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                           Abstract 

  Using the Euclidean decomposition of the hyperbolic surface, R. C. Penner gave 

a canonical cellular decomposition of the decorated Teichmuller space of punctured 

surfaces, which is invariant by the action of the mapping class group. Adapting 

his method, we give a canonical cellular decomposition of the Teichmuller space of 

compact orientable surfaces with non-empty boundary.

1 Introduction

R. C. Penner introduced in [Pe] a method for dividing the decorated Teichmuller space 
of punctured surfaces by "natural" cells. Here, natural means that the decomposition 

is invariant by the action of the mapping class group. In his method, the Euclidean 

decomposition of punctured surfaces introduced in [EP] plays an important role. Since 
then, it has been tried to extend his construction to the Teichmuller space of other kinds 

of surfaces. M. Naatanen obtained a cellular decomposition of the Teichmuller space 

of closed surfaces with a distinguished point in [Na]. In her study, the decomposition 
of such surfaces introduced in [NP] plays a role of Euclidean decomposition in Penner's 
work. M. Min tried to construct a cellular decomposition of the Teichmuller space of 

surfaces with boundary in [Kd], but this study was not completely finished. We note 
that S. Kojima introduced in [Ko] a canonical method to decompose compact hyperbolic 
manifolds with non-empty geodesic boundary into truncated polyhedra. In this paper, 
using this decomposition and Penner's method, we give a canonical cellular decomposition 
of the Teichmuller space of compact orientable surfaces with non-empty boundary (see 
Theorem 6.6). 
  This paper is organized as follows. We recall in Section 2 the basic facts about 
Minkowski three-space and hyperbolic geometry. We develop in Section 3 most of our 
technical machinery on the geometry of the hyperboloid of one sheet in Minkowski three-
space. In Section 4, we recall the definition of the Teichmuller space and give two param-
eterizations of it. One is called the s-length (see Theorem 4.1), and the other is called the 
h-length (see Proposition 4.4). Section 5 is devoted to a brief review of the decomposition 
obtained from the "convex hull construction" in [Ko]. Finally, using this decomposition 
together with the h-length parameterization, we give in Section 6 a canonical cellular 

decomposition of the Teichmuller space in question (see Theorem 6.6).
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2 Minkowski space and hyperbolic geometry 

The Minkowski three-space E1'2 is the real vector space R3 of dimension three with the 

Lorentz metric (x, y) = - xo yo + xl Y1 + X2 y2. The Lorentzian norm of a vector x 
in E1"2 is defined to be the complex number (x, x ). If the Lorentzian norm of x is 
zero (resp. positive, imaginary), then x is said to be light-like (resp. space-like, time-
like). The set HT = { x E E1"2 J (x, x) = -1, xo > 0 } forms the hyperboloid model of the 
two-dimensional hyperbolic space H2. Let L = { x E E1,21 (x, x) = 0 }. A ray from the 
origin o = (0, 0, 0) of E1"2 in the positive light cone L+ = { x E L I xo > 0 } corresponds 
to a point on the ideal boundary of H2. The set of such rays forms the circle at infinity 

and we denote it by Som. 
  The group of linear isomorphisms of El '2 preserving the Lorentz metric, the orientation 

on E1°2, and the sheet HT is denoted by SO+(1, 2). Then elements of SO+(1, 2) are 
classified into three types. A hyperbolic element of SO+(1, 2) has a pair of real positive 
eigenvalues A (> 1) and A-1 of which the eigenvectors lie in L+ and a third eigenvector 
outside L+ with eigenvalue 1. A hyperbolic element acts on H2 U Sly with precisely 

two fixed points on Som. A parabolic transformation has a unique eigenvector on L+ 
with eigenvalue 1 and no eigenvectors inside L+. An elliptic transformation has all their 

eigenvalues on the unit circle and one eigenvector inside L+. So it has a fixed point in 

H2. 

  Let P be the radial projection from E1>2 - {x0 = 0} to the plane {x0 = 1}, that is, 
for arbitrary point x = (xo, x1i x2) with xo 0, the coordinate of P (x) is defined by 

(l, i, aThen P (Hp,) becomes the open unit disk P in {xo = 1} with center (1, 0, 0),   Xo X0)-
and P gives an isometry of the hyperboloid model to the projective (disk) model. If 
X, y E H2 and d denotes the hyperbolic distance between the projections of x and y to 
P, then 

                         cosh d (x, y) 

The hyperboloid of one sheet HS C E1"2 is defined to be HS = { x E E1,21 (x, x) = 1 }. 
We note that P (H7+, U L+ U Hs) covers {xo = 1}. For any linearly independent two 
points ui and uj in HS with (ui, uj ) < -1, we define their s-length si9 as follows: 

                           sib= -(uilu .9)+ 1. 

  We call an affine plane P in E"2 a plane, and a plane through the origin linear. If x, y 

and z are distinct points in E1'2, then we denote by 7r (x, y, z) a plane through x, y and z. 
Suppose that a plane P is not linear, then we say that P is elliptic (parabolic, hyperbolic) 
if the conic section P fl L has the corresponding attribute. If P = { x E E"21 (x, p) _ ~ } 
for some 0 p E E1'2 and ~ E R, then these cases correspond to (p, p) < 0 (elliptic), 
(p, p) = 0 (parabolic), and (p, p) > 0 (hyperbolic), respectively. A linear plane P is 
said to be time-like if and only if P have a time-like vector, space-like if and only if every 

nonzero vector in P is space-like, or light-like otherwise. Suppose P is a time-like linear 

plane, and let R be a half space in E1"2 bounded by P. Then we can associate a unique 

unit vector w E HS so that (w, q) < 0 for arbitrary q E R. This establishes a duality 
between half spaces in El '2 and points on Hs. Now, for an arbitrary v E HS, we denote 

by PV (resp. RV) the linear plane (resp. the half space) defined as above, that is, 

                    PV ={xEE1"2I(x,v)=0}, 

                  Rv={xEE121(x,v) <0} .
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Finally we define two subsets of R as follows: 

                   R+ _ It ERIt>0}, 

                 RS = {tER t>v}. 
We note that (ui, uj ) < -1, where ui, uj E HS, if and only if si9 E RS.

