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0. Introduction

Let/be a holomorphic mapping of a complex line C into a complex pro-

jective space Pn(C) and suppose that the image/(C) is not contained in any hy-

perplane of Pn(C). Put V[t]={z^C: log|#| <t}, and for a hyperplane ξ in

Pn(C) let n(t, ξ) be the number of points in V[t] Π f~\ξ)> Let Ω be the colsed

form of degree 2 associated with the Fubini-Study metric on Pn(C) and norma-

lized as I ί l * = l . The counting function Mr, ξ) and the order function T(r)

being defined by

(0.1) N(r, ξ) = \'n(t, ξ)dt,
Jo

(0.2) T(r)=[dt\ f*Ω
Jo Jvirt

respectively, the following equation is known as the First Main Theorem:

(0.3) N(r, ξ)+(m(r, ξ)-m(0, ξ)) = T(r),

where m(r, ξ) is a non-negative function defined for r^R+ and hyperplanes ξ in

Pn(C). The term (m(r, ξ)—m(0, ξ)) is called the compensating term. It follows

from the equation (0.3) that the image/(C) intersects with almost all hyperplanes

in Pn(C). Furthermore it is known that the number of hyperplanes in general

position not intersecting with/(C) is at most w+1. These results are originally

due to Ahlfors, and treated also by H. Wu [6] and S. S. Chern [1] in a modernized

form.

Let / be a holomorphic mapping of C2 into a complex quadratic Qn_λ{C)

(n^>3) satisfying certain non-degenerate conditions [§2]. We consider Qn_x(C)

as a fixed hypersurface in Pn{C). We consider a special family of (n—2)-dimen-

sional projective spaces Pn_2(C) in Pn(C) parametrized by a Grassmann manifold

G(R) of 2-dimensional linear spaces in Rn+1 [§1]. This family determines a

family of (τz-3)-dimensional complex quadratic ξcύ(a^G(R)) in Qn_λ{C)^ each of

whose elements is a Poincare dual of the form Ω2 in Qn^{C),
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In this paper, we shall consider a value distribution problem in two complex

variables with respect to the holomorphic mapping/and the family {ξa}. The

complex quadratic J3«-I(C) being a double covering space of G(R), we may take

Qn^1(C) as a parametrizing space of the family {ξa} in place of G(R). Thus we

have a setting similar to the case of holomorphic curves (holomorphic mappings

of C into Pn(C)). Furthermore Ω is an invariant form on Qn.λ{C) by a certain

transformation group [§5]. This fact also plays an important role as in the case

of holomorphic curves [§6].

Our main results are as follows: (1) First Main Theorem [§4], (2) the

Crofton formula [§6] and (3) the Distribution theorem [§7]. In more detail, put

Δ(r) = {(*„ * 2 ) e C 2 : log|*,| <r{ί= 1, 2)}

and define

n(A(r), a)= Σ «(/>„ a),

where n(pi9 a) is a certain real number [§3] such that n(piy a)=l if f(C2) inter-

sects transversely with ξ^ at/(/>,.). We also define the following functions:

(0.4) N(r, a) = \ n(A(t), a)dt (counting function)
Jo

(0.5) T(r) = ["dt [ /*Ω 2 (order function).
Jo J Δ U )

Then our First Main Theorem states:

(0.6) N(r, a)+m(r, a)-m(0, a) = T(r),

where m(r, a) is a non-negative function defined for r e . B + and submainifold ξa

(a^G(R)) [§4]. The Crofton formula is as follows:

(0.7) f n(A(t), a)Cl»~\a) = l\ / * Ω 2 .

Finally the distribution theorem says: The image f(C2) intersects with almost

all submanifolds in {ξj (a^G(R)) i.e., we have ί Ω f l-1=0 for W=

We note that W. Stoll [4], P. Griffths and J. King [2] also developed the

First Main Theorem in several complex variables. But our setting is different

from theirs.

The author expresses his hearty thanks to Professor S. Murakami and

Professor T. Ochiai for their kind encouragement and guidance.

