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Abstract

In the present thesis, we consider two problems, namely, the maximum likelihood esti-

mation in self-correcting point processes and the robust estimation in the Poisson processes.

In Chapters 2-4, we treat the self-correcting point process N(:) with the conditional
intensity p¥(pt — N(t)), where p is a positive constant and 9(:) is a function satisfying
suitable conditions. The process N(-) corrects its conditional intensity through the func-
tion 9(-) so that the absolute value of pt — N(t) may tend to become small. From this
self-correcting mechanism, we see that a skeleton process {n — N(n/ P)}n=0,1,2,.. is the
ergodic (i.e. positive recurrent) Markov chain, which implies the law of large numbers for

functionals of the Markov process pf — N(t).

We cﬁnsider a self-correcting point process with a parametrized conditional intensity
and investigate asymptotic properties of the maximum likelihood estimator (MLE) in
Chapter 3. Using the above law of large numbers, we see that a standardized information
matrix converges to a positive definite matrix. Since we can not give the explicit repre-
sentation of the MLE, we examine the likelihood ratio and show that the family of the
measures induced by the self-correcting processes is locally asymptotically normal. This
property is closely related to the likelihood ratio and plays an important role in investi-
gating asymptotic behavior of the MLE. From these results, we obtain consistency and

asymptotic normality of the MLE.

In Chapter 4, we treat a self-correcting point process whose conditional intensity has
only two levels §; and 6, (0 < 6; < 1 < 6;). We explicitly give the log likelihood and
the MLE of the parameter § = (61,602)', where v' denotes the transposition of a vector .

Moreover we obtain asymptotic normality of the MLE and express its asymptotic variance

i



by 6; and 6,.

In the last chapter, we discuss the robust estimation problem in the Poisson processes
with a periodic intensity. It is well known that the MLE is a solution of the likelihood equa-
tion and is asymptotically normal and efficient under some regularity conditions. However,
if the observation is contaminated by noises, the MLE is not always an appropriate esti-
mator. So we should construct robust estimators in the sense that high efficiency is kept
even if the observation is contaminated. For this purpose we treat M-estimators which
are solutions of estimating equations. We investigate their asymptotic properties such as
consistency in a sense and asymptotic normality. Furthermore we obtain the M-estimator

which has the minimax asymptotic variance under suitable conditions.
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Chapter 1. Introduction

We consider a series of events which discretely occur on the time axis [0, 00), where
two or more events do not occur at the same time. Let N(¢) be the number of events
occurring in the time interval [0,¢) for each ¢ € [0,00). The process N(-) is called a
point process. Denoting occurrence time of i-th event by = (i = 1, 2, 3, ...), we see that
N@) = 372, x(n < t), where x(-) is the indicator. Clearly, the sample path of the
process N(-) is piece-wise constant and has unit jumps. Assume that the point processes

considered here have a conditional intensity A(¢|F;) which is defined by

.1
At|FR) = }ffﬁ) EP(N(t + At) — N(t) > 1|F)

) 1
= lim CP(N(t+Af) = N(1) = 1|F),

where F; is the o-field generated by {N(s);0 < s < t} (see e.g. Daley and Vere-Jones
(1972), Rubin (1972) and Brillinger (1978) ). It is well known that the conditional intensity
A(t]F:) determines the distribution of the point process. If the point process N(-) has the
Markov property, its cc;nditional intensity depends only on the count N(¢) up to time ¢
but is independent of behavior of N(-) before time ¢ and vice versa. Thus in order that the
point process has the Markov property, it is necessary and sufficient that its conditional
intensity A(f|F;) is equal to its count conditional intensity A(¢|N(2)) (= E[A(E|F:)|N()]).
The pure birth process with the instantaneous birth rate A (> 0) is a typical example of
the Markov point processes and its conditional intensity is AN (). In the present thesis, we
treat only Markov point processes, where we can identify the conditional intensity A(t|F;)

with the count conditional intensity A(#|V(?) ).



1. Introduction

We consider point processes with the conditional intensity

A(RIN({) ) = p(pt — N(2)),

where p is a positive constant and ¥(-) is a function satisfying the following conditions:

(C1) for any =z € R (the real line),
0 < 9(2) < o0,
(C2) there exists a positive constant cp such that
Y(z) > co for all z > 0,

(C3) lim inf Y(z)>1 and limsupy(z)<1.

L+ — 00

For a sufficiently large ¢ > 0, if few events occur up to time ¢, 2 = pt — N(¢) is
sufficiently large. Then the intensity py(z) is larger than p by the condition (C3). We
can interpret p as the rate of increase of pt and the intensity py(z) as the mean rate of
increase of N(-) under the condition that pt — N(t) = z. Thus it is expected that the
forthcoming = = p(t+s)— N(t+5) (s > 0) is smaller than the present z = pt — N(¢) if it is
sufficiently large. On the other hand, if a considerable number of events occur up to time ¢,
z = pt— N(t) is negative and its absolute value is sufficiently large. Then it is expected that
the forthcoming z is larger than the present z. As stated above, the process N(:) corrects
its conditional intensity so that the absolute value of pt — N(¢) may tend to become small
when its absolute value is sufficiently large. Isham and Westcott (1979) introduced such
point processes and called them self-correcting point processes. They showed the following

results about the mean and the r-th moment of the self-correcting point process N(-):
limsup |E[N(#)]—pt] < oo
t—o00

lifrisol.}p EIN@)— E[N@#)]|" < oo (r>0).



1. Introduction

Vere-Jones and Ogata (1984) obtained a version of the law of large numbers for the process
pt — N(t) under the condition that the process N(-) have an exponential form intensity,
that is, A(¢|N(t)) = exp{a + B(t — N(t))}, where & and f are constants. Ogata and
Vere-Jones (1984) treated a self-correcting point process with a parametrized intensity
exp{a+B(t—N(t) )++t/T} (T is the observation time) and obtained asymptotic normality
of the MLE’s of the parameters «, § and v. We extend their results to self-correcting point

processes with more general intensity.

In Chapter 2, we shall show a version of the law of large numbers for the process
pt — N (t) under the conditions (C1)-(C3) and

(C4) for any K > 0, there exists an M > 0 such that

Ye)<M  for |z| < K.

The condition (C4) holds for ordinary functions (e.g. piece-wise continuous functions).

We can choose the scale of the time axis so that p = 1, which is verified as follows. Let
N (t) = N{(ct), where ¢ is a positive constant. Then the intensity of the process N (t) is
given by A

MR () = lim KlgP(f\f(t +Af) - N(t) = 1|F ().

It 1s easy to check that
AAR(®) = ¢ lim C—IA—tP(N(ct + cAt) — N(et) = 1|N(ct)
= cA(ct| N(ct))
= cpyp(cpt — N(ct))
= cpip(cpt — N (1))

For ¢ = 1/p, the intensity of the process N(-) is %(t — N(¢)). Thus, without loss of

generality, we may suppose that the conditional intensity of the process N(-) is



1. Introduction

AEN()) =¥ - N(t)) = ¢(X(2)),
where
X(@)=t—N().

The procéss X (+) inherits the Markov property from the self-correcting point process N().

In Section 2.2, we consider the Markov chain {X(n)},=0,1,2,.. and show that this
chain is irreducible, aperiodic and positive recurrent (i.e. ergodic). Hence the Markov
chain {X(n)} has the invariant distribution {r;}. Vere-Jones and Ogata (1984) used
Theorem 4 in Tweedie (1983a) to show that the Markov chain {X(n)} is ergodic under
the condition that the process N(-) have an exponential form intensity. Their idea is very
useful here as well. To check the conditions of Theorem 4 in Tweedie (1983a), upper
bounds of a conditional expectation E[b~X("+1|X(n) = i] are required, where n and i
are integers and b is a positive constant. We give these upper bounds in Lemmas 2.3-2.5.
Furthermore, we obtain existence of an exponential form expectation with respect to the
invariant distribution {7;} of the Markov chain {X(n) }.

In Section 2.3, we show that the weighted time average of a functional of the Markov
process X (-) converges in probability to its mean on the sample space, that is,

T 1
/ w(t, KX () dt = > mE [ / h(X (1)) dt I X(0) = j]
0 ics 0

in probability as T' — oo, where w(?,T) is a weight, A(-) is a function, S is the state space
of the Markov chain {X(n)} and {x;} is the invariant distribution of {X(n)} (see Theorem

2.9). This is a version of the law of large numbers.

In Chapter 3, we consider a self-correcting point process with a parametrized condi-

tional intensity

A, 0) = p(B{pt — N (1) +a}),



1. Introduction

where the parameter § = (a, 8, p)’ (v' denotes the transposition of a vector v) belongs to
the parameter space © = R*(O, Mg)x(0,00) and Mg (> 1) is a constant. The parameters
a, B and p are respectively related to the origin of the time axis, sensitivity of the self-
correcting and the scale of the time axis. We shall investigate asymptotic properties of
the maximum likelihood estimator (MLE) of the parameter # (but we do not discuss the
estimation problem of the function (-} or we treat it as a known function). Unfortunately,
we can not give the explicit representation of the MLE. Thus we do not examine the MLE
but asymptotic behavior of the likelihood ratio which is normalized by a matrix associated
with the information matrix. In Section 3.2, we show that a standardized information
matrix converges to a positive definite matrix by using the law of large numbers shown in
Chapter 2. In Section 3.3, we shall review definition and some basic properties of local
asymptotic normality. Moreover we obtain local asymptotic normality of the family of the
measures induced by the self-correcting processes. This property is closely related to the
likelihood ratio and plays an important role in investigating asymptotic behavior of the
MLE. In Section 3.4, we obtain that the MLE 1s éonsistent and asymptotically normal

under suitable conditions.
In Chapter 4, we treat a point process with a very simple conditional intensity

AEIN()) = pyp(pt = N(t) + a)
p1 i pt—N{#)+a<0,
phs if pt — N(t)+a >0,
where #; and f; are constants satisfying that 0 < 6; < 1 < 8,. We easily check the
conditions (C1)-(C4) for the function P(z) =6, if # <0 and =0 if z > 0. Hereafter we
call this process N(-) a simple self-correcting point prﬁcess.
We concentrate our interest on estimation of the intensity levels and treat o and p as

5



1. Introduction

known constants. We can choose the location and the scale of the time axis so that a = 0
and p = 1. Hence, without loss of generality, we may assume that the conditional intensity

of the process N(-) is

AN (2)) = $(X(t))
6, if X(¢)<0,
{ 9, if X(t)>0,

where X(t) =t—N(t) and @ = (61,0;)'. In Section 4.2, we explicitly give the log likelihood
and the MLE of the parameter §. In Section 4.3, we calculate the invariant distribution of

the Markov chain {X(n) } and obtain that

DA(T)| _ -1
T 6z — 6,

in probability as T' — oo from the law of the large numbers shown in Chapter 2, where
|D1(T)| denotes the measure of the region D;(T) = {# € [0,7]; X(¢) < 0}. From the
above result, a standardized information matrix converges to a positiye definite matrix
which is represented by 6, and ;. In Section 4.4, we show that the MLE is asymptotically
normal and explicitly give its asymptotic variance. Furthermore we obtain that the family
of the measures induced by simple self-correcting point processes is locally asymptotically

normal,

In Chapter 5, we consider a Poisson process N (¢) with a parametrized intensity A(z, 6),
where the parameter 6 belongs to a bounded open interval © of R. Note that the intensity
A(t,0) is deterministic. The log likelihood function based on the observation (N(t);0 <

t <T) up to time T is given by

T, 0) = / " Jog A(t, 6)dN(t) - / * A, 0t



1. Introduction

The MLE maximizes the log likelihood £(T’,6) and is a solution of the likelihood equation

T 3 T,
/0 %E—::—z;—dN(t)— /0 A, 0)dt = 0

under some regularity conditions, where :\(t, 6) is the derivative of A(,0) with respect to 6.
Moreover it is well known that the MLE is consistent, asymptotically normal and efficient
(see e.g. Kutoyants (1984)).