3 The geometry of the hyperboloid of one sheet 

The first lemma is obtained from [Ra, Theorem 3.2.7, 3.2.8]. 

Lemma 3.1 Suppose that u1i u2 E Hs are vectors with (ul, u2) < -1. Then ul and u2 
are linearly independent, the linear plane 7r (o, u1, u2) is time-like, the geodesics Pul n P 
and Put n P are disjoint, and the shortest path between them are uniquely obtained from 
7r (o, u1, u2) n {xo = 1}. Moreover, the distance d between p, n P and Put n P are 
obtained as follows: 

                           cosh d = - (u1, u2) . 

Furthermore, we have the following relation between d and s12: 

                            s12 = \ cosh d                      2 . 

O 

  Suppose {ui} ~ C Hs are vectors with (ui, uj) < -1 for {i, j} C {l,2,31 and 
i j. Then {ui}i=1 are linearly independent and, by Lemma 3.1, six points P12 = 
Pul n 7r (O, u1, u2) n P, P21 = Put n 7r (O) ul, u2) n P, P23 = Put n 7r (O, u2i u3) n P, 
P32 = Pu3 n *7r (O, u2, u3) n P, P31= Pu3 n 7r (O, ul, u3) n P, P13 = Pul n 7r (o, u1, u3) n P 
form a right-angled hyperbolic convex hexagon in P n Rut n Rue n Ru3 (see Figure 1). 

Lemma 3.2 Under the condition as above, the distance S between P12. and p13 are ob-
tained as follows: 

                                 2 2 2 2 2 
                        cosh 6= 823-S12-S13+812S13 

                              812S131 s12-11 S13-1

Proof of Lemma 3.2. We denote by d (•, .) the hyperbolic distance between two points 
in P. Using Lemma 3.1, we have the following relations: 

                 cosh d (pi j, pj i) = - (ui , u7) - Si j - 1 , 

where i, j E {1, 2, 3} and i < j. By the law of cosines for right-angled hyperbolic hexagons 
(see [Ra, Theorem 3.5.13]), we have the following relation: 

  cosh S - cosh d cosh d (p12, p21) cosh d (p13, p31) + cosh d (p23, p32)               (p12, p13) = sinh d )                                   (p12 , p21) sinh d (p13, p31 

Substitute the three relations above for this relation, and we obtain the desired equation. 

0 

  We next show that if x, y, z E Hs, then the classification of 7r (x, y, z) can be ex-
pressed in terms of some linear conditions on their s-lengths.
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Figure 1: A hyperbolic convex hexagon in P C {x0 = 0}

Lemma 3.3 Let {ui}Z i c HS be given so that (ui, u3) < -1 for i 54 j. Then the plane 
P = it (ul, u2, u3) is elliptic if and only if the three strict triangle inequalities hold among 
812, 813, 823, P is parabolic if and only if si j = sj k + si k for some {i, j, k} _ {1, 2, 3}, 
and P is hyperbolic if and only if some non-strict triangle inequality fails among 812, 5i 3, 
523.

Proof of Lemma 3.3. 
U2 - u3. Furthermore,

The tangent space to P is spanned by vi = ul - U3 and v2 =

(vi, vi) = (ui - u3, ui - u3 ) 
       = (ui,ui)- 2 (ui,u3)+(u3iu3) 

       = 2-2 (1 - si3) 
        = 2si3 for i=1 ,2,

(vl,v2) _ (ul-u3,u2-u3) 
        _ (ui,u2)-(u1iu3)-(u2iu3)+(u3iu3) 

          612) - (1 - 613) - (1 - s23) + 1 
             2 2 2              6

13 + 523 - 812.

The determinant of this form is

(V1'V1) 
(v2, V1 )

(V1, V2) 
(v2,V2)

    2 2 2       s13 513 
2 2 2 6
13 + 823 - 812

   2 2 +8
23-812 

2 2   623

      4 4     - 612 -8 13 -        2 2 2 2 2 2 623+2s1        2s13+2812623+2s13s23
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                           (S12 + 813 -- S23) (812 + S23 - S13) (S13 + S23 - 812) 
                           X (S12 + 813 + 823) 

At most one of these factors is not strictly positive, and the lemma follows. o 

  The next lemma provides the inductive step for our basic parameterization theorem. 

For an arbitrary linear subspace W in E"2, we denote by W' its orthogonal complement 

with respect to (•, • ). 

Lemma 3.4 If ul, u2 E HS are vectors with (ul, u2) < -1 and 51 i s2 E RS are given, 
then there exists v1i v2 E HS with the following conditions: 

 (1) They are separated by the linear plane it (o, ul, u2). 

 (2) -(u1,vi)+1 =s2 and -(u2,vi)+1=si for i=1,2. 

Proof of Lemma 3.4. The linear plane it (o, u1i u2) is time-like, so 7r (o, u1i u2)' inter-
sects HS. Let e be a vector in 7r (o) ul, u2)1 with (e, e) = 1. We solve for 

                    vi=alul+a2u2+,3e for i=1,2, 

where a1i a2 and 0 are unknowns. We find that 

       1-8i = (u2ivi) = a1 (u1,u2)+ a2 (u2,u2)+ )3 (u2,e) 
                       a1 (1 - sit) + a2,

          1 - 82            2 = (u1, vi) = a1 (ul, ul) + a2 (u1, u2) + 3 (u1, e ) 
                      = al + a2 (1 - 812) . 

Since 812 > v'-2, we have 

                a1 2 1+82_S2 1(2 )                             1 51+82-Slt+8l s12-2) 
           a2 812 (812 - 2) s1 + S2 - sit + S2 (812-2) 

Furthermore, the condition (vi, vi) = 1 gives 

         1 = (Vi, Vi) = (aiu1+a2u2+8e, alul+a2u2+)3e) 
                  = ai+a2+132+2aia2 (1-sit) . 

