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Abstract

Fault-prone module prediction is one of the most traditional and important areas

in software engineering. Once fault-prone modules are predicted at an early stage

of development, developers can track the predicted modules, which is useful in

preventing the injection of additional faults.

One of recent findings in fault-prone module prediction studies is the use-

fulness of historical metrics, which can be collected from software repositories

for fault-prone module prediction models. Many studies measure software de-

velopment histories, such as changes on source code, events of development or

maintenance processes, developer-related histories, and so on. In many papers,

it is reported that historical metrics are more effective than traditional code com-

plexity metrics. To find novel effective historical metrics, many researchers have

conducted software repository mining.

First, we conduct a systematic review of recent fault-prone module prediction

studies to clarify studied metrics and research trends. We investigate and report

on two journals as well as five conferences from 2000 to 2010. Our findings

are as follows. Historically, many metrics already exist to analyze version history

information related to code, process, organization, and geography. New historical

metrics tend to be proposed first in industry and then used in studies with open-

source software projects. Compared to the accessibility of rich data in industry, it is

not easy to collect rich historical information in open-source software projects. In

addition, though historical metrics are considered effective in building prediction

models, there are only a few studies conducting fine-grained prediction.
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ii Abstract

Based on a survey of fault-prone module studies, we address the following

two problems: (1) easily applicable prediction models and (2) fine-grained prediction

with historical metrics.

When applying fault-prone module prediction, the biggest problem is the lack

of usable tools. In practical use, tools are needed because of the laboriousness of

collecting metrics. For complexity metrics, source code analysis is needed, and

tools should be implemented as program-language-specific. For most historical

metrics, we need to analyze data from some software repositories, and repository-

specific tools should be implemented. To tackle this problem, we propose text-

mining-based prediction models for easily applicable prediction models. We treat

source code as just text, and the number of tokens in source code is measured to

build prediction models. Since we only measure the number of tokens, preparing

program-language-specific and repository-specific tools is not necessary. To show

the effectiveness of our prediction models, we compared prediction models using

well-known metrics with our token metrics. Based on empirical study with

open-source software projects, we show the higher prediction results with our

prediction models than prediction models with well-known metrics. This result

implies that: our token metrics are useful in building practical prediction models,

and measuring sophisticated metrics is not always necessary for predicting fault-

prone modules.

Fine-grained prediction with historical metrics is a desirable future direction in

fault-prone module prediction. Predicting fault-prone modules on a fine-grained

level is considered more cost-effective than coarse-gained prediction. This is

because coarse-grained modules, whose sizes are bigger, require more cost to

find and fix faults than fine-grained modules. Using complexity metrics, which

requires only the source code of the present version, there are some studies pre-

dicting fault-prone methods, which are finer than files. However, there is no

study using well-known historical metrics to predict fault-prone methods. This

is because there has been no way to obtain entire version histories of methods as
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rich as files. To obtain method-level version histories, we develop a fine-grained

version control system, Historage. Using this system, we conduct fine-grained pre-

diction using code-related, process-related, and organizational historical metrics.

Method-level prediction models are compared with file-level prediction models

with effort-based evaluation, which takes the cost of quality assurance activities

into evaluation. An empirical study with open-source software projects implies

that fine-grained prediction is cost-effective.

This dissertation is organized as follows. In Chapter 1, we give the background

of the fault-prone module prediction studies and our results in this dissertation.

In Chapter 2, we present a survey of fault-prone module studies. We dis-

cuss the technique of extracting past fault information using version control sys-

tems and fault report management systems for study with open-source software

projects, and the evaluation criteria of prediction results. In addition, we present

a systematic review of recent studies.

Chapter 3 presents a study of text-mining-based prediction models. Text-

mining-based metrics are compared with well-known complexity metrics and

some historical metrics. Empirical evaluation is conducted with open-source

software projects.

Chapter 4 presents a fine-grained prediction study. We collect historical met-

rics related to code, process, and organization for method-level and file-level

modules. Both level prediction models are compared with an effort-based evalu-

ation using open-source software data.

Finally, Chapter 5 concludes this dissertation with a summary and directions

for future work.
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Chapter 1

Introduction

1.1 Background

1.2 Main Results

1.3 Overview of the Dissertation

1.1 Background

Software maintenance is a set of challenging activities in software development.

Czerwonka et al. summarized common software maintenance characteristics as

follows [18]:

• The software maintenance phase consumes the majority resources in the

software product lifecycle.

• Maintenance activities are often done by people who have not created the

software.

• The size of the maintenance team is much smaller than the size of the

development team.

• Changes in the maintenance phase have high risks.

1



2 Introduction Chapter 1.

• The time for creating and verifying a fix is constrained.

In software maintenance, quality assurance activities including testing and

inspections are inevitable. Finding and removing faults in the early phase of

software development should save on the costs of the quality assurance. Due

to the characteristics of software maintenance, focusing efforts on appropriate

targets is essential. To tackle this problem, fault-prone module prediction has

been studied. Fault-prone modules are predicted based on past faulty module

information. Traditionally, prediction models have been built with complexity

metrics, such as McCabe’s cyclomatic complexity [78], Halstead complexity [41],

and object-oriented CK metrics [16].

Recent findings in fault-prone module prediction studies center on the effec-

tiveness of the historical information of modules. While complexity metrics are

designed to measure fault-related complexities, historical metrics are designed to

measure fault-related version histories.

To find effective historical metrics, researchers have mined software repos-

itories including version control system repositories, fault report management

repositories, mailing list archives, and so on. Proposed historical metrics include

code-related metrics [90], process-related metrics [38,42,44,64], developer-related

metrics [8, 80, 86, 92, 96, 98, 114, 115], and so on.

In industry, there are some reports of fault-prone module prediction in practice.

Microsoft Corporation built a system CRANE and reported its experiences with

this system [18]. Historical metrics including code churn, regression histories, and

details of fixes were collected to build failure prediction models in CRANE. The

usefulness of the system is reported from empirical evaluation in this paper [18].

Recently, a fault-prone module prediction model has been adopted at Google∗.

Based on research papers [64,99], a prediction model was built using past fault-fix

information. Both industrial prediction models were built with information of

∗Bug Prediction at Google, http://google-engtools.blogspot.com/2011/12/

bug-prediction-at-google.html

http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
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Figure 1.1: Research areas of this dissertation.

version histories, that is, historical metrics. In both reports, their effectiveness and

understandability are of extreme importance.

In both industry and the academy, fault-prone prediction based on version

histories has become the focus of attention. This dissertation summarizes the

recent studies and address the difficulties of this hot topic.

1.2 Main Results

Figure 1.1 shows our research areas of this dissertation As shown in Figure 1.1,

research areas in fault-prone module prediction studies can be divided into two

metric types (complexity and version history) and three module granularity levels

(method, file, and subsystem). The gray area is a well-studied research area

including all granularity levels for complexity metrics, and file and subsystem

levels of historical metrics.

In this dissertation, we present a survey of well-studied area in Chapter 2.

Based on this survey, we address two open issues in fault-prone module prediction



4 Introduction Chapter 1.

studies.

The first issue concerns the difficulty of building models for practical use. Since

collecting metrics is a laborious task, there are few usable tools for fault-prone

module prediction. In Chapter 3, we propose a text-mining-based prediction

model. This is a study of easily applicable prediction models on file level using

token metrics, which are historical metrics.

The second challenge is fine-grained prediction. Though historical metrics are

considered useful, there are few studies conducting method-level prediction be-

cause collecting historical metrics for fine-grained modules is difficult. In Chapter

4, we conduct a first study of method-level prediction using historical metrics. In

this model, we collect historical metrics surveyed in Chapter 2 for method-level.

1.2.1 A survey of recent fault-prone module prediction studies

First, we present a survey of recent studies by conducting a systematic review.

Papers from 2000 to 2008 in two journals and five conferences are investigated. We

classified the studied metrics into eight categories based on measurement targets

(code, process, organization, and geography) and version information (present

version and previous versions). We clarified which metrics are used frequently.

We also clarified that newer historical metrics were studied in industry first,

and then widely used in studies in open-source software projects. In addition,

granularity levels of prediction models are investigated, and it is revealed that

there is no study using well-known historical metrics to build prediction models.

We have provided our survey results at http://www-ise4.ist.osaka-u.ac.jp/

survey/.

1.2.2 Easily applicable prediction models

Collecting metrics is a laborious task. This issue has been a big barrier for adopting

fault-prone prediction models in practical use. For example, to collect complexity

http://www-ise4.ist.osaka-u.ac.jp/survey/
http://www-ise4.ist.osaka-u.ac.jp/survey/
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metrics one needs to analyze source code, which requires program-language-

specific tools, and collecting most historical metrics requires software repository

mining, which needs repository-specific mining tools. Preparing these tools is a

laborious task.

To tackle this problem, we studied prediction models using a text-mining

technique, In our models, the number of tokens in source code is considered a

metric. These token metrics are also historical metrics, but do not need laborious

repository mining tools. The key idea is there may be fault-related tokens, that is,

if modules contain particular tokens, which are also seen in past faulty modules,

the modules seem to be fault-prone. Since we only have to count the number of

tokens in the source code, we do not need specific tools.

Using these simple and large-scale token metrics, we built logistic regression

and naive Bayes models. We conducted an empirical study with open-source soft-

ware projects by comparing our token metrics and a well-know metrics suite in-

cluding complexity metrics and some historical metrics, thereby achieving higher

prediction results. The results imply that our text-mining-based metrics are use-

ful in building practical prediction models. Moreover, text-mining approaches

have several desirable features as follows: collecting metrics is independent from

program languages, we can treat the flexible granularity of modules, and we do

not need semantic information.

1.2.3 Fine-grained prediction with historical metrics

Fine-grained prediction is considered more cost-effective. Though there are many

studies reporting the effectiveness of historical metrics, they remain at the file level

or at a coarser level. Historical metrics based prediction on fine-grained modules

is a big challenge in collecting metrics. Since existing software configuration

management systems store file-level version histories, it is difficult to obtain

version histories of fine-grained modules from these systems.

To tackle this difficulty, we developed Historage, a fine-grained version control
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system. Historage is constructed on top of Git, which is a version control system.

Making use of the architecture of Git, Historage can control version histories

of fine-grained modules including renaming and moving changes. Empirical

studies based on some open-source software projects show that Historage is useful

practically, and it can track fine-grained module histories including renaming

and moving efficiently. A tool to construct Historage is now publicly available at

https://github.com/hdrky/git2historage.

With this system, we collected historical metrics on method-level and built

method-level prediction models. Method-level prediction models are compared

with file-level prediction models, which are built with the same historical metrics.

Using open-source software projects we compared both prediction models with

effort-based evaluation. The results indicated that method-level prediction is

more cost-effective than file-level prediction. To the best of our knowledge, this

is the first study of fine-grained prediction.

1.3 Overview of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we present a

survey of fault-prone module studies. We discuss the technique of extracting past

fault information using a version control system and fault report management

system for studies with open-source software projects, and the evaluation criteria

of prediction results. In addition, we present a systematic review of recent studies.

Chapter 3 presents a study of text-mining-based prediction models. Text-

mining-based metrics are compared with well-known complexity metrics and

some historical metrics. Empirical evaluation is conducted with open-source

software projects.

Chapter 4 presents a fine-grained prediction study. We collect historical met-

rics related to code, process, and organization to method-level and file-level. Both

level prediction models are compared with effort-based evaluation using open-

https://github.com/hdrky/git2historage
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source software data.

Finally, Chapter 5 concludes the dissertation with a summary and directions

for future work.





Chapter 2

Fault-proneModule Prediction

2.1 Mining Past Faults

2.2 Historical Metrics

2.3 Evaluation Criteria

2.4 A Systematic Review of Recent Studies

2.5 Open Issues

2.1 Mining Past Faults

For fault-prone module prediction, it is essential to obtain actual past fault in-

formation. It is necessary to know which modules of particular versions had

contained actual faults. In open-source software projects, such information is not

easily available because version history information and fault history information

are separately stored in different software repositories. To conduct a study with

open-source software projects, we have to extract faulty module information by

mining these software repositories.

An algorithm proposed by Śliwerski et al. (SZZ algorithm) is well-known for

identifying faulty modules and is used in many studies [105]. In this dissertation,

9
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we adopt this algorithm to conduct prediction studies. The SZZ algorithm is

designed to identify fault-introducing changes by mining version history reposi-

tories and fault report repositories. Faulty modules can be identified by choosing

modified modules between fault-introducing changes and fault-fixing changes.

With the SZZ algorithm, fault-introducing and fault-fixing changes can be linked

with each fault ID in fault reports. This section discusses this algorithm.

