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Preface 

Future optical networks are moving from static point-to-point connections towards dynamic wave

length routed networks using all-optical, reconfigurable switching nodes. By doing so, lightpaths are 

dynamically routed/switched entirely over the optical layer, eliminating current expensive electronic 

regenerators and enabling significant energy savings. However, the lack of optical-electrical-optical (0-

E-0) transponders (i.e., transparency) makes it necessary to consider the degrading effects of the phys

ical transmission of optical signals accumulated along the path. Previous work, consider mostly linear 

physical impairments during the wavelengths assignments scheme and only few incorporate nonlinear 

physical effects due to their complexity. The state-of-the-art in optical communication networks have 

enabled the increase of large capacity, high-speed data transmission and routing intelligence in the 

optical networks, and driving the need for an efficient strategy to face up the accumulation of phys

ical impairments and to provide quality-enabled services. We proposed a new approach that takes 

into account the physical impairments during the entire path computation process, both wavelength 

assignment scheme and routing scheme, demonstrating by computer simulations of the impact on the 

network performance incorporating the physical impairments in the routing scheme. We had focused 

our study in the effects of four-wave mixing (FWM)-inducing crosstalk between the channels, which 

causes a fatal degradation in the teletraffic performance of wavelength-routed all-optical networks. In 

addition, none of the previous impairment routing studies has treated modulation format as an es

sential part of the impairment based routing strategy. In our study, modulation format conversion is 

taking into account as a technique to improve the network performance together with better utilization 

of the network resources while establishing the optical connection. 

This dissertation introduces a study on dynamic lightpath provisioning towards the design on wave

length routed optical networks accomplishing physical impairment awareness (e.g., FWM-induced 

crosstalk) and enriching transparency in terms of bit rates and modulation format conversion inter

face using distributed impairment constraint based routing approach. The content of the dissertation 

is based on the research which I conducted during my doctoral course at the Department of Electri

cal, Electronics and Information Engineering, Graduate School of Engineering, Osaka University. The 

dissertation is organized as follows: 

Chapter 1 is an introduction to the contents of the dissertation. It presents a general overview of 

the current state of optical networking including issues and challenges. A comprehensive description 

of the optical control plane is given, locating the routing controller and highlighting the main issue of 

dynamic provisioning of lightpath which form the motivation for the conducted research. The general 
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architecture of wavelength-routed optical networks is described. Concepts as degree of transparency, 

impairment constraint based routing approach, routing and wavelengths assignments, intra- and inter

domain routing are introduced. The structure of the dissertation is explained at the end ofthis chapter. 

Chapter 2 provides an overview of the issues found inside the physical layer related to the impair

ments of the optical networks addressing the details ofthe effects ofFWM-induced crosstalk and its im

pact on the network performance of wavelength-routed optical networks. An analytical study ofFWM 

and the basis of the calculation model used are described. Additionally the necessary fundamentals of 

on-off keying (OOK) and quadrature phase-shift keying (QPSK) modulation format are introduced. 

Chapter 3 describes the novel designed impairment constraint-based routing algorithm. Covers 

wavelength-routed optical networks and focuses on lightpath computation encompassing physical im

pairment constraint, taking into account as a first instance FWM-induced crosstalk, as an important 

factor influencing the performance of high-bit-rate long-haul systems. In addition, an implementation 

to fast establishing the lightpath set up based on the advantages of a hybrid online/oftline strategy is 

proposed. 

Chapter 4 focuses on modulation format conversion feature interface, which has been added to the 

designed dynamic algorithm for high-bit-rate systems. By envisaged transparent modulation format 

conversion from 2-channels conventional OOK to QPSK in future wavelength-routed optical networks, 

we have proposed a novel FWM-induced crosstalk-aware dynamic RWA algorithm and have showed by 

numerical simulation that it can minimizes significantly the network blocking probability. 

Chapter 5 summarizes the results of the preceding chapters and draws final conclusions of the dis

sertation. From all the obtained results, it is concluded that, the proposed FWM-induced crosstalk 

aware dynamic RWA with modulation format conversion has the feasibility to enrich the network per

formance, guarantee quality of services (QoS), increase scalability, and support transparency. Conse

quently, the proposed scheme is considered as one possible base to develop the network design frame

work for the future transparent optical communication networks. 

Osaka, Japan 

December 2008 
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Chapter 1 

Introduction 

Planning real world telecommunications networks is a task of growing complexity. The complex

ity results not only from the fact that the networks are large and functionally complex, subject to 

continuous technological evolution and growth, but also that network planning is a multidimensional 

techno-economic optimization problem. 

Optical networks design draws an increasing amount of attention nowadays. Traffic demands in 

communication networks are growing rapidly, mainly due to data-centric applications. The major tech

nology at hand that is promising to meet the high bandwidth demand is optical networking with wave

length division multiplexing (WDM). The technology of WDM splits the large bandwidth available in 

an optical fiber into multiple channels, each one operating at different wavelengths and at specific data 

rates, achieving a throughput of up to several hundreds of Gbits/s. The early deployment of WDM 

technology was in a point-to-point manner to ease fiber exhaustion. As more advanced systems, such 

as optical add/drop multiplexers (OADMs) and optical cross-connects (OXCs) (capable of routing and 

switching wavelengths), have matured, dense WDM (DWDM) has become a network-level technology. 

Therefore, efficient internetworking of higher-layer protocols, most notably internet protocol (IP) over 

DWDM networks, has become more important. The increasing complexities of optical networks, how

ever, complicate the internetworking task. In particular, optical connection routing for channel setup 

is one of the major factors that affect optical network design and operation, and this is the global issue 

presented in the study of this thesis. 

1.1 Optical networks, current trends and issues 

Today's continuous increase of data traffic primarily reflects the progressively extending use of the 

new information and communication technologies in all the socio-economic segments of the developed 

and developing societies. The future user-friendly information society requires the implementation of 

optimized communication networks, the architecture and capacity of which depend both on the needs 

of each category of users and on the services which are provided to them. 

Photonics research is seen as an agent in four main areas: 1) telecom/infotaimnent, 2) health care/life 

sciences, 3) environment/security and lighting, and 4) photonic devices relevant to the aforementioned 
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2 Chapter 1. Introduction 

areas. The strategic objectives for the first area include broadband for all, micro- and nano systems, 

advanced displays, and photonic functional components. In the second area, photonic technologies will 

be essential for non-invasive imaging, diagnostics and therapies. The third area includes solid-state 

lighting, optical sensors, and optical monitoring. And in the four area includes photonics devices that 

lead the trends of the previous areas. Photonics for telecom has been a strong driving force for new 

applications of photonics in the second and third areas; it is envisioned that the synergies between the 

areas can be further stimulated by the strategic priorities and actions of new research activities. 

Therefore, some advances and perspectives of new services in photonic technology research are ex

pected, and the general requirements they imply for the networks according to the presently commonly 

accepted technical assessments is a driven force of current research activities. 

For instance, routing at so high bit rates for everybody put strong requirements on the metropolitan 

area networks (MAN) and wide area networks (WAN). The most noticeable demands are: fast reconfig

urability up to 40 Gbit/s, very large node throughput (greater than 1 Tbit/s in the MAN and 10 Tbit/s 

in the WAN) and extremely high availability. 

The implementation of such perspectives must be economically viable. The major part of the pro

duction costs is caused by capital expenditures (CAPEX) and operating expenditures (OPEX). Indeed, 

the technological research can contribute to the reduction of costs in a very effective way, especially at 

the nodes of the networks. Costs of a network node depend on its complexity. A reduced complexity 

can be achieved by the so called delayering, which means reduction of the protocol stack. The tradi

tional protocol stack for IP services consists of 4 protocols (IP over Asynchronous Transfer Mode (ATM) 

over Synchronous Digital Hierarchy (SDH) over the optical layer). The major sustaining functions per

formed by the traditional layers are, high speed transmission and efficient fiber use on the optical layer, 

fast traffic protection and sub-wavelength multiplexing on the SDH/ synchronous optical networking 

(SONET) layer, service differentiation and traffic engineering on the ATM layer and finally packet for

warding and service features on the IP layer. Keeping in mind that the functions are important, not 

how they are organized in layers, the complexity strongly depends on the way these functions can be 

realized and organized thanks to the new technological advances. 

The functions of the intelligent optical layer are realized by the optical control plane, which con

trols the optical layer, processes information from the monitoring, and communicates with the network 

management. For instance, performance monitoring is essential for the operators to ensure integrity 

of their network, and to enable service-level agreements with their customers. Intelligence in optical 

networks should enable the operator to meet emerging requirements such as: rapid automatic provi

sioning of connections, automatic topology recovery and network inventory, traffic engineering and fast 

optical restoration. 

The objectives put forward by the vision of future applications and needs thus lead to strong tech

nical requirements in the field of network architectures and solutions, systems and sub-systems for 

transmission and routing and in term of advanced components. 

The past ten years have been very active in the field of research and development (R&D) on optical 

components and all-optical functionalities. Two important steps can be foreseen: the first is enhanced 
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usage of the fiber spectral bandwidth including the channel bit-rate increase to 40 Gbit/s (or higher 

via optical time division multiplexing (OTDM)). This requires new amplifier specifications, new in

line control (polarization mode dispersion (PMD), regeneration, nonlinearities, etc.). The second is the 

introduction of enhanced optical transparency requiring OXCs and OADMs, optical signal processing 

and wavelength-agile components. In addition, new research concepts such as photonic crystals, and 

new materials such as polymers and organics, open new perspectives for future evolutions and future 

developments of better performing, more cost effective, and more compact devices. 

The quest for higher capacity in MANs is solved by higher data rates and increased spectral density 

in WDM networks. The current trend is toward more complex and dynamic networks with dynamic 

reconfiguration and provisioning. 

The WDM network relies on a number of wavelength selective or wavelength tuneable photonic com

ponents and subsystems. The OXC is the key building block of the WDM network; it may contain 

OADMs, which again may consist of wavelength selective switch (WSS) reconfiguration nodes, wave

length routers, wavelength converters, tuneable wavelength filters, etc. The challenge is to integrate 

many of these subsystems on a chip in a modular system that is upgradeable. At present the planar 

photonic crystal is the most promising technology for the realization of photonic integrated circuits 

with many functional elements. The WSS technology is highly scalable and can reduces network cost 

and enables new architectures in next generation DWDM networks. 

The granularity problem will for a long time be solved by burst or packet switching based on optical

electrical-optical (0-E-0) conversion technology. In spite of an intense research activity to demonstrate 

true photonic packet switching, it may take a decade before it materialises in carrier networks on a 

larger scale. The crucial barrier to true photonic packet switching is the lack of an optical equivalent 

to the electronic buffer or random-access memory. 

The major issue for the WAN, backbone and the global area network (GAN) is to cope with the large 

data capacity (1-10 Tbit/s) over very long distances (from hundreds to several thousands of kilometers 

for WAN and over 10,000 km forGAN, many of which are transoceanic). The nodes also serve as entry 

points to the MANs, and it is assumed that all signals will be fully regenerated at these entry points. 

Innovations of the transport network requires: 

• Increase of the single channel bit-rate (40 Gbitls or more). 

• Global (multi-wavelength) management of fiber chromatic dispersion, non-linearities, and PMD. 

• Increase of the spectral efficiency through special modulation formats and introduction of forward 

error correction (FEC); (FEC can also be used for supervision of the optical links). 

• Wideband amplification and introduction of Raman amplification. 

The switching in the WAN and backbone area will be mainly performed on wavelength and waveband 

level, due to the highly aggregated traffic. 

Throughout the network wavelength locking to the International Telecommunication Union (ITU) 

grid for sources and multiplexer channels is required. Tuneable sources and receivers are an important 

aspect of cost reduction and maintenance but require simple and stable wavelength allocation schemes. 
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The use of tuneable lasers may be supplemented by multi-wavelength light sources, which act as WDM 

channel generators. The WDM channels may be obtained by filtering the spectrum of a mode locked 

laser, which has the right repetition rate for the spectral comb to match the ITU grid. An alternative 

approach is to filter the broad spectrum generated by injecting high power light pulses into a nonlinear 

optical element. Special designs of photonic crystal fibers have proved to be very efficient nonlinear 

elements in this type of super-continuous (SC) light source [1, 2]. 

The increase of the total in-line bit-rate imposes a strong demand on amplifiers. Dispersion and 

nonlinear effect management will require compensating fibers [3] while the use of spectral inversion 

techniques [ 4] will appear for specific links. In a longer term, the introduction of OTDM associated to 

WDM will allow higher bit rates (80-160 Gbit/s) per channel. 

1.2 Degree of transparency in optical networks 

The huge transport capacity of WDM technology has not been accepted to be fully used by current 

optical networks yet [5]. As the volume of IP traffic drastically changes time by time, a large portion 

of surplus transmission capacity is required to cope with this traffic change. Such inefficiency on the 

bandwidth usage is due to the use of expensive 0-E-0 transponders causing the electronic bottleneck. 

Overall, optical networks can be opaque, translucent or transparent. 

In opaque region of networks, each route connections encounter 0-E-0 conversion or regeneration 

at every intermediate node in the network. One advantage of opaque networks is that they decouple 

transmission from switching and prevent the accumulation of cascaded impairments along the signal 

path. Other benefits are the ability to convert wavelengths in a multivendor environment and do 

detailed performance monitoring. Nevertheless, the biggest drawback of such networks is the higher 

cost of the additional 0-E conversions at the intermediate nodes. These costs comprise wavelength 

transponders and their related electronic control circuitries. Moreover, opaque networks are bit-rate-, 

protocol-, and format-dependent; hence, any hope of transparency to these attributes is lost. 

As an alternative to both fully transparent and fully opaque networks, the translucent networks 

come to be placed in the middle on a range of transparency. In a translucent network, a signal from the 

source travels through the network "as far as possible" before its quality degrades, thereby requiring it 

to be regenerated at an intermediate node. The signal could be electrically regenerated several times 

in the network before it reaches the destination. A single hop in a translucent network could span one 

or more fiber links and may even span the entire source-destination route, under the right conditions. 

Previous study in [6] shows that, for medium-scale networks, where physical-layer characteristics are 

dominated by crosstalk and amplified spontaneous emission (ASE) noise, translucency can help to 

improve the overall network performance. For larger-scale networks, where impairments introduced 

by fiber nonlinearities and dispersion cannot be ignored, a higher degree of opacity may be needed to 

combat signal degradations is anticipate, but this is still an open problem for further research. 

Conversely, in transparent networks there is no electronic signal regeneration or 0-E conversion for 

an end-to-end opticallightpath. All-optical networks can support different bit rates, protocols, and 
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modulation formats, and are therefore loosely termed future-proof. Since there is no 0-E conversion in 

each node in the network, the total transmission time will be reduced. However, transparent networks 

still lack the detailed performance monitoring and distance advantage of opaque networks. 

Future optical networks are moving toward overcoming these limitations and taking full advantage 

of the WDM technology. This is one of the main characteristics that drives our motivation to develop 

a dynamic lightpath provisioning coping with physical layer impairments during the process of optical 

channel set up. 

All-optical networks will be achieved using all-optical switches (e.g., reconfigurable OADMs, namely, 

ROADMs, and/or OXCs) that switch/route connections (lightpaths) entirely within the optical domain 

(i.e., transparent networks). Therefore, the introduction of these switches allows to eliminate the need 

for 0-E-0 transponders, favoring the overall network's cost-effectiveness. However, this also results in 

losing the electrical regeneration signals, which in turn makes signal impairments accumulation due 

to fiber transmission (attenuation, dispersion, nonlinearities, etc.), optical amplification (ASE noise), 

and insertion losses and cross-talk introduced by optical elements. 