Thus 

                 ,132 = 1-ai-a2-2a,a2 (1-si2) 
                    (si +S2-S22)2 + 2 51 52 (sit -2) 

                               S12 (812-2) 

Solving this, we have 

                   (si + s2 - siz)2 + 2 5i 52 (sit - 2)                  13 
512 sit - 2 

Finally, the sign of 3 determines which side of 7r (o, ul, u2) the vector vi lies on. El 

  Suppose that P is a plane in El >2 which does not contain the origin o, so that P = 

{ x E E1,2 1,21 (x, p) = -1 } for some o p E E1'2. We say that y E E1,2 lies above P if P 
separates y from o (i.e., (y, p) < -1).
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Proposition 3.5 Suppose that {ui}4 1 C Hs are so that any three are linearly indepen-
dent, (ui, uj ) < -1 for i < j, and that two points u1i u4 are separated by the linear 
plane it (o, u2i u3). 

 (1) We have the inequality 
                              S14S23 ~ S12534+S13S24 

 (2) The point u4 lies above the plane 7r (ul, u2, u3) 

               824 S34 (512 +823 - 823) + 812513 (824 + 834 - 823) > 0. 

 (3) The points {ui}4 1 are coplanar 

           ~~ 824S34 (812 + 813 - 823) + 812 813 (824 + 834 - 823) = 0 
               ~~ 814S23 = 812 834+813824. 

Proof of Proposition 3.5. As before, let e be a vector in 7 (o, u2, u3)' with (e, e) = 1. 
We write ul = /3 e +a2 u2 +a3 u3i and three conditions (ul, ul) = 1, (u1, u2) = 1 - sl 2 
and (u1, u3) = 1 - S13 gives 

                        A+s13C 
                        a2 = 

823 C 

                       A+s12C 
                        a3 = 

S23 C 

                                 A2+X512513 

                                          S23 

where A = 512 + 813 - 82 3 and C = s2 3 - 2. Similarly we have u4 = O' e + a'2 u2 + a3 U3, 
where 

                      B+8340 
                        a2 - 2 

                                     823 C 

                       B+s24C 
                           a3 - 2 > 

                                   S23 C 

                       T B2 + 2 C s24 s34 
                                        523 

                                   2 2 2                             B - S
24+S34-823. 

Notice that /3,3' < 0, since ul and u4 lie on different sides of the linear plane 7r (o, u2, u3). 
Thus 

                      A2+20812513 B2+20824534 
                             823 C 
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   Now, compute 

           82 =             14 

and 

so 

   2 2 2   8
14823 -

              812S3 

              2 2               8
12 83 

              2 2              8
1283 

          (S128 

that is, 

proving part 1 .

(ul,u4) 
  +a2a2+a2a3 (1-823) +a' a3 (1-s23) +a3a3, 

 (a2a2+a3a3)+ (1-823) (a2a3+a2a3)+814-1 
 - AB - C (812 834 + 813 824 - 82 2

2          2 2 8
12834+813824+ 

2 2 2 2 
     4+513824

    823 C 

AB+AA2+2Csi28i3

, 

B2 + 2 C82 4 834

C

AB + (2C 812 813 824 834 -AB)2+2C (As24834+B812813)2
C 

                   2 2 AB + (2C 812 813 824 834 -AB)2 
                 4+813824+ C 

                     2 2 AB +2 0 812 813 824 834 -AB 
                 4+813824+ C 

  34 +S13824) 2 

, 

                          814823 ~ 812834 +813824, 

     ( ) 
  For part (2), we may write 

                  ir(ul,u2,u3)={xEE1'2I(x,p)=-1} 

for some o p E El'2, since {u2}3= 1 are linearly independent. We write 

                          p=ae+bu2+cu3i 

so that 

                  -1 = (p ,u2) = b + C (u2,u3) 
                 -1 = (p ,u3) = b (u2,u3)+ C, 

thus 
                               -1 

                             b=c= 
                               1+(u2iu3) 

Furthermore, 

          -1 = (p ,ul) = a (e,ul)+ b (u1iu2)+ c (ul,u3) 
                a O- (a2 + a3) , 
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so 

                                 CY2+a3-1 A 
                    a= =4G,. 

The condition 

                            /3 A s24 +82                                                    4 - 2                   -1>(p ,u4)_ 0 C C 

that u4 lies above 7r (u1i u2, u3) becomes 

                   B A2+2Cs12s13 > -A B2+2Cs24s34 
                         ~~ As24s34+Bs12s13 > 0, 

thus we proved part (2). 
  For part (3), the calculation above immediately gives the following equivalences: 

        The points {ui}4 1 are coplanar 
        ~~ B A2+2Cs12S13 =-AVB2+2Cs24s34 
           ~~ As24s34+Bs12s13=0 

        H 824S34 (s12 + 313 - s23) + s12 s13 (s24 + s34 - s23) = 0 . 

Furthermore, using the calculation in the proof of part (1), we have the following equiv-
alence: 

                               2 2 2 2           S24834 (s12 + s13 - s2                          3) + 812 s13 (824 + s34 - s23) = 0 
              ~~ 814 823 = 812 834+813824, 

and we proved part (3). o 

  The next fact is technical and is used to give coordinates on the putative cells of our 

complex. 

Proposition 3.6 Suppose that {ui} 1 C HS (n > 4) satisfy the following conditions for 
k=1,2,...,n-3: 

 (1) For any two points of {ui+k}4 0, their Lorentz metric is less than - 1. 

 (2) Two points Uk and uk+3 are separated by the linear plane 7 (o, uk+1, uk+2). 

 (3) The point Uk+3 lies above the plane it (uk, uk+1, uk+2) 
Then the point un lies above the plane it (u1i u2, u3). 