First, we need fault reports from fault report management systems, such as

Bugzilla and JIRA. When collecting fault reports, enhancement severity reports

are excluded for Bugzilla, and only Bug issue type reports are included for JIRA.

From a fault report of fault fi, where i represents the fault ID, we obtain open date

OD( fi) and changed date CD( fi).

With collected fault reports, first we identify fault-fixing changes. Fault-fixing

changes and fault fi are linked based on matching fault IDs in commit messages

stored in version control repositories. While linking changes and fault fi, this

chapter investigates whether commit dates of the changes are before CD( fi) or not

to remove improper identification of fault-fixing changes.

From each fault-fixing change, then we perform the following procedure to

identify faulty modules:

1. Perform the ‘diff’ command on the same module between the fault-fixing

version and the preceding version to locate modified regions on the fault-

fixing changes.

2. Examine the initially inserted date of the modified regions using line track-

ing commands, such as ‘git blame’ and ‘cvs annotate’. If the regions are

inserted before OD( fi), changes creating those regions are identified as fault-

introducing changes.

3. Identify a module as faulty if the module contains regions created in the

fault-introducing changes and modified in the fault-fixing change.

Figure 2.1 illustrates an example of faulty modules identified with one fault
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Bug report: #100
A critical bug is found!

Revision 
log:
Issue #100 
is xed. ...

1.4 1.5 1.6

Bug report: #100
The bug is xed.
Status: CLOSED

R1

R2

R6

R4

R5

R3

add

delete

add
change

R1

R2

Faulty
module

1.3

R1

add

change

Faulty
module

Faulty
module

File A

Figure 2.1: Identify faulty modules on one file.

on one file. The revision number of file A is increased from 1.3 to 1.6. When the

revision number was 1.4, fault f100 was reported. After that, the fault was fixed.

Next, we locate faulty modules related to fault f100.

By searching all revision logs, we find a number ‘100’ and a keyword ‘fixed’ at

the log of file A in revision 1.6. We can assume that file A was modified in order

to fix fault f100. Therefore, we perform the diff command between revisions 1.5

and 1.6. The diff tool returns a list of regions that differ in the two files. As shown

in Figure 2.1, from revision 1.5 to 1.6, region R3 was changed to region R4, region

R1 was changed to region R5, region R6 was added, and region R2 was deleted.

As a result, regions R1, R2, and R3, which were in revision 1.5 and not in revision

1.6, are recognized to be modified regions. After examining when the modified

regions R1, R2, and R3 are inserted into file A, it is revealed that region R1 and R2
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had been inserted before fault f100 was reported. Therefore modified regions R1

and R2 can be assumed to be fault-related regions. Since regions R1 or R2 spread

over revision 1.3 to 1.5, we can identify modules of revision 1.3, 1.4, and 1.5 of file

A as faulty modules.

2.2 Historical Metrics

In this section, we discuss recent metrics that can be collected by mining version

histories of modules, which we call historical metrics in this dissertation. We

classify historical metrics based on the target of measurement. We prepare four

categories: code-related metrics, process-related metrics, organizational metrics,

and geographical metrics.

2.2.1 Code-related Metrics

Nagappan and Ball proposed code churn metrics, which measure the changes

made to a module over a development history [90]. They measured Churned LOC

/ Total LOC, Deleted LOC / Total LOC, for example. Churned LOC is the sum of

added and changed lines of code between a baseline version and a new version of a

module. Based on code churn metrics they built statistical regression models, and

reported that code churn metrics are highly predictive of defect density performed

on Windows Server 2003. These code-related metrics have been basic historical

metrics and have been used in many studies [20, 54, 62, 67, 80, 88, 101, 125]．

2.2.2 Process-related Metrics

There are many studies of historical metrics related to development processes.

Changes, fixes, past faults, etc. Graves et al. measured the number of changes,

the number of past faults, and the average age of modules for predicting faults

[38]. They reported the usefulness of such process-related metrics compared

with traditional complexity metrics from a telephone switching system study.
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These process-related metrics have been used in many studies, for example the

number of changes [20, 44, 54, 64, 80, 88, 92, 93, 96, 114]，the number of past faults

[30, 67, 93, 125], the number of fault-fix changes [20, 44, 54, 64, 68, 88, 114], and

module ages [20, 44, 54, 64, 93, 101, 114].

Metrics from cache-based studies. Several cache-based prediction studies

exist [44,64,99]. Hassan and Holt, for example, proposed a “Top Ten List,” which

dynamically creates a list of the top ten subsystems to have a fault [44]. The

list is updated as the development progresses based on heuristics including most

recently changed, most frequently fault fixed, and most recently fault fixed. Kim

et al. [64] and Rahman et al. [99] studied BugCache and FixCache cache operations.

The four heuristics used as cache update policies are as follows:

• Changed locality: recently changed modules tend to be faulty.

• New locality: recently created modules tend to be faulty.

• Temporal locality: recently fault fixed modules tend to be faulty.

• Spatial locality: a module recently co-changed with fault-introduced modules

tends to be faulty.

The number of co-changes with faulty modules (logical coupling with fault-

introducing modules) are also measured in other studies [86, 88].

Process complexity metrics. Hassan proposed complexity metrics of code

changes [42]. The metrics are designed to measure the complexity of change

process based on the conjecture that a chaotic change process is a good indicator

of many project problems. Using different parameters, four history complexity

metrics are proposed. History complexity metrics are better predictors than previous

process-related metrics, i.e., prior modifications and prior faults from a study with

open-source projects.
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2.2.3 Organizational Metrics

Historical metrics related to organization are newer metrics and have been well

studied recently.

Number of developers. Graves et al. measured the number of developers [38].

From a case study of a telephone switching system, it is reported that the number

of developers did not help in predicting the number of faults. Weyuker et al. also

reported that the number of developers is not a major influence on fault-prone

module prediction models [114].

Structure of organization. To investigate a corollary of Conway’s Law “struc-

ture of software system closely matches its organization’s communication struc-

ture [17],” Nagappan et al. designed organizational metrics, which include the

number of engineers, the number of ex-engineers, the number of changes, depth

of master ownership, the percentage of organizational contribution, level of or-

ganizational ownership, overall organization ownership, and organization in-

tersection factor [92]. They reported that these organizational metrics based

failure-prone module prediction models achieved higher precision and recall val-

ues compared with models with churn, complexity, coverage, dependencies, and

pre-release fault measures from a case study of Windows Vista.

Mockus investigated the relationship between developer-centric metrics of

organizational volatility and the probability of customer-reported defects [86].

From a case study of a switching software project, it is reported that the number

of leaving developers and the size of the organization have an effect on software

quality, but the number of newcomers to the organization is not statistically

significant.

Network metrics. Networks between developers and modules are analyzed

for predicting failures [80,96,115]. Human factors, such as contributions of devel-

opers, coordination and communications are examined based on network metrics,

such as centrality, connectivity, and structural holes.

Ownership. A relationship between ownership and quality is also investi-
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gated. Bird et al. examined the effects of ownership on Windows Vista and

Windows 7 [8]. They measured the number of minor contributors, the number

of major contributors, the total number of contributors, and the proportion of

ownership for the contributor with the highest proportion of ownership. They

found the high ratio of ownership and many major contributors. A few minor

contributors are associated with less defects.

Rahman and Devanbu examined the effects of ownership and experience on

quality [98]. They conducted a fine-grained study about authorship and owner-

ship of code fragments. They measured the number of lines contributed by an

author divided by the number of lines changed to fix a fault as an authorship

metric, and defined the authorship of the highest contributor as ownership. From

a study of open-source projects, they reported that a high ownership value by a

single author is associated with lines changed or deleted to fix faults, and that

lack of specialized experience on a particular file is associated with such lines.

2.2.4 Geographical Metrics

Geographical metrics are measured for assessing the risks of distributed devel-

opment. Bird et al. investigated the locations of engineers who developed bi-

naries [7]. Distribution levels are classified into buildings, cafeterias, campuses,

localities, and continents. From a case study of Windows Vista, they clarified that

distributed development has little to no effect on post-release failures.

In a study of organizational volatility and its effects on software defects,

Mockus measured the number of sites that modified the file and investigated

the distribution of mentors and developers [86]. It is reported that the geographic

distribution has a negative impact on software quality from a case study of a large

switching software.
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Table 2.1: Prediction result matrix

Predicted

not fault prone fault prone

Actual

not faulty
True negative False positive

(TN) (FP)

faulty
False negative True positive

(FN) (TP)

2.3 Evaluation Criteria

2.3.1 Accuracy, Recall, Precision, and F1

For prediction evaluation, there are well-known measures: accuracy, recall, pre-

cision, and F1.

Table 2.1 shows a legend of the prediction result matrix. A true negative

(TN) shows the number of modules that are predicted as not fault prone, and

are actually not faulty. A false positive (FP) shows the number of modules that

are predicted as fault prone, but are actually not faulty. On the contrary, a false

negative (FN) shows the number of modules that are predicted as not fault prone,

but are actually faulty. Finally, a true positive (TP) shows the number of modules

that are predicted as fault prone which are actually faulty.

The accuracy ratio shows the ratio of correctly predicted modules to entire

modules and is defined as follows:

Accuracy =
TP + TN

TN + FP + FN + TP

Recall represents the ratio of modules correctly predicted as fault prone to the

entire number of faulty modules. Recall is defined as follows:

Recall =
TP

TP + FN
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Figure 2.2: Cost-effectiveness curve.

Precision is the ratio of modules correctly predicted as fault prone to the

number of the entire modules predicted fault prone. Precision is defined as

follows:

Precision =
TP

TP + FP

F1 is used to combine recall and precision. F1 is defined as follows:

F1 =
2 × recall × precision

recall + precision

2.3.2 Effort-based Evaluation

Recent studies take into account the effort of quality assurance activities, such

as inspecting and testing predicted modules for evaluating prediction models

[2, 69, 79, 83, 99]. These effort-based evaluations should be desirable for practical

use of the prediction results. The key idea of evaluation that takes in to account

effort is that it discriminates the cost of inspecting and testing for each module.
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Arisholm et al. pointed out that the cost of such quality assurance activities on a

module is roughly proportional to the size of the module [2].

Figure 2.2 illustrates an example of a cost-effectiveness curve. This curve

shows that as the quality assurance cost increases, the percentage of found faults

increases. The quality assurance cost is represented as the percentage of inves-

tigated LOC of software. When we inspect or test modules, the modules are

ordered by fault-proneness. If we find most faults when we investigate the small

percentage of the entire LOC, it is cost-effective. In Figure 2.2, a dotted line repre-

sents an example cutoff line set to LOC 20%. If cost-effectiveness curves cross the

upper part of this cutoff line, it is better for the cost of inspection and testing.

2.4 A Systematic Review of Recent Studies

This section presents a systematic review of fault-prone module prediction stud-

ies. Systematic review is a repeatable method for identifying relevant studies to

answer specific research questions [76]. Some papers reported the effectiveness

of systematic reviews in software engineering [65, 66, 76].

As introduced in Section 2.2, there are many studies proposing new historical

metrics. Possible reasons for this might be that many publicly available software

data have been used recently. In addition, there are also easily available tools to

build prediction models, such as WEKA [40] and R [107].

Catal and Diri have reported the first result of a systematic review of fault-

prone module prediction in 2009 [13]. They investigated the studies between

1990 and 2007, and analyzed the types of datasets, prediction methods, and

granularities of metrics. They reported that use of public datasets had increased,

as did models based on machine learning techniques. On the point of metrics

granularity, it is reported that though traditional complexity metrics targeted

class-level prediction, there is an increase in file-level prediction.

Compared to the previous study, we concentrated more on the details of
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metrics, especially newer historical metrics. As discussed in Section 2.2, many

historical metrics have been proposed recently. We investigate the recent studies

to clarify the recent trend of fault-prone module prediction studies.

2.4.1 Review Process

Research Questions

We prepared the following two research questions in a systematic review of recent

fault-prone module prediction studies:

RQ1: What kinds of metrics have been proposed and used so far?

RQ2: Is there a trend in using new metrics?

RQ3: Which granularity of the prediction model is well studied?

Paper Selection

Table 2.2: Targeted journals and conferences

Journal
IEEE Transactions on Software Engineering

Empirical Software Engineering

Conference

International Conference on Software Engineering

Joint Meeting of European Software Engineering Conference

and Symposium on Foundations of Software Engineering

International Symposium on Foundations of Software Engineering

International Conference on Software Maintenance

Working Conference on Mining Software Repositories

As a paper selection method, adopting an automated keyword search using

search engines is possible. However, Kitchenham et al. reported that though
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broad automated searches find more studies than manually restricted searches,

they may be of poor quality [66]. Therefore, we searched papers manually from

two journals and five conferences as shown in Table 2.2.

