

-0.5 0.75 25 44 68 97 131 49 86 134 191 258

0.9 10 18 28 39 53 20 35 54 77 104

-1 0.75 25 43 66 94 126 48 83 129 183 245

0.9 10 18 27 38 51 19 34 52 74 99

　

Result At first, we noticed the relationship between the variation of the distribution τ and

the type I error. From the results of the type I error in Figure 4.6 and Figure 4.7, the type I

errors indicated about 0.05 in not only λ = 1 but also almost all cases. So we consider that the

type I error were almost preserved to 0.05 and focus on the power in Figure 4.8 and Figure 4.9.

As expected, the powers in the paired t-test for those after power-transformation were almost

preserved to 0.9. In the case of λ = 1, 0.5 in ρ = 0.75, 0.9, the powers in three tests were

almost the same 0.9. In the case of λ = 0 in both ρ = 0.75, 0.9, there were no large differences

among the powers in the three tests, but the powers were strictly the paired t-test for the pre-

and post-observations after power-transformation, the paired t-test for those and the Wilcoxon

signed-rank test in ascending order. Also though the powers of the paired t-test for the pre-

and post-observations and those after power-transformation when τ is low, the powers in the

paired t-test for those after power-transformation approached to those in the Wilcoxon signed-

rank test as τ increased. In the case of λ = −0.5,−1 in ρ = 0.75, 0.9, the powers in the paired

t-test for those after power-transformation decreased largely as τ increased, and they were under

0.6 especially in λ = −1 and τ = 0.35. Though the powers in the Wilcoxon signed-rank test
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Figure 4.6: One-sample: Relationship between τ and type I error (ρ = 0.75)
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Figure 4.8: One-sample: Relationship between τ and power (ρ = 0.75)
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Figure 4.9: One-sample: Relationship between τ and power (ρ = 0.9)
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Table 4.2: Percent points of some staistics obtained in the simulation for one-sample problem

(ρ = 0.75)

　 Percent point

τ Statistics λ 5% 25% 50% 75% 95%

0.15 Test statistics -1 1.47 2.45 3.19 3.98 5.26

-0.5 1.54 2.52 3.24 4.02 5.27

0 1.58 2.55 3.28 4.07 5.33

0.5 1.58 2.57 3.30 4.08 5.37

1 1.59 2.56 3.29 4.08 5.37

Sample mean -1 -7.78 -6.17 -5.08 -3.98 -2.41

-0.5 -7.66 -6.10 -5.04 -3.98 -2.48

0 -7.59 -6.07 -5.03 -3.98 -2.47

0.5 -7.58 -6.06 -5.02 -3.97 -2.49

1 -7.58 -6.06 -5.02 -3.97 -2.49

SD -1 5.94 7.08 7.94 8.87 10.3

-0.5 5.91 6.97 7.77 8.61 9.92

0 5.86 6.89 7.64 8.43 9.63

0.5 5.84 6.85 7.58 8.36 9.48

1 5.84 6.84 7.58 8.34 9.45

0.35 Test statistics -1 0.24 1.46 2.22 2.96 3.99

-0.5 1.18 2.19 2.88 3.57 4.58

0 1.50 2.47 3.15 3.83 4.83

0.5 1.62 2.59 3.27 3.96 4.99

1 1.59 2.56 3.26 3.95 4.96

Sample mean -1 -10.2 -7.21 -5.45 -3.66 -0.71

-0.5 -8.41 -6.56 -5.30 -4.03 -2.21

0 -7.85 -6.26 -5.17 -4.06 -2.48

0.5 -7.64 -6.11 -5.07 -4.03 -2.52

1 -7.50 -6.04 -5.00 -3.95 -2.46

SD -1 20.4 23.5 26.5 31.3 57.2

-0.5 17.9 19.6 20.9 22.4 25.0

0 16.7 17.9 18.8 19.8 21.2

0.5 16.1 17.2 18.0 18.7 19.9

1 16.1 17.1 17.8 18.6 19.7

were also decreasing, the tendency was slower pace than those in the paired t-test for pre- and

post-observations, and the powers were almost 0.8 even in λ = −1 and τ = 0.35. To find the

causes of why the powers in the paired t-test for the pre- and post-observations decreased in

the cases of λ = −1,−0.5, we showed the percent points (5%, 25%, 50%, 75%, 95%) of the test
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statistics, the sample means and the standard deviations of the difference between pre- and post-

observations for the simulated 50,000 data in Table 4.2. In τ = 0.15, the percernt points of the

test statistics, the sample means and the standard deviations indicated approximately the same

values regardless of λ. However, in τ = 0.35, the percent points in λ = −1,−0.5 were distinctly

different than those in λ = 0, 0.5, 1. In the details, the test statistics in λ = −0.5,−1 were smaller

than those in λ = 0, 0.5, 1 and the range of the standard deviations and the sample means in

λ = −0.5,−1 was wider than the those in λ = 0, 0.5, 1. Thus, it is considered that the test

statistics decreased as the standard deviations increased, so the powers decreased. Additionally,

the results in ρ = 0.9 were similar to those in ρ = 0.75. We can consider that it has influence

on the powers in the paired t-test that the distributions of the difference with λ = −1,−0.5 and

τ = 0.35 are longer tailed in both sides, compared to the distributions of the difference with

λ = 1 (Normal distribution).

