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1. Introduction 

The electronic structures at interfaces between inorganic substrates and functional 

organic films have attracted broad interest both in surface science and materials science 

[1-3]. Nowadays many basic researches of the interfaces are done from surface 

scientific approaches [4, 5]. Photoelectron spectroscopy (PES) has been a powerful tool 

to understand occupied electronic structure at surfaces [6]. Investigations by PES have 

been done in the past few decades and their results revealed important roles of the 

surface electronic structures as a channel of carrier transfers at the interfaces [7, 8]. One 

of the advantages of PES is direct observations of band structures by angle-resolved 

(AR) PES. Recent progress of two-dimensional electron analyzers enables easily to 

visualize band structures at the interfaces. 

Despite of a lot of investigations of the occupied states, to understand unoccupied 

electronic structures at the interfaces is still a challenging issue [9-11]. Experiments on 

Unoccupied states at the interfaces are available by Two-photon photoelectron 

spectroscopy (2PPE) [12]. In 2PPE measurement, unoccupied states are temporally 

populated by a first photon and the excited states are detected by photoemission of 

excited electron with the second photon. The two-step process competes with the 

coherent 2PPE process from occupied levels. The two processes can be discriminated 

from photon energy dependence of 2PPE spectrum: When the photon energy is 

increased by h, photoelectron energy from the two-step process increases by 1h 

and that from coherent 2PPE process, by 2h. Thus we can measure the occupied and 

unoccupied levels at the same time. This method is superior to other method such as 

inverse photoelectron spectroscopy (IPES) and photo absorption or emission 

spectroscopy in the view point of high-energy resolution. Another advantage of 2PPE 
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experiments is direct observation of ultrafast dynamics by time-resolved measurements 

(TR-2PPE). By combining femtosecond pulse lasers with pump-probe spectroscopic 

technique, electron excitation and relaxation processes have been revealed in these two 

decades. It has been revealed that relaxations of hot-electrons by which excited inter- or 

intra- band transition in metal, is occurred in the order of 10 fs [13, 14].  

To obtain reproducible results in 2PPE, well-ordered sample is required. However, 

one of the problems in the field of the interface electronic structure is the lateral 

inhomogeneity of organic films. Due to complicated substrate-molecule interactions 

and intermolecular interactions, growth of organic films is typically inhomogeneous, 

and the lateral inhomogeneity causes complexity in electronic structures and also in 

carrier transportations. In chapter 3, the micro-spot two-photon photoemission 

(micro-2PPE) spectroscopy in which fs-laser light is focused to sub-m spot is applied 

to probe the inhomogeneity of the electronic structures [15, 16]. In the chapter it is 

shown that highly-resolved and well reproducible 2PPE spectroscopy for lead 

phthalocyanine (PbPc) film became feasible by the micro-2PPE method [17]. All 

molecule-derived occupied and unoccupied levels in the vicinity of the Fermi level 

(EF) for the well-ordered one monolayer (ML) film formed on highly oriented 

pyrolytic graphite (HOPG) substrate are assigned. Also detected were the unoccupied 

image potential states (IPS) on the HOPG surface and on the 1 ML film. 

Photo-excitation processes between occupied and occupied levels were discussed in 

detail [18, 19]. In the following chapters, details of the nature of unoccupied states on 

PbPc/HOPG surface are discussed by using micro-scanning 2PPE and angle-resolved 

2PPE study. 

In chapter 4, the unoccupied electronic states on a sub-ML film are focused on [20, 
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21]. Environments of molecules in sub-ML films are less uniform than in the 

well-ordered 1 ML film. The fluctuation of the environment modulates the interface 

electronic structure. Especially, unoccupied levels are considered to be more sensitive to 

the environment than the occupied levels. Because of the anti-bonding character, the 

unoccupied molecular orbital extends to outside of molecule increasing interaction with 

neighboring molecules. The environment-induced modulations of occupied and 

unoccupied levels are investigated with micro-2PPE spectroscopy and with surface 

imaging. In the chapter we discuss how the unoccupied levels of PbPc film are affected 

by the lateral distribution of molecules is shown. It is revealed that the unoccupied 

levels are sensitive to surface morphology in nm-scale. The results points out the 

meaning of uniformity of the organic films. 

In the latter part of this thesis (chapter 5 and 6), the main issue is that unoccupied 

levels on monolayer of organic films are delocalized or not. Band structures of metals 

and semiconductors (Si, Ge, GaAs etc.) have been one of the main issues of solid 

physics [22]. The reason is that band diagrams are essential to understand electron or 

hole transportation. In case of organic semiconductors, mobility of careers is strongly 

depends on the sample, even if the samples are same composition. For example, 

reported mobility values of pentacene OFET are spread to wide range; 0.01-40 

cm2V-1s-1 [23, 24]. Many factors evolve in the electron transportation and there is no 

consensus opinion about the mechanism of career transportation at organic/inorganic 

interfaces. To explain electron conductivity, two major mechanisms are proposed; 

hopping and band conduction [25]. In hopping mechanism, an excited carrier is 

localized to a molecular orbital and then transfer to neighboring molecules by diffusion, 

with overcoming barriers step-by-step. The mobility is determined by degree of the  
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Fig. 1.1: These images are referred from ref. [41]. (a) Schematic diagram for the photoemission 

process of angle-resolved 2PPE. (b) The dependence of photoelectron kinetic energy on parallel 

momentum ħk// is illustrated for delocalized and localized states. 

hopping integration and estimated lower than 1 cm2V-1s-1. To explain high-mobility (> 1 

cm2V-1s-1), band conduction is a reasonable idea. In band conduction model, careers are 

delocalized and transports coherently, except Umklapp process. A Hall Effect 

measurement on an OFET, which made of single-crystal of rubrene, is reported [26]. 

Their result suggests that the band conduction model is suitable for explanation to their 

results. From angle-resolved measurement we can know that the electronic levels are 

localized (k// is not conserved) or delocalized (k// is conserved). UPS spectra show 

dispersion of HOMO level (hole) on pentacene and rubrene thin film surfaces [27, 28]. 

The results means that HOMO forms band and holes excited in the HOMO are 

delocalized. 

We focus on the issue that localization or delocalization of the unoccupied states of 

the organic monolayers on substrates. Angle-resolved photoelectron spectroscopy 

(AR-PES or 2PPE) can be used to examine dispersions (see, Fig. 1.1). However, there 

are only few investigations about band structures of unoccupied states at organic 

semiconductors / metal interfaces by AR-2PPE [11, 29-35]. A common method to do 

AR-PES or -2PPE is conducted by tilting samples towards an analyzer and detects 

photoelectrons at different emission angles. The problem of this method is that the 
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positions of light spots may be changed. If the electronic structure is laterally 

inhomogeneous, it is difficult to get reproducible results. The other problem is difficulty 

of collection of low-energy electrons conserving information of their emission angle. 

Aberration of electron lens must be reduced for proper AR measurement. To obtain 

reproducible experimental results, newly-developed micro- AR 2PPE equipment is used 

[36]. 

In chapter 5, band structures of image potential states on HOPG substrate and on 

PbPc films are measured by this equipment. On the surface, unoccupied surface states 

which are called ‘Image Potential States’ (IPS) are formed on. Their dynamics are 

extensively studied by TR-2PPE. Relaxation mechanisms of excited electrons on them 

are revealed [37-39]. In the cases of interfaces between dielectric layer and metals, 

electrons in which excited to unoccupied surface state are localized and stabilized after 

picosecond, because of reorientation of electrons in dielectric layers; solvation process 

[40-44]. The wave functions of Image potential states are localized between image 

potential and bulk band gap toward the surface normal direction, but delocalized toward 

the surface parallel direction. Thus their band structures are expected to be sensitive to 

surface structures. Owing to the high-energy resolutions of micro-spot AR 2PPE, details 

of IPS band structures on HOPG enable to discuss. Effects of the absorbed molecular 

films on IPS band structures are also discussed. A monolayer film of PbPc on HOPG is 

known for well-ordered structure [20, 45] and experimental results show strong 

influences of the periodic potential formed on band structures of IPS on the film. 

In chapter 6, band structures of an unoccupied, molecular derived state on PbPc 

films are measured by micro-AR 2PPE. We studied dispersion of the L2 level (which 

derived from LUMO+2 state of the molecule) of a 1ML PbPc / HOPG surface. From 
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chapter 4, even if we measure dispersion of well-ordered organic films, the observed 

dispersion has position dependence. The results suggest that band structures of 

unoccupied level are sensitive to intermolecular interactions. AR Micro-2PPE can get 

reproducible dispersions by choosing the light spots on highly well-ordered domains. 

We can detect dispersion and discuss delocalization of the L2 from the dispersion. 

Furthermore, from intensity-wave momentum relation of photoelectrons from L2, 

momentum distribution of excited electrons in L2 is derived. From the distribution, we 

can know extent of wave function of L2 in real space. 

Experiments in this thesis are one of attempts for understanding unoccupied states 

on organic / inorganic interfaces. There are only few knowledge is revealed in the 

PbPc/HOPG interfaces, however, I believe that further systematic study on various 

organic / inorganic interfaces will give clues for solid understand the nature of electron 

transportation at the interfaces. 
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2. Experimental setup and sample preparation 

This chapter outlines details of experimental setups and sample preparations. It 

begins with descriptions of the employed techniques, two-photon photoelectron (2PPE) 

spectroscopy and angle-resolved two-photon photoelectron spectroscopy (AR-2PPE). 

Then our two types of “home-made”, Micro-spot 2PPE equipment are presented. 

Details of optical setup, ultra-high vacuum (UHV) chambers and control systems for 

microscopy are included in the section. Last parts explain the ways of sample 

preparations. 

2.1 Principles of Two-Photon Photoelectron Spectroscopy (2PPE) 

2.1.1 One-Photon Photoelectron Spectroscopy (PES) 

Photoelectron spectroscopy (PES) has been a powerful tool for investigating the 

electronic structure of solids [6]. Electron emission from solids occurs when the photon 

energy (h) is higher than the vacuum level (Evac). Measurements of kinetic energies 

and their emission angles enable to obtain initial energies of the electrons and 

dispersions parallel to the surface. Kinetic energies of photoelectrons are given by  

Ek = h – ( - Ei)  (2.1) 

Ei (< 0) is the initial energy with respect to the Fermi level (EF) and = Evac - EF) is 

called as the work function. The work function defined as a minimum energy for 

removing an electron from a solid. More accurately, is defined as the chemical 

potential of electrons in solid. Ultraviolet photoelectron spectroscopy (UPS) is a popular 

method to probe density of states of valence occupied states. Important point of PES is 

its surface sensitivity. Shifts of the cut-off on the UPS spectra represent sensitivities of 

the work functions to their surroundings. The curve of the Fig. 2.1 shows that in the  
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Fig. 2.1: ’Universal curve’ showing, 

schematically how the inelastic mean free path of 

an electron in a solid varies with its kinetic energy, 

from ref. [46]. The double arrow indicates the 

range where surface sensitivity is greatest. To 

obtain accurate values of the inelastic mean free 

path, see ref. [46]. 

range of 10 - 100 eV, which is the usual range of measured kinetic energies for the 

valence band spectroscopy, the escape depth of electrons is of the order of few Å. The 

requirement for ordered, clean surfaces is very strict. The experiments are therefore 

conducted in the ultra-high vacuum environment (UHV) and the surfaces are specially 

prepared before the measurements, depending on the sample, by cleaving, annealing, 

scraping or similar. The measured electronic states are relevant only for the first few 

atomic layers of the material. Low-dimensional layered materials with weak bonds 

between layers – and no surface reconstruction – are therefore particularly suited for the 

PES measurements. Many detailed overviews of photoemission techniques can be found 

in the literature. 

2.1.2 Two-Photon Photoelectron Spectroscopy (2PPE) 

The application of two-photon photoelectron spectroscopy (2PPE) enables the study 

of the unoccupied band structures in addition to occupied states [12]. The principle of 

this technique is shown in Fig. 2.2. By absorption of a first photon (pump), an electron 

below the Fermi Level (initial state) is excited to a normally unoccupied level 

(intermediate state) below Evac. A second photon (probe) excites the electron above the 

vacuum level (final state), where it can be detected by an electron energy analyzer. If a 

same energy of photon for pump and probe pulse is used, it is called one color 2PPE. In  
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Fig. 2.2: Two processes of 2PPE; (a) 2PPE from unoccupied level Em and (b) coherent 2PPE from 

occupied level are shown. (c) Photon energy dependence of observed level. When the energy 

positions of observed peaks were plotted against the photon energy, the structure of occupied and 

unoccupied levels are aligned the slope of 2 and 1, respectively, related with the photon energy. 

Another remarkable point is the resonance at hv = Em - Ei. At the resonance, 2PPE signal is 

resonantly enhanced. 

the condition of two-color 2PPE, different energies of photon is used for the pump and 

the probe pulse. For the efficient excitation of electrons to intermediate states, the right 

choice of photon energy is very important. Transition probability is an important factor 

like other optical absorption spectroscopic methods. Studying the dynamics of excited 

electrons with femtosecond time resolution can be possible by using ultra-short laser 
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pulses with durations less than 100 fs. All experiments in this thesis were done in the 

condition of zero-delayed one color 2PPE. 

We must consider photoemission pathways from its initial state via an intermediate 

state to its final state. Two different excitation mechanisms are shown in Fig. 2.2. “The 

two-step process” competes with “coherent 2PPE process” from occupied levels. “The 

two-step process” depicts resonant excitation to a “real” intermediate state. The second 

photon probes transient population of the intermediate state. In “coherent 2PPE 

process”, no resonant intermediate state is available. Electrons leave the sample directly 

in a two-photon absorption, which occurs within the pulse duration. It is called via 

“virtual” intermediate states; which are not occupied for a finite time. These two 

processes can be discriminated from photon energy dependence of 2PPE spectrum. 

When the photon energy is of pump and pulse is the same and increased by h, 

photoelectron energy from the two-step process increases by 1h and that from 

coherent 2PPE process, by 2h. Thus we can measure the occupied and unoccupied 

levels at the same time. If photon energy is corresponding to Em - Ei, 2PPE signal is 

resonantly enhanced by interference of these two processes. The energy resolution of 

2PPE is better than 30 meV, superior to the resolution of inverse photoelectron 

spectroscopy (IPES); a common method to measure unoccupied energy levels. Note that 

IPES gives only an anionic state as a final state, but 2PPE can detect both of a natural 

excitation state and an anionic state (via charge transfer at the interfaces). 

2PPE has been widely applied to probe image potential states above surfaces and 

dynamics of hot-carrier on metal or semiconductor surfaces [9-14]. But 2PPE has been 

applied to few investigations focused on the unoccupied states in functional organic 

thin-films [11, 29-35]. 
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2.1.3 Angle-resolved 2PPE (AR2PPE) 

Photoelectrons are collected with a detector, in which their kinetic energy and 

momentum are counted. If we gather both of momentum and energy information, we 

call the measurement, angler-solved photoemission spectroscopy (AR PES) [6]. In the 

case of collection only on energy, we call it angle-integrated PES, explained at section 

2.1.1. 

A typical AR PES experimental setup is shown in Fig. 2.3. Photoelectrons ejected 

by the monochromatic light are collected by the analyzer that gathers them as a function 

of energy and angle. Single channel analyzers usually collect intensity as a function of 

kinetic energy repeatedly for several emission angles by tilting the sample. Owing to 

recent progresses of electron analyzer, Energy and angle resolutions of UPS are 

drastically improved. A two-dimensional analyzer, that can collect (, Ekin) maps in a 

certain energy-angle window at once, is available now. As a result signal-to-noise ratio 

is improved. In the AR PES, if there is no scatter inside the solid, electrons conserve the 

“energy” and “parallel momentum” during photoemission process. The momentum 

perpendicular to surface is not conserved due to the refraction. New wave-variable light 

sources such as lasers and synchrotron radiations enable to investigate dispersions 

perpendicular to the surface, but it is challenged tasks. The two operational relations are  

Ekin = h −  − Ei      (2.2) 

|k//| = √(2meEkin) / ħ × sin  = 0.512 √ (Ekin) × sin   (2.3) 

me is mass of an electron, and h the photon energy. Kinetic energies of electrons reflect 

their initial energy, as Equation 2.2. Equation 2.3 gives momentum in Å−1, if kinetic 

energy Ekin in eV is given. The first equation demonstrates that electrons have to 

overcome a potential  to escape from the surface. Equation 2.2 is simplified for the  
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Fig. 2.3: Illustration of an ARPES experiment. Photoelectrons are emitted from the surface and 

collected with an analyzer as a function of the emission angle and kinetic energy. The obtained 

information is usually summed up in intensity maps. Spectra can be analyzed in two equivalent 

representations - as energy distribution curves, or as momentum distribution curves. 

following reason. The Fermi energy EF corresponding to Ei = 0 is determined by the 

work function of the analyzer. By measuring the Fermi edge on a metallic sample we 

can calibrate the instrument to take measurements in binding energy directly since it 

does not depend on the sample. Note the sample has to be in electrical contact with the 

analyzer. Equations 2.2 and 2.3 underline two important requirements on the 

photoemission experiment. One requirement is obtained from Equation 2.2; the sample 

“must” be grounded, and to the same ground as the analyzer. As photoelectrons leave 

the surface, there has to be a compensating current of electrons that prevents charging of 

the surface. If charging of the surface may occur, external electronic fields are formed, 

and speed of the photoelectrons is changed. The other requirement is obtained from 

Equation 2.3; “absence of magnetic fields” is required. Magnetic fields would interfere 

with trajectories of photoelectrons. All the materials inside main (analyze) chamber 

have to be demagnetized and sample holders made from preferably nonmagnetic metals. 

