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0. Introduction

Let f be a holomorphic mapping of a complex line C into a complex pro-
jective space P,(C) and suppose that the image f(C) is not contained in any hy-
perplane of P,(C). Put V[{]={z<C: log|z|<t}, and for a hyperplane £ in
P,(C) let n(t, ) be the number of points in V[#]N f~*(§). Let Q be the colsed
form of degree 2 associated with the Fubini-Study metric on P,(C) and norma-
lized as 5 0"=1. The counting function N(r, £) and the order function 7(r)

P

being defined by
0.1) N(r, §) = Son(t, £)dt

(0.2) T(r) = S:dt S f*Q

Vitl

respectively, the following equation is known as the First Main Theorem:
(0.3) Nz, )+ (m(r, £)—m(0, £)) = T(r),

where m(r, £) is a non-negative function defined for r& R* and hyperplanes £ in
P,(C). The term (m(r, £)—m(0, £)) is called the compensating term. It follows
from the equation (0.3) that the image f(C) intersects with almost all hyperplanes
in P,(C). Furthermore it is known that the number of hyperplanes in general
position not intersecting with f(C) is at most n+1. These results are originally
due to Ahlfors, and treated also by H. Wu [6] and S. S. Chern [1] in a modernized
form.

Let f be a holomorphic mapping of C* into a complex quadratic Q,_,(C)
(n=3) satisfying certain non-degenerate conditions [§2]. We consider Q,_,(C)
as a fixed hypersurface in P,(C). We consider a special family of (z—2)-dimen-
sional projective spaces P,_,(C) in P,(C) parametrized by a Grassmann manifold
G(R) of 2-dimensional linear spaces in R"™ [§1]. This family determines a
family of (n-3)-dimensional complex quadratic &(a¢eG(R)) in Q,_,(C), each of
whose elements is a Poincar¢ dual of the form O in Q,,_,(C).
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In this paper, we shall consider a value distribution problem in two complex
variables with respect to the holomorphic mapping f and the family {£,}. The
complex quadratic Q,_,(C) being a double covering space of G(R), we may take
0,-,(C) as a parametrizing space of the family {£,} in place of G(R). Thus we
have a setting similar to the case of holomorphic curves (holomorphic mappings
of C into P,(C)). Furthermore Q is an invariant form on Q,_,(C) by a certain
transformation group [§5]. 'This fact also plays an important role as in the case
of holomorphic curves [§6].

Our main results are as follows: (1) First Main Theorem [§4], (2) the
Crofton formula [§6] and (3) the Distribution theorem [§7]. In more detail, put

Alr) = {(z,, 2,)EC*: log|z;| <r(i =1, 2)}
and define
nAr), )= > n(psa),

PiEAGD FBOEE,

where n(p;, @) is a certain real number [§3] such that n(p,, a)=1 if f(C?) inter-
sects transversely with £, at f(p;). We also define the following functions:

(0.4) N(r, o) = Srn(A(t), o)dt (counting function)

(0.5) T(r) = Srdt S f*Q?  (order function) .
0 AlE

Then our First Main Theorem states:
(0.6) N(r, a)+m(r, )—m(0, @) = T(r),
where m(r, o) is a non-negative function defined for r& R* and submainifold &,
(a=G(R)) [§4]. The Crofton formula is as follows:
071 | #am 0@ =2{ 1o

Qn-1 NG
Finally the distribution theorem says: The image f(C®) intersects with almost

all submanifolds in {£¢,} (¢ = G(R)) i.e., we have S Q" '=0 for W={a<s0,-,
w

(€): AC)NEa=} -

We note that W. Stoll [4], P. Griffths and J. King [2] also developed the
First Main Theorem in several complex variables. But our setting is different
from theirs.

The author expresses his hearty thanks to Professor S. Murakami and
Professor 'T'. Ochiai for their kind encouragement and guidance.

1. Preliminaries

We shall recall several basic facts about the complex projective space P,(C)
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and the complex quadratic Q,_,(C) (c.f. [3]), and moreover we shall define a
special family of submanifolds in Q,,_,(C). Let C**'(resp. R**") be the complex
(resp. real) vector space of (n+1) tuples of complex numbers (2’ -+, 2”) (resp.
real numbers (x°, -+, ™)). We define a symmetric bilinear form (, ) on C*** by

(1.1) (Z, W) = 2%’} -+ 2" 0"

for Z=(2’, -, 2") and W=(@", -+, w"). For Z=(2", .-+, 2") we put Z=(%", -,
Z"), where the bar denotes the complex conjugation. A vector ZC""'—{0} is
called real if Z=Z. We define a hermitian inner product < , > on C**' by

for Z, WecC*'. We put ||Z||=<Z, Z>"*. For the complex projective space
P,(C) of dimension 7, we have the natural holomorphic fibring (called the Hopf
fibring)

(1.3) I1: ¢ '—{0} - P,(C),

where [I(Z) is the line passing through the origin and Z. We remark that the
natural conjugation Z—Z in C**'—{0} induces a diffeomorphism z& P,(C)—
2eP,(C). Let O be the 2-form of type (1, 1) on C*'—{0} given by

L1919 (e p de)— (S50 p (S, 57d30)}

~ 7

(1.4) Q—EHZH‘

It is well-known that there exists a unique 2-form Q of type (1,1) on P,(C) such
that [T*Q=0. Then Q is the Kihler form associated with the Fubini-Study
metric on P,(C) and we have

(1.5) SPn(C)Q =1

We consider a family of subspaces H of C*** such that H is of (n—1)-dimen-
sion and Z< H whenever Z€ H. With such an H, we can associate uniquely a
real subspace of R**' of dimension 2 by

(1.6) {XeR™: (X, H> = 0}.

We see that this gives a one to one correspondence, and hence the above family
of H’s is parametrized by the Grassmann manifold G(R) of 2 planes in R"*.
Especially we note that [H]=T[(H—{0}) is an (n—2)-dimensional projective
space in P,(C).

On P,(C) with homogeneous coordinate 2°, .-+, 2" the complex quadratic
0,_,(C) is a complex hypersurface defined by the equation
(1.7) (°+--+(")Y=0.

Now the unit sphere S*”*'={Z&C"*": ||Z||=1} is a principal fibre bundle over
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P,(C) with structure group S*. - For a point g Q,,_,(C), take a point Z & S*"*!
such that [[(Z)=4q. We can write Z uniquely in the form Z=(X+4:Y)/\/ 2,
where X and Y are orthonormal real vectors in C**'. Conversely if Z=(X+:Y)/
\/ 2 €8%"*! for orthonormal real vectors X and Y, then we have [[(Z2)=0Q,_,(C).
Therefore we have

(1.8) SN H0,-C) ={Z = (X+iY)/[\/2: Xand Y
are orthonormal real vectors} .