The targets of this review are papers of fault-prone module prediction studies.

Since not all papers have explicit titles, it is difficult to select papers using only

simple keywords. Using the following criteria, we identified related papers.

First, we selected papers using the following inclusion criteria:

IC1: In the title or abstract, there are fault-related terms, such as fault, defect, bug,

failure, and error.

IC2: The paper discusses the quality or dependability of software.

Next, we removed inappropriate papers using the following exclusion criteria:

EC1: The paper studies testing and inspection to detect faults.

EC2: The paper discusses repository mining techniques, for example, a technique

of identifying commits related to faults.

EC3: The paper targets the process of fault fixing including prediction of such

process.

EC4: The paper investigates actual faults using empirical studies.

Design of the Analysis

Based on the two research questions RQ1 and RQ2, we will analyze selected

papers. Unlike in the previous systematic review [13], we will concentrate on

detailed metrics information.

To collect traditional complexity metrics, source code of the targeting version

is needed for analysis. For historical metrics, software repositories needed to be

mined, that is, we need to analyze the histories of some targets. To classify the

studied metrics, we prepared the following classification items:
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Target: code, process, organization, and geography.

Version: present version, and previous versions.

With these classification items, we will classify the studied metrics into eight

categories (4 × 2).

Threats to Validity

Here, we discuss threats to validity based on Yin’s classification [100, 120].

Construct validity (To what extent do the operational measures that are studied

really represent what the researchers have in mind?)

Since we selected papers manually, there may be missing or inappropri-

ate papers. However, we carefully searched papers using explicit inclu-

sion/exclusion criteria shown in Section 2.4.1.

Internal validity (There is a risk that the investigated factor is also affected by a

third factor when causal relations are examined.)

We did not examine causal relations.

External validity (To what extent is it possible to generalize the findings?)

We limited the papers in journals and conference proceedings presented in

Table 2.2 by choosing the most well-known, highest quality, and well-cited

journals and conferences in software engineering, empirical software engi-

neering, software maintenance, and software repository mining, which are

also important keywords in recent fault-prone module prediction studies.

Reliability (To what extent are the data and the analysis dependent on the specific

researchers?)

Since we clarified our inclusion and exclusion criteria, our systematic review

process is repeatable, and our results are reliable.
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2.4.2 Results
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Figure 2.3: Number of papers per year.

We selected 26 papers from journals and 30 papers from conferences. Figure

2.3 shows the number of papers per year from 2000 to 2010. We can see that

papers have increased recently, especially from 2005.

This result is similar to the result reported in the previous review, although

Catal and Diri investigated different journals [13]. They also reported that there

is an increase in the use of public datasets from 2005. One of the reasons for this

increase, they insisted, was that the PROMISE repository [10], which is intended

to share software development data to enable repeatable experiments, began in

2005.

In addition to the PROMISE repository, many other open-source software

repositories have been made easily available recently, including version control

systems, fault report management systems, and mailing archives. These en-

vironments seem to attract many researchers to empirical fault-prone module

prediction studies.
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Metrics

Table 2.3 presents our classification of studied metrics. For each metrics, papers

using it are shown. As introduced in Section 2.4.1, we classified metrics into

eight regions based on measurement targets and required version information.

We numbered regions from (1) to (8). As shown in Table 2.3, there are various

metrics.

Transition of Studied Metrics

To see the trend in proposing new metrics, we investigated the number of papers

per year for each region shown in Table 2.3. Figure 2.4 presents this result. If

papers used certain metrics, which can be categorized into different regions, we

added them for corresponding regions. The regions (3) and (4), and (5) and (6) are

added up. Since region (1) metrics had been used continuously, it is represented

as a line chart. Other regions are represented as bar charts.

Some findings are as follows:

Metrics in regions (2) to (8). These regions are newer regions compared to tradi-

tional complexity metrics belonging to region (1). Metrics belonging to these

regions are required to extract information by mining software repositories.

They have been widely used from 2005.

Historical metrics: code-related (2) and process-related (4). Metrics in region (2)

and (4) are needed to analyze version control system repositories, and fault

report management system repositories.

These metrics were first used in industrial papers in 2000, and widely used

from 2005 in studies with both industry and open-source software.

Historical metrics: organization (6) and geography (8). Simple organizational met-

rics was used in 2000, and from 2008 many papers exists using several

organization metrics. From 2009 geography metrics have been studied.
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Table 2.3: Classification of studied metrics

Present Version Previous Versions

Code

Region (1) Region (2)

LOC* Churn

Operators [20, 23, 54, 56–58, 68, 72, 74, 82, 91, 112] [20, 54, 62, 67, 80, 88, 90, 101, 125]

McCabe [54, 62, 72, 74, 91, 95, 112, 125] Method call history [104]

Halstead [23, 72, 74, 82, 112] Warning history [101]

CK [20, 29, 39, 52, 54, 103, 106, 122]

Method call relation [91, 104]

Reuse [87, 97]

Warning [11, 89, 101]

Directory [62]

Concerns [28, 32]

Tokens [45, 46, 62, 84, 85]

Dependency graph [124]

Process

Region (3) Region (4)

Programing language [93, 114] Past faults [30, 38, 67, 93, 125]

Commit log [62] Age [20, 38, 44, 54, 64, 93, 101, 114]

Commit date [62] Changes

[20, 38, 44, 54, 64, 80, 88, 92, 93, 96, 114]

Fixes [20, 44, 54, 64, 68, 88, 114]

Refactorings [20, 54, 88]

Logical Couplings [64, 86, 88]

Change complexity [20, 42, 86]

Test cases [67]

Organization

Region (5) Region (6)

Author [62] Authors [20, 38, 80, 88, 92, 96, 114, 125]

Organization [38] Organizations [92]

Author & code [80, 92, 96, 115]

Social network [14, 80, 86, 92, 96, 115]

New/Ex authors [86, 92, 114]

Geography
Region (7) Region (8)

None Locations [7, 80, 86]
*(LOC) [12, 23, 31, 52, 54, 56–58, 62, 68, 70–72, 74, 82, 91, 93, 112, 114, 121]
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Figure 2.4: Transition of studied metrics.

However there are not many papers using these metrics. Compared to

code-related and process-related historical metrics, collecting these metrics

from open-source software projects has not been easy because there is no

explicit public repository.

New metrics in region (1). LOC and complexity metrics, such as McCabe, Hal-

stead, and CK have been used for a long time. In addition to these traditional

metrics, there are also new metrics proposed in region (1) as presented in

Table 2.3. These metrics have also been used.

Sources of Studied Data

Figure 2.5 shows the number of papers per year classified by sources of studied

data. In certain early years, there are only papers using proprietary data in

industry. From 2005, public data have been widely used. Public data include
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Figure 2.5: Number of papers per year classified by data.

open-source software data and publicly available industrial data. More recently

some papers have used both proprietary and public data.

To generalize the findings from empirical studies, we should study different

types of projects. This is because metrics may be effective for particular projects,

and may be not effective for other projects. For example, Bird et al. reported

that there is no impact of distributed development on software quality [7], but

Mockus showed that geographic distribution has a negative impact on software

quality [86].

To see how metrics have been studied, we classified papers by sources of

data for four metrics categories. Figure 2.6 shows the proportion of studied data

sources for (a) code-related metrics, (b) process-related metrics, (c) organizational

metrics, and (d) geographical metrics. It is desirable for metrics to have been

studied where both proprietary and public data for generalization. As seen in

Figure 2.6 (a), nearly half of the studies applied code-related metrics to public

data. However, not many studies applied the other, newer metrics to public data.

No public data study use geographical metrics. From this analysis, we found that

newer metrics have not been studied enough with public data.
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Figure 2.6: Distribution of data sources for each metric category.

Granularity

Figure 2.7 shows the number of prediction models for each granularity of the

prediction model. Figure 2.7 (a) shows a summary of all prediction models, and

Figure 2.7 (b) shows the summary of prediction models limited to models using

historical metrics. There are various levels of granularity. A binary comprises

several files compiled together, and a subsystem represents a module with several

related files.

As seen in Figure 2.7 (a), file-level and subsystem-level have been widely

studied. In addition, some studies targeting binary-level, class-level, and method-

level exist. This is because collecting traditional metrics from fine-grained level

to coarse-grained level is possible.

However, if we select only prediction models using historical metrics, there

are only a few papers targeting class level and method level prediction, as shown
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Figure 2.7: Granularity of prediction models.
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in Figure 2.7 (b). Kim et al. targeted faulty Java methods using a cache-based

approach [64]. Mizuno and Kikuno predicted fault-prone Java methods using a

spam-filtering-based approach [85]. However, few studies predict fine-grained

modules using well-known historical metrics. This is because it is not easy to

collect proposed historical metrics on methods since version control repositories

control file histories, but not method histories.

2.4.3 Summary

We conducted a systematic review of recent fault-prone module prediction studies

focusing on metrics. Papers were selected from two journals and five conferences

from 2000 to 2010. It was revealed that the number of papers has been increasing

recently. From our review results, we can now answer the research questions.

We have provided our survey results at http://www-ise4.ist.osaka-u.ac.jp/

survey/.

RQ1: What kinds of metrics have been proposed and used so far?

Based on the differences of measurement targets and required version infor-

mation, we classified studied metrics into the eight categories shown in Table 2.3.

Various proposed metrics are used in fault-prone module prediction.

For historical metrics, which require previous version information, churn is a

basic metric in code-related historical metrics. There are many kinds of historical

metrics in process-related and organizational metrics.

RQ2: Is there a trend in using new metrics?

Historical metrics tend to be proposed first in proprietary papers, and then

used in papers with public data such as open-source software projects. Code-

related and process-related historical metrics have been popular since 2005, and

organization metrics have been used since 2008. Geography metrics have been

studied from 2009. In addition, there are some code-related metrics regarding the

present version. Though we made four categories for measurement targets, new

categories may exist in the future.

http://www-ise4.ist.osaka-u.ac.jp/survey/
http://www-ise4.ist.osaka-u.ac.jp/survey/
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Code-related metrics have been well studied with both proprietary and public

data. Though some studies applied process-related and organizational metrics

to public data, the ratio of public data in studied sources is low. Geographical

metrics have been studied only with proprietary data. For generalization of the

effectiveness of metrics, metrics must be studied with public data.

RQ3: Which granularity of the prediction model is well studied?

Several granularities of prediction models exist. The most studied prediction

granularity is at the file level. Including prediction models using traditional

metrics, some studies exist on method level. However, there are a few studies

building method-level prediction using historical metrics. Most studies using

historical metrics built file-level or more coarse-grained prediction models.

2.5 Open Issues

This chapter surveys recent fault-prone module prediction studies. To discuss

open issues, we introduce an interesting report.

At the conference of the Joint Meeting of European Software Engineering Con-

ference and Symposium on Foundations of Software Engineering in 2011, which is

one of top conferences in software engineering, there was a forum of PhD work-

ing groups to conduct short surveys on certain software engineering topics by

interviewing conference participants and researching the field∗. A group of “bug

prediction models” was one of these working groups. They asked participants

in the conference about the main open challenges in building fault prediction

models†. There were 27 participants including five from industry and 22 from

academia.

In the survey, working group asked: “What are the barriers for the adoption of

fault-prone prediction among practitioners?” From both industry and academia,

models not available as tools was selected by the greatest number of people. This
∗http://pwg.sed.hu/
†http://pwg.sed.hu/node/2

http://pwg.sed.hu/
http://pwg.sed.hu/node/2
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problem has been a well-known one, but has not been solved yet. If there are

enough data, building prediction models is not very difficult because there are

some good tools, such as WEKA [40] and R [107]. We think that the laboriousness

of collecting metrics is a more important problem.

In the same survey, the participants were also asked about the future direc-

tions of fault-prone module prediction. People from academia tend to consider

generalization as a future direction, such as models adaptable to different systems

and improvement of benchmarks for comparison. On the other hand, industrial par-

ticipants seek practical directions, such as models that deal with incomplete data

and fine-grained prediction. The first direction has broader problems, and requires

robust prediction models, mining incomplete software data techniques, and so

on. In this dissertation, we are interested in the second problem, fine-grained

prediction.

2.5.1 Laboriousness of Collecting Metrics

Collecting metrics require analyzing source code, and mining software repos-

itories. Since there are various program languages and software repositories,

we need to implement program-language-specific or software-repository-specific

tools. This task is very laborious, and it has been a barrier to adopting prediction

models for practical use.