Conversion obtained (, Ekin) maps to (k, Ekin) maps by using equation 2.3 enables to 
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obtain dispersion relations. Note that equation 2.3 has a non-linear relation of  to the 

emission angle and the kinetic energy Ekin. We are interested in the electronic states in 

the material, initial (occupied) states or intermediate (unoccupied) states of the electrons. 

2PPE process involves the transition from the initial state, via intermediate state, which 

may or may not be available, to a final state. These processes also depend on their 

symmetries. Obviously, the interpretation of AR 2PPE results is not straightforward for 

many reasons; the influence of final state effects or dynamics of intermediate state may 

beyond the single-particle interpretation. We must consider such effects to interpret 

obtained results. 

2.2 Experimental setup1: Micro-spot 2PPE (Chapter 3, 4) 

2.2.1 Ultrahigh vacuum chamber system 

Outlines of main UHV chamber is shown in Fig. 2.4. Their outer wall was shielded 

from external magnetic field by μ-metal. It is equipped an electron energy analyzer 

(VG100AX), quadruple-mass spectrometer to confirm the impurity of UHV. Samples is 

mounted a high-precision stage, described in section 2.2.5. Incident window of laser 

light is made of lithium fluoride (LiF). LiF highly transmit UV and VUV light. we adopt 

this material, considering to perform PES measurement using vacuum ultraviolet laser 

light (8.86 eV). The chamber is vacuumed by a turbo molecular pump. Base pressure of 

the main chamber was generally better than 1 × 10-10 Torr. For microscopic 

measurement we must turn off the turbo molecular pump, to avoid vibration of sample 

stage. During microscopic measurement, an ion pump and a titan getter pump is used to 

keep base pressure below 3 × 10-10 Torr. For micro-UPS measurement, we need to 

generate VUV lights. In our experiment, third nonlinear optical effect of Xenon gas is  
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Fig. 2.4: UHV system of micro-2PPE equipment is shown. To achieve ultra-high vacuum, each turbo 

molecular pumps are combined with a rotary pump. A titanium sublimation pump is equipped in 

main chamber to reduce remaining gas (water, hydrogen etc.). The main chamber is evacuated by a 

ion pump and the turbo molecular pump is turn off during measurements, to reduce mechanical 

vibration. An Argon gas cylinder is connected to an ion gun, used for sputtering of metal samples 

during sample cleaning processes. A Xenon gas cylinder is connected to a container in which 6th 

harmonics laser output is formed by nonlinear optical effects. The container must be evacuated to 

reduce oxygen which absorbs VUV lasers. 

used to generate VUV light. Oxygen absorb VUV light, therefore, Xenon gas container 

is vacuumed by a rotary pump. 

A preparation chamber is separated from the main chamber, to avoid contamination 

of main chamber during deposition process of organic molecule. The preparation 

chamber is equipped material source, quartz microbalance (INFICON, IC/5) to monitor 

film thickness, and transfer rod. The preparation chamber is connected a load-rock 

chamber. Thus samples can be loaded without breaking vacuum of the main and the 
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preparation chamber. The Preparation chamber and the load-rock chamber are pumped 

by separate turbo molecular pumps, respectively. 

2.2.2 Laser system 

The optical setup is described in Fig. 2.5. The light source is p-polarized frequency 

tripling of tunable titanium-doped sapphire (Ti: Sa) laser output. The fs-laser pulses are 

generated in a commercial laser system; Mira 900-F (Coherent). The laser oscillator is 

pumped by frequency doubled Neodymium Yttrium Vanadate (Nd: YVO4) laser 

(Coherent, Verdi V-6). Mode-locked titanium sapphire laser can generate tunable 

ultra-short pulse. Pulse repetition rate of the laser is 76 MHz. Pulse durations of 

fundamental output are ~150 fs, measured their autocorrelation. The photon energy 

region of the TH was 4.13~4.77 eV. The power of the incident light was reduced to 0.2 

nJ par pulse in order to avoid surface destruction. Details of third harmonics generation 

is described in the following section. 

2.2.3 Third harmonic generation 

A commercial third harmonics generator (inrad, model 5-050) is used for frequency 

tripling of laser output. Details of third harmonic generation (THG) will be show in 

section 2.3.3, brief explanation is only shown here. Optical configuration of the 

generator is shown in Fig. 2.6. The output pulse of Ti: Sa oscillator is focused to a LBO 

crystal (t = 2.0 mm) to generate the second harmonics. Fundamental wave (FW) and 

frequency doubled wave (SH) is divided by beam splitter. Fundamental outputs pass a 

delay stage to compensate group velocity dispersion. FW and SH are combined again. 

After passing /2 wave plates, these waves has same polarization plane. These lights are 

focused to a BBO crystal (t = 0.5 mm), the third harmonics (TH) is generated. 
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Fig. 2.5: Laser pathway of the Micro-2PPE equipment is shown. Two type of experimental method 

(2PPE/UPS) is enabled. For 2PPE experiment, laser output is converted to SHG and THG. To check 

sample position is the focal point of the light, we incident SHG and check light spot by a CCD 

camera. After that THG output is incident passing the same pathway and SHG is shuttered. For UPS 

measurement 6th harmonics output is required but the efficiency is very low. Therefore, laser pulse 

must be enhanced by a regenerate oscillator. SHG, generated by a BBO crystal is also used to 

determine sample position. After that Xe gas container is pressed before the incident viewport. In the 

container, the 6th harmonic is generated and separated to SHG by passing a band-pass filter. 
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2.2.4 Objective Mirror for microscopic measurement 

The third harmonic output (UV light) enters the main chamber through a LiF 

window, and is then focused onto a sample surface by a Schwarzschild objective of 0.29 

numerical apertures. Advantages of using objective are, (1) there is no chromatic 

aberration, (2) big mirror has large numerical aperture, as a result, small spot size at the 

focal point is achieved. Configurations of optics are shown in Fig. 2.7. The objective 

consists of a pair of aluminum-coated mirrors, mounted in a Cu–Be housing. Graphite is 

coated on the surface of the housing. The objective is fixed in UHV chamber. The 

incident angle was 55º from the surface normal. The focal point is 40 mm from the front 

surface of the objective. The diffraction-limited spot diameter of the 280 nm wavelength 

light is estimated to be 0.6 m. If laser light is gauss beam, the intensity of 2PPE 

process is represented as a gauss square. Thus lateral resolution of micro-spot 2PPE is 

determined; the lateral resolution is 400 nm, a factor of √2 smaller than the diffraction 

limited diameter of the laser spot. This is ultimate value for the lateral resolution of the 

present system. From geometrical restriction, the first mirror of objective reflects light 

in center of optical axis. Laser beam can be regarding as a gauss beam, intensity takes 

maxima at center of optical axis and intensity is drastically decreased at off-center 

position. Thus we must optimize size of the incident laser beam. A lens (f = 80 mm) is 

used to expand the beam size. The position of the lens can be calculated to have same 

focal point to the objective mirror. From our empirical trial, the size of incident UV 

light is around 15 mm at the incident LiF window of main chamber. To check the beam 

size, a paper with fluorescent ink is put in front of LiF window, and the size of 

fluorescence spot is checked. The laser pathway is checked by a rotatable small copper 

plate with fluorescent ink. The incident laser beam forms doughnut pattern on the plate. 
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Fig. 2.6: Configuration of 

optics in the THG generator 

(inrad, 5-050) is shown. La- 

ser pulses are focused to the 

first BBO crystal to generate 

second harmonics. Funda- 

mental and second harmonic 

pulses are passing delay 

stages and a polarization 

plate to penetrate delay and 

coincidence the polarization. 

Both pulse are focused on 

the second BBO crystal, 

then Third hermonic pulses 

are generated. 

 

 

 

Fig. 2.7: Optical configuration of Schwarzschild objective mirror is shown. The objective mirror is 

composed of two sapphire mirrors with aluminum coating. These mirrors are bonded to mirror 

holder (made of beryllium copper) in the UHV chamber. To avoid electronic field by charging effect 

of dielectric parts, the mirror holder is coated by graphite. The incident laser light is regard as a 

gauss beam (the intensity curve of a gauss beam is drawn by pink polygon). Intensity of light axis is 

strong; however, light near axis is reflected by the first mirror. Only red part is reach to the sample. 

Thus, we must optimize to the size of laser pulse before the magnifying lens to maximize the 

intensity of photoelectron. 
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2.2.5 High-precision stage and sample holder 

High-precision positioning and scanning of a sample in ultrahigh vacuum (UHV) is 

an indispensable requirement for investigations to laterally-inhomogeneous surfaces. 

The sample should be translated over a few mm in vertical and horizontal directions 

(denoted as X- and Y-directions, respectively) to find an area of interest. The area is 

found by long and precise translations from a suitable mark on the sample. Stepping  

 
Fig. 2.8: The sample holder is illustrated. The sample holder is consisting of oxygen free copper and 

tantalum screws. Each part is insulated from the vacuum by ceramics parts. The ceramic insulator, 

conducting wire and thermocouple wires are covered by metal covers to avoid charging effects 

which effect on 2PPE measurements. 
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motor system has benefits for high power and long range movement compare to other 

precise motors, such as piezo actuators. The error of the positioning should be smaller 

than the spot diameter of the focused light (300 nm), that is, the accuracy of positioning 

should be better than 100 nm. In our micro-UPS, we used a partially upgraded standard 

UHV manipulator (VG, OMNIAX); actuated by step motors placed outside of UHV. 

This makes baking of UHV system easy. A typical sample holder for photoemission 

experiments is connected on the end of the manipulator. The resolution of the sample 

translation was improved by mounting two sets of step-motors with glass scales. The 

resolution of 0.1 m was achieved. But the vertical accuracy of repeated positioning 

was poorer than that of horizontal, maybe because of thermal drift was inevitable. We 

can do heating or cooling samples for sample preparations; however, the measurement 

condition is limited at room temperature. In order to improve the performance, the new 

stage was constructed. But an old type of stage is still used during works in the thesis. 

Manipulation for the direction (Y-direction) to an analyzer is done manually, using a 

micrometer, originally attached to the OMNIAX. The Y-direction is adjusted to set the 

sample surface at the focus of the light with precision of < 3 m, because the length of 

the beam waist of the light is about 3 m. By checking 2PPE signals (derived from 

electronic structure of sample, not secondary electrons), we adjust a sample at the focus 

of the light. The manipulator can manually rotatable in  direction; we can tilt a sample 

towards analyzer. But because of limitations of the focus of the light, to obtain a lateral 

image due to electronic structure, the sample must be perpendicular to analyzer (within 

 1). 
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Fig. 2.9: Circuit around the sample 

holder is shown. A sample is heated by 

bombardment of electron; 

thermal-electrons emitted from a 

filament, accelerated by bias voltage 

(150 V), reach to sample. 

 

 

A sample holder is connected to the stage. Their appearance is shown in Fig. 2.8. The sample is 

inserted to a sample holder; made of copper. The holder is insulated from the ground. They has a 

sample heating circuit; shown in  

Fig. 2.9. Thermo-electrons are emitted from a tungsten filament, accelerated by bias 

voltage (~150 V), and bombard to a sample career from backside to a sample. The 

sample is heated and their maximum temperature can be achieved to 700 K. All insulate 

parts of the sample holder is covered by metals to avoid charging effects in 2PPE 

measurement processes. 

2.2.6 Hemispherical electron energy analyzer 

A hemispherical electron energy analyzer (VG100AX) is used for the detection of 

the photoelectron. Time of flight (TOF) spectrometer is also popular for 2PPE 

experiments, but there are advantages of using hemispherical analyzer for 2PPE of 

organic films. Organic films are easily damaged by laser radiation, thus we must reduce 

maximum intensity of laser pulse. So, laser systems must have high repetition rate to 

collect many electrons, however, TOF spectrometer has limitation for responsible time. 

Hemispherical analyzer has no limitation, like this. Another advantage of the  
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Fig. 2.10: Schematic image of the hemispherical 

energy analyzer is shown. 

 

 

hemispherical type is its constant energy resolution. Energy resolution of TOF type is 

depend on the electron energy. A schematic image of a hemispherical analyzer is shown 

in Fig. 2.10. Energy resolution of a hemispherical analyzer, ΔE, is given as 

ܧ∆ ൌ
ܹ
2ܴ଴

 ଴ܧ

where W is width of entrance slit, R0 is average radiuses of outer and inner hemisphere, 

and E0 is energy of passing hemisphere (pass energy). If energy of electron is different 

from E0, they can’t pass through the hemisphere. An acceptance angle for 

photoelectrons of the analyzer is speculated around ~4°. The pass energy is set to 3 eV. 

Photoelectron spectra are obtained by varying voltages of electrostatic lens at entrance. 

Monochromatic photoelectrons through the exit slit are amplified by a channeltron, and 

detected. 

Whole energy resolution of Micro-spot 2PPE is determined from the band width of 

the laser pulse (18 meV) and energy resolution of the analyzer (20 meV). The total 

energy resolution of Micro-spot 2PPE is √(182 + 202) = 27 meV. 

2.2.7 Control system 

In the Micro-spot 2PPE, 2 types of measurement are done; energy spectrum mode 
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and lateral imaging mode. To obtain those data, several devices are connected to a GPIB 

port; an A/D- and D/A-converter (Stanford Research systems, SR-245), a photon 

counter (Stanford Research systems, SR-400), and a stage controller (Sigma Tec, 

FC-101). These devices are controlled by BASIC programs running on a MS-DOS 

operating system (NEC PC98-01), see Fig. 2.11. 

In energy spectrum mode, we scanning (5 mV/step, 1000 steps) applied voltage of an 

electronic lens of an analyzer, to select energy of photoelectron. Photoelectron is 

amplified by a channeltron and their intensity is integrated by a photon counter. 60 ms 

of integration is done at one data acquisition. To improve signal-to-noise ratio, scanning 

process is repeated more than 5 times.  

In lateral imaging mode, energy selection of photoelectron is done manually or 

automatically. Detection areas are changed by scanning a sample (light spot is fixed). 

The scanning process is like this; vertical scanning of the stage is done at first, the stage 

goes back to start point, then 1 step moving in horizontal direction is done. 300 ms of 

data acquisition is done at each position, only one tome. To ensure sufficient 

measurement and check time evolution, however, several scans are done in the same 

place. The measurement time is increased due to dead-times during stage movement and 

repeated feed-back process for assuring sample position. Scanning speed of the sample 

is usually 50 m/s, deformation of the stage is not so serious. It takes 15 minutes to 

obtain a lateral image of 30×30 scanning steps in a typical measurement. (There is no 

obvious time difference depending on their sizes.) 

A Hemispherical analyzer measures energy of photoelectrons by applying voltage 

on electrostatic lens part. Energy of detected photoelectron is referenced to the vacuum 

levels of the analyzer. Thus the vacuum level of a sample must be higher than the  
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Fig. 2.11: Schematic sketch of the control systems of Micro-2PPE. Photoelectron measurement and 

sample manipulation are performed by a MS-DOS based PC. 

vacuum level of the analyzer for whole measurement, so that the slowest photoelectrons 

are detected. If we need to 2PPE measurements samples with lower work functions than 

the analyzer, applying a bias voltage between sample and the analyzer is needed. 

Deposition of organics usually lowers the work function of the sample; we applied to 

bias voltage of 1 V, to ensure correct measurement condition. 

2.3 Experimental setup2: AR Micro-spot 2PPE (Chapter 5, 6) 

2.3.1 Ultrahigh vacuum chamber system 

Outlines of main UHV chamber is described in section 2.2.1. The electron energy 

analyzer is replaced to a two dimensional, display type analyzer. The detail of the 

analyzer and angle resolved measurement is written in section 2.1.3 and 2.3.4. 

2.3.2 Laser system 

For AR Micro-spot 2PPE measurement, the fs-laser pulses are generated in a  



 

 

28 

 

 

Fig. 2.12: Optical 

configuration of a 3rd 

Harmonics generator. 

The Third Harmonics 

is generated by a cou- 

ple of BBO crystals. 

Phase matching be- 

tween the fundamental 

waves and the Second 

Harmonics can be a- 

chieved by time plate 

without a delay stage. 

Third Harmonics is 

separated and intro- 

duced to the sample 

through quartz UHV 

window. 

 

 

 

Fig. 2.13: Powers of the 

Fundamental outputs (red 

squares) and Third Har- 

monics (blue squares) are 

plotted against wavelengths 

of fundamentals. Conver- 

sion efficiency (black 

squares) is also indicated. 
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commercial laser system; “Maitai” (Spectra Physics). Pulse repetition rates of the 

“Maitai” are 80 MHz. Pulse durations of fundamental output are ~120 fs, measured 

their autocorrelation. The photon energy region of the TH was 4.04~4.77 eV. The power 

of the incident light was reduced to 0.2 nJ par pulse in order to avoid surface destruction. 

We used a “home-made” THG generator to generate UV pulse. Details of third 

harmonics generation is described in the following section. 

2.3.3 Third harmonic generation 

The third harmonic generation (THG) for 2PPE light source is generated by a couple 

of nonlinear crystals, β-BBO. Fig. 2.12 shows the optical configuration of home-made 

TH generator. The output pulse of Ti: Sa oscillator is focused to the first BBO crystal 

(type I,  = 27.18°, thickness of 1.0 mm) by a dielectric concave mirror (M1, r = 200 

mm) to generate the second harmonic generation (SHG) of fundamental wave (FW). 

After SHG and transmitted FW are collimated by a dielectric concave mirror (M2, r = 

200 mm), Polarization and time delay between the SHG and FW are compensated each 

other by λ/2 wave plate (WP2) and time plate (TP; -BBO). Then both pulses are 

focused again to the second BBO crystal (type I,  = 40.80°, thickness of 0.5 mm) by a 

dielectric concave mirror (M3, r = 120 mm). Collimated THG is separated for FW and 

SHG, and is guided to the UHV chamber. Conversion efficiency of THG is ~8 % at 840 

nm; Fundamental output of 980 mW converted to THG of 76 mW. Relations of powers 

of fundamental outputs and THG outputs are shown in Fig. 2.13. 