If the artificial model does not sufficiently reflect the generation mechanism of the data
or if the data are contaminated by noises, the true intensity u(t) of the process N(:) may
not belong to the parametric model {A(¢,8);8 € @}. In such circumstances, the MLE is
not always an appropriate estimator of the parameter 6.

For example, we shall consider the following point process N(:). Let the true intensity
p(t) be (1—¢€)f(t)+ec(t) and A(t,0) = f(t—0), where € denotes the rate of contamination,
f(-) and ¢(:) are periodic even functions with the period 1 and the phase parameter 8
belongs to @ = (—%, %) If the data are not contaminated (i.e. € = 0), the MLE is a very
good estimator. However its asymptotic efficiency diminishes for € > 0. So our purpose is
to construct robust estimators in the sense that high efficiency is kept even if the data are
contaminated.

To get robust estimators, we investigate M-estimators which are solutions of generalized
likelihood equations. In Section 5.2, we obtain that our M-estimators are consistent in
a sense and asymptotic normal even if the true intensity p(¢) does not belong to the
parametric model {A(¢,8);0 € @}. In Section 5.3, we illustrate how to get a robust M-
estimator for the above model with an unknown phase parameter. Moreover we show that
our robust estimator has the minimax asymptotic variance provided that the true intensity

belongs to a suitable class.



Chapter 2. Law of Large Numbers in Self-Correcting

Point Processes

2.1. Introduction

We consider a probability space (2, B,P). For i = 1,2,3,... and w € 2, we denote
occurrence time of i-th event by 7;(w) (> 0), where the events discretely occur on the time

axis [0, 00) and two or more events do not occur at the same time. Let

N(it,w)= Zx(‘r,-(w) <t),

where x(-) is the indicator. Then N(¢,w) is called a point process and denotes the number
of events occurring in the time interval [0,). We usually abbreviate N(t,w) as N(t).
In the present chapter, we consider the self-correcting point process N(:) with the

conditional intensity
(L1) At|F2) = A(@N(2)) = po(pt — N(2)),

where p is a positive constant and ¥(-) is a function satisfying the conditions (C1)-(C4)
in Chapter 1. We can choose the scale of the time axis so that p = 1. Hence, without loss

of generality, we may assume that the conditional intensity of the process N(-) is

(1.2) AN (2)) = $(t — N(t)) = $(X(¢)),
where
(1.3) X(t)=t—- N().

The process X(-) inherits the Markov property from the self-correcting point process N(-).

8



2.2. Ergodicity of the Markov chain {X(n}}

Under the condition that the process N{(-) have an exponential form intensity, that
is, ¥(z) = exp{z}, Vere-Jones and Ogata (1984) obtained the law of large numbers for
the Markov process X (-). We shall show the law of large numbers under more general
conditions, namely, (C1)-(C4). For this purpose, we shall give upper bounds of conditional
expectations of the Markov chain {X(n) },=0,1,2,... and show that this chain is irreducible,
aperiodic and positive recurrent (i.e. ergodic) in Section 2.2. Vere-Jones and Ogata (1984)
used Theorem 4 in Tweedie (1983a) to show that the Markov chain {X(n)} is ergodic.
Their idea is very useful here as well. In Section 2.3, we show that the weighted time
average of a functional of the Markov process X{(-) converges in probability to its mean
on the sample space under the conditions (C1)-(C4). This is a version of the law of large

numbers.

2.2. Ergodicity of the Markov chain {X(n)}

For fixed # € R, we consider a point pfocess Ny (-) with the conditional intensity
A(|NL(3)) =y + 2 — N (t)).
Then we obtain the following lemma because the distribution of a point process is com-
pletely specified by its conditional intensity (see e.g. Bremaud (1981)).
Lemma 2.1. For any 7 >0, any:s > 0 and any n =0,1,2,...,
P(N(r+s)— N(r) =n|X(7) = 2) = P(Ny(s) = n)

provided that P(X(7) = «) > 0, where N(-) is the self-correcting point process with the

conditional fntensity (1.2) and X(-) =t — N(1).

From the above lemma, the transition probability P(X(n + 1) = j|X(n) = i) (=
P(N;(1) =i+ 1 - j)) is independent of n, which implies that the Markov chain {X(n)}

9



2. Law of Large Numbers in Self-Correcting Point Processes

has the stationary transition probability p;; (= P(X(n + 1) = j|X(n) = ¢)). Since
X(n)—X(n+1) = N(n+1) = N(n) — 1 > —1, we have that p;; = 0 for j > i + 2.

Therefore the transition matrix of the Markov chain {X(n) } is written as

P-2,-2 P-2,-1 0
DP-1,-2 P-1,-1 P-1,0

(2’1) Po,-2 Po,-1 Po,0  Poa
Pi,-1 P1,-1 P10 P11 P12
P2,-2  P2,-1 P20 P21 P22 P23

\...

)

If for some z; € R, the integral fol ¥(t + 21)dt of the conditional intensity is equal to
0 (from the condition (C2), such an z; is not greater than —1), we have that P(N,, (1) =

0) = exp{— fol Y(t + x1)dt} = 1, which implies p;; = 0 for ¢ > 1 > j. Let
1
ko = — max {k € Z; there exists an z; > k such that / Y(t+z,)dt = 0} ,
0

where Z is the set of all integers. If for any z € R, fol Y(t +2z)dt >0, put kg = oc0. It is

clear that kg is a positive integer (or infinity). We easily check that

Pii-1 >0 fori>—-ky+1

and

pi;j =0 fori>—ko>j.

From the conditions (C2) and (C4), we have that p; ;41 = exp {-—fol Yt + i)dt} > 0 for
all ¢ and that pgo = fol ¥(s) exp {—fos Y(t)dt — f: Y(t — 1)dt} ds > 0. Consequently we
obtain the following lemma.

10



2.2. Ergodicity of the Markov chain {X(n)}

Lemma 2.2. The discrete-time process {X(n) },=01,2,.. is an irreducible and aperiodic
Markov chain defined on the state space S = {i € Z; i > —ko}, where Z is the set of all

integers and ko is given above.

To show that the Markov chain {X(n)} is ergodic, the following lemma is required.

Lemma 2.3. Let S be the state space of the Markov chain {X(n)} and p;;’s are its

transition probabilities. Then we have that for any i € S and any b > 1,

E XX (n) =i] = Y pisb~
JES

<b7 1 exp{\(b—1)},
where \; = sup{¥(z); ¢ < i+ 1} (< co by the conditions (C3) and (C4)).
Proof. From Lemma 2.1, we have that

(22) E[b—X(n+1)|X(n) = 2'] — b—iE[b“X(n+1)+X(ﬂ)|X(n) = l]
= b= BN AN X (n) = ]

— b—i—lE[bN,'(l)] ,

where N;(-) is a point process with the conditional intensity (¢ +: — N;(t)). We easily
see that Y(t + ¢ — N;(t)) < A; for 0 < ¢ < 1. The point process M;(-) with the constant
conditional intensity A; is the homogeneous Poisson process with the parameter A;. Since
the conditional intensity of the process N;(-) is dominated by one of the process M;(-), we

have that

EPpNM) < E[pMM)]

— exp{A(b— 1)}

11



2. Law of Large Numbers in Self-Correcting Point Processes

(see Deng (1985) for the relevant comparison theorem). From (2.2) and the above inequal-

ity, we obtain the conclusion of the present lemma.

We consider the following equation

(2.3) exp{c(z —1) } =z,

where ¢ is a positive constant. It is clear that # = 1 is a solution of the above equation
for every c¢(> 0). For ¢ # 1, the above equation has exactly two solutions. Denoting the
solution except 1 by zg, 1t is easy to check that forc¢ > 1,0 < zp < 1 and thatfor0 < ¢ < 1,
zg > 1. Let by be the solution (except 1) of the equation (2.3) for ¢ = lirg’iolgf ¥(z), b1 be

the solution for ¢ = limsup ¥(2) and

(24) ao=min{i,b1}.
bo

If iminf ¥ (z) = oo, then put by = 0 and if im sup ¥(z) = 0, then b; = co. Then we can

easily check that 0 < bg < 1 and ap > 1 by the condition (C3). We will use ao and bg in

Lemma 2.5 and the following lemma, respectively.

Lemma 2.4. For any b € (bo,1), there exist an n > 0 and an ig > 1 such that for any
1> io,
E[b~X(H) | X(n) =i] = pi;b™
JjES

< b"i+77

Proof. We easily see that for any b € (bo, 1), exp{e(b—1)} < b, where ¢ = lim inf ¢ (z)
(> 1 by the condition (C3)). Hence we can find a v € (1,c) such that exp{v(b — 1)} < b.

Since v < ¢(= liminf ¢(z) ), there exists a positive integer k; such that ¥(z) > v for all

12



2.2. Ergodicity of the Markov chain {X(n)}

z > k1. Let M;() be a point process with the conditional intensity

v if M;(t)<i—ky,

0 if M;(t)>i—ky,

where x(-) is the indicator. It is easy to check that Y(t +i—m) > v - x(m <i— k) for

u-x(Mi(t)sz—k1)={

m=20,1,2,... and 0 <t < 1. We then obtain that
(2.5) B[NV < BpM )]

because 4% is decreasing in z (see Deng (1985) ).

We have that

i—ky
bM (1) Z bm + bi_k1+1P{Mi(1) =, i - kl + 1}

—exp{rv(b—1)} as i— 0.

Since exp{v(b — 1)} < b, there exists an 5 > 0 such that exp{wv(b— 1)} < b1*7 (< b).

Moreover we can find an ¢g > 0 such that
ERMM] <817 forall i > dp.
From (2.2), (2.5) and the above inequality, we obtain the required inequality.

The following lemma is also required to show that the Markov chain {X(n) } is ergodic.

Lemma 2.5. For any b > 1 and any i > 0,

> pibT <expllo(b-1)},

JESY
where S; = {j € S;j < 0} and Ag = sup{¥(z);z < 1}.

Proof. We have that

2 :Pub I = X(X(n+1) < O)b—X(n+1)|X(n) —z]
j€S1
= E[x(N:(1) > i+ 1)pN:M-i-1),

13



2. Law of Large Numbers in Self-Correcting Point Processes

where N;(-) is a point process with the conditional intensity ¢ (¢ +i — N;(t)). Let M;(:)

be a point process with the conditional intensity
A i M;(2) <4,

At M;(t)) = { do if Mi(t)>i+1

where A; = sup{¥(z);2 < i+ 1}. Since the conditional intensity of the process N;(-) is

dominated by one of the process M;(-), we see that
Elx(N;(1) 2 i + )b 071 < Blx(Mi(1) 2 6+ e,
Furthermore, we have that

Elx(M;(1) > i + 1)pM:(1)—i-1)

= ib’“P{M;(l) =i+1+k}

k=0
= ibk/ (—/\;,t—)iexp{—/\,-t} PV Mk'—t)}—k exp{—Ao(l —t)}dt
k=0 YO " ’

i1 1
= /\'2,! exp{Ao(b — 1)}/0 t* exp{—[Ai + do(b— 1)]t}dt

/\,_H-l 1 )
< eXp{’\O(b - 1)} [/\1 ¥ /\O(b — 1)],'+1 I‘(z + 1)

il

< exp{Ao(b—1)},
where I'(:) is the gamma function. Hence we obtain the required inequality.