1. Preliminaries

We shall recall several basic facts about the complex protective space PJ<C)
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and the complex quadratic £)w-i(C) (c.f. [3]), and moreover we shall define a

special family of submanifolds in Qn_x{C), Let CM+1(resp. Rn+1) be the complex

(resp. real) vector space of (n-\-l) tuples of complex numbers (z°, •••, zn) (resp.

real numbers (x°, •••, xn)). We define a symmetric bilinear form ( , ) on Cn+1 by

(1.1) (Z, W) = z°w°-\ \-znwn

for Z=(z°y -.-, zn) and W={w\ .-•, wn). For Z=(*° , , sn) we put Z={z\ ••,

3Λ), where the bar denotes the complex conjugation. A vector Z G C M + 1 - { 0 } is

called real if Z=Z. We define a hermitian inner product < , > on C w + 1 by

(1.2) <Z,W> = (Z,W)

for Z, W(=ΞCn+1. We put | |Z| |=<Z, Z) 1 ' 2 . For the complex projective space

Pn(C) of dimension n, we have the natural holomorphic fibring (called the Hopf

fibring)

(1.3) Π : C » + 1 - { O } - P K ( C ) ,

where Π(Z) is the line passing through the origin and Z. We remark that the

natural conjugation Zh^Z in Cn+1—{0} induces a diffeomorphism

z<=Pn(C). Let Ω be the 2-form of type (1, 1) on C"+1—{0} given by

(1.4) β = 4h
Z

It is well-known that there exists a unique 2-form Ω of type (1,1) on Pn(C) such

that Π*Ω=ί2. Then Ω is the Kahler form associated with the Fubini-Study

metric on Pn{C) and we have

(1.5) ( ΩT

We consider a family of subspaces H of Cn+1 such that H is of (n— ̂ -dimen-

sion and Z^H whenever Z<=H. With such an H, we can associate uniquely a

real subspace of Rn+1 of dimension 2 by

(1.6) {X^Rn+1:<XyH> = 0}.

We see that this gives a one to one correspondence, and hence the above family

of Hys is parametrized by the Grassmann manifold G(R) of 2 planes in Rn+1.

Especially we note that [H]=ϊ[(H—{0}) is an (n—2)-dimensional projective

space in Pn(C).

On Pn(C) with homogeneous coordinate z°, , #n the complex quadratic

Qn-^C) is a complex hypersurface defined by the equation

(1.7) (*°)a+ +(*") a = 0.

Now the unit sphere 5 2 M + 1 - { Z E C M + 1 : | |Z | |=1} is a principal fibre bundle over
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Pn(C) with structure group S\ For a point q<=Qn_λ(C), take a point
such that ΐ[(Z)=q. We can write Z uniquely in the form Z=(X+iY)ly/~2,
where X and Y are orthonormal real vectors in Cn+1. Conversely if Z=(X-\-iY)l
X / T G S 2 ^ for orthonormal real vectors X and Y, then we have Iί(Z) e j3«-i(C).
Therefore we have

(1.8) S2"+1 Π U-\Qn-1(C)) = {Z= (X+iY)IVΎ: X and Y
are orthonormal real vectors} .

The group SO(n+l), considered as a subgroup of U(n+l), acts on 5 2 Λ + 1

and leaves the submanifold S2n+1f] TJ'^Q^C)) invariant. Moreover SO(n+ί)
acts transitively on S2n+1f] Tί^iQn-iiC)). The isotropy subgroup of SO(n+ί)
at Z 0 = ( l / v / T , ij\/~2, 0, •••, 0) coincides with the subgroup SO(n—ί) of SO
(n+1). We denote an element £ of SO(n-\-l) by

where each X, is a column vector. Then, in the space SO(n-{-l)/SO(n— 1), the
coset including £=(X 0 , X1? ..-, Xn) can be represented by the first two vectors
(Xoy X^), Under this identification, we have a diffeomorphism i: SO(n-\-ί)/SO
(rc-l)->S2M+1Π π-\Qn-ι(C)) defined by

(1.9) i((Xoy X,)) = -^(Xt+iXJ .