Also, the correlation coefficient parameter in BPNDs had little influence on the type I errors

and the powers in this simulation.

From these results, we found that the paired t-test is robust even if the assumptions of the

normality are slightly violated.

4.4.2 Two-sample problem

Purpose Because we often conduct a comparison between actual group and placebo group in

clinical research, we consider two-sample problem in this section. It is often assumed that the

difference of the drug effect between the actual drug and the placebo follow the normal distri-

bution, and we conduct the two-samples t-test and the analysis of covariance which assume the

normality. However, the clinical endpoints do not always follow a normal distribution as ex-

pected. It may happen that the pre- and post-observations do not follow the normal distribution

as a result. The purpose of the simulation in this section is to evaluate how these situations have

the influence on the results of the two-samples t-test. We also consider the Wilcoxon rank-sum

test as the alternatives of the two-samples t-test.

Method Set the pre- and post-observations in actual group as those generated from the BP-

NDs whose medians of the pre- and post-observations are 100 and 95 respectively, and those

in placebo group as those from the BPNDs whose medians of the pre- and post-treatment are
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both 100. In each case of the BPND with λ = −1,−0.5, 0, 0.5, 1, τ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35

and ρ = 0.75, 0.9 in a similar way to one-sample problem, we represented the minimum sam-

ple size that the observations after power-transformation indicate more than 90% power in the

two-samples t-test in Table 4.1.

We generated the observations from each BPND and calculated the type I errors and the power

of the two-samples t-test and the Wilcoxon rank-sum test for the pre- and post-observations and

the two-samples t-test for those after the power-transformation in a similar way to one-sample

problem. These results were showed in Figure 4.10-4.13.

Result At first, we notice the relationship between the variation of the distribution τ and the

type I error. From the results of the type I error in Figure 4.10 and Figure 4.11, the type I errors

indicated about 0.05 in not only λ = 1 but also almost all cases. So we consider that the type I

error were almost preserved to 0.05 and compare the power in Figure 4.12 and Figure 4.13.

As expected, the powers in the two-samples t-test for those after power-transformation were

almost preserved to 0.9. In the case of λ = 1, 0.5, 0 in ρ = 0.75, 0.9, these results were similar to

those in one-sample problem, and the powers in three tests were the almost same 0.9.

In the case of λ = −0.5,−1 in ρ = 0.75, 0.9, the powers in the two-samples t-test for pre- and

post-observations decreased largely as τ increased, and the extent of the decreases was larger than

it in one-sample problem. Especially, the power was under 0.5 in λ = −1 and τ = 0.35. Though

the powers in the Wilcoxon rank-sum test were also decreasing as τ increased, the tendency was

with a slower pace than those in the two-samples t-test for pre- and post-observations.

To find the causes of why the powers in the two-samples t-test for pre- and post-observations

in the cases of λ = −1,−0.5, we showed the percent points (5%, 25%, 50%, 75%, 95%) of the

test statistics, the difference of the sample means and the pooled variance in two groups for

the simulated 50,000 data (without the details). As in one-sample problem, the test statistics

in λ = −0.5,−1 were smaller than those in λ = 0, 0.5, 1 and the range of the square roots of

the pooled variance and the difference of the sample means in λ = −0.5,−1 was wider than

the those in λ = 0, 0.5, 1. Thus, it is considered that the test statistics decreased as the square

roots of the pooled variance increased, so the powers decreased. Again, we can consider that

it has influence on the powers in the two-samples t-test that the distributions of the difference

with λ = −1,−0.5 and τ = 0.35 are longer tailed in both sides, compared to the distributions
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Figure 4.10: Two-sample: Relationship between τ and type I error (ρ = 0.75)
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Figure 4.11: Two-sample: Relationship between τ and type I error (ρ = 0.9)
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Figure 4.12: Two-sample: Relationship between τ and power (ρ = 0.75)
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Figure 4.13: Two-sample: Relationship between τ and power (ρ = 0.9)
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of the difference with λ = 1 (normal distribution). Also the correlation coefficient parameter in

BPNDs had little influence on the type I errors and the powers in this simulation.

From these results, we found that the two-samples t-test is robust even if the assumptions of

the normality are slightly violated.