Using Lemmas 2.3, 2.4 and 2.5, we shall show that the Markov chain {X (n) } is ergodic.
From Theorem 4 (i) in Tweedie (1983a), it is sufficient that there exist a finite subset A
of the state space S, a non-negative sequence {g;} and an ¢ > 0 such that
(a) ' sup ¢ Y pijgj ¢ < 0

€4 |jes
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2.2. Ergodicity of the Markov chain {X(n)}
and for any ¢ € (S — A),

(b) | Zpijgj <gi—E¢&
JES
Let g; = a¥l for some a € (1,ap), where qp is given by (2.4). We shall seek for a finite
subset A satisfying (a) and (b).

For ¢ > 0, we see that

Zpijgj = Zpijam

JjES JjES
< ZPUG—’ +2P£ja’ :
JESy JES

From Lemmas 2.4 and 2.5, there exists an i; > ig such that for any ¢ > ¢; and sufficiently
small € > 0,
Zp,-jgj <exp{h(a—1)}+a"
Jj€S
<gi—¢
where i (> 1) and 7 (> 0)are given in Lemma 2.4.

For 1 < —1, we see that

Zpij gi = Zpija_j

JjE€S JES
because p;; = 0 for j > 1 (> i+ 2). By Lemma 2.3 we have that for any i € S,
D pjeTi <a” T lexp{hi(a—1)},
j€S
where A; = sup{¢(z);z < i+ 1}. Since 1 < a < ap, we easily see that exp{c(a — 1)} < a
for ¢ = limsup ¥(z). Hence we can find an ¢ > 0 and a vy € (¢, 1) such that for any v < vy,

L=+ =00

exp{v(ea—1) } < a — ¢, which implies that there exists an iy > 0 such that for any i < —i,

exp{hi(a—1)} <a-—ce.

15



2. Law of Large Numbers in Self-Correcting Point Processes

Thus we obtain that for any ¢ < —i4,

Zpijgj <at—aile
JjESs
Lgi—e
Putting A = {i € §; —i; <i <1y}, the condition (b) holds as we have seen. We easily

see the condition (a) by finiteness of A. Hence we have the following theorem.

Theorem 2.6. The Markov chain {X(n)} is ergodic (i.e. positive recurrent).

Vere-Jones and Ogata (1984) thought out the idea of using T'weedie’s theorem. They
obtained the same result for the self-correcting point processes with the exponential form
conditional intensity.

From the above theorem, the Markov chain {X(n)} has the invariant (stationary)

distribution {x;}. Moreover we can show the following theorem about the moment of the

Markov chain {X(n)}.

Theorem 2.7. For any a € (1, ap),
Z'n‘j alb! < 00,
Jj€S

where ag is given by (2.4).

Proof. We easily see that
Z’Tfjam < Z’/rjaj +Z7rja_j .
jes jes j€es
By Lemmas 2.3, 2.4 and Theorem 1 in Tweedie (1983b), we obtain that the first and the

second term of the right-hand side are finite.

16



2.3. Law of large numbers

2.3. Law of large numbers
The following lemma is an extension of the Lj-ergodic theorem and is the same as

Lemma 3 in Vere-Jones and Ogata (1984) with a little modification of the condition (i).

Lemma 2.8. Let {U(n)} be a stationary and ergodic process with finite second moments
and {w, 1} (n=0,1,...,my;k=1,2,...) be a sequence of weights satisfying

(i). wp x> 0 and gi‘wn,k — 1 as k — oo,

(ii). wp < wn+1,:=0 forn=0,1,...,mp — 1,

(). Wy s >0 ask — oo.

Then

mi
P- lim n;wn,kv (n) = E[U(0)],

where P-lim denotes the convergence in probability.

This lemma is obtained by the similar.way of showing the L, -ergodic theorem (e.g.

Theorem 2.1 in Billingsley (1965) ). So we omit the proof.

As we have seen in Section 2.2, the Markov chain {X(n)} is ergodic (i.e. positive
recurrent). When its initial distribution, namely, the distribution of X (0) is the invariant
distribution {=;}, the Markov chain {X(n)} is stationary. Let A(-) be a function satisfying

that for some a € (1, ap),
(3.1) h(2) <a? (2 eR),
where ap is defined by (2.4). Then, from Theorem 2.7, we see that for n =0,1,2,...,
E[h(X(n))"] = D_m;h(j)*
<Yyl

< 0.

17



2. Law of Large Numbers in Self-Correcting Point Processes

Thus we can use Lemma 2.8 for the process {A(X(n)) }n=0,1,2,...-
For any s € [0,1], we consider processes {X(n + s)}n=012, .., where X(n +s) = (n +
8) — N(n+ s). These processes {X(n+ s)}n=0,1,2,... are also ergodic and stationary (when
X(0) is distributed as the invariant distribution {=;}). We can easily check that for any
n=0,1,2,... and any s € [0, 1],
X(n+s)<n+1—N(n)
=X(n)+1
<I1X(m)l+1
and that
~X(n+3)<—(n=N(n+1))
=-X(n+1)+1
<|[X(n+1)|+1.
From the condition (3.2) and the above inequalities, we have that for any n = 0,1,2,...
and any s € [0,1],
(3:2) [h(X(n + )| < al¥ 42
< gX(H9)/2 4 g~ X(n+9)]2
< all2(gX (/2 4 gl X(n11)l/2)),
Similarly we see that
R(X(n+5))? < a(alX(P) 4 g X(n+D)])
which implies that
E[h(X (n +5))?] < a(B[a* ™) 4 E[a}* (1)

< 00.
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2.3. Law of large numbers

By using Lemma 2.8 for the processes {h(X(n+5)) }n=0,12,.. (s € [0, 1]), we can show

the following theorem.

Theorem 2.9. Let h(:) be a function satisfying (3.1) and {w(¢,T)} (0 <t <T,0< T <
00) be a family of weights satisfying that

(i). w(t,T) >0 and /Tw(t,T)dt—>l as T — oo,

(ii). w(¢,T) is monotone 1?11creas1'ng in t,

(). w(T,T) -0 asT — .

Then

JES

(3.3)  P- lim [0 Tw(t,T)h(X(t))dt:Zﬂ-jE[ fo 1 h(X(t))dtl X(O)vzj] ,

where S Is the state space of the Markov chain {X(n)}.

Proof. First we assume that X(0) is distributed as the invariant distribution {=;}.
From the conditions (i)'—(iii)’, for any s € [0, 1], the weight {w(n+s,T)} (n =0,1,...,[T]—
1,0 < T' < ) satisfies the conditions (i)—(iii) in Lemma 2.8, where [T] denotes the integral

part of T'. Therefore, for any s € [0, 1],

[T]-1
(3.4) P- lim > w(n+s,T)h(X(n+ s)) = E[h(X(s))].
T—oo n=0
In particular, for s =0, 1,
[T]-1
P-Tli—lrléo Z—; w(n+s,T)alX(n+3)I/2 = E[alX()I/2)

< ©o.

Hence, for any sequence {7}}, there exists a subsequence {7}, } such that

m—00
n=0

[Tkm]_l
(3.5) P{ lim > w(n+s, Tk, )aX " +l/2 = BlglX@I2) for 5 = 0,1} =1.
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2. Law of Large Numbers in Self-Correcting Point Processes

From (3.2), (3.4) and (3.5), we have that
trml-1
P<{ lim E w(n + 8, Ty, J)h(X(n+3s)) = E[A(X(s))] for every s € [0,1) = 1.
m—r00
n=0
Thus we obtain the following equation with probability 1

([Trm]
lim w(t, Ty, Yh(X(t)) dt
0

1 [Tem]-1
= lim Z w(n+ 8, T, (X (n+3))ds

- / (X (s)))ds,

which implies that

[]
P-lim [ w( T)h(X(2))dt

T 00 4]

=E[/01 h(X(t))dt]

(:Zvr,-E Uol h(X(t))dth(O) =j]) .

j€s

1t follows from (4.2) that f[g:] w(t, T)h(X (t) ) dt converges to 0 in mean square as T' tends
to infinity. Hence we obtain (3.3).

See Vere-Jones and Ogata (1984) for proof of this theorem without the assumption for

the initial distribution of the process X(-).

Let f(-) be a differentiable and strictly monotone increasing function satisfying that
f(0) = 0 and lim,_, f(z) = co. We consider a point process M(-) with the conditional
intensity

AM()) = f(®)p(F(t) - M),

20



2.3. Law of large numbers

where the function 9(-) satisfies the conditions (C1)—(C4). The conditional intensity func-

tion of the process M(t) = M(f(@)) is
A(HM(1)) = ¥t - M())-

Hence for the process ?(t) =t-M (?), the above-mentioned results hold, for instance,
the Markov chain {?(n) }n=0,1,2,... is ergodic and has the invariant distribution {7;}. By

using Theorem 2.9 for the process M (-), we have the following corollary.

Corollary 2.10. Let h(:) be a function satisfying (3.1) and {w(¢,T)} (0 <t < T,0 <
T < o0) be a family of weights satisfying that |

T
(i)' w(t,T) >0 and ‘/w(t,T)dt-—d as T — o0,
0

(i)' w}lt(,t’l)“) is monotone increasing in t,
(iii)". w;,ﬂ(’,TCI)’) —0 asT — oco.
Then

T 7Y
P- Jim /(; wit, TYR(Y () dt = 37 B /é FEORY () dt

Y(0)= J] )

where Y (1) = f(t) — N(3).

w(f(s), £71(5))
F'(F=1(s))

1)'—(ii1)’ in the previous theorem. Using the previous theorem for the process M(") and
8

Proof. Let w(s,S) = . Then we can easily verify the conditions
y

the weights w(s, S), we obtain that

T
P- Tlim w(t, TYh(Y (2)) dt
~00 Jp

1(T) | 1
= P- lim w(f~1(s), )Y (F~1(s))) st

T—o00 0

21



2. Law of Large Numbers in Self-Correcting Point Processes
£(T) ~
— P- lim / (s, F(T))h(T(s)) ds
T—o00 0

-yre| [ 0 w70 -]

[ A7)
V% E / FR(Y (1)) dt| Y (0) = a]
i 0
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Chapter 3. Maximum Likelihood Estimation in Self-

Correcting Point Processes

3.1. Introduction

In the previous chapter, we have shown a version of the law of the large number for
functionals of the process ¢ — N(t), where N(-) is the self-correcting point process, that
is, its conditional intensity is ¥ (¢ — N(t) ), where the function ¥(-) satisfies the conditions
(C1)-(C4). In the present chapter, we consider a self-correcting point process with a

parametrized conditional intensity

(1.1) A, 0) = p(B{pt — N(t) + o}),

where the function ¥(-) satisfies the conditions (C1)-(C4). The parameter § = (o, 8, p)’
belongs to the parameter space © = R x (0, Mg) x (0,00), where R is the real line, Mp
(> 1) is a constant and v’ denotes the transposition of a vector v. The parameters ¢, § and
p are respectively related to the origin of the time axis, sensitivity of the self-correcting
and the scale of the time axis.