2.3.4 Micro-spot AR 2PPE 

All measurements are performed in a newly developed micro-spot AR-2PPE 

spectrometer. The third harmonic output of a titanium sapphire laser is focused onto the 

sample surface with a Schwarzschild objective of 0.29 numerical apertures. The light 
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source was p-polarized. The incident angle is 65º from the surface normal. The spot size 

of incident light at the sample is close to the diffraction limited diameter of 0.6 m, and 

achieves lateral resolution of 0.4 m in 2PPE experiment. Photoelectrons are detected 

with an angle-resolved hemispherical energy analyzer (SCIENTA; R3000). In 

micro-spot 2PPE experiment, several procedures are required to record correct angle 

resolved results. The position of the light spot is determined by the Schwarzschild 

objective. The electron lens of the analyzer should be adjusted to the focus point. The 

kinetic energy of electrons in 2PPE is smaller than 5 eV, thus the electron lens of 

analyzer should properly collect low energy electrons. In optimized condition, the 

usable acceptance angle is about ±7° in the micro-spot AR 2PPE setup. Aberration 

correction at energy region smaller than 2 eV is not accomplished as yet. The whole of 

measurement was done with zero bias voltage between sample and analyzer in order to 

avoid the electronic field between sample and the tip part of the analyzer. 

2.3.5 Data analysis 

Hemispherical electron energy analyzer is frequently used for the detection of the 

photoelectron. Note that field-free measurement is must for angle-resolved 2PPE. It is 

necessary to apply a bias voltage that is sufficient to cancel out the work function 

difference between sample and spectrometer. 

2.4 Sample preparation 

2.4.1 Substrate; HOPG 

HOPG, well-ordered polycrystalline graphite crystal, is used for standard sample of 

scanning probe microscope (SPM). HOPG takes two dimensional layer structures. The 

ideal construction of graphite crystal is shown in Fig. 2.14. Weak van der Waals  
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Fig. 2.14 Crystal structure of graphite is shown. Hexagonal 

layers are formed by sp2 hybridized orbital of carbon, free 

electrons are delocalized in a two-dimensional layer. A flat 

surface is easily obtained by cleave processes, because that 

only weak van der Waals interaction works between layers. 

 

 

interaction works between 2D layers, thus HOPG can be easily cleaved by scotch tape. 

We purchased HOPG from two manufactures. One of sample is SPI-I grade HOPG 

procured from SPI. Inc. The other one is from Panasonic. HOPG was cleaved in air and 

load to UHV chamber as soon. To degas intercalation comportment, HOPG are 

annealed at 673 K for 60 h. We evaluate quality of samples from 2PPE spectra. Work 

function of clean HOPG is 4.45 eV and contaminated HOPG usually shows lower value 

of work function. Energy position and peak width of Image Potential states is sensitive 

to terrace width of HOPG surface. Secondary electron near low-energy cutoff enhanced 

by roughness of sample surface; scratch or scattering by graphene, which is formed 

during cleave processes. 

2.4.2 Lead phthalocyanine (PbPc) 

Phthalocyanine (Pc) which has porphyrin like ring, is a very stable chemical 

compound. It is able to coordinate many kinds of metal ions in its center cavity). Some 

kind of Pc is used for pigments because that it absorb of visible and UV lights. Their  
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Fig. 2.15: Optimized molecular geometry by DFT calculation (see, ref. [45]) of a PbPc molecule is 

shown. 

optical properties and stability enables wide application for organic devices, 

oxidation-reduction catalyst, and optical nonlinear materials.  

In this thesis we adopt Lead-Pc (PbPc) ultrathin film for sample. PbPc is an organic 

semiconductor which has small band gap. The color of PbPc is green and they also 

absorb near infrared lights. Molecular geometry of PbPc is shown in Fig. 2.15. In the 

case of PbPc, The Pc ring is deformed by a large lead atom like a shuttlecock type 

configuration. Therefore, the molecule has a C4v symmetry and permanent molecular 

dipole moment directing perpendicular to the Pc ling. The UPS work for PbPc films on 

HOPG has been performed and discussed with hopping mobility of holes and 

reorganization energy [8, 45]. One the reason why we adopt the PbPc/HOPG system for 

our study is that we can obtain well-ordered films in the range of 0 ~ 1 ML. We can 

estimate the thickness of the films easily by monitoring the work function.  

2.4.2 Purification of organic materials 

Purification of organic materials is important to assure that deposited organics are 

reasonably free of impurities. Commercial organic materials are generally in the purity 

better than 95%, however, further purification is required before loading into the UHV 

chamber to prevent contaminations of the chamber. Pure grade of organic 

semiconductors should be comparable to that of inorganic semiconductors (better 

thanseven nine) for reproducible measurement. There are several techniques for 
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Fig. 2.16: Purification of organics is done by cycles of step-sublimation. Pure sample and impurities 

has different sublimate temperature, they are geometrically separated by sliding pair of furnaces. 

 
Fig. 2.17: Pure grade of sublimated Copper phthalocyanine (CuPc) is evaluated by MALDI (Laser 

Desorption Ionization) mass spectra. A product from Aldrich (97% purity) is purified 3 times of 

sublimation cycles at 673 K. A peak at 574 is derived from pure CuPc. A peak derived from impurity 

(at 1150, derived from CuPc dimer) is gradually decreased by repeated sublimation cycles. Origins 

of two peaks around 410 are unknown; maybe they derived from fragments of CuPc (metal-free 

phthalocyanine). 

purification. High purification for powdered organic materials is achieved by Gradient 

sublimation. Fig. 2.16 shows a home-made gradient sublimation system. The system is 

composed of vacuum pumps, an electronic furnace and long quartz tube. The quartz 
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tube is inserted into the furnace and is evacuated to the pressure of 10-5 Pa by a turbo 

molecular pump. A Pyrex tube, half-cut and joined again, is placed inside the tube. 

Typically 1 g of powdered source materials is loaded into the end of the Pyrex tube. The 

temperature of the furnace is gradually increased until the sublimation point of the 

material is reached. Purified organic crystals grow on inside wall of the Pyrex tube. 

Impurities, which have lower sublimation temperature, deposit different position in the 

tube. Impurities, which have higher sublimation temperature, are left at the hottest end 

of the glass tube. One heating process takes half days. Organic sources are purified 3 

cycles in the pre-purification system before loading into the UHV chamber. Quantitative 

evaluation of pure grade is difficult for organic materials in the order of the seven nine. 

Only qualitative analysis is available. MALDI (Mass-spectra), IR-spectra in solution 

and chemical composition analysis are applied to confirm absence of impurities. Fig. 

2.17 shows MALDI spectra during the sublimation processes. Before pre-purification 

cycle, signals from impurities are observed in MALDI spectra, but these signals are 

disappeared after one cycle of purification. 

2.4.3 Film preparation; deposition and annealing 

Deposition of organic films in the UHV chamber assures impurity free films. To 

reduce defects and to get well-ordered film, deposition rate should be controlled. Fig. 

2.18 shows a schematic illustration of preparation chamber. Deposition of PbPc 

molecule is done in preparation chamber, to avoid contamination of main chamber. In 

this work, PbPc was carefully evaporated to substrate at rate of 0.02~0.05 nm / min. 

PbPc in a quartz tube was heated by applied current to tungsten coils around the tube. 

The flex of PbPc molecule is monitored quarts micro valance, same distance to sample 

from source material. After constant flux is obtained, the deposition rate is calculated.  
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Fig. 2.18: The configuration of the preparation chamber. The PbPc in the Quartz cell is heated by 

applied electricity. The thickness of the PbPc film is monitored by quartz microbalance. Thickness is 

tuned by changing time of the shutter opening. 

By opening a shutter for several seconds, sample is uncovered and PbPc is deposited on 

it. As-deposit film is usually inhomogeneous; a typical example will be shown in 

section 4.1. Metastable structure is observed by PEEM measurement. PbPc molecules 

tend to form dimers; therefore, we couldn’t form well-ordered 1 ML film by heating 

multilayers and desorb excess molecules. To obtain well-ordered films, deposit 1 ML 

equivalent and then annealing is essential. We keep the sample at 370K for 1 h for 

annealing process. 
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3. Electronic structure of well-ordered lead phthalocyanine films 

studied by combined use of Micro-spot UPS and Micro-spot 2PPE 

In this chapter, summary of our former study is described [17, 20]. These results are 

essential for discussions in following chapters. The first section presents knowledge to 

discuss unoccupied states on the interfaces; the electronic structure of graphite substrate, 

nature of Image Potential States. Second section summarizes film growth of PbPc on 

HOPG and occupied electronic structures on the film. In the last section, unoccupied 

electronic structures observed in the well-ordered monolayer film described. Occupied 

and unoccupied electronic states of PbPc films of 1 ML thickness formed on HOPG 

have been measured by Micro-spot 2PPE. Highly-reproducible and well-resolved 

Micro-spot 2PPE spectra were obtained by selecting sample positions with 

sub-micrometer light spot. The molecule-derived states is identified originated from 

HOMO-1, HOMO, LUMO, LUMO+1, LUMO+2 as well as the first image-potential 

state (IPS). The occupied states are in good agreement with Micro-spot UPS results. 

Resonant excitations between HOMO and LUMO+2-related levels as well as that 

between the HOMO level and IPS were observed in consistency with energies of 

relevant levels determined from off-resonant conditions. 

3.1 Electronic structure of graphite substrate and Image Potential 

States 

3.1.1 Electronic structure of HOPG 

Fig. 3.1 shows 2PPE spectrum for HOPG substrate measured at room temperature. 

Incident light was p-polarized. The photon energy was 4.43 eV. The horizontal axes 

show energy positions of ejected photoelectron and temporally occupied unoccupied  
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Fig. 3.1: A typical 2PPE spectrum of clean HOPG substrate, measured at room temperature. Incident 

light was p-polarized and photon energy of it was 4.43 eV. The lower and upper horizontal axes 

show final and intermediate energy, respectively. Work function was 4.45 eV, determined by lower 

energy cut-off of the spectrum. A broad structure at 1.7 eV is *-band of graphite. A sharp peak at 

3.58 eV shows IPS (n=1) at surface. 

states from EF; the lower axis shows final energy (for ejected photoelectron) and the 

upper axis shows intermediate energy (for temporally occupied unoccupied states; final 

energy - 1h). Work function of 4.45 eV for the clean HOPG was determined by lower 

energy cut-off of the spectrum in final energy scaling. In the 2PPE spectra, two 

unoccupied structure is observed. They assigned to unoccupied structure by checking 

peak positions of 2PPE spectra, with varying incident photon energy. A broad structure 

is observed at around 1.7 eV of intermediate energy. The peak is assigned to the 

unoccupied *-band of graphite [48]; reported in the inverse photoemission 

spectroscopy [49-51]. The peak at 3.58 eV is Image Potential State (IPS, n = 1), agreed  
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Fig. 3.2: Self-consistent band structure of graphite (Hedin-Lundqvist exchange-correlation potential) 

from ref. [52]. Dashed lines denote  bands, solid lines denote  bands. 

Table 3-1: Band energies (in eV) for graphite from ref. [52]. 

 

with former studies. Electronic properties of IPS are explained in the next session. 

Peak positions and intensity ratio between * band and IPS fluctuates by many 

factors; roughness of surface, amount of intercalation compounds, cleanness of the 
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surface, etc. Thus, it is required to check those peaks carefully to obtain clean and flat 

substrate. In the idealized condition, work function is 4.45 eV and width of n = 1 IPS 

peak is less than 140 meV [17]. Amount of contaminates can be reduced by annealing 

the sample at 600 K, around 60 h. It is interesting that we can observe the * structure 

in 2PPE spectra.  

Band structure of graphite is calculated by many researchers [52-55]. However, 

there are discussions about the position of * bands. Holzwarth et al. calculate a * 

minimum at 3.7 eV above EF, below the vacuum level [52]. In contrast, Willis et al. and 

Tatar et al. suggests that the bottom of * is 7.5 eV above EF [53, 55]. One of the 

calculated results is shown in Fig. 3.2 and Table 3-1[52]. We collect photoelectrons 

emitted toward surface normal in the spectrum of Fig. 3.1. Thus we probed the Γത-point 

of the surface Brillouin zone. At the Γത-point, there is no accessible unoccupied bands 

between from 0 to 4 eV. However, we observed the peak structure around 1.7 eV. The 

*-band at 1.7 eV exists around M, K to H points [55, 56]. Intensity of the *-band in 

the 2PPE spectra decreases at low temperatures and the result suggests inelastic 

scattering of electrons by electron-phonon interactions [18, 57]. Other group suggests 

that -* band gap of 4.4 eV in equilibrium is renormalized to 3.9 eV after excitation by 

UV-pulse laser and they proposed interactions between -* excitations and IPS is 

observed in 2PPE [58]. 

3.1.2 Image Potential State 

This part describes image potential states (IPS) which formed on the substrate. To 

discuss band structures of IPS on chapter 6, summary of the IPS model is described in 

the section. Following statements are brief extract of chemisorption model taken from 

ref. [78] To obtain more detail information, see the ref. [59]. Charges in front of a  
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Fig. 3.3: The inducement of an “image charge” in a surface 

opposite to a test charge distance from surface, r. 

 

surface are attracted by a force which can be described by charges of opposite sign 

positioned behind surface at the same distance of the charge (see Fig. 3.3). These forces 

form a potential described as 

V ൌ െ ૛ࢋ

૝ૈࢿ૙∙૝࢘
     (3.1) 

where r is the distance from the solid. If electrons have energy below Evac and if they 

are reflected at the metal surface because of the energy is forbidden in the bulk, 

electrons trapped in the potential well between image potential and the crystal potential. 

The image potential resembles to radial part of the hydrogen problem, therefore, the 

solution of IPS are expected Rydberg like series. Binding energies of IPS take discrete 

values is explained by a modified Rydberg formula, like as 

୬ܧ ൌ ୴ୟୡܧ െ
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ൌ ୴ୟୡܧ െ
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ሺ࢔ାࢇሻ૛
		eV  (3.2) 

n is the quantum number, a is called for quantum defect independent of n. The 

explanation of quantum defect theory is described later part of the section. In Fig. 3.4, 

schematic image of IPS is shown. 

Binding energies of IPS and lifetimes of their electrons on metal surface are well 

studied [59, 60]. As shown in Table 3-2, the binding energies of the n = 1 states on 

clean metal surfaces lie in the range 0.5 to 0.8 eV. Binding energies of IPS on Cu(111), 

Ni(111) and Ag(111) are close to 0.85 eV. The binding energies of IPS on Ag(100), 

Pd(111) and Cu(100) are close to 0.55 eV. From these results, the binding energies seem  
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Fig. 3.4: Image potential in front of a metal 

surface, from ref. [60]. The band gap forbids 

the penetration into the metal and bound states 

can be formed. For the lowest two IPS the 

square of the wave function is shown. 

 

 

Table 3-2: Measured work function and binding energies of IPS for various surfaces from ref. [59]. 

 

not related to band structures and chemical properties of materials. 

Quantum defect theory is concerned with properties of an electron in the field of a 

positive ion and, in particular, with expressing those properties in terms of analytical 

functions of the energy [61]. It provides a unified theory of bound states, including 
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series perturbations, autoionisation, and electron-ion elastic and inelastic scattering. One 

of example is the energy level of alkali metal atom [62]. The energies of electrons of 

hydrogen atoms depends only on its principal quantum numbers n, thus, the 3s, 3p, 3d 

configurations has same energy. However, these orbitals do not degenerate in any atom 

with more than one electron. The s-electrons penetrated inside the ion core. Thus the 

screening of the nuclear charge by the other electrons in the atom is less effective for ns 

configurations than nd, and s-electrons have lower energy than d-electrons with the 

same principal quantum number. For the atom, we consider effective principle quantum 

number n* = n – a, a is quantum defect. The d-electron has a very small quantum defect 

since the influence of the ion core is small. On the other hand, s-electron affected 

serious influence. From analysis of the energy levels of sodium shows quantum defects 

is below formula and there is a small variation with n. 

s = 1.35, p = 0.86, d = 0.01, l ~ 0.00 for l > 2  (3.3) 

Now, we back on the quantum defect theory on surfaces. Charges in IPS are 

confirmed between surface potential and image potential. There are no ion cores in the 

region. Now we consider multi-reflection and phase much at surfaces. When electrons 

move toward outside, they reflected by image potential and return with phase shift b. 

On the surface they also reflected with phase shift c.by bulk potential because of their 

energies correspond to bulk band gap. If b + c correspond to 2, stationary state is 

obtained. For the case of an image potential state at middle of band gap above 

phase-shift explanation is correct. The binding energy is hydrogen-like (0.85 eV) and 

quantum defect a ~ 0. If image state is located near or above band gap, the situation is 

changed. We must consider the solution of Schrödinger equation at the boundary 

condition. Wave function and their derivation must be match at the surface. Thus, as  



 

 

43 

 

 

Fig. 3.5: Wave functions for IPS at 

energies near top, center bottom of 

the band gap, from ref. [59]. The 

bulk solution changes from s-(top) 

to p-like (bottom) and influences 

the boundary conditions at the 

surfaces. The shift of the maximum 

of the wave function away from the 

surface leads to a reduced binding 

energy. 

Fig. 3.5, phase shift at the surface c is varied. The main parameter determining the 

binding energy of image states is the phase shift c of the bulk wave function at the 

surface which changes from 0 to  when going from the bottom to the top of the band 

gap. If c does not change considerably with the energy range of the image potential 

state series, the following relation to be quantum defect derived as: 

a = (1 - c / ) / 2    (3.4) 

During above discussion, we consider the image potential is same as that of 

hydrogen. But there is not good approximation. The potential must be connected 

smoothly at the interfaces. Ref. [63] is suggests more proper potentials at the surfaces 

and their calculations shows good agreement with experimental results. In cases of 

dielectric / metal surfaces we need to consider image charge in dielectric layers. For 

detailed discussion, see ref. [64]. 