Proof of Proposition 3.6. We proceed by induction on n, the case n = 4 being trivial. 
For the inductive step, we simply remove un_1 from the sequence and must show that un 
lies above the plane IT (un-4, un-3, un-2), the other conditions being trivially satisfied. 
  Adopt the notation of Figure 2, where a symbol next to an edge indicates the corre-

sponding inner product corresponding s-length. By Proposition 3.5, we have 

(i) a b (c2 + d2 - e2) + c d (a2 + b2 - e2) > 0,

8



Un-3 C Un-1

b
e

i

d

f

9

 Un

v 

                                                                         -'-- -'-

                            un-4 a U n-2 

                     Figure 2: The s-lengths of edges 

that is, 

(ii) (ac+bd) (a d + be) > e2 (ab+cd) , 

and 

(iii) c e (f2 + g2 - d2) + f g (c2 + e2 - d2) > 0. 
  By Proposition 3.5 (2), we will prove 

              a b (s2 + g2 - e2) + s g (a2 + b2 - e2) > 0, 

where s = - (un-3i un) + 1. We multiply both sides of the inequality above by d2. 
So it is sufficient to show 

          a b (d2s2+d2g2-d2e2) +dsg (a2d+b2d-de2) > 0. 

By Proposition 3.5 (1) and (3), we have d s > c g + e f . So we substitute it for the left 
side of the inequality above, and thus it is sufficient to show 

            g2 (ac+bd) (ad+bc)+2abce f g-cde2g2 
              + e2 a b (f2-d2)+defg (a2+b2- e2) >0. 

The inequality (ii) gives a lower bound on the first term, so it is sufficient to show that 

        abet (f2+g2- d2)+defg (a2+b2-e2)+2abcefg> 0. 

The inequality (iii) then gives a lower bound on the new first term, so it remains to show 
that 

              ab (c2+d2-e2)+cd (a2+b2- e2) >0) 
which follows from (i). 0
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Remark

(1) Using the same method as above, we can omit the condition (iv) of Proposition 2.7 
in [Pe].

(2) We can extend the statement of Lemma 3.3 into the following one:

Lemma. Suppose that {ui}3 1 are three linearly independent (non-zero) vectors in 
El'2, and set

                                (ui,ui)+(uj,u.7)               sij = ~_~Ui,uj)+ 
Then the plane P = 7r (u1i u2, u3) is elliptic if and only if the three strict triangle 
inequalities hold among s12, 813, 823, P is parabolic if and only if sib = si k+8ik for 
some {i, j, k} _ {1, 2, 3}, and P is hyperbolic if and only if some non-strict triangle 
inequality fails among s12, 813, s23.

The proof of this lemma is the same as that of Lemma 3.3. We note that this lemma 

contains Lemma 2.2 in [Pe] and Lemma 3.1 in [Na].

4 Coordinates on the Teichmuller space

Consider a closed orientable surface Fg of genus g with a subset {D1, D2, ... , Dr} of 
disjoint closed disks on Fg, where 2 g - 2 + r > 0, and let Fg,r be the closure of Fg -
{D1i D2, ... , Dr}. We denote by 7g,, the Teichmuller space of Fg,r, that is the space 
of marked hyperbolic structures on Fg ,r, where each boundary component bi = c7Di, 
i = 1, 2, ... , r, becomes totally geodesic (see [Th, Section 4.6]). We restrict attention to 
the case where r > 1. 

  A point of ?g,, gives rise to an isomorphism irl(Fg,r) -f r < SO+(1, 2), where I' is a 
marked discrete group defined up to conjugacy in SO+(1, 2). We will denote a marking 
on r by P,,,. Then H2/rm is a marked complete hyperbolic surface of infinite volume, and 
its Nielsen kernel (see [Ab]) is homeomorphic to Fg,r. Thus each point of Tg,r gives the 
hyperbolic structure on Fg,r. Furthermore, it also gives the complete hyperbolic structure 

on Fg,r, where Fg,r denotes a surface homeomorphic to H2/r. So, by the correspondence 
described above, we can naturally identify Tg,r with the Teichmuller space of Fg,r, and 
we also denote it by 7,r for convenience. We will also consider the corresponding group 
action on the projective disk P. Let 7r: P - Fg,r denote the universal cover with group 
r. Then 1(Fg,r) is a simply connected region bounded by geodesics. The hyperbolic 
metric on P projects to a metric on Fg,r (resp. Fg,r) which we refer to as the "I-metric" 
on Fg,r (resp. Fg,r). We refer to geodesics for the F-metric as "r-geodesics", etc. 

  We choose a hyperbolic element •yi in rm corresponding to a boundary component bi. 

Let zi be the point in HS which is fixed by 'yi and induces a half space Rzz including 

7-1(Fg ,r), and set V = F zi. Each point of V has a stabilizer in r which is generated 
by a hyperbolic element; different stabilizers for different points of V are conjugate in F. 
Now we fix a point rm in 7',r. Let c be a homotopy class of path in Fg,r, not necessarily 
simple, running from bi to bp where we may have i = j, and straighten c to a r-geodesic 
C. From now on, we assume that C is not entirely contained in a boundary component. 
Then it naturally induces a geodesic C in Fg,r having infinite length. We denote by c a
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homotopy class of C. We call such a homotopy class in Fg,r (resp. Fg,r) a seam (resp. an 
extended seam). Now -7r-1(C) consists of infinitely many geodesics in P, and we choose 
one of them. Then there is a line C in {xo = 1} containing the geodesic above, and 
it intersects each of P (V) and P (V) at one point, say P (ui) and P (u3) respectively, 
where ui E V and uj E Vj. We note that 7r maps C n RU, n Rug to C. Now we define 
the s-length of c or a (relative to Fm) by

               S(C;hm) =S(c;I'm) :=Sij -,/- (ui,uj)+1. 

This value depends only on the choice of c or c, and naturally gives a continuous positive 

real-valued function defined on T,,. We note that this s-length is an analogue to the 
"A-length" in [Pe] and "L-length" in [NP, Na, NN]. We next fix an appropriate finite 
number of seams c1, C2, ... , cq to obtain a map from T,r to Rs, which will be shown to 
be a surjective homeomorphism. 