We shall investigate a,symptotig properties of the maximum likelihood estimator (MLE)
of the parameter § (but we do not consider the estimation problem of the function ¥(-) or
we treat it as a known function). Unfortunately, we can not give the explicit expression
of the MLE. Thus we do not examine the MLE but asymptotic behavior of the likelihood
ratio normalized by a matrix which is associated with the information matrix. In Section

3.2, we investigate asymptotic behavior of the information matrix. The process

(1.2) Y(#,0)=pt—N({t)+«
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3. Maximum Likelihood Estimation in Self-Correcting Point Processes

inherits the Markov property from the process N(-). Using the law of large numbers for the
process Y (¢, 8), which is ensured by Corollary 2.10, we see that a standardized information
matrix converges to a positive definite matrix. In Section 3.3, we shall review definition
and some basic properties of local asymptotic normality (LAN) and show that the family
of the measures induced by the self-correcting processes is LAN. In Section 3.4, we obtain

that the MLE is consistent and asymptotically normal.

3.2. Asymptotic behavior of the information matrix

We assume the following conditions to obtain Lemma 3.1 below about convergence of
the information matrix Ir(9):

(C1). 0 < 9¥(z) <oo forall z€ R,

(A1). the function 4(-) is continuously differentiable in R.

(A2). there exist an M > 0 and an a € (1, ag) such that

% < al=l/CMa) 4 3
T

for all z € R, where Mp is the upper bound of the parameter § and a is defined
by (2.4) in Chapter 2.
We easily see that the condition (A1) implies the condition (C4).
The log likelihood £(T, 6) based on the observation (N(¢); 0 <¢ < T) up to time T is

written as

(2.1) U(T, 6) = /0 " log A(t, 0)AN(t) — /0 "\t )t

(see e.g. Liptser and Shiryayev (1977) and Rubin (1972)). The derivative of A(t,6) with
respect to the parameter 6 is

- X, 8)

= (pBY'(BY (t,9)), pY (t,6)¥'(BY (2,9)), ¥(BY (£,0)) + pBy'(BY (2,6)) - 1)',
24



3.2. Asymptotic behavior of the information matrix

where Y'(¢,6) is defined by (1.2). We see that

(2.3) |
Ir(8)

_ E, :(—%E(T,H)) ( 830 (T, 9))'

— E, ( /O ;E: z;(dN(t)—/\(t B)dt)) ( /0 ig z;(dN(t) A, B)dt))]

[ (T 3,07, 6)
g | [0k 4.

See Kutoyants (1984) for the last equation.

Let Dy = diag(T, T, T3). From (1.1) and (2.2), we have the following equation:

T (1, )AL, 0)
-1/2 ) ) -1/2
oy [ St

BIT BY(,6)/T  B*-t/T*

_ [T Y (BY (t,9))? 2 -
- [o Tt Y(,0?2/T AY(L,6) -4/T? | dt

sym. B2 -2 )T3
0 0 pBY' (Y (¢, 0))%(Y (¢, 8))/T*
+/OT% 0 pY (t, )W (Y (¢,0))v(Y (¢,8))/T? dt.
sym. {2089' (Y (£,6))9(Y (£,0)) - £ + $(Y(¢,0))*}/T®

Let the operator Ey [-] denote the expectation with respect to the equilibrium distribution

of the process Y (¢, 6), that is,

(24) By[f(¥(t,0)] =Y i Eo[f(Y(£,8))Y(0,8) = j]

for every function f(-) for which there exists the expectation in the right-hand side, where

{7;} is the invariant distribution of the skeleton Markov chain {Y'(n/p, ) }n=0,1,2,.... Using
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3. Maximum Likelihood Estimation in Self-Correcting Point Processes
Corollary 2.10 for the process Y (¢,8), we obtain that

T A& 0N, 8)
’ S om0 g Dt 1(8
(2.5) Dy [ e D112 — 1(0)

in probability as T — oo and this convergence is uniform in every compact subset K C O,
where
B BY(t,8) B2

1/p / 2
(2.6) I(8) = Ey |p /0 ”Zi@if;’;? Y(t,6)2 BY(t,0)/2 | at

sym. B%/3

Moreover we see that the matrix I(f) is positive definite. Indeed, for any vector v =

(vly Vg, 03),1

1/ ’ 2
JI(6)v = By [p / ’ ’””J(f,‘;ftg;’)” {(Bor + Y (8, 0)un + £ Bvs)" + = ptog?}

and ¢'(2) is positive on an interval from the conditions (C3) and (A1). Thus we obtain

the following lemma.
Lemma 3.1. Under the conditions (C1)', (C2), (C3), (A1) and (A2),
Dr~Y21:(9)Dr Y2 = I(8)

as T' — oo and this convergence is uniform in any compact subset K C ©, where Dy =

diag(T,T,T®) and I(f) is given by (2.6).

3.3. Local asymptotic normality
In the present section, we shall review definition and some basic properties of local
asymptotic normality (LAN) and show that the family of the measures induced by the

self-correcting point processes is LAN.
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3.3. Local asymptotic normality

We consider a stochastic process X(-) which satisfies that all realizations of Xy =
{X(#); 0 <t < T} belong to a measurable space (Xr, Br). Let Pg(T) denote the measure
induced by X7 on the measurable space (X, Br), where § € @ C R* (k is a positive
integer). Assume that all the measures in the family {Pg(T) ;8 € O} are equivalent, The
family {Pf,(T)} is said to be LAN at 8 as T tends to infinity if there exists a non-singular
k x k matrix ®7(8) such that the likelihood ratio normalized by ®7(8) is written as

i o(i)} 9 1
(3.1) —Pg(—;:g)i = exp{u'ér (6, X) — Su'u +97(8, 4, X) },

where the vector u(€ R*) satisfies that 8 + ®r(f)u € O,

(3.2) ér(6,X) — N(0,I) inlaw asT — oo
and
(3.3) gr(8,u, X)—0 in probability as T'— oo

(N(0,I) denotes the normal distribution with 0 mean vector and identity variance mafrix).
The family is LAN in @ if it is LAN at 8 for every § € ©. We call uniformly LAN if it
is LAN in © and each convergence of (3.2) and (3.3) is uniform in 4. The matrix ®(f)
1s called the normalizing matrix and is usually equal to the inverse of the square root
of the information matrix. Undef suitable conditions, uniformly LAN implies that the
MLE is consistent and asymptotic normal (see e.g. Ibragimov and Has’minskii (1981) and
Kutoyants (1984) ), which will be proved for the present model in the following section.
We shall show the following theorem by using Lemma 3.1 and Theorem 4.5.3 in

Kutoyants (1984).

Theorem 3.2. Assume the conditions (C1), (C2), (C3), (A1), (A2) and
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3. Maximum Likelihood Estimation in Self-Correcting Point Processes

(A3). there exists a & > 0 such that

[$'(=+OI) _
xelf,lllg)l«o{ P(=) }<

Let PéT) denote the measure induced by {N(t);0 < ¢t < T}, where the process N(-) has
the intensity given in (1.1). Then for any compact set K C O, the family {Po(T) ;0 € O}

is uniformly LAN in K with the normalizing matrix
&7 (0) = Dy~ Y21(0)~1/2

and the vector

e
57(8, N) = & (6)’ /0 %(dN(t) Z A, 8)dt).

Proof. To show the present theorem it is enough to check the conditions (G1)-(G4)
of Theorem 4.5.5 in Kutoyants (1984), which implies the assumption of Theorem 4.5.3 in
Kutoyants (1984). The conditions (G1) and (G2) are easily seen and the condition (G3)

is shown as follows. From (2.5), we have that the integral

T N N !
(3.4) /0 @T(e)'i(—t%’(l:—%ﬂ%(a) dt

uniformly converges in probability to the identity matrix as T' — oco. Foreverye > 0,0 € K

and y > 0,

T r(0) A0 [ |8r(6)A(1,0)
Eo [/0 G, 0) X( Xt 0) >8) dt}

(35) < [ / 202N ( [22(O) A, 0)| e) (Y (4,6)] < 9) dt]

A(E, ) A, )

T " 2
[ JECE N ] .
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3.3. Local asymptotic normality

Since the first term of the third element of :\(t, f) is asymptotically negligible, we have

that for any sufficiently large T,

|B2(8)' (1, 0)| . L Y E,e)
A2, 9) VT $(BY(t,9))

(3.6) VA(Y (t,6)2 +262 + 1),

where A; (> 0) is the maximum characteristic root of I(#)~! and 5 is a positive constant.
Thus for any sufficiently large 7, the first term of the right-hand side of (3.5) is equal to 0
by the condition (A3). From the condition (A2), (3.6) and Corollary 2.10, we obtain that

for any sufficiently large v,

T " 2 |
(5.7) [ BRSO v o > v

RN 2 (X))
<k [ wELa ) BN+ 2B (Y, > ) d

1 T
<7 [ pnd" (Y (1) > )

1/p
By |p fo PhaY B2 (1Y (4,60)] > v) de | (< oo)

in probability as T — oo, where @ is the constant determined by the condition (A2)
and FEy[-] is the operator defined by (2.4), namely, the expectation with respect to the
equilibrium distribution of the process Y (%,8). Since the above expectation converges to
zero as y tends to infinity, the condition (G3) holds.

Let 6(u) = b7 (u) = 8 + @7 (f)u for u € R* and U(T,0) = {u; 87(u) € O©}. To obtain
the condition (G4) we shall show (3.8) below for any sufficiently large T', any non-negative

bounded function f(-) and any vectors u, v € U(T, §) which satisfy |u| + |v| < T*/3,

(3.8) /0 '

2

At 0(u))

2 0) 3. 6(0))

T
A(t,0)f(¢) dt < % / pAy alYOU2 £(4) 4,
0
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3. Maximum Likelihood Estimation in Self-Correcting Point Processes

where A, is the maximum characteristic root of the matrix 7(6)~!. We get that Y (¢, 67 (u))

uniformly converges to Y (¢,6) as T tends to infinity, because

Y(t,0r(u)) =Y (t,0) + wst T~3/% 4 w, T2

where (w1, ws, w3) = I(8)~/?u.

There exists a £ such that ¥(z + v) — ¥(z) = vy¢'(z + £). By the condition (A3),
Yz +v)
P(z)

uniformly converges to 1 as v tends to 0. Thus we have that

@Y (4,0())
$(BY (1,0))

where (a(u), B(u), p(u) ) = 6(u). We obtain (3.8) from (3.6), (3.9) and (A2).