3.2 Film growth of lead phthalocyanine from Micro-UPS study 

Previous works of our laboratory demonstrated the capability of our micro-spot 

photoemission spectroscopy (Micro-UPS), which achieved the lateral resolution of 300 
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nm and the energy resolution of 30 meV. The high-energy resolution spectroscopy 

resolved molecules in different environments [65-67].  

PbPc film formed on HOPG substrate system has been studied by UPS in detail [9]. 

PbPc molecule has a shuttlecock-like chemical structure and an electric dipole moment 

perpendicular to the molecular plane owing to the C4v symmetry [45, 68]. The 

well-ordered film of PbPc can be obtained by annealing. PbPc molecules in the first 

layer are oriented flat with the lead atom directed to the vacuum side, causing decrease 

of . In the second layer, the molecules are oriented in the reverse direction, canceling 

the electric dipoles. Thus the  increases close to that of HOPG. The HOMO band of 

the bilayer splits into two peaks due to formation of PbPc dimer [45]. The drastic 

changes of electronic structure and  are advantageous to clarify the correlation 

between PEEM contrast and the electronic structure measured by Micro-UPS. 

3.2.1 Experimental 

Experimental setup of Micro-spot UPS is described briefly. Micro-spot UPS is done 

at the Micro-2PPE chamber, which explained in section 2.2. For Micro-spot UPS 

measurement, the light source is changed from that of Micro-spot 2PPE. The VUV light 

source was amplified regenerator (Coherent, RegA) operated at a repetition rate of 250 

kHz. The output (~ 800 mW) is focused on a BBO crystal and SHG is generated. SHG 

light is focused to Xe container, which placed between lens and the incident port of the 

UHV chamber. The 6th harmonics (8.86 eV) is formed by nonlinear optical effect. To 

avoid absorption of air, the container is evacuated by a rotatory pump, and Xe gas is 

contained (~ 150 Torr). SHG and IR light is cut by a band-pass filter, which is placed in 

the container. Ti: Sa laser operated at a repetition rate of 250 kHz. The VUV light was 

focused onto a sample surface with a Schwarzschild objective of 0.29 numerical 
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apertures. The spot size of the light was 0.3 m. The incident angle of the light was 55 

degree from the surface normal. Photoelectrons emitted to the surface normal were 

detected with a hemispherical energy analyzer. 

3.2.2 Micro-UPS for PbPc films 

Fig. 3.6 shows Micro-spot UPS results for PbPc films as a function of the thickness 

measured by the microbalance. All spectra were measured after annealing at 373 K for 

1h. In Fig. 3.6, spectra in the energy region of HOMO band (left panel) are put on the 

initial energy, and spectra in the region of Evac (right panel) are put on the final energy 

of electron with respect to the Fermi level (EF). ’s were determined from the cutoffs at 

the Evac in Fig. 3.6. The work function changes () relative to the clean HOPG 

substrate is shown in Fig. 3.7. As the thickness increased from 0 nm [trace (a) in Fig. 

3.6] to 0.3 nm (d),  gradually decreased from 4.45 to 4.27 eV (= 0.18 eV), and the 

HOMO band appeared as a sharp peak at 1.35 eV for (d). At further deposition,  

increased up to 4.46 eV ( = 0.01 eV) for 0.7 nm thickness (e), and the HOMO band 

split to two peaks at 1.16 eV and 1.49 eV. These variations of Evac and the HOMO band 

structures are consistent with Ref. [45]. According to the variations of  and the HOMO 

band peak in Ref. [45], It is defined that thickness of 0.3 nm (d) corresponds to 1 ML, 

and 0.7 nm (e), to 2 ML. The Micro-UPS results for as-deposited films of < 0.3 nm- 

thickness were similar to Fig. 3.6b–d except for slight broadening of the HOMO 

features. The HOMO peak position and  of the as-deposited films were close to those 

of the annealed films slightly thinner than the nominal thicknesses. The broad HOMO 

feature suggests that ordering of molecules is imperfect [17, 67]. 
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Fig. 3.6: The Micro-UPS results 

measured with p-polarized light 

at a photon energy of 8.86 eV for 

different thickness of PbPc, (a) 

clean HOPG substrate, (b) 0.1 

nm, (c) 0.2 nm, (d) 0.3 nm, (e) 

0.7 nm film. All PbPc films in 

the spectra were measured after 

annealing at 373 K for 1 h. The 

left panel with the initial energy 

scale shows the spectra in 

HOMO region. The right panel 

with the final energy scale shows 

spectra in VL region. In PEEM 

measurements with the photon 

energies of 5.70 eV and 4.65 eV, 

photoemission occurs from the 

energy regions labeled by red 

and blue colors, respectively 

 

Fig. 3.7: The work function 

change () relative to the clean 

HOPG substrate as a function of 

the thickness. The  were 

determined from the cutoffs of 

the VL region spectra in Fig. 3.6. 

The thicknesses of 0.3 and 0.7 nm 

correspond to the coverage of 1 

ML and 2 ML, respectively. The 

coverage scale in the top is 

meaningful between 0 and 1 ML 

and at 2 ML where uniform films 

were formed. The values of  for 0.3 and 0.1 ML films, indicated by dotted and dashed vertical 

lines, are estimated to be 0.06 and 0.02 eV, respectively. 
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3.3 Resonant two-photon photoemission study on electronically 

excited states at an interface of lead phthalocyanine (PbPc)/graphite 

In the section, 2PPE spectroscopy for 1 ML of PbPc films grown on a HOPG is 

shown. Special attention was devoted to the resonant excitations. When photon energy 

is equal to the energy difference between the occupied and unoccupied states, 

photoemission is enhanced by resonant excitation [69-71]. The resonance allows 

identification of both the initial and the intermediate states. 

3.3.1 Coverage Dependence 

2PPE results measured with p-polarized light at photon energy of 4.33 eV are shown 

in Fig. 3.8 for PbPc films of different coverage. By adsorption of PbPc, four peaks (H0, 

H-1, L0, L1) appeared in addition to a peak, labeled by IPS, which was seen for the bare 

HOPG, the 0.3 ML and the 1 ML films. The horizontal axis is the final energy of 

photoelectron with respect to EF. The spectra were measured at a uniform surface area 

shown in Fig. 3.9. Fig. 3.9 shows the surface image of an as-deposited film of 0.3 ML 

coverage. The image was measured by fixing the energy analyzer to the peak H0 in Fig. 

3.8 while scanning the sample across the light focus. Intensity of the peak H0 varied 

depending on the domains. Regions of bare HOPG have not been found. In addition to 

the large domains of different brightness, we identified several features due to defects 

and step bunches of the substrate (see, ref. [21]). The detailed images of PbPc/HOPG 

surfaces are discussed in ref. [21] on photoelectron emission microscopy (PEEM). We 

selected typical spectra which showed sharp features and were observed at majority of 

the surface areas. The selection of the sampling point was effective to improve the 

reproducibility of the 2PPE spectroscopy. 
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Fig. 3.8: 2PPE results measured with p-polarized light at photon energy of 4.33 eV for different 

coverage. 2PPE spectrum for an annealed 1 ML film is also shown at the top. The horizontal axis is 

the final energy of photoelectron with respect to EF. All spectra were measured at room temperature. 

The molecule-derived peaks H0, H-1 and L1 shift to lower final energy with increasing coverage. By 

annealing the film, the L1 peak split into L0 and L1, and the other peaks became sharper while the 

work function unchanged. The shift of IPS (0.07 eV) is smaller than that of the vacuum level (0.19 

eV). 

In Fig. 3.8, the work function (Φ) determined from the low energy cutoff smoothly 

decreased from 4.47 eV for the clean surface to 4.28 eV for the nominal thickness of 0.3 

nm.  became higher at further deposition up to about 0.7 nm nominal thickness where 

a double layer film is formed. According to the shift of Φ in Ref. [45], we assume 1 ML 

film was formed at the deposition amount of 0.3 nm. By annealing the 1 ML film at  
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Fig. 3.9: 90×90 m surface image of PbPc/HOPG (0.3 ML film without annealing) based on the 

photoemission intensity at the H0 peak in Fig. 3.8. The right-hand-scale shows the photoelectron 

counting rate. We selected sample position in large domains. Maker near the center was made with 

an intense laser irradiation. 

about 373 K for 1 h, the spectra became slightly sharper and the L1 peak split into two 

components L0 and L1. The value of Φ was not changed. This suggests that the 

annealing of the as-deposited 1 ML film improved the ordering of the molecules. 

Actually, sampling position dependence became moderate after annealing. 

In the spectrum of the bare HOPG (Fig. 3.8, bottom trace), the peak at 7.91 eV is 

due to the first image-potential state (n = 1, IPS). The IPS feature nearly reproduced 

those of Refs. [48] and [50] with higher resolution. The IPS peak became weak at 0.3 

ML, largely broadened at 0.6 ML, and became sharp again at 1 ML. The peak position 

forthe 0.3 ML film is close to that for the bare HOPG. The IPS peak for the 1 ML film 

shifted by -0.07 eV from that for the bare HOPG. The shift is apparently different from 

the vacuum level shift of -0.19 eV. We consider the broadening as a confinement of the 

image-state electrons in spaces among adsorbed molecules as discussed in chapter 4. At 
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coverage higher than 0.6 ML the IPS orbital should be located on the molecular film 

causing the shift of the peak position. The sharp feature of the IPS peak for the 1 ML 

film support again that PbPc molecules formed an ordered film. 

The molecular-induced features, H0, H-1 and L0, L1, L2, shifted to lower final 

energies with increasing coverage. The clear features for ≤ 1 ML films are characteristic 

of this adsorption system, in contrast to molecular films on metal surfaces  

3.3.2 Photon energy dependence for 1 ML films 

In order to assign the molecular-induced peaks, the 2PPE spectra with p-polarized 

light of different photon energies were measured for annealed 1 ML films as shown in 

Fig. 3.10. The energies of these peaks (marked by bars in Fig. 3.10) are plotted as a 

function of photon energy in Fig. 3.10. The data sets for Fig. 3.11 accumulate the results 

of several experimental runs for 1 ML films before and after annealing. The data sets 

also include experiments with HOPG substrates from different origins. All the peak 

positions align well on the lines of slope 1 or 2 in Fig. 3.11: the peaks on the slope 1 

lines are due to 1h process arising from unoccupied states, and those on the slope 2 

lines are due to 2h process arising from occupied states. The line fitting allows us 

clear identification of the origins of the peaks. Further inspections of the spectral 

features are made on the expanded spectra put on the initial energy, defined as (final 

energy)-2h, as shown in Fig. 3.12. The spectra were the same as those in Fig. 3.10. 

The peaks H0 and H-1 align vertically in Fig. 3.12, indicating that the peaks arose from 

fixed initial states at -1.33 eV and -2.76 eV, respectively. On the other hand, peak 

positions due to unoccupied states such as IPS shift on this energy scale. The 

assignments for the occupied states are further confirmed by comparison with a 

micro-spot 1PPE result at the top in Fig. 3.12. The peak positions for H0 and H-1  
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Fig. 3.10: 2PPE spectra for a 

PbPc film (annealed, 1 ML) on 

HOPG measured with 

p-polarized light. The photon 

energies are shown at the 

right-hand side. The spectra for 

h > 4.38 eV were measured 

with nearly constant laser power 

of 10 mW. The spectra for 

photon energies of 4.20 eV and 

4.13 eV were measured with the 

laser power of 15 mW. No 

normalization was made on the 

spectra. The spectra at high final 

energy region were magnified by 

5 times. The energies of each 

peak are marked by bars. At 

photon energy higher than 4.3 eV, 

the peak H0 split into two 

components, L2 and H0.  

 

 

Fig. 3.11: Final energies of the peaks for PbPc 

(1 ML)/HOPG are plotted as a function of 

photon energy. The closed circles correspond 

to the peak energies in Fig. 3.  Experimental 

points for different 1 ML films before (+, ×,*) 

and after annealing (circle, square, diamond) 

are shown with different symbols. The slopes 

of dotted and dashed lines are 1 and 2, 

respectively. The resonances were observed at 

photon energies of 4.3 and 4.8 eV. 
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Fig. 3.12: Comparison between UPS (a) and 2PPE (b-e) spectra of PbPc (annealed, 1 ML). The 

horizontal axis is the initial energy with respect to EF. Traces at the high initial energy region are 

magnified by 3 times. The peaks due to occupied states align vertically, while the peaks due to 

unoccupied states shift with photon energy. The peaks H0 and H-1 in 2PPE spectra (b-e) coincide 

with the UPS peaks due to the HOMO and HOMO-1 bands. 

probed by 2PPE are in good agreement with the UPS result. Initial energies of the peaks 

H0 and H-1 are also in good agreement with the UPS results for the HOMO and the 

next-HOMO (HOMO-1) bands, respectively [45]. 

The features due to the unoccupied states are clearly seen by putting the same 

spectra in Fig. 3.10 on the intermediate energy, defined as (final energy) - h, as shown 

in Fig. 3.13. The IS peak aligns vertically in Fig. 3.13, confirming the peak arose from 

the unoccupied state at +3.51 eV above EF. The binding energy of IPS with respect to  



 

 

53 

 

 
Fig. 3.13: 2PPE results of PbPc (annealed, 1 ML) are plotted on the horizontal axis of the 

intermediate energy with respect to EF. The traces of the right panel are expanded by about 10 times 

to those of the left panel. The peak positions of unoccupied states align on the vertical lines, while 

those of occupied states moves by one of the photon energy increment. Photoemission is enhanced at 

photon energy of about 4.3 eV by the resonant between levels for the H0 and L2 features. The H0 

peak is enhanced again when it comes closer to the IPS peak, reflecting the resonance between the 

levels of the H0 and IPS features at the photon energy of about 4.8 eV. 

the vacuum level was 0.77 eV, slightly smaller than that for the clean HOPG, 0.89 eV. 

Similarly, the peaks L0 and L1 arose from unoccupied states at +0.71 and +0.87 eV 

above EF, respectively. At photon energies lower than 4.3 eV, the occupied state feature 

H0 shifted on this axis. At photon energies higher than 4.3 eV, the peak split into two 

components, H0 and L2. The component L2 aligns vertically in Fig. 3.13: the 

component is due to an unoccupied state at +2.94 eV above EF. The component H0 lies 

on the line of slope 2 in Fig. 3.11 throughout the present photon energy region. Thus the 
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photon energy of 4.3 eV is resonant with the transition between the occupied state at 

-1.33 eV (H0) and the unoccupied state at +2.94 eV (L2). Intensities of both 

components became weaker as the photon energy was increased above the resonance: 

the intensity variation is in accordance with the trend of resonance in 2PPE [69-71]. On 

the other hand, the component H0 became clear and intense again at photon energies 

higher than 4.6 eV where the peak H0 approached the peak IPS. Enhancement of the H0 

feature near the IPS peak is due to the resonance between the occupied state of H0 

andthe unoccupied IPS. The energy difference between the states for H0 and L2, 

1.33+2.94 = 4.27 eV, determined from the line fits of Fig. 3.11 is in good agreement 

with the resonance photon energy of 4.3 eV. The energy difference between the states 

for H0 and IPS, 1.33+3.51 = 4.84 eV, is close to the photon energy of 4.74 eV, at which 

H0 and IPS features are enhanced by the resonance. 

3.3.3 Assignment of observed levels 

Fig. 3.14 compares the observed energy levels with results of density functional 

theory (DFT) calculation. DFT calculations of a free PbPc molecule were performed 

with B3LYP method and LANL2DZ basis set. The results of the calculation were 

similar to those of Refs. [45] and [72]. 

The occupied states for H0 and H-1 were assigned to HOMO and HOMO-1 with 

reference to the UPS results [45, 68, 73]. The DFT calculation suggests that the 

unoccupied states for L0 and L1 are related with the twofold degenerate LUMO and 

LUMO+1, and that for L2, with the LUMO+2. The resonance at 4.8 eV corresponds to 

the excitation of electron in the HOMO to the free-electron like orbital of IPS. The 

resonance energy of 4.3 eV corresponds to the optical excitation between the levels due 

to the HOMO and the LUMO+2. The optical transition between the HOMO and the  
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Fig. 3.14: (Top) The energy 

levels of PbPc (annealed, 1 ML) 

and the calculated molecular 

orbital energies from HOMO-1 

to LUMO+4 (L+4) of free PbPc. 

The molecular orbital energies 

are aligned with the 

experimental vacuum level. 

LUMO and LUMO+1 are 

degenerated in a free PbPc 

molecule. The block-arrows 

show the observed resonances 

from the H0 level to the L2 and 

to IPS. (bottom) The molecular 

orbital of PbPc from HOMO-2 

to LUMO+2 calculated by DFT 

with B3LYP method and 

LANL2DZ basis set. Except for 

HOMO-1, the molecular orbitals 

mainly composed with  orbital 

of phthalocyanine ring. 
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LUMO+2 is forbidden in free molecules. Along with the split feature of L0 and L1, 

which are degenerate in free molecule, the observed resonance indicates that the 

electronic states of the adsorbed molecules are fairy perturbed by interactions with the 

surface. Here, we keep the limited meaning in mind to compare the experimentally 

determined unoccupied levels with the calculated orbitals in which there are no 

electrons. 

Initial energies for H0 and H-1 observed in 2PPE reproduced those in UPS. The 

agreement is reasonable for the off-resonant 2PPE case, because the final states are the 

same one-hole state irrespective of the number of photons involved in photoemission. 