  Let A be a set of seams in Fg,r with the following conditions: each arc is a disjointly 
embedded simple arc, and the closure of each complementary region of { ci I ci E A } in 
Fg,r is a hexagon. We call it a truncated triangle, and A a truncated triangulation. Eu-

ler characteristic considerations show that there are q = 6 g - 6 + 3 r seams in A. For 

a truncated triangle, its side obtained from a seam in 0 (resp. a boundary of Fg,,.) is 
called an edge (resp. a boundary). A truncated triangle in Fg,,, induces a simply con-
nected region in Fg,r bounded by three extended seams. We call this region an infinite 
triangle. We define a map So from T g,, to R,,, depending on a given truncated tri-
angulation A, as follows: for each point P„L in T,r, the image So (Fm) is defined by 
(s (ci; F1z) , s (c2i Fm) , ... , s (Cq; Fm)). Now we show the following theorem. 

Theorem 4.1 If A = (cl, c2, ... , cq), where q = 6 g - 6 + 3 r, is a truncated triangulation 
of Fg,r, then 

                         So: T,r - R9 

is a homeomorphism.

Proof of Theorem 4.1. We will find the inverse map to Tg,r. So suppose that we are 
given (sl, 82, ... , sq) E Rs and wish to construct a surface. A universal cover of Fg,r is 
homeomorphic to the projective disk model P, which is tesselated by infinite triangles 
with sides arising from the lifts of the extended seams (a1, a2.... , cq). Fix attention on 
one of these infinite triangles, and suppose that its sides correspond clockwise to extended 

seams (a,,l, c,j2, c,i3) (not necessarily distinct). By the existence theorem for right-angled 
hyperbolic hexagons (see [Ra, Theorem 3.5.14]), there exists a right-angled hyperbolic 
hexagon 77 in P with clockwise alternate sides of lengths cosh- 1(s2l - 1), cosh-1(s222 -1), 
cosh-1(s213 - 1) respectively. Let qri be the linear plane in E"2 containing the side of 77 
with length cosh-1(s,27z - 1), where i E {1, 2, 3}, and zi a point in 7rj n Irk n Hs with 

 C Rzti, where {i, j, k} = {1, 2, 3}. We denote by ( the Euclidean triangle in E1'2 with 
vertices z1, z2, z3. Then P (() n P is an infinite triangle containing rl. 

  We now inductively map further infinite triangles in P into Euclidean triangles in E1,2. 

Each infinite triangle in P has one side already mapped in, say with vertices ul and u2 in 

Hs. Then, using Lemma 3.4, we obtain the third vertex u3 of a new Euclidean triangle. 

The lemma gives two choices of points with the required Lorentz metric. Since one side 

of it (o, u1i u2) already contains points of the lifted triangles by induction, u3 must lie 
on the other side of qr (o, u1i u2). In other words, u3 is determined by the condition that

11



Ru3 contains 7r (o, u1i u2). This determines u3 uniquely, and we have a new Euclidean 
triangle in E1'2. By these inductive steps, we obtain Euclidean triangles T in E1,2. We 
denote by V (C Hs) the vertices of T. 

  Each element 3 E 711(Fgr) ' 71i(Fg,r) acts on the tesselation of the universal cover. 
Let T be one infinite triangle in 7r-1(Fg,r) P, and rl (resp. 72) the Euclidean triangle 
in T corresponding to T (resp. 0T). Then there is a unique g(o) E SO+(1, 2) taking rl 
to T2 mapping vertices correctly. From the inductive construction of T, we see that the 
definition of g(/3) is independent of the choice of T. The same reason shows that 

                     g: ii1(Fg,r) ti lV1(Fg,r) --* SO+(1, 2) 

is a homomorphism. 
  To see that g is injective with a discrete image, note that the inductive construction 

above guarantees that T is ma ped injectively to a tesselation of P by P. If the image r"' := g(7r1(Fg,r)) ^ g(7r1(Fg,r)) were not discrete, there would be a non-trivial element 
arbitrary near the identity, and then triangles in P would overlap. Thus we have the 
injectivity of g. 

  To complete the discussion of the tesselation and group Fm, we claim that the image 
tesselation T = P(T )f1P actually covers all of P. To this end, note first that the inductive 
construction of T guarantees that T is open in P. We show also that T is close in P. For 
each infinite triangle r E T, by Lemma 3.2, there is some s > 0 so that each edge of T has 
distance at least s from other edges in T. It follows easily that T is closed. Furthermore, 
from the inductive construction of T, the tesselation T is connected. So connectivity of 
P guarantees that T = P. Thus we obtain the tesselation PIHT -1(T) in H2. 
  The quotient of this tesselation by rm is a marked complete hyperbolic surface of 

infinite volume, and 

             (?H1(T) IT-n n Rb /Fm                          bEv 
is a marked compact hyperbolic surface with totally geodesic boundary. This gives our 
map from Rq to Tg,r, and it is clearly inverse to So. Thus the theorem is proved. 0 

  The (full) mapping class group MCg,r of isotopy class of (orientation preserving) home-
omorphisms (which may permute the boundaries) acts on 7,r in the natural way by 
change of marking. For an arbitrary element cp in MCg,r, we denote by cp* the cor-
responding homeomorphism on Tg,r. We note that, by Lemma 3.1, the s-length is a 
quantity with respect to hyperbolic metric. Thus we have the following theorem and 
corollary: 

Theorem 4.2 s-lengths are natural for the action of MCg,r in the sense that if cp E MCg,r, 
Fm E 7 ,r, and c is a seam in Fg,r, then 

                      s(c; hm) = s(cp c;

0

Corollary 4.3 Suppose that 0 is a truncated triangulation of Fg,r and E is an assign-
ment of numbers in Rs to the seams of A so that (A, E) determines the point Fm E 7,r. 
If cp E MCg,r, then cp induces a one-to-one correspondence between components of A and 
of cp-1 L. If E' denotes the assignment of numbers to components of co-1 A induced from 
E by cp, then (cp-1 A, E') determines the point cp* Fm E T,,r. 0
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  We close this section with yet another parameterization of Tg,r. Fix a truncated 
triangulation of Fg,r. Suppose that a truncated triangle T on Fg,r has edges {a, b, e} c 
A. The orientation on T C Fg,r induces a cyclic ordering (a, b, e) on {a, b, e} as in 
Figure 3. Then the boundary E is said to be opposite the edge e, and, in Figure 3 (1), 
the edge a is said to abut on the boundaries B and E.

