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RUNNING HEAD:  Solution Properties of Amylose Tris(Phenylcarbamate) 

 

ABSTRACT:  Light and small-angle X-ray scattering, sedimentation equilibrium, 

viscosity, circular dichroism, and infrared absorption measurements have been made on 

1,4-dioxane (DIOX) and 2-ethoxyethanol (2EE) solutions of seven amylose 

tris(phenylcarbamate) samples ranging in molecular weight from 2  104 to 3  106.   

Analyses of gyration radius, scattering function, and intrinsic viscosity data in terms of 

the wormlike chain model yield Kuhn segment lengths of 22  2 nm and 16  2 nm in 

DIOX and 2EE, respectively, and a contour length per residue of 0.33  0.02 nm in both, 

showing that the amylose derivative chain has high stiffness and a contour length 

slightly shorter than the known value 0.37 - 0.40 nm for amylosetriesters in the 

crystalline state.   These results are consistent with the intramolecular hydrogen 

bonding between the C=O and NH groups of the neighbor repeating units detected by 

infrared absorption and also with the locally regular (or helical) conformation indicated 

by circular dichroism. 

 

KEY WORDS: Amylose Tris(Phenylcarbamate) / Light Scattering / SAXS / Intrinsic 

Viscosity / Wormlike Chain / Hydrogen Bonding 
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Dilute solutions of amylose tris(phenylcarbamate) (ATPC), whose chemical 

structure is illustrated in Figure 1, have widely been studied due to the good solubility 

in various solvents including some theta solvents.1-12   This derivative behaves as a 

stiff chain in solution in contrast to the high flexibility of amylose.13,14   The contrast 

suggests that intramolecular hydrogen bonding between neighboring C=O and NH 

groups is responsible for the stiffness of the ATPC chain.   If indeed formed, such 

hydrogen bonds should affect the local conformation of ATPC and the contour length h 

per repeat unit, i.e., the helix pitch per residue (provided the chain is helical), in addition 

to the global conformation or the chain stiffness.    The local structure of this amylose 

derivative is also a subject in efficient chiral separation.15,16 

[Figure 1] 

  Despite such importance of h, however, we find no report on its experimental 

determination for ATPC in the literature except the very early work of Burchard,8 who, 

analyzing gyration radius data in terms of the wormlike chain,17 estimated h in the 

dioxane-methanol mixed theta solvent to be 0.26 nm, a value about one-half that of 

cellulose tris(phenylcarbamate).  The Kuhn segment length –1 he obtained was as 

large as 46 nm.  Later, in their characterization work on ATPC, Pfannemüller et al.11 

estimated –1 to be 18 – 26 nm in 1,4-dioxane (DIOX) assuming h = 0.37 nm (the helix 

pitch per residue based on the crystal structure of amylose tribenzoate18).  These 

estimates of –1 by the two groups are at variance depending strongly on h. 

  For the understanding of the conformational characteristics, local and global, of 

ATPC in solution, unequivocal determination of the wormlike-chain parameters (h and 

–1) is almost mandatory in a solvent in which intramolecular hydrogen bonds between 

C=O and NH groups are detected by experiment.  Thus, in the present work, we made 

light scattering, sedimentation equilibrium, synchrotron radiation small-angle X-ray 
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scattering (SAXS), viscosity, circular dichroism (CD), and infrared absorption (IR) 

measurements on ATPC samples in DIOX and 2-ethoxyethanol (2EE).   These 

solvents allowed us to obtain information on the (possible) helical conformation of the 

ATPC molecule and the intramolecular hydrogen bonding from CD and IR, respectively.   

The estimation of the wormlike-chain parameters from scattering and viscosity data are 

described below along with these findings from spectroscopy.  

 

EXPERIMENTAL 

Preparation of ATPC Samples 

Seven amylose samples with narrow molecular-weight distribution and no 

branching19-22 were enzymatically synthesized by the previously reported method19 

using potato phosphorylase (EC 2.4.1.1.) or supplied by Ezaki Glico Co., Ltd.   Their 

weight-average molecular weights Mw ranged from 6  103 to 1  106 and their weight 

to number-average molecular weight ratios Mw/Mn were less than 1.2 when estimated by 

SEC-LS (size exclusion chromatography combined with multi-angle or low-angle light 

scattering and refractometry).  ATPC samples were synthesized from the amylose 

samples and phenylisocyanate.  The typical procedures were as follows. 