The group SO(n+1), considered as a subgroup of U(n-+1), acts on S+
and leaves the submanifold S***' N [17Y(Q,-,(C)) invariant. Moreover SO(n-1)
acts transitively on S****N [[~(Q,_,(C)). The isotropy subgroup of SO(n+-1)
at Z,=(1//2,1+/ 2,0, -+, 0) coincides with the subgroup SO(n—1) of SO
(n+1). We denote an element g of SO(n-+1) by

g= (XO’ Xl) %y Xn) ’

where each X is a column vector. Then, in the space SO(n+1)/SO(n—1), the
coset including g=(X,, X,, :--, X,) can be represented by the first two vectors
(X, X)). Under this identification, we have a diffeomorphism ¢: SO(n-+1)/SO
(n—1)=S*"*'N [17(0Q,-.(C)) defined by

(1.9) (X, X)) = \—/%(X,?JriX,) .

From now on we also identify SO(n+1)/SO(n—1) with SN [17Y(0,-.(C))
by the above diffeomorphism. We denote by II, the projection: SO(n+1)/SO
(n—1)— 0, ,(C) defined by

(1.10) IL((X,, X)) = TI((Xo+iX))//2)

for (X,, X,)eSO(n+1)/SO(n—1). Note that the space Q,_,(C) also can be
identified canonically with SO(rn+1)/SO(2) x SO(n—1).

To each point a=TII,((X,, X)) in O, ,(C), we assign the 2-dimensional
linear space spanned by {X,, X,} in R"*'. Through this assignment, Q,_,(C)
is a double covering space of G(R). We see that the function [{Z, W>|* on
S2"+1x §***+ induces a function | [I(Z), II(W)|* on P,(C)xP,(C). For each
as0,-,(C), we consider a complex submainifold &, of O,_,(C), defined by

(1.11) Ea=1{BEQ,.(C): |18, al*+|B, al|*=0}.

Let (X,, X,)€SO(n+1)/SO(n—1) and set IT,((X,, X,))=a. Cousider the
complex subspace H of C"** orthogonal to the vectors X, X;. We have £,=
0,-.(C)N[H]. [H] is a Poincaré¢ dual of the form Q7 in P,(C), and hence &, is
also, in Q,_,(C), a Poincaré dual of the form 7 restricted to Q,_,(C). Finally
we remark that each £, is a complex quadratic Q,,_,(C) and £,=&;.
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2. Holomorphic mapping

Let f be a holomorphic mapping of C* into Q,_,(C) (r=3). We consider
the following two conditions on f.

Condition (A): fis an immersion.

Condition (B): For each acQ,,_,(C), the set {p=C*: f(p)EE,} is discrete.

For each point p=C?, we can take a small neighborhood U(p) of p such that
there exists a holomorphic lift F=(f°, ---, f*) of f on U(p) into C*"'—{0} i.e.,
[IF=f.

Proposition 2.1. Condition (A4) is equivalent to the following: for each point
p of C?, choose a holomorphic lift F=(f°, -+-, f*) of f on a neighborhood U of p, then
we have

o, ey f"
of° ... Of

(2.1) rank | 0w,  Ow, | (p)=3,
of* ... of"

ow,” 0w,
where (w,, w,) is a coordinate system on the neighborhood U.

Proof. We identify the real tangent space T,(C"*') at a point Z in C"**
with C"*' in the ususal way. For p, we take (X,, X,, ---, X,,)€S0(n+1) such
that (X,+iX,)/\/ 2 =(F/I|F|)(p). Then the tangent space T'cx i ;x,/vz(S*""")
has a basis (X, +:X)), X,—iX,, {(X,—iX)), X,, -+, X,,, iX,, -+, iX,,. Let T,
be the subspace spanned by X,, ---, X, iX,, ---,2X,. The projection =
Ilis2»+1nn-1@,_jc» induces a linear isomorphism IL.: T r=>T s (Qn-i(C))
(c.f. [3] p.p. 279). Hence, T ;5(Q,-4(C)) is identified with the subspace of C™**
orthogonal to the vectors (F/||F||)(p) and (F//||F||)(p) with respect to < , >. Since
we have (F, F>=0 on U, we see {dF, F>=0. We have

2.2) d<|u€n> HFI|:—1<6w o, nin ||Fn)dw”
+ Z F f(|[p1‘||>dxj— p2 iF%(u_Flﬂyyj’

where w;=x’4-iy’. Thereforc we get

oF /aF F
@3 ¥= ZH*[HFH dw; HFH>IIFH>] &

This shows Proposition 2.1. Q.E.D.
We define
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(2.4) Q.-(f(p)") = {2 0,-.(C): | f(p), |*+ 1 f(p), @|* = 0},

that is,

Ou-of(2)") = {a€Q,-:(C): f(P)EEW} -

Then Q,_,(f(p)") can be identified with SO(n—1)/SO(2) x SO(n—3) as follows:
Choose an element (X,, X, -+, X,)€SO0(n+1) such that (X,+:X))/\/ 2=
(FIFI) (p). Let (A, 4)eSOm—1)/SO(m—3) where A, —(am, -, @) (i—
2, 3). Consider the mapping

(2.5) (Az’ Aa) g (2?___261”)(,-, E?=2a3iXi) .

We see easily that this gives an identification of SO(rn—1)/SO(2)x SO(n—3)
with O,,_,(f(p)"), which is independent of the choice of lift F.

For a0, _(f(p)") we take (X,, X,)eS0(n+1)/SO(n—1) such that I,
((X,, X)))=a. Then the following condition is independent of the choice of
(X, X)),

(OF[0w0,) (p), (Xo+iX,)\/ 2, <(OF[0w,) (), (Xo+iX,)N/ 2 |
{(OF [0w,) (p), (Xo—1X))[\/ 22, K(OF[0w,) (p), (Xo—iX))[N/ 2

Proposition 2.2. The condition (2.6) holds if and only if f intersects trans-
versely with &, at f(p).

Proof. Put (F/||F|))(p)=(X,+:X;)// 2. Then we take an element
(X X, X,y X, -+, X,)€S0(n+1). As in the proof of Proposition 2.1, we see
that the tangent space T .»(Q,-,(C)) is spanned by the vectors X, 1.X,, X,, X,
X, 1X,, -, X,, 1X, and the tangent space T, (E,) is spanned by X, 1.X,, -+,
X,, iX, through the identification by TT«: Texyrixprvz (S N IT7H(QW-(C)))
T s 5(Qn-1(C)). Therefore by (2.3) (or (2.2)) it is sufficient to show that the
condition (2.6) is equivalent to rankg ((0F/0w,)(p), i(OF[ow,)(p), (OF [ow,)(p),
i(0F [dw,) (p), X, 1X,, +++y X, 1X,,)=2(n+1). Now this can be seen easily.

, Q.E.D.

Now we consider the following condition for a= IT,((X,, X)) € OQ.-s(f(»)})

@F[0w,) (p), (Xo+iX,)/\/ 2, {(OF[0wy) (p), (Xo+iX))/V 20| _
(0F[0w,) (p), (Xo—2X\)[\/ 2, L(0F[0w,)(p), (Xo—iX )N/ 2

Since the vectors (0F[0w,)(p) and (0F/0w,)(p) are linearly independent, the set
of elements a=Q,_,(f(p)") satisfying the condition (2.7) has measure zero in

Qu-o(f(2)")-

REMARK 1. We shall remark here a certain sufficient condition for Condi-
tion (B). For weC we put CL={(z, w): 2C} and Ci={(w, 2): z=C}.