On the other hand, we must consider the effect of the real intermediate state at the 

resonant 2PPE condition. In Fig. 3.12, the H1 peak at photon energy of 4.33 eV shifts 

by about 0.1 eV to lower initial energy. The shift was found to be reproducible for 

repeated experiments. At the resonant condition, an electron in the HOMO level is 

excited to the LUMO+2-related level. The resulting electron-hole pair may cause some 

relaxation processes within the pulse duration of the laser pulse, 100 fs. The shift of the 

H0 peak at the resonance should be a result of the relaxation. It is interesting to note that 

when the electron is excited, it is not necessarily localized on a molecule, but may be 

delocalized. The delocalization of electrons in low lying normally unoccupied levels has 

been assumed in X-ray emission spectroscopy of adsorbed molecules on metal surfaces 

[74]. Free electron like character of the LUMO band and formation of the singlet 

exciton after few ps from a pump laser pulse was reported for a multilayer film of C60 

[75]. The interaction of the delocalized electron with the hole in the HOMO level 

should be negligibly weak. On the other hand, when an electron-hole pair is localized 

within a molecule (molecular exciton), the charge correlation energy may be about 0.5 ~ 
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1.5 eV as estimated from the stabilization energy of excitons in organic films [76]. The 

exciton formation from delocalized excited electron should be an event occurring at 

time region after 100 fs from the pump pulse, and should cause rather large change of 

the 2PPE spectrum, fairly significant than the observed shift of the peak H0. 

Time-resolved experiment is in progress to confirm the delocalization/localization of 

excited electron. Comparison of resonances to L2 and to IS is interesting, because the 

real intermediate state formed by the resonance to IS involves an excited electron in the 

delocalized, free-electron like orbital. 

The resonance from the HOMO level confirms that the LUMO+2-related level was 

not populated by photon-induced electron transfer from the substrate to the molecule. 

The electron transfers from the substrate produces negatively charged states which 

should be compared with IPES results. Unfortunately, no IPES work has been reported 

for PbPc/HOPG. No resonance was identified for the LUMO- and LUMO+1-related 

levels L0 and L1. Photo excitation to the L0 and L1 levels from the occupied levels 

lower than HOMO-2 is possible within the present photon energy region. However, the 

broadly overlapped occupied levels below HOMO-2 [45, 68] may smear out the 

resonance feature. Photon energy dependence of the intensity ratio between the L0 and 

L1 peaks suggests that the levels were also populated by photo excitation from the 

occupied levels. The L0 peak became more intense relative to the L1 peak as the photon 

energy was increased as shown in Fig. 3.10 and Fig. 3.13. The enhancement of the 

lower energy level for the L0 feature with higher excitation energy is not very probable 

by transfer of hot electron in the bulk. 

The energy difference between the HOMO level and the LUMO-related level 

observed by 2PPE was 2.04 eV. The value is different from the optical gap determined 



 

 

58 

 

from optical absorption of PbPc in solutions, 1.76~1.84 eV [74], and from EELS of 

thick films, 1.6~1.8 eV [77]. Comparison of the present results with the optical band 

gaps is left without discussion before the localization/delocalization of excited electron 

becomes clear from the time-resolved experiments. 

3.4 Supplemental material: adsorption on surface and shift and 

broadening of electronic structures 

In the section 3.2 and 3.3, we have discussed electronic structures of an organic / 

inorganic interface. In this section, summary of theory of electronic structures of 

molecule absorbed surface is described. During discussions in section 3.2 and 3.3, we 

regard occupied / unoccupied electronic structures like as molecular orbitals of PbPc. 

But observed electronic structures are broad and stabilized than that of free molecules. 

Therefore, the observed energy levels in PbPc film are hybridized to bulk structures of 

HOPG. In following chapters, we discuss obtained results with this weak-chemisorption 

model. The theories of surface are summarized in ref. [78]. Following statements are 

brief extract of chemisorption model, taken from ref. [78].  

3.4.1 Newns-Anderson Model 

The modification of the electronic structures upon absorption in term of the 

adsorbate-substrate coupling can derive using a semi-quantitative, Newns-Anderson 

model [78]. To establish qualitative trends and basic mechanisms, it is often useful to 

describe a complex system by a simplified Hamiltonian with limited parameters. 

Consider a substrate characterized by a quasi-continuum of Bloch states k with 

eigenenergies k and an adatom interacting with the substrate. The adatom shall be 

described by a single valence state a with energy a. The interaction can be described in 
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its simplest form by the following model Hamiltonian 

߅ ൌ	ߝ௔݊௔ෞ ൅	∑ ௞݊௞ෞ௞ߝ ൅ ∑ ൫ ௔ܸ௞ܾ௔ା෢ܾ௞෢ ൅	 ௞ܸ௔ܾ௞
ା෢ܾ௔෢൯௞  (3.4) 

with 

݊పෝ ൌ ܾపା෢ܾప෡ , i = a, k,     (3.5) 

where ݊పෝ  is the number operator, and ܾపା෢  and ܾప෡  are the creation and annihilation 

operator of the orbital i, respectively. The interaction of the substrate and adatom states 

is given by the matrix element Vak. Note that equation (3.4) is a single-particle 

Hamiltonian, thus, the Hamiltonian could in principle be written as a sum over 

independent one-particle states ߅ ൌ	∑ ௜݊పෝ௜ߝ . Still, a direct solution of the Schrödinger 

equation 

௜ܿ߅ ൌ 	  ௔ܿ௜      (3.6)ߝ

by diagonalization is intractable due to the infinite number of substrate states. 

Nonetheless, the Newns-Anderson Hamiltonian (3.4) can be used to derive some 

fundamental aspects of the behavior of the adatom valence state a upon adsorption. We 

rewrite the projected density of states as 

ܩ ൌ 	∑ ௜|߶௔ۧ|ଶ௜߶ۦ| ߝሺߜ െ ௜ሻߝ ൌ െ ଵ

గ
∑݉ܫ ቀ

థ೔|థೌۧۦథ೔|థೌۧۦ

ఌିఌ೔ା௜ఋ
ቁ௜ ൌ െ ଵ

గ
 ሻ     (3.7)ߝ௔௔ሺܩ	݉ܫ

where G is the single particle Green function. 

ܩ ൌ 	∑ |థ೔வ	ழథ೔|

ఌିఌ೔ା௜ఋ
௜       (3.8) 

where, as usual,  is assumed to be a small positive number, , and G is formally 

defined by  

ሺߝ െ ௜ߝ ൅ ሻߝሺܩሻߜ݅ ൌ 1.     (3.9) 

By writing (3.9) in matrix form and eliminating ܩ௞௔ ൌ  ሻ can beߝ௔௔ሺܩ ,௔ۧ߶|ܩ|௞߶ۦ

written as 
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ሻߝ௔௔ሺܩ ൌ
ଵ

ఌିఌೌା∑ሺఌሻ
     (3.10) 

where the self-energy ∑ሺߝሻ ൌ 	Λሺߝሻ െ ݅Δሺߝሻ is given by 

Δሺߝሻ ൌ ∑ߨ | ௔ܸ௞|ଶ௞ ߝሺߜ	 െ  ௞ሻ    (3.11)ߝ

and 

Λሺߝሻ ൌ ଵ

గ
ܲ ׬

୼ሺఌᇱሻ

ఌିఌᇱ
 (3.12)     .′ߝ݀

Here P denotes the principal part integral. Inserting (3.10) into (3.7) yields the projected 

density of states in terms of Λሺߝሻ and Δሺߝሻ, 
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.    (3.13) 

Now we consider a limiting case. Let us donate the substrate band width by W. If ௔ܸ௞ 

≪ ܹ, then we may just take the average value Vav = 〈 ௔ܸ௞〉 and insert it in (3.11) 

Δሺߝሻ ൎ ∑ߨ | ୟܸ୚|ଶ௞ ߝሺߜ	 െ ௞ሻߝ ൌ ߨ ୟܸ୚
ଶ݊௞ሺߝሻ  (3.14) 

where ݊௞ሺߝሻ is the density of states of the unperturbed substrate. In the wide-band 

limit, we may assume that ݊௞ሺߝሻ and consequently also  is independent of the energy. 

Such a situation is typical for the sp-band of a simple metal. In this case  is zero, and 

the projected density of state simply corresponds to a Lorentzian of width  centerd 

around a. Physically, this means that the adatom valence level is broadened into a 

resonance with a finite lifetime  = -1. This scenario is called the weak chemisorption 

case. Our PbPc /HOPG results are this case. 

3.4.2 Energy shift and broadening of adatom state 

The energetic location of the adatom resonance ߝ௔∗ሺݖሻ ൌ 	 ሻݖ௔ሺߝ ൅ Λሺݖሻ is variable 

parameter. The presence of asurface will modify both the ionization energy I and the 

electron affinity A. Let us consider a hydrogen atom in front of a perfect conductor, as in  
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Fig. 3.15: image potential formed by substrate, from ref. [78] 

Fig. 3.15.We must consider image potential formed by substrate, because I and A are 

influenced by image potential (see, Fig. 3.16). The attraction of the electron to its own 

image is overcompensated by the repulsion with respect to the negatively charged image 

of the ion which stays at –Z. The effective ionization energy in front of a perfect 

conductor is given by 

Iୣ୤୤ሺݖሻ ൌ ܫ െ ௘మ

ସగఌబ
.     (3.15) 

On the other hand, we want to add an electron to a neutral atom in front of a surface, we 

gain the additional energy due to the interaction of the electron with its own charge. 

Therefore, the electron affinity is increased to 

Aୣ୤୤ሺݖሻ ൌ ܣ ൅ ௘మ

ସగఌబ
.     (3.16) 

Depending on whether the affinity or the ionization level crosses EF when the atom 

approaches the surface, the adatom will become negatively or positively charged, 

respectively. However, the adatom may well be neutral, if the Fermi energy remains 

between the ionization and the affinity levels. 

The considerations with respect to the ionization and affinity levels of a hydrogen 

atom can be extended to occupied and unoccupied atomic levels in general. Thus the 

energy of unoccupied levels tends to shift down in front of a conductor while occupied 
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Fig. 3.16: Schematic sketch of the shift of the ionization energy I and the electron affinity A in front 

of a perfect conductor caused by the image potential, from ref. [78]. The metal work function is 

denoted by 

 

Fig. 3.17: Schematic sketch of the shift and the broadening of an adatom valence level a(z) upon 

approaching a surface, from ref. [78]. Veff(z) corresponds to the effective one-electron potential of 

the bare substrate. The shaded areas illustrates the filled levels 

levels are shifted up. This is only true as long as there is negligible overlap with the 

substrate wave functions. Close to surface, there is the additional modification of the 

adatom levels due to the interaction with the substrate states. A typical example of the 

shift and broadening of an affinity level is plotted in Fig. 3.17. Close to the surface the  
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Fig. 3.18: In-plane intermolecular energy-band dispersion in the pentacene monolayer on Cu(110) at 

 = 0° (the [1 -1 0] substrate direction) and  = 28°, from ref. [80]. The abscissa is the parallel 

component of the wave vector (k//), and the ordinate is the binding energy (Eb) relative to the Fermi 

level (EF) of the substrate. In order to map out the energy-band dispersion, we took the second 

derivative of the ARUPS spectra [−d2I(Eb) / dEb
2] at h = 20 eV after smoothing to specify the 

energies of the spectral features. Open and filled circles indicate the position of the 

pentacene-derived peaks in the raw ARUPS spectra measured at h = 20 and 30 eV, respectively. 

pure 1/z dependence of the level becomes modified due to the hybridization with the 

substrate states. 

If molecular orbital and bulk bands strongly hybrid, we observe bonding and 

anti-bonding states at surfaces. Especially on metal surface, these effect drastically 

change the electronic structures at the surface [79]. On pentacene / Cu (110) surface, 

pentacene forms well-ordered lattice structures. HOMO states of pentacene shows 

dispersion, reflected the film structures, as Fig. 3.18 [80]. From the result, the observed 

HOMO level on film is not localized state but surface-mediated intermolecular 

interaction is evolved, like the Newns-Anderson model described in section 3.4.1. 
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3.5 Chapter summary 

Occupied levels (HOMO-1, HOMO) and the unoccupied levels related to LUMO, 

LUMO+1 and LUMO+2 as well as IPS state of PbPc 1 ML films on HOPG is probed. 

Energy positions of occupied states obtained by 2PPE are consistent with the results of 

UPS. Resonant excitations from the HOMO level to the LUMO+2-related level and the 

HOMO level to IPS are observed, confirming that the unoccupied levels are populated 

by photo excitation from the occupied level. We could obtain highly-reproducible and 

well-resolved 2PPE spectra by employing sub-micrometer light spot. 

  



 

 

65 

 

4. Lateral inhomogeneity of unoccupied states for PbPc films 

In this chapter, we focus on the relation between unoccupied electronic structures and 

geometric inhomogeneity of organic films. Owing to complicated substrate- molecule 

and intermolecular interactions, the growth of organic films is typically inhomogeneous, 

and the lateral inhomogeneity complicates the electronic structures and carrier 

transportation. In chapter 3, it has shown that highly-resolved and well- reproducible 

2PPE spectroscopy for lead phthalocyanine (PbPc) films became feasible by the 

micro-2PPE method. All occupied and unoccupied levels near the Fermi level (EF) was 

observed in the well-ordered monolayer film. The well analyzed system is very suitable 

for characterizing the effect of lateral inhomogeneity on the electronic structure. The 

environment of molecules in sub-ML films is less uniform than in the well-ordered 

monolayer film. The fluctuation of the environment modulates the interface electronic 

structure. In particular, unoccupied levels are considered to be more sensitive to the 

environment than occupied levels. Because of the anti-bonding character, the 

unoccupied molecular orbital extends outside the molecule, resulting in enhanced 

interaction with neighboring molecules. The main issue is the environment-induced 

modulation of occupied and unoccupied levels through micro-2PPE spectroscopy and 

surface imaging. It is shown how the unoccupied levels of PbPc films are affected by 

the lateral distribution of molecules. It is found that the unoccupied levels are sensitive 

to surface morphology at the nm-scale. 

4.1 Typical coverage-dependence of 2PPE spectra 

The 2PPE spectra for sub-ML films are position-dependent even after the annealing. 

To demonstrate the typical coverage dependence, the most frequently observed 2PPE 
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spectra measured at photon energy of 4.33 eV are shown in Fig. 4.1. The vacuum level 

(VL) determined from the low-energy cutoff reproduces the work function change [21, 

45]. The first (n = 1) image potential state (IPS) on bare HOPG appears at a final energy 

of 7.93 eV (IPS1, closed triangle). The binding energy from the vacuum level (Evac) is 

0.85 eV [17, 19]. The width of the IPS1 peak is 140 meV. The deposition of PbPc 

causes the IPS feature to broaden toward the higher final energy side by 0.3 eV, as 

shown in Fig. 4.1 by the upside down closed triangle. We note that the broadening of 

the IPS feature occurs only toward the higher energy side, indicating that it is not due to 

a homogeneous effect such as lifetime broadening. At coverage values above 0.4 ML, a 

new component, IPS2, indicated in Fig. 4.1 by an open triangle, appears at energy 

slightly below the IPS1 peak. As the coverage increases, the IPS2 component intensifies 

and shifts to lower final energy. The IPS2 component becomes a sharp peak at 7.85 eV 

for the 1 ML film. The IPS2 peak for the 1 ML film reproduces the IPS on the 

well-ordered 1 ML films [17, 19]. The IPS2 peak for the 1 ML film is stronger than the 

IPS1 peak for bare HOPG [19]. The broadened feature labeled by the upside down 

closed triangle disappears when the 1ML film is formed. 

In addition to the IPS feature, four peaks labeled L0, L1, H-1, and H0 are observed. 

The peaks were assigned based on the photon energy dependence [17, 19]. The energy 

of the unoccupied level is given by (final energy) - h, where h is the photon energy. 

The initial energy of the occupied level is given by (final energy) – 2h. The L0 and L1 

peaks are due to the unoccupied levels derived from the lowest unoccupied molecular 

orbital (LUMO) and the next LUMO (LUMO+1). LUMO and LUMO+1 are degenerate 

in a free molecule. The degeneracy is lifted upon adsorption and the split levels appear 

as two peaks [17, 19]. The levels are populated by transitions from the occupied levels  
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Fig. 4.1: Micro-2PPE results for different coverage of PbPc on HOPG measured with p-polarized 

light at photon energy of 4.33 eV. Coverage is indicated on the right. The horizontal axis is the final 

energy of photoelectrons with respect to the Fermi level (EF). The traces in the right panel are 

expanded by a factor of 15 relative to those in the left panel. The peaks labeled L0 and L1 are due to 

split features derived from originally degenerate LUMO and LUMO+1 levels, respectively. The 

shoulder labeled H-1 arises from the HOMO-1 derived level, and the peak labeled H0, from the 

HOMO derived level. The IPS feature on the clean HOPG (IPS1) is indicated by a closed triangle 

and that on the well-ordered 1 ML film (IPS2), by an open triangle. The IPS features on sub-ML 

films are 0.3 eV wide, as indicated by the upside down closed triangle. 

deeper than the next HOMO (HOMO-1) [19]. The peak denoted by H-1 is due to the 

coherent 2PPE from the HOMO-1 derived level. Optical transition between the HOMO 

and LUMO+2 levels is forbidden for a free molecule, but adsorption-induced symmetry 

degradation generates the peak labeled H0 [19]. The energy of the H0 peak is 

determined by the initial energy of the HOMO derived level: The peak due to the 
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LUMO+2 derived level appears at higher photon energies [17, 19]. 

