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Abstract 

  On-line two-angle (15 and 90) light scattering measurements with a gel permeation 

chromatograph for linear and branched polystyrene in tetrahydrofuran (a good solvent) 

and in trans-decalin (a theta solvent) were made and compared with data from a 

multi-angle light scattering detector and literature values.  Theoretically, weight-average 

molecular weight and the radius of gyration Rg can be determined accurately in the range 

where Rg
2k2 is less than 1.2 (rod) ~ 1.7 (random coil); here, k is the absolute value of the 

scattering vector for a right angle detector with the Berry square root method.  Molecular 

weight dependence of the radius of gyration obtained from the two-angle light scattering 

detector for linear and branched polystyrenes under different thermodynamic conditions 



were measured and found to be almost the same as values measured with a multi-angle 

light scattering detector and literature values in the appropriate range of molecular 

weight. 
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1. Introduction 

  In order to investigate the shape of polymer molecules in solution, the combined 

measurement of radius of gyration Rg and molecular weight yields some of the most 

useful information.[1,2]  These quantities are obtained from static light scattering, small 

angle X-ray scattering, or small angle neutron scattering.  However, narrow molecular 

weight samples are required for this purpose because Rg
2 thus obtained is z-average value 

whereas molecular weight is a weight-average, Mw.  Recently, some commercial 

instruments have been developed to measure Mw and Rg by coupling to a gel permeation 

chlomatography system (GPC).  In this way, both the molecular weight and size may be 

measured at each elution volume, thus making conformational information available for 

various components that are present in polydisperse macromolecules.  The most widely 

used multi-angle light scattering (MALS) detector is produced by Wyatt Technology.[3]  

It has been demonstrated that the use of this unit on-line as a GPC detector gives reliable 

Mw and Rg data for a range of linear [4] and branched [5-7] architectures. However 

multi-angle detectors are large and expensive.  Very recently, Precision Detectors 

introduced a two-angle light-scattering (TALS) detector (15 and 90 degree) which is 

much smaller and more economical than MALS detectors and it is easy to place in the 

thermostat.  For a limited region of molecular sizes, but one which covers the practical 

range of interest to most users, accurate molecular weight and radius of gyration can be 

obtained from this detector.  Very recently, Bo and co-workers reported the use of TALS 

for measuring molecular weight and sizes of a range of linear polymers in 

trichlorobenzene at 150 °C.[8]  In this work, we demonstrate the accuracy of the data 

from two angle detectors theoretically and experimentally for linear and regularly 

branched polystyrenes in tetrahydrofuran (THF, a good solvent) and for linear 



polystyrene in trans-decalin (a theta solvent). 

2. Theoretical Background 

Scattering functions of various linear polymers in solution have been investigated and 

they can be explained quantitatively by the wormlike chain model, or more generally the 

helical wormlike chain model.[2]  The theoretical scattering function of the former model 

is between the theoretical values of the thin rod model and the Gaussian coil model.  The 

scattering functions P(k) of a thin rod and a coil are written with the absolute value k of 

the scattering vector as  
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where L is the length of the rod.  It is known that Berry's square root method [9] written as 
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gives an appropriate linearity at the low k range.  Scattering functions calculated from 

these equations are illustrated in Figure 1.  When Rg
2k2 is less than 1.73 for a Gaussian 

coil or 1.22 for a thin rod, the ratio of Rg,app (the radius of gyration determined from this 

equation with P(k) for higher angle) to the true Rg is more than 0.98, i.e. the error of Rg,app 

is less than 2%.  These range are equivalent to Rg < 72 nm for a Gaussian coil and 60 nm 



for a thin rod when the wavelength of the incident beam and the refractive index are 

assumed to be 680 nm and 1.4, respectively.  This corresponds to Mw = 2  106 for linear 

polystyrene in THF.  Furthermore, Rg for branched polymer is smaller than that for the 

linear polymer with the same molecular weight.  Therefore, it is expected that accurate 

molecular weight and radius of gyration for branched polymers will be obtained from 

TALS detectors for a considerable region of molecular weight. 

3. Experimental 

  A linear polydisperse polystyrene, sample PS-1 purchased from Aldrich with the 

nominal molecular weight being 2.8105, and previously investigated multi-branched 

polystyrenes (comb polystyrenes CS25-35, GS60-15, GS40-25, and GS15-35) were 

chosen in this study.  Weight average molecular weight and Rg in THF at 25C and in 

trans-decalin at 22C were determined using a Polymer Laboratories PL-GPC-120 GPC 

system with a Precision Detector two-angle (15 and 90) light-scattering photometer 

with a 680 nm laser and a refractive index detector.  Two PLgel 10 m MIXED-B 

columns (300  7.5 mm) connected in series were used to fractionate the polymer and the 

flow rate was set to 1 cm3 min-1.  For trans-decalin solutions the column temperature was 

set to be 110ºC to avoid adsorption of the polymer to the column.   To calibrate the TALS 

detector, two standard polystyrene samples whose Mw were determined using the Wyatt 

Technology DAWN EOS to be 50,000 and 65,000 were used for this study, and we used 

Rg value for these two polystyrene samples estimated by the relations 

 