Modern optical telecommunication and media services require rapid and flexible bandwidth alloca

tion. The increasing reach of optical transmission systems and the introduction of new wavelength 

switching technologies has driven the evolution of backbone optical WDM networks towards all trans

parent networks. To efficiently cope with these requirements, the optical transport plane need to be 

upgraded to support the transparent transmission. As it has been aforementioned, transparency in 

an optical transmission is achieved when electronic forwarding is replaced with all-optical forwarding. 

Such a solution promotes scalability of the network because the forwarding in the optical domain alle

viates the one-interface-per-channel requirement. Moreover, the introduction of transparency enables 

the flexibility in terms of signal bit rate as well as modulation format. 

Albeit one of the key benefits of optically-switched networks is the transparency to bit-rate, proto

col or modulation format, this is also one of the main obstacles when determining an optimum path 

through the network. 

1.3 Wavelength-routed optical networks 

There are two fundamental types of underlying network infrastructures based on how traffic is mul

tiplexed and switched inside the optical network: circuit-switched and packet-switched. This disserta

tion focuses on the study of optical circuit-switched (OCS) network, i.e., the wavelength-routed optical 

network which is considered to be the candidate for the future wide-area backbone all-optical infras

tructure. Some of the motivation for studying this type of network rest on the facts that it can provides 

services at much higher speeds, realizes higher capacities, improves link utilization and between oth

ers improves the bandwidth efficiency. However significant advances in technology are needed to make 

it practical, and there are some significant roadblocks to overcome. 

Transparent wavelength-routed WDM networks consist of two types of nodes, shown in Figure 1.1. 

The photonic switching fabric and the edge or access-node. The photonic switching fabric: contains 
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Fig. 1.1: Wavelength-routed optical network architecture. 

optical switches or OXC connected by fiber links. The edge-node or access-node: provides the interface 

between non-optical end systems (such as IP routers, ATM switches, etc) and the optical core. Those 

are equipped with transceivers, which may be wavelength tuneable. 

End-users (located between two edge-nodes in the network) communicate with one another via all

optical (WDM) channels, which are referred to as lightpaths or connections that may span more than 

one fiber link. Lightpaths are logical channels which provide an end-to-end connectivity in transparent 

networks without any intermediate electronics. In the absence of wavelength converters, a lightpath 

must occupy the same wavelength on each link in its route, a restriction known as the wavelength

continuity constraint. Given a set of connections, the problem of setting up lightpaths by routing and 

assigning a wavelength to each connection is called routing and wavelength assignment (RWA) prob

lem. Our research focuses on dynamic traffic, in which a lightpath is set up for each connection request 

as it arrives, and the lightpath is released after some finite amount of time. One of the challenges 

involved in designing wavelength-routed networks with dynamic traffic demands is to develop efficient 

algorithm and protocols for establishing lightpaths. The algorithm must be able to select routes and as

sign wavelength to connections in a manner that efficiently utilizes network resources and maximizes 

the number of lightpath established. 

Intelligent optical network management system allows carriers to set up new routes through the 

network in a matter of seconds or minutes, rather than the weeks or months it takes with legacy 

systems. In a transparent network a connection is set up to carry data traffic via an all-optical WDM 
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channel or lightpath. Setting up and torn down a lightpath for a connection request by using an RWA 

technique [7] is known as connection provisioning. Dynamic connection provisioning is an important 

traffic-engineering problem for minimizing cost and for better utilizing network resources. 

Routing in wavelength-routed network usually assumes that all the paths have adequate end-to-end 

signal quality [8]. This assumption is suitable for opaque networks, since 0-E-0 conversions regener

ate the signal at every node along the route. Indeed, every data link between the optical switches (e.g., 

add-drop multiplexers) is isolated by 0-E-0 transponders. Thus, the objective of routing within opaque 

networks is to achieve an efficient utilization of the network resources (e.g., bandwidth) through the 

selection of both an spatial route (nodes, links) and an spectral route (wavelength) which minimizes 

the blocking of subsequent connection requests. This problem has been largely studied using RWA 

algorithms [9], which in its first stage deals with the design algorithms to route path that optimize the 

wavelength resources utilization. Nevertheless, the introduction of transparency imposes a new chal

lenge on the lightpath provisioning, since the optical connections must remain entirely in the optical 

domain from the source to the destination nodes. As a result, transmission impairments accumulate 

while the signal travels, which causes that at the receiver the optical signal may not fulfill the strin

gent quality of service (QoS) required by the client, affecting the revenues of the network operator. 

One solution to face up this problem is to employ RWA algorithms that consider physical-layer effects 

besides network-layer issues in order to guarantee adequate end-to-end quality of the optical signal. 

These RWA algorithms are known as impairment constraint based routing (ICBR) or impairment

aware RWA (IRWA) [10, 11]. 

1.4 Control plane 

In the context of wavelength-routed networks, the international telecommunication union (ITU), 

telecommunication standardization sector (ITU-T) automatic switched optical network (ASON) stan

dard [12] describes the set of control plane components that are to be used to manipulate transport 

network resources in order to provide the functionality of setting up, maintaining, and releasing op

tical connections. Generalized multiprotocollabel switching (GMPLS) is an implementation of the 

control plane that has been developed by the internet engineering task force (IETF) to facilitate the 

establishment oflabel switched paths (LSPs) [13], involving signaling, routing, and resource manage

ment functions and protocols. According to IETF definition, traffic engineering (TE) is concerned with 

performance and resource optimization of networks, in response to dynamic traffic demands and other 

stimuli like node and link failures. GMPLS implements all functional entities necessary for controlling 

an ASON, actually going beyond the pure optical domain and being capable of setting up LSPs in a 

variety of data plane technologies. 

This control plane is seen by the industry as the most promising solution for introducing intelligence 

in future optical networks, it represents a common set of distributed functions and interconnection 

mechanisms (signaling and routing) that set up lightpaths dynamically with a required level of QoS. 

Distribution is widely considered as the best choice for handling dynamic connection requests [5], that 
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Fig. 1.2: Control plane of a distributed ASON/GMPLS-based architecture. 

is, every network node is governed by a common control plane. In such scenario, path computation is 

driven by the source node of each connection request, which enhances the network scalability if one 

compares it with a centralized RWA model under the same dynamic traffic conditions. 

Figure 1.2 depicts the ASON/GMPLS-based architecture of an control plane, which is constituted 

by four main elements, namely, the link resource manager (LRM), the connection controller (CC), the 

admission controller (AC), and the routing controller (RC). The LRM maintains an updated view of 

the local transport plane resources, the RC is for computing routes (RWA algorithm) and for dissem

inating resource and network topology information using a distributed routing protocol such as open 

shortest path first traffic engineering (OSPF-TE) [14], and the CC sets up, modifies and tears down 

lightpaths using a distributed signaling protocol as resource reservation protocol (RSVP-TE [15]). In 

particular, the AC element is responsible for informing the CC about whether the accumulated optical 

parameters are admissible by the connection being established. Therefore, if the accumulated param

eters exceed an admissible value or threshold, further re-attempts shall try to follow a different path 

to set up the requested lightpath. The RC performs the source-initiated route computation for each 

requested lightpath by means of RWA algorithms. While in the distributed signaling approach these 
I 

RWA algorithms only consider TE constraints and network resources, in the distributed routing ap-

proach new impairment-aware RWA algorithms shall be proposed for computing feasible end-to-end 

routes considering both TE and optical physical-link constraints [10]. 

Any change occurred within a node, that is (local) link attributes is reflected in the LRM. Thus, 

the LRM keeps track of any change over any attached local data link and informs the RC in order to 

flood (update) the network with such new information. This updated information will be used by the 

corresponding RWA algorithm on any node within the network. For this aim the updating/flooding 

procedure concerns the dissemination/broadcast of any variation suing a particular routing protocol 

(e.g., OSPF-TE). This information is then collected on each node in a repository referred to as traffic 

engineering database (TED) which is used to maintain an updated picture of not only its local net-
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Fig. 1.3: GMPLS building blocks for lightpath routing. 
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work resources (i.e., adjacent data links) but also information related to remote links. Network-wide 

information stored in every TED serves as the input information for the RWA algorithms in order to 

compute optimal routes by using up-to-dated network-layer attributes. The use of ICBR algorithms in 

a distributed control plane requires that every node's TED be updated with physical-layer information 

within the network. For this aim, two main challenges need to be addressed within the considered 

distributed scenario: an on-line monitoring system and physical-layer extensions to existing routing 

protocols. 

The scope of this dissertation lies inside the RC, and addresses the positive impact to the teletraf

fic network performance when physical impairments awarenesses are considering inside the dynamic 

establishing lightpaths process. 

Figure 1.3 shows a view of lightpath routing and signaling processes using various building blocks 

of the GMPLS control plane. The interior gateway protocols (IGPs), such as open shortest path first 

(OSPF) and intermediate system to intermediate system (IS-IS), with extensions for optical and TE at

tributes, will allow nodes to exchange information about optical network topology; resource availability, 

and even policy information. This is done via properly defined link state advertisements (LSAs) that are 

maintained in an LSA!rE database. RWA algorithm is then used to select lightpaths subject to speci

fied resource and/or policy constraints. Optical path computation algorithm makes use of the topology 

and resource information stored in the LSA!rE database. Once a lightpath is selected, the signaling 

protocol is invoked to set up the connection. Here, resource reservation protocol with TE (RSVP-TE) 

and/or constraint-based routing label distribution protocol (CR-LDP) are examples of signaling proto

cols used to signal a lightpath setup. The lightpath selector computes a lightpath for a given connection 

request with the objective of optimizing certain network wide parameters (e.g., network resource uti

lization). In general, lightpath computation is challenging due to the unique characteristics of optical 

networks. 

Optical networks aim to support fast end-to-end opticallightpath setup and restoration, and gener

ally there are three main components involved in setting up a channel (see the three main blocks in Fig. 

1.3); Resource discovery: in resource discovery, state information of network resources such as network 
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connectivity, link capacity, and special constraints is derived. Particularly, mechanisms used to dissem

inate the state information are specified. By and large, this is accomplished by extending conventional 

IGPs to carry additional optical resource information in their LSAs. Path selection: path selection is 

used to select an appropriate route through the intelligent optical network for the requested lightpath. 

It is implemented by introducing the concept of constraint-based routing which is used to compute 

paths that satisfy certain constraints, including constraints imposed by the operational environment 

and physical layer limitations. Path management: path management includes label distribution, path 

setup, path maintenance, and path revocation/ teardown. These functions are implemented through 

an appropriately extended signaling protocol, such as RSVP-TE or CR-LDP. 

The above components of the control plane are separable and independent of each other, and the 

modularity allows the control plane to be implemented using a composition of best-of-breed subcom

ponents. This dissertation will mainly focus on lightpath routing, specifically on impairment-aware 

RWA. 

1.5 Intra- and inter-domain routing 

Internet routing can be uncoupled into two distinct planes, each of which has very different charac

teristics and goals, namely intra-domain routing and inter-domain routing. 

On the one hand, intra-domain routing handles routing within a single network or administrative 

domain. Each administrative domain is free to choose the intra-domain routing protocol to be utilized 

within its network, according to its own preferences and needs. Two types of intra-domain routing 

protocols are available at present, that is link-state routing protocols and distance-vector routing pro

tocols. Link-state protocols distribute the entire network topology to all routers within the domain, and 

the decision process to select the best path to reach any given destination inside this domain is based 

on Dijkstra's shortest path algorithm. Alternatively, in distance-vector routing protocols the routers 

lack of the entire network topology and the selection of the best path is based on the Bellman-Ford 

routing algorithm. At present, the most widely deployed intra-domain routing protocol is a link-state 

protocol, i.e., the OSPF [16]. 

On the other hand, across the administrative domain boundaries an inter-domain routing protocol 

is used in order to exchange reachability information, and to select the best path to reach any given 

destination according to each domain's specific policies and needs. In contrast to the intra-domain case, 

for inter-domain routing, the border gateway protocol (BGP) [17] is the standard routing protocol. BGP 

is a path-vector routing protocol, which for scalability reasons is only aware about the interconnections 

between the different administrative domains. In other words, BGP does not manage or exchange any 

kind of intra-domain information, so the internal state of the network in any administrative domain 

is not revealed by BGP. In summary, whereas intra-domain routing manages the selection of the best 

path within a single administrative domain, inter-domain routing is what holds the Internet as a single 

unit. Our research work copes with the intra-domain routing policy. 
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1.6 Physical impairments and modulation formats on the light

path provisioning. 

In dynamic allocation, a lightpath is created in response to a request for communication from a 

source to a destination by determining a path in the network and then allocating an usable WDM 

channel for every link fiber in the path. When the communication is over, the WDM channels used for 

this communication are reclaimed for future use in some other communication. The dynamic choice 

of wavelength ensures better wavelength utilization, therefore one important point in this research is 

that the provisioning design copes with dynamic lightpath demands, which overcome the drawbacks of 

static scheme designs but rise the complexity on algorithm constraints implementation. In a dynamic 

scheme, when allocating a lightpath for a new source-destination pair, all other lightpaths currently in 

use have to be considered. A dynamic scheme does not guarantee that communication from a source 

to a destination will always be possible. If the conditions for establishing a lightpath are not satisfied, 

the communication will be blocked. Clearly, in realistic situations, it is necessary to ensure that the 

probability that a communication is blocked is very low. 

In a large number of previous works related to RWA, it is usually assumed that all routes have 

adequate signal quality. However, as the network size grows, a domain of transparency may be too 

large to ensure that all optical paths have adequate signal quality. Traditional routing approaches 

find a path that minimizes a certain cost parameter, such as the length of the connection. Most of the 

reported RWA algorithms assume that once an available path and wavelength have been identified, 

the connection is feasible. This may not be true in transparent optical networks using WDM, where 

the optical signal experiences and accumulates the effects of physical impairments associated with the 

transmission line and optical switching nodes, aggravated with the constant increasing on the system 

bit rate. In some cases, this results in unacceptable signal quality. Hence, ICBR is needed in order to 

ensure that the connections are feasible. To cope with this issue, it is necessary to consider not only 

the network-level conditions but also the equally important physical performance of the connection. 

Various physical impairments unique to the optical network limit the optical reach, and also degrade 

the performance and QoS of the network, therefore it is important to cope with these issues especially 

from the routing process since it is expected to guarantee good signal quality of the optical channel 

without compromising the network performance and if possible to improve it. Impairments include 

various types of dispersion (e.g., chromatic, polarization), attenuation, ASE noise introduced by optical 

amplifiers, and nonlinear effects such as self-phase modulation (SPM), cross-phase modulation (XPM), 

and four-wave mixing (FWM), as impairments that arises from intra- or inter-channel crosstalk in 

multiplexers and demultiplexers. Although the Internet engineering task force (IETF) drat [8] provides 

a good overview of issues and framework for impairment routing, it lacks in implementation details. 

Therefore, it becomes clearly that physical layer constraints should be included directly in the state 

information (and subsequent routing algorithms) and be taken into account by the routing algorithms 

when computing routes. The design of optical networks raises a number of issues depending on 

the switching paradigm, we will be dealing with circuit-switched networks, particularly with the 



12 

Wavelength 
continuity 

Network 
Resource 
Utilization 

FWM power 
crosstalk 

Nonlinear 
Physical 

Impairment -----:,-------
ICBR approach 

Impairment Constraint Base Routing 

Modulation format 
converter interface 

Transparency, QoS, 
Feasibility and Scalability 

Fig. 1.4: Approach and goals in the current research. 

wavelength-routed optical network as it has been mentioned above. 

Chapter 1. Introduction 

Although previous studies have investigated optical impairments in relation to optical transport sys

tems, these studies tend to describe a fixed optical transmission link rather than a dynamic optical 

network path [18], or focus on linear impairments avoiding nonlinear impairments due to their com

plexities, except the studies in [19], and some others have included physical layer information only in 

the wavelengths assignment [20], or assuming a signaling approach [21]. 