From now on we also identify SO(n+l)ISO(n—l) with S2n+1Γ\ ΐl~\Qn-i(C))
by the above diffeomorphism. We denote by Πi the projection: SO(n-\-l)ISO
(n-1) -* Qn. λ{C) defined by

(1.10) Πi((^ w Xi)) = U((Xo+iXi)l\/Ύ)

for (XQy X1)^SO(n-\-\)lSO{n—\). Note that the space Qn-λ{C) also can be
identified canonically with SO(n+l)/SO(2)x SO(n— 1).

To each point a= Πi((^0> Xi)) m Qn-i(C)> we assign the 2-dimensional
linear space spanned by {Xo, X^ in Rn+1. Through this assignment, Qn^λ(C)
is a double covering space of G(R). We see that the function |<Z, IF>| 2 on

S 2n + i χ 5 2« + i i n ciU Ces a function | Π(Z), Π W I 2 on Pn(C)xPn(C). For each
-^C), we consider a complex submainifold ξ& oί Qn-x(C), defined by

(1.11) f Λ = { / 8 e ρ i B . 1 ( C ) : 1/9, α | 2 + 1/5, α | 2 = 0} .

Let (Xo, X1)^SO{n-\-\)jSO{n-\) and set Π^ί^o, Xi))=a. Consider the
complex subspace H of Cn+1 orthogonal to the vectors XQ, Xλ. We have ξa=
Qn-i(C) Π [H]. [H] is a Poincarό dual of the form Ω2 in Pn(C)y and hence gΛ is
also, in Qn__λ(C), a. Poincarό dual of the form Ω2 restricted to Qn_λ{C). Finally
we remark that each ξ^ is a complex quadratic QW_3(C) and ξoi=ξα-
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2. Holomorphic mapping

Let/be a holomorphic mapping of C2 into Qn^{C) (n^>3). We consider
the following two conditions on/.

Condition (A): / is an immersion.
Condition (B): For each a^Qn-.1(C)y the set {p<=C2: f(p)<=ξΛ} is discrete.
For each point p^C2, we can take a small neighborhood U(p) of p such that

there exists a holomorphic lift F=(/°, •••,/*) of / on U(p) into Cn+1—{0} i.e.,
UF=f.

Proposition 2.1. Condition (A) is equivalent to the following: for each point
p of C2, choose a holomorphic lift F=(f°, •••,/*) off on a neighborhood U of p, then
we have

(2.1) rank

J y * " >

df
dw,' '"'

df
dw' '

Γ
df
dw1

df
dw*

(P) = 3,

where (wly w2) is a coordinate system on the neighborhood U.

Proof. We identify the real tangent space Tz(Cn+1) at a point Z in Cn+1

with Cn+1 in the ususal way. For^>, we take (Xo, Xly •••, Xn)(=SO(n+l) such

that (Xo+iXJIVΎHFmiP)- T h e n t h e t a n § e n t s P a c e ^ o + ί i i ) / ^ 2 n + 1 )
has a basis /(Xo+/X1)> ^ o ~ ^ i , i(X0-iX,), X2, - , ^n, ^ 2 , - , ^ « Let Γ/(/>)

be the subspace spanned by X2, •••, Xn, iX2, •••, zXM. The projection Π =

Πis^+^π-^. jco) induces a linear isomorphism Π*: Tf(ip)-*>Tf<:p)(QH-1(C))
(c.f. [3] p.p. 279). Hence, T^Q^C)) is identified with the subspace of Cn+1

orthogonal to the vectors (Fj\\F\|)(p) and (Pl\\F\\)(p) with respect to < , >. Since
we have <F, F>=0 on [/, we see <dF, F>=0. We have

(2.2)
\\F\\

± £

where w~xj-\-iy3'. Therefore we get

(2.3) # = Σ fί -V

This shows Proposition 2.1.