(3.9)

as T — o0,

We easily see that
T [ A,6) A, 6)
L [er@ (A(t,e(vn - A(t,m)
Tl (Aew)  Ae,6)
< /0 ®r(6) (A(t,a(v)) "A(t,e))

v o)
+2 [ e/ S50,

2

A(t, 6) dt

2

A O)x([Y(¢,0)] < y)dt

AL 0)x (1Y (¢,6)] > y) dt

2

T
! /0 (o) M0 (10) At X (Y (2, 8)] > v) dt

A, 6)

The first term of the right-hand side tends to zero as T' tends to infinity because
M) _Aw0)
At,0(v)) A, 9)

that
/T

) x([Y (¢,8)] < y) uniformly converges to 0. From (3.8), we have

2

Alt, 6(u)) A, 0)x(|Y (2,8)] > y) dt

() Xt ()
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3.4. Asymptotic properties of the MLE

1 T
<1 / s (Y EOE L M (Y (2,0)] > y) dt

| 1/p
— By [p /0 pha (aY EOIFE L A (|Y (¢, 6)] > ) dt] as T—o0

and the above expectation converges to zero as y tends to infinity. Hence we obtain that

. T (Aem) A6
dm e e, O (A(t,e(v» A(t,o))

2

A(t,6) dt =0,

that is, the condition (G4).

3.4. Asymptotic properties of the MLE

We shall show that the MLE is consistent and asymptotic normal.

Theorem 3.3. Let fr = §T(6’,N ) denote the MLE of the parameter § based on the

observation (N(t); 0 <t < T) up to time T. Under the conditions (C1),(C2), (C3) and

(A1)-(A3),

(4.1) br >0 inPy as T—oo

and

(4.2) ®7(0)" 1 (y —0) > N(0,I) inlaw as T — oo,

where ®1(8) is given in Theorem 3.2.

Proof. 1t is sufficient to show the conditions (G5) and (G6) of Theorem 4.5.5 in

Kutoyants (1984). For any 8,6(u) € K, there exists a 6(v) € K such that

A(E,0(v))

VAR, 6(u) ) — VAR, 6) = u"%("”)'mm,
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3. Maximum Likelihood Estimation in Self-Correcting Point Processes

where K is the convex hull of K. Thus we have that

T
-3 | WAEGIw) - /A8

T 3 3 '
=_% /0 oo (0y 2 gg‘(’z’):((z;;’(”)) Sr(f)udt.

From the conditions(G3), (G4) and (3.9), the right-hand side uniformly converges to —Pg—'.

Hence there exist a ¢ > 0 such that for any sufficiently large T',

E, [exp{ / (VAR 8(u)) — VAR, 0 )Zdt}} < exp{—c|u|’},

that is , the condition (G5) holds.

Finally, we shall show the condition

(G6). for some p > §-,

sup J(T,0,0,) < oo,
T>0; 6,0, K

where

J(T) 9; 91)

T
/
0

From the conditions (A2), (A3) and (3.6), we have that

92 r4

A(t, 8) dt

’ A, 0)

' (t 9)
7(0) X0, 6)

32.0) or(8) T 7

A, 6)dt| + By /
0

2p

A, 9) ALS)

Or (01)',\@ )

2

A(t,0)

. 2(p-1)

1A@, 6)
l )36 9)

Xz, 8)

g "I’T(ﬂl)'/\(t’ 6)
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3.4. Asymptotic properties of the MLE

-1
Y{(t.0 A 9 [Y(t,0)l/2
gcx{( 40, 5y B2Y Wﬂluz} e

vT VT T T

where (Aa, AB,Ap) = (a1 — e, 1 — B, 01 — p) and ( is a constant which is independent of

T. We obtain that

2p

T
/0 o (a)'Ag z; A(t, 0) dt

2 p-l
< -/ {(Y(t ,9) +Ap+ %—;—1) + -j:ﬂﬁ + %} x alY &2 g4

1fp
) / YOI gy
0

where Ey (-] denotes the expectation with respect to the equilibrium distribution of the

—~ ¢(Ap)"* I By

process Y (t,8). Thus we have that

sup  the first term of J(T},4,6;) < oo.
T>0; 0,0,€K

It is similarly shown that the second term of J(T}8,6;) is bounded. Hence we obtain the

condition (G6).

33



Chapter 4. Estimation of Intensity Levels in Simple

Self-Correcting Point Processes

4.1. Introduction

In the previous chapter, we have investigated asymptotic properties of the maximum
likelihood estimator (MLE) in a self-correcting point process N(:) with the intensity
p¥Y(B{pt — N(t) + a}), where o, B and p are parameters. In the present chapter, we
treat a simple self-correcting point process N(-) whose intensity has only two levels. More
precisely, the intensity of the process N(-) is given by

pby if pt —N(t)+a <0,
po(Bl{pt — N(t) +o}) =
phs if pt —N(#)+a>0,

where 0 < #; < 1< 5 and

6, if 2<0,
P(z) = ,
8, if z<0.

Since ¢(z) depends only on the sign of z, the parameter § does not make any sense. Here,
we treat o and p as known constants and concentrate our interest on estimation of the
intensity lgvels. We can choose the location and the scale of the time axis so that o = 0
and p = 1. Hence, without loss of generality, we may assume that the conditional intensity

of the process N(-) is
6, if X(t) <0,
(1.1) A, 0) = p(X(2)) =
' 6, if X(f) >0,
where 8 = (6,,02)' and X(¥) —t- N(3).
In Section 4.2, we explicitly give the log likelihood, the MLE and the information

matrix. In Section 4.3, we calculate the invariant distribution of the Markov chain {X(n) }
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4.2, Likelihood and information

and show Lemma 4.1 about convergence of a standardized information matrix by using the
law of large numbers for the process X (-) which is ensured by Theorem 2.9. In Section 4.4,
we show that the MLE is asymptotically normal and explicitly give its asymptotic variance.
Moreover we obtain local asymptotic normality of the family of the measures induced by

the simple self-correcting point process.

4.2. Likelihood and information
In the present section, we explicitly give the log likelihood, the MLE and the information
matrix and state the lemma about convergence of a standardized information matrix. We

show this lemma in the following section.

The log likelihood based on the observation (N (¢); 0 < ¢ < T) up time T is given by

o(T,8) = / ¥ log A(t, 0)dN (1) — / " A, 0)at

T ’ T
- /’ log 8 (X (£) < 0) AN (2) + / log 02 x(X () > 0) dN (1)

T T
- {/ 61 x(X(t) < 0)dt +/ B2 x(X(t) > 0) dt},

where x(:) is the indicator. Let

Di(T) = {t € [0,T]; X(¢) < 0}, Dy(T) = {t € [0, 7]; X(¢) > 0},

T T
(21) N(Dy(T)) = / X(X() < 0)dN(D), N(Dy(T)) = / X(X(t) > 0)dN(z),

T T
IDy(T)] = / (X (1) < 0)di, |Do(T)| = / X(X(t) > 0) dt .

Then the log likelihood is written as

T, 9)
(2.2)
= N(D:(T)) log81 + N(D2(T)) log 0z — { 61| D:1(T)| + 82| D2(T)| } .

35



4. Estimation of Intensity Levels in Simple Self-Correcting Point Processes

Hence the likelihood equation is as follows:

N(D:(T))

R e e L0
” B (o)

% T x(X(t) < 0) (dN(t) — A(t, 6) dt)

91_2 ST x(X () > 0) (dN () — A(t, 6) di)

(o)

which implies that the MLE of the parameter 8 is given by

N(D:(T))
|D1(T)]
(2.3)

N(Dy(T))
| D2(T)]

We obtain that

2

T
7 { | xx@ < 0@ -0 dt)}
T
_F [/ X(X(T) < 0)? /\(t,e)dt}

=6,F

T
/ X(X(T) < 0) dt]

= 0, E|D:(T)|
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4.3. Proof of Lemma 4.1

and that
E { /0 " (X(T) > 0) (AN () — A, ) dt)} = 6,E|D,(T)).

Moreover we see that

T T
B| [ x(xX@<0@N® -0 d) [ x(X(T)>o>(dN(t)—A(t,e)dt)]

=0.

Therefore the information matrix is given by

I(8)=E (?%e(:r,a)) ((%e(:r, a))
E|Dy(T)] 0
_ b1
o B

The following lemma is shown in the following section.

Lemma 4.1, Let
6y —1

(2.4) 1(6) = f1(62 — 61)

Then the matrix I(8) is positive definite and

%IT(H)—»I(H) as T — oo.

4.3. Proof of Lemma 4.1

Di(T . . -
Since I—,l(,——)—l <1 (i =1,2), to obtain Lemma 4.1, it is enough to show that

DyT)| _ 85 —1
T 6y — 6y

(3.1)

in probability as T'— oo
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4. Estimation of Intensity Levels in Simple Self-Correcting Point Processes

and

DAT)| _ 18

(3.2) A

in probability as T — oo

On the other hand, it is easy to verify the conditions (C1)-(C4) in Chapter 1 for the
function 9(z) = 6, f ¢ < 0 and = 6, if z > 0. From Lemma 2.2 and Theorem 2.6
the Markov chain {X(n) },=0,1,2,... is irreducible, aperiodic and positive recurrent (i.e.
ergodic). Furthermore its state space S is the class of all integers. We can easily check
that the weight w(¢,T) = 1 satisfies the conditions (i)'—(iii)’ in Theorem 2.9 and that the

T
function h(z) = x(z < 0) satisfies (3.1) in Chapter 2. Hence we have that

Dy(T)] _ 1

T
(3.3) LR /o X(X(t) < 0)dt

T [ xoxe < 0)dt| X(0) =] (= R, sa9)

j==—o0

in probability as T' — oo, where {=; $= _ oo denotes the invariant distribution of the Markov

chain {X(n) }. Similarly,

(3.4) J%T)l — R,
in probability as 7" — oo, where
00 1
(3.5) Ry= ) mE [ f x(X(t) > 0) dt] X(0) = j] :
j=—o00 0

Therefore, our purpose is to show that

01 _1-6
_02_91 and Rz—az_al.

Ry

First we shall investigate the transition probability p;; of the Markov chain {X(n) } to

38



4.3. Proof of Lemma 4.1

obtain its invariant distribution {7;}. We easily see that

pis = P{X(n +1) = jIX(n) = i)
=P{X(n) - X(n+1)=i—-j|X(n) =1}
— P{N(n+1) = N(n) =i—j +1|X(n) = i}
= P{N;(1) =i—j+1},
where N;(') is a point process with the conditional intensity ¥(¢ + ¢ — N;(¢) ) and the last

equation follows from Lemma 2.1. It is clear that for i < j — 2, p;; = 0. Since ¢(z) = 64

for ¢ < 0 and = 8, for z > 0, we have that for ¢ < —1 and j <i+1,

(3.6) pi; = P{Ni(1) =i~ j+1}
6 i—j+1
— m exp{—0,},

fori>0and 1 <j <41,

92i—j+1
(3.7) pij = m exp{—02}
and that for i > 0 and j (= —k) <0,
1 (8,t)° 6.(1 —t)}*
(3.8) Pij = /0 (j') exp{—0st} - 05 u—-k'—)}—- exp{—61(1 —¢)} dt.

The invariant distribution {=; } satisfies the equation

(3.9) ;= Z miPij -
For j > 1, the above equation is written as
) ot gzi—j-!-l
(310) Ty = Z ﬂ'{m exp{—ﬁz}
i=j—~1

) 62},
=) Thti-1 77 exp{—02}
h=0 )
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4. Estimation of Intensity Levels in Simple Self-Correcting Point Processes
because p;; = 0 for ¢ < j —2 and p;; is given in (3.7) for j > 1 and i > j —1 (> 0). Putting
(3.11) m; =mog for j > 1,
we have that

9 h
rof = 3547125 -t

= noq’ " exp{fz(¢— 1)},

which implies that

(3.12) - g=exp{fa(¢g—1)}.