Under dynamic lightpath demands, and through this study, it is expected to demonstrate that the 

physical layer impairment awarenesses should not be ignored inside the routing algorithm process as 

well as during the wavelengths assignment scheme, and a nonlinearity induced performance degra

dated factor as it is the FWM-induced crosstalk has been taken into account. 

Additionally, none of the previous impairment routing studies has treated modulation format as an 

essential part of the impairment based routing strategy. However, transmission experiments have 

clearly shown that different modulation formats (e.g., DPSK) are affected unequally by various impair

ments [22-24]. 

Figure 1.4 summarizes the approach taken in this research and highlights the two main aspects as 

dynamic lightpath provisioning (coming from two different roads oflayer nature: physical and network 

layer parameters) as well as given an inside on the modulation formats to be part of the lightpath 

establishing process. This volume gives the description on how this approach is carried out and how it 
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affects and impacts the network performance in order to realize a better network realistic design and 

enrich transparency, QoS, feasibility and scalability in optical networks. 

1. 7 Organization of the dissertation 

Within the general scenario described above, this dissertation has been organized as follows. 

Chapter 2 provides the fundamentals of two main subjects, one is the physical impairment ofFWM

induced crosstalk and the other is the main characteristics of the basic digital modulation formats. De

tails of the effects ofFWM-induced crosstalk and its impact on the network performance of wavelength

routed optical networks is discussed, giving the reasons to adopt the FWM effect as a constraint for 

the dynamic lightpath provisioning. An analytical study of FWM and the basics of the power calcula

tion of new waves generated are introduced. Also, the main digital modulation formats are described, 

providing benefits and drawbacks of each of their implementations. 

Chapter 3 is devoted to describe the designed impairment constraint-based routing algorithm. This 

chapter focuses on dynamic lightpath computation encompassing physical impairments. A novel cost 

function is introduced with two natures of constraints: network and physical layers. The FWM

induced crosstalk is incorporated as an important factor that deteriorates drastically the performance 

of wavelength-routed optical networks and influences the design of high-bit-rate long-haul systems. 

Under a distributed approach the cost function is evaluated and the physical impairment is taking 

into account to both the routing and the wavelengths assignment processes. Extensive simulations are 

carried out to evaluate the performance in terms of blocking probability. Additionally, an implementa

tion to fast establishing the lightpath set up based on the advantages given by a hybrid online/offline 

strategy is presented. 

Chapter 4 focuses on modulation format conversion feature interface incorporated in the dynamic 

lightpaths establishing. By envisaged transparent modulation format conversion from 2-channels OOK 

to QPSK in future wavelength-routed optical networks a novel FWM-induced crosstalk aware dynamic 

RWA algorithm is demonstrated to minimize the blocking probability. Results gives a strong evidence 

of the advantages of taken into account modulation format conversion into the dynamic provisioning 

as well as the impact that this represented to the network performance, achieving in this way the goals 

defined at the initial stage of our research. 

Chapter 5 summarizes the results of the preceding chapters and draws final conclusions of the dis

sertation. 





Chapter2 

Fundamentals of Four-Wave Mixing 

and Modulation Formats 

A general overview of the physical impairments in optical networks in given focusing in the impact of 

FWM crosstalk. The characteristics ofFWM effect are explained and justified the reason why it is taken 

into account as one ofthe main constraints incorporated into the cost function of the routing algorithm. 

Details of the FWM products calculation are given. Principles of modulation formats as amplitude-shift 

keying (ASK), phase-shift keying (PSK), and frequency-shift keying (FSK) are addressed. 

2.1 Introduction 

A rigorous analysis of the physical effects on the performance of an optical network should require 

the simulation of the entire network for every possible configuration that the RWA algorithms may 

be taken into account. Such a task should require millions of hours of computation time. Hence, 

evaluation of the impairments accumulations oflinear effects and the impairments of nonlinear effects 

separately is a practical approach. 

In the case of wavelength-division multiplexing (WDM) systems, nonlinear effects can become im

portant even at moderate powers and bit rates. At high bit rates such as 10 Gbit/s and above and at 

high transmitted powers, it is important to consider the effect of nonlinearities. Because of the large 

transmission distance involved, fiber dispersion and nonlinearity are important sources of performance 

degradation [25,26]. These effects are complex and interdependent, making simulation an appropriate 

tool for design and analysis "[27]. 

Today, several impairments that were second- or third-order effects earlier began to emerge as first

order effects; this list includes nonlinear effects in fiber. Nonlinearities in optical fibers are caused by 

the physical effect called Kerr effect. The effect is a local change of the refractive index as a function of 

the overall propagating optical power. Kerr effect induces well know impairments on the propagating 

signal that can be classified as [28,29]: self phase modulation (SPM), i.e., the modulation of the phase 

of a signal induced by variation in time of the power of the signal itself; optical parametric gain (OPG), 
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i.e., the transfer of power from a signal to the adjacent spectral components; cross-phase modulation 

(XPM), i.e., the modulation of the phase of a signal induced by variation in time of the overall power of 

the comb ofWDM channels propagating in the fiber; four-wave mixing (FWM), i.e., the generation of 

spurious tones at new frequencies. 

Here, we focus on crosstalk effects enhanced by FWM, and show that network design can alleviate 

the effects of crosstalk in all-optical networks. In the FWM, three light signals at different wavelength 

interact in the fiber to create the fourth light signal at a wavelength that may overlap with one of the 

light signals and interferes with the actual data that is being transmitted on that wavelength. 

It turns out paradoxically that the higher the chromatic dispersion is, the lower the effect of fiber 

nonlinearities are. Chromatic dispersion causes the light signals at different wavelengths to propagate 

at different speeds in the fiber. This in turn causes less overlap between these signals, as the signals go 

in and out of phases with each other, reducing the effect of the FWM. The realization of this trade-off 

between chromatic dispersion and fiber nonlinearities stimulated the development of a variety of new 

types of single-mode fibers (SMFs) to manage the interaction between these two effects. These fibers 

are tailored to provide less chromatic dispersion than conventional fiber but, at the same time, reduce 

nonlinearities. 

2.2 Four-wave mixing (FWM)-induced crosstalk 

2.2.1 Impact of FWM in optical networks 

In the early nineties, after the advent of the erbium-doped fiber amplifier (EDFA), fiber disper

sion was the main obstacle in optical communication systems. Dispersion-shifted fibers (DSFs) were 

brought out as the solution and installation was widespread. Later, WDM was introduced to increase 

the utilization of the fiber bandwidth but in combination with DSFs, the performance turned out to be 

degraded due to FWM inducing crosstalk between the channels. This process is most efficient near the 

zero-dispersion wavelength, where the phase-matching condition is nearly fulfilled and sets limits to 

the launched channel power, the number of channels and the channel-spacing of the system. As there 

is already much DSF installed, this problem cannot be solved by dispersion management. 

A few methods to alleviate the penalty due to FWM-induced crosstalk in DSFs have been proposed, 

as following: 

1. Unequal channel spacing: the positions of the channels can be chosen carefully so that the beat 

terms do not overlap with the data channels inside the receiver bandwidth. This may be possible 

for a small number of channels in some cases, but needs careful computation ofthe exact channel 

positions. 

2. Increased channel spacing: this increases the group velocity mismatch between channels. This 

has the drawback of increasing the overall system bandwidth, requiring the optical amplifiers 

to be flat over a wider bandwidth, and increases the penalty due to the stimulated brillouin 

scattering (SRS). 
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Fig. 2.1: Three copropagating equally-spaced channels with the generated products of frequencies fiJk 

due to FWM crosstalk. 

3. Using longer wavelengths beyond 1560 nm with DSF: even with DSF, a significant amount of 

chromatic dispersion is present in this range, which reduces the effect ofFWM. The newly devel

oped L-band amplifiers can be used for long-distance transmission over DSF. 

4. Reducing transmitter power and the amplifier spacing will decrease the penalty. 

5. If the wavelength can be demultiplexed and multiplexed in the middle of the transmission path, 

we can introduce different delays for each wavelength. This randomizes the phase relationship 

between the different wavelengths. Effectively, the FWM powers introduced before and after this 

point are summed instead of the electric fields being added in phase, resulting in a smaller FWM 

penalty. 

However, increasing the channel spacing as well as utilizing unequal channel-spacing requires addi

tional optical bandwidth. And due to the large amount of information (e.g., granularity on per wave

length basis) that need to be managed it is important to consider the effect of physical impairment 

during the lightpath establishment process, in particular the effect of the power crosstalk originated 

from FWM must be taken into account due to its fatal degradation in the teletraffic network perfor

mance of wavelength-routed optical networks. 

The impairment constraint based routing (ICBR) approach has been proved beneficial for improving 

the performance, we used this technique in our research, and by introducing our novel implementation 

has been shown that it is possible to capture the state of detriment of the lightpath caused by FWM

induced crosstalk and avoid the set up of a lightpath that does not accomplish the requirement of QoS 

to assure an end-to-end optical connection. 

2.2.2 FWM-induced crosstalk products calculation 

The physical origin ofFWM-induced crosstalk, and the resulting system degradation, can be under

stood by noting that FWM can generate a new wave at the frequency: 

fiJk = fi + jj - fk, (2.1) 
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whenever three waves of frequencies fi , jj and fk (i,j =F k) copropagate in the fiber [28, 30]. 

Depending on the individual frequencies, this beat signal may lie on or be very close to one of the in

dividual channels in frequency, resulting insignificant crosstalk to that channel. In the case of equally 

spaced channels, most frequencies coincide with the existing channel frequencies and interfere coher

ently with the signals in those channels. 

For a WDM transmission system with N channels, (N ;::: 3) with an equal frequency interval, this 

effect results in a large number of interfering signals equals to (N(N- 1 )2
) corresponding to i, j, k varying 

from 1 toN in Eq.(2.1). In a system with three channels, for example, 12 interfering terms are produced, 

as shown in Fig. 2.1. 

Interestingly, the effect of FWM depends on the phase relationship between the interacting signals. 

If all the interfering signals travel with the same group velocity, as would be the case if there were no 

chromatic dispersion, the effect is reinforced. On the other hand, with chromatic dispersion present, the 

different signals travel with different group velocities. Thus the different waves alternately overlap in 

and out of phase, and the net effect is to reduce the mixing efficiency. The velocity difference is greater 

when the channels are spaced farther apart (in systems with chromatic dispersion). 

To quantifY the power penalty due to FWM, we had used the results of the analysis from [31-34]. 

When there is no depletion of the propagating channels, the FWM power generated products of PFwM 

or the power of the resulting new wave denotate as P;Jk in a link can be expressed as: 

(2.2) 

where P;Jk is the FWM light power at the frequency fiJb the P; , P1 and Pk are input light power of the fi, 

jj and /k frequencies or powers of the mixing waves, 17 represents the dependence of the FWM efficiency 

on phase-mismatching. The term D;Jk is the degeneracy factor, which takes the values of D = 3 for i = j 

and D = 6 for i =F j. L represents the length of the link and a express the attenuation coefficients of the 

fiber. 

The effective length Leff is related to both ofL and a through Eq. (2.3). 

1 - e-aL 
Lett=--

a 

The nonlinear coefficient, y can be calculated by Eq. (2.4): 

2nnz 
y=--, 

AAeff 

(2.3) 

(2.4) 

where nz, Aetf and ..1 are the fiber nonlinear refractive index, the effective fiber core area and the 

wavelength in vacuum, respectively. 

The chromatic dispersion reduces the FWM efficiency, and we can model this by the parameter 17 

which is given by 

a 2 
[ 4e-aLsin

2(L1,8 · L/2)] 
T/ = 1 + -----'-'-::-::-'--'-

a2 + (Ll,B)Z (1 _ e-aL)Z · 
(2.5) 

17 takes the maximum value of 1 for the phase matching factor Ll,B= 0, i.e., the phase-matching condition 

is satisfied. For on-off keying (OOK) signals, this represents the worst-case power at frequency fi1k, 

assuming a "light-on" bit has been transmitted simultaneously on frequencies fi, jj and fi. 
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The efficiency of the newly generated wave in the FWM process, denoted as 7], goes down as the phase 

mismatch b./3 between the interfering signals increases. 

The phase mismatch can be calculated as the difference in propagation constants between the differ

ent waves as: 

(2.6) 

The efficiency depends on the channel frequency separation, fiber chromatic dispersion De (dispersion 

slope dDe/dlL), and the fiber length L, according to [34,35], as can be shown in Eq. (2.7): 

( 27rlL~) [ (A~)(dDe) [ . J] b./3 = -c- (Ji - Jk)(Jj - Jk) De + 2c dlL (Ji- fo) + UJ - fo) (2.7) 

where c is the speed of light in vacuum, Ak wavelength at frequency fk and ..t0 the zero dispersion 

wavelength. Note that the efficiency has a component that varies periodically With the fiber length L 

as the interfering waves go in and out of phases. 

FWM manifest itself as intra-channel crosstalk. The total crosstalk power for a given channel is 

given by Eq. (2.8): 

PFwM= IpiJk 
kk 

2.3 Digital modulation formats 

(2.8) 

As increasing data rates and reach drive development of a new generation of components, system 

designers face the challenges of minimizing the impact of impairments such as FWM. As a result, in 

recent months, research projects on alternative modulation have moved from the university laborato

ries to the telecommunication vendor's R&D departments. Deployment of new modulation methods has 

been unveiled. For instance, manufacturers have announced the roll out of systems based on return

to-zero as a building block of the next generation of 10-Gbit/s ultralong-haul systems. Differential PSK 

(DPSK) is another enabling technology that could help to push the limits further, but the obstacles 

delaying its deployment have more to do with economics than science. 

Modulation formats suitable for long-haul transmission should have both a low OSNR requirement 

as well as a sound nonlinear tolerance. Since the invention of the EDFA made possible all-optical 

transmission over distances significantly longer than the length of spans between electronic regener

ators, transmission line designers were confronted with a whole new design space. Parameters like 

dispersion, SPM, FWM, and optical noise became important. 

The choice of digital modulation scheme will significantly affect the characteristics, performance 

and resulting physical realization of a communication system. There is no universal "best" choice of 

scheme, but depending on the physical characteristics of the channel, required levels of performance 

and target hardware trade-offs, some Will prove a better fit than others. Consideration must be given 

to the required data rate, acceptable level oflatency, available bandWidth, anticipated link budget and 

target hardware cost, size and current consumption. 

The objective of this section is to review and examine the key characteristics and salient features of 

the main digital modulation schemes. 
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Fig. 2.2: Complexity in optical modulation formats. 

2.3.1 Principles of modulation 

In general, a laser semiconductor device (or semiconductor laser) generates a continuous photonic 

beam. However, as in its simplest mode of operation a semiconductor laser produces a continuous wave 

(CW) or beam oflight, this beam carries no information other than frequency or wavelength. However, 

when the beam is modulated, then it could carry data at data rate of 40 Gbits/s, and higher modulation 

rates. 

Modulation is the action of temporally altering one or more of the parameters of the photonic sig

nal. In optical communications, such parameters are phase, frequency, polarization, and amplitude. 

When the phase is modulated, the method is called phase-shift keying (PSK); when the frequency is 

modulated, it is called frequency-shift keying (FSK); when the state of polarization is modulated, it 

is called state-of-polarization-shift keying (SoPSK) and when the amplitude is modulated, it is called 

amplitude-shift keying (ASK). The latter case includes the intensity modulation with direct detection 

(IM!DD) and the on-off keying (OOK) modulation methods. In optical communications, the modulation 

method plays a key role in the: 

• Optical power coupled into the fiber 

• Bit-rate limits 

• Transportable amount of information per channel 

• Dispersion limits 

• Fiber-span limit 

• Linear and nonlinear contributing effects 

• Overall signal-to-noise ratio and bit error rate 
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• Reliability of signal detection and receiver penalty 

The terms coherent and non-coherent are frequently used when discussing the generation and recep

tion of digital modulation. When linked to the process of modulation the term coherence relates to the 

ability of the modulator to control the phase of the signal, not just the frequency. And with respect to 

the act of demodulation refers to a system that makes a demodulation decision based on the received 

signal phase. Fig. 2.3 shows a classification of modulation/demodulation formats according to coherent 

or non-coherent systems. 