F

d

C

CB

e

a

OT 
- A

E
D=E 

A

a=e

OT
B=C b

(1) (2)

                Figure 3: Sides of truncated triangles on Fg ,r 

  Let LL be the set of boundaries of truncated triangles obtained from A. Now we 

define a map 

                      I'n': Tg"rtiRs~R+ =R+ 
and develop the corresponding parameterization of TT,r. To compute the coordinate 
entries in the target, suppose that T is a truncated triangle in Fg,r with edges (a, b, e) and 
that the boundary E E B0 of T is opposite e. For arbitrary assignment E of s-lengths 

on the edges of A, let Fm be a point of 7,r corresponding to (0, E). Then the h-length 
of E for (A, E) is defined as follows: 

                     h(E, fm) __ () E(e)                         E
a E(b)' 

where E(a) (resp. E(b), E(e)) means the s-length of the seam a (resp. b, e) assigned by 
E. This defines the map I6. 

  We observe that 

                   E(e)-2 = h(A, Fm) h(B, rm) , 

so 16 is an embedding. We call the right side of this equation a coupling of e. Since E(e) 
is greater than V2-, the equation above induces the following inequality: 

                  (0 <) h(A, r,,) h(B, r,,) < 1 

We call this inequality a coupling inequality of e. Moreover, suppose e is a seam of A, 

which abuts on four boundaries A, B, C, D E ,136 as in Figure 3. Then the condition 

               h(A, Fm) h(B, Fm) = h(C, Fm) h(D, Fm) 

is called the coupling equation of e. Now we summarize the consideration above.
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Proposition 4.4 The map Io: Tg,r -* R+ is an embedding of T ,r into an intersection 
of homogeneous quadrics. Explicitly, Ii(Tg,r) C R'+° is characterized by the coupling 
equations and the coupling inequalities. 0

5 The convex hull construction

In this section, we give a brief review of the decomposition of a compact hyperbolic surface 

with non-empty totally geodesic boundary introduced by S. Kojima (see [Ko]). 
  We recall that Fg,r is a compact orientable surface of genus g with r boundary com-

ponents, where r > 1 and 2 g - 2 + r > 0, and that 7,r is its Teichmuller space. Then, 
for each point Fm in Tg,r, the surface Fg,r has a hyperbolic structure induced by Fm. Now 
each boundary component bi of Fg,r becomes totally geodesic. As in Section 4, let V be 
the set of points in HS corresponding to 7r-1(bi), and set V = V1 U V2 U ... U Vr. We 
note that ir-1(Fg,r) is identified with P (HT n (nkv Rb)). We call a point on a closed 
set X in E1'2 visible if the segment between the point and the origin o contains no other 

points in X . Let 'H v be a closed (Euclidean) convex hull of V in E1'2. Then 7-1v does not 
contain the origin o (see [Ko, Lemma 4.2]), and the projection P (7-lv) contains P (see 
[Ko, Lemma 4.3]). Thus each ray must reach to a visible point on RV if it passes through 
H1. Furthermore, any visible point on 71 V lies on a two-dimensional compact convex 

visible face of Rv, and such a face lies in an elliptic plane (see [Ko, Proposition 4.6]). 
  Now, let V be the set of visible points on Hv. Then it is shown in [Ko, Theorem 4.8] 

that the intersection of P (V) with 7r-1 (Fg,r) defines a F-invariant polygonal decomposi-
tion on ir-1(Fg,r). In particular, it induces a cellular decomposition of Fg,r. We denote 
by A (Fm) the collection of geodesics on Fg,r arising from the edges of V as above. Then 
A (Fm) consists of a finite collection of simple geodesic arcs disjointly embedded in Fg,r 
connecting boundaries. We also call these arcs seams. We call the isotopy class of a 

decomposition obtained as above a truncated cellular decomposition of Fg,r, and we also 

denote it by A (Fm) for convenience.

6 A cellular decomposition of the Teichmuller space

In this section, imitating the method in Section 5 of [Pe], we construct a cellular de-
composition of E g,,. For a point Fm in 7,r, the convex hull construction of Section 5 
determines a canonical truncated cellular decomposition A(Fm) of Fg,r. Conversely, if 

0 A is a fixed truncated cellular decomposition of Fg,r, then we define subsets C (A) and 
C (A) of 7,r as follows:

C(A) _ { Fm E 7,r I A(Fm) = A } , 
C(A) = { Fm E T,r I A(Fm) C A } .

Our immediate goal is to characterize C(A) and C (A) in terms of s-lengths on 0 in the 
special case that A is a truncated triangulation of Fg,r (see Theorem 6.1). 

  To establish notation, fix a seam e in a truncated triangulation A, and consider a 
lift e of e to P. The lift e separates two truncated triangles Q and T given by the lift 
A of A to P, and we adopt the notation of Figure 4 for their edges. It may be that 
7r(Q) = ir(T), where we recall that 7r is the canonical projection from P to Fg,r, and
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T

e

Q

a

b

Figure 4: The notation of a lift of truncated triangles

a = ir(a), b = 7r(b), c = 7r (J), d = ir(d) need not be distinct; see Figure 5, where we 
enumerate the various cases. In any case, if E E R° = {E : A -> RS}, then we say that 
E satisfies the strict face condition on a seam e in A if the following inequality holds: 

  E(a) E(b) {E(c)2 + E(d)2 - E(e)2} + E(c) E(d) {E(a)2 + E(b)2 - E(e)2} > 0 . 