(2.6)

2.7)
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Assume the following condition (C): none of f(CL)(i=1, 2, we C) is contained in
a hyperplane in P,(C). Let f(p)=&, and set [],((X,, X)))=a. We put g,(w,w,)
={F, (X,+1X,)/v/ 2 Nw,, w,) and gy(w,, w,)={F, (X,—iX,)/\/ 2 D(w,, w,) on
U(p), where (w,, w,) is a coordinate system on U(p) such that w,(p)=0 (:=1, 2).
Using the Weierstrass’ preparation theorem we have the following representations

gl(wv wz) = (ao(w1)+a1(w1)wz+ “'+a11(w1)w51)h1(w1; 202)
gz(wv wz) = (bo(w1)+ bl(wl)w2+ A +b12(w1)'wéz)h2(‘w1) 'wz) y

where a,(,), b (w,) and k w,, ,) are holomorphic such that a,(0)=0 for 0<i</,,
a,,(0)=0, 5,0)=0 for 0<i<4, 6,,(0)+0 and & (w,, w,)=*0 (=1, 2). We denote
by R(w,) the resultant of (a,(w,)4---+a, (w,)ws) and (by(w,)+ - -+ b, (w,)wsz2).
Since the function R(w,) is holomorphic, we have that R(w,)=0 or the following
(D): the set {w,: R(w,)=0} is discrete. If, under the assumption of (C), f satisfies
(D) for each p=C? and a=Q,,_,(C) such that f(p)=&,, then Condition (B) holds.

(2.8)

3. Certain forms on @, _,(C)—&,
We define one 2-form Q, on Q,_,(C)—E&, by

(3.1) Q,(B) = dd° log {|8, a|*+18, al’},
where d° = %(6—5). We choose a unit vector Z, such that [[(Z,)=«, and
i

define a mapping P, of O,,_(C)—E&, into P,(C) by
62 PO =M o (B 2 o )]

where Zg= S*"** such that [[(Zg)=g, and II is the Hopf fibring S*—P,(C).
P, is well-defined and holomorphic. Let o be the Kihler 2-form associated

with the Fubini-Study metric on P,(C) and normalized as j w=1. Then P¥w

PO
is independent of the choice of Z,. From now on we also denote by Q the re-

striction of the form Q to Q,_,(C).
Lemma 3.1. We have
(3.3) Q,=P*o—Q on Q, (C)—E&,.

Proof. Let o be a local holomorphic cross-section of the Hopf fibring I]:
C"*'—{0}—P,(C) defined on an open set U in Q,,_,(C)—E,. Then we have

0, = dd” log {Kn:n ’\uan Z.)}

= dd° log {|<a, Z,>1*+ {0, Z,>|*} —dd° log ||o|[*
= P*o—Q. Q.E.D.
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We define another 2-form Q/ on Q,_,(C)—&, by

(3.4) Q, =Q+Pfo  on 0, ,(C)—&,.
Put
(35) Q; = ""Q‘m /\‘Q‘; on Qn—l(c)—gm .

By (3.3) and (3.4), we have

(3.5 Q; = (Q—P}o) A (Q+Pfw)
= Q*—PXopo)=Q on Q, (C)—E,.

Let f: C*—0Q,,_,(C) (r=3) be a holomorphic mapping satisfying Conditions
(A) and (B) in §2. For a point p in C?, we take a small neighborhood U(p) of p
and a coordinate system (w,, w,) on it satisfying w(p)=0 (i=1, 2). Let F be a
holomorphic lift of f on U(p) into C*"*—{0}. Set f(p)=&,. Then we define a
real number 7(p, o) by

(3.6) n(P, a) = lim dc‘log{|<Fa Zm>|2+|<Fv Zm>|2} /\f*P:O) ’

40 SaU,u:J
where U,(p) = {(w,, w)€ U(p): |w,|*+ |w,|*<€’} and TI(Z,)=a.

Lemma 3.2. #n(p, ) is well-defined and finite. Especially if f intersects
transversely with £, at f(p), then we have n(p, a)=1.

Proof. First we choose a local lift F and a local coordinate system (w,, w,)
such that w(p)=0. Take two positive real numbers &, and &, such that U(p)D
U, (p)DU,(p). Then we have

(3.7) F*P(o p )

0= S
Ug (D) ~Ue2( D

dlog{|<F, Z,>|*+|<F, Z,)|°} A f*Plo .

S e (5 -Uea( D

Therefore we obtain
c 2 74 2 %
G8) | dlog{I<F, Z>1"+I < Z)1*} p f*PEo

=tlim | d0g{|<F, Z> |+ |<F, Z,>|%} o f*Po.

evo Jougcp

The left hand-side of the equation (3.8) is finite and hence so is, the right side.
In the same way, we see that n(p, ) is independent of the choice of a local co-
ordinate system. Now we shall show that n(p, @) is independent of the choice of
F. Take two holomorphic lift F, and F, of f. Then there exists a holomorphic

function g such that F,=gF, and g(q)+0 at any g= U(p). We have
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(3‘9) dclog{ l <F1: Zm>] 2+ I <F1’ Zd’> | 2}
= dlog| g|*+dlog{|<F,, Z,>|*+|<F, Z,>]%}
— é[d log g—d log gl-+d°log{|<F,, Z,>|*+|<F,, Z,>|"}.

Since the form f*P*w is closed on 0U,(p), n(p, ) is independent of the choice
of F.
Next suppose that f intersects transversely with £, at f(p). Then

{oF|ow,, Z >, <OF[ow,, Z,,)

{oF|ow,, Z >, <OF|ow,, Z > (#)+0,

and hence we can choose (w,, w,)=({F, Z,>, <F, Z,>) as a coordinate system on
U(p). We have

n(p, o =lim§
#, @) €40 Jlwyl2+lwal2=e?

dclog(|w,|*+ |w,|?) A f*P¥w .

Putting w,=r,e%, w,—7,e*%, r,.=r cos t and 7,=r sin ¢ (0<6,< 27, 0<t<7/2),
we have

c 1 1 2
d 10g(1’12+7'22) - g m(712d01+rz daz) ’
and
[*Piw = i L (rirs’dry N dO,+-1r.dr, A dO,

7 (ri )
—rr7dr, A dO,—1’r,dr, A dO)) .
Thus we see
dlog(ri+7,7) A f*Po = Zinzsin t cos t do, p dt p 6,
on r = constant.

On the sphere {(w,, w,)e U(p): |w,|*+ |w,|*=7r*}, dO, A dt A dO, is a positive
form. Therefore we have n(p, a)=1. Q.E.D.