2.5.2 Fine-grained Prediction with Historical Metrics

Fault-prone module prediction on fine-grained modules is a desirable future di-

rection. Such prediction is expected to be effective in the cost of quality assurance

activities. Effort-based evaluation considers the required effort to find faults. If

we can find the most faults while investigating the small percentage of the en-

tire software source code, such prediction models should be desirable. Kamei

et al. clarified that file-level prediction models are more effective than package-

level, which has more coarse-grained modules than file-level, on Java software
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projects [54]. From this result, we can infer that method-level prediction is more

cost-effective than file-level prediction because the methods have a finer granu-

larity than files.

As discussed in Section 2.4.2, there are a few studies of fine-grained prediction.

Fine-grained prediction using well-know historical metrics is a big challenge.



Chapter 3

Text-mining-based Prediction

3.1 Motivations

3.2 Building Models with Text Features

3.3 Experimental Setup

3.4 Results

3.5 Discussion

3.6 Summary

3.1 Motivations

As presented in Chapter 2, there are many fault-prone module prediction studies,

and many studies have collected various metrics to build prediction models. To

collect such metrics, we have to analyze source code and/or software repositories.

As discussed in Section 2.5.1, these tasks for collecting metrics are laborious. In

addition, selecting metrics for building models is also a tedious task. Several stud-

ies suggest that there is no best subset of metrics that enables a fault-prone module

predictor to perform a perfect prediction [82, 91]. Nagappan et al. advised not

using complexity metrics without validating them for a target project [91]. Men-

33
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zies et al. concluded that if there is a metrics subset appropriate for a particular

domain, all available metrics could be used to build prediction models [82]. They

also insisted that how metrics are used to build models is much more important

than which particular metrics is used. However, it is uncertain how many metrics

should be collected.

To mitigate these difficulties in preparing metrics, Mizuno and Kikuno pro-

posed a spam-filtering-based prediction model [84, 85]. In spam filtering, a clas-

sifier, which is a prediction model, is trained with large-scale text features from

both spam and non-spam mails. Then, an incoming mail is classified into either

spam or non-spam. The Bayesian spam filtering technique was first introduced in

1998 as a scholarly publication by Sahami et al. [102]. The model is a well-studied

Bayesian model. Since the usefulness of Bayesian theory for spam filtering has

been recognized recently, most spam filtering tools implement Bayesian theories.

Consequently, the accuracy of spam prediction has improved dramatically. This

technique has been studied to meet the needs of the spam mail problem, that

is, spam filtering systems should be able to automatically adapt to the variable

characteristics of spam mails. Moreover, the systems need to be personalized to

the user’s needs. This framework is based on the fact that spam e-mails usually

include particular patterns of words or sentences.

From the viewpoint of source code, similar situations usually occur in faulty

software modules. That is, similar faults may occur in similar contexts. Inspired

by the spam filtering technique, the previous study tried to apply text-mining

techniques to software modules. In fault-prone module prediction, Mizuno and

Kikuno treat a software module as an e-mail message, and classify all software

modules into either fault-prone (FP) or non-fault-prone (NFP). This approach

means that the numbers of particular text features in a module are regarded

as one of its metrics. With our approach, we need neither language-specific

semantic analysis and storage-specific repository mining, so we can easily apply

the prediction models to various software projects.
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The previous study [85] proposed a prediction model with a spam-filtering

framework that uses Bayesian models, and presented a comparative study with

traditional prediction models only on a survey of research papers. To clarify

the effectiveness of a text mining approach on fault-prone module prediction,

this chapter presents a more generic study. Using text mining based metrics, we

built logistic regression models as well as Bayesian models, and conducted a fair

comparison with traditional metrics-based models.

3.2 Building Models with Text Features

3.2.1 Feature Extraction

Before extracting text features we remove comments in source code. This means

that every token except for comment can be treated as a feature. The number of

text features is counted per module. For replication of the experiment, we used

the WEKA data mining toolkit [40]. To extract features properly, every variable,

method name, function name, keyword, and operator connecting without a space

or tab is separated.

Since using all features requires much time and memory, we limit the kinds of

text features to 5, 000 in this experiment∗. This option is intended to discard other,

less useful features. These text features can be regarded as one of the metrics

Num(tokeni), where tokeni represents the ith text features. Text-feature metrics are

very large-scale compared with other traditional metrics.

3.2.2 Prediction Models

Regarding text features as metrics Num(tokeni), it is easy to build well-known

prediction models. In this dissertation, we built the following two models.

∗java weka.filters.unsupervised.attribute.StringToWordVector -C -W 5000
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Logistic Regression Model

The multivariate logistic regression model is represented as follows:

f (m1,m2, ...,mn) =
eC0+C1m1+C2m2+,,,+Cnmn

1 + eC0+C1m1+C2m2+,,,+Cnmn

where mi is the value of the metric in a module. If f (m1,m2, ...,mn) > 0.5, the

module is classified as FP, otherwise, as NFP.

Naive Bayes Model

The naive Bayes model classifies a module as follows:

argmax
C∈{FP,NFP}

P(C)
n∏

i=1

P(mi|C)

where C is a class, which is FP or NFP, and P(C) is the prior probability of class C

and P(mi|C) is the conditional probability of a metric mi given class C. The previous

study reported that prediction models using naive Bayes achieved standout good

results compared with OneR, J48 in their experiment using the WEKA [85].

3.3 Experimental Setup

To show the effectiveness of using large-scale text features, we conducted a fair

comparison with traditional metrics based models. In the experiments, we tar-

geted Java programming language.

3.3.1 Compared Metrics

To show the effectiveness of our proposal, we compared large-scale text features

with traditional metrics in experiments. We collected the CK metrics suite [16].

This metrics suite is collected with a tool developed by Higo et al. [51]. In addition,

we collected the code churn, previous fix changes, and the LOC of each module.

Table 3.1 shows all the collected metrics in this dissertation.
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Table 3.1: Compared metrics

Metrics Description

LOC Lines of code

WMC

CK metrics suite

Weighted methods per class

DIT Depth of inheritance tree

NOC Number of children

CBO Coupling between object classes

RFC Response for class

LCOM Lack of cohesion on methods

ADD
Churn metrics

# of added lines

CHG # of changed lines

FIX Fixed or not

3.3.2 Target Projects

For the experiment, we selected open-source software projects in which we can

track faults. For this reason, we targeted five projects in Eclipse†: Business In-

telligence and Reporting Tools (BIRT), Eclipse (ECLP), Eclipse Modeling Project

(MODE), the Test and Performance Tools Platform (TPTP), and the Eclipse Web

Tools Platform (WTP). Table 3.2 shows the information of each target project.

These projects are written in Java language, and revisions are maintained by CVS.

The source repository of CVS used in this study was uploaded on the Eclipse

project Web site, and was obtained on the 6th of January, 2009. We treated a Java

file in each revision as a software module.

We also obtained fault reports from the fault report databases of each project.

We extracted fault reports under the following conditions. The type of these faults

is “bugs”; therefore, these faults do not include any enhancements or functional

patches. The status of faults is “resolved”, “verified”, or “closed”, and the reso-

lution of faults is “fixed”. This means that the collected faults have already been

†http://www.eclipse.org/
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Table 3.2: Target project information

Release 1 Release 2

Project Release (Date) Total LOC Release (Date) Total LOC

BIRT 2.1 (2006-06-30) 768K 2.2.0 (2007-06-29) 1,135K

ECLP 3.2 (2006-06-29) 2,617K 3.3 (2007-06-28) 2,588K

MODE Callisto (2006-06-30) 1,730K Europa (2007-06-29) 2,191K

TPTP 4.2.0 (2006-06-30) 718K 4.4.0 (2007-06-29) 722K

WTP 1.5 (2006-06-30) 1,432K 2.0 (2007-06-29) 2,338K

Table 3.3: Result of module collection
Release 1 Release 2

Project # of faulty modules Total modules # of faulty modules Total modules

BIRT 227 (8.6%) 2,645 291 (8.2%) 3,563

ECLP 376 (4.5%) 8,429 236 (3.2%) 7,351

MODE 36 (0.6%) 5,649 44 (0.6%) 7,049

TPTP 792 (28.2%) 2,811 366 (15.8%) 2,310

WTP 183 (2.5%) 7,336 133 (1.7%) 7,996

fixed and have been resolved, and thus fixed revisions should be included in the

entire repository. The severity of the faults is either “BLOCKER”, “CRITICAL”,

or “MAJOR” so as not to include trivial faults. Herraiz et al. categorized these

severity categories as important and the others without ENHANCEMENT as

non-important [49]. Using our faulty modules collection tool, we collected both

faulty and not faulty modules from these five projects. The result of the module

collection is shown in Table 3.3.

3.3.3 Design of Experiments

Using the collected data shown in Table 3.3, we conducted the following two

experiments.
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1. Ten-fold cross validation

For 10-fold cross validation, we used release 1 data only. The 10-fold cross

validation can show relatively fair results for a given data set. However, it

cannot take into account important features such as the order of building

modules.

2. Prediction on post release

Here, we used both release 1 data and release 2 data. Fault-prone modules

are predicted on release 2 data using prediction models trained with release

1 data. On the release 2 data, we evaluate the prediction performance.

To show the effectiveness of using large-scale text features, the same two ex-

periments were also conducted with well-known software metrics as shown in

Table 3.1. Generally speaking, the performance of fault-prone module prediction

varies according to the combination of these metrics used in a prediction model.

In order to find the best metrics subset for the release 1 data, we prepared all

(= 210 = 1, 024) combinations of the metrics shown in Table 3.1. Then, we per-

formed the 10-fold cross validation for each combination, and obtained the best

combination with the highest evaluation measurement. This procedure is iterated

for all projects. Once we get the best combination of compared features, we built

a prediction model using the best combination of metrics and the release 1 data.

Next, we apply the built model to the release 2 data.

3.4 Results

3.4.1 Ten-fold Cross Validation

Table 3.4 shows the best subset of metrics in each project on naive Bayes models.

As described in Section 3.3.3, each subset of metrics achieved the highest F1 value

with a naive Bayes model in each project. Similarly, the best subset of metrics

for logistic regression models in each project and the regression coefficient of
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Table 3.4: The best subset of metrics for naive Bayes models

Project Subset of metrics

BIRT LOC, CHG, DIT, CBO, NOC

ECLP FIX, CHG, WMC, LCOM

MODE CHG, CBO, RFC

TPTP LOC, FIX, ADD, WMC, DIT, CBO, LCOM, RFC

WTP FIX, WMC, DIT, LCOM, NOC

Table 3.5: Regression coefficients of selected metrics for logistic regression models

Project LOC FIX ADD CHG WMC DIT CBO LCOM RFC NOC

BIRT 0.0004 0.920 -0.079 0.008 -0.0002 0.0006 -0.114

ECLP -0.001 1.292 -0.005 -0.0003 0.012 -0.053 0.001

MODE 0.002

TPTP -0.001 0.776 0.005 0.001 0.030 0.002 -0.001 0.002 -0.025

WTP 1.737 0.007 -0.053 0.002

each selected metrics are seen in Table 3.5. In Table 3.5, a blank represents a

corresponding metrics not used in a corresponding project. For example, in

project WTP, the best subset of metrics for logistic regression models are “FIX”,

“WMC”, “DIT”, and “RFC”. Each value in Table 3.5 is an estimated regression

coefficient value. The larger the absolute value of the regression coefficient, the

stronger the impact of the metrics on fault-prone modules prediction. The used

metrics sets are different from each other. From the viewpoint of the regression

coefficient value, FIX and DIT are relatively high in the target projects.

Table 3.6 presents the top three text features ordered by positive and negative

regression coefficient values of logistic regression models in each project. A

positive regression coefficient indicates an increase in the probability of FP, while

a negative regression coefficient indicates a decrease in the FP probability. For

example, in project BIRT, if there is “pointer” and/or “getObject” in the source

code of a module, the FP probability of the module is high. If there is “excel”
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Table 3.6: Top three text features ordered by positive and negative regression

coefficient values of logistic regression models

Project
Positive regression coefficient Negative regression coefficient

Feature Value Feature Value

BIRT

pointer 79.2 excel -665.1

getObject 73.9 em -190.0

package 71.8 Member -148.7

ECLP

NavigatorPlugin 21.6 PerformanceTestSetup -32.6

launchConfigurations 14.3 AbstractUIPlugin -18.0

isBaseType 13.0 removeSelectionChangedListener -16.8

MODE

org/uml2/2 11.7 0/UML -12.0

g1 4.5 getFactory -6.7

Factory 3.9 V -5.3

TPTP

LF 75.6 atts -153.4

setTestInvocationId 52.3 scenario -43.0

createPlatformResourceURL 49.6 OK STATUS -39.5

WTP

Missing 10.0 ArrayCreation -31.8

extra 9.5 FieldAccess -31.8

COMPILATION UNIT 8.7 SimpleName -31.8
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Figure 3.1: Histogram of the regression coefficient value of a logistic regression

model in project ECLP.

and/or “Member”, the FP probability is low.