The strict face condition on e is indicated in Figure 5 in the various cases (where we 
identify a symbol of an edge with its E-value for convenience). We will also call the 
face equality when we replace > in the above by =, and the weak face condition when 
replace by >. Furthermore, if A' is a subset of A, not necessarily a truncated cellular 
decomposition, then we say that E E R° satisfies the face relations on A relative to A' 
if the strict face conditions hold for E on each e E A' C A, and the face equalities hold 
on each e E A - A'. In particular, we say that the strict face relations hold for A if E 
satisfies the face relations on A relative to A, that is, if the strict face conditions hold 
on all eEA.

Theorem 6.1 Suppose that A is a truncated triangulation of Fg,r, and let R° E) E _ 
O Fm E 7 ,r. Then a necessary and sufficient condition for rm E C(A) is that E satisfies 

the strict face relations on A. Furthermore, if a subset A' of A is a truncated cellular 
decomposition, then a necessary and sufficient condition for Fm E C(A') C C(A) is that 
E satisfies the face relations on A relative to A'.

Proof of necessity in Theorem 6.1. Fix a point Fm in 79,,.. We recall that the construc-
tion of A(Fm) from Fm in Section 5, and the definition of the discrete subset V C H8 
corresponding to the boundaries of Fg,r in Section 4. We may assume that the truncated 
triangulation A lifts to a collection of Euclidean geodesics in E1"2 connecting points of 
V. If e is such a lift of e E A separating Euclidean triangles Q and T in the lift, then 
e is external in the hull of V and so in particular in the hull of Q U T. Comparison of 
the strict face condition with Proposition 3.5 (2) thus guarantees necessity. The proof of 
necessity in the second assertion is analogous. 0

  Before we undertake a proof of sufficiency, we develop some generalities. Fix a trun-

cated triangulation A of F9,,.. Suppose that (Tj)~ i is a cycle of truncated triangles in 
the sense that T; fl Tj+1 = ej, for all j, where we henceforth regard the index j as cycle,
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       Figure 5: The various cases of the truncated triangulation (first part) 

so for instance, Tn+i = T1. We note that ej is an edge of both Tj and Tj+1. If the edges of 

Ti are {ej_1i ej, bj}, j = 1, 2.... n, then the collection (bj)'1 C 0 is called the boundary 
of the cycle (Tj)' 

             j1. 

Lemma 6.2 Suppose the weak face conditions hold for R° E) E = Fm E T,,n on each 
seam e c A. Then all three strict triangle inequalities on {E(c), E(d), E(e)} hold whenever 
there is a truncated triangle obtained from A with edges c, d, e. 

Proof of Lemma 6.2. To get a contradiction, we suppose for instance that E(e) > E(c) + 
E(d), and adopt the usual notation for the edges adjacent to e (see Figure 5). Thus, 

               E(c)2 + E(d)2 - E(e)2 < - 2 E(c) E(d), 

so the face condition on e gives 

            0 < E(c) E(d) {(E(a) - E(b)) 2 - E(e)2} , 
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Figure 5 : The various cases of the truncated triangulation (second part)

and we find a second edge-triangle pair so that the triangle inequality fails. It follows that 

there is a cycle (Tj )~ 1 of truncated triangles obtained from A so that a strict triangle 
inequality fails at the edge-triangle pair (Tj, ej), for all j. As before, let (bj)~ 1 denote 
the seams of A corresponding to the boundary of the cycle. We have 

                E(ej+i) > E(bb) + E(el) , j = 1, 2, ... , n. 

Summing these inequalities and canceling E(el), we obtain 

                  p > E(bl) + E(b2) + ... + E(bn) 

which is absurd for rm E T,,r. 0
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Proof of Sufficiency in Theorem 6.1. To prove sufficiency in the first claim, we suppose 
that E E R° satisfies the strict face relations on A (and hence the "triangle inequality" 

O condition of Lemma 6.2) and prove that I'r,, = (A, E) E C(A). To this end, adopt the 
notation in the proof of necessity, so that V C Hs arises from E E R°. By Lemma 3.3, 
the triangle inequality condition is equivalent to ellipticity of the affine planes spanned 

by triples in V arising as the vertices of a lift of an infinite triangle corresponding to a 

truncated triangle obtained from A. Furthermore, we saw above that the face condition 

is equivalent to "local extremality." Finally, from the inductive definition of V C Hs in 

O Theorem 4.1, it follows by induction and an appeal to Proposition 3.6 that F,,,, E C(A)-
The proof of sufficiency in the second assertion is analogous. El

  Recall the h-length parameterization of 7,,, given in Proposition 4.4. A pleasant 
algebraic fact relating h-lengths and the face condition is the observation that the face 
condition is linear in h-length coordinates. Indeed, suppose first that a seam e in a 
truncated triangulation A separates two truncated triangles Q T obtained from A 
with edges (a, b, e), (c, d, e) respectively, where # {a, b, c, d} = 4, and let (a,,3, s) ((ry, 6, co) 
respectively) denote the h-lengths of the boundaries of Q opposite (a, b, e) (of T opposite 
(c, d, e) respectively); see Figure 6 (1). We see that the strict face condition on e is 
equivalent to 

                      a+/3+ry+6 > e+ 

by dividing the former by E(a) E(b) E(c) E(d) E(e). Since the various cases (indicated in 
Figure 5) give rise to linear quotients, the claim follows.
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Figure 6: The h-lengths of triangulations

  Thus, for a subset A' of a truncated triangulation A, a point z in R' satisfies the face 
relations on A relative to A' if the strict face conditions hold for z on each e E A' C A, 
and the face equalities hold on each e E 0 - A'. Here, we recall that B , is the set of 
boundaries of truncated triangles given by A (see Section 4). In particular, we say that 
z satisfies the strict face relations on A if it satisfies the face relations on A relative to 
A, that is, if the strict face conditions hold on all e E A. We note that these terms are 
used even when z is not in IL o SA (7,,.).
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  For each seam e in a truncated triangulation A, we next define a pair of vectors 
Be, Ce E R PA. Adopt the notation of Figure 6 for the boundaries A, B, C, D E zio on 
which e abuts. The vectors Be and Ce each lie in the coordinate subspace of R"° cor-
responding to A, B, C, D (in this order), and Be (Ce respectively) has entries (1, 1, 1, 1) 
((1, 1, - 1, - 1) respectively); the boundaries A, B, C, D need not be distinct. See Fig-
ure 7 (1).
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1 E
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Figure 7: A basis of R'