Since for ¢ > 1, the equation (2.3) in Chapter 2 has exactly two solutions 1 and z, (0 <
zo < 1), we can find a ¢ € (0, 1) satisfying (3.12). The value of my will be determined later.
For j (= —k) <0, the equation (3.9) is written as
Z TiPi,—k -
i=—k-1

From (3.6), (3.8) and (3.11), we have that

exp{ Bt} - B, io-l(lk—?’)k—}-exp{—elu—t) } dt

W-k—/ ZWQ

i=0

+ Z TiPDi,~k

i=—k-—1

1
= 7!'0/0 exp{f2t(¢g—1)}-02- {Ll(}%"—tﬂ exp{—0:(1—1t)}dt

0 h
+Z7r (b+1-8) 7 exp{—6:1}.
h=0
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4.3. Proof of Lemma 4.1

For s € [0,1], let P(s) be the power series with the coefficients {m_g}x=0,12,... From the

above equation and (3.12), we have that

P(s) = Z T_g s
k=0

= 1r0/0 exp{fz2t(qg—1)} -0 -exp{fis(1 —t)} exp{—0:(1 —¢) }dt

0o o . (015 h
+ZZ1r-(k+1_h) s* ! ;z') exp{—6: }

h=0k=h

exp{f2(g—1)—fbi(s—1)} -1
O2(q—1)—b1(s — 1)

P(s) —mo

= mob2 exp{b1(s — 1) }

+exp{f1(s — 1) }

_ q—exp{-0;(1-3s)} P(s) — m
= ﬂ'ogz 91(1 — s) — 92(1 — q) + exp{—91(1 - S) } -——s-— .

Hence we obtain that for s € [0,1),

s02(q — exp{—01(1 — ) }] — {62(1 —5) —6>(1 —q) } exp{—b1(1 — )}
{61(1 —5) — 02(1 — q) } [s — exp{—01(1 — ) } '

P(S) = T

We easily see that 0 < P(1) = Y o7k < > io_, @ = 1. From Abel’s continuity

theorem and L’Hospital’s theorem, we obtain that

P(1) = lim P(s

_ g 01— ) +01(829 - 1)
T TR0 -6)

From (3.11), we have that

P(l)__—l_i"rj

Toq

=1- .
l1—¢q

41



4. Estimation of Intensity Levels in Simple Self-Correcting Point Processes

Thus we obtain that

b= q) (1= 2)

(3.13) mo = L

Consequently we can conclude the calculation of the invariant distribution {;} of the

Markov chain {X(n) }.

We consider (3.4) again. It asserts that the ratio szﬂ converges in probability to
Ry =332, E[fy x(X(£) > 0)dt|X(0) = j]. Under X(0) = j, X(t) = X(t) - X(0) +

j=t+j—(N(@)— N(0)). By Lemma 2.1, the conditional distribution of N(t) — N(0)
given X (0) = j and the distribution of N;(¢) are the same, where N;(-) is a point process

with the conditional intensity ¥(¢ + j — N;(¢) ). Hence we have that
1 1
E [/ x(X(t) > O)dth(O) =j] = / Elx(N;(t) <t+j)]dt.
0 0
We can easily check that for any j > 0 and 0 <¢ <1,

Elx(N;(t) <t+3j)] = Elx(N;(t) < )]

= P(N;(t) < j)

= Z( Zt) exp{—0,t}

J
= / z_' e Tdz
9ot J:

and that x(N;(t) <t+j)=0forj < —1land 0 <¢ < 1. From (3.11)~(3.13) and the above

equations, we conclude that

Ra=Y mor’ [ BIX(N;(0) < )]t

-'n'o/ / (q:c) e T dzdt
(2% ji=0
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4.4. Asymptotic normality of the MLE

1 o] '
= 7r0/ / exp{(q¢ — 1)z} dz dt
0 Joat

_ mo(1 — exp{—02(1 — q) }
92(1 - q)2

C1-6
T 0y—0;

Since |D1(T)| + |D2(T)| = T, we obtain that

R1=1—Rz

-1
T 06,

4.4. Asymptotic normality of the MLE

It is easy to show that

VT(br — )
N(DU(T))
om
=T
N(Dy(T)) 6,
| D2 (F)|
1 T
=vVT mfo x(X(t) < 0) (dN(t) - A(2,6) di)

m T X(X(t) > 0) (AN (£) — A(t, 6) d)

6, 0
|[D1(T)]
=T Az (6),
D@
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4. Estimation of Intensity Levels in Simple Self-Correcting Point Processes

where the MLE @7 is given by (2.3) and

\/— 7. Jo x(X(2) < 0) (AN (2) — A2, 6) dt)
(4.1) Ar(6) =

\/_9 ST x(X (@) > 0) (AN (t) — A(t, 6) dt)

1 0
—L(T, 6
(= Fwm@9)-
From the central limit theorem for martingales, we obtain that Ar(6) is asymptotically

normal, that is,
(4.2) Ar(d) - N(0,I(f)) inlaw asT — o0

By (3.1) and (3.2), we have that

2!
ID:(@)] .
— I(8)
2

|D2(T)|

in probability as T — oco. Hence we obtain the following theorem.

0

Theorem 4.2. The MLE br is asymptotically normal, that is,
VT(8y —8) — N(0,I(8)"Y) inlawas T — oo,

where 7 and I(8) are given in (2.3) and (2.4), respectively.

Finally, we shall show that the family of the measures induced by the processes N(-)

is locally asymptotically normal. From (2.2), the log likelihood ratio is written as

(4.3) LT,0 + hT~1?%) — 4(t,0)

01 + b T-1/2 8y + ho T~ 12
= N(Dx (1)) log (2R 4 N(Da(m)) g (20— )

~ {h1| Dy (T T2 + hy| Do(T)| T2},

44



4.4. Asymptotic normality of the MLE

where h = (hy, h2)'. By (3.1), (3.2) and the law of large numbers for martingales, we have

that
(44) M%w = % /0 " (X () < 0) (aN ()~ Mt 6) dt) + ____91|D111(T)|
01(62 — 1)
~ e, -6,
and
(4.5) N(Dy(T)) _ 02(1—61)

T s — 01

in probability as T' — co. From (4.1), (4.4), (4.5) and the Taylor’s expansion

0; h;T_llz h; 1 /[h; 2 - .

we obtain that

(4.6) AT, 0 + hT-212) — 4(t,8) = K Ag(8) — -;-h'GT(a)h +o,(1),
where
youm)
(4.7) ey =i
. T = —
T, MDD
0,°

It follows from (4.4) and (4.5) that Gr(6) — I(f) in probability as T' — oo. Hence we can

easily show the following theorem.

Theorem 4.3. Let PG(T) denote the measure induced by {N(t); 0 < t < T}, where the
process N(-) has the intensity given in (1.1). Then the family {PgT)} is locally asymptot-

ically normal with the normalizing matrix
27(6) = S=1(0)/?
T
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4. Estimation of Intensity Levels in Simple Self-Correcting Point Processes

and the vector
2(6) = @1 (6) - H(T, 0)
= T 69 ’
=1(6)"?A(9).

Proof.  For a vector u, we substitute I(#)~/2u for the vector h in (4.6). Since
Gr(8) — I(6) in probability as ' — oo, we obtain the expression (3.1) in Chapter 3, that

is, the conclusion of the present theorem.
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Chapter 5. Robust Estimation in the Poisson

Processes with a Periodic Intensity

5.1, Introduction
We consider a Poisson process N(t) with a parametrized intensity A(t,6), where the
parameter 0 belongs to a bounded open interval @ of R (the real line). The log likelihood

function based on the observation (N(¢);0 <t < T) up to time T is given by

«T,0) = / ¥ log A(t, )N (1) — / * At 0)dt.

The maximum likelihood estimator (MLE) maximizes the log likelihood £(T',6) and is a

solution of the likelihood equation

/0 :g Z;dN(t) / At 8)dt = 0

under some regularity conditions, where :\ is the derivative of A with respect to . Moreover
it is well known that the MLE is consistent, asymptotically normal and efficient (see e.g.
Kutoyants (1984)).

If the artificial model does not sufficiently reflect the generation mechanism of the data
or if the data are contaminated by noises, the true intensity u(t) of the process N(:) may
not belong to the parametric model {A(£,0);8 € ©}. In such circumstances, the MLE
is not always an appropriate estimator of the parameter 8. Qur purpose is to construct
robust estimators in the sense that high efficiency is kept even if the true intensity p(t)
does not belong to the parametric model {A(¢,0);6 € @}.

The robust estimation problem is studied by many statisticians. Huber (1981) and
Hampel et. al. (1986) sum it up in independently and identically distributed cases. In time
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

series, it is studied by Kleiner et. al. (1979), Deﬁby and Martin (1979), Kiinsch (1984),
Martin and Yohai (1985, 1986), Bustos and Yohai (1986} and many other authors. Yoshida
(1988) treats it in the diffusion processes. They use the M-estimation and the GM-
estimation to get robust estimators. Here, we treat M-estimators which are solutions

of generalized likelihood equations, more precisely,
DEFINITION. For functions h(t,0) and H(t,8), a solution of the equation
T T
C(T,6) = f h(t,0)dN () — / H(t,0)dt =0
0 0
is called the M-estimator.

The MLE corresponds to the M-estimator for

A, 6)
A(t,0)’

h(t,8) = H(t,8) = A(t,0)

when the .parametric model is {A(¢,0);6 € @}.

In Section 5.2, we show that our M-estimators are consistent in a sense and asymptot-
ically normal. In Section 5.3, we discuss estimation of the phase parameter @ of a periodic
intensity A(¢,0) = f(t — 6), where f(-) is a periodic and even function satisfying suitable
conditions. We construct the M-estimator which has the minimax variance provided that

the true intensity belongs to a suitable class.

5.2. Asymptotic behavior of the M-estimators
We assume the following conditions to show that the M-estimator Or consistent in a
sense and asymptotically normal.
(1). The true intensity p(t) of the Poisson process N(-) is a bounded measurable function
with period (> 0).
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5.2. Asymptotic behavior of the M-estimators

(2). The functions h(t,d) and H(¢,6) are periodic in ¢ with period 7 for all # € © and
are absolutely continuous with respect to 8 for all ¢ > 0. Their Radon-Nikodym
derivatives ;z(t, ) and I:I(t, 8) are bounded in (¢, 8).

(3). There exists a §; € O such that

[ 06,6) - e, 00 =

1

T

(4). T /0 "L, 61) — h(t, 01)p(®)]dt > 0

® = % / h(t,6:)2u(t)dt > 0
0

(5). There exist constants C; and C, which are independent of # and ¢, such that for

any sufficiently small § > 0,

,,( U {tE[O,'r];|l.z(t?l9)—l.z(t,91)|26’1]6—01]})3025,

lo—0,1<6

where v(-) denotes the Lebesgue measure.

(6). / \EL(t,8) — F(t,8,)|dt — 0 as 0 — 6;.
0
It follows from the conditions (2) and (5) that
(2.1) Ih(t,6) — h(t,0,)|dt — 0 as 8 — 6y
0

Under these conditions, the M-estimator fr is near by 6, with high probability for suffi-

ciently large T'. More precisely, the M-estimator §T is consistent in the following sense.