The energies of these molecule-derived peaks shift as the coverage increases. The 

shifts are summarized in Fig. 4.2. These shifts cause no significant change in the 

resonant conditions between occupied and unoccupied levels. For example, although the 

H0 feature splits into two peaks when the photon energy exceeds the resonance [19], no 

such splitting is observed in Fig. 4.1. Thus, we can discuss the change in the unoccupied 

features without considering the pump processes. The H-1 and H0 peaks shift linearly 

with the coverage at a rate of 0.15 eV/ML. The shift rate is comparable to that of VL 

(0.18 eV/ML). That is, the ionization energies of the HOMO-1 and HOMO derived 

levels are almost unchanged by the coverage. The shift is similar to the results of the 

one-photon photoemission measurement [45]. In contrast to these peaks that are due to 

occupied levels, peaks L0 and L1 shift at a rate of 0.35 eV/ML. The unoccupied levels 

are not pinned toVL. The energies of the LUMO and LUMO+1 derived levels relative 

to VL are stabilized by 0.2 eV when the 1 ML film is formed. This stabilization is 

presumably due to the intermolecular interaction, that is, the unoccupied levels are 

stabilized when the molecules are densely packed. The unoccupied levels are more 

sensitive to the change in neighboring molecules than occupied levels. We note that the 

coverage-independent ionization energies for HOMO and HOMO-1 are not a general 

trend for organic molecular films. A coverage-induced shift in ionization energy has 

been observed for several systems [2]. In the case of CuPc on HOPG, the VL shift was 

very small (about 60 meV) and the HOMO energy shifted by 0.15 eV as the coverage 

increased. [15, 66]. Although the mechanism of the energy shift by intermolecular 

interaction in the surface-parallel direction is unclear, the stabilization of LUMO by 0.2  
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Fig. 4.2: The peak positions in Fig. 4.1 are plotted as a function of coverage. The different marks 

show data points for different experimental runs. The energy shifts (0.35 eV) of the L0 and L1 peaks 

shown in (a) are larger than that for the H-1 and H0 peaks shown in (b). The shifts for the HOMO 

and HOMO-1 levels are both 0.15 eV/ML which is comparable to the VL shift of 0.18 eV / ML. The 

shifts for L0 and L1, larger by 0.2 eV than the occupied level shifts, are due to the intermolecular 

interaction. 

eV is not surprising in view of the known trend of occupied levels. We consider a 

contribution of the substrate-mediated intermolecular interaction. Similar stabilization 

of LUMO was reported for vanadyl naphthalocyanine (VONc) on HOPG [81]. 

4.2 Lateral-dependence of the electronic structure 

Next, we focus on the lateral distribution of the electronic structure. Photoelectron 

emission microscope (PEEM) images taken from Ref. [21] are shown in Fig. 4.3. The 

amount of deposition is equivalent to 0.3 ML. Fig. 4.3A and Fig. 4.3B show images of 

as-deposited and annealed films, respectively. These images were taken at photon 

energy of 5.70 eV. At the photon energy, photoemission occurs from the HOMO band of 

PbPc, and the brightness of the image represents the density of adsorbed molecules [21]. 
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Fig. 4.3: Surface images of the 0.3 ML films. Top images are one-photon PEEM images of 

as-deposited film (a) and annealed film (b) measured with p-polarized light at photon energies of 

5.70 eV. The brightness of the image is proportional to the molecular density. The bright patches in 

(a) due to the metastable bilayer are quenched by annealing, as shown in (b). The molecular density 

in (b) seems to be uniform. Bottom images are micro-2PPE images measured at the energy of the L1 

peak. The photon energy is 4.33 eV. The lateral inhomogeneity of the as-deposited film (c) is 

enhanced for the annealed film (d). Comparison of (b) and (d) indicates that the intensity of the L1 

peak is governed by a factor other than the number of molecules within the probe spot of 0.4 m. 

Micro-2PPE spectra at points A to E are shown in Fig. 4.4. 

The bright patches in Fig. 4.3A are due to islands of the metastable bilayer. The islands 

disappear upon annealing, as shown in Fig. 4.3B. The density of PbPc molecules in the 

annealed film is uniform within the lateral resolution of our PEEM (50 nm). PEEM 

images for films of different coverage are shown in Ref. [21]. The PEEM images for the 

annealed 0.6 and 1.0 ML films seem to be quite uniform. 
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Fig. 4.4: Micro-2PPE spectra taken at points A to E in Fig. 4.3. Point A is on the as-deposited film, 

and B-E, on the annealed film. The VL cutoff for B to E is at a constant energy, in consistency with 

the uniform image in Fig. 4.3 (b). The L1 peak is broad at point A. It becomes intense and sharp at B 

and C, and is further enhanced at D and E. By contrast, the H-1 peak is only weakly dependent on 

the measured points. The inhomogeneity in Fig. 4.3 (d) corresponds to the intensity variation of the 

L1 peak. The intensity is governed by the size distribution of PbPc clusters schematically illustrated 

in Fig. 4.5. The energies of IPS1 and IPS2 in Fig. 4.1 are shown by vertical lines labeled by closed 

and open triangles. The IPS peak energy is higher than IPS2 and lower than IPS1, indicating that 

molecular clusters larger than 10 nm are not formed in the film. 

The images in Fig. 4.3C and D are measured by the micro-2PPE method, in which 

the photoemission intensity at the energy of the L1 peak (5.35 eV, the vertical line in 

Fig. 4.4) is recorded while scanning the sample. Fig. 4.3C and D show images for the 

as-deposited and annealed films, respectively. The conditions for film preparation are 

similar to those corresponding to Fig. 4.3A and B. In sharp contrast to Fig. 4.3B, the 
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image in Fig. 4.3D is laterally inhomogeneous even after the annealing. The 2PPE 

spectra measured at points A to E in Fig. 4.3 are shown in Fig. 4.4. The Evac cutoffs are 

4.40 eV for the spectra at points B to E. The uniform Evac for points B to E is very 

similar to the uniform surface image in Fig. 4.3B. The L1 peak for the as-deposited film 

is broad and weak (spectrum for point A). At points B and C, the L1 peak is sharper 

than that for point A. The peak intensity is higher at points D and E than at points B and 

C. The overall increase in the photoemission intensity from Fig. 4.3C to Fig. 4.3D is the 

result of sharpening and enhancement of the L1 peak. The red areas in Fig. 4.3D 

correspond to the enhanced L1 peak as at points D and E. Interestingly, the lateral 

dependence of the H-1 peak is not as significant as that of the L1 peak. A similar 

position dependence of 2PPE spectra is observed for annealed films of 0.6 ML 

coverage. 

The film in Fig. 4.3B appears to be uniform. Thus, the number of molecules within 

the probe area of the micro-2PPE (400 nm) should be the same for any of the sampling 

positions in Fig. 4.3D. The intensity variation of the L1 peak presumably arises from 

some inhomogeneity at a scale too small to be detected by the PEEM of 50 nm 

resolution. 

4.3 Broadening of the IPS feature 

We start our discussion with the broadening of the IPS feature. It is known that the 

IPS peak on the Cu(111) surface shows an up-shift and broadening by adsorption of Cu 

atoms onto the Cu(111) surface [82]. The shift can be understood by a simple 

particle-in-a-box model: the decrease in the mean terrace length due to the adsorbed Cu 

atoms causes an up-shift in the IPS energy, and the width of the IPS peak reflects the 

distribution of the terrace length. The analysis also successfully described the peak 
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positions and width of the IPS as well as the Shockley state features for polycrystalline 

copper [16]. A similar quantum confinement is observed for the IPS at Co nano-islands 

on Au(111) [83] to which a refined particle-in-a-box model was applied. 

We analyze the change of the IPS features for PbPc/HOPG with a simple model. As 

the PbPc coverage increases, the mean length of the free HOPG surface area shortens, 

which in turn shortens the mean free path of IPS electrons. The decrease in mean free 

path leads to an up-shift of the IPS. The peak shape is determined by the length 

distribution of the free HOPG area. We do not assume two-dimensional (2D) 

confinement, but rather only the mean free path of the IPS electrons. We assume that the 

IPS electrons are scattered by the adsorbed molecules. The IPS wave function on metal 

surfaces has maximum amplitude at 0.5 nm outside the surface [63]. The 

substrate-molecule distance for organic films, typically 0.3 nm [84, 85], is considered to 

be effective in scattering the IPS electrons. We also assume that PbPc molecules in the 

low-coverage (0.3 ML) film are distributed randomly on the surface, rather than 

forming bilayer islands or m-size crystals. This assumption is supported by the linear 

decrease in the work function and by the uniform PEEM images (Fig. 4.3B). A 

2D-gas-like random distribution of molecules has been reported for low-coverage films 

of tin phthalocyanine (SnPc) on Ag(111) [84] and is also assumed for VONc on HOPG 

[81]. The repulsive intermolecular interaction by the electric dipole moment 

perpendicular to the molecular plane may be responsible for the random distribution. 

As a rough estimation of the length of the free HOPG area, we employ a 1D 

particle-in-a-box model, (L) = h2/(8m*L2), where the energy  of a particle (mass of 

m*) is determined by the length L of a 1D potential well, and h is the Planck constant. 

We take the mass of the IPS electron on HOPG to be 1.2 of the free electron mass. The 
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effective mass, determined from our angle-resolved 2PPE measurement, is in agreement 

with the value reported in the literature [50]. Details of the angle-resolved experiment 

will be described in the following chapter. An energy broadening of 0.3 eV leads to an 

estimation of the minimum length of the free HOPG area of about 1 nm. Though the 

estimation method used is primitive, this value is comparable to the lattice constant of 

1.37 nm for CuPc on HOPG and MoS2 [86]. A similar structure is known for PbPc on 

MoS2 [87]. When the free length is longer than 10 nm, the IPS peak shift is smaller than 

3 meV and cannot be detected. That is, the IPS profile is sensitive to the free length only 

when the length is sufficiently shorter than 10 nm. The broadened IPS feature without a 

clear peak observed for the 0.6 and 0.7 ML films in Fig. 4.1 indicates that these films 

contain free HOPG areas whose mean lengths are randomly distributed in the range 

from 1 to 10 nm. 

The IPS2 peak appears at 0.4 ML and, after a slight shift to lower energies, becomes 

strong for the > 0.7 ML films. The IPS2 peak is due to the IPS on PbPc film. As the 

IPS2 peak becomes clear, the broadened IPS feature becomes less significant. This 

indicates that closely-packed aggregates (2D crystals) of PbPc begin to grow at the 

coverage. A transition from 2D-gas-like distribution to 2D crystal formation is known 

for several types of Pc films [84]. Taking the mass of the IPS electron on PbPc film to 

be less than 2.5 of the free electron mass (our preliminary experimental result), the 

broad IPS2 peak for the 0.4 ML film suggests that 2D crystals or clusters of PbPc larger 

than 10 nm are scarcely formed on the surface. Thus, the film appears homogeneous 

when the surface image is taken with the PEEM of 50 nm resolution. The enhancement 

and sharpening of the IPS2 peak at >0.7 ML coverage indicate the growth of the cluster 

size. Clusters larger than 10 nm are formed at 0.8 ML and the PbPc layer is flat and 
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uniform in the 1 ML film. 

4.4 Lateral-inhomogeneity of the L1 peak 

The L0/L1 peaks are stabilized by 0.2 eV when a 1 ML film is formed. As the 

coverage increases, the length of the free HOPG area decreases, and the narrowing of 

the intermolecular distance leads to the formation of small clusters. The formation of 

PbPc clusters is evident from the appearance of the IPS2 peak at 0.4 ML. Also evident 

is the growth of the clusters at high coverage. The down-shift of the L0/L1 peaks is the 

result of the formation and growth of clusters. The interaction between neighboring 

molecules stabilizes the L0/L1 peaks. As the cluster size increases, the L1 peak shifts to 

lower energies and becomes sharper owing to the improved homogeneity of the 

environment. The shift and sharpening of the L1 peak are nearly parallel to the change 

in the IPS2 peak. The change in the L1 peak intensity in Fig. 4.4 reflects the change in 

size of the molecular clusters. The IPS peak in Fig. 4.4 is located at a slightly lower 

energy than IPS1. The IPS on bare HOPG should overlap with the IPS on the molecular 

clusters. The IPS peak is located at a slightly higher energy than IPS2 on the 

well-ordered 1 ML film. The up-shifted IPS indicates that the molecular cluster size is a 

few nm at all measurement points. 

Fig. 4.5(a) and (b) shows schematic models of molecular distribution on the 0.3 ML 

surface. The number of black dots (molecules) in Fig. 4.5(a) and (b) is the same. Fig. 

4.5(a) is a model for points B and C: there are scarcely any molecular clusters. The 

molecules are separated by free HOPG areas a few nm in length. The intermolecular 

interaction is weak and the L1 peak is located at a relatively high energy. Such area 

appears in Fig. 4.3D as green areas. At points D and E, among randomly distributed 

molecules, nm-clusters (<10 nm) are formed as shown in Fig. 4.5(b). The increased  
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Fig. 4.5: Schematic representations of the size distribution of PbPc clusters. The number of dots 

(molecules) is the same for (a) and (b). The size of the drawing is approximately 40 nm2. The area 

shown by (a), in which clusters are scarcely formed, is the model for points B and C. The model for 

points D and E is shown in (b). Clusters, smaller than 10 nm, are formed, which improves 

homogeneity of the molecular environment. 

inter-molecular interaction results in an enhanced and stabilized L1 peak. The 

enhancement of the L1 peak for points D and E relative to that for points B and C is due 

to the improved homogeneity of the molecular environment. Such areas show up red in 

Fig. 4.3D. The inhomogeneous surface image in Fig. 4.3D reflects the size distribution 

of molecular clusters on the surface. As is mentioned in Section 4.1, the origin of the 

coverage-dependent stabilization of the L0 and L1 peaks is not clear. Similar 

stabilization for VONc/HOPG was attributed to the excited-state polarizability [81]. We 

are not certain if the electrostatic potential model is valid for clusters smaller than 10 

nm. 

Interestingly, the nm-scale structures shown in Fig. 4.5 are accumulated to form 

areas several-10 μm in size, as observed in Fig. 4.3. Optical microscopy reveals that the 

surface of the present HOPG contains many corrugations and defects. This 

inhomogeneity of the substrate is thought to be responsible for the formation of the 



 

 

77 

 

large domains. 

4.3 Chapter summary 

The lateral resolution of micro-2PPE is 400 nm, and we can only observe the 

average of the electronic structure of molecular clusters. Nevertheless, information on 

the nm-clusters can be revealed by micro-2PPE spectroscopy. The present results 

demonstrate that unoccupied levels are very sensitive to the molecular environment. 

Micro-2PPE spectroscopy is a powerful method for investigating how intermolecular 

interactions affect unoccupied levels at surfaces. Both of the molecular distributions 

shown in Fig. 4.5(a) and Fig. 4.5(b) seem to be very random, though nm-clusters are 

formed in Fig. 4.5(b). The distributions differ only in the degree of randomness. When 

observed with scanning tunneling microscopy or atomic force microscopy, the 

distributions may seem very similar. Possible tip-induced destruction may hinder 

identification of the difference. As long as the surface image is measured with the 

occupied level, the annealed sub-ML film is considered to be composed of 2D-gas-like, 

randomly distributed molecules. But a slight difference in the randomness causes a 

significant lateral inhomogeneity of unoccupied energy levels. Film uniformity can only 

be discussed after a detailed consideration of the physical properties of the measurement 

method. 

It is interesting that the nm-clusters shown in Fig. 4.5 aggregate to form several 

areas 10 m in size (see Fig. 4.3D). The cause of the large-area formation is unclear at 

the present stage. In addition to the substrate inhomogeneity, mass dynamics of groups 

of molecular aggregates [67] may be considerable because the lateral structure is not 

stable according to day-by-day observation.  
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5. Dispersions of image potential states on surfaces of clean graphite 

and on lead phthalocyanine film 

In this chapter, we focus on the dispersion of image states on clean HOPG surface 

and on 1ML PbPc/HOPG surfaces. Image potential is originated from surface 

electrostatic potential and we regard surfaces as homogeneous slab. Thus, the Image 

Potential State (IPS) theory, which described in section 3.1.2, has wide application. 

Therefore, with tremendous progress of solid-state physics, natures of image potential 

states on metal or dielectric solids are extensively studied. As shown in chapter 4, in 

cases of organic/inorganic surfaces, the film structure is usually laterally 

inhomogeneous and be composed of many grains (size of ~nm). From micro-2PPE 

result of film of PbPc/HOPG, in well-ordered organic/inorganic interfaces, image 

potential laterally affect ranges of more than several ten nm. In the 1 ML film, PbPc 

molecule forms well-ordered lattice structure. The lattice may form periodic potential 

and may effect on electron which excited to IPS. But lateral resolution of 2PPE is 

usually in order of 100 m and obtained result is average of several domains and not 

clear. But micro-spot 2PPE enables focus laser light source on one domain. So, we can 

clearly observe how the periodic potential modulates band structure of IPS by 

Micro-spot 2PPE. To observe the effects, dispersions of image potential states on 

graphite surface (denoted as IPS1) and on the monolayer (1 ML) film (denoted as IPS2) 

of lead phthalocyanine (PbPc) are investigated by the micro-spot angle-resolved 2PPE 

(micro-AR-2PPE). On a graphite surface, whole dispersions of the two members of 

IPS1 (n = 1 and 2) are observed. The effective mass of electron in the n = 1 IPS1 

becomes slightly light at high momentum region. The IPS1 peak is weakly visible at 

energy higher than the vacuum level. These results suggest the interaction between the 
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IPS1 and the interlayer band of graphite. HOPG is polycrystalline material and reported 

dispersion of IPS is not clear. Our result shows an advantage of micro-AR-2PPE which 

combine with high-energy resolution and high-lateral resolution. On PbPc film, 

back-folding and band gap formation of IPS2 is observed. 1-dimensional Kronig-Penny 

model is used to reproduce the effective mass and the shift of binding energy. The 

results shows micro-AR-2PPE measurement is possible on the case of organic thin 

films. 

5.1 Image potential states on clean HOPG 

Fig. 5.1(a) and (b) show AR-2PPE results for the image potential states (IPS) on the 

clean HOPG surface measured at the photon energy of 4.77 eV and 4.33 eV. The 

horizontal axis at the bottom is the emission angle () from the surface normal. The 

left-hand side vertical axis shows the kinetic energy of photoelectron with respect to the 

vacuum level (VL) and, the right-hand side, the binding energy referred to VL. Fig. 