Among the scale measuring the complexity of different modulation formats listed in Fig. 2.2, there 

are three basic types of digital modulation techniques that are shown in Fig. 2.4 illustrating a binary 

pulse train and summarizing the basic modulation formats well-known as: 

• Amplitude-Shift Keying (ASK) 

• Phase-Shift Keying (PSK) 

• Frequency-Shift Keying (FSK) 

Amplitude-Shift Keying 

The binary Amplitude-Shift Keying (ASK) signal is the same as On-Off Keying (OOK). While the 

term of on-off keying is used for IM/DD systems, ASK is the term commonly used for coherent optical 

communications. 

The OOK modulation is an amplitude-modulation method. On and off states are represented by the 

presence or absence of light, the same as nonzero and zero amplitude, respectively. The modulating 
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signal closely resembles a square pulse that acts as a shutter on the laser beam, hence its name. The 

OOK method generates a stream of pulses that are then transmitted over the fiber. When the logic 

"one" is lighted for the full period (T = 1/f), this OOK is termed nonreturn to zero (NRZ), and when 

for a fraction of the period (such as 1/3 or 1/2), it is termed return to zero (RZ). As a consequence, NRZ 

modulation utilizes the full period as compared with RZ, which is a fraction of it. Thus, the energy 

within a NRZ bit is much more than the energy in a RZ bit, if everything else remains the same. 

This implies that either the NRZ signal can propagate to longer distances than the RZ or the NRZ 

power level can be lowered, for the same distance. OOK modulation can be used in both coherent and 

direct detection. However, coherent detection requires phase stability. As a consequence, the laser 

source cannot be directly modulated, as this may shift the signal phase and add chirp. To reduce this, 

the signal amplitude is modulated externally using a titanium-diffused LiNb03 waveguide in a Mach

Zehnder configuration or a semiconductor directional coupler based on electroabsorption multiquantum 

well (MQW) properties and structures. On the other hand, direct detection does not require stable 

phase; however, direct modulation may alter the spectral content of the source, which raises other 

issues. 

In WDM optical communications, the carrier frequency is the electromagnetic wave in the infrared 

wavelength range (800 to 1620 nm). In single-wavelength transmission, selected wavelengths were 

used; 880 nm was used in multimode short-fiber applications and 1310 or 1550 nm in single-mode 

long-haul fiber applications. The OOK amplitude modulated carrier is expressed as: 

.fc(t) =A · am(t) cos( wet) (2.9) 

where A is the amplitude of the OOK signal and a111(t) is 0 or 1 during an interval T, we is the angular 

frequency of the optical carrier, and Tis the signal duration that is also equal to the bit interval for the 

binary signal. 
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The Fourier transform of the OOK signal for am(t) 

expressed as: 

A 
Fe(w) = 2[F(w- We)+ F(w +We)] 

23 

1, using the frequency-shifting theorem, is 

(2.10) 

For an initial baseband bandwidth B hertz (or 27TB rad/s), the modulated bandwidth is twice that, 

±B hertz about the carrier, or 2B hertz. In other words, if the carrier spectrum is sliced into frequency 

channels, each slice must be at least 2B wide (in practice, it must be much wider to accommodate 

other effects). The OOK modulating method is also known as pulse amplitude modulation (PAM). In 

optical communications, we limit ourselves to the practical case of binary signals (two symbols, 0 and 

1). However, studies have also analyzed M-ary signals (M symbols). 

The two sidebands represent different wavelengths, which, because of dispersion phenomena, travel 

at different speeds and, thus, at different phases. Consequently, OOK modulation, under certain con

ditions, is expected to trigger certain interesting phenomena such as intersymbol interference and 

others. 

ASK techniques are most susceptible to effects of nonlinear devices which compress and distort sig

nal amplitude. To avoid such distortion, the system must be operated in the linear range, away from 

the point of maximum power where most of the nonlinear behavior occurs. Despite this problem in 

high frequency carrier systems, ASK is often used in wire-base radio signaling, either with or with

out carrier. ASK is also combined with PSK to create hybrid systems such as quadrature amplitude 

modulation (QAM) where both the amplitude and the phase are changed at the same time. 

Phase-Shift Keying 

This method modulates a light beam (the carrier) by changing the phase of the carrier (by 180 de

grees) at the transition from logic "one" to logic "zero" and vice versa; that is, it shifts the phase by 180 

degrees while the frequency and amplitude of the signal remain constant for all bits, thus appearing 

as a continuous light wave. There are two possible locations in the state diagram, so a binary one or 

zero can be sent. The symbol rate is one bit per symbol. For the same signal-to-noise ratio (SNR) and 

assumed ideal signal demodulation, binary PSK (BPSK) signal can achieve the lowest error probability. 

The phase-shift keying signal is described as: 

fc(t) = ± cos{we(t + r)} - T /2 :<::; t :<::; T /2. (2.11) 

The phase change in a phase modulator can be expressed by: 

15¢ = (27r/A)(on)Lm (2.12) 

where the index change on is proportional to applied voltage, V, and Lm is the length over which the 

index changes by the applied voltage, to the modulator. 

For multilevel PSK, the change may be in increments of 45 degrees (8 levels). As a consequence, 

PSK requires a coherent carrier. A more common type of phase modulation is quadrature phase-shift

keying (QPSK). Quadrature means that the signal shifts between phase states which are separated 

by 90 degrees. The signal shifts in increments of 90 degrees from 45 to 135, -45, or -135 degrees. 
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Each of the four possible phases of carriers represents two bits of data. Thus there are two bits per 

symbol. Since the symbol rate for QPSK is half the bit rate, twice as much data can be carried in the 

same amount of channel bandwidth as compared to BPSK. This is possible because the two signals are 

orthogonal to each other and can be transmitted without interfering with each other. It is therefore a 

more bandwidth-efficient type of modulation than BPSK, potentially twice as efficient. 

QPSK signal is an extension of the BPSK signal. Both of these are a type of M-ary signals. The 

process that describe the modulated signal in the polar coordinates is: 

S i(t) = AcPs(t) COS ( 2nfct + 
2

1~} (2.13) 

where ps(t) is the pulse shaping function. In digital phase modulation, the phase of the sinusoid is 

modified in response to a received bit. The changing phase is called the modulation angle. A sinusoid 

can go through a maximum of 2n phase change in one period. M quantized levels of 2n, to create a 

variety of PSK modulation. The variable is a number from 1 to M. The allowed phases are given by: 

2ni 
Modulation angles (Ji = M (2.14) 

M stands for the order of the modulation. M = 2, makes this a BPSK, M = 4 is QPSK, M = 8, 8PSK and 

so on. 

Due to the lack of an absolute phase reference in direct-detection receivers, the phase of the preceding 

bit is used as a relative phase reference for demodulation. This results in differential phase-shift-keyed 

(DPSK) formats, which carry the information in optical phase changes between bits. 

PSK is implemented by passing the light beam through a device that operates on the principle that, 

when a voltage is applied to it, its refractive index changes; this is known as electro-refraction modula

tion (ERM). Such devices are made with electrooptic crystals such as LiNb03 , with proper orientation. 

Frequency-Shift Keying 

This exists in a great variety of forms, but in essence involves making a change to the frequency of 

the carrier to represent a different level. The binary signal can be conveyed by changing the frequency 

w of the carrier at the transitions between logic "zero" and logic "one"; that is, it shifts the frequency 

while the amplitude of the signal remains constant for bits. At the transitions, the frequency changes 

by !).j, fo + !).j for logic "1" and fo - !).j for logic "0". 

The total spectral bandwidth of an FSK signal is approximated to 2!).j + 2B, where B is the bit rate 

and !).j the frequency deviation. 

• When the deviation is large, !).j >> B, the spectral bandwidth approaches 2!)./, and this case is 

known as wideband FSK. 

• When the deviation is narrow, !).j << B, the spectral bandwidth approaches 2B, and this case is 

known as narrowband FSK. 

A frequency modulation index (FMI), defined by !).j/B = f3FM, distinguishes the two cases: wideband 

FSK has an FMI off3FM >> 1 and narrowband FSK has an FMI off3FM << 1. 
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FSK is achieved with electroacoustic Bragg modulators or with distributed-feedback (DFB) semicon

ductor lasers that shift their operating frequency when the operating current changes by a mere 1 rnA. 

Thus, DFB semiconductor lasers make very good and fast coherent FSK sources with high modulation 

efficiency. FSK has the advantage of being very simple to generate, simple to demodulate. Significant 

disadvantages, however, are the poor spectral efficiency (SE) and BER performance. This precludes its 

use in this basic form from cellular and even cordless systems. 

2.3.2 Principles of demodulation 

Optical demodulating (or decoding) entails detecting the optical signal, converting it to electrical 

impulses, and retrieving binary coded information from the received modulated lightwave, based on 

one of the modulation formats described earlier: 

• Detect optical amplitude level if amplitude shift keying (ASK or OOK) is used 

• Detect phase change (from oo to 180°) ifBPSK is used 

• Detect frequency change (from fo- !1jto fo + !1j) ifFSKis used 

A metric of a good demodulator (or decoder) at the receiver is when the uncertainty ofthe received 

bits (1 or 0) is less than 1 bit per second per Hertz(< lbit/s- Hz); bit uncertainty may result in error 

bits. Optical communication systems are designed with a single-bit uncertainty (specified in ITU-T 

standards) ofless than w-12
• Thus, whatever demodulating method is used, it clearly impacts the 

demodulator design and its accuracy. 

Coherent optical communication systems use different terminology from that in digital communica

tions. Conventionally, an optical communication system is call "coherent" as long as there is optical 

signal mixing even without carrier recovery. Coherent heterodyne and homodyne detection techniques 

were initially developed for radio communications. In optical transmission, the term "coherent" indi

cates that a light source in the vicinity of the transmitted source is used as the local oscillator at the 

receiver. The local oscillator is expressed as: 

C(t) = 2 cos(27rfct + 0) (2.15) 

where fc and e are the expected local oscillator frequency and phase with respect to the incoming 

signal. 

The aforementioned expression assumes an ideal monochromatic frequency fc. However, in reality 

this is not the case as both the incoming optical signal and the optical oscillator are laser sources, 

presumably of the same wavelength. Therefore, the local oscillator must have a narrow spectral width 

that is comparable to the source. In addition, the local oscillator must have low-noise characteristics, 

otherwise the spontaneously emitted light adds to noise and the method is not practical. Therefore, 

the amplitude of the local oscillator in coherent receiver design is important. In IM/DD, the incoming 

signal is directly coupled into the detector, eliminating the coupler and the local oscillator. 

Optical coherent methods with a stable coherent reference improve receiver sensitivity by 20 dB, 

allowing longer fibers to be used (by an additional 100 km at 1.55 Jlm). Although IM/DD detection and 
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demodulation requires channel spacing on the order of 100 GHz, coherent techniques support spacing 

as small as 1-10 GHz, although currently they are not as popular. 

OOK RZ and NRZ demodulators detect directly incident photons. The temporal density of pho

ton fluctuation generates a temporal electrical fluctuation with similar amplitude plus some electrical 

noise added by the photodetector and receiver electronics. Then, the electrical fluctuation is low-pass 

filtered to remove high-frequency noise. The filtered signals are then sampled at an expected bit rate 

at a periodic instant and a threshold level that minimizes jitter and signal-level uncertainty. Thus, the 

density fluctuation of incident photons is interpreted as electrical logic "1" when it is above the thresh

old level or as logic "0" when it is below it. However, there are instances when the incident amplitude 

is ambiguous due to excessive attenuation, dispersion, noise, and jitter and an erroneous symbol (1/0 

instead of0/1) may be produced. 

It should be noticed that a OOK NRZ signal provides photons for the full duration of the bit period, 

whereas a RZ signal does so for a percentage of the period, such as 33%, 40%, or 50%. The NRZ or 

RZ modulation, and the percentage is particularly important in ultrahigh bit rates such as 10 or 40 

Gbitfs. For example, a 50% OOK 40 Gbit/s signal has logic "1" illuminated for 12.5 ps, whereas a 33% 

is illuminated for 8.3 ps. If all things are equal, this reduction is significant in the amount of received 

power, and, thus, in the received bit error rate. However, if the path is engineered correctly and the 

RZ peak power is higher, then RZ provides better noise isolation, so RZ improves the overall optical 

signal-to-noise ratio. 

PSK demodulation is based on coherent detection. That is, in addition to the received optical signal, 

one or two local oscillators (optical frequencies) are required to interferometrically interact with the 

received optical signal and convert it to an amplitude modulated signal. That is, the received PSK 

signal, fc, is mixed coherently with a locally generated laser light, Ji0 , and since both are of the same 

frequency, they interact interferometrically. When both frequencies are in phase, there is constructive 

interference, and when they are opposite phase, destructive, and, thus (ideally), an OOK signal is 

generated. Since the accuracy of this method depends on the phase variation of the signal, phase 

stability and low noise are very critical. In FSK demodulation, the optical signal is passed through a 

narrow-band optical filter tuned to pass the frequency Ji = fo + 1'1/ and reject the frequency fi = fo- !'1f. 

Thus, the outcome is equivalent to an OOK modulated signal. Since the accuracy of this method 

depends on the frequency variation of the signal, no frequency shift (high-frequency stability) and low 

optical noise are very critical. 

2.3.3 Current trends on modulation formats 

PSK for fiber-optic data transmission first attracted significant attention around 1990. Most of these 

early experiments were focused on coherent optical communications [36, 37] with the main emphasis 

being the receiver sensitivity. For practical applications, however, PSK requires precise alignment of 

the transmitter and demodulator center frequencies, which was difficult to achieve at the low data 

rates in the early 1990s. With the advent and deployment of erbium-doped fiber amplifiers (EDFAs), 

the interest in PSK for optical transmission decreased noticeably, especially after the realization that 
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nonlinear phase jitter limits the unregenerated transmission distance of a single channel PSK system 

and PSK was unlikely to outperform ASK [38]. Since then, research and development efforts have been 

mostly focused on ASK transmission format, particularly on OOK. There were relatively few reports 

of PSK studies, either experimental or numerical, between the mid-1990s and 2001. The capacity of 

fiber-optic transmission, on the other hand, increased dramatically during the same time period. The 

introduction ofWDM for data transmission provided a new direction for increasing the system capacity, 

in addition to increasing the data rate per wavelength channel. For example, the channel data rate of 

commercially deployed systems has improved from 2.5 Gbit/s in the mid-1990s to 40 Gbit/s today, and 

the number of wavelength channels has reached, enabling a multi-terabit system in a single fiber. As a 

result, the spectral efficiency (SE) of fiber-optic communications has improved significantly, from a very 

low SE of single channel transmission around 1990 to 0.4 bit/s/Hz for the current commercial system, 

and even higher in research experiments. Concurrent to the rapid expansion of fiber capacity, the 

unregenerated reach of fiber-optic transmission has also increased dramatically, mainly driven by the 

desire to achieve a transparent all-optical network and ultimately reduce the cost of data transmission. 

The advances in channel data rate, system SE, and reach dramatically altered the relative merits in 

performance and practicality between PSK and OOK. In contrast to the earlier systems, the increase 

in data rate relaxes the requirement for the frequency stability of the laser and the demodulator. 

Intuitively, the frequency jitter must be limited to a small fraction of the data rate, making PSK much 

more practical to deploy at high data rates such as 40 Gbit/s. Furthermore, signal degradations caused 

by fiber nonlinearity increase with increasing SE and reach. Thus, effects caused by fiber nonlinearity 

are vitally important for high-SE long-haul optical transmissions. Receiver sensitivity and tolerance 

to fiber nonlinearity are the most important considerations in a high-SE optical system. 