Each amylose sample (3.0 g) and LiCl (3.0 g) dried in vacuum at 130 C for several 

hours were dissolved in N,N’-dimethylacetoamide (30 cm3) at 110 C under N2 

atmosphere.   Pyridine (100 cm3) and an excess amount (20 g, 0.17 mol) of 

phenylisocyanate were added to the mixture and stirred for 12 h at 110 C.   The 

product was reprecipitated twice from an acetone solution into methanol to remove 

foreign substances such as unreacted phenylisocyanate and LiCl.   LiCl and 

phenylisocyanate (Wako and Tokyo Kasei, respectively) were used without further 

purification.   N,N’-dimethylacetoamide, pyridine, DIOX, and 2EE (Wako) were 
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purified by fractional distillation over CaH2. 

   The resultant samples were further purified by fractional precipitation with acetone 

as a solvent and methanol as a precipitant, and appropriate middle fractions from the 

respective ATPC samples were reprecipitated into methanol.   They were designated 

as ATPC20K, ATPC50K, ATPC200K, ATPC300K, ATPC500K, ATPC800K, and 

ATPC3M based on the molecular weights.   The degree of substitution was estimated 

to be 3.0 - 3.1 for all these fractions from the mass ratio of carbon to nitrogen 

determined by elemental analysis.   It was also determined for ATPC20K and 

ATPC50K to be 3.0  0.1 by 1H NMR (JEOL GSX-400 NMR spectrometer) in 

acetone-d6 at 30 C.   Thus we concluded that the three hydroxyl groups on each 

glucose unit of amylose were fully substituted to phenylcarbamate. 

 

Light Scattering 

   Light scattering measurements were made for five high molecular weight ATPC 

samples in DIOX and 2EE at 25C on a Fica-50 light scattering photometer with 

vertically polarized incident light of 436 or 546-nm wavelength 0 in an angular range 

from 22.5 to 150.   The instrument was calibrated with benzene at 25 C with the 

Rayleigh ratio for the unpolarized incident light at 90 taken as 4.65  10-5 cm-1 at 436 

nm and 1.61  10-5 cm-1 at 546 nm;23 the depolarization ratio of this liquid was 

determined to be 0.44 and 0.41 for 436 and 546 nm, respectively, by the method of 

Rubingh and Yu.24 

   The square-root plots25 of (Kc/R)
1/2 vs. sin2(/ 2) and vs. c were used to determine 

Mw, the second virial coefficient A2, and the z-average mean-square radius of gyration 

<S2>z, where K, c, and R denote the optical constant, the polymer mass concentration, 

and the excess reduced scattering intensity at scattering angle , respectively. 
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   Polymer solutions and the solvents were made optically clean by centrifugation at 

about 3  104 gravities for 80 minutes at 25C.   Each of them was transferred into a 

cylindrical light scattering cell (22 mm i.d.) with a stainless steel tube (0.5 mm i.d.).  

The cell and the tube had been cleaned by acetone filtered through a 0.02 m membrane 

filter. 

   The specific refractive index increments n/c for ATPC20K and ATPC3M in DIOX 

and for ATPC800K in 2EE at 25C were determined using a modified Schulz-Cantow 

type differential refractometer.   The results at 0 = 436, 546, and 633 nm were 0.160, 

0.148, 0.143 cm3g-1, respectively, for ATPC3M in DIOX; the values for ATPC20K in 

DIOX were about 2% larger than these at the corresponding wavelengths.   For 

ATPC800K in 2EE, we obtained n/c = 0.173, 0.159, 0.153 cm3g-1 for 0 = 436, 546, 

and 633 nm, respectively. 