We define

Q.E.D.
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(2.4) QΛ-3(f(P)x) = W^QUC): I /(/>), a 12+ I /(p), a | 2 = 0} ,

that is,

Then Qn-3(f{py-) can be identified with SO{n— \)jSO{2)xSO{n— 3) as follows:
Choose an element (Xo, Zj, - , J , ) E S O ( » + 1 ) such that ( X 0 + ί X 1 ) / v

/ T =
CF/I|F|I) (p). Let (At, A,)e 5O(n- l)/5O(n-3) where ^ = ( « * > , «,„)' (ί=
2, 3). Consider the mapping

(2.5) (A2y Λ) - ( Σ ! Λ A , Σ ? - A A)

We see easily that this gives an identification of SO(n—l)/SO(2)xSO(n—3)
with Qn-3(f(P)Δ~)y which is independent of the choice of lift F.

For αGρ M . 3 (/( ί ) " ) we take {Xo, X1)^SO{n^Γ\)ISO{n-l) such that Πi
((Xoy X1))=a. Then the following condition is independent of the choice of
(Xo, Jfj),

(2.6) 9 <(dFldtD2)(p), (X0+iX1)IV2
φ θ .

Proposition 2.2. The condition (2.6) holds if and only if f intersects trans-
versely with ξa

Proof. Put (FI\\F\\)(p)=(X2+iX3)lλ/'J. Then we take an element
(X0) X19 X2y X3, •••, Xrt)<=SO(n+l). As in the proof of Proposition 2.1, we see
that the tangent space T^p^Q^^C)) is spanned by the vectors X09 iX09 X19 iX19

X49 iXi9 •••, Xny iXn and the tangent space T/ίP^(ξω) is spanned by X49 iX4, •••,
XH9 ̂ t h r o u g h the identification by ft*: 7 W ^ 3 W l Γ ( S 2 * + 1 Π U~\Qn-,(€)))->
Tftpϊ{Qn-ι{C))' Therefore by (2.3) (or (2.2)) it is sufficient to show that the
condition (2.6) is equivalent to rankΛ \{dFldwλ)(p\ iφF/dwJip), (dF/dw2)(p)y

i(dF/dw2)(p)y X2, iX2y •••, Xm iXn)=2(n+l). Now this can be seen easily.
Q.E.D.

Now we consider the following condition for a= Πi((^o> Xiΐϊ^Q

N V _ _ , _ 1 / X J Γ / , v__y , . . . 1 7 I v _ > , <{dFldw2){p)y (X0+iX1)IV2> = Q

' ' <{dFldw^(p)y (Xt—iXJWTϊ, <J(dFldw2){p)9 (Xo—iX1)IV~T>

Since the vectors (dF/dw^ (p) and (dF/dw2) (p) are linearly independent, the set
of elements a^Qn-^fip)^) satisfying the condition (2.7) has measure zero in

REMARK 1. We shall remark here a certain sufficient condition for Condi-
tion (B). For w(=C we put Cl={(zy w): z<=C} and C2

w={(wy z)\ Z<ELC}.
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Assume the following condition (C): none o//(C£,)(ί=l, 2, w^C) is contained in

a hyperplane in Pn(C). Letf(p)(=ξa and set Πi((^0> X$)=a. We put g^w^w^

=<F, ( X 0 + ^ ) / V T > K , w2) and g2(wly w2)=<F, (JSΓ0-iΛ:i)/v'T>K, O on

U(p), where (wly w2) is a coordinate system on U(p) such that w{{p)=Q ( i=l , 2).

Using the Weierstrass' preparation theorem we have the following representations

g(™ W)

where a^wj, b^w^ and Â Wj, ^2) are holomorphic such that α^OJ^O for

tf/]L(O)φO, δχθ)=O for 0<z</2, έ/2(0)φ0 and ht{w19 w2)^0 ( i = l , 2). We denote

by Λ^i) the resultant of {aQ(w^ ha^wjwίή and (έo(^i)H h*/2(^i)^22).

Since the function Rfai) is holomorphic, we have that i?(^ x)ΞOOΓ the following

(D): the set {w1: R(Wj)=0} is discrete. If, under the assumption of (C), / satisfies

(D) for each^(=C2 and α G ^ - ^ C ) such that f(p)eξΛy then Condition (B) holds.