Next, the distribution of the regression coefficient value is investigated. Figure

3.1 shows the histogram of the regression coefficient value of a logistic regression

model in project ECLP. A large regression coefficient represents a strong im-

pact of the feature on the FP probability, while a near zero regression coefficient

means little impact on the FP probability. As shown in Figure 3.1, most of the

regression coefficient values are near zero. Such distribution of the regression

coefficient values is seen in the other projects. These distributions can be inter-

preted as being able to train logistic regression models without distinguishing

a few project-specific useful text features and other not so useful text features.

However, there is only one text feature whose corresponding regression coeffi-

cient value is zero. Therefore, almost all large-scale text features are needed to

build logistic regression models.

Figure 3.2 shows the F1 rate in each project comparing the best subset from ten

metrics and text features. Figure 3.2 (a) is the result of naive Bayes models and (b)
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Figure 3.2: Comparison of the F1 rate of the 10-fold cross validation results.
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Table 3.7: Detailed results of the 10-fold cross validation
Project

(% of faulty Prediction model Features Accuracy Recall Precision F1

modules)

Naive Bayes
Best subset 0.902 0.216 0.377 0.275

BIRT Text features 0.806 0.634 0.252 0.361

(8.6%)
Logistic Regression

Best subset 0.917 0.075 0.654 0.134

Text features 0.732 0.423 0.143 0.214

Naive Bayes
Best subset 0.947 0.215 0.346 0.266

ECLP Text features 0.879 0.449 0.169 0.245

(4.5%)
Logistic Regression

Best subset 0.956 0.082 0.585 0.145

Text features 0.897 0.371 0.177 0.240

Naive Bayes
Best subset 0.980 0.222 0.085 0.123

MODE Text features 0.940 0.463 0.056 0.100

(0.6%)
Logistic Regression

Best subset 0.994 0.028 0.500 0.053

Text features 0.966 0.220 0.054 0.086

Naive Bayes
Best subset 0.353 0.891 0.290 0.437

TPTP Text features 0.745 0.779 0.535 0.635

(28.2%)
Logistic Regression

Best subset 0.722 0.056 0.571 0.101

Text features 0.703 0.594 0.482 0.532

Naive Bayes
Best subset 0.956 0.213 0.180 0.195

WTP Text features 0.854 0.623 0.105 0.180

(2.5%)
Logistic Regression

Best subset 0.974 0.022 0.308 0.041

Text features 0.898 0.383 0.102 0.161
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Table 3.8: Pearson’s correlation in evaluation metrics and the percentage of faulty

modules

Features
Naive Bayes Logistic regression

Accuracy F1 Accuracy F1

Best metrics subset -0.987 0.944 -0.999 0.276

Text features -0.881 0.978 -0.830 0.975

is the result of logistic regression models. Table 3.7 presents the detailed results

of 10-fold cross validation. As seen in Figure 3.2 (a), which shows the results of

the naive Bayes model, though the F1 rate of the results using text features are

narrowly less than the results using the best subset of metrics in project ECLP,

MODE, and WTP, the results using text features are much greater than the best

subset in projects BIRT and TPTP. The results of the logistic regression models,

which are shown in Figure 3.2, illustrate that large-scale text features have a

greater capability of fault-prone module prediction than a best metrics subset. As

shown in Table 3.7, the best metrics subset achieved a higher precision rate and

the text features achieved a higher recall rate.

With the naive Bayes models using text features, the F1 rates range from

0.100 to 0.635. To explain the difference of the prediction performance, Pearson’s

correlations are calculated between the evaluation metrics and the percentage

of faulty modules. Table 3.8 lists the correlation values. The values show a

strong negative correlation for accuracy. This means that if the percentages of

faulty modules are low, accuracy rates are high. This is because it is easy to

achieve high accuracy by classifying most modules as NFP when the percentages

of faulty modules are low since most modules are not faulty. On the contrary,

there are strong correlations between the F1 rate and the percentage of faulty

modules except for logistic regression models with a best metrics subset. Logistic

regression models with the best metrics subset always obtained less than the 0.15

F1 rate for the five projects. The other combination of prediction models and used
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features revealed that the higher the percentage of faulty modules, the higher the

F1 rates can be achieved. This is because if there are few faulty modules, it is very

difficult to predict the faulty modules with only a few false positives and false

negatives.

3.4.2 Prediction on Post Release

Table 3.9 presents the detailed results of the prediction on post release. Table 3.10

shows the F1 rate in each project by comparing the best subset from ten metrics

and text features. Each value represents the F1 rate with text features, minus

the F1 rate with the best metrics subset. Therefore, a positive value means that

text features overcame the best metrics subset, and a negative value, vice versa.

As seen in Table 3.10 results of the naive Bayes model, although the F1 rate of

the results using text features are narrowly less than the results using the best

subset of metrics in projects ECLP and WTP, the results using text features are

much greater than the best subset in projects BIRT, MODE, and TPTP. In TPTP

especially, the text features achieved almost a 0.15 higher F1 rate. The results of

logistic regression models illustrate how large-scale text features overcame the

best metrics subset in every project. As shown in Table 3.9, the best metrics subset

tends to exhibit low recall and relatively high precision, and text features tend

to exhibit high recall and low precision, similar to the results of the 10-fold cross

validation.

Although the proposed approach using large-scale text features seems to work

well, it is questionable whether the FP probability of a module may be strongly

influenced by the number of text features in the module. That is, modules whose

source code contains lots of text features might be simply predicted as FP. Since the

number of text features is related to LOC, we computed the Pearson’s correlation

between the probability yields from the naive Bayes models and the LOC. Table

3.11 lists the correlation values. As shown in Table 3.11, every correlation value in

the five projects is low. This means that there are weak correlations between the
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Table 3.9: Detailed results of the prediction on post release

Project

(% of faulty Prediction model Features Accuracy Recall Precision F1

modules)

Naive Bayes
Best subset 0.893 0.199 0.279 0.232

BIRT Text features 0.759 0.630 0.196 0.299

(8.6%)
Logistic Regression

Best subset 0.919 0.069 0.513 0.121

Text features 0.802 0.526 0.213 0.303

Naive Bayes
Best subset 0.946 0.191 0.181 0.186

ECLP Text features 0.868 0.461 0.112 0.180

(4.5%)
Logistic Regression

Best subset 0.965 0.089 0.350 0.142

Text features 0.946 0.557 0.303 0.392

Naive Bayes
Best subset 0.974 0 0 NaN

MODE Text features 0.926 0.023 0.002 0.004

(0.6%)
Logistic Regression

Best subset 0.994 0 0 NaN

Text features 0.965 0.023 0.006 0.009

Naive Bayes
Best subset 0.213 0.896 0.156 0.265

TPTP Text features 0.631 0.807 0.276 0.411

(28.2%)
Logistic Regression

Best subset 0.831 0.126 0.397 0.191

Text features 0.789 0.658 0.402 0.499

Naive Bayes
Best subset 0.938 0.188 0.061 0.092

WTP Text features 0.774 0.579 0.043 0.080

(2.5%)
Logistic Regression

Best subset 0.980 0.045 0.171 0.071

Text features 0.805 0.609 0.052 0.096
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Table 3.10: F1(text features) - F1(best metrics subset)

Prediction model BIRT ECLP MODE TPTP WTP

Naive Bayes 0.067 -0.006 0.004 0.146 -0.012

Logistic regression 0.182 0.393 0.057 0.324 0.148

Table 3.11: Pearson’s correlation in naive Bayes probability and LOC

BIRT ECLP MODE TPTP WTP

0.136 0.032 0.026 0.007 0.041

probability yielded from the naive Bayes models and the LOC. Therefore, it can

be said that FP probability is not simply derived from naive Bayes models based

on the number of text features in a module.

3.5 Discussion

3.5.1 Threats to Validity

There are four threats to the validity of this study.

Target projects are the Eclipse projects only. This is the external validity threat

for generality of data used in the experiments. In general, the Eclipse projects do

much better than other open-source projects when using machine-learning models

to predict fault-prone modules. Using other open-source projects, different results

may be obtained. In addition, industrial projects may lead to different results.

There may be incorrect identifications of faulty and not faulty modules. The

algorithm adopted in this study to identify faulty modules has a limitation. As

shown in Section 2.1, the SZZ algorithm can identify faults by linking fault reports

and revision logs. Therefore, we cannot identify faults that is not written in either

fault reports or revision logs. In addition, there may be false positives in identified

faults.

Incorrect identifications of training data badly influence the quality of the
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prediction models. In addition, if identifications of test data are incorrect, per-

formance evaluation metrics cannot be calculated properly. To make a complete

collection of faulty modules from a source code repository, further research is

required.

Specific settings for implementing the approach may influence the predic-

tion performance improperly. Because of the limitations of time and memory,

we limit the number of text features used in each project to approximate 5, 000.

Important text features may be discarded by this setting. In addition, we removed

all comments before counting the number of text features. These settings may

result in improper prediction.

There might be flaws in the design of experiments In order to show the

effectiveness of our approach using large-scale text features, we compared our

approach with the best subset of well-known metrics including the CK metrics

suite. However, these prepared metrics may be not enough. In addition, although

we prepared two experiments including (1) 10-fold cross validation and (2) fault-

prone module prediction on post release to compare fairly, there might be flaws

in showing the effectiveness. For example, in the (2nd) experiment, every period

between release 1 and release 2 is one year. If we vary the period, the results

might change.

3.5.2 Related Work

Aversano et al. trained prediction classifiers with a weighted-term vector created

from text belonging to software changes [3]. They used variables, names, language

keywords etc. as terms. They concluded that the K-Nearest Neighbors classifier

yielded a significant trade-off between precision and recall. Kim et al. introduced

a change classification technique [62]. They gathered features from source code

text and other meta data, and applied them to the Support Vector Machine to

predict faulty changes. They obtained 78 percent accuracy and a 60 percent faulty

change recall on average. Though these two studies used text features extracted
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only from software changes, we targeted the entire text features in source code.

In addition, although these two studies conducted only a 10-fold cross validation,

we conducted not only 10-fold cross validation but also evaluate the prediction

of post-release fault-prone modules.

Our text mining approach has some desirable points, such as:

• Independence from programming languages

• Flexibility in the granularity of a unit

• No need of semantic information

Different from generalized sophisticated metrics, more concrete and smaller

granularity of the possible cause of faults have also been studied. Fowler and

Beck introduced 22 software structures as problematic code, which they called

“bad smells” [34]. Mäntylä et al. presented a subjective taxonomy that categorizes

similar bad smells [77]. In addition, they empirically showed correlations between

the bad smells. Pan et al. defined 27 fault-fix patterns [94]. Their studies of

open-source projects showed that the method call and if-related fault-fix patterns

commonly appear. However, software structures in these patterns that introduce

faults do not always cause faults. Though there are fault-fix structure patterns,

a fault-introducing change may be project-specific, package-specific, or other

environment-specific. Livshits and Zimmermann tried to find out application-

specific error patterns that are concrete method code patterns [75]. They looked

for code smell patterns on a fine granularity level. Our approach may be related

to such fine granularity code smell patterns.

3.6 Summary

We proposed an approach using large-scale text features for fault-prone module

prediction. To show the effectiveness of our approach, we conducted two ex-

periments and compared our approach with prediction models using traditional
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metrics by applying it to five open-source Java projects in Eclipse, and obtained

higher F1 values. The performance results of our text-mining-based prediction

models implies that:

• Large-scale text features are useful to build a practical model.

• Measuring sophisticated metrics is not always necessary for predicting fault-

prone modules.

Built models with large-scale text features just predict fault-prone modules.

While traditional sophisticated metrics can suggest how a developer should mod-

ify modules or what problems are in them, text features do not derive such sug-

gestions. However, since there is no need to collect meaningful module features,

applying our approach to projects is easy.

Moreover, the large-scale text-features approaches have several desirable points

as follows:

• They are independent from programming languages.

• We can treat the flexible granularity of a unit as classified modules or as a

training set. For example, a method can be treated as a module.