 

Small-angle X-ray scattering (SAXS) 

   Scattering intensities at  and at  = 0.10 nm were measured for ATPC20K and 

ATPC50K both in DIOX and in 2EE at 25 C using a Rigaku R-AXIS IV++ or an 

R-AXIS VII imaging plate detector at the BL40B2 beamline in SPring-8; the camera 

length was set to be 1500 mm.   A 1.5 mm quartz capillary filled with each test 

solution was set to the cell holder whose temperature was controlled with a circulating 

waterbath.   The beam center of the imaging plate and the camera length were 

determined accurately from the Bragg reflection of powdery lead stearate.   The 

scattering intensities for each solution or solvent were corrected for the incident-beam 

intensity and the transmittance, both determined using the ionic chambers installed at 

the upper and lower ends of the capillary.   The excess scattering intensity I was 

analyzed using the square-root plots25 of (c/I1/2 vs. sin2 (/ 2) and vs. c to determine 
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<S2>z and P(k) (the particle scattering function) at the absolute value of the scattering 

vector k. 

 

Sedimentation Equilibrium 

   Sedimentation equilibrium measurements were made for samples ATPC20K and 

ATPC50K in DIOX at 25 C in a Beckman Optima XL-I analytical ultracentrifuge to 

determine Mw, A2, and the z-average molecular weight Mz (see ref 26 for the 

experimental procedures and data analysis).   The rotor speed was chosen to be 3  

104 and 1.1  104 rpm for ATPC20K and ATPC50K, respectively.   The concentration 

profile in each 12-mm double sector cell was obtained from the Rayleigh interference 

patterns observed with a diode laser of 0 = 675 nm.   The n/c at this 0 was 

estimated from the above-mentioned data at other 0 with the aid of n/c vs. 0
-2 plot.   

The partial specific volume was determined for ATPC20K and ATPC50K in DIOX at 25 

C to be 0.714 and 0.724 cm3g-1, respectively, using an Anton Paar DMA 5000 

densitometer. 

 

Viscometry 

   Viscosity measurements in DIOX and in 2EE at 25 C were carried out using a 

four-bulb low-shear capillary viscometer of the Ubbelohde type for ATPC3M in DIOX 

and conventional capillary viscometers for all ATPC samples in the two solvents.   

The Huggins plot,27 the Fuoss-Mead plot,28 and the Billmeyer plot29 were combined to 

determine the intrinsic viscosity [] and the Huggins constant k’.   The shear-rate 

effect on [] was negligible (less than 2%) even for the highest Mw sample ATPC3M. 

 

Circular Dichroism 
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   Both CD and UV spectra for ATPC300K in DIOX and in 2EE at 25 C were 

recorded on a JASCO J720WO spectropolarimeter in the range of 0 between 210 and 

280 nm.   The experimental conditions were as follows: a band-width of 10 nm, a 

response time of 2 sec, a scanning rate of 20 nm / min, and five times accumulations.   

A rectangular quartz cell of 2-mm path length (l) was set in a cell holder thermostated 

with a circulating waterbath.   The molar extinction coefficient  and the molar 

circular dichroism  were calculated from the measured absorbance A and ellipticity ’ 

with 

 

cl

M

cl

AM

33

'
, 00     (1) 

 

where M0 denotes the molar mass of the repeating unit of ATPC. 

 

Infrared Absorption (IR) 

   IR spectra for ATPC300K in mixtures of DIOX and 2EE with different compositions 

were recorded on a Excalibur FTS-300 Fourier-transform infrared spectrometer (Bio 

Rad Laboratories) with a solution cell SC-CaF-0.05 (GL Science, Japan) made of CaF2 

and having 0.05-mm path length.   The conventional transmission method was used, 

and 500 times accumulations were performed at room temperature (20 – 25 C) for each 

solution whose c was about 3  10-2 g cm-3.  Additional measurements in pure DIOX 

and 2EE at higher polymer concentrations of about 6  10-2 g cm-3 gave spectra (A 

relative to c) identical to those at c  3  10-2 g cm-3, indicating negligible contributions 

from intermolecular interactions between polymer chains to IR spectra at c below 6  

10-2 g cm-3. 
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RESULTS 

Dimensional and Hydrodynamic Properties 

   Figure 2 illustrates the concentration dependence of (Kc/R0)
1/2 for ATPC samples in 

the two solvents, where R0 denotes R at  = 0.   The indicated straight lines give A2 

values of 1 - 4  10-4 mol cm3g-2, showing that both DIOX and 2EE are good solvents 

for ATPC.   The values of Mw determined in the two solvents agree with each other 

within 3%, so that their averages are presented in Table I, along with the A2 data.   