PSK systems are not only superior in receiver sensitivity but also more tolerant to fiber nonlinearity, 

especially at a system SE of 0.4 or greater. There were research efforts on PSK between 2000 and 

early 2002 but the performances did not surpass that of conventional OOK, and in some cases either 

single-ended, instead of balanced, receivers were used or amplified spontaneous emission (ASE) noise 

was neglected in modeling. The conclusive evidence of PSK advantages in high-SE long-haul optical 

transmissions came in March 2002 [39], when a 4000-km-reach 2.56-Tbit/s system (64 channels at 40 

Gbit/s) was experimentally demonstrated, easily doubling the reach of a conventional OOK system. 

There is renewed excitement in PSK after a relatively quiet period of nearly ten years. Significant 

effort was devoted to coherent detections (i.e., heterodyne and homodyne detections) ofPSKin the early 

1990s; however, direct detection of differential PSK (DPSK) with a Mach-Zehnder delay interferometer 

(MZDI) is much more practical to implement at high data rate and only suffers a small penalty in re

ceiver sensitivity. In addition, it was also realized that the return-to-zero (RZ) format further improved 

the practical implementation and nonlinearity tolerance ofPSK [40]. Judging from the published lit

erature in the last two years, RZ-DPSK is the focus of current research and development efforts. 

DPSK has recently emerged as a promising alternative to conventional OOK in long-haul communi

cation systems, as it can improve receiver sensitivity by a factor of 3 dB with balanced detection [40] 

and exhibit enhanced tolerance to fiber nonlinearity [22, 41]. In future photonic networks, OOK and 
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Fig. 2.5: Constellation diagram of OOK, BPSK and QPSK modulation formats. 

PSK may be simultaneously used in different parts of the network, since the former is cost-effective for 

metro area networks while the latter is robust for long-haul backbone networks [42]. This has conse

quently spurred interest in format conversion from OOK to PSK which is needed at the intermediate 

node. 

2.3.4 Comparison between OOK and PSK 

OOK modulation has been a very popular modulation used in control applications. This is in part 

due to its simplicity and low implementation costs. OOK modulation has the advantage of allowing the 

transmitter to idle during the transmission of a "zero", therefore conserving power. The disadvantage 

of OOK modulation arises in the presence of an undesired signal. As the proliferation of control and 

data communication apparatus increases, so does the aggravation of not being able to communicate. 

Advances in optical and electronic components gave rise to optical communication systems employ

ing advanced modulation formats with higher spectral efficiency, receiver sensitivity and resilience to 

nonlinear transmission impairments. 

The modulation types can be graphically represented on a two dimensional ortho-normal plot, some

times referred to as a signal space diagram or signal constellation, which is commonly used to study 

digital modulations. Fig. 2.5 shows the constellation diagrams of OOK, BPSK and QPSK modulation 

formats. It is instructive to graphically examine the different modulation formats in the complex plane 

of theE-field (i.e., the phasor diagram). Each data pulse is represented by a single point (or a vector 

connecting the origin to that point) in the phasor diagram, in which the radial direction represents the 

E-field amplitude and the angular direction is theE-field phase. 

In contrast to conventional OOK, where the data are represented by either "0" or "1" shown in Fig. 

2.5(a) BPSK essentially encodes the date as "1" or "-1" (i.e., 0- or 1r-phase shift), shown in Fig. 2.5(b). 

QPSK, which constellation is shown in Fig. 2.5(c), as BPSK can provide better spectral efficiency 
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compared to OOK A differential balanced receiver and a completely periodic intensity pattern are two 

major differences between BPSK and OOK Not surprisingly, the advantages ofPSK are mostly derived 

from these two characteristics. 

The most obvious benefit ofBPSK when compared to OOK is the approx. 3-dB-lower optical signal-to

noise ratio (OSNR) required to reach a given bit-error ratio (BER). This can be understood by comparing 

the signal constellations for OOK and BPSK, as shown in Fig. 2.5 (a) and (b), respectively. For the same 

average optical power, the symbol distance in BPSK (expressed in terms of the optical field) is increased 

by Y'i. Therefore, only half the average optical power should be needed for BPSK as compared to 

OOK to achieve the same symbol distance. Note, however, that this 3-dB benefit ofBPSK can only be 

extracted using balanced detection. It has been demonstrated in [43] that the aprox. 3-dB advantage 

of DPSK in a linear channel disappears if only one of the two outputs of the delay interferometer is 

used and ignore the other, concluding that balanced detection is essential to achieve the 3-dB receiver 

sensitivity advantage in DBPSK 

Additionally, through simulations have been demonstrated that RZ-DPSK is more robust than OOK 

in terms of narrow-band optical filtering [44] and polarization-mode dispersion [45], especially when 

a balanced receiver is employed. Both issues are of practical importance in high-bit-rate and high-SE 

transmissions. 

DPSK improves the tolerance to fiber nonlinearity in a high-SE system. DPSK significantly reduces 

the cross-phase modulation (XPM) effects in optical transmission. Because XPM depends only on the 

intensity profile of the pulses and is independent of the phases of the pulses (in contrast to FWM

induced crosstalk), and it should be able to eliminate the impairment caused by XPM by phase coding 

only. 

While a large amount of timing jitter is present in the OOK transmission, DPSK completely elimi

nated such a pattern-dependent XPM penalty. It is more complicated when ASE noise is included for 

a practical system. Because the nonlinear transmission penalties differ considerably depending on the 

channel data rate. 

The comparison between OOK and DPSK in terms of nonlinear transmission penalty at 10 Gbit/s 

involves a trade-off between single-channel SPM (in DPSK) and multichannel XPM (in OOK), and 

it is expected the relative transmission performance of DPSK when compared with OOK to improve 

as the SE of the system increases [ 46, 4 7]. Furthermore, the improvement in receiver sensitivity for 

DPSK with a balanced detection allows error-free transmission at significantly lower signal powers 

(even lower pulse energies), leading to additional reduction in nonlinear transmission penalty, which 

becomes more important in a high-SE system. When comparing low-SE DPSK and OOK transmissions 

[46], in a single channel transmission OOK clearly outperformed DPSK In fact, even better "single" 

channel OOK performance can be obtained by increasing the signal power. The results for WDM 

transmission, however are markedly different. WDM DPSK performance is essentially the same as 

that of the single channel, while the performance of WDM OOK is significantly degraded. Clearly, 

the relative performance of DPSK improves at higher SE transmission. Indeed, DPSK is found to 

outperform OOKin 10 Gbit/s dense WDM systems with 0.4 SE by both numerical simulations [46] and 
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experiments [47]. 

In contrast to 10 Gbit!s transmissions, strong pulse overlap usually occurs in 40 Gbit/s transmissions 

due to its four-times-reduced signal bit period (or 16-times-stronger dispersive effect). The main non

linear effects are intrachannel FWM and XPM [48]. DPSK is found numerically to suffer less overall 

nonlinear penalty in pulse-overlapped 40-Gbit!s transmissions [49]. Due to the strong dispersive effect 

in 40-Gbit!s transmissions, the Gordon-Mollenauer effect is much reduced. Thus, the major nonlin

ear penalty in 40-Gbit/s DPSK is intrachannel FWM-induced nonlinear phase noise [49]. It is further 

found, through theoretical analysis and numerical simulations, that DPSK suffers less penalty from 

intrachannel FWM than OOK with the same average power due to the lower peak power ofDPSK and 

a correlation between the nonlinear phase shifts experienced by any two adjacent bits [50]. 

Because the data information resides in the relative phase difference between adjacent bits, cor

related phase shifts have no direct impact on the transmission performance. Thus, besides its 3-dB 

receiver sensitivity advantage over OOK, DPSK improves the tolerance to fiber nonlinearity under a 

strong intersymbol interference. 

Using conventional OOK signals, 40-Gbit!s WDM transmission systems have achieved record dis

tances due to such innovations as forward error correction, distributed Raman amplification, and new 

transmission fibers. The polarization multiplexing DPSK transmission can be used to double system 

capacity with only a small sacrifice in transmission distance [51]. 

Multilevel coding can significantly enhance the SE. The effective data rate of M-level coding is logzM 

times the symbol rate. Thus, the SE of an M-level system is improved by a factor of logzM when 

compared to a binary coding system at the same symbol rate. Although research in multilevel coding 

has a strong emphasis for achieving an SE of greater than 1/bitls/Hz, there are other advantages by 

using multilevel coding even at SE of 0.8 or less. Because the high SE is achieved through multilevel 

coding, there will be no increase in sensitivity to chromatic and polarization-mode dispersion, adverse 

side effects typically associated with increasing the channel data rate. The main nonlinear penalty 

of DPSK transmission is the nonlinear phase jitter induced by ASE noise and SPM, which can be 

compensated by nonlinearity management scheme [ 43]. 

2.4 Conclusion 

In this chapter, the fundamentals of FWM-induced crosstalk and modulation formats have been in

troduced. In the the first part of this section the effect of FWM-induced crosstalk has been described 

and the power calculation of FWM crosstalk products has been introduced. It can be concluded that 

with the increase of large capacity and the high-speed data transmission in transparent optical net

works, become essential to consider the effect of FWM during the lightpath establishing process due 

to its fatal degradation in the teletraffic network performance of wavelength-routed optical networks. 

In the second part, the principles of modulation and demodulation formats for three basic types of dig

ital modulation techniques as ASK, PSK, and FSK have been introduced, and the current trends on 

modulation formats, as well as a comparison between OOK and PSK has been addressed. 
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FWM-Aware Dynamic Lightpath 

Provisioning 

Dynamic routing and wavelengths assignment taking into account physical impairments in wavelength

routed optical networks is proposed via an ICBR approach. An algorithmic framework for lightpath 

computation is presented, highlighting the issue of wavelength continuity, network resources utiliza

tion and physical impairment (i.e., FWM crosstalk) in a transparent wavelength-routed network. Ad

ditionally, a fast computation establishment lightpath scheme with the advantages of offline/online 

technique is introduced. 

3.1 Introduction 

In transparent wavelength division multiplexed (WDM) networks with dynamically arriving con

nection requests, call blocking due to non-ideal physical-layer transmission media has attracted much 

research attention in the past few years. With the growing demand for enhanced network capacity, 

more and more channels are being carried in WDM networks, and the data rate per channel is fastly 

increasing. As a result, satisfying the quality of signal (QoS) transmission becomes increasingly diffi

cult due to the aggravated physical-layer impairments. 

The accumulation of impairments from end-to-end optical connections (lightpath) has become a fun

damental issue in wavelength-routed optical networks. In a high-speed transmission system, the phys

ical impairments become more prominent; causing a significant impact on the teletraffic performance 

of the network [52]. At the same time, the engineering of wavelength-routed networks is extremely 

complex; signal may originate at any node and terminate at any other. This requires designing the 

transmission equipment to support the worst case path. When the network is to be extended, all the 

equipment must be upgraded to support the new worst case path. This constrains the upgradability 

· of the network, which can not exploit, for example, developments in broader amplifier bandwidth or 

narrower channel spacing as they become available. In this sense, network management is complicated 

in that there is not simple way to assure that signals entering or leaving a node are valid. 

31 
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Extensive works have been done to introduce physical impairments into the RWA problem [9], and 

different approaches have been proposed [21, 53, 54]. However, most of the proposed approaches only 

deal with linear effects, and from the several factors that are affecting the network performance the 

nonlinear effects from optical fibers needs more attention. Additionally, previous works assume a sig

naling process [21], or are not based on a realistic model of physical impairments. Approaches as 

in [20] evaluate the four-wave mixing (FWM) crosstalk, estimating the signal degradation during the 

wavelength assignment process. However, few studies have dealed with performance evaluations con

sidering the physical-layer constraint ofFWM crosstalk incorporated into the network routing scheme, 

which can lead to a realistic network design and better network performance [19]. 

A new solution to estimate the network performance by incorporating physical constraints using a 

routing approach in the dynamic establishment of lightpath, evaluating one of the most severe prob

lems for wavelength-routed networks in a dense WDM (DWDM) system, the FWM effect, is introduced. 

The influence of the FWM crosstalk into the system, had been studied theoretically and experimentally 

in [32, 33] and [55], showing that this effect greatly limits the system performance, imposing a severe 

limitation on the maximum launched power of individual WDM channel. Therefore, we developed a 

realistic network model by considering the FWM constraint of the signal degradation. 

An algorithm which relates the system performance measurement (connection blocking probability) 

with the crosstalk due to FWM products generation has been developed, and a novel cost-function 

which satisfies the dynamic establishment of a lightpath with minimum cost for network resource 

utilization and minimum signal FWM-induced crosstalk degradation has been incorporated. 

3.2 FWM-aware RWA model 

The design algorithm is called FWM-aware RWA algorithm. It allows dynamic establishment of 

end-to-end lightpaths on demand, taking into account the available link capacity and level of FWM 

crosstalk, by updating the network states information stored in a novel cost function [56]. The cost 

function is evaluated and updated at generating a link state and the validity of the computed path un

der the implemented constraints (network resource utilization and FWM-induce crosstalk) is examined 

at the end of the calculation candidate path through the ICBR approach, if the computed candidate on

line path satisfies the permitted threshold guaranteeing in this way the signal quality, the candidate 

path is established, otherwise, it is rejected. The algorithm guarantees the QoS of the lightpath, by 

avoiding setup lightpaths that has been degradated by FWM crosstalk. The designed algorithm can be 

understood by following the flowchart shown in Fig.3.1. 

3.2.1 Extension of FWM model calculation for multichannel systems 

In a multichannel system, as each lightpath traverses h hops or links until it reaches its destination 

node, the accumulated FWM noise power at the destination node, PDN, is the summation of all crosstalk 
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Fig. 3.1: Simulation Flow Diagram. 

components along the lightpath [31, 57], which is expressed as: 

h 

PDNUic+ fjc- /Jcc)= U~LfFWMUic,fjc,/Jcc), 
c= I fie jje fie 
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(3.1) 

gathering the effect along its links by either a candidate or an active lightpath out of W wavelengths 

per link. The fie, fjc and f~cc are the frequencies or mixing waves in a hop or link c. The FWM power 

generated products of PFwM, can be calculated as in Eq. (2.2). This Eq.(3.1) is an extension ofEq.(2.8). 
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3.2.2 Novel cost function 

In the ICBR FWM-aware· RWA, two natures of constraint are taking into consideration. Both, uti

lization of network resources and physical impairment are taken into account to simulate realistic 

scenarios without compromising the network performance and moreover guaranteeing the signal qual

ity (avoiding the effect ofFWM crosstalk as has been addressed). 

The novel cost function has been defined and expressed as Eq. (3.2): 

C =a:. F X W +f3. PnvM 
F W .. p ' 

L;j=l L;i=l Wz; th 

(3.2) 

where the first term represents the resources utilization with a: denoting the utilization weight factor, 

F and W the number of fibers and wavelengths per link, respectively, wij corresponds to the resource 

utilization state (set to 1 for idle, and 0 for occupied). The second term represents the FWM effect with 

f3 denoting the FWM weight factor, PFwMrepresents the average power of the noise generated by FWM 

in all the idle wavelengths and Pth is the threshold power level, which allows or blocks the candidate 

lightpath according to the accumulated level ofFWM crosstalk into the lightpath under evaluation. Pth 

will be determined base upon the request for the lightpath quality on demand. 

According to this, the path with more network resources and the smaller effect of FWM crosstalk 

will be more likely to be selected. From Eq. (3.2) can be seen that the cost metric increases while more 

resources are occupied and the level of noise added by FWM crosstalk increases in a link state, several 

attempts occur to find the best result, and tentative lightpaths with a cost metric near to infinite have 

the lower percentage to be selected. The designed cost function ranks the feasible source-destination 

pair connection or lightpath used into the modified shortest path algorithm. 