We denote by (2, 2,) the standard coordinate system on C?. Put A(r)=
{(z, 2)EC*: log| 2;| <r(i=1, 2)}.

Theorem 1. Let f: C*—Q,,_,(C) (n=3) be a holomorphic mapping satisfying
(A) and (B). Suppose fOA(r))NE,=¢. Then we have

3.10) [ pror—aa,a+| dT-log(lf al*+1f, @l (@+Pra)],

9A

where n(A(r), a)= 2 n(p; a).

FCIEEG D;EA)
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Proof. By (3.1), Lemma 3.1, (3.5) and (3.5)’, we have

(3.11) S f*QF —lim *Qy?
A(r.

gy0 SAU) Z:Ug(p)

—dd*-log(| f, a|*+ 1 f, @l?) A f¥(Q+PF)

= limg
ev0 A -ZUL0p
1

dd‘[—log(| f, a|*+ | f, &|’) f¥(Q+PFo)],

= limS
EY0 JAN-TUL (b
1

where U,(p,) is such a neighborhood of p, as given in the definition n(p;, a).
Applying Stokes Theorem to the equation (3.11), we have

@12 | o= a-log(lf al*+If @l HQ+Pio)]

—lim31 [ dlogllFiFfHO+Po)]

ey0

tlim3y [ dToglI<Fy ZOI+I<E, 2510
+ Z' n(Pt’ a)
where F; is a holomorphic lift of f on U(p,). We have

(3.13) limSaU d“Tlog |IF- f*Q]—th fr2=0.

240 Ug(hp

Set r’=|w}|*+ |w?| % where (w}, w}) denotes a coordinate system on U(p;), we
see

(G.14)  dlog{|<F, ZDI*+ | <Fy 217} = 0( ) (dwh-+ dwi-dwi-+ dwk

and

(B15)  ddlog{|<F, Z,>|*+ |<Fy 2517 = 0(= ) (dwk p dwi-+ s o doot
+dw} A dwi+-dw} A dw;

Since ||F,|| is positive on U(p;), we have

(3.16) d‘log ||F || = 0(1)(dw;+dw;+ dwi+dw;

and

(3.17) [*Q = 0(1)(dw; A dw}-+dw; A dwi+dw; A dwi+dw] A dw;) .

Since the both sides of the equation (3.8) are finite, comparing (3.14) and (3.15)
with (3.16) and (3.17), we have

(3.18) limS d°flog ||Fi|* f*P*w] = 0
€40 JoU,op
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(319)  tim{ - alog{| <P, 2514 (<F, 2517 f40) = 0.
240 Jau,(p
Q.E.D.

4. First Main Theorem

Letf: C*—Q, ,(C) (n=3) be a holomorphic mapping satisfying (4) and
(B). For a point « in Q,_,(C), we choose two real numbers 7, and 7, such that
r,>r, and the image f((r(A;)\A(r,)) does not intersect with &,,.

We see easily |8, a|®*+18, &|*=<1 for B0, (C). Hence +r,=—log
(I f, el*+ | f, @l®) f*(Q+Plko) is a positive form (non-negative form, precisely)
on A(r,)\A(r,). Putting z;=¢*i"#;(j=1, 2), we can write r, on A(r,)\(A(r;) U
{(z, 0)eC?} U{0, 2)=C*}) as follows:
(4.1) Vo = —log(1 f, a|*+| f, @l*) f¥(Q+Pjo)

= ‘l"ldsl AN d91+‘1’2d31 A do,+ ‘I"adsz Ado,
e ds, A d0,+-ridO, A dOy+-Ards, A ds, .
ReMArk 2. If we write 4, with the standard coordinate system (z;, 2,) on

C?, we see Yry(2,, 2,)="(2,, 2,)€"1, (2, 2,)="V(2,, 2,)€2 and Yri(2;, 2,)=e€"1-
22, 2,) (=2, 3, 5, 6) for certain functions {,(i=1, 2, -, 6).

Lemma 4.1. We have

(4.2) V20, 4, =0 and r, = V.

Proof. Choosing a holomorphic lift F on a sufficiently small open set U in
A(r)\A(r,), we have

(4.3) [¥Q+Plow) = dd[log||F|[*+log(|<F, Z,>|*+ |<F, Z,»|"],
where [I(Z,)=a. Now we obtain

=L [ 9 49,0 g,

= 0s; 00;
(4.4 2o . 9 on U\({(0,5)=C?} U{(3, 0},
¢ =53 55,205 ;%]

where (%11, e°27#%) is the restriction to U of the standard coordinate system in
C®. Putting g=log(|<F, Z,>|*+ |<F, Z ,>|*)+log||F||?, we have

e 1 o°g 0%g ( 0’g o°g
4.5 dd _;[ ds, pd0, ds, A do,
(+5) £= 4 <(ael)2Jr (as,y) n 0t \Gg08. 6s16s2> S ndl

0g 4 ¢ )d de (823’ 98 \ds, nd6 ]
+(601892+6s28s1 2 A GO (692)2+(6s2)2> S A GOt |

Comparing (4.1) with (4.5), we have Jr,=r.
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We shall show +r,=>0 and +»,>0.

(4.6) dd10g (S, ) = 00+ 1og (S, £°F")

= (IFIFCES97 A dP)—(Zdf*f*) A (Zf7df)]

27 HFH‘
K 8z1 >

)dzz/\dzz_f-...],

) dz, A d,

= 2o el
(| o

\(

where F=(f°, f*, ---, f"). By the Schwartz inequality and the linear indepen-
dence of vectors F and 9F/0z; (j=1, 2), we have

>|(r, )

, and dz; A d2;=e"i(—2ids; 5 d§;)

(j=1, 2). Thus we have

1 [
or

1 0f*af* ) 01"
47 [ L ‘
(4.7) (Ef’*f")” (Eff)(kaz 6z) (kazf)
As for dd°[log(|<F, Z,>|*+ |<F, Z,>|%)], putting f°’=<F, Z,>, f*=<F, F,> and
f?=0(j=2, .-+, n) in the equation (4.6), we have also the inequality (4.7) (in this
case we replace > by > 0) with respect to the coefficient of ds; A d6; (j=1, 2).
Q.E.D.
Let 7 be in [r,, r,]. We devide dA(r) into dA,(r) and 9A,(r), where

L ooty

]e“;>0 (7=12).

(4.8) 0A(r) = {(2,, 2,)E0A(r): log|z;,| =7} =1, 2).