The table also includes Mw and Mz/Mw from sedimentation equilibrium as well as 

Mw/Mn determined by SEC-LS in tetrahydrofuran at 30 C. 

[Figure 2] 

   The angular dependence of P(k)-1/2 is shown in Figure 3, in which the initial slopes 

indicated by the dashed lines and hence the radii of gyration for the respective samples 

are seen to be larger in DIOX than in 2EE.  The values of <S2>z
1/2 determined are 

listed in Table I. 

[Figure 3], [Table I] 

   Figure 4 displays the Mw-dependence of <S2>z
1/2 and [] in DIOX at 25 C, along 

with the relations reported by Burchard3 and Pfannemüller et al.11  The [] data of the 

three groups come fairly close to one another, whereas Burchard’s <S2>z data appear 

slightly above ours.  The slopes of the curves fitting our <S2>z
1/2 and [] data decrease 

from 0.74 to 0.55 and from 0.89 to 0.68, respectively, with increasing Mw, confirming 

the stiff-chain behavior of ATPC.  These physical properties in 2EE exhibit similar 

behavior (see Figures 7 and 9).    Our numerical results of [] and k’ in DIOX and 

2EE have been summarized in Table I.  

[Figure 4] 
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IR and CD Spectra 

   Figure 5a illustrates IR spectra for ATPC300K in mixtures of DIOX and 2EE with 

indicated volume fractions x of 2EE.   We assigned the double peaks at 1706 and 1754 

cm-1 to the amide I band30 which depends remarkably on x while the other peaks are 

almost independent of x.   The amide I band reflects C=O stretching, and the double 

peaks indicate the presence of, at least, two different C=O groups in solution, that is, 

intramolecularly hydrogen bonding C=O with NH (1706 cm-1; roughly 40% in amount) 

and virtually no or weakly interacting C=O with some species (1754 cm-1).   As x 

increases, the peak height at the latter band lowers as a result of the appearance of a new 

peak between the two peaks.   The third peak at 1725 cm-1 is clearly visible in the 

difference spectra (Figure 5b) obtained by subtracting  in DIOX ((in DIOX)) from those 

in the indicated solvents.  This new peak is most likely due to the formation of 

hydrogen bonds –C=O---HOC2H4OC2H5.  On the other hand, the shape and height of 

the peak at 1706 cm-1 are almost independent of x, indicating that the intramolecular 

hydrogen bonding is hardly affected by the presence of the hydroxyl group of 2EE.   

We may conclude from these findings that on an average, about 40% of the C=O groups 

in the ATPC molecule intramolecularly hydrogen bond to NH groups probably in the 

first and/or second nearest neighbor repeat units. 

[Figure 5] 

 Figure 6 shows that there is no substantial difference in CD and UV spectra 

between the two solvents.  Thus the local conformations of ATPC in DIOX and 2EE 

must be essentially the same.  The pronounced positive maximum and negative 

minimum around  = 225 and 240 nm, respectively, may be taken to indicate that, as 

proposed by Bittiger and Keilich, 4 the ATPC molecule should have locally regular or 
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helical structure in the two solvents.  

[Figure 6] 

 

DISCUSSION 

Analysis of Scattering Data 

   The unperturbed mean-square radius of gyration <S2>0 of a wormlike chain may be 

expressed as31 

 

  L
LL

L
S 


2exp1

8

1

4

1

4

1

6 24320

2    (2) 

 

where the contour length L of the chain is related to the molar mass M by  

 

  L = M/ML  (3) 

 

with ML being the molar mass per unit contour length.  In the framework of the 

quasi-two-parameter (QTP) theory32-34 with the Domb-Barrett equation35 for the radius 

expansion factor s, <S2> ( <S2>0s
2) is described by L, -1, and the excluded-volume 

strength B.   These three parameters were determined by the trial and error method to 

be ML = 1550  70 nm-1, -1 = 24  3 nm, and B = 1  1 nm in DIOX and ML = 1590  

70 nm-1, -1 = 18  2 nm, and B = 0.8  0.8 nm in 2EE.   In Figure 7, the calculated 

solid curves are seen to closely fit the data points.   The excluded-volume effect in 

either solvent, that is, the difference between the solid and dashed curves, is quite small 

(less than 5%) even at the highest Mw investigated. 