The cost function is evaluated and updated at generating a link state and the validity of the computed 

path under the implemented constraints is examined at the end of the calculation path through the 

ICBR approach, if the computed candidate on-line path satisfies the permitted threshold guaranteeing 

in this way the signal quality, the candidate path is established, otherwise, it is rejected. 

3.2.3 Characteristics and assumptions of the system 

The proposed algorithm is based on the following assumptions and sub-routines: 

• The conventional On-Off Keying (OOK) modulation format has been assumed on account of sim

ulating the large impact ofFWM-induced crosstalk, compared with PSK modulation format. 

• The generation of connection requests is governed by Poisson process with arriving rate equal to 

A.. 

• A lightpath is held for an exponentially distributed time with a mean of unity after being estab

lished with service time equalt to 1/ J1 (with J1 as service rate), and the accepted connection request 

are provided a single path which is maintained for the whole connection lifetime. 

• The sources and destinations of the calls are uniformly distributed over the set of nodes. 



3.3. Numerical results and analysis 35 

• The network performance is evaluated in terms of blocking probability, and the results are shown 

considering the overall offered load. 

• The well-known shortest path routing strategy has been modified in order to create an impairment

constraint based routing using the cost function (3.2), initially the First-Fit (FF) wavelength as

signment is implemented. In addition, some improvement of the algorithm is examined. 

• When a connection request arrives to the network, a search for the set of idle wavelengths meeting 

the continuity constraint along the shortest path is carried out. 

• The candidate wavelength is pre-inserted and the FWM for each fiber on each link (P;1k) of the 

candidate path is estimated using Eq.(2.2). In each link, the fiber with the minimum noise FWM 

power is selected. 

• The PDN is calculated, for this purpose the calculation of the FWM products of each link that 

traverses the path (from source to destination) is added up. 

• The FWM-induced crosstalk at the destination is compared with a fixed threshold. If the noise 

level ofFWM is bigger than the set threshold, the call request is blocked, otherwise the candidate 

lightpath will be established. Note here that the threshold level depends on the modulation 

format of the optical signal. 

• The FWM products are calculated by considering only the interactions between the co-existence 

lightpaths inside a link (the propagation of the previous link FWM generated products into the 

next link of the path were neglected.). The FWM-induced crosstalk calculation in a link is as

sumed to be an independent process from the previous link, and the effect of the FWM noise of 

each link is then gathered at the end of the candidate path. This assumption is justified because 

the generated FWM crosstalk powers are much smaller than the transmitted signal powers. 

3.3 Numerical results and analysis 

3.3.1 Simulations setup 

Extensive simulations are carried out over different network topologies, which are shown in Figs. 

3.2 and 3.3. Connection request were generated up to 500,000 calls. For each time simulation, the 

first 10,000 connection requests are used for network warm-up, and then the blocking probability are 

estimated [29, 58] for the subsequent 500,000 connection requests. Variations are introduced into the 

basic proposed algorithm. We proposed the following schemes: 

1. FWM-blind RWA: this scheme computes all the connection requests and chooses a route and 

a wavelength based on the shortest path and the FF wavelength assignment. In the FF wave

length assignment scheme [9], all wavelengths are numbered. When searching for available wave

lengths, a lower numbered wavelength is considered before a higher-numbered wavelength. The 
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Fig. 3.2: Networks used in the simulation: (a) 6-node network, (b) 9-node network, and (c) 19-node 

National Science Foundation Network (NSFNet). 

first available wavelength is then selected. This scheme is considered a basic traditional RWA 

algorithm. This strategy ignores the crosstalk-induced FWM. 

2. FWM-partially-blind RWA: this scheme computes all the connection requests by selecting a route 

and a wavelength for each connection request based on the shortest path algorithm and the FWM

constraint FF wavelength assignment. After a route had been chosen, the first candidate wave

length meeting the wavelength-continuity constraint, is selected or blocked depending on the 

estimated FWM level degradation that it might experience after being inserted into the system. 

The algorithm ignores any direct relation of physical constraints with the route selection strategy. 

3. FWM-aware FF RWA: this scheme computes all the connection requests based on impairment

constraint base routing (ICBR) by using the described novel cost function in Section 3.2.2 given 

by Eq. (3.2), and takes only the first candidate wavelength to evaluate their level of FWM power, 

if this lightpath satisfies the threshold to guarantee the quality of the signal, then the lightpath 

is accepted and established, if not then it is blocked. Results are shown in Figs. 3.5, 3.6 and 3. 7 

for different network topologies. 

4. FWM-aware minLambda RWA: this scheme computes all the connection requests based on ICBR 

by estimating the cost function given by Eq. (3.2), and chooses the wavelength among all the 

candidate wavelength that gives rise to the smallest FWM crosstalk which has been calculated 
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Fig. 3.3: Network topologies (a) 14-node NSFNet, (b) 19-node European Optical Network (EON). 

by pre-inserting it into the link and evaluating the interactions caused by the co-propagating 

signals together with the candidate itself. Results are shown in Fig. 3.9 (a). 

5. FWM"-aware adaptiveLambda RWA: this scheme computes all the connection requests based on 

ICBR by estimating the cost function (3.2), and chooses one by one candidate wavelength to evalu

ate the level ofFWM crosstalk, if the first computed candidate wavelength is blocked then it takes 

the next candidate wavelength until it finds the wavelength that satisfies the threshold permis

sion level, if neither of the candidate wavelength satisfy the permitted threshold level then the 

call request will be blocked. Results are shown in Fig.3.9 (b). 

3.3.2 System parameters 

Each link consists of one-way fiber pairs for both directions, and each pair of nodes is connected with 

two links. The network prototypes were connected with Dispersion-Shifted Fiber (DSF) links of 100km 

length, each with 8 WDM channels with the same input signal power of 0 dBm. The frequencies used 

in the simulation were set to 193.1 - 193.8 THz with 100 GHz channel spacing. We neglect the effect of 
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Table 3.1: System Parameters used in the Simulation 

Physical Parameters 

Fiber 

Fiber nonlinear coefficient 

Fiber attenuation 

Channel power 

Channel spacing 

Threshold power 

Network Parameters 

Number of nodes 

Distance between adjacent nodes 

Number of calls 

Number of wavelengths 

Signal wavelengths 

Model of call generation 

Model of call duration 

Value 

Dispersion Shifted Fiber 

2.3 !W/krn 

0.22 dB/krn 

OdBm 

100 GHz 

-20 dBm 

Value 

see network prototypes 

100km 

500,000 

8, fc = 193.45 THz 

1546.92- 1552.52 nm 

Poisson distribution 

Exponential distribution 

polarization states of input lights for simplification. The connection blocking probability is the metric 

used to measure the network performance. The weighted factors ofthe cost function a and.B are set to 

1 and 10, respectively. 

Table 3.1 shows the main characteristics of the network prototypes and summarizes the transmission 

system parameters adopted in the simulations. 

3.3.3 Blocking performance analysis 

Figure 3.4 depicts the blocking probability as a function of the total offered load for the network topol

ogy of6 nodes shown in Fig.3.2 (a), it shows the impact of using the proposed FWA-aware FF RWA in 

comparison to the FWM-blind and to the FWM-partially-blind RWA. Results depicted in Fig. 3.4, show 

that an algorithm RWA ignoring FWM effect gives rise to an unrealistic network performance (plot 

as a continuous-line with solid-circles), their system performance are considered as underestimation 

compared to those given by real networks. Amount the RWA with FWM-awareness, the FWM-aware 

FF RWA (shown as a continuous-line with solid-triangles) gives an improvement of blocking compared 

to the FWM-partially-blind RWA depicted as continuous-line with opened-squares. 

By considering the network topologies shown in Fig.3.2 and 3.3, corresponding to 6, 9 and 19-node 

NSFNet networks, as well as 14-node NSFNet and 19-node EON network topologies, respectively, we 

applied the RWA algorithms with FWM-awareness, comparing the connection blocking probability of 

the FWA-aware FF RWA with FWM-partially-blind RWA. Results are depicted in Figs. 3.5, 3.6 and 

3. 7. FWM-partially-blind algorithm results are shown as a continuous-line with open-circles, and the 
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FWA-aware FF RWA are depicted by using continuous-line with solid-triangles showing the reduction 

on the blocking probability. Results show an improvement of the network performance in terms of the 

decreasing blocking probability when the physical impairment of FWM is taken into account in both 

steps of the RWA problem, during the routing process added to the wavelength assignment process. 

This improvement becomes more evident while the number of network nodes increases, giving evidence 

that the physical impairment should not be avoid during the dynamic routing algorithm design. 

The performance of several network topologies (including those presented in Figs. 3.2 and 3.3), are 

depicted in Fig. 3.8, the node degree of each network has been considered and comparison with the 

relation of number oflinks per number of nodes (LIN) are carried out. In order to set a common value 

of LIN in all the network prototypes, the number of links has been changed by setting some links of the 

networks to single fiber. It is observed that the blocking probability gives rise to a margin related with 

different network topologies that possess equal value of LIN. These results show that the proposed 

FWA aware RWA algorithm leads to a better characterization of the network in terms of given an 

average constant behavior on the blocking probability of a network topology according with a similar 

relation LIN under the current algorithm scenario. 

Results on the simulation carried out with FWM-aware minLambda RWA algorithm (Fig. 3.9) show 

no improvement on the network performance, this is due to the stochastic process of the dynamic al

gorithm. A wavelength selection scheme that favors a wavelength with less FWM noise, wavelengths 

with equally adjacent spacings seems to be more prone to be established, increasing the blocking, since 

the degradation is much more severe for equally spaced channels [3], at the same time this is aggra

vated by accomplishing the wavelength continuity constraint along the path and attending the random 
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Fig. 3.5: Network performance of the proposed FWM-aware RWA in comparison with the FWM

partially blind scheme for network topology (a) 6-node network, and (b) 9-node network. 

arrival and departure time of the connection requests. However, an improvement on the blocking per

formance is achieved with the adaptive scheme (FWM-aware adaptiveLambda RWA). In this case, the 

first candidate wavelength is inserted and the FWM crosstalk along the path is precalculated, and 
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Fig. 3.6: Network performance of the proposed FWM-aware RWA in comparison with the FWM

partially blind scheme for network topology of 19-node NSFNet. 

only if the lightpath could not be established then it evaluates the next candidate wavelength, but the 

FWM-aware minLambda RWA needs to compute all the possibility which causes an increasing of con

nection blocking. In order to reduce the lightpath establishing time a new adaptation introduced into 

the FWM-aware RWA is proposed in the following section. 

In this section we have introduced and evaluated three novel algorithms: 

• FWM-aware FF RWA 

• FWM-aware minLambda RWA 

• FWM-aware adaptiveLambda RWA 

And used two algorithms for comparison purposes as: 

• FWM-blind RWA, and 

• FWM-partially-blind RWA 

In summary, the impact of introducing FWM-induced crosstalk as a constraint of the dynamic light

path establishing process has been evaluated by comparing the novel FWM-aware FF RWA with the 

traditional FWM-blind RWA and the FWM-partially-blind RWA. The RWAs encompassing the effect of 

FWM (FWM-partially-blind RWA and FWM-aware FF RWA) can guarantee QoS and give results for 

realistic scenarios. 
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Fig. 3.7: Network performance of the proposed FWM-aware RWA in comparison with the FWM

partially blind scheme for network topology (a) 14-node NSFNet, and (b) 19-node EON network. 

Moreover, when the effect ofFWM-induced crosstalk is evaluated into the routing scheme besides the 

wavelengths assignment process (FWM-aware FF RWA) an improvement in the network performance 

is registered, which become more significantly with the increase of the network size. 
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Fig. 3.8: FWA aware RWA network performance and the relation with L/N on different networks 

Results show that in all the networks used as a prototype the FWM-aware FF RWA outperforms 

the FWM-partially-blind RWA, indicating that physical impairments constraints should be taken into 

account in both: the routing scheme and the wavelengths assignments process. In addition, a small 

improvement has been obtained with the FWM-aware adaptiveLambda RWA. 

3.4 Reduction of lightpath establishing time approach 

A hybrid scheme using the advantage of offline precalculation and the online implementation to cap

ture the network state is introduced accomplishing the effect of FWM calculation during the lightpath 

establishing process and faster set up the lightpath. 

In order to setup a lightpath it is required to exchange various control information among the nodes. 

A timely manner of dynamic provisioning is an important issue, here a distributed adaptive routing is 

proposed to fast provisioning lightpaths. 

One of the challenges involved in designing wavelength-routed optical networks with dynamic traffic 

demands is to develop efficient algorithms and protocols for establishing lightpaths. It is believed that 

dynamic or on-demand lightpath establishment, will enable service providers to respond quickly and 

economically to customer demands. Therefore, connection setup time and blocking rate are two impor

tant parameters for any optical data communication network [59-64]. Additionally, in a transparent 
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Fig. 3.9: Different wavelength assignment schemes, Adaptive and Minimum FWM power. 

and managed long-reach networks, the optical signal quality degrades during its transmission due to 

physical impairment accumulation. Hence, Impairment Constraint Based Routing (ICBR) has been 

proposed as a solution [19, 54]. 
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As it has been shown through the previous chapters, our study primary focuses on the accumulation 

of Four-Wave Mixing (FWM) crosstalk which causes a fatal degradation in wavelength-routed optical 

network performance; it is considered as a major source of nonlinear crosstalk for WDM lightpath 

systems [3, 8]. Particularly, this section focuses on a faster process to setup a lightpath based on the 

FWM-aware RWA already described in the previous sections of this chapter. Since to solve a Routing 

and Wavelengths Assignment (RWA) problem is well-known to be NP-complete, heuristics must be 

used to address this problem to reduce the computational complexity. 

We propose distributed adaptive routing where each node in the network must maintain the complete 

network state information. Whenever there is a connection request it will try to find a route in a 

distributed manner [5, 65, 66]. The establishment or removal of any lightpath must update the state 

information of all nodes in the network. When lightpaths are being established or removed at a higher 

rate, it requires a significant control overhead to broadcast the update messages to all nodes. To setup 

a lightpath, it is required to exchange various control information among the nodes. The signaling 

protocols are closely related to the different types ofRWA protocols. Signaling protocols for setting up 

lightpaths must effectively manage the distribution of control messages and network state information 

in order to establish a connection in a timely manner [59]. It may reserve the resources in parallel, 

on a hop-by-hop basis along the forward path or along the reverse path. Although our main subject of 

research lies on dynamic routing, our improved algorithm gives advantages to the next connection or 

release task of the signaling protocol by reducing connection setup time and the amount of data per 

link that should be edited to maintain the network state information updated. Additionally, given the 

wide range of services envisioned for future IP networks, network survivability is a crucial concern, 

and by making use of the WDM channel efficient routing capabilities, a variety oflightpath protection 

schemes can be designed. 

In a dynamic process oflightpath provisioning, the active wavelengths in a link causes FWM-induced 

crosstalk products to be generated [3], differing in number and levels of products that depend on the 

presence of neighbor wavelengths, on their relative spectral position and the presence of the wavelength 

candidate itself 

We introduce another algorithm which cope with reducing the lightpath establishing time based 

on the FWM-aware RWA. The new algorithm is called mxFWM-aware RWA, described and validated 

through simulations shown in the rest of this chapter. 