Theorem 5.1. For any T > 0, there exist a positive number §(T) (— 0 as T — o)
and an event A(T) such that P(A(T)) — 1 as T — oo and an M-estimator fr exists in
U(8(T)) on the event A(T), where U(8) = {4;|6 — 61| < 6} .
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

Before proving this theorem, we shall make auxiliary statements. Let

T

m(T,6) = 7 / h(t, 0) (AN (1) — p(t)dt),
T

G(T,0) = 1. / {H(1,0) - h(t, O)u(t)}dt,

1

[ T e
(T,6) = = /O h(t,0) (AN (1) — p(t)dt)

and
® T [ ] L ]
G(T,0)=7 / {H(t,0) - h(t, B)u(t) }dt.

From the law of large numbers for martingales and the conditions (2) and (3), we have
that
m(T,6,) — 0 in probability as T — oo
and
G(T,6,) — 0 as T — oo,
where 6; is given in the condition (3). Furthermore we obtain the following two lemmas

about m and é

Lemma 5.2.

(2.2) sup ]C'}'(T, ) — é(T,Hl)[ —0 as 6—0 wuniformlyinT>r,
el ()

where U(8) = {0; |6 — 8,] < 6}.
Proof. We have that for any T' > T,

sup |G(T,8) — G(T, 6)|
8EU(5)

1 (T . . 1 [T e . '
sup {T/ |H(t,9)—H(t,91)|dt}+||#||oo sup {T/ |h(t,‘9)"h(t’91)ldt}
0eu(5) o 9cU(5) 0
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5.2. Asymptotic behavior of the M-estimators

<o (2] If‘f(t,ﬁ’)—ff(i,ﬂl)ldt}+I|u||oo9§gl(>5){z [ 1k o) - onia}

sel(8) T

where ||¢]|oo = sup |¢(2)|- By the conditions (1), (6) and (2.1), the right-hand side converges

to 0 as § — 0. Hence we obtain (2.2).

Hereafter, ¢ denotes any fixed positive number. Since G(T,0,) — I as T — oo, we

have that there exists a 73 > 7 such that for any sufficiently small 6 > 0 and any 7" > T3,

>T —2¢,
where T is a positive constant given in the condition (4).

Lemma 5.3. We can find a constant C3 such that for any sufficiently small §, there exists

a Ty(8) > 7 such that for any T > T5($),

(2.4) P{ sup (T, 0)| 246} <2y,
0eU(5) €

Proof. We easily see that for any T > 7,
(T, 8) — (T, 61)]
1 T, . 1 T , .
<3 [ 1h(e6) =Rt bl aN @O + 7 [ [hie,0) = bt o) o)
T o T 0

]_ . . 1 . .
<z / | 1ht0) =, )] 4N () + 7 /[ Ih(,6) — b, 6,)] AN ()

T]—DG’T

where Dy = {t € [0,7]; II.z(t,G) — l.z(t,ﬁl)l > (10 — 61| } and C; is the constant given

in the condition (5). By (2.1), there exists a 6; > 0 such that for any § € U(6;), the last

51



5. Robust Estimation in the Poisson Processes with a Periodic Intensity

term of the right-hand side is less than €. Since N(T') conforms to the Poisson distribution

with mean foT #(t) dt, we have that for any § > 0 and any T > 0,

P{ sup 1 ll‘z(t,G) - ;z(t, 61)|dN(t) > &7}

ocu(s) T Jio,71-De r
<P {%N(T) >e¢ }

C6 [T
< —_— t) dt
<7/, p(t)

< Cilltll 5
2

For a measurable set B, let N(B) denote [ dN(t) which is the number of events occurring
in B. Since N(B) conforms to the Poisson distribution with mean [ u(t) dt, we see that
for any T' > 7,

P sup = [ |kt 60) - h(t,0,)| AN () > &
6‘€U(5)T Do, 1

T gev(s)

N hlloo
SP{ ”TU N( U Dog)ZE}
€U (6)

<Whles g oy Dy
€ 8EU(5)

< Ahlle lpllo T+ 7 ,,( U ftelo; Ih(t,8) — h(t,8,)] > 16 — 01|}) ,

Te T
|0—01}<6

<P { 2Alles sup N(Dor) > 6}

where v(-) denotes the Lebesgue measure. From the condition (5), we get that for any

52



5.2. Asymptotic behavior of the M-estimators

sufficiently small § > 0 and any 7" > 7,

P{ sup 1 |I.z(t,0) - i.z(t,ﬁl)]dN(t) > s} < 4”h”°°l|7‘ft”°° Cs

s,
o0ct(s) 1 Jpor

where C, is a constant given in the condition (5). Hence we have that for any sufficiently

small 6 and any T' > 7,

P{ sup |m(T,0) — m(T,6;)] 235} <%5,
0eU(6) £

4)|Rlloo Ca
T

where C3 = (Ch + ) letlloo- Since m(T, ;) converges in probability to 0 as T

tends to infinity, we obtain the conclusion of this lemma.
Proof of Theorem 5.1. From the condition (2), we have that for any 6 € O,

(2.5) C(T,8) = C(T, ) + ’ C(t, w)du,
61

where

C(T,u) = /0 "t u)dN (1) /0 " Bty

. r . " .
Let A;(T, 6) be an event {w; sup |m(7,6)| < 3 }, where I' is a positive constant given
6eU(5)

in the condition (4). Then we have that for any sufficiently small § and any T' > T5(6),

P(AL(T,8)) > 1 - 2453 §(=1— Ci6, say)

. r . .
by using Lemma 5.3 for ¢ = TE We easily see that for any sufficiently small § and T > T3,

(2.6) nf {—%é(T, 0 } - inf, {—Th(T, w) + G(T, w) }

2o | =
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

on the event A, (T, §) by using (2.3) fore = % Since —;;C’(T, 1) = m(T,6,)-G(T,0:) — 0
in probability as 7' — oo, for any sufficiently small §, there exists a T3(8) (> T2(6) ) such
that for any 7' > T3(6),

P(A3(T,8)) > 1 — 2C46,

C(T,60)]
T
easily see that for any sufficiently small § and T > T1, C(T,0,+6) < 0and C(T,6,-6) >0

where Ay(T, §) denotes the event {w; }ﬂA (T, 6). From (2.5) and (2.6), we
on the event A;(7, 6), which implies that there exists a fr € U(6) such that C(T,8r) = 0.
Consequently we obtain that for any sufficiently small § > 0, there exist an event A5(7T), é)
and a Tp(8) (= max{T},T3(8) }) such that P(A2(T,6)) > 1 — 2C46 for any T > Tp(6)
and an M-estimator 07 exists in U(8) on the event A5(T,6). We can take a monotone
increasing sequence {7} (T, — o) such that for any T > T,, P(A2(T, %)) >1- %
Hence we obtain the conclusion of Theorem 5.1 by setting §(7T) = % for T, < T < T

and A(T) = A5(T, §(T)).

We examine C(T,8) to obtain asymptotic normality of the M-estimator fr. From the

condition (3), we get

1 1 [T
Z=0(T0) = —= /0 h(t,01) (AN(2) — p(£) dt) + o(1).

The first term of the right-hand side converges in distribution to the normal distribution
N(0,®) by the central limit theorem for martingales, where ® is a positive constant given
in the condition (4).

On the other hand, we get

1
ﬁC(T, 01)

— VT / 8 20T, u)du
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5.3. Minimax robust M-estimator

41 01 o
VT (/@\ m (T, u)du — A G(T,u)du)

91 . 91 ° [ —~ L]
VT ( fA m(T, w)du — /A {G(T, u) — G(T,8;)}du + (8 — 6,)G(T, 91)),
8 9
where § = fr is a zero point of C(T, §), that is, the M-estimator. We easily see that

A R . N
| [ (T u)dul < [F - 61] sup { (T, )15 6 € V(T - 1) }
[/

and
01 o .
I A {G(T,u) — G(T, 6,) }dul

<i-ol swp{16@0 - G@0)l; seu(i-o}.

By Lemmas 5.2, 5.3 and the previous theorem, we have that

L

ﬁC(T,Bl) =VT (@ —6:1) (T +0,(1)).

Consequently we obtain the following theorem.

Theorem 5.4. The M-estimator O is asymptotically normal:
\/T(E)\T —6,) > N(0,8I?) inlaw as T — 0.

where ® and T’ are positive constants given in the condition (4).

5.3. Minimax robust M-estimator

We shall estimate a phase parameter f in a periodic intensity A(¢,0) = f(t — #), where

11

f is a C?-class, strictly positive and even function with period 1 and § € @ = ~3 —2-)

For simplicity we assume that fol f(t)dt = 1. We suppose that the score function S(t,8) (=
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

S(t—0)) = aa—glog f(t—0)is concaveint € [6,9+—;—] and that fol Sit—0)2 f(t—06)dt > 0.
d 0 o
Note that - 5(t — 0) = — = 5(t — )= —S'(t ~ )

The true intensity is given by
(3.1) p(t) = (1 —¢€)f(t — bo) +ec(t — bo),

where 6y € ©,¢ € [0, M,],0 < M, <1 and ¢ is a periodic, even, bounded and measurable
function. Without loss of generality we can assume §y = 0. Let h(¢,0) = (¢ — #) and
H(t,8) = ¢(t — 0), where ¢ is odd and both % and ¢ are periodic functions for which
the conditions (1)—(6) in the previous section hold with §; = 0 (= ). Then we easily see
that T' in the condition (4) is equal to f01 ¥'(t) p(t) dt. Hence the asymptotic variance is a
measure of goodness of estimation and is related to ¢ only.

We shall construct an M-estimator which has the minimax variance provided that
the true intensity p belongs to a suitable class. First we shall look for an intensity pug

minimizing the information I(x) defined by

[ #ouoa 2
(32 =g, | [t uto dt)

)

where Q; is a class of all periodic and continuously differentiable functions 4 with

I3 p(t)? u(t) dt > O.
Putting, for 0 < 4 < max S(t),

(3.3) a=inf{t € [0,3]:5() 2 £}
and
(3.4) b=sup{t € [0,2];5(t) > A},
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5.3. Minimax robust M-estimator

we easily see that a and b are solutions of the equation S(¢) = £ and differentiable with

respect to # (0 < B < max S(t)) and that {t € [0, %];S(t) > B} = [a,b] by concavity of

S() on [0,3]. Let
(=M i <
(1 — M.) f(a) exp{-B(t — a)} if a <[t] <},
3.5 t) =
O mO=Y (g O g apsy <<
F(b)
(  periodic otherwise.

Then its score function is given by

'
Sp(t) = —'ZZ—E%
= max{—f, min{S(?), 8}}
r S(t) if [{]<a,b<[t|<3
8 if a<t<b,
=) .y if —b<t<—q,
\ periodic otherwise.

For a constant £ (> 1, near by 1), we determine S by the equation

1
/ pp(t) dt =&,
0

equivalently

1/2
[ 50+ 560 [ expi-pte -y it K expi-po-ay [ st
(3.6) _
- &
2(1 - Me) -
Since the derivative of the left-hand side of (3.6) with respect to ,3 1s negative, 1t is decreas-

f()

a.nd —, respectively. Hence, for

ing in # and its maximal value and minimal value are 5
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

M, €[0,1 — ——=), the equation (3.6) has a unique solution fy. Hereafter, we abbreviate

f(O)

the intensity pg, and its score function Sg, as po and Sp, respectively. Let M be a class

of all periodic, even and measurable functions u(t) satisfying that

/01 p(t)dt < /01 po(t) dt (= ©),

and for any t,

(1= M) < u(0) < (1= M) FZ exp{~Folbo = ao)} ()
where ag and by respectively denote a and b given by (3.3) and (3.4) for § = By and £ is
explained as the upper bound of the average number of the events which occur during one
period in the case that the observation is contaminated. From £ > 1 we easily see that the

intensity f of the model belongs to the class M of the contaminated intensities.