[Figure 7] 
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  Nakamura and Norisuye’s theory36 for P(k) of an unperturbed wormlike cylinder was 

applied to the SAXS data for ATPC50K, yielding ML = 1540 nm-1, -1 = 21 nm, and d = 

1.3 nm in DIOX and ML = 1640 nm-1, -1 = 15 nm, and d = 1.4 nm in 2EE.  The 

calculated solid lines of kP(k) almost quantitatively reproduce the angular dependence 

of the experimental data, as shown in the two upper panels of Figure 8.   The dashed 

curves calculated for the rod limit (-1 = ∞) considerably differ from the solid ones 

around k = 0.3 nm–1.   For ATPC20K, we obtained ML = 1500 nm-1 and d = 1.3 nm in 

DIOX and ML = 1580 nm-1 and d = 1.6 nm in 2EE by assuming the above -1 values for 

ATPC50K; we note that -1 cannot be determined for ATPC20K because the theoretical 

solid lines fitting the data points in the two lower panels of the figure are hardly 

distinguishable from the corresponding dashed lines for the rod limit.   In sum, the 

wormlike-chain parameters estimated from P(k) (ML = 1520  20 nm-1, -1 = 21 nm, and 

d = 1.3 nm in DIOX and ML = 1610  30 nm-1, -1 = 15 nm, and d = 1.5  0.1 nm in 

2EE) essentially agree with those from <S2>z in the corresponding solvents.   We note 

that the contribution d2/8 from the chain thickness to <S2> of the cylindrical wormlike 

chain37 is at most 3.1% and hence negligible. 

[Figure 8] 

 

Analysis of [] Data 

   The intrinsic viscosity of a perturbed wormlike cylinder is given by the product of 

the unperturbed intrinsic viscosity []0 and the cubic viscosity expansion factor 
3.  

The former, formulated by Yamakawa and Yoshizaki,38 may be expressed as 

 

   
M

dLf
30

,


      (4) 
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For the latter, we use the Barrett equation39 in the QTP scheme, so that the four 

parameters, ML, -1, d, and B, characterize [].  

   We analyzed the present [] data with ML fixed to the mean from P(k) and <S2>z 

(1540 and 1600 nm-1 in DIOX and 2EE, respectively); we note that the four parameters 

cannot uniquely be determined from the [] data.   Figure 9 shows the molecular 

weight dependence of experimental [] to be almost quantitatively reproduced by the 

solid curves calculated with -1 = 20 ( 1) nm, d = 2.9 ( 0.1) nm, and B = 0.5 ( 0.5) 

nm in DIOX and -1 = 14 ( 1) nm, d = 2.8 ( 0.1) nm, and B = 0.3 ( 0.3) nm in 2EE; 

each bracketed value indicates the uncertainty.  The -1 values in the two solvents are 

in substantial agreement with those determined from P(k) and <S2>z.   The 

discrepancy between the hydrodynamic d from [] (2.8 - 2.9 nm) and the statistical d 

from P(k) (1.3 - 1.5 nm) may be taken to reflect the electron density profile around the 

ATPC chain contour in solution.34,40,41 

[Figure 9] 

 

Chain Stiffness and Local Conformation 

The wormlike-chain parameters obtained from the three physical properties, <S2>z, 

P(k), and [], are summarized in Table II, where h has been calculated from h = M0 / ML.   