4.5 Conclusion

In this paper, we comprehensively discussed how the potential distribution which the obser-

vations of pre- and post-treatments follow impacts the distribution of the difference and test

results. As the result, regardless of the coefficient parameter, the distribution of the difference

approached to the symmetry even if the distribution which pre- and post-observations follow was

right-skewed. From the results of the simulations which were conducted to examine the impact

of the distribution of the difference on t-test which assumes normality, even when the potential

distribution was actually log-normal distribution though it was assumed that the potential dis-

tribution was a normal-distribution, the powers in the paired t-test and the two-samples t-test

were preserved high.

So we found that the paired and two-samples t-test were robust even if the assumptions of the

normality were slightly violated. But when the potential distribution is longer tailed to the right

than log-normal distribution and the variation of the distribution is large, the power decreased

remarkably because the distribution of the difference was longer tailed in both sides.

Thus, we found that the potential distribution has influence on the distribution of the dif-

ference and the paired and two-samples t-test. It is desirable to interpret the test results after

making clear the potential distribution which pre- and post-treatments follow at first and having

a sufficient understanding of the characteristics of the distribution of the difference.
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5. Conclusions

In this paper, we focused on three different topics. They are “Predictive performance of

Bayesian diagnoses”, “A preliminary evaluation about health guidance” and “The impact of

the shape of the underlying distribution”. In chapter 2, we explained about BPIC and the

predictive checking approach, and described new findings obtained from the simulation to make

clear the the predictive performance. In chapter 3, we conducted a preliminary evaluation about

health guidance for data of 1,141 subjects who had the health checkup that was carried out in

April 2004. As the results, we found that it was very important to interpret data through a

process of data analysis which are conscious of logic consistency. In chapter 4, we examined the

impact of the shape of the underlying distribution of observations on test results and specifically

present occasions where t-test works well. We found that the paired and two-samples t-test were

robust even if the assumptions of the normality were slightly violated. But when the potential

distribution is longer tailed to the right than log-normal distribution and the variation of the

distribution is large, the power decreased remarkably because the distribution of the difference

was longer tailed in both sides. In this chapter, we propose some subjects for future investigation.

5.1 Future problem

Predictive performance of Bayesian diagnoses: We considered about the case that sam-

ple follow normal distribution with known variance and mean parameter follow prior distribution.

We think that we can clarify the characteristics of BPIC and predictive checking approach even

in the case of that sample follow another distribution except for normal distribution or that the

number of parameters which have prior distribution increases. To maximize the advantage of

Bayesian approach which can select appropriate model in terms of prediction, it is very impor-

tant to make a clear the profiles of these predictive diagnoses in the application situation before

conducting predictive diagnoses.

Also prior and posterior predictive checking approaches have been under the development yet
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and so it is expected for the application to various occasions. For example, in actual situation,

though model diagnosis which is conducted by residual display and another effective plotting is

unprogrammed, we can re-consider them using prior and posterior predictive checking approach

through the logical framework. These attempts may lead to propose direct model evaluation

(Okuda, 1999). As our goals, we would like to connect Neyman-Pearson to Bayesian, which

have been developed separately by now, through predictive checking approach.

A preliminary evaluation about health guidance: As described in section 3.1, though

Ministry of Health, Labor and Welfare of Japan has carried out ”Health Checkups and Health-

care Advice” which make it obligatory for person aged 40 through 74 to reduce medical expenses

and prevent lifestyle-related diseases (Health Service Bureau of Health, Labour and Welfare,

2007) since April 2008, it is concerned with the lack of ”Foundation for enforcement” and ”Ev-

idence for prevention” (Ohgushi, 2006: 2007).

We also think that the effect of ”Health Checkups and Healthcare Advice” should be clarified.

In chapter 2, based on the results of the Health Checkup that aims to prevent disease are carried

out in April 2004, we explored foundation about the doctor’s judgment, especially classification of

the directed group, attempting to figure the doctor’s character, and further evaluated directed

effect for the directed group. Through a process of data analysis which is conscious of logic

consistency, we gained the findings of an evaluation and consideration for health care advice

from ”Set of cold figures” (health checkup data) (Goto, 1986). If possible, we would like to

analyze the actual data of ”Health Checkups and Healthcare Advice” and examine the effects

in fact.

The impact of the shape of the underlying distribution: We comprehensively discussed

how the potential distribution which the observations of pre- and post-treatments follow impacts

the distribution of the difference and test results. As the result, regardless of the coefficient

parameter, the distribution of the difference approached to the symmetry even if the distribution

which pre- and post-observations follow was right-skewed. Also we found that the paired and

two-samples t-test were robust even if the assumptions of the normality were slightly violated.

As the future problem, we would like to clarify the relationship between the difference and

pre-/post-observation numerically and examine how the difference distribution expresses the

information of pre- and post-observations.
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