3.4.1 FWM matrix elements, computation and accessibility 

The FWM-induced crosstalk products are calculated offiine for all possible combinations of coexis

tent active lightpaths in a link. In a discrete time event simulation, for the online full FWM-aware 

RWA scheme [56], online calculation ofFWM crosstalk has been required during the evaluation of the 

signal quality of the candidate lightpath, in order to capture and update the network state. With the 

precomputed matrix scheme, the FWM components are stored into a matrix, called FWM-Mx, creating 

the database of crosstalk elements to have access during the signal quality evaluation of the online 

lightpath establishment process using our updated version mxFWM-aware RWA. The goal of using a 
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Table 3.2: Possible groups of active wavelengths for W = 8 and their corresponding wavelength as 

placed by FWM-ind"!lced crosstalk. Active wavelengths= 1, Idle wavelengths= 0 and FWM-induced 

product that fall within the channel spectrum = @. 

No. A& A7 ~ As A.t A3 ,lz At 

0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 1 0 

3 0 0 0 0 0 @ 1 1 

4 0 0 0 0 0 1 0 0 

5 0 0 0 @ 0 1 0 1 

6 0 0 0 0 @ 1 1 @ 

7 0 0 0 @ @ Q) Q) Q) 

8 0 0 0 0 1 0 0 0 

9 0 @ 0 0 1 0 0 1 

10 0 0 @ 0 1 0 1 0 

... 

... 
254 Q) CD CD CD CD Q) CD @ 

255 Q) CD Q) Q) CD Q) Q) Q) 

precomputed matrix is to minimize the time of establishing a lightpath dynamically by eliminating 

the processing time of calculating the FWM products online, and therefore to decrease the network 

blocking probability. 

For a defined number ofWDM channel systems of N wavelengths or channels, the process of creating 

FWM-Mx uses the concept of an initial base-matrix with dimension [2NxN] where 2N corresponds to the 

number of rows of the matrix and constitutes all possible combinations of simultaneously coexisting 

lightpaths in a link, creating in one row one group of active lightpaths (lSetfactWs) that can match 

with the network state in one discrete unit of time during the online mxFWM-aware RWA algorithm, 

and N represents the number of columns or number ofWDM channels. 

For each group of active wavelengths, all the FWM products are calculated and only those products 

that fall within the channel spectrum are stored into the rows ofFWM-Mx. The predefined FWM-Mx 

has a dimension of [2NxN] with 2N corresponding to the FWM-Mx rows that capture the amount of 

FWM-induced crosstalk. Each row of the FWM-Mx corresponds to the same row of the base-matrix. 

For illustration, Table 3.2 gives the structure of FWM-Mx. For one network with N = 8, the matrix 

has a dimension of [256, 8], set from 0- 255 with eight wavelengths. Each row shows one set of active 

wavelengths (lSetfactWs), and the circles represent the wavelengths that will be affected by FWM 

crosstalk and their stored position within the matrix. 

For illustration, one set called 1 Set I actW s of row 7, equal to [0 0 0 @ @ CD CD CD], can be seen in 
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Fig. 3.10: FWM products illustration inside a system spectral window. 

Fig.3.10, meaning that A4, As, A6, A7 , As are idle wavelengths (set as 0) and A1 , A2 , A3 are active (set as 1) in 

a link under evaluation and their interactions will cause generation of FWM noise (marked by circling 

the state of the wavelength). As can be seen some products will fall into the occupied frequencies of 

AJ, Az, A3 and into some of the idles as A4 , As affecting their power levels. Considering the case, when 

eight wavelengths are active or occupied, 392 total FWM products will be generated, products that fall 

onto the same frequency their values will be added resulting that 224 different wavelengths will be 

added by the effect of FWM crosstalk noise, but only those related to the eight spectrum channels will 

be stored into the FWM-Mx. 

To implement the process of creating and accessing FWM products into the mxFWM-aware RWA, 

a digital number has been assigned to each wavelength in a reverse numerical order (power of two), 

i.e., As = 27 and A1 = 2°. By setting 1 and 0 to active/occupied and idle wavelengths, respectively, a 

unique binary number is create for each lS etjactWs, using an exclusive-or function the binary number 

is converted directly to a decimal value corresponding to a row of FWM-Mx and easily gives access to 

the precalculated/stored FWM elements of each wavelength originated by the respective 1 S etjactWs. 

General considerations for mxFWM-aware RWA 

In addition to the general assumption mentioned in Section 3.2.3 and in 3.3.2, the following charac

teristics have been introduced to define the functionality of the mxFWM-aware RWA algorithm: 

• The algorithm has been designed for N wavelengths or WDM channels. 

• For each group of coexisting lightpaths or active wavelengths (lSetfactWs), the FWM-induced 

crosstalk products have been precomputed using Eq. (2.2). The process adds all the products that 

fall into the same frequency. 

• The generated FWM noise for all the combinations of simultaneously occupied frequencies is 

precomputed and stored in the FWM-Mx, given 2N lSetjactWs or rows. 

• Each group of active lightpaths will correspond to one index of the FWM-Mx matrix of2N rows. 

• Only the FWM products that fall within the channel spectra are stored into the FWM-Mx associ

ated row. 
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• The elements of the FWM-Mx will be accessed during the online mxFWM-aware RWA lightpath 

setup. 

• We intent to assign a candidate lightpath that originates the minimum level of FWM crosstalk 

and fulfills a threshold that guarantees the QoS, using the same criteria implemented in Section 

3.2. 

3.4.2 Adaptation of the FWM procedure calculation 

The computation ofEq. (2.2) to find PFwM = P;Jk together with the following equation, fills all elements 

of matrix FWM-Mx. 

PFWM,w, = LLL./FwM(/ic.f}c.flcc), (3.3) 
fie jjc fie 

The procedures involved in Eq. (3.1) have been divided in several steps as follows: 

1. calculation of FWM products generated by groups of coexisting lightpath (offline), 

2. summation of the crosstalk components that fall into the same channel frequency (offline), 

3. summation of the crosstalk components along the lightpath (online), 

4. searching FWM elements into a matrix (online). 

then Eq. (3.1) can be modified as: 

h 

PDN (lSet/actWs)= L_.PFwMMx' (3.4) 
c=l 

where all the combinations of frequencies i,j and k are given by lSetfactWs, and are obtained directly 

from the online algorithm. The PFwMMx represents the elements stored into the FWM-Mx corresponding 

to the row index equal to the decimal number equivalent to the binary number of lSetfactWs. This 

procedure is repeated and their values of same frequencies is summed up hop-by-hop until it reaches 

the destination node. 

For an specific route given by the modified shortest path algorithm to establish an end-to-end con

nection request, the following algorithm steps are carried out as part of the ICBR technique, bringing 

the network state information used into the cost function: 

1. For each link or hop h along the path find the number of simultaneously active wavelengths per 

link. 

2. Compute the list of candidate/tentative wavelength of the path taking into account the principle 

of wavelength continuity constraint. 

3. For each candidate wavelength, together with the active wavelenghts of a link find the index rN 

of the FWM-Mx row. 

4. To compute the FWM crosstalk noise of a ligthpath from source to destination, use Eq. (3.4). 
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Table 3.3: Reduction factor for different networks and number of wavelengths. 

~ 6-node 9-node 14-NSF 19-NSF 19-EON 
r 

REDUCTION FACTOR (w = 8) 0.08 0.09 0.13 0.18 0.33 

REDUCTION FACTOR (w = 4) 0.30 0.33 0.43 0.54 0.58 

5. Using the index rN, search into FWM-Mx the FWM product of the specified candidate lightpath 

using the column that matches the wavelength under evaluation and store the value into an array. 

6. Repeat the same procedure until it finishes evaluating the candidate wavelength through all the 

links along the path and by adding it to the previous value update the level of FWM crosstalk for 

the tentative lightpath under evaluation. 

7. Compare the value of FWM noise of each candidate wavelength with a fixed threshold assuming 

the conventional OOK modulation format. The selection of a path will be in accordance with the 

effect giving by the cost function, avoiding FWM crosstalk and better use of network resources. 

3.4.3 Simulation results and analysis of the mxFWM-aware RWA 

For these set of simulations, once again, the networks are assumed to have bidirectional links, each 

carrying the same number of wavelengths in each direction, where no wavelength conversion is avail

able. The sources and destinations of calls are uniformly distributed over the set of nodes, and the 

same assumptions taken in Section 3.3.2 and 3.3.1 are assumed for this round of simulations. Under 

these conditions extensive simulations were carried out over different network topologies shown in Fig. 

3.2 and 3.3, by measuring the network performance in terms of blocking probability. 

The proposed precomputed mxFWM-aware RWA scheme were validated through simulations. The 

proposed mxFWM-aware RWA scheme were compared with the full online calculation of FWM (i.e., 

FWM-aware RWA) in order to evaluate the lightpath establishment time. The seed of the random 

number of both algorithms were fixed to be same in order to generate the same number of call requests 

during the same duration oflightpaths and evaluated the impact of the time in both algorithms. 

The corresponding estimate reduction factor are summarized in Table 3.3 for eight and four num

ber of wavelengths on each network topologies given in Figs. 3.2 and 3.3. The observed reduction 

factor shows that our novel algorithm can establish lightpaths faster, which contributes to decrease 

the blocking probability. It is shown that the algorithm can setup lightpath faster up to 20 percent 

when decreasing the number of wavelength by a factor of two, in most of the network topologies, when 

comparing it to the same topology and different number of wavelengths. However, by running the al

gorithm for a more complex network topology, the variation of the reduction factor in topologies with 

the same number of wavelengths, with higher level of network connectivity, the reduction of lightpath 

setting up time seems to be small, e.g., for eight wavelengths, 6-node network yields 8 percent reduc-
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Fig. 3.11: Network performance of the proposed mxFWM-aware RWA with different number of wave

lengths as follows (a) W = 4, and (b) W = 8. 

tion factor while EON network with 19 nodes 33 percent, albeit the variation value of reduction factor 

between network topology complexity seems to be small, it can be a valuable change considering huge 
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Fig. 3.12: Network performance of the proposed mxFWM-aware RWA for 6-node network and different 

number of wavelengths 4, 8 and 16. 

traffic demand. 

Results for the mxFWM-aware RWA scheme are plotted in Figs. 3.ll(a) and 3.11 (b), for four and 

eight wavelengths, respectively. Results confirmed the strong correlation between the blocking proba

bility and the network diameter and the mean inter-nodal distance, which have been recognized in the 

literature as some topological features that gives impact on blocking probability (67]. According to this, 

in Fig.3.11 (a) can be seen that the blocking probability decreases by increasing the level connectivity 

or number oflinks per nodes (L/N). However, results also show in Fig. 3.11 (b) by the increment of the 

number of nodes in a same topological design, that the node degree of a network yields major impact 

on the network performance, so the NSFNet with N = 14 and L = 40 gives better results because of its 

higher node degree although its relation LIN is lower in comparison to the NSFNet with N = 19 and 

L =56. 

Results also shows that the algorithm yields better performance by increasing the number of wave

lengths in a same network as it is expected. And for simplicity, Fig. 3.12 shows results of setting the 

number of wavelengths to four, eight and sixteen into a 6-node network ofFig.3.2 (a), showing that the 

algorithm can be adaptive to N number of wavelengths. 

3.5 Conclusion 

A dynamic RWA algorithm that is capable of incorporating not only the network constraints, but 

also the physical constraint due to the FWM crosstalk has been described by introducing a novel cost 
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function into both the wavelength assignment process and the routing scheme. An ICBR approach in 

a distributed scheme was proposed. 

The blocking probability were calculated in wavelength routed optical networks impaired by FWM

induced crosstalk, allowing the inclusion of interchannel effects to avoid signal quality degradation. 

Our approach leads to more realistic networks model design in terms of capturing the nonlinearity 

effect due to FWM crosstalk. The impact of using an integration of network and physical layers con

straints has been evaluated, showing that the physical constraints must not be avoided into the routing 

process in order to guarantee the signal quality during the end-to-end dynamic lightpath setup. The 

introduced FWA-aware RWA can achieve good results compared with the referred algorithm found in 

the literature and furthermore accomplished an improvement of the network performance by using the 

modified version called FWM-aware adaptiveLambda RWA. 

In addition, a technique to reduce the lightpath establishing time has been analyzed. This proposed 

hybrid model precomputed the FWM generated products according to all the possible groups of coex

isting lightpaths that could be found in a network under evaluation. The algorithm reduces the setup 

time of a lightpath and therefore improves network performance. The FWM-Mx represents an opti

mal access method compared to the FWM-crosstalk products online calculation. The algorithm was 

validated for different number of wavelengths, and was demonstrated that more improvement can be 

achieved with more available wavelengths per link. Results of the proposed mxFWM-aware RWA al

gorithm show improvement up to 30-50 percent of faster establishing lightpath in various network 

topologies in comparison with an online full dynamic computation scheme. 

Achieving faster lightpath establishment leads to several advantages, especially it gives a positive 

impact into the network, which can be studied through the metrics, namely, connection set up time, 

blocking probability, stabilizing time and scalability. 
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Dynamic Lightpath Provisioning 

with Modulation Format Conversion 

Interface 

Envisaged optically transparent modulation format conversion from 2-channels on-off-keying (OOK) 

to quadrature phase-shift-keying (QPSK) between MAN and WAN in future wavelength-routed net

works, in this chapter a novel FWM-induced crosstalk-aware dynamic RWA algorithm is demonstrated 

to minimize the connection blocking probability. 

4.1 Introduction 

In a wavelength-routed optical networks in the near future, a rapid and flexible bandwidth provision

ing on-demand will be required. The multi-level modulation format such as quadrature phase-shift

keying (QPSK) modulation format has been actively studied to be introduced to enhance the signal 

quality in long-haul DWDM transmission systems at the bit rates of 40 Gbit/s and beyond. There

fore, it is likely that at a gateway node between wide area network (WAN) and metro area network 

(MAN), a transparent modulation format conversion between the PSK signals and conventional cost

effective on-off-keying (OOK) becomes a key technique for maintaining optical transparency. There 

has been proposed and experimentally demonstrated non-return-to-zero (NRZ)-OOK/return-to-zero 

(RZ)-QPSK modulation format conversion using semiconductor optical amplifier (SOA) based paral

lel Mach-Zehnder Interferometers (MZI). We have developed an algorithm called four-wave-mixing 

(FWM)-aware and dynamic routing and wavelength assignment (RWA) to capture the network state 

encompassing the effect of FWM into the wavelength-routed network provisioning, explained in the 

previous chapter. 

Different modulation formats may be selectively used, depending on the network size and the bit 

rate. Optical communication systems have been long employing primarily conventional OOK signals, 

which convey the information in the amplitude. In contrast, PSK formats [68] carry information in 

53 
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OOK-QPSK format convener 

NRZ-OOK 
data signal 1 

NRZ-OOK 
data signal 2 

1 D 1 0 •• 
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-3x/4 -.:/4 
x/4 3x/4 

' ''' 
Fig. 4.1: Illustration of OOK to QPSK converter. 

the phase of the optical carrier itself. Recent studies have revealed that DPSK preferably exhibits 

better performance than conventional OOK for long-haul transmission [22]. More advanced modulation 

format [69, 70], differential quadrature phase-shift keying (DQPSK), appears to be promising technique 

in order to exploit the better receiver sensitivity and to secure the compatibility with 50 GHz channel 

spacing in ultra-dense wavelength division multiplexed (DWDM) transmission [70]. 

Our contribution presented in this chapter has been inspired from Mishina et al. research work [71] 

and the work presented in [22] related to the studies on optical modulation format converters. In 

this chapter we maintained the name of our original algorithm FWM-aware RWA but this time the 

algorithm will include a modulation format conversion interface. This scheme will improve the blocking 

performance by minimizing the effect of generating FWM crosstalk via modulation format. In Chapter 

3 we have assumed conventional OOK modulation format. In this chapter we introduce a new module 

and the respective interface into our algorithm to cope with the advantages of QPSK modulation format 

into the network design. 