• We do not need semantic information.
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4.1 Overview

4.2 Fine-grained Version Histories

4.3 Experimental Setup

4.4 Results

4.5 Discussion

4.6 Summary

4.1 Overview

For fine-grained prediction with well-known historical metrics, obtaining version

histories on fine-grained modules is a big challenge. To tackle this problem,

we developed a fine-grained version control system, Historage [47]. Historage is

constructed on top of Git, and can control method histories of Java. With this

system, we can collect the same historical metrics for methods and files, and

compare the prediction results based on effort-based evaluation.

53
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This chapter presents the architecture of Historage and then shows the results

of fine-grained prediction with well-known historical metrics collected from the

constructed Historage.

4.2 Fine-grained Version Histories

4.2.1 Problems

For fine-grained prediction with historical metrics, we need to analyze the histo-

ries of fine-grained modules. Software configuration management (SCM) system

repositories have been mined and analyzed for many research purposes because

they contain rich information on real software activities and products. File-level

histories can be easily collected from SCM systems, but it is not easy to collect

fine-grained module histories, such as the histories of classes or methods.

The concept of method-level version control in object-oriented programming

can be seen in the Orwell SCM system [108]. Though several tools have been

proposed to support fine-grained version control for development, no such a

tool has been actually integrated into widely used SCM systems [21]. These

systems intend to control fine-grained module histories during development.

Since existing repositories remain at file-levels, what we have to do is construct

a fine-grained module history storage with the data from the existing file-level

SCM systems. The requirements of such a fine-grained module history storage is

storing entire histories of all fine-grained modules even if modules are renamed

or moved, which is satisfied with existing SCM systems for file-level.

Related Systems

Better tools are required for future research in software evolution [81]. There are

several related tools proposed and used in research. BEAGLE is a framework

incorporating subtools from software metrics software visualization, and rela-

tional databases [37,111]. On the point of fine-grained module histories, BEAGLE
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performs origin analysis to identify change types including renaming, moving,

splitting, and merging. However, it targets selected release revisions for applying

origin analysis. C-REX is an evolutionary extractor [43]. It records fine-grained

module changes over the development periods. Though C-REX targets entire

revisions, it cannot identify renaming. Kenyon is designed to facilitate software

evolution research [5]. It supports CVS, Subversion, and ClearCase SCM systems

and conducts prepossessing tasks for fine-grained change analysis. Though it

stores entire revisions, change types are limited to adding, deleting, and mod-

ifying. APFEL collects fine-grained changes in relational databases [123]. It

investigates fine-grained changes at the token level. Though revisions are stored

entirely, renaming is not identified.

In summary, existing systems store only limited histories of fine-grained mod-

ules, that is, each system does not satisfy both storing every version and identi-

fying matches when renames or moving. In particular, match identification is a

challenging task.

Change Type Identification Techniques

There are many studies about identifying changes.

One-to-one matching techniques. Based on the matching technique survey by

M. Kim and Notkin, one-to-one software module matching techniques are sum-

marized as follows: module name matching, string matching, syntax tree matching,

control flow graph matching, program dependence graph matching, binary code matching,

clone detection, and origin analysis tools [59]. S. Kim et al. applied several method

matching techniques for origin analysis limited to renaming and moving to open-

source software projects, and evaluated the effectiveness of the techniques [61].

They reported that though clone detection yields an accuracy value 67.4, function

body diff achieved 90.2.

Splitting and merging. Splitting and merging of software entities are tar-

geted by origin analysis. Godfrey and Zou proposed a technique of inferring such
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events based on matching procedures using multiple criteria including names,

signatures, metric values, and call dependencies [37]. Splitting and merging

correspondence analysis is also known as one-to-many and many-to-one match-

ing [117]. Wu et al. combined text similarity analysis and call dependency analysis

for those method matching [117].

Systematic structural changes. Recognizing structure changes including

refactorings and object-oriented design changes is one of the hot topics of change

analysis. These analyses are based on techniques of matching object-oriented pro-

gram elements. The differences of program elements, helps to infer what struc-

tural changes are occurred. RefactoringCrawler detect refactorings based on iden-

tifying renaming packages, classes, methods, and moving methods [24]. Those

changes are identified using structural data, call-graph and tokens from entities.

MolhadoRef [25, 26] is a semantics-based and refactoring-aware SCM system [35].

It adopts the RefactoringCrawler [24] and uses refactoring logs to support merging.

Weißgerber and Diel presented a technique to detect changes that are likely to be

refactorings [113]. Their matching technique is based on structural similarity and

code clone analysis.

Framework usage changes. Xing and Stroulia proposed an approach for API-

evolution support, called Diff-CatchUP [119]. At the step of change identification,

UML-diff, which is based on name similarity and code dependency similarity

of program elements [118], is used. After identifying changes, plausible API

replacements are proposed. Dagenais and Robillard presented a technique to

recommend adaptive changes for clients of framework code based on structure

change analysis [19]. Their matching technique is based on structure similarity

and out going call dependency similarity.

Discussion. Though there are some variations, change identification is a kind

of matching problem. In the computer vision research area, similar problems are

known as the correspondence problem and techniques are classified in following two

classes [110]:
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Table 4.1: Change identification techniques and using data

Technique Graph Feature

S. Kim et al. [61] calls name, text, metrics

Godfrey and Zou [37] calls name, metrics

Wu et al. [117] calls text

Dig et al. [24] calls, structure tokens

Weißgerber and Diel [113] structure name, text

Xing and Stroulia [118] structure name

Dagenais and Robillard [19] calls, structure name

Graph-based methods: checking if correlations on graph structures are similar

or not.

Feature-based methods: finding features and seeing if they are similar or not.

Table 4.1 summarizes the studies based on this classification. As shown in

Table 4.1, every study uses both methods for change type identification. As graph-

based methods and feature-based methods have different advantages and limitations,

the combination of both methods is expected to achieve better results. Most stud-

ies mainly adopt graph-based methods and use feature-based methods for improving

method correspondence problems.

Graph-based methods require unchanged or easily understandable correlated

parts. Therefore, identifying corresponding entities, if there is not enough of a

correlated part, or if there are major changes is difficult. Wu et al. reported the

limitations and insist that graph-based analysis cannot overcome this difficulty

[117]. Though it is different entity (AST node) analysis, Fluri et al. proposed an

algorithm based on graph-based methods and reported following two limitations

[33]:

• Mismatching can propagate. Not only mismatching for each targeting entity,

correlate entities can be mismatched.
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Figure 4.1: Providing fine-grained module histories from file-level repositories.

• The worst-case complexity increase. To decrease mismatching, complex

algorithm is needed and this increase the worst-case complexity.

4.2.2 Historage: A Fine-grained Version Control System

Overview

For fine-grained module history storage, change types in every commit should

be identified. As discussed in Section 4.2.1, the previous studies used graph-

based methods, which have some problems. To satisfy the requirements of fine-

grained module history storage, we identify change types only with feature-based

methods. Figure 4.1 presents an overview of our system for providing fine-

grained module histories. From file-level snapshots, each module content (text)

is extracted and stored independently. Change types are identified between two

revisions. Then each module history is presented even if there are renames and

moving.

To develop our system, we make use of Git, which is a source code management

system, as storage. Recently Git has attracted some researchers [9, 50]. Bird et al.

reported both its promise and peril [9]. Though Git is known for decentralization

of source code management, we found that Git architecture is also effective for

our purpose, that is, for constructing fine-grained module history storage. We
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Directory structure Git object model
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Figure 4.2: How a snapshot is stored in Git.

develop our system Historage on top of Git. This system can store entire histories

of all fine-grained modules even if modules are renamed or moved.

Preliminary – Git

Git is a content-addressable file system [15]. Git controls file contents, directory

structures, file histories, commit logs, etc., by managing Git objects. Each object

is stored in a Git object database and is compressed and named by the SHA-1

(Secure Hash Algorithm) value of its contents.

Storage of snapshots. Figure 4.2 shows how directory structure of a snapshot

is stored and managed with Git object model. The left side of Figure 4.2 represents

a sample directory structure at the time of a commit and the right side shows a

Git object model that reflects the directory structure. Each blob object, which

represents a file, is referred by a tree object. A tree object, which represents a

directory, refers blobs and trees. The top tree object is referred by a commit object,

which contains the author and log of the commit. As shown in Git object model
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 fileA.java       a532e
d4352      tree

file contents...
a532e        blob

 lib                  d4352
324a1      tree

(a) Original structure.

 fileA.java      89d6b

d4352      tree

file contents...

89d6b        blob

 lib                  d4352
324a1      tree

(b) File A is modified.

 fileB.java      a532e

d4352      tree

file contents...

a532e        blob

 lib                  d4352

324a1      tree

(c) Renamed to file B.

 fileA.java       a532e
d4352      tree

file contents...
a532e        blob

 lib2               d4352
324a1      tree

(d) File A is moved.

Figure 4.3: How changes are detected in Git.

in Figure 4.2, each object is identified with SHA-1 value.

Identifying changes. Here, we explain how Git identify change types with

Figure 4.3. Figure 4.3 (a) shows an original directory structure in the Git object

model. Figure 4.3 (a) shows that fileA.java exists in the directory named lib.

The content of fileA.java is stored in a blob, which is named by SHA-1 value:

a5352e. The lib directory is represented as tree named d4352, and the name of

the directory is stored in the 324a1 tree.

If the fileA.java is modified, the Git object model changes to Figure 4.3

(b). Since the file content is changed, the corresponding blob is also changed.

Figure 4.3 (c) represents the rename of the file. This can be identified because

the same blob SHA-1 value is linked to a different file name, fileB.java. Figure

4.3 (d) represents a directory structure after moving the fileA.java. This can

be detected because the directory, which has a different name lib2, contains the

fileA.java.

When file paths are changed, it is often the case with files that the contents of

the files are also modified. Even in such cases, Git is able to detect relationships
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Figure 4.4: Directory structure for fine-grained entities.

between changes if the file contents are similar enough. This is performed by

checking that the amount of deletion of the original content and insertion of new

content is larger than a threshold, which is set to 50% of the size of the smaller

files (original or modified). Therefore, if deletion or insertion is less than 50%,

two files in the parent and child commits are detected as moving or renaming.

The threshold value can be changed.

Technique

For storing fine-grained module files, the directory structure is designed as Figure

4.4∗. If there are fine-grained entities in a Java file, fine-name.java, each module

is additionally stored as a file.

∗This is a prototypal structure. It is also reasonable to store class declarations for representing

logical structures.
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Three kinds of module files are stored in three kinds of directories, FE (for

fields), CN (for constructors), and MT (for methods). These directories are stored

in a directory identified with a class or interface name, which contains those

entities as shown at the right part of Figure 4.4. Anonymous classes are ignored

in this paper. Entire files and directories are stored in the file-name directory.

Directories and files in the gray space of Figure 4.4 are newly prepared for new

directory structure.

The entities we target in this dissertation are named as follows for files:

Field: field name.

Constructor: constructor name and parameter list.

Method: method name and parameter list.

Changes of module names correspond to file name changes, and the moving

of entities correspond to moving files. If a module is deleted in a commit and

reappear in a later commit, Git can output its history including disappearing

periods.

As described in Section 4.2.2, matches between renamed or moved entities are

identified based on file content similarity. If two entities are highly similar, it is

rational to detect them as corresponding entities. Because this matching technique

is simple, there may be obvious mismatches, that is, matches between different

module types, such as a match between a method and a constructor, for example.

These mismatches are distinguished easily by checking directory names whether

they are the same or not. We filter out these mismatches before providing module

histories.

Architecture

Figure 4.5 shows the architecture of Historage†. As shown in Figure 4.1, extracting

and storing fine-grained entities are conducted on each snapshot. A snapshot in
†A to construct Historage is available from https://github.com/hdrky/git2historage.

https://github.com/hdrky/git2historage
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Figure 4.5: Historage architecture.

each revision can be obtained easily from Git. Even if existing repositories are

not in the Git system, it is possible to convert them to Git repositories from most

SCM systems. To extract the fine-grained entities in Java files, we use the source

code analysis tool MASU‡, which is an open-source tool. The threshold value for

match identification is set to 30% (as a option of Git commands) based on empirical

study reported in Section 4.2.3 for filtering appropriate matching entities beyond

renaming and moving.

4.2.3 Empirical Evaluation

In this section, we empirically investigate the usefulness of our fine-grained ver-

sion control system, Historage.

Target Projects

As shown in Table 4.2, we select five open-source software projects: Eclipse WTP

incubator (WTP incubator), Apache Hadoop Common (Hdoop), Apache Subver-

sion (Subversion), jEdit, and Android framework classes and services (Android).