Lemma 6.3 Fix a truncated triangulation A of Fg,,. Then the set { Be, Ce E R~° I e E A } 
is a basis for R13° . Furthermore, suppose 

                  z=x+y=>xeBe+1: yeCe, 
                                          eEA eEI 

where xe7 ye E R. Then z satisfies the face relations on A relative to A' if and only if 
xe>0 foreEA' andxe=0 foreEA-A'.
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Proof of Lemma 6.3. The span of { Be, Ce E RB° e E L } is clearly identical with the 
span of the vectors { Be = Be a Ce Ce = Be a Q E RB° e E } . Let us fix a truncated 
triangle T obtained from A, say with boundaries (A, B, E). There are exactly three 
vectors among { Be, Ce E RBA e E A } with a non-zero projection into the subspace of 
RBA corresponding to (A, B, E); namely, (1, 1, 0), (0, 1, 1) and (1, 0, 1). See Figure 7 (2). 
Insofar as these projections are linearly independent, { Be, Ce E R'3° e E A }, and hence 
{ Be, Ce E RB° e E A } forms a linearly independent set, proving the first part. 
  Since the face condition is linear, the second part follows at once from the fact that 

equality a + 0 + •y + 6 = e + cp holds on every edge for any Ce, e E A. 0 

  Fix a truncated triangulation of Fg,r. Now we define subspaces of RB° as follows:

               X = zERB° z = E xe Be for xe E R , 
                                                 eEA 

               Y = zERB° z = Y, ye Ce for ye E R , 
                                                   eE0 

      X = ExeBeEX x'>0 , 
                               eEA 

0 

               X = ExeBeEX xe>0 -
                                 eEA 

The (open) faces of X correspond to subsets A' of A, where the face relations hold 
on A relative to A'. A face F of X is said to be finite if the corresponding subset 
D' _ { e E A I xe 0 } of A is a truncated cellular decomposition, and we define 

             X+ = X U { faces F of X F is finite } C X. 

We denote by IIo the projection of RB° along Y onto X. We next define further subspaces 

of RL3°. When we fix a subset A' of A, we define Do (A') to be the set of points satisfying 
0 the coupling equations and the face relations on L relative to 0', and go (A') to be the 

set of points in Do (A') satisfying the coupling inequalities. An immediate consequence 
of Theorem 4.1, Proposition 4.4 and Theorem 6.1 is that Io o So(C'(A')) = go (A') if 
A' C A is a truncated cellular decomposition. Now we define D (A) as follows: 

    D (A) = U { Do (A') I A' C A is a truncated cellular decomposition I . 
  We then have the following Theorem 6.4. The proof of this theorem is just a literal 

translation of that of Theorem 5.4 in [Pe]. 

Theorem 6.4 For each truncated triangulation A of Fg,r, the projection HA induces a 
homeomorphism 

                       IIo:D(A) -*X+ 

which maps Do (A) to X. If a proper subset A' of 0 is a truncated cellular decomposition, 
then IIo maps Do (A') to the corresponding (open) finite face of X+. 0
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Using this theorem, we obtain the following fact about C(A).
0 

Theorem 6.5 For a truncated cellular decomposition A of Fg,r, C (0) 
to an open ball of dimension #A.

is homeomorphic

Proof of Theorem 6.5. We first suppose that A is a truncated triangulation. Since 
             0 0 0 

Io o So(C (A)) = go (A), all we have to show is that go (A) is homeomorphic to an 
open ball of dimension #A. 
  For an arbitrary point r in Do (A), we denote by R the ray in R+ with direction 
r, that is, R = { h r e R+ h>01. Then, since the couplings and the face conditions 

                                                                                    0 0 

for h-lengths are homogeneous, R is entirely contained in Do (A). So Do (A) is home-
omorphic to an (open) cone in R+ . Furthermore, the same reasoning guarantees that 
there exists a unique number k (r) > 0 such that the maximal value of the couplings at 
the point k (r) r is equal to 2, and then R n go (A) = { h r E R j0 < h < k (r) } and 

0 { h r E R I k (r) < h } n go (A) = 0. Moreover, k (r) is a continuous function of r. Hence 
go (A) is homeomorphic to the intersection of Do (0) and the open unit ball in Ram 
centered at the origin. 

0 

  Thus, if A is a truncated triangulation, go (A) is homeomorphic to an open ball of 
0 dimension #0, and so is C (A). The proof when A is not a truncated triangulation but 

a truncated cellular decomposition is analogous. El

  Theorem 6.5 also shows that, for an arbitrary truncated cellular decomposition 0 of 

0 Fg,,., C (A) is non-empty. Furthermore, by the definition of C (. ), C (O1) n C(A2) 0 if 
and only if Al n A2 is also a truncated cellular decomposition of Fg,r, and in this case, 

C (A1) n C (02) = C (A1 n A2). Thus, as an immediate consequence of Theorem 6.5 and 
Corollary 4.3, we have the following Theorem 6.6. This is an analogue of Theorem 5.5 in 

[Pe] and is the main theorem of this paper. 

0 Theorem 6.6 If A is a truncated cellular decomposition of Fg,r, C (0) is an open cell 
of dimension #A. The set {co (A) A is a truncated cellular decomposition of Fg,r } is a 
MCg,,-invariant cellular decomposition of T ,r itself. Furthermore, the isotropy group of 
C(A) in MCg,r is isomorphic to the (finite) group of mapping classes of Fg,r leaving A 
invariant. 0

Remark 

0 Strictly speaking, C (A) is not a cell in the usual sense (see, for example, [Ma, p. 226]) 
since the closure of C (A) in Tg,, is not compact.
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