4.2 FWM-aware RWA incorporating modulation format conver-

sion 

Our designed system model assumes using an all-optical modulation format conversion from NRZ

OOK to RZ-QPSK, illustrated in Fig. 4.1. The NRZ-OOK-to-RZ-QPSK format conversion scheme is 

based on parallel MZI OOK!binary-PSK (BPSK) converters, consisting of integrated SO As. This scheme 

has been experimentally demonstrated and verified through numerical simulation by Mishina et al., 

additionally it uses balanced detection scheme, combination that brings the benefit of 3-dB of DPSK 

over OOK. An schematic diagram of the proposed modulation format conversion and the principle of 

operation can be found in [42, 71]. 

The designed algorithm can be understood by following the flowchart depicted in Fig.4.3 that com

paring with the flowchart presented in Fig.3.1 can be noticed one main different characteristic, a mod

ulation format conversion module. In our initial network model that obeys the algorithm of Fig.3.1 

only conventional OOK modulation format has been assumed. In this chapter we extended our work 

by incorporating a novel interface related to modulation format conversion from OOK to QPSK into our 
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Fig. 4.2: Illustration of an all-optical modulation format conversion at the gateway node, lightpath from 

source to destination node with QPSK modulation format. 

algorithm in order to mitigate the effect of FWM-induced crosstalk. We introduce a new module into 

our network design, called encapsulation, to cope with this feature. 

The advantage of using modulation format converter from OOK to QPSK is that QPSK can aggregate 

two OOK channels keeping the same signal bandwidth, while decreasing the call blocking probability 

and therefore improving the network performance. Through the encapsulation functionality a double 

capacity of transmitted data can be sent under the same FWM affected condition of one signal if the two 

OOK signals have the same source-destination pair of nodes, see Fig. 4.2 for illustration, where two 

signals each modulated with OOK format at 10 Gbitls are encapsulated at the source and converted 

to QPSK format, keeping the same bandwidth and carrying data at 20 Gbitls to be established as one 

lightpath form source to destination, and then to be separated and demodulated at the destination 

node after the call establishing time duration has ended. The effect of this encapsulation functionality 

brings positive advantages on the teletraffic network performance. 

4.3 Encapsulation module design 

A flowchart shown in Fig. 4.4 addresses the novel encapsulation module and their functionalities. 

This interface is implemented at the beginning of the algorithm shown in Fig. 4.3. We assume that call 

requests arrive in the network with OOK modulation format. The encapsulation module consists on 

creating a queue of calls with an specific queue size managed by a controller. An initialization process 

to filling the queue begins by generating call request and storing them into the queue until it finds a 

pair of two calls with same source-destination (8-D) nodes. A comparison between the call requests 

stored in a queue is carried out to find a pair of call with the same S-D nodes. Once a pair of calls with 

same S-D is found, both calls are converted using NRZ-OOK-to-RZ-QPSK format conversion scheme 
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Fig. 4.3: Flow diagram of the simulation ICBR scheme incorporating the modulation format conversion 

interface. 

and generate one encapsulate call with QPSK format. In addition, for simplification the duration 

time of the encapsulated call is set to the maximum duration time between the two original calls. 

After the encapsulated process finished, the new call is sent to be processed, and the FWM-aware 

RWA through the ICBR approach is performed to calculate a new lightpath with QPSK format to 
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establish carrying two original call requests into one. After the encapsulation module functionalities 

are completed, another call request is generated and stored in the queue, and these processes continue 

until the last call of the system is processed. 

A queue is created to find a pair of calls with same S-D nodes, one issue presented in this process is 

the probability that any call stay in a queue during a long period of time waiting to find another call 

request with the same S-D pair of nodes. In order to avoid this case, a delay permission level has been 

set inside the controller. The call delay level consists on the waiting time in the queue for a call to find 

another call with the same S-D pair of nodes, if this level exceeds the permission delay level, then the 

call will be sent to the system, carrying binary PSK format with using the format conversion. 

4.4 Simulation results and analysis 

Extensive simulations were carried out over the network topologies shown in Figs. 3.2 and 3.3, by 

measuring the network performance in terms of blocking probability versus network offered load. The 

threshold power is set to -20 dBm with OOK modulation format and -17 dBm when QPSK is adopted. 

By incorporating the modulation format conversion interface into our designed and validated FWM

aware RWA algorithm, a new algorithm called FWM-aware RWA with OOK-QPSK modulation inter

face is generated, which is indicated in the plots with the name of QPSK for short. The new algorithm 

is introduced as follows: 

• FWM-aware RWA with OOK-QPSK modulation interface: in addition to the characteristics of 

FWM-aware RWA algorithm scheme, this approach incorporated the encapsulation module where 

the NRZ-OOK-to-RZ-QPSK format conversion takes place giving a notorious improvement on the 

network performance. 
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Fig. 4.7: Effect of varying the delay of a call in queue finding another call with the same source

destination pair of nodes on the network performance of a 6-node network with QPSK. 

The performance of the new dynamic FWM-aware RWA algorithms with modulation format con

version interface is evaluated over different network topologies, and compared with the connection 

blocking probability obtained with the FWM-aware RWA that uses OOK modulation formats. 

The network performances evaluation of a 6-node network topology (shown in Fig. 3.3(a)) for FWM

aware RWA (OOK) and FWM-aware RWA with OOK-QPSK modulation format conversion interface 

(QPSK) with queue size equal to 10 are shown in Fig.4.5. It has been demonstrated that the new algo

rithm FWM-aware RWA with OOK-QPSK modulation format conversion interface adds a significant 

improvement on the network performance in terms of decreasing the connection blocking probability. 

Extensive simulations were carried out to study the effect on the blocking probability of the queue 

size (Q) parameter and the waiting time of a call inside a queue to find another call with the same 

source-destination pair (D), under different network prototypes. The queue size is measured in terms 

of a fixed number of connections or call requests (e.g., Q = 10 means that the queue consists of 10 

connection requests), and the time of a call inside the queue were updated via a discrete event system 

clock simulation. The upper and lower value of parameter Q and D are found for each network under 

study. For simplicity we have shown for a network of 6 nodes depicted in Fig. 3.3(a), the effect of 

changing parameter Q which has been plotted in Fig.4.6 and the behavior of varying D shown in Fig.4. 7. 

Fig.4.6 shows the blocking probability versus offered load of a 6-node network for various queue 

size of the controller (Q = 10, 15, 20 and 50), results for QPSK consideration are presented with solid 

symbols and for these sets of simulations the parameter D was not taken into account. In addition, for 

comparison purpose the case of FWM-aware RWA assuming OOK has been incorporated and results 
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Fig. 4.8: Best network performance found with the lower bound of queue size and delay in queue 

parameters for the FWM-aware RWA incorporating QPSK, for networks 6, 9-node networks 

are shown with solid line and open circles (indicated as OOK for short). It can be observed that by 

increasing the number of Q the blocking probability can be minimized, finding a lower bound with Q = 
20. Similarly, by varying the parameter Din Fig. 4. 7 and fixing the Q equal to 10, the lower bound has 
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Fig. 4.9: Best network performance found with the lower bound of queue size and delay in queue 

parameters for the FWM-aware RWA incorporating QPSK, for networks 14 and 19-node networks 

been reached with D equal 0.2, it can also be observed that for D = 2, 10 and bigger values, results are 

similar to those obtained with D = 0.2. Results show that our new algorithm can significantly reduces 

connection blocking probability. Similar studies of parameter Q and D have also been carried out for 
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9-node network, 14-node NSFNet, and 19-node EON networks. 

By selecting the best Q and the best D for each network which gives the lower bound of blocking 

probability have been feasible to find the possible best network performance according to each network 

topology. Results for the network topologies presented in Figs. 3.2 and 3.3 are depicted in Fig. 4.8 and 

4.9. By incorporating a module with optical modulation format converter into the network model, the 

blocking probability can be reduced by a factor of 2, found with the lower bound of Q and D parameters, 

given a positive impact on the network performance. 

From Figs. 4.8 and 4.9, can also be observed that the blocking probability of the FWM-aware RWA 

with OOK-QPSK modulation format conversion interface (QPSK) is lower than the obtained in FWM

aware RWA (OOK), and that the margin that separates the results of both algorithms within the 

same network topology increases while decrease the size of the network. For instance, comparing the 

number of blocking probability obtained for the overall traffic load equal to 250, in a 14-node NSFNET 

network the number of blocking probability of the FWM-aware RWA with OOK-QPSK modulation 

format conversion interface (QPSK) has 0,012 less blocking than the obtained in FWM-aware RWA 

(OOK) while for a 6-node network the blocking probability experiences a more significant lower amount 

of blocking comparing it to the FWM-aware RWA (OOK) an resulting in 0,22 difference giving a more 

positive impact to the network performance. 

4.5 Conclusion 

A new technique to reduce the effect of FWM-induced crosstalk by using an all-optical modulation 

format conversion from 2-channels OOK to QPSK had been proposed, which improves significantly the 

network performance by reducing the number of blocking calls. The proposed scheme is expected to 

realize an all-optical transparent interconnection between networks that employ diverse modulation 

formats. Studies of varying the queue size and the waiting time of a call inside the queue to find another 

call with the same source-destination pair were carried out. Lower bound of blocking probability with 

the best values of queue size and delay in a queue parameters were obtained giving the possible best 

performance according to the network topology. 

From the obtained results, it is conclude that, for a same amount of total traffic and under differ

ent network prototypes, the algorithm with the modulation format conversion from 2-channels OOK 

to QPSK interface improves the network performance in comparison with the FWM-aware RWA as

suming OOK. Results show that our scheme of establishing lightpaths and transmitting the end-to

end connection requests with QFSK modulation format give a positive impact in the network per

formance, bringing advantages as: transparency, higher-speed transmission, and coping with FWM

induced crosstalk. 
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Conclusions 

The rapid development and evolution of optical technologies make it possible to move beyond point-to

point WDM transmission systems to an all-optical backbone network that can take full advantage of the 

available bandwidth. The architecture that is widely expected to form the basis for a future all-optical 

infrastructure is built on the concept of wavelength routing, and the so-called wavelength-routed opti

cal networks consist of a number of optical cross-connects (OXCs) arranged in some arbitrary topology, 

and its main function is to provide interconnection to a number of IP/MPLS subnetworks, supporting 

provisioning, protection and restoration at the optical layer. In Chapters 1 and 2 the trends and some 

important issues on optical networks has been addressed. 

IP over WDM networks are aiming to eliminate the intermediate layers (ATM, SDH, etc.) to improve 

the network management efficiency and avoid task duplication. These networks aim to rely on an 

intelligent control plane providing flexibility and optimization of the optical layer use and reduced 

complexity. 

This dissertation newly proposed an impairment-constraint-based routing technique, which copes 

with two main issues: the FWM-induced crosstalk awareness and the transparent modulation format 

conversion from 2-channel conventional OOK to QPSK in wavelength-routed optical networks dynamic 

lightpath provisioning. Results are validated via exhaustive discrete event time simulations. The main 

results obtained in this dissertation are summarized as follows: 

In Chapter 3, since future telecommunications networks not only require very high information band

widths but also need to support a wide range of services with different traffic statistics and good qual

ity conditions, in order to address these characteristics, a novel FWM-aware RWA has been proposed 

and evaluated thorough extensive simulations under different network topologies. The FWM-aware 

RWA allows establishing end-to-end lightpaths on demand, by updating the network states informa

tion stored in a novel cost function. The cost function is evaluated and updated at generating a link 

state. It validates the computed path under the implemented constraints (network resource utiliza

tion and FWM-induced crosstalk). It is examined at the end of the calculation candidate path through 

the ICBR approach, following the policy that if the computed candidate on-line path satisfies a fixed 

permitted threshold then the candidate path is established, otherwise, it is rejected. The algorithm 
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guarantees the QoS by avoiding setting up lightpaths that have been degradated by FWM-induced 

crosstalk. Qualitatively, in comparison with previous algorithms found in the literature, this approach 

improves the networ]r performance while guarantees the QoS. 

In Chapter 4, a transparent 2xOOK-to-QPSK modulation format conversion interface in the dynamic 

FWM-aware RWA has been proposed. Results show a feasibility of transparency between different 

modulation formats and a significant decreasing of the blocking connection request while simultane

ously guarantee the QoS connections. 

From all the obtained results, it is concluded that, the proposed FWM-induced crosstalk aware dy

namic RWA with modulation format conversion has the feasibility to enrich the network performance, 

guarantee quality of services (QoS), increase scalability, and support transparency. Consequently, the 

proposed scheme is considered as one possible base to develop the network design framework for the 

future transparent optical communication networks. 
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Acronyms 

AC 

ASE 

ASK 

ASON 

ATM 

BPSK 

BGP 

CAPEX 

cc 
CD 

CR-LDP 

cw 
D 

DFB 

DSF 

DWDM 

EDFA 

EON 

ERM 

FEC 

FF 

FMI 

FSK 

FWM 

GAN 

GMPLS 

ICBR 

IETF 

IGP 

IM!DD 

Admission Controller 

Amplified Spontaneous Emission 

Amplitude-Shift Keying 

Automatic Switched Optical Network 

Asynchronous Transfer Mode 

Binary Phase-Shift Keying 

Border Gateway Protocol 

Capital Expenditure 

Connection Controller 

Chromatic Dispersion 

Constraint-Based Routing Label Distribution Protocol 

Continuous Wave 

Delay of a connection request to find another call with same S-D pair 

Distributed-Feedback semiconductor laser 

Dispersion-Shifted Fiber 

Dense Wavelength Division Multiplexing 

Erbium-Doped Fiber Amplifier 

European Optical Network 

Electro-Refraction Modulation 

Forward Error Correction 

First-Fit 

Frequency Modulation Index 

Phase-Shift Keying 

Four-Wave Mixing 

Global Area Network 

Generalized Multiprotocol Label Switching 

Impairment Constraint-Based Routing 

Internet Engineering Task Force 

Interior Gateway Protocol 

Intensity Modulation with Direct Detection 
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72 Acronyms 

InP Indium Phosphide 

IP Internet Protocol 

IRWA Impairment-aware RWA 

ITU International Telecommunication Union 

ITU-T lTV's Telecommunication Standardization Sector 

LRM Link Resource Manager 

LSA Link State Advertisement 

LSP Label Switched Path 

MAN Metro Area Network 

MPLS Multiprotocol Label Switching 

MQW Multi-Quantum Well 

MZDI Mach-Zehnder Delay Interferometer 

MZI Mach-Zehnder Interferometer 

NRZ Non-Return-to-Zero 

NSFNet National Science Foundation Network 

OADM Optical Add/Drop Multiplexer 

ocs Optical Circuit-Switching 

0-E-0 Optical-Electrical-Optical 

OOK On-Off Keying 

OPEX Operating Expenditure 

OPG Optical Parametric Gain 

OSPF-TE Open Shortest Path First Traffic Engineering 

OTDM Optical Time Division Multiplexing 

oxc Optical Cross-connect 

PAM Pulse Amplitude Modulation 

PMD Polarization Mode Dispersion 

PSK Phase-Shift Keying 

Q Queue size measured by a number of connection request 

QAM Quadrature Amplitude Modulation 

QoS Quality of Service 

QPSK Quadrature Phase-Shift-Keying 

RC Routing Controller 

ROADM Reconfigurable Optical Add/Drop Multiplexer 

RSVP-TE Resource Reservation Protocol Traffic Engineering 

RWA Routing and Wavelength Assignment 

RZ Return-to-Zero 

S-D Source-Destination 

SDH Synchronous Digital Hierarchy 
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SE Spectral Efficiency 

SMF Single Mode Fiber 

SOA Semiconductor Optical Amplifier 

SO NET Synchronous Optical Networking 

SPM Self Phase Modulation 

SRS Stimulated Brillouin Scattering 

TE Traffic Engineering 

TED Traffic Engineering Database 

WAN Wide Area Network 

WDM Wavelength Division Multiplexing 

WRN Wavelength-Routed Network 

wss Wavelength Selective Switch 

XPM Cross-Phase Modulation 
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