Lemma 4.2. We have

‘ =_L — 7+i0,  o7+i0
@) == e, a0, ndo,

— Sslxsﬂ‘b‘l(eﬂ-iox’ e’+‘62)d(9, A dgz:]

1 o
+ 4z Or I:Samm\h' A d€‘+S . r)‘nb'w L :|

Proof. First we remark that d@, 5 ds, A d0, and d0, 5 ds, p dO, are positive
forms on 0A,(r) and dA,(r) respectively.
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By (4.1) and the preceeding remark 2, we have

c
@ .
SaAl(r) S%Aﬂr)\((e’“ol,o))

1

LA

S 8A1(r)\((e"+"0‘.0))[ 0s, 0s, 00,

4z
-1 [_6_‘1’3 0V, | Vs g0\ ds. ~ dB
4 Sam(ﬂ as, a5, | ap, 201 n B nE0s

Clearly we have

0yrs —

Therefore we obtain

@10) dpa = [—9_"’3+%]dalAds2Adez.
?981(P 47 Joayr

Os,  0Os,

Similarly we obtain

oy = Oy 3_%]
(4.11) Sammd Va 4r Samm[ ds, 0s, 40, p s, £ 40,

Now we shall consider the equation (4.10). We have

(4.12) 1 S Nrs 4o, ds, p do,

47 Jonin Bs,
-1
4r

1

47 SaAm) N9Ag(r

S d(‘l"s daz A del)
[ 1-$1€2]

11("3d‘9z A del

S 1 1,\1,.3(3’+i01, e”+i92)d92 Ad91 .
slxs

S "l’ldel A dsz A daz

981(?)

_ S d{( Ssz \h(e'“ol, et+i92)dt) dgz A d91}
9A1(?m) —o

= Ss‘ Sl(Si Y (€71, €'t i02) dt) df, ndo,,

we obtain

_8—%4' 6_‘1"4+6_‘:b'5]d01Ad52Ad02

437
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.
or

- S slx 3111"4(‘3'“61’ e’+ioz)d92 A d¢ 1

Ll S,

(+.13) RN IN 2

By (4.10), (4.12) and (4.13), we obtain

(414) S d"‘\ll',,, = LS [___‘1,,3__,\1,4] (e'+i91, er+‘°2)d62 N dgl
941(r 47_[ slxst
1 0
Tn" ﬁSBAl(r)\Pudal A dSZ A dﬁz .

By the similar argument as we derived (4.14) from (4.10), we derive the follow-
ing from (4.11)

__1_ c —_ J‘_ _ . r+"91 r+i92
4z SaAzcr)d Va = 4 Sslxsl[ Y, — ] (70, €77 1%)d0, A dO,

1 98
4z Or

(4.15)

S ynd0, nds, ndO, .
AA2(»

By (4.14), (4.15) and the definition of +J», we obtain (4.9). Q.E.D.

Lemma 4.3. We have

(+.16) SA(r)f*Qz - % Z?_r |:SBA1(r)¢m A dal_,—SaAz(r)\ll‘aé A d@{l—l—n(A(r), @)

Proof. By Theorem 1 and Lemma 4.2, we have only to prove that

1

Egslxy[‘l’\—‘l"l] (e7*%, e"*i%)d0, ndO, = 0.

We define a mapping k: C*—C*® by h((2,, 2,))=(%,, 2,). Then (foh) satisfies
Conditions (A) and (B), and we have
(I foh, al®+| foh, @l®) (2, 2,) = (1 /; al*+ | f, @|*) (2, 21)

and

1% %), @) = lim{d1ogl| <F, Z |+ | <F, Z>|*] n f*Po

Ug (21,220
— lide”log[l (Foh,Z>|*+ |<{Foh,Z,>|*] A (fh)*Pkw
V0 QU (2,21

= nf-h((zz’ %), a) .
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On the other hand, we have from (4.1)

@17)  (Waa) = Aok ds, ndO, 4ol ds, p dO,-irsoh ds, p db,
+roh ds, p dOi+roh A0, \ dO,+Areoh ds, A ds, .

By Theorem 1, (4.14) and (4.15) in Lemma 4.2, comparing (4.1) with (4.17) we
have

(4.18) S Q= S * Q¢ = n(A(r), @)
Alr) Al
+L|:_S'\I/'1°h(er+iol, ¢ +1%)do, /\dal—j'\!/'4oh(er+i91’ e’ i%)d0, AdoZ]
4 stxs? s'xst

1 0

Z;Z'— ~6-1'- S'()A (¢€2) 11”‘40’2 daz /\dsl /\dﬁ,] .

Arioh 0, \ds, £ d0,+ |

820

We see easily
[ wohdo, nds,pdo.={  d0, nds, nd8,
9A1(» 9A2(»

= S Vo Ad0,

(1:V1¢2]

and

Vo dO, p ds, pd6, = S V., d0, pds, A dO,

SBAz(f) 981(

:S Vo Ad0; .

9A1(»)

Therefore we have only to prove
Ssl 1((\,0‘,-0}1)—‘\#‘,-) (€71, €71%)d0, Ad0, =0 (i=1,4).
xS
For any a, B[0, 27], we have
sk ) (€759, €7448) = yp(e7+18, &) —p 3%, &7 +1)
(Ciohy =) (€747, €7449) = o (e745, & 40) 743, 75)
Thus we obtain
((Prioh)—r;) (€7%%, €FiF) = —((Yr;oh)—fr;) (€7, €7+i%) .

Q.E.D.

For the holomorphic mapping f: C*—0,,_,(C)(n=3) satisfying Conditions
(A) and (B), we put

T(r) = srdtSAwf*Qz (order function)

0
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419  Nr ) = Srn(A(t), a)dt (counting function)

m(r, a) - 21; [SaAl(r)llrw A d01 + SaAz(r)\l"m A daz] ’

We need the following lemma, which can be proved in a similar way as ([5] p.p.
502).

Lemma 4.4. For any a, m(r, ) is continuous with respect to r<[0, o).
Theorem 2. We have

(4.20) T(r) = m(r, &)—m(0, a)+N(r, &)  for any r>0,

and m(r, o) is non-negative.

Proof. Integrating the equation in Lemma 4.3 with respect to r&(r,, 7],
we have

SndrSMnf*'Q'z = S:n(A(r), a)dr+m(r,, a)—m(r,, a) .

r2

By Lemma 4.4 we obtain the equation (4.20). It follows from Lemma 4.1 and
Lemma 4.4 that the function m(r, «) is non-negative. Q.E.D.

Lemma 4.5. For any r, m(r, a) is continuous with respect to a < Q,_,(C).
We also omit this proof by the same reason as in Lemma 4.4. (c.f. [5] p.p. 504).
Theorem 3. There exists a positive constant C satisfying
(4.21) T(r)+C>N(r, a) whenever r>0 and a=Q,,(C).
Proof. By Theorem 2 we have
T(r)+m(0, a)=N(r, a) for any r>0.
Therefore by Lemma 4.5 we have the equation (4.21). Q.E.D.

5. Induced form by 7

We denote by (X,, X, ---, X,,) an element of SO(n-1), where X;s(0<i<n)
are column vectors, and we put X;=(x;y, -, &;,)’. The left invariant forms §,;
(0<7, j<n) on SO(n+1) are defined by the following equation:

(5.1) axiy\ (X, -, X, [X§\ (dX,, -, dX,) 0, 6, s O,
— dX{ Xi — 601 0, Ty 0,,1

de. X:. gon: 61,;» B 0 [ 2
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where §;;=—0

ji-
Therefore we have —ddX,;, X;>=0;; ie.,
(5.2) dX;=316,;X;
7
Taking its exterior derivative, we see

(5-3) d001 = Ek 00/3 A ekl = —‘Zk '9ok A ‘91k .