‡http://sourceforge.net/projects/masu/

http://sourceforge.net/projects/masu/
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Table 4.2: Open-source software projects for evaluation
Project First Commit Last Commit (# of .java) Total Commits

WTP incubator 2007-11-10 2010-07-22 1,944 541

Hadoop 2009-05-19 2010-12-26 667 375

Subversion 2000-03-01 2010-11-29 127 738

jEdit 2001-09-02 2010-10-02 546 4,399

Android 2008-10-21 2010-12-23 2,690 25,965

These projects written in Java and Git repositories are available. We cloned the

Git repositories on the 27th December, 2010.

The disk space overhead compared with original repositories and constructed

Historage depends on the projects. The over head varies from nearly equal to a

few times on the Git database.

Match Identification

We investigated every matching pair of fine-grained entities in the repositories

(the number of commits are shown in Table 4.2) except for the Android project.

As there are more than 180, 000 matching pairs in the Android project, we limited

the pairs to those existing on January, 2010, for the Android project. Module

pairs are classified according to similarity values, which are calculated by Git,

to see the impact of the threshold and to investigate the effectiveness of match

identification. We determine by hand if a matching is correct or not.

Table 4.3 shows the results for the five projects. Mismatches are matches

between different module types. It is possible to distinguish them automatically.

Shown in bold fonts, the percentage of correct matches when similarity is greater

than or equal to 30% is higher than 97% in all projects. This means that we can

identify more than 97% correct matches of fine-grained entities. Although there

are some rename changes whose similarity is less than 30%, it is now difficult

to distinguish them with our system. The recall and precision values, where

Historage provides matches with the threshold value 30%, are presented in Table
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Table 4.3: Match identification results in five open-source software projects

Project Sum† Correct (%) Measure (%)

WTP incubator

mismatches 62

s < 30 366 99 27.0 Rec. 96.7

30 ≤ s < 100 436 426 97.7 Prec. 99.6

s = 100 2,641 2,641 100.0

Hadoop

mismatches 32

s < 30 152 43 28.3 Rec. 88.1

30 ≤ s < 100 141 141 100.0 Prec. 100

s = 100 178 178 100.0

Subversion

mismatches 41

s < 30 148 88 59.5 Rec. 96.4

30 ≤ s < 100 528 521 98.7 Prec. 99.7

s = 100 1,820 1,820 100.0

jEdit

mismatches 254

s < 30 1,229 347 28.2 Rec. 94.4

30 ≤ s < 100 1,461 1,457 99.7 Prec. 99.9

s = 100 4,421 4,421 100.0

Android

mismatches 203

s < 30 1,125 98 8.7 Rec. 99.8

30 ≤ s < 100 912 903 99.0 Prec. 99.98

s = 100 61,278 61,278 100.0

†: module pairs exist in January, 2010, for the Android project, and entire

module pairs for the other projects.

s: similarity.
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Table 4.4: Match identification results for module types in the WTP incubator

project

Module Sum† Correct (%) Measure (%)

s < 30 33 6 18.2

Field 30 ≤ s < 100 45 39 86.7 Rec. 99.4

s = 100 1,142 1,142 100.0 Prec. 99.4

s < 30 21 11 52.4

Constructor 30 ≤ s < 100 59 59 100.0 Rec. 94.4

s = 100 129 129 100.0 Prec. 100

s < 30 312 82 26.3

Method 30 ≤ s < 100 332 328 98.8 Rec. 95.4

s = 100 1,370 1,370 100.0 Prec. 99.8

†: entire module pairs.

s: similarity.

4.3. The recall values range from 88.1% to 99.8%, and the precision values range

from 94.4% to 100%.

Table 4.4 represents the match identification results for each fine-grained mod-

ule type in the WTP incubator project. We can see that the percentages of correct

pairs are different depending on the module types. For example, the result on

field is relatively low. We think this is because it is more difficult to compare the

similarity with the small contents of fields. On the contrary, change type identifi-

cation of constructor achieved relatively high results. We think this is because

there is a small number of potential constructor pairs compared to method pairs.

Similar results can be seen in the other projects.

With the investigation of the results, we found that automatic match identi-

fication using Git and our filtering works relatively well. Distinguishing actual

renaming/moving when similarity values are less than 30% is part of our future

work. This result is practical enough.
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4.3 Experimental Setup

Using our Historage, we can collect historical metrics on fine-grained modules,

and conduct fine-grained prediction. We study with Java software, and Java

methods are considered as fine-grained modules.

To investigate the effectiveness of fault-prone module prediction on fine-

grained modules, we compare the prediction on different levels, that is, Java

files and Java methods. File-level and method-level prediction models are built

with well-known historical metrics proposed and used in previous studies, and

are compared with effort-based evaluation.

4.3.1 Research Questions

We investigate the following three research questions:

RQ1: Are method-level prediction models more cost-effective than file-level pre-

diction models?

RQ2: (when method-level prediction models are more cost-effective) Why are

method-level prediction models more cost-effective than file-level prediction

models?

Compared with package-level and file-level studies, there is a difference on

file-level and method-level studies. Since packages consist of files, the sizes of

faulty regions are equal in both levels. However, the faulty region sizes should

not be equal in all files and all methods. This is because a file does not consist of

methods only. For example, faults on Java fields are counted only on file-level. To

conduct fair comparison with file-level and method-level fault-prone prediction,

we target faults only in methods.
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Table 4.5: Open-source software projects for study

Name Initial Date Last Date # of commits # of authors Last LOC

ECF 2004-12-03 2011-05-31 9,748 23 15,337

WTP Incubator 2007-11-10 2010-07-22 1,133 17 370,910

Xpand 2007-12-07 2011-05-31 1,038 21 136,702

Ant 2000-01-13 2011-08-19 12,590 46 254,890

Cassandra 2009-03-02 2011-09-20 4,423 14 171,596

Lucene/Solr 2010-03-17 2011-09-20 3,485 27 26,390

OpenJPA 2006-05-02 2011-09-15 4,180 26 169,427

Wicket 2004-09-21 2011-09-20 15,033 25 339,292

4.3.2 Target Projects

We selected eight open-source projects for our study. Eclipse Communication

Framework (ECF), WTP Incubator, and Xpand were chosen from the Eclipse

Projects. Ant, Cassandra, Lucene/Solr, OpenJPA, and Wicket were chosen from

the Apache Software Foundation. All projects are written in Java. We obtained

each Git repository§.

Table 4.5 summarizes information for each studied project. The development

period ranges from 18 months to 11 years, and LOC on the last date of the studied

period ranges from 15k to 370k. Table 4.5 also presents the number of commits

(from 1k to 15k), the number of authors (from 14 to 46), and the number of files

on the last date (from 700 to 4k).

4.3.3 Metrics Collection

We collected major metrics as introduced in Section 2.2.

Code-related metrics. For code-related metrics, we measured LOC and code

§Eclipse Projects from http://git.eclipse.org/ and Apache Software Foundation from

http://git.apache.org/

http://git.eclipse.org/
http://git.apache.org/


Section 4.3 Experimental Setup 69

Table 4.6: Measured historical metrics
Name Description

Code LOC Lines of code

AddLOC Added lines of code from the initial version

DelLOC Deleted lined of code from the initial version

AddPerLOC AddLOC / LOC

DelPerLOC DelLOC / LOC

Process ChgNum # of changes

FixChgNum # of fault-fix changes

FaultNum # of fixed fault IDs

Period Existing period in weeks

FaultIntroNum # of logical coupling commits that introduce more

than one fault in other modules

LogCoupNum # of logical coupling commits that change fault-existed

modules

AvgInterval Period /ComNum

MaxInterval Maximum weeks between two sequential changes

MinInterval Minimum weeks between two sequential changes

HCM History complexity metric HCM3s

Organizational AuthTotal Total number of authors

AuthMinor # of minor authors

AuthMajor # of major authors

Ownership The highest proportion of ownership for the authors
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churn metrics. As stated in Section 2.2.1, these metrics are used in many studies.

Code churn metrics for files are easily collected from version control repositories.

With our Historage, we can collect code churn metrics for methods similarly to

collecting files.

Process-related metrics. For process-related metrics, we collect basic metrics

as stated in Section 2.2.2, such as the number of changes, the number of past faults,

the number of fault-fix changes, and the existing period of modules (age). Inspired

by cache-based approaches, we collect two types of logical coupling metrics: the

number of logical couplings with fault-introduced modules and the number of

logical couplings with modules that have been faulty. To investigate the frequency

of changes, we measured average, maximum, and minimum intervals.

In addition, we also collected one of the history complexity metrics. Based on

the empirical evaluation in [42], we selected HCM3s because it performed well.

For other parameters, we follow paper [42].

Organizational metrics. Organizational metrics and geographical metrics are

relatively difficult to collect from open-source projects though it may be possible

to mine from several software repositories. Hence, we measure ownership-related

metrics designed in [8] although there are lots of metrics, especially for organi-

zational metrics as stated in Section 2.2.3. Organizational metrics in [8] can be

collected only from version control repositories.

To measure ownership-related metrics, we follow the definition of proportion

of ownership in [8]. The proportion of ownership of an author for a particular

module is the ratio of the number of changes by the author to the number of total

changes for that module. If ownership of an author is below a threshold, the

author is considered a minor author, and otherwise a major author. In [8], values

ranging from 2% to 10% are suggested as the threshold based on a sensitivity

analysis. Bird et al. targeted compiled binaries as modules for study, which tend

to be developed by many developers [8]. On the contrary, files and methods,

which are our modules for study, are a relatively small size and are developed by
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Table 4.7: Summary of projects studied

# of Files # of Methods

Project Tag LOC All Faulty (%) All Faulty (%)

ECF Root Release 3 0 113,787 1,715 166 (9.7) 11,121 643 (5.8)

WTP Incubator v20090510 75,170 606 123 (20.3) 5,492 317 (5.8)

Xpand Galileo RC1 90,976 1,247 86 (6.9) 8,543 295 (3.5)

Ant ANT 180 RC1 101,896 912 87 (9.5) 9,862 156 (1.6)

Cassandra casandra-0.6.0-rc1 46,672 296 93 (31.4) 4,419 282 (6.4)

Lucene/Solr lucene solr 3 1 186,484 1,940 60 (3.1) 14,478 89 (0.6)

OpenJPA 2.0.0 148,800 1,305 91 (7.0) 21,323 165 (0.8)

Wicket wicket-1.4.0 248,338 3,663 92 (2.5) 25,345 196 (0.8)

relatively only a few developers. To take into account this difference, we set the

threshold value at 20%.

4.3.4 Fault Information

To identify fault information, we used the SZZ algorithm explained in Sec-

tion 2.1. Fault reports are available from https://bugs.eclipse.org/bugs/ for

Eclipse Projects, https://issues.apache.org/bugzilla/ for Ant, and https:

//issues.apache.org/jira/ for the other projects in the Apache Software Foun-

dation.

As reported in [63], naive differencing analysis on step 1 of the procedure

should yield incorrect fault-introducing changes, such as non behavior changes

and just format changes. To remove such false positives, we ignore changes

on blank lines, comment changes, and format changes. In addition, we ignore

changes not on methods to identify faults on methods as stated in Section 4.3.1.

We identify faulty files and methods in one revision for each project. We

select particular tagged revisions or revisions that are nearby tagged revisions as

https://bugs.eclipse.org/bugs/
https://issues.apache.org/bugzilla/
https://issues.apache.org/jira/
https://issues.apache.org/jira/
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studied revisions. Table 4.7 shows the result of faulty module identification. The

percentage of faulty files ranges from 2.5% to 31.4%, and the percentage of faulty

methods ranges from 0.6% to 6.4%.

4.3.5 Prediction Models

We adopt the RandomForest algorithm [73] as a fault-prediction model. Lessmann

et al. confirmed its good performance [72]. There are several other studies

using the RandomForest algorithm for fault-prone prediction [54, 79]. We use a

statistical computing and graphics tool R [107] and a randomForest package for our

study. Using prepared modules in Table 4.7, we conduct a 10-fold cross validation

analysis.

4.4 Results

We present our results following the research questions stated in Section 4.3.1.

Plots of the results are shown from the Eclipse Communication Framework (ECF)

and the Lucene/Solr only. The other results are discussed in the text.

To compare different prediction models with effort-based evaluation, the per-

centage values of faults found on the same value of the percentage of LOC should

be easy to understand. For this cutoff value, 20% of LOC is used in some stud-

ies [2,54,79,99]. This value can be considered as more realistic than investigating

entire modules.

4.4.1 Effort-based Evaluation: File-level vs. Method-level

RQ1: Are method-level prediction models more cost-effective than file-level pre-

diction models?