5.1(a) and (b) are drawn by putting together the AR results measured by rotating the 

sample normal direction from the energy analyzer by angles of -5°, 0°, 10°, 20° and 30°. 

The borders of each image are indicated by gray solid lines. The energy and intensity of 

each AR result connect smoothly with each other at the borders. The AR results for Fig. 

5.1(a) and (b) are fitted with the parabolic dispersion curves (see below). There are no 

differences of the fitting results for Fig. 5.1(a) and (b), irrespective of the difference of 

the electron kinetic energies. These results show that our AR measurement is free from 

experimental artifacts such as electric field between the sample and the analyzer.  

The highest energy of photoelectron in 2PPE is EF + 2hwhere EF is the Fermi 

energy and h, the photon energy. The broken horizontal lines show the energy. In Fig. 

5.1(b), intensity of the n = 1 IPS peak (IPS1) is really vanishing above the broken line.  
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Fig. 5.1: Micro-AR-2PPE images of image 

potential states on HOPG surface (n = 1, 2; IPS1), 

measured at photon energy of 4.77 eV; (a) and 4.33 

eV; (b). Vertical axes show kinetic energy of 

emitted photoelectrons and binding energies of IPS 

from VL. Horizontal axis shows emission angles of 

emitted photoelectrons. (c) AR-2PPE spectra 

integrated over ±1.15° around the angles, indicated 

by black dots in Fig. 5.1a. Vertical axis shows 

emission angles of photoelectrons. Horizontal axis 

shows kinetic energies. Circle indicated peak-top 

energies of n = 1 IPS1. Upper triangle indicate 

peak positions of n = 2 image resonance. 

 

From the result, we can confirm that detected electrons were ejected by two-photon 

excitation process. The solid horizontal lines in Fig. 5.1(a) and 1(b) correspond to EVL + 

hwhere EVL is the energy of VL. It is interesting that the IPS1 in Fig. 5.1(a) is still  
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Fig. 5.2: Dispersion of IPS1 is shown. Peak positions of n = 1, 2 is plotted against k//. Four symbols 

(circle, square, triangle, diamond) are used to distinguish results obtained from different 

measurements. By parabolic fitting, the effective of n = 1 IPS1 is m* / me = 1.10 ± 0.02 (solid curve). 

The fitting curve is shown as solid line. n = 2 image resonance is also fitted as m* / me = 1.1. In the 

range of -0.2 < k// < 0.2, the effective mass of n = 1 IPS1 is m* / me = 1.24 ± 0.08, shown as dot line. 

visible even above the solid line, EVL + h. Since IPS is supported by the image 

potential converging to VL, it cannot exist at energy higher than VL. However, the 

excitation to IPS above EVL is known in multi-photon photoemission from Cu(001).ref 

Occurrence of IPS above EVL for large  region corresponds to the total internal 

reflection of electrons at the surface-vacuum interface. 

Fig. 5.1(c) shows the spectra integrated over ±1.15° around the angles indicated by 

black dots in Fig. 5.1(a). The peak energies are plotted in Fig. 2 against the electron 

wavenumber parallel to the surface (k//) defined by k// = (2meEk / ħ
2)1/2 × sin , where me 

is the mass of electron. The dispersion is fitted with a parabolic function of Ek = ħ2k//
2 / 

2m*, where m* is the effective mass of electron. The IPS1 crosses VL at  = 26.3°or k// 

= 0.495 Å -1. The effective mass estimated by fitting in the range of -0.3 < k// < 0.5 Å -1 

is m*/me = 1.10 ± 0.02 (solid curve in Fig. 5.2). While the value fitted in the range of 

-0.2 < k// < 0.2 Å -1 is m*/me = 1.24 ± 0.08 (dot curve in Fig. 5.2) in agreement with an 
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our former data [36] and an IPES result [51]. The decrease of m* values at higher k// is 

small but is reproducible as can be seen in both Fig. 5.1(a) and (b). The experimental 

bright points are located slightly above the fitted line. The results means that nearly free 

electron model is not proper approximation at the higher momentum region of IPS1. A 

calculated band structure suggests that IPS1 energetically overlaps with an unoccupied 

band of graphite (indicated as *) [52]. The effective mass ratio of * is ~0.9 in - 

direction [52]. Hybridization of IPS1 with the * band causes the decrease in the 

effective electron mass ratio. The hybridization is rather resemble to the hybridization 

between the unoccupied Shockley state and the bulk states was reported for Cu(111) 

[90].  

The second member (n = 2) of the IPS is weakly observed in Fig. 5.1(a). The state is 

above the bottom of the * band and should be called as an image resonance. The 

intensities of the n = 2 image resonance is too weak for quantitative discussion of the 

dispersion, but it seems to fit well to a parabolic curve of m*/me = 1.1 as shown by the 

thin solid curve. The bottom of the band is at 0.14 eV below VL in agreement with the 

value in references [36, 48]. The binding energy of IPS is typically fit on an equation of 

En = EVL - 0.85/(n + )2 eV, where  is the quantum defect [59]. The obtained  values 

for n = 1 and 2 IPS on HOPG are 0 and 0.46, respectively. The largely different  value 

should be a result of the interactions between IPS and the bulk band structure. 

5.2 Image potential states on 1ML PbPc film 

Fig. 5.3 shows our preliminary STM image of the 1 ML PbPc film on HOPG. The 

molecules form a well-ordered nearly square lattice of about 14 Å spacing. The lattice 

constant is comparable to the reported value of 13.8 Å for CuPc film on HOPG [86]. 

The IPS on the film (denoted as IPS2) is located at 3.51 eV above EF. The work  
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Fig. 5.3: A STM image (30 × 30 nm2, Vs = + 0.51 V, I = 

0.30 nA) of 1ML PbPc film on HOPG. The molecules are 

sitting on a well-ordered nearly rectangular lattice of ~ 14 

Å spacing. 

 

 

 

 

 

Fig. 5.4: (a) AR-2PPE spectra of 1 ML PbPc / HOPG. IPS on PbPc film (IPS2) is split to two 

structures (IPS2 L and H) and band folding is observed. The spectra are normalized by intensity of 

IPS2 L to enhance band folding at large emission angles. A peak (L2) derived from LUMO+2 states 

of PbPc are also observed in the spectra. (b) AR-2PPE image of 1 ML PbPc / HOPG, normalized the 

intensity of IPS2 L is shown. AR-2PPE spectra integrated over ±1.15° around the angles, indicated 

by black dots in Fig. 5.1(a). 
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function of 1ML PbPc/HOPG is 4.27 eV and the binding energy relative to VL is 0.76 

eV [19, 36]. The micro-spot AR-2PPE spectra and the AR data are shown in Fig. 5.4(a) 

and (b), respectively. The photon energy is 4.33 eV. Because the photoemission 

intensity rapidly decreases as the emission angle increases, the spectra and the AR 

image is normalized to the peak height at the solid square (denoted as IPS2L) in Fig. 

5.4(a). It is interesting that the IPS2 peak becomes broad at large emission angle, and a 

weak peak is seen as shown by triangle in Fig. 5.4(a) (denoted as IPS2H). The energies 

of the circles and triangles are plotted in Fig. 5.5 against k//. In the former report [36], 

the lower part of the IPS2 was fitted to the parabola curve of m* / me = 2.2 ± 0.3 in the 

ranges of -0.1 < k// < 0.2 Å-1 as shown by broken line in Fig. 5.5. By extending the 

measured k// range, deviation from the broken line is evident at high k//. The IPS2H is 

the folding of the band at the Brillouin zone boundary. A gap is formed between the 

IPS2L and IPS2H components. 

The modifications of the IPS band structures by periodic potentials induced by 

super-lattice have been discussed for several surfaces. Binding energies of IPS on 

vicinal noble metal surfaces (Au(788) etc.) were analyzed by 1D Kronig-Penny model 

which assumed transmission probability at the step edge [90, 91]. The modifications of 

IPS by periodic potential are also observed in several organic/metal surfaces. As for 

benzene covered Cu(111) surface, two type of IPS were observed; free-electron like IPS 

on benzene monolayer and modulated IPS on benzene bilayer. The modulated IPS for 

bilayer film was reproduced by a Kronig-Penny model [92]. The dispersions of IPS on 

CuPc / Ag(111) and FePc / Ag(111) were explained by 2D Kronig-Penny models [34]. 

We analyze the dispersion by adopting 1D Kronig-Penny model because the lattice 

is nearly square. With the -functional barrier, the band structures are described as [22] 
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Fig. 5.5: Dispersion of IPS2 is shown. The photon energy is at 4.33 eV. Peak positions of IPS2 on 

Fig. 5.4a are plotted against k//. Four symbols (circle, square, triangle, diamond) are used to 

distinguish results obtained from different measurements. The idealized dispersion curve of 

free-electron is shown as thin solid line. The observed dispersion is changed from free-electron. 

Parabolic fitting of IPS2L in the range of -0.1 < k// < 0.2 is shown as dot-dashed curve. The effective 

mass is m* / me =2.2 ± 0.3. Calculated band structure from Kronig-Penny model which assumed 

periodic potential formed by super-lattice of PbPc, is shown as bold solid curve. The dispersion 

curve of IPS1 is also shown as thin solid curve. By Kronig-Penny model, we can qualitative 

explanation why IPS2 is up-sifted and why band splitting is occurred. 

P × sin (Ka) / Ka + cos (Ka) = cos (ka)   (5.1) 

where P is a parameter related to the transmission probability through the barrier. a is 

the periodicity of the potential and k, an index to label the solutions. The eigenvalue of 

the Schrödinger equation  is expressed as  = ħ2K2/2m. K is the wave number of plane 

waves. The calculated band structure of eq (5.1) is shown by the thick solid lines in Fig. 

5.5. Also shown by the thin solid line in Fig. 5.5 is the dispersion curve of IPS1 on 

clean graphite. The zone boundary is shown in Fig. 5.5 by vertical lines. With the 

parameters of 13.9 Å and 1.7 for a and P, respectively, the curvature of the IPS2L band 

and the band gap at the zone boundary are semi-quantitatively reproduced. The effective 

mass of IPS2 is significantly heavier than that of IPS1 because the electron is trapped by 
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the molecule. The energy separation between IPS1 and IPS2L at k// = 0 is also roughly 

reproduced. The periodicity a is in good agreement with the lattice constant in Fig. 5.3. 

The dimension-less parameter P originates from potential at the zone boundary. This 

parameter determines magnitudes of band gap at the zone boundary and the binding 

energy of bands at  point. From the fitted P value of 1.7, the potential barrier at the 

zone boundary can be evaluated as V0b = 0.93 eV Å, where V0 is the barrier height, and 

b, the width of the barrier. The V0b value is slightly smaller than that for steps on 

Au(788) (1.2 eVÅ) and those for FePc and CuPc/Ag(111) (1.5 eVÅ). Because IPS2 is 

hybridized with an unoccupied molecular orbital [36], an electron trapped in a molecule 

may easily transmit to nearby molecules. The dispersion of the IPS2H component is 

smaller than the calculation. Because the band width of the unoccupied molecular level 

hybridizing with IPS2 should be narrower than 0.3 eV similarly to the L2 peak in Fig. 

5.4(a), the energy of the hybridized IPS2 cannot be high as the free electron. 

In PbPc/HOPG system, interactions between molecule-derived levels and IPS2 

should be taken into account. The energy levels of the PbPc film are shown in Fig. 

5.6(d). The highest (lowest) occupied (unoccupied) molecular orbital derived level is 

denoted as H0 (L0) and the deeper (higher) lying levels are denoted by H-1 (L1 and L2). 

The IPS2 is excited from occupied band of HOPG with non-k// conserving process when 

the pump photon is off-resonant from the H0-IPS2 energy separation. The intensity 

becomes high as the pump photon energy becomes close to the H0-IPS2 resonance of 

4.84 eV [36]. The H0-IPS2 resonance may affect the dispersion of the IPS2. In addition, 

the H0-L2 resonance may affect the dispersion of the IPS2. In addition, the H0-L2 

resonance may have some influence on the IPS2 if the L2 and the IPS2 are interacting. 

In order to clear these possibilities, photon energy dependence is shown in  
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Fig. 5.6: Dispersion of IPS2 is shown. The photon energy is at 4.77 eV; (a), 4.54 eV; (b), and 4.13 

eV; (c). Peak positions of IPS2 are plotted against k//. Four symbols (circle, square, triangle, 

diamond) are used to distinguish results obtained from different measurements. (d) Energy diagram 

of 1ML PbPc / HOPG is shown. Excitation from HOMO to IPS2 is considerable at photon energy of 

4.77 eV in Fig. 5.5a, however, there are no significant difference on dispersion of IPS2. 

Fig. 5.6(a)-(c). The photon energy is the same as the kinetic energy labeled by the 

underline. In Fig. 5.6(a) where the photon energy is close to the H0-IPS2 resonance, the 

IPS2 peak becomes strong and partially overlapped with the HOMO peak. The photon 

energy in (b) is in between the H0-L2 and the H0-IPS2 resonances. Fig. 5.5 is measured 

at the H0-L2 resonance. The result in Fig. 5.6(c) is for the photon energy below the 

H0-L2 resonance. The black lines are the model results calculated with the same 

parameters as Fig. 5.5. Irrespective of the different photoelectron energies and different 
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resonant conditions, the model curves fit with experimental results in a similar extent as 

Fig. 5.5. The resonance between H0 and L2 derived levels causes no effect on the 

dispersion of the IPS2. The resonance between H0 and IPS2 does not cause significant 

change of the dispersion of IPS2. The result confirms that interaction between the L2 

derived level and IPS2 is negligibly small. 

We described that the unoccupied molecular orbital hybridizing with IPS2 may be 

LUMO+3 [36]. Taking into account of the many nodes of the -orbital within the 

molecular plane, and taking into account that the molecules are lying flat on the 

substrate, it seems rather difficult to consider the hybridization of LUMO+3 with plane 

wave of IPS2. In C60 film, super-atom molecular orbital (SAMO) and their 

hybridization into the nearly free electron bands of fullertites are known [93-96]. 

Similarly, the diffuce orbitals may be contributing to the hybrization between IPS2 and 

molecule-derived unoccupied states.  

5.3 Chapter summary 

In this chapter, dispersions of image potential states on graphite surface (denoted as 

IPS1) and on 1 monolayer (ML) film (denoted as IPS2) of lead phthalocyanine (PbPc) 

are investigated by the micro-spot angle-resolved two-photon photoemission 

(micro-AR-2PPE) spectroscopy. On the graphite surface, whole dispersions of the two 

members of IPS1 (n = 1 and 2) are observed. The effective mass of electron in the n = 1 

IPS1 becomes slightly light at high momentum region. These results suggest the 

interaction between the IPS1 and the unoccupied -band of graphite. On the PbPc film, 

the IPS2 band forms a band gap and back-folds at the boundary of the Brillouin zone. 

1-dimensional Kronig-Penny model (see, Fig. 5.7) is used to reproduce the effective 

mass and the shift of binding energy. 
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Fig. 5.7: Schematic image of the periodic potential which formed on well-ordered PbPc monolayer 
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6. Delocalization of an unoccupied level which derive on monolayer 

film of lead phthalocyanine surfaces 

In this chapter, we focus on the issue that localization or delocalization problems of 

the unoccupied states of the first organic layer. Recently, there are several reports of 

delocalized unoccupied states on the surface [29-35]. However, observed states are 

strongly mixed with surface state or bulk state of substrate. There is no observation of 

delocalized, unoccupied levels of the first organic layers, which derived from pure 

molecular orbitals of organics.  

One of the reported interfaces is between PTCDA/Ag(111). Ag(111) surface has a 

2D free-electron like Shockley state. The state is partially occupied (below EF) near the 

 point. In the case of PTCDA/Ag(111) surface, the state is up-shifted to above EF 

(unoccupied) and form an interfacial state (IS) by hybridization with unoccupied states 

of the PTCDA molecule [29-31]. The dispersion of the IS is m*~1 around the  point, 

and they show band gaps and band-folding corresponds to the reciprocal lattice to the 

super-lattice of the PTCDA film. We can say the IS is delocalized, but it isn’t mean that 

a pure, unoccupied molecular orbital is delocalized among neighboring PTCDA 

molecules and forming a band, because that the Shockley state is delocalized.  

Recently, fullerene (C60)/metal surfaces are studied extensively and delocalized 

super-atomic states are observed [93-96]. C60 is the most famous n-type organic 

semiconductor; therefore, unoccupied states of C60 are extensively studied. In STM and 

STS studies of sub-ML or 1 ML of C60/Cu(111) surfaces, LUMO and LUMO+1, 

LUMO+2 state of the molecule is observed. Super-atom states (SAMO) which has 

higher energy also observed and their hybridization into the nearly free electron bands 

of fullertites are reported [93, 94]. The SAMO states are also observed by 2PPE study 
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and their dispersion is observed [95, 96]. The result shows the SAMO states are 

delocalized.  

As shown as above, there are several studies on the unoccupied levels at 

organic/inorganic interfaces. However, observed unoccupied states of organic thin films 

may be strongly hybridized with electronic structures of substrates. Facing issues in this 

chapter is that unoccupied states which originate molecular orbitals on 

organic/inorganic interfaces are delocalized even if molecule-substrate interaction is 

weak (hybridization with bulk structure is weak). 

Therefore, we studied dispersion of the L2 level (which derived from LUMO+2 

molecular orbital of PbPc) on 1ML PbPc/HOPG surface. We used AR Micro-spot 2PPE 

to measure dispersion of the L2 level. All occupied and unoccupied states around the 

Fermi level are observed and determined their origin in chapter 3. We have confirmed 

that monolayer film of PbPc on HOPG forms well-ordered structure, studied by PEEM. 