We remark that d,, is a 2-form on SO(n+1)/SO(n—1). Furthermore it is a lift
of a 2-form on Q,_,(C) by II,. In fact, let U be an open neighborhood of Q,_,
(C), and (X,, X,) be a local cross-section of U into SO(n+1)/SO(n—1): II,
((X,, X)))=identity on U. We have

54 ITH(TI1(X,, X)) = {(X,, Xl)(cos 4, —sin 0): 0<0<27}.

sin 6, cos@

Then we have on [I7Y(U),
(5.5) df,, = d{d(cos 8- X,+sin 8- X)), (—sin 8- X,+cos - X,)>
= d(df+<dX,, XD) = d{dX,, X;>.
Let o be a local holomorphic cross-section on U into C***—{0} with respect to

the Hopf fibring: [Jo=identity on U. We can write ¢ in the form o=X-+7Y
for orthogonal real vectors X and Y at each point of U. Then we see

(56 = ddlogllell: = — . ddX/IXI), Y/IYID>.
Thus, d@,, is the lift of —27zQ by [I¥ i.e.,
(5.7) ma—=—-Lag,.

2z

In the equation (5.1) we defined 6,;’s and 6,;'s (0=<j=<n) as 1-forms on
SO(n+1). They are also regarded as 1-forms on SO(n+1)/SO(n—1). To
prove this fact we shall identify SO(n+1)/SO(r—1) with S*** N I17(Q,-,(C))-
We take a local coordinate x=(x", ---, x**"*) on a small open set U in S**' N [[*
(94-,(C)) and write a point Z(x) of U in the form (X,(x)+iX,(x))/r/ 2, where
<X,y X)(x)=<X,, X >(x)=1 and <X, X >(x)=0. For each x, extending X,(x)
and X,(x), we take a real orthonormal basis Xy(x), -+, X,(x) in C*** such that
(Xo -+, X,) ()€ SO(n+1). Then the tangent space T. Z(J,)(Sz'“r NI YQ,-,(C)))

has a basis (IX,—X,)(x), X,(x), -, X, (%), iX,(x), -+, X () (c.f. [3] p-p- 279).
In the equation dZ= El—gé dx?, we see %— =2y (b>(1 <7<2n—1)and hence
i=1 X

—g%’s are tangent vectors of T,¢,(S**' N [I7Y(Q,-.(C))). Thus there exists 1-
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forms 6;’s (1<j<n) and §s (2<j<n) on U such that dZ=0,(:X,—X,)+
2 (0,+i6,)X,. Comparing this form with (5.2), we have 0,=0,,/\/ 2, 0;=0,;/

V2 (2<j<n) and §,=0,;/\/2 (2<j<n). Thus we have from (5.2), (5.3)
and (5.7)

68 (), xn = 5 31X K> A X, X5,

where (X,, X,, -+, X,)=S0(n+1). For the volume form Q"* on Q,_,(C), we
have

(5.9) (ITEQ™ ) x, xp = (L)"’l(n—l)! X, X5 n<dX,y XD n o

27
A <dXo’ Xn> AN <dX1’ Xn> .

We shall obtain a formula for f*Q* on C*. Let F be a holomorphic lift of f
on a neighborhood U in C* by TI. Set (X,+iX,)/\/ 2 =ZF|/||F||, where X;
(=0, 1) are the orthonormal real vectors. With the coordinate system (x,-}+%y,,
x,+1y,) on C*, we can write:

dX, = o X+ MBzdxl*MBadyrl- 7\'434dx2_7\4535dy2'

5.10 N _ N ~
( ) Xm = w2X0+ XaBadxx_l_)\‘szdyl_l_)\'sBsdxz‘f“ 7\'4B4dyz ’

where Bs (2<i< 5) are differentiable vectors satisfying <B,, B>=1, \/s
(2<i<35) are differentiable functions and ;s (1<i<2) are 1-forms on U.
Then we take differentiable orthonormal vectors B;(2<7<5) such that B,=B,,
B=a,B,+a,B,, B,=4,B,+(,B,+(,B,and B,=7,B,+7,B,+v.B,+7,B,, where
a;, B; and ry; are differentiable functions satisfying > ai=1, 31B2=1 and >v?
=1. We choose differentiable vectors By, -+, B, on U such that (X,, X, B,, -+,
B,)e SO(n-+1) at each point of U. By (5.8) we have

G.11)  fra= 51; SV dX,, B A <dX,, B,>

- '217? {27 = NA 0,8, — AN iBiors] (A, g dx,+dy, p dy,)

-+ [7\§+ 7\»1‘21]‘1‘701 A dy1+ [7\3‘}‘ 7\'g]dxz A dyz
+ [7\'27\'4182+ 7\'37\‘50[2724_ 7\'37\'5a373] (dxl A dyZ_dyl A dxz)} .
Furthermore we obtain

1

(12 0= (o) X2 M

- [7\'27\44Bz+ A )stsaarys]z
=AY AN B, — )‘37"40‘3)83]2}‘1’01 A A dx, pdy, .
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6. Crofton formula

In §3 we have defined n(A(r), @) for a holomorphic mapping f: C*—~0,,_,(C)
(n=3) satisfying Conditions (A) and (B). Then we have:

Theorem 4 (Crofton formula). Let D be an open set in C* with compact
closure. Then we have

60, 00 =2 fror,
where dE=dE ,=da=Q""".

Proof. First we assume that D is so small that there exists a differentiable
lift o=(X,, X)) of fon D: [],c=f. Let g be a pointin D and set f(g)=&,. For
any real orthonormal vectors Y, Y, such that T[,((Y,, ¥,))=«a, we have

(6.2) <{X(9), Yo» = <X(9), Y0 = <X\(9), Yo» = <{Xi(9), Y0 = 0.
We set
6y @)= e, (0): Mt
JDYr ={a€0,.(0): f(D)NE,+¢}.
and
6y D= TR0

D"= {(¢, a): gD, a = (4,, 4,, -+, 4,)€S0(n—1)} .