Figure 4.6 shows two plots of cost-effectiveness curves. A file-level curve

(dashed) and a method-level curve (solid) are plotted. We can see that the method-

level curves rise larger than the file-level curves in a small LOC. As a result, more
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Figure 4.6: Cost-effectiveness curves of file-level and method-level prediction.

faults can be found by method-level prediction when investigating 20% of LOC,

represented by the dotted lines. We found similar results for all projects.

As insisted by Arcuri and Briand, we should collect data from a large enough

number of runs to assess the results of randomized algorithms because we obtain

different results on every run when applied to the same problem instance [1].

RandomForest is a randomized algorithm. Figure 4.6 shows the result on one

run. Following the suggested value of 1, 000 as a very large sample [1], we

conducted a 1, 000 times run for all projects.

Figure 4.7 shows the results of the 1, 000 run. In each project, boxplots of the

value of percentages of faults found in 20% LOC for file-level and method-level

are shown. In all projects, we observed the small distributions of the values, and

method-level achieved higher than file-level.

In Table 4.8, we summarize the median values of the percentages of found

faults when investigating 20% of LOC in the system. The second and third

column shows the values of file-level and method-level results, and the fourth

column shows the delta of the values (method-level value - file-level value). We
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Figure 4.7: Boxplots of file-level and method-level prediction. Percentages of

faults found in 20% LOC on a 1, 000 run.

Table 4.8: Median values of the percentage of faults found in 20% LOC on the

1, 000 run

Project File Method Delta

ECF 0.446 0.748 0.302

WTP Incubator 0.398 0.697 0.299

Xpand 0.233 0.546 0.313

Ant 0.276 0.494 0.218

Cassandra 0.151 0.615 0.564

Lucene/Solr 0.533 0.674 0.141

OpenJPA 0.187 0.521 0.334

Wicket 0.685 0.883 0.198
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Figure 4.8: Size of modules, file-level and method-level.

can see that method-level prediction improved by at least 0.14 values from file-

level prediction. In the Cassandra project, which records the lowest median value

on file-level, method-level prediction improved by more than 0.56. From method-

level results, we observed that nearly 50% and more faults can be found during

quality assurance activities on 20 LOC.

Based on these results from eight open-source projects, we can answer research

question RQ1. The answer is clear: method-level prediction is more cost-effective

than file-level prediction.

4.4.2 Why is Method-level Cost-effective?

RQ2: Why are method-level prediction models more cost-effective than file-level

prediction models?

Intuitively, fine-grained prediction may more cost-effective than coarse-grained

prediction because finding faults in large modules is hard. Figure 4.8 shows box-

plots of LOC for files and methods. Comparing the median value of LOC, methods

are nearly ten times smaller than files.
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Figure 4.9: Number of total and faulty methods in faulty files.

Next, we investigated faulty files by considering how many methods exist in

one file, and how many faulty methods exist in the file. The boxplots of Figure

4.9 present the results. In both projects, most of the faulty files contain nearly

or more than 10 methods, but there are only a few faulty methods. From all of

the projects, the median values of the number of entire methods range from 8

to22, and the median values of the number of faulty methods range from 1 to 3

methods. Although there are many methods in one faulty file, there are only a

few actual faulty methods. This indicates that we need to investigate most of the

not faulty methods in a file if the file is predicted as faulty. Because of this cost

for file-level prediction results, method-level prediction is more cost-effective.

4.5 Discussion

4.5.1 Effectiveness of Prediction Models

To show the effectiveness of method-level prediction, we present some cost-

effectiveness curves in Figure 4.10. Method-level prediction results are repre-
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Figure 4.10: Cost-effectiveness curves of optimal, LOC-based ordering, and

method-level prediction.

sented as solid lines. Optimal prediction results, that is, complete classification of

faulty and non faulty modules, are represented as bold, solid lines. Dotted lines

represent LOC-based results, which are the decreasing ordering of module sizes.

As shown in Figure 4.10, our prediction curves are nearer to optimal curves than

LOC-based ordering curves. With these results, we can see that our prediction

models are effective.

4.5.2 Threats to Validity

Target projects are limited to open-source software written in Java. For external

validity, there is a threat of generalization of our result. Projects we targeted are

only open-source projects written in Java. One of good points of targeting only

open-source software projects in Java is that there is no opposite result regarding

the effectiveness of method-level prediction compared with file-level prediction.

As described in Section 4.3.2, eight targeted projects varied in size and devel-

opment period. For example, the Lucene/Solr project has less than two periods,
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and prediction is conducted with only a one-year history and yields a good result.

This result may promote the adoption of historical metrics based prediction for

young projects.

For future work we intend to widen our study to other projects written in

other programming languages, and work on industrial projects.

Collection of faulty information has problems. For construct validity, the

main threat is in the phase of collecting fault information. Though we adopted

a well-known SZZ algorithm discussed in Section 2.1, it has been reported that

there is a linking bias in identifying faults with revision logs and fault reports [6].

Recently, a new algorithm of linking faults and changes has been proposed

[116]. This algorithm may mitigate this threat.

Effort-based evaluation may not reflect actual efforts. There is a threat to

construct validity for our evaluation. To compare file-level and method-level

prediction, we adopted an effort-based evaluation with cost-effectiveness curves,

which has been researched [2,69,79,83,99]. This effort-based evaluation considers

the cost of quality assurance activities to be roughly proportional to the size of the

modules, that is, to the lines of code. For coarse-grained modules, such as files

and subsystems, it seems acceptable to consider the sizes of modules as effort.

However, for methods, it may not be acceptable. For example, though methods

are small, they might require much more effort than big methods because of

complex call relations or other deep dependencies. Because of this threat, we

need empirical investigation of the actual effort of quality assurance activities for

different levels of modules.

4.6 Summary

In this chapter, we developed Historage, a fine-grained version control system for

Java to conduct fine-grained prediction with recently proposed historical metrics.

Using eight open-source projects, method-level and file-level prediction models
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are compared based on effort-based evaluation. From the study we clarify that

method-level prediction is more cost-effective than file-level prediction.

Contributions of this study can be summarized as follows:

• Development of a fine-grained version control system, Historage. To the

best of our knowledge, this system is the first storage that can store entire

histories of fine-grained modules including renaming and moving changes.

We have made our tool publicly available at https://github.com/hdrky/

git2historage.

• The first study of fine-grained prediction with historical metrics. Using

traditional metrics, there are some studies conducting fine-grained predic-

tion. Although recent studies have observed that historical metrics are more

effective than traditional complexity metrics, it had been difficult to collect

fine-grained historical metrics because there had been no technique to obtain

entire fine-grained histories. After developing Historage, we can first con-

duct a study of fine-grained prediction. From our empirical evaluation, we

clarified that method-level prediction is more cost-effective than file-level

prediction.

https://github.com/hdrky/git2historage
https://github.com/hdrky/git2historage
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Conclusion

5.1 Contributions

5.2 Future Work

5.1 Contributions

In this dissertation, we have addressed fault-prone module prediction using ver-

sion histories. In sum, this dissertation contributes to the following:

• A systematic review of recent fault-prone module prediction studies.

• Text-mining-based fault-prone module prediction.

• Fine-grained fault-prone module prediction with historical metrics.

First, we presented a survey of recent studies by conducting a systematic

review∗. Recent findings in empirical results of fault-prone module prediction

illustrates the effectiveness of historical metrics compared to traditional complex-

ity metrics. We classified the studied metrics into eight categories based on

measurement targets (code, process, organization, and geography) and version
∗We have provided our survey results at http://www-ise4.ist.osaka-u.ac.jp/survey/

81
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information (present version and previous versions). We clarified which metrics

are used frequently. We also clarified that newer historical metrics were stud-

ied in industry first, and then widely used in studies in open-source software

projects. In addition, granularity levels of prediction models were investigated,

and revealed that there is no study using well-known historical metrics to build

prediction models.

Based on open issues of fault-prone module prediction studies, we developed

prediction models: text-mining-based prediction models and fine-grained prediction

models.

Text-mining-based prediction models were developed to tackle the issue of

laboriousness in collecting metrics. This issue has been a big barrier for adopting

fault-prone prediction models for practical use. For example, when collecting

complexity metrics, analysis of source code is needed, and this requires program-

language-specific tools, and collecting historical metrics requires software repos-

itory mining, which requires repository-specific mining tools. Preparing these

tools is a laborious task. To develop easily applicable prediction models, we stud-

ied prediction models using a text-mining technique. In this model, the numbers

of tokens in source code are considered metrics. Since we only have to count

the number of tokens in source code, we do not need specific tools. Using these

simple and large-scale token metrics, we built logistic regression and naive Bayes

models. We conducted an empirical study with open-source software projects

by comparing our token metrics and a well-know metrics suite which includes

complexity metrics and some historical metrics, thereby achieving higher predic-

tion results. The results imply that our text-mining-based metrics are useful in

building practical prediction models.

Fine-grained prediction models are considered cost-effective. Although there

are many studies reporting the effectiveness of historical metrics, they remain at

the file level or at a coarser level. Big challenges exist in historical metrics based

prediction on fine-grained modules in analyzing version histories to collect met-
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rics. Since existing software configuration management systems store file-level

version histories, it has been difficult to obtain version histories of fine-grained

modules. To tackle this difficulty, we developed Historage, a fine-grained version

control system†. Historage is constructed on top of Git, and can control method

histories of Java as well as file histories. With this system, we collected the same

historical metrics on method-level and file-level, and built prediction models.

Using open-source software projects, we compared both prediction models with

effort-based evaluation. The results indicate that method-level prediction models

are more cost-effective than file-level prediction models. To the best of our knowl-

edge, this is the first study of fine-grained prediction with well-known historical

metrics.

5.2 Future Work

During the work on this dissertation, we encountered some required future re-

search directions. In the following, we discuss future work to overcome the

limitations of our studies and to strengthen the support for software maintenance.

(1) Generalization of proposed prediction models

In this dissertation, we developed two types of prediction models: text-

mining-based prediction models and fine-grained prediction models. To show

the effectiveness of these models, we have conducted empirical studies with

open-source software projects written in Java. For generalization of our models,

we want to apply our models to different types of projects including industrial

projects. In addition, application to projects written in other languages should be

required.

(2) Mining historical metrics related to organization and geography in open-

source software projects

As seen in Section 2.4, organizational and geographical historical metrics have
†A tool to construct Historage is publicly available at https://github.com/hdrky/

git2historage

https://github.com/hdrky/git2historage
https://github.com/hdrky/git2historage
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not been studied with open-source software projects. Such metrics can not be eas-

ily collected for version history information only from publicly available data.

Since some papers reported that these metrics are more effective than tradi-

tional complexity metrics, and code-related and process-related historical metrics.

Therefore, collecting such metrics for open-source software projects too is desir-

able. In the research area of mining software repositories, mining social networks and

activities has recently become a hot topic. If we can collect more organizational

and geographical metrics, our fine-grained prediction models should improve.

(3) Integrating fault-prone module prediction tools with software development

management tools

When considering practical management activities, just predicting fault-prone

modules is not helpful enough. We think prediction tools should be integrated

with other support tools for software maintenance. The followings are desirable

requirements of an integrated system.

• Controlling every module history.

• Collecting metrics automatically.

• Predicting at all development and maintenance phases, such as at commit-

ting, during refactorings,　 before release, and at the fix stage.

• Tracking predicted fault-prone modules. The system supports improving

modules so as not to introduce and infect additional faults.

• Reporting prediction results readably. Fault-prone module prediction is not

only for developers; prediction should also become mandatory for managers

so they can control projects appropriately. Visualization of prediction results

should be useful for developers and managers.

(4) Empirical study of software evolution for fine-grained modules

Clarifying the characteristics of software evolution might be useful for improv-

ing software quality and preventing faults. To see the evolution, understanding
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changes is important. Although Historage can track methods if names or paths

are changed, it is not possible to distinguish whether the methods are moved or

not with the technique stated in Section 4.2.2. To clarify a move or not, we have

proposed a technique [48]. With this additional technique, we plan to investigate

detailed version histories.

Recently, analyzing code clone evolution has become /an active research area

[4, 22, 27, 60, 109]. Although the presence of code clones has been considered

harmful, there are some recent empirical case studies that report unexpected

results from the analysis of code clones.

• There are long-lived code clone instances that do not need to be avoided

[36, 60].

• Though unintentional changes to code clone instances may lead to faults

with higher a probability, not all code clones induce faults [53].

• As many as 71% of code clones could be considered to have a positive impact

on maintainability [55].

Based on these reports, in the future we think it would be interesting to analyze

software evolution related to code clones to improve software quality.
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