The values of -1 (the Kuhn length or more generally the stiffness parameter in the 

helical wormlike chain34) in the two solvents are much larger than that for amylose in 

dimethylsulfoxide (-1 = 4 nm) and comparable to that for cellulose 

tris(phenylcarbamate) in tetrahydrofuran (-1 = 21 nm).42   This high stiffness of ATPC 

compared to amylose may be ascribed to the intramolecular hydrogen bonding between 

the C=O and NH groups as well as the high substituent density.   The present IR 
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spectra (Figure 5a) demonstrate the presence of intramolecular hydrogen bonds in 

DIOX and 2EE.  Since the proton donor ability of the latter solvent is higher than that 

of the former, we may interpret the slightly smaller -1 in 2EE as due to fewer 

intramolecular hydrogen bonds between the NH and C=O groups of ATPC.  However, 

such a subtle difference in hydrogen bonding cannot be observed from the present IR 

spectra.   On the other hand, the exciton splitting in the CD spectra of ATPC (Figure 

6) substantiates the significance of the substituent effect because the CD spectra indicate 

the dense and regularly (or helically) allocated phenyl groups near the main chain.  

[Table II] 

The estimated values of h in DIOX and 2EE in Table II are substantially the same 

and both (0.33  0.02 nm) are smaller than 0.37 - 0.40 nm known for amylosetriesters in 

the crystalline state.18,43   This seems consistent with the IR and CD spectra showing 

the presence of intramolecular hydrogen bonds and locally regular structure.  It should 

be noted that the h values in the two solvents can be smaller by about 10% if the 

polydispersity correction is made for <S2>z with Mz/Mw  1.1.  

Conformational energy maps for both amylose44,45 and amylose 

tris(3,5-dimethylphenylcarbamate)46 have a shallow minimum which allows the left 

handed helices with various h values.   This indicates that h of the amylosic chain may 

be influenced by a small perturbation, i.e., intramolecular hydrogen bonding, 

intermolecular hydrogen bonding with solvent molecules, and packing of substituents 

and solvent molecules, and thus must be susceptible to such effects.   Nonetheless, we 

find that the h values for ATPC in the two solvents happen to be essentially the same.  

It is intriguing to investigate h of ATPC in various solvents and also of other amylose 

derivatives in relation to their local conformation and chain stiffness. 
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CONCLUSIONS 

   The contour length h per repeating unit for amylose tris(phenylcarbamate) (ATPC) 

is 0.33  0.02 nm in 1,4-dioxane (DIOX) and in 2-ethoxyethanol (2EE).  This value is 

10-20% smaller than those for amylosetriesters probably due to the intramolecular 

hydrogen bonding between C=O and NH groups of the neighbor glucose units, detected 

from the split amide I band.   The locally regular or helical conformations as indicated 

by CD are essentially the same in the two solvents.   The Kuhn segment length (or 

more generally the stiffness parameter in the helical wormlike chain) is much higher (22 

 2 nm in DIOX and 16  2 nm in 2EE) than that (4 nm) of amylose in 

dimethylsulfoxide due to the combination effect of the intramolecular hydrogen bonding 

and high segment density of phenyl carbamate groups. 
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Table I.   Numerical results from light scattering, SAXS, viscosity, and SEC-LS measurements on ATPC samples in 

1,4-dioxane (DIOX) and 2-ethoxyethanol (2EE) at 25 C 

Sample Mw / 104 

    in DIOX       in 2EE   

Mz/Mw Mw/Mn <S2>z
1/2

(nm) 

104 A2 

(cm3mol g-2)

[]   

(cm3g-1)
k' 

<S2>z
1/2 

(nm) 

104 A2 

(cm3mol g-2)

[] 

(cm3g-1)
k' 

ATPC3M 327 a 99 a 1.4 a 657 0.42 82 a 1.2 a 409 0.41   

ATPC800K 76.5 a 44 a 3.0 a 242 0.33 36 a 2.3 a 144 0.42  1.09 d 

ATPC500K 47.9 a 35 a 2.0 a 176 0.35 30 a 2.8 a 119 0.40  1.08 d 

ATPC300K 27.9 a 24.5 a 2.2 a 113 0.37 22.0 a 3.7 a 83.6 0.40  1.09 d 

ATPC200K 18.9 a 19.5 a 2.2 a 78.4 0.35 17.5 a 1.5 a 52.3 0.50  1.11 d 

ATPC50K 5.48 c 7.8 b 1.3 c 28.6 0.43 7.3 b  22.9 0.83 1.05 c  

ATPC20K 1.87 c 3.3 b 7 c 10.7 0.50 3.0 b   8.8 1.1 1.09 c   

a Light scattering. b SAXS. c Sedimentation equilibrium. d SEC-LS in tetrahydrofuran at 30 C. 
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Table II.   Wormlike chain parameters for ATPC at 25 C 