For a=(4,, 4,, --+, A,)SO0(n—1) we write its column vector 4; as 4;,=
(@s -+*, a;s)'. Then we define a mapping #: D”"—SO(n+1) by

(6.5) (g, a)) = (B,, B,, X, X;, B,, =+, B,) (9)
a,, a;, 00 a, - a,,
ay, a, 00 a, - a,

0 0 100 0

“lo o010 0

Ay, Gy, 00 Ay > Ay,

a;n a;n 0 6 a.m o a;m ’
where (X,, X,, B,, ---, B,) (¢) is the one given in §5. Let I’ be the projection
Dx(SO(n—1)[SO(n—3)) > DxQ,_,(C) defined by II'((g, (4. 4s)))=(g, II”
((4,, 4,))), where TI" is the projection with respect to the Hopf fibring SQ
(n—1)/SO(n—3)— Q,_4C). We consider the following diagram;
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DX (SO(n—1)/SO(n—3)) —t> D’'cSO(n+1)/SO(n—1)
(6.6) hig » |

DXQ”—S(C) _—)f(D)_LCQn—l(C) )
where t'((g, (4, 45)))=(:220.:B,q), >)%2a.,;B,(¢)) and t” is defined by ] ot
=t"oJI’. 'Then, in the above diagram, we remark that #’((g, O,-s(C)))=0x-;
(A(9)") for each g&D. Putting #((g, @))=(X,, X/, -+, X,), we obtain
(6.7) (H/)*(t//)*ﬂ"ul J— (tl)*(Hl)*Qﬂ—«l

- (?i?) (= 1)IKAX,, XD A X!, XD e A KdXS, XD A AKX

— () = DX XU AX,), XX 7 X —X,), X =X
T
N <d(X0+zX1)’ XO,_inl> N <d(X0_iX1)) X0,+iX1/> N <dAz’ A4>

A <dA3» A4> FANRRRVAN <dA2) An> AN <dAa) An>

= — (5o ) =) (1=2) [ BNy X/+iX 0, Bein, |1
f XJ+iX/>
<7\'zl§z+i>"3§3a Xo/'_iX1/>’ <7\.4.§4+l.7\,53'5,
e
xds, Ny s, ndyin () (=3 <dAL A <Ay AD

AN <dA2’ An> A <dA3’ An> .

We put C={B< f(D)": there exists 8’ (¢")~'(3) such that (dt"’) (') is singular}.
From Sard’s Theorem the set C has measure zero. If we take ae(f(D)'\C),
the set (£””)"%(c) consists of finite elements because of the compactness of D and
Condition (B). We denote by n, the number of elements (#/)"*(a). Then, for
each o= (f(D)"\C) there exists a connected neighborhood V' of « in (f(D)™\C)
such that (#)"%(V) has n, connected components and #/ maps each component
onto V diffeomorphically. Let {V;} be a locally finite covering of f(D)*\C by
such open sets and {¢,} be a partition of unity subordinated to {V;}. Now we
have

(6.8) S,(Dﬁ”“d“ = S L Pada =230

T -C 7 Sf(D)'L—

=5 mipdada) =2 ( (" (sde)da)

@Dt

=51 (@) (e

@n~ vy

qS,-(a)na,da
c

= ~@yda={ ~ —@")da,
D*xQp-3

D*xQyu-32—C"
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where C’ is the set of critical points of #’. If

t"((g, a;)) = « and | <OF|0z,, Z,>, <0F [0z, Z,>

0F|0z,, Z,, <0F[0z,, Z,)
<which is equal to ML o0 B, rin B, 2, VBiA-inB,, 2>
<XZBZ+iX3BS’ Zm>, <)‘4B4+ix5§5) Zﬂ’>

(@

5 (q)> =0

for TI(Z,)=a, then dt”((g, c;)) is singular because of (6.7). By Lemma 3.2 we
have n(D, a)=n, on f(D)*\C. Therefore we have

(6.9) w(D, a)da = L (LY n—1)(n—2) d pdy* pdx* pdy?
Q-1 4 \ 2z D

ByinaBy, X/ 41X\, ONBAineBs, X +iX/D
<7\,232—§—i7\3§3, Xo,—iXL,>) <7\AB4+D\'5§5) Xo/_iX1,>

X S 2(yn-3
Qu_ s F@D™ | |

Next we have the following equation:

(6.10) SQ L I[uBeinBy XX, OBotinB, XX

n-3(f(q ~ =~ ~

B, HiN B, X/ —1X,>, NB,+inB,, X/ —iX,)> |

= [(7\'27\'463_ Nahs0t, Y5+ 7\437\561372)2‘}‘ (7\37\'4012:83'{‘ A5V — 7\'37\'4613/82)2] (q)
By X/ +iX /D, <{B;, X/ +1X,">||?Q"°
<B2) Xo/_iX1/>» <Bsa Xo,—iX1,>
|| <By X +iX\"D,
<Bz) Xo’_iX1/>)
B, X,/+iX/>
<B4) Xo,_iX1,>
By XJ/+1X\"), {Bs, X/ +iX/")
<Bz, Xol—iX1,>: <Bsa Xo"—iXx/>
|| <Bs, Xy'+1X,7>, <B,, X,/+iX/>||*
<B3) XO/_‘iX1I>) <B4) Xo/_in,>

|
Qo2 F™

+(udHrad) (3BT (@)

wosCF@B

l 20”—-3

+O3 M) (37 @) | Ko

Qu-sr @b

+(Mad) (AT AE7) ()|

Qo s f@™

Qn—S

|| <By Xo'+iX,"D, <Bs, XJ/+1X,>||*Q" .

<Bsy Xo/_iX1/>’ <B5’ Xo,_iX1,>

+(dainivd) @]

Quos(F @)

In fact, the integral of the other terms which appear at the right hand side of
(6.10) turns out to be zero. For example we consider the following integral:
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<B,(q), X,/ +iX,">,
<B2(q)) Xol - iX1/>7

<{Byq), XJ/+iX\>, <By(q), X, +iX,">
<BZ(Q)! Xol_iX1,>’ <Ba(q)7 Xo/‘—iX1,>

<{B(q), XJ+iX,>
<BA(Q)’ Xo, _iX1'>

1=
Qu_s s

Q3.

We have

(azz_ia”)’ (a23_ia33) (azz—iaaz)’ (a24—1,'a34)

(a22 + iaaz)’ (aza+ iasa) (azz‘l‘ iasz) , (du—f— ia, 4)

X (—21—> P 3)1d0 <Ay A A <dAy A p e N{dAy AS A <Ay AL,
74

1=
SO(n-1)/SO(n—3)

where 0<0<2z. For each vector A,=(ay, a;, a;, -, a,,)* we set A; by A,=
(@2 —@y3 @y ** @;)°.  This induces a diffeomorphism k; SO(n—1)—SO(n—1)
by k((Azy Aa) Au Asy R An)):(gn Aa, As; An R An)’ Then we have

— (s —1ay,), (@rs—1a35) | | (@s—10s5), (@ry—1s,) |
(a22+ia32), (azs+iaaa) (azz+iaaz)) (@y+-1a,,)
X (El;)”_z(n—:;)' do A <dAza dA5> A <d143: As> A <dA2’ A4> A <dA3r A4>

A <dA2’ 146> A <dA3 Ae> VANRRAN <dAz’ A,,> <dA3’ An> .