We have found that even if the film structure is laterally homogeneous, unoccupied 

levels (L0/L1) are inhomogeneous, which has been shown in chapter 4. Thus even in 

the case of measuring dispersion of well-ordered organic films, the observed results 

may shows position dependence. AR Micro-2PPE can get reproducible dispersion 

measurements by choosing the light spots on highly well-ordered domains and avoid 

effects of defects and scratches on the sample. We have shown dispersion of the image 

potential state on the film (IPS2) in chapter 5. We can detect dispersion of L2 by the 

same method and can discuss delocalization of the L2 from the dispersion. Furthermore, 

momentum distribution of excited electrons in L2 is derived from relations between 

photoemission intensity and wave momentum of photoelectron. From the distribution, 

extent of wave function of L2 in real space is estimated as several nm. The result shows 
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the fact that excited electrons on L2 are delocalized among several molecules.. 

6.1 Results 

The micro-spot AR-2PPE spectra and the AR data are shown in Fig.6.1(a) and (b). 

These data are obtained from the same sample as Fig. 5.4(a). Fig.6.1(a) and (b) are 

drawn by putting together the AR results measured by rotating the sample normal 

direction from the energy analyzer by angles of -5°, 0°, 10°, and 20°. The photon energy 

is 4.33 eV. Two peak structures, indicated as IPS2 and L2 are observed. Kinetic energy 

of photoelectrons from IPS2 is 3.57 eV and that of L2 is 2.99 eV at 0°. The 

photoemission intensity rapidly decreases at the high emission angle. Therefore, 

intensities of the AR image need to be normalized to each emission angles to 

considering to band structures at high emission angle. We also consider the secondary 

electron which is overlapping on the L2 peak in high emission angle, because that 

photoelectron has positive dispersions at cut-off region of the spectra. 

We did data processing as following. (1) 2D images of AR Micro-spot 2PPE (Fig. 

5.4(a), (b)) is corrected. These images are normalized by the intensity of IPS2L (by 

each angles). (2) From normalized images, angle integrated spectra (Fig.6.2(a); 

integrated over ±1.15° around the angles indicated by black dots in Fig.6.1(a)) are 

created. Peak positions of IPS2L, H, L2, H0 are indicated by square, triangle, circle, 

diamond. (3) We assumed that backgrounds of secondary electrons in 2PPE spectra are 

expressed as a single exponential function (solid lines in Fig.6.2(b)). Spectra which 

subtract the backgrounds from Fig.6.2(b) are created (Fig.6.2(c)). The positions of the 

peaks were not changed by subtracting process (Positions of square, triangle, circle, 

diamond are same as Fig. 6.2(a) and (b).) (4) By sums up of the spectra of Fig.6.2(c), 

we recreated the intensity map in Fig.6.1(c) and (d). Validity of the analysis is discussed  
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Fig. 6.1: Micro-AR-2PPE images of image potential states on 1ML PbPc/HOPG surface; (a) and 

images of L2; (b). These spectra are measured at photon energy of 4.33 eV. Vertical axes show 

kinetic energy of emitted photoelectrons. Horizontal axis shows emission angles of emitted 

photoelectrons. To analysis momentum distribution of the L2 state, these images are normalized by 

the intensity of the IPS2L peaks (black dots). Then backgrounds of secondary electrons are 

subtracted. Finally, we obtained the images (c) (IPS region) and (d) (L2 region). 
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Fig. 6.2: (a) Intensity normalized AR-2PPE spectra of 1 ML PbPc / HOPG, integrated over ±1.15° 

around the angles by black dots in Fig.6.1(d). The spectra are normalized by intensity of IPS2 L to 

enhance band folding at large emission angles. (b) Backgrounds formed by secondary are added on 

(a). Negative dispersion of the L2 levels (derived from LUMO+2 states of PbPc) is observed. (c) 

After subtracting the backgrounds. The indicated peak positions of the L2 are same as (a). (d) 

AR-UPS spectra of 1 ML PbPc / HOPG, measures on the same sample. The photon energy is 6.05 

eV, with P-polarized light. The sample bias is -3V. HOMO peak and their vibrational structures 

(indicated as vib.) are observed and reproduced former results in section 3.2.2 and ref. [26, 36]. 
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Fig. 6.3: Dispersion of L2 is shown. Peak positions of L2 is plotted against k//. Four symbols (circle, 

square, triangle, diamond) are used to distinguish results obtained from different measurements. By 

parabolic fitting, (in the range of -0.3 < k// < 0.3) the effective of L2 is m* / me = -10 (solid curve). 

The fitting curve is shown as red line. The blue solid lines indicated the zone boundaries of IPS2L, 

which have been shown in chapter 5. 

in the following section. 

We focus our attention on the L2 level, which derived from the LUMO+2 orbital of 

PbPc. In Fig.6.2(c), 2PPE spectra, around the L2 peak are shown. The dispersion 

relation of the L2 peak (indicated by triangles in Fig.6.2(a) and blue dots in Fig.6.1(d)) 

are plotted in Fig.6.3, against k//. The L2 shows slight negative dispersion. It means that 

excited electrons, to the L2 level, are delocalized. The L2 was fitted to the parabola 

curve of m*/me = -10 in the ranges of -0.3 < k// < 0.3 Å-1 as shown by the red curve in 

Fig.6.3. In chapter 5, we have shown that IPS2 shows band-folding and band gaps. 

Therefore we expect to observe such structures of the L2 band at Brillouin zone 

boundary. But the band width of the L2 band is wider than their small dispersion, we 

couldn’t observe band gaps and band folding of the L2 band. 

We also measured dispersion of HOMO level by AR Micro- UPS. By replacing the 

light source to 4th harmonics of the titanium: sapphire laser, we can apply 



 

 

96 

 

micro-AR-2PPE and micro-AR-UPS for the same sample within the same equipment. 

Fig.6.2(d) shows micro-AR-UPS spectra of HOMO for same sample to Fig.6.2(a)-(c). 

HOMO levels which derived from  orbitals of the phthalocyanine, does not show 

dispersions. To correct low energy photoelectrons, we had to apply sample bias (-3V) 

for AR-UPS study. The field may effect on the pathway of the emitted electrons, thus 

we cannot convert emission angles to k// and cannot discuss E-k// relations. However, the 

localized HOMO level (H0) match with former studies about HOMO band of PbPc and 

several phthalocyanine surfaces, measured by AR-UPS [8]. 

6.2 Negative dispersions of the L2 state 

We start our discussions from the electron excitation process to the L2 levels. The 

photon energy in Fig.6.1(a) is 4.33 eV. The energy is corresponds to the energy 

difference of HOMO and L2 of the 1ML PbPc film. Considering the spatial overlaps of 

the wave functions, we think that most of the excited electrons in L2 are excited from 

HOMO. Spectroscopies of organic solids frequently observe Frenkel exciton [97] and 

exciton states are also observed in 2PPE spectra [11]. Exciton peak in 2PPE shows no 

dispersion because electrons are strongly localized and k// are not conserved. We 

obtained Fig.6.1(a) in zero delay condition (no delays between pump and probe pulses) 

and at room temperature. In the condition, we only observed delocalized L2 state. Thus, 

excited electrons in L2 are delocalized soon after photoexcitation. 

In order to clear the possibility of dispersion change at the HOMO-L2 resonance, 

photon energy dependence is examined. The 2PPE spectra with various photon energies 

are shown in Fig.6.4. Dispersion relations in Fig.6.4(a)-(c) are shown in Fig.6.5. The 

photon energy is the same as the kinetic energy labeled by the underline. In the photon 

energy of 4.77 eV, the HOMO peak is above; far away from the L2 peak. The photon  
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Fig. 6.4: 2PPE spectra with different photon energies are shown. The photon energies are shown in 

the figure with underline. These spectra are integrated over ±1.15°in 2D AR-2PPE images of 1 ML 

PbPc / HOPG, normalized by intensity of IPS2 L. Backgrounds are show as thin solid curves. 

Negative dispersion of the L2 levels (derived from LUMO+2 states of PbPc) is observed. 

energy of 4.54 eV is in between the H0-L2 and the H0-IPS2 resonances. We observed a 

broad peak and we cannot divide the peak to HOMO and L2. Fig.6.3 is measured at the 

H0-L2 resonance (4.33 eV). The result of 4.13 eV is for the photon energy below the 

H0-L2 resonance. We cannot observe the L2 peak and only HOMO peak (localized) is 

observed. The black lines in Fig.6.5(a)-(c) shows a parabola curves with the same 

parameters as Fig.6.3. Irrespective of the different photoelectron energies and different 

resonant conditions, the resonance between H0 and IPS2 does not cause significant 

change of the dispersion of L2. The observed dispersion of Fig.6.3 is that of L2. The 

result means that excited electrons in L2 does not significant affect to holes created in 

HOMO. We consider the reason why electrons do not effect on holes is that holes which 

created in HOMO are rapidly shielded by substrate. On small-molecule adsorbed  
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Fig. 6.5: Dispersion of L2 (HOMO; (c)) is shown. The photon energy is at 4.77 eV; (a), 4.54 eV; (b), 

and 4.13 eV; (c). Peak positions of the L2 (H0) in these figures are adopted from Fig. 6.4 (a), (c), (e) 

and plotted against k//. Four symbols (circle, square, triangle, diamond) are used to distinguish results 

obtained from different measurements. (d) Energy diagram of 1ML PbPc / HOPG is shown. 

Resonance from HOMO to L2 is considerable at photon energy of 4.33 eV in Fig.6.3, however, there 

are no significant difference on dispersion of L2. 

surfaces, TR-2PPE shows that excited electrons into delocalized IPS are localized after 

several hundred fs [9-11, 41]. The effects are explained with redistribution of electrons 

of dielectric adsorbate (electron solvation) [98, 99]. The band of amorphous ice layer on 

metal shows change of binding energy within several hundred fs, because of dipole 

effect. In case of L2 we don’t observe such a dynamic localization effect, because of the 

short lifetime of the L2 states. Fermi liquid model estimates that lifetimes of excited 

electrons are proportional to 1/(E – EF) 2 [100]. Our former study shows that life time of 
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L2 is 134 fs [36]. Thus, the excited electrons are relaxed without dynamic localization 

effects. 

6.3 Momentum distribution of the L2 state 

Next, we discuss wave momentum distributions of excited electrons in L2, and 

then discuss with lateral distribution of excited electrons. At the beginning we consider 

why photoelectron intensity in Fig.6.1(a) show emission angle dependence. There are 

three main reasons for the intensity difference; (1): the electron energy analyzer has 

different efficiency of detecting photoelectrons for different emission angles. (2): The 

intensity of L2 has wave-momentum dependence; because of that transition probability 

from initial state to L2 is different. From now, we evaluate our data analysis described 

in section 6.1 is proper or not. We normalized Fig.6.1(a) by the intensities of IPS2L. 

Electrons are excited from bulk band of HOPG to L2 level. We think the transition 

probability from bulk band to IPSL2 does not show angle dependence. Then, we think 

intensity-angle relation in Fig.6.1(d) derived from the efficiency of the analyzer. The 

efficiency is intrinsic to the analyzer and is not to depend on the kinetic energy of the 

photoelectron (the energy difference of L2 and IPS2L is too small). By normalizing the 

AR image, the efficiency is corrected and we only consider momentum distributions of 

L2; case (2). After subtract the background, obtained images (Fig.6.1(d)) reflect 

momentum (k//) distributions of the L2. In Fig.6.1(d), intensity of L2 at 10° is 3 times 

greater than that of 0°. The reason of these differences is not originated from the weak 

intensity of IPS2 by scattering super-lattice. Large emission angles correspond to high 

wave momentums. Therefore, short wavelength components of L2 are larger than long 

wavelength components. 

We can qualitatively explain L2’s negative dispersion by tight-binding model. The  
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Fig. 6.6: Schematic images of band formation of the L2 level. 

first layer of PbPc film lays flat to the substrate. The origin of the L2 is * orbitals of 

PbPc. As shown as Fig.5.3, monolayer of PbPc forms square lattice and the nearest 

intermolecular distances are ~1.4 nm. If * molecular orbitals of neighboring PbPc 

molecules interact together, we can explain the negative orbitals of L2. PZ orbitals form 

 bands in the solid material. Analogy with the fact, we can illustrate the concept in a 

schematic way in Fig.6.6. We must consider the effect of the substrate on the 

delocalization of L2 level. Interactions of the neighboring * orbitals of the film seems 

to be small. It is because that there are C-H bonds exist between * orbitals. Therefore, 

electrons in * may be repelled and not extend to the neighboring molecules. One of the 

possible explanation is that L2 states are not * molecular orbitals but SAMO states like 

C60/Cu(111) [92-95]. The difference of L2 (*) and HOMO () can be explained that L2 

is delocalized inter-molecular state thus overlapping integral is large but localized 

HOMO state only has small overlapping integral. Further STM/STS study may answer 

the hypothesis is correct or not. Another possibility is that localized * molecular 

orbitals have substrate-mediated interactions. In section 3.4, we have shown that 

electronic levels of adsorbed molecules are broadening by molecule-surface interactions, 

even in weak chemisorption case [59]. On pentacene/metal surfaces HOMO shows 



 

 

101 

 

dispersions by surface mediated interactions [80]. There are discussions about 

unoccupied electronic structures of graphite, but L2 seems in the band gaps at the  

point. So, molecule-substrate interactions seem small. But, we have observed indirect 

transitions via * state of graphite on clean HOPG surface and indirect transition from 

HOMO-1 via * on PbPc/HOPG surface at the  point, by 2PPE [18]. If we think 

interactions with substrate, high wave number comportments may efficiently mixing the 

bulk structures by phonon mediated interactions. If k// = /a, neighboring *orbitals has 

same phase thus bonding is formed with mixing substrate bands and intensity is stronger 

than k// = 0. 

6.4 Estimation of the spatial extent of the L2 state 

Finally, we consider real space extent of the L2 electrons. We have observed 

negative distribution of the L2 state. The intensity distribution of the L2 is not 

homogeneous and shows strong angle dependence. The intensity is strong in the range 

of 5~10 degree; correspond to 0.1~0.2 Å-1. From the inverse Fourier transform, the 

spatial extent of the electrons are described as [41] 

  (6.1) 

thus the spatial extent of the excited electron can be estimated. Recent hi-resolution 

ARPES of PTCDA/Ag(110) enables to discuss the topography of orbitals from 

deconvoluted photoemission spectra [101]. From photoelectrons with Ek = 2.90 eV and 

emission angles = 10° from normal has wave moments of k// = 0.15 Å-1. Thus, from 

the relation  = 2 / k//, the photoelectrons spread to 4.2 nm in real space. Therefore, the 

angle-distribution of photoelectrons in L2 suggests that electrons excited in L2 spread 

among several molecules. Thus, the L2 state shows intermediate behaves between 

  dkekx xik //)()( //
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delocalized free-electrons (band conduction) and localized state (hopping). The result is 

agree with proposal mechanism by an electron conductive measurement [102]. 

6.5 Chapter summary 

In this chapter, monolayer of lead phthalocyanine (PbPc) film on graphite (HOPG) 

surface is investigated by Micro-spot angle-resolved 2 photon photoelectron 

spectroscopy (micro-spot AR-2PPE). We found negative dispersions of an unoccupied 

level (L2) on film, which derived from LUMO+2 state of PbPc. On the other hand, 

HOMO state is localized and has no dispersion. The result suggests that L2 is 

delocalized by intermolecular interactions at the interfaces and extent of wave-function 

may determine localization and delocalization of the states. The L2 level is weak at 

shorter wave number (long wavelength) and intense at high wave number (short 

wavelength). From relations between intense and emission angle of the photoelectron of 

L2, we estimate extent of the wave-function in real space. From the analysis, we 

estimated that excited electrons to the L2 level are delocalized among several 

molecules.  

  



 

 

103 

 

7. Conclusion 

In this thesis, I tried to reveal the nature of unoccupied levels at the interfaces 

because that the level has important role in electron transportations in functional organic 

materials. We focused on the energy positions and dispersions of such levels. To get 

reproducible experimental results, we have developed micro-spot 2PPE equipment and 

tried scanning imaging and angle- resolved 2PPE with high reproducibility. We 

measured unoccupied levels on PbPc/HOPG interfaces with varying coverage from bare 

surface to monolayer. Because of their well-ordered structures, we can ignore problem 

of effect on structure differences during the experiments. 

From section 3, we observed that the resonance effect from a occupied level in the 

film to an unoccupied level in the film. The L2 peak is not observed with photon energy 

below H0-L2 energy difference. The result suggests that the L2 level in the interfaces is 

excited in the film, not from the substrate. 

From section 4, we found that the L0/L1 level of the 0.3ML film has lateral 

inhomogeneity even in the well-ordered films in the structural view point. Obtained 

results shows intermolecular interactions effect on the electronic levels of the L0/L1 

states and IPS1. Our results suggest that structural fluctuation of nm order has strong 

influences on the electronic structures. 

From section 5, we confirmed that IPS band structures on well-ordered film 

structures effect on the periodic potential of the film. From a simple Kronig-penny 

model, we can explain reduce of their binding energy and heavier effective mass of the 

IPS. 

From section 6, we observed negative dispersions of the L2 state. The results show 

delocalized nature of the L2. We also found that the observed momentum distribution of 
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electrons in the L2 state is not homogeneous but strongly enhanced in high momentum 

numbers. The result shows the wave function of L2 is spread among several molecules. 

The result agrees with the concept between band model and hopping model. 

These experiments revealed interesting behaves of unoccupied states at the 

interfaces. However, obtained results are not enough to generalize all organic/inorganic 

interfaces, because of infinite number of organics are exist and their interactions 

between organic-substrate and molecules are case by case. Thus further studies of 

different samples are required to obtain generalizable results. 
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