3. Certain forms on Q^^C)—ξa

We define one 2-form ΩΛ on Qn_x{C)—ξΛ by

(3.1) ^(β) = ddclo

where dc = — :(3—9). We choose a unit vector ZΛ such that ΠC *̂)—&> and
4-πi

define a mapping P Λ of Qn-i(C)—ξΛ into PX(C) by
(3'2) P-W) - i
where Zβ<=S2n+1 such that Π(^β)=/8, and Π is the Hopf fibring S

PΛ is well-defined and holomorphic. Let ω be the Kahler 2-form associated

with the Fubini-Study metric on PAC) and normalized as ω= 1. Then P*ω

is independent of the choice of ZΛ. From now on we also denote by Ω the re-

striction of the form Ω to Qn_λ(C).

Lemma 3.1. We have

(3.3) Ωβ = P*ω-Ω on Qn-,{C)-ξ-

Proof. Let σ be a local holomorphic cross-section of the Hopf fibring Π

Cn+1—{0}^Pn(C) defined on an open set U in Q^Q—ξ^. Then we have

= -<«e log {|<σ, ZΛ>| 2+|<<r, Z α > | 2 } - ^ log ||σ||2

= P * ω - Ω . Q.E.D.
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We define another 2-form Ω£ on Qn_λ{C)—ξa by

(3.4) Ωi = Ω+P*ω on QM.1(C)-ξΛ.

Put

(3.5) a: = -aΛ Λ n i on ρ Λ _ x ( C ) - ^ .

By (3.3) and (3.4), we have

(3.5)' Ω: = (Ω

- Ω 2 -P*(ω Λ ω) = Ω2 on Qn_χ{C)-ζΛ .

Let/: C2->^rt_j(C) (w^>3) be a holomorphic mapping satisfying Conditions

(A) and (B) in §2. For a point/) in C2, we take a small neighborhood U(p) of p

and a coordinate system (wv w2) on it satisfying wi(p)=0 ( ί = l , 2). Let i*1 be a

holomorphic lift of/on E/(p) into Cn+1— {0}. Set/(/>)efΛ. Then we define a

real number n(p, a) by

(3.6) «(p, a) = lim ( rf^.log{ | <F, ZΛ> 12+ | <F, ZΛ> |2} Λ / * P > ,

where ϋ β ( p ) = { K , w 2 ) e ί / ( p ) : | ^ | 2 + | ^ 2 | 2 < ε 2 } and

Lemma 3.2. n(p> a) is well-defined and finite. Especially if f intersects

transversely with ξa atf(p), then we have n(py α ) = l .

Proof. First we choose a local lift F and a local coordinate system (wly w2)

such that Wi(p)=0. Take two positive real numbers £t and £2 such that U(p)ZD

USl(p) ID U92(ρ). Then we have

(3.7) 0 = f /*^*(ωΛω)

'. t»-*u*2ίpfl°g{ ' < J P > ZΛ> ' 2 + ' < F > ^ Λ > ' 2 } Λ / * P * ω "

Therefore we obtain

(3.8) j ^ ( ^
c log{ I <f, ZΛ> 12+ I <F, Za> 12} Λ f*P*ω

= lim ( d1og{ I <F, Zα> 12+ I <F, ZΛ> |2} Λ /*P*ω .
εψo JdUgCP)

The left hand-side of the equation (3.8) is finite and hence so is, the right side.

In the same way, we see that n(py a) is independent of the choice of a local co-

ordinate system. Now we shall show that n(py a) is independent of the choice of

F. Take two holomorphic lift Fx and F2 of/. Then there exists a holomorphic

functiong such that F1=gF2 and g(q)φ 0 at any q<= U(p). We have
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(3.9) d1og{ I <Flt Za> 12+1 <Fiy 2ay 12}

= d°\og I g I 2+<Πog{ I <F2, Za> 12+ I <F2, Za> 12}

= - L [d log ^—rf log g\+dc\og{ I <F2, Zβ> 12+ I <F2, ZΛ> 12} .
4t

Since the form/*P*ω is closed on dUe(p), n(p, a) is independent of the choice
oίF.