Since we have <d4;, A;>=<d4,;, 4;> (2<i<3, 4<j<n), we obtain /=0. In
the equation (6.10), the integrals

sSO(n—U/SO(n—-s)

S 1 <By, X +iX[>, {Bay X/ +iX/> |20,

(B, X/ —iX/>, By X/ —iX/>
SQ [ <B,y X,/ +iX/>, (By X/ +iX/> 2",
IOV B X XS, (B, X/ —iXlS
S 1 <B,y X/ +iX,>, (Byy X,/ +iX/>
|

Qu_3(F@™

2\(2”—3 s

Qs F™
B,y X, —1X,>, {Bsy Xy —iX/>

H<B3; X/ +1iX/D, B, X,/ +iX/>||*Q"?
<B:” X, —1X.">, {B, X/ —1X/>

Qu_ 3 F@O

and

|| <Bsy X/+1X,", By, XJ/+iX/>||"Q"°

SQ,,_a(ﬂq)J“)
<B3: Xol_iX1/>) <B51 Xo/_"iX1/>

are all equal and furthermore its value is independent of g. We denote by C, its
common value. Then by (5.12), (6.9) and (6.10) we have
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(6.11) SQ”_I(C)n(D, a)da = %(n—l)(n—Z)CosD Frar.

We shall calculate the value C,. Let SO(r—1)/SO(n—3)— Q,_,(C) be the Hopf
fibring. For arbitrary fixed pair (C,, C;) of SO(n—1)/SO(n—3) we have

612y C=| (Cyy AytidyD, (Coy Artidy

<CZ) Az‘_iA3>7 <Csy A2_1A3>

We take an orthonormal pair (D,, D) of SO(n—1)/SO(n—3) such that <C,, D;>
=0 (2<7<3, 4<j<5) and set real orthonormal vectors 4,, 4,, 4, and 4, by

i | z()n-3
Qn—3(0 )

A, = sing(sind- C,—cosd- C,)+-cosp(sina - D,—cosar - D;)

A, = sinn(cosf- C,+sinf- C,)4cosn(cosa+ D, ~+sing - Dy)

A, = —cosgp(sind-C,—cosf- C;)+sing(sing - D,—cosa - D)
A, = —cosn(cosf- C,+sind- C,)+sinn(cosa - D,~+sina- D;) ,

(6.13)

where 0<<0, a<<w, —7z/2<<p, n<<z/2. By extending 4,, 4,, A, and A, to an
ordered real orthonormal basis 4,, 4,, -+, 4, in C*~* we get (4,, 4,, ---, 4,)E
SO(n—1). Take an open set Uc Q,_,(C), where Q,,_,(C) is a set {B= 0, _4C):
|8, TI"((Cy Co))|1*+18, II"((C,, —Cy))|*=0} in O, ,(C), and a local cross-
section o=(D,, D;) of U into SO(n—3)/SO(n—>5) with respect to the Hopf
fibring: SO(n—3)/SO(r—5)— 0,_;(C). Then we see easily the set {(4,, 4;)e
SO(n—1)[SO(n—3): (4,, A,) is defined at (6.13) for o=(D,, D;)} is a double
covering of an open set in Q,_4(C). We have

{dA, A> = —dp,d4,, A;) = —dn,

<{dA,, A,y = —singpcosndf-+sinygcospda-cosgsing {dD,, D>,
(6.14) <{dA,, A,> = sinncospdf—singpcosnda—cosnsingpdD,, D>,

<d4,, A;> = cosp(sinaldD,, 4;>—cosaldD,, 4;)

<dA4,, A;> = cosn(cosaldD,, A;>+sinaldD;, A,)

By (6.14) we get
(6'15) <dA2» A4> /\<dA3’ A4>/\ = A<d4,, 4, /\<dA3; A,>

= (sin’ycos’p—sin’pcos’y) (cospcosn)™~°

X d¢> A do ,\da A dn A 1216<dD" A4 A <dD;,, Ai> ’

(i>6).

and

(6.16) [[<C,, A,4-id>, <C,, A,+id>||* = 4|singsiny|®
<Cza Az—’iA3>w <Ca» Az_lAa>

Thus we obtain
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(6.12y C,= (n—3) (n——4)§ | singsing | | sin*zcos’p— sin’gpcos’y |
| cospcosn | " *dpdn X S Q"
Qn-5(0)

= 2(n—3) (n—4)S | singsiny | | sin*ycos’p—sin’gcos’y |

X | cospcosn | **dpdn

—-__ 16
=)=’
because of g Qi =2 and S (singsinn)?*(sin’pcos’n—sin’ncos’p)
Q0 E

2
(n—1) (n—2) (n—3) (n—4)

E={(n, ¢): 0<p<z/2 and 0<7<p}. Thus we have proved the equation (6.1)
for a sufficiently small D. Now let D be an arbitrary open set in C* with compact
closure. We take a finite covering {D_ }:_, of D such that each D, has a differen-
tiable local cross-section of f into SO(n+1)/SO(n—1). Let {g.} be a partition
of unity subordinated to {D,}. Taking a mapping P,: D, X Q,_,(C)—D, defined
by PA(g a))=q for (g @)D, 0, (C), we put #(D,, Q)=31n(p, a)g.(ps)
Then we obtain

(6.17) SQ (D, a)da = 3 SQ #(D,, a)da

n—1 n-1

5=1

X (cosgpcosn)”*dpdn = , where

=5 gl ()

Dsx@Qy-3

x| e
s D

— 2$ 2,
D
where ¢, is a mapping of D, X Q,_,(C) onto f(D,)" defined by (6.6). Q.E.D.

7. Equidistribution theorem

We define the defect 8(a) of £, by

(7.1) 8(a) = lim inf % .
Since m(r, ) is non-negative, 8(«) is non-negative for any a=Q,,_,(C). We see
clearly that 8(a)=3§(a) for any a=0Q,,_,(C). By Theorem 2, Lemma 4.5 and the
fact that T(r)— oo if 7— oo, we have

— lim inf (1— N @)
(7.2) S(a)—l”mf(l T(f)‘f‘).
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Then we have the following equidistribution theorem.

Theorem 5. §(«) is equal to zero for almost all a=Q,,_,(C) with respect to
the volume Q.

Proof. By the Fatou’s preparation theorem we have

o inf(1— N ) }
O<Son_15(“)d“< So,._l{h‘fiinf == e
.. _ N, o)\;. 1 -<~1
<timint [ (1877 = timind(2— 5{, N cdda)
. 1 r
= lim inf (2 0 SQ{ [an, a)dt}doc)
— lim inf (2— Lg'dtg n(A(t), a)da)
700 T(r) 0 Qn—l
= lim inf (2—2) = 0 (by Theorem 4).
Thus we obtain 8(a)=0 for almost all a=Q,,_,(C). Q.E.D.

If the image f(C®) does not intersect with £, we have §(a)=1. So we have

Corollary. Let f be a holomorphic mapping of C* into Q,,_,(C) (n=3) satisfy-
ing Conditions (A) and (B). We put W={a=0Q,_,(C): f(C*)NE,=¢}. Then the
set W has measure zero with respect to volume Q".

RemaARk 3. In the case of holomorphic curves (f: C—P,(C) holomorphic
mapping), it is known that 0<<8(¢)<1 for each hyperplane ¢ (c.f. [1], [5] and
[6]). But in our case we can not prove that §(a)<1.
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