We shall show the following lemma.

Lemma 5.5. Under the condition

1

(3.7) BZ+25'(t)—S{t)2 <0 forallt € [b, 5h

jto minimizes the information, that is,
3.8 I = min [(y).
(3.8) (o) = min I(u)

Proof. Asin Chapter 4 of Huber (1981), it is sufficient to check that for any y; (€ M)

which satisfies that I(y;) < oo,

_ /0 (255(2) — So(t)?) (1 (£) — po(t)) dt > 0,

(3.9) 2 1)

where p, = (1 — s)po + sp1, s € [0,1]. We easily see that

1d

1/2
3ol = [ (B 25800 - Su(0) () — polt)

8=0

1/2
R / (2 (t) = po(t)) dt
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5.3. Minimax robust M-estimator
> [ 8 +25'0) = S) (u2() — o(t)
o]

1/2
+ [+ 250 = SO (i 0) — o(t)

bo

=1+ 1II (, say).

We see that I > 0 because for ¢ € [0, ag], 82 — S(¢)2 > 0, #1(t) — po(t) > 0 and S'(t) > 0.
Since p1(t) — po(t) < 0 for ¢ € [bo, %], we get IT > 0 by (3.7). Consequently, we obtain

(3.9).

We shall show that the M-estimator corresponding to h(f,0) = Sp(t — 8) has the

minimax asymptotic variance, that is,

(310) Su}& V(l“) ¢) = V(“O) SO)J

inf
PEQ2 BE
where Qs a class of all periodic functions 9 with the Radon-Nikodym derivative ¢/, for

which the conditions (2)~(5) in the previous section hold with 6; = 0 (= 6y) and

[ v a

0
1

(/ ¢’(i)u(t)dt)2

Vip,¢) =

is the asymptotic variance of the M-estimator corresponding to k(¢,0) = ¥(t — ). From

Lemma 4.4 in Huber (1981) is convex in s, where p, = (1—8)po+spy, s € [0, 1]

1
) V(/“Q)SO)
and p; € M. We see that for any u; € M,

= | (@550 = 50(0) (s 6) — o) dt 2 0

i (7))

because the last inequality follows from (3.9). Hence we have that

8=0

(3.11) V(po, So) = sup V(p,So)
: HEM

> inf sup V{(u,v).
Z ot sup (, %)
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

We get

L
I(po)

~ inf V(go,
oo, (tt0, 1)

V(FOa SO) =

(see e.g. Huber (1981)). For any %, € Q2 and any € > 0, we can find a 9¥; € Q; such that
|2(t) — ¥1(t)] < € for all t € [0,1] from Weierstrass’ theorem. For any ¢; € Q; (i = 1,2),
f01 Vi) po(t) dt = — f01 ; () pub(t) dt because both 9; and po are periodic. Hence, for any
¥y € Q2, we can approximate V(ig, ¥2) by V(uo, ¥1) for some 9, € Q; from boundedness

of 91, P9, po and pg. Furthermore, we have that

[‘ u(), S() = .Ilf [’ u(), lp
< ] f ‘/
> ;Il , (/‘07 ¢2)

< inf sup Vg,
—'/’2692#6./}\)4 (# ¢2)

From (3.11) and the above inequality, we obtain the following theorem.

Theorem 5.6. Under the condition (3.7), the M-estimator corresponding to h(t,6) =

So(t — @) has the minimax asymptotic variance, that is,

inf 1% = V(uo, So),
Jof, sup (1, %) = V(po, So)

where pig = pg, is given by (3.5), fo is a unique solution of the equation (3.6) and Sp(t) =
_ kol

po(t)
In the first half of the present section, we have constructed the M-estimator which
has the minimax variance provided that the true intensity g belongs to the class M. In

the latter half, we shall consider the minimax problem when the true intensity u(t) is
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5.3. Minimax robust M-estimator

given by (3.1). The class of all functions given by (3.1) is wider than the class M but we
impose a restriction on the function A(¢, #). More precisely, for a fixed function ¢ satisfying

conditions below, the function A is given by

S(t—0)> |

h(t,0) =ﬂ¢( -

where f is a positive constant, S({—§) = 9 log f(t — 8) is the score function and ¥(z) is a

06

plece-wise continuously differentiable, continuous, monotone increasing and odd function

which is concave on the [0, 00). Then the asymptotic variance of the M-estimator is given

by
V(c,s,ﬂ)=%§;%);,
where
2,00 = [ 5% (%} {(L—)F(t) +eclt) } dt
and

I(c,c, f) = /0 Sy (ﬁgl) {(1— ) f(8) +ec(t) } .
Let C be a class of all periodic, even and measurable functions ¢ with 0 < ¢(t) < M, for
every t and B be a class of all 3 satisfying that for any ¢ € C and 0 < ¢ < M, I'(c,¢,8) > 0,
where M, is the bound of . We suppose that the class B is non-empty.
Our purpose is to determine the § € B which minimizes max V(e e, B). First we

0<e< M,
shall show the following lemma.

Lemma 5.7. For0 < a < %, let

D =

| M, a<|t]| <
() =9 0 1] < o,

periodic otherwise.
For ¢ = ¢,, we abbreviate the asymptotic variance V(c,¢, ) as V(a,¢,8). Then for any
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

B € B, there exists an o* € [0, -21-] such that

(3.12) max Vie e, B) =V(a* ¢, B).

Moreover, for any o € [0, %] and B € B, V(«,¢, 3) is monotone increasing in €.

Proof. Since V(a, ¢, ) is continuous in «, there exists an ag € [0, %—] such that

max V(e, g, 8) = V(ag, ¢, B).

It is sufficient to show that

(3.13) max Ve, e, ) = V(ag, &, B),

Let

(1) = By (ﬁgﬁ) .

1
Since 4 is monotone increasing and concave on [0, 00 ) and S(¢) is concave on [0, 5], U(t)

is concave on [0, %] Hence ¥'(t) is decreasing on [0, %] Accordingly, putting
1 !
to=sup{t € [0,5]; ¥'(t) 2 0},

we have that ¥'(t) > 0 for ¢ € [0,%] and ¥’(¢) < 0 for ¢ € [to, %] It is easy to check that

1 1/2
(3.14) 28(c.c,f) = /0 VO (1~ ) f() +ec(t) }dt > 0,

because # € B. Since S(t) is periodic and odd, we see that S(0) = S( %) = 0, which implies
¥(0) = \Il(%) = 0. From (3.14) there exists a ¢; € (0, %) such that ¥(¢;) # 0. It follows
from concavity of ¥ that ¥(¢;) > 0 and for any ¢ € (0, %), ¥(t) > 0. Moreover we have
that 0 <5 < %

Let
=3 [ gy (%) oft) dt
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5.3. Minimax robust M-estimator

and
90 =3 [ 50w (22) ety

Then we easily check that
1/2
ple) = / W(t)2e(t) dt
0
and
1/2
g(c) =/ V' (t)e(t) dt.
0
For ¢ = c,, we abbreviate p(c) and g(c) as p(a) and g{a), respectively. Since p(a) is
continuous in «, for any function ¢ € C, there exists an a; such that p{c) = p(a;),

equivalently,
(3.15) ®(c,e,8) = P(cay,6,8) (> 0).

Furthermore we have that g(c) > g(a;), equivalently,
(3.16) I(c,e,8) 2 I(cay;€,8) (> 0).

Indeed, if o3 € (0, %], we get

1/2

o0)=gt0) = [ W+ [ W) (elt) - M) i

1

> / " e dt + / W) (elt) - M) dt

1

2w (o) [ et + [ ety -y a],

(231

because ¥' is monotone decreasing on [0, %] and ¥'(¢) < 0 for ¢ € [to, -;—] On the other

hand, we have that
0 = p(c) — p(o1)

< / " w0 e(t)dt + / W) (elt) — M) dt

1
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5. Robust Estimation in the Poisson Processes with a Periodic Intensity

< W(an)? [ /; " eyt + /a “(e(t) - M) dt] ,

1

because ¥ is non-negative and monotone increasing on [0,fp]. Since ¥(ay) > 0 and
¥'(a1) > 0 by definition of ¢5, we obtain g(c) — g(e1) > 0. For oy € [to, %), we can
similarly show that g(c) > g(a;). We easily see that g(¢) = g(a;) = 0 for a; = 0 or %
Hence, for any ¢ € C, we can find an o satisfying (3.15) and (3.16). Consequently we
obtain that

V(C, & 18) S V(alasa ﬂ) S V(a0)87 :3))

which implies (3.13).

We easily see that for any o € [0, %] and 3 € B,

1/2
Pleae,f) =2 [ W(O{(A- )+ ecalt)

= 2(1 - €)g(f) + 2¢9(a) (> 0)

and

%r = —2g(f) + 2g(e) (£ 0),

because g(f) > 0 and g(«) < 0. Similarly, we see that

<I>(ca,e,,8) = 2(1 - E)p(f) + Qap(a)

and
0
e =~ + 2(0).

Therefore

Lraes- [(ga)r-so ()]

v
r .
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5.3. Minimax robust M-estimator

= 4[p(e)g(f) — p(f)g(a)]/ I

> 0.
Consequently we obtain the conclusion of the present lemma.

Let o*(fB) denote an « maximizing V(a, M.,() and f. denote a § minimizing

V(a*(8), M, B), where M, is the bound of €. From the previous lemma, we have that

V(a*(Ba), Me, i) = min max V(e & B).
0<e<M,

As an example, let

f(z)=§:\/“zl_ﬂaexp{—(—z%£} (o =0.1)

k=-o00
and
1 z>1
P)=qz |z[<1
-1 z<-1.

We give the tables of asymptotic variance V' and asymptotic relative efficiency (ARE)

which is asymptotic variance divided by one of the MLE in M, = 0.
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Table 1. Model (M, = 0)

66

B 12.6 14.4 15.1 15.3 16.7
V(x10%) 1.07 1.05 1.0 1.04 1.03
ARE 941 .960 1966 967 976
B 17.6 17.8 19.6 21.0 ML
V(x107%) 1.03 1.03 1.02 1.02 1.01
ARE .981 1082 089 092
Table 2. M, =0.01
M, 1 2 3
B, = 21.0 ML 8. = 10.6 ML B. =176 ML
o« 142 147 143 152 143 157
V(x10%) 1.06 1.09 1.09 1.17 1.13 1.25
ARE 956 927 024 863 896 807
M, 4 5
B. = 16.7 ML B, = 15.1 ML
a® 143 161 142 166
V(x10%) 1.16 1.33 1.19 1.42
ARE 870 57 .846 713
Table 3. M, = 0.05
M, 0.5 1
B. = 17.8 ML B. = 15.3 ML
a” 144 155 143 167
V(x10%) 1.16 1.27 1.25 1.50
ARE .869 795 807 675
M, 15 2
B. = 14.4 ML B. = 12.6 ML
o 144 179 126 190
V(x10%) 1.34 1.73 1.42 1.97
ARE 757 584 712 512
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