Next suppose that/intersects transversely with ξa atf(p). Then

lt Za>, <βFldat, Za>

<βFldtolt Za>, <dF/dw2> Za>
 {P) '

and hence we can choose (wlf w2)=((F, Zay, ζF, Z^}) as a coordinate system on
U(p). We have

n(p, a) = lim\ d<log( \ to, \ 2 + | w21
2) Λ f*P*ω .

S|0 J \w\\ +\u)2\ =*

Putting w1=r1e*\ W2=r2e
iθ2, rx=r cos t and r2=r sin t (O^θ^lπ, 0<£<7r/2),

we have

7 2π r,2

and

1 1

—r1r2

2dr1 Λ dθ2—r1

2r2dr2 Λ rf^) .

Thus we see

rflogfa + r , 1 ) Λ / * P * ω = - ^ s i n ί cos t dθ, AdtΛrf^2

on r = constant.

On the sphere {(^, «?2)e t/(/>): | ^ J 2 + l^2 |
2=^2}) dθ1/\dt/\dθ2 is a positive

form. Therefore we have w(p, α ) = l . Q.E.D.
We denote by (zly z2) the standard coordinate system on C2. Put Δ(r)=

Theorem 1. Letf: C2^^Qn.x{C) (n^3) be a holomorphic mapping satisfying
{A) and (B). Suppose/(9Δ(r)) Π ? Λ = φ . Then we have

(3.10) f /*Ω2 = n(Δ(r), α)+ ( dc[-\og{ \ /, α 12+ | /, α 12)/*(Ω+P*ω)] ,
JΔ(r3 JθΔ(r)
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Proof. By (3.1), Lemma 3.1, (3.5) and (3.5)', we have

(3.11) ( /*Ω 2 = lim[ /*Ω 2

JΔOJ) εψo jΔ(r)-ΣC7εC/»<0

= limf -dd° log(\f, a\2+\f, σ | 2 ) Λ

= limf Λ/c[-log( I /, «12+1 /, a 1 2 ) / * ( Ω + i » ] ,
s * 0 j Δ ( > Σ l / ( / >

where Uz{p^) is such a neighborhood of £,. as given in the definition n(p£, α).
Applying Stokes Theorem to the equation (3.11), we have

(3.12) f / * Ω 2 = ( d<[-log(\f,a\2+\f,β\2)f*(Ω+P*ω)]

lim Σ ( ^c[log{ I <F0 Za> 1

where F£ is a holomorphic lift of/on ί7(^)t ). We have

(3.13) limf <Γ[log||F, | |2./*Ω] = limί /*Ω 2 - 0.

Set r 2 = I ec J 12+ I wf | 2 , where (ê J, «;?) denotes a coordinate system on U(pi), we

see

(3.14) dclog{ I <ί\, ZΛ> 12+ I <Fi9 Zay 12} =

and

(3.15) dd<log{\<.F{,Zay\*-

Since Hi*1,!! is positive on U(p{), we have

(3.16) <Γlog IIF. H2 = 0(1) (dw}+dwl+dwz

t+dwj)

and

(3.17) f*Ω = 0(l)(dw]Adm}+dw}Admϊ+dwϊAdwϊ+dw2

eAdml).

Since the both sides of the equation (3.8) are finite, comparing (3.14) and (3.15)
with (3.16) and (3.17), we have

(3.18) limf ^
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(3.19) limί dc[log{ I <F,, Z Λ >1 2 + | <F,, Z^| 2}/*Ω] = 0 .

Q.E.D.