  Rg = 0.0118 Mw
0.6 (nm, THF, 25ºC)  

  Rg = 0.0277 Mw
0.5 (nm, trans-decalin, 22ºC) (4) 



 

Polymer solutions with mass concentrations of about 1.710-3g cm-3 or 2.710-3g cm-3 for 

THF or trans-decalin solutions, respectively, were injected using a sample loop of 0.1 

cm3 capacity.  For comparison with the data from multi-angle light-scattering detection, 

light scattering measurements with a Wyatt DAWN EOS multi-angle photometer and a 

refractive index detector (Wyatt OPTILAB DSP) were made for THF solutions of PS-1 at 

the wavelength being 690 nm.  Toluene and a narrow distributed polystyrene sample with 

the molecular weight being 50,000 were used to calibrate the right angle detector and to 

normalize the other scattering detectors, respectively.  The specific refractive index 

increment for polystyrene in THF at 25ºC was taken to be 0.184 cm3 g-1 to determine 

molecular weight with the DAWN EOS.[5] 

4. Results and Discussion 

  Figure 2 illustrates the curves of the polymer mass concentration c, Mw, and Rg against 

elution volume Ve for PS-1.  The molecular weight and Rg at each Ve were calculated 

when each light scattering intensity and concentration are more than 10% of the peak 

value.  It is seen that the maximum Rg value is obviously less than 60 nm, that is the upper 

limit to determine Rg correctly from the Berry's square-root plot.  The value of c, Mw, and 

Rg at the same Ve from the two kinds of light scattering detectors are almost the same.  

Generally, the molecular weight determined from finite concentrated solutions in a good 

solvent is estimated to be smaller than the true value due to the effect of the second viral 

coefficient A2.  For the current system, the value of A2 is known as a function of the 

molecular weight as [11] 

 



247.03THF
2 1093.9  MA    (5) 

 

In this case, the true Mw value was at most 2.5% larger than the obtained value.  In fact, 

this underestimation does not affect the plot of Rg vs Mw because this difference is 

essentially offset by the very slight underestimation of the Rg. 

  Figure 3 shows the comparison of the measured molecular weight dependence of Rg 

with literature values.  The present data are showed as open symbols along with literature 

values of Nakamura et al.[7], Shultz and Baumann [12], and Park et al.[13]  It is seen that 

Rg for the same molecular weight are almost the same irrespective of the detector used.  

Furthermore, these values are very close to literature values but slightly smaller than them.  

This difference in Rg can be explained due to the molecular weight distribution of the 

samples used in the previous works.  Also, the comparisons between the data for linear 

polystyrene in trans-decalin and literature values of Inagaki et al. [14] at 24ºC, Fukuda et 

al. [15] at 20.4ºC, and Konishi et al. [16] at 22ºC are shown in Figure 4.  Our data have 

very good agreements with literature values for a theta solvent system. 

Figure 5 shows the comparison between Rg data from MALS and TALS in the plot of 

Rg vs Mw for regular comb polystyrenes (multiple, regularly spaced trifunctional branch 

points) and regular centipede polystyrenes (multiple, regularly spaced tetrafunctional 

branch points).[7]  It is clearly seen that data from two-angle light scattering detector are 

essentially the same as those from the multi-angle light scattering detector. 

5. Conclusions 

  In this paper, we report and compare light scattering data from multi-angle light 

scattering and two-angle light scattering detectors. The data from the TALS detector are 



almost the same as those from the MALS detector for both linear and branched 

polystyrene solutions in good and theta solvents over a very broad range of molecular 

weights.  This result shows that molecular-weight dependence of radius of gyration can 

be obtained using the compact and lower cost TALS detector for polymers having an 

appropriate radius of gyration.  Another certification of two-angle light scattering will be 

published for multi-branched polybutadiene solutions. [17] 
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Figure Captions 

Figure 1. Plots of P-1/2(k) and Rg,app/Rg vs Rg
2k2 for the Gaussian coil model and the thin 

rod model. 

 

Figure 2. Plots of Mw, Rg, and c vs Ve for linear polystyrene PS-1 in THF at 25C (a) data 

from the multi-angle light scattering detector (b) data from the two-angle light scattering 

detector. 

 

Figure 3. Molecular-weight dependence of Rg for linear polystyrenes in THF. Open 

circles: data for PS-1 from the two-angle detector, open triangles: data for PS-1 from the 

multi-angle detector, filled circles: Nakamura et al.[7], filled triangles: Schulz and 

Baumann [12], filled squares: Park et al. [13]). 

 

Figure 4. Molecular weight dependence of Rg for linear polystyrenes in trans-decalin.  

Open circles: data for PS-1 from the two-angle detector at 22ºC, filled squares: Inagaki et 

al. [14] at 24ºC, filled triangles: Fukuda et al. [15] at 20.4ºC, filled circles: Konishi et al. 

[16] at 21ºC. 

 

Figure 5. Molecular weight dependence of Rg for regularly branched polystyrenes in THF 

(open circles: this work from the two-angle detector, filled circles: Nakamura et al. [7] 

from a multi-angle detector). 
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Figure 2.  
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