Solvent h (nm) -1 (nm) d (nm) a d (nm) b 

DIOX 0.34  0.01 22  2 1.3 2.9  0.1 

2EE 0.32  0.01 16  2 1.5 2.8  0.1 
a From P(k). b From []. 
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Figure captions 

Figure 1. Chemical structure of amylose tris(phenylcarbamate) (ATPC). 

Figure 2. Concentration dependence of (Kc/R0)
1/2 for indicated ATPC 

samples in DIOX (a) and in 2EE (b) at 25 C. 

Figure 3. Berry plots for indicated ATPC samples in DIOX (open circles) and 

in 2EE (filled circles) at 25 C.   (a) 0 = 546 nm, (b) 0 = 436 nm, 

(c) 0 = 0.1 nm. 

Figure 4. Molecular weight dependence of <S2>z
1/2 and [] for ATPC in DIOX 

at 25 C (circles), compared with earlier data by Burchard3 

(triangles) and Pfannemüller et al.11 (squares).    

Figure 5. (a) IR spectra for sample ATPC300K in mixtures of DIOX and 2EE 

with indicated x at room temperature (20 – 25 C).   (b) Difference 

spectra, obtained by subtracting in DIOX from  for indicated x. 

Figure 6. CD and UV spectra for sample ATPC300K in DIOX (open circles) 

and in 2EE (filled circles) at 25 C. 

Figure 7. Comparison between the experimental <S2>z
1/2 for ATPC in DIOX 

(open circles) and in 2EE (filled circles) both at 25 C and the 

theoretical curves calculated from eq 2 for <S2>0 and the 
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Domb-Barrett equation35 for s
2 in the QTP scheme32-34 with ML = 

1550 nm-1, -1 = 24 nm, and B = 1 nm in DIOX and ML = 1590 nm-1, 

-1 = 18 nm, and B = 0.8 nm in 2EE.   Dashed lines show the 

theoretical values for B = 0. 

Figure 8. Holtzer plots for ATPC50K in DIOX (a) and in 2EE (b) and for 

ATPC20K in DIOX (c) and in 2EE (d) at 25 C.   Solid curves, 

theoretical values for the unperturbed wormlike cylinder36 with the 

parameters given in the text.   Dashed curves, theoretical values 

in the rod limit (-1 = ∞). 

Figure 9. Comparison between the experimental [] for ATPC in DIOX (open 

circles) and in 2EE (filled circles) both at 25 C and the theoretical 

curves calculated from eq 4 for []0 and the Barrett equation39 for  


3 in the QTP scheme with ML = 1540 nm-1, -1 = 20 nm, d = 2.9 

nm, and B = 0.5 nm in DIOX and ML = 1600 nm-1, -1 = 14 nm, d = 

2.8 nm, and B = 0.3 nm in 2EE.   Dashed lines show the 

theoretical values for B = 0. 
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Figure 2. Terao et al.  
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Figure 3. Terao et al. 
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Figure 4. Terao et al. 
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Figure 9. Terao et al. 
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GRAPHICAL ABSTRACT 

 

Light and small-angle X-ray scattering, sedimentation equilibrium, viscosity, circular 

dichroism, and infrared absorption measurements have been made on 1,4-dioxane and 

2-ethoxyethanol solutions of seven amylose tris(phenylcarbamate) samples.   

Analyses of gyration radius, scattering function, and intrinsic viscosity data in terms of 

the wormlike chain model yield Kuhn segment lengths of 22  2 nm and 16  2 nm in 

1,4-dioxane and 2-ethoxyethanol, respectively, and a contour length per residue of 0.33 

 0.02 nm in both. 
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