4. First Main Theorem

Let/ : C2^>Qn^(C) (n^3) be a holomorphic mapping satisfying (A) and

(B). For a point α in Qn_λ(C)> we choose two real numbers r1 and r2 such that

rλ>r2 and the image f((r(A1)\A(r2)) does not intersect with ξa.
We see easily |/5, α | 2 + | /3, α | 2 ^ 1 for y β e g ^ C ) . Hence ψ Λ = - l o g

(I /, α 12+ I /, S12)/*(Ω+P*ω) is a positive form (non-negative form, precisely)
on Δ(O\Δ(r2). Putting ^ = Λ +ίβy(y=l, 2), we can write ψ Λ on A(rO\(A(r2) U
{(^, 0 ) G C ? } U { 0 , *)eC 2}) as follows:

(4.1) ^ Λ = - log( I /, a 12+ I /, a 12)

= ψ i ^ Λ dθ1+^2ds1 Λ dθ2+ψ3ds2A dθΛ

s2 Λ dθ2+ty5dθ1 A dθ2+ψ6ds1

REMARK 2. If we write Λ/ΓΛ with the standard coordinate system (zlf z2) on
C\ we see ^(ar^ « 2 )=^ 1 (« 1 , ^z)^ 1 , ψ ̂ u ^ 2 ) = ^ 4 ( ^ i , ^2>252 and
^aψ yί^!, ^2) O'=2, 3, 5, 6) for certain functions ψ. f.(ί=l, 2, •••, 6).

L e m m a 4.1.

(4.2) -ψ x^O, i

Proof. Choosing a holomorphic lift f o n a sufficiently small open set U in
), we have

(4.3) /*(Ω+P*ω) =

where ΐ[(Zoi)=a. Now we obtain

(4-4)

[
where (esi+ί'*i, es2+<92) is the restriction to U of the standard coordinate system in

C\

< 4 5 >

Comparing (4.1) with (4.5), we have ψ2—ψ3.
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We shall show ψ^O and ψ4^

(4.6)

J 1_
2π \\F\\*

y
 Λ # ' ) - Λ

where F=(f°, /\ ••-,/*). By the Schwartz inequality and the linear indepen-
dence of vectors F and dFjdzj (/=1, 2), we have

>

(/= 1,2). Thus we have

, and έ/̂ y ^ d%j=e2sj(—2idsj ^ dθj)

or

As for ^ c [ log( I <F, Za> \ 2 + | <F, ZΛ>| 2)], putting f=<F, ZΛ\ f=<F, Frt> and
fJ—0 (j=2y •••, w) in the equation (4.6), we have also the inequality (4.7) (in this
case we replace > by ^ 0) with respect to the coefficient of dsj/^dθj (7=1, 2).

Q.E.D.
Let r be in [r2, r j . We devide 9Δ(r) into 3Ax(r) and 3Δ2(r), where

(4.8) 3Δ,(r) = {(*„

Lemma 4.2. We have

= r} (/ = 1, 2) .

(4.9)
JθΔ(r; 47rL JS^S 1

Proof. First we remark that dθλ Λ
forms on 3Δx(r) and 3Δ2(r) respectively.

JθΔ2(r)

a n d ^^2 Λ ̂ 1 Λ dθ1 are positive
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By (4.1) and the preceeding remark 2, we have

dcψa

= J_Γ {-?**+*k + &h]dθ lAds 2

Clearly we have

Therefore we obtain

(4.10) Γ d^a = M \-

Similarly we obtain

(4.11) ( i'+.= X\ [ψ-ψ
JθΔ2(r) 4π JθΔ2Cr)L9ί2 ΌS1

Now we shall consider the equation (4.10). We have

(4.12) - U d-pdθlAds2Adθ2^π JθΔi(r) ds2

= J_ f
^7t JδΔKr)

M
4τΓ

Since we have

ψ4dθlAds2Adθ2

= ( 4 (Γ2 Ψ X ^ " ' ,
JθΔiCr; l\J-oo

θΔKr)

Js1χs1\J-°*

we obtain
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(4.13)

Js xs \J-» or

By (4.10), (4.12) and (4.13), we obtain

(4.14)

By the similar argument as we derived (4.14) from (4.10), we derive the follow-
ing from (4.11)

(4.15) J-ί dcψa=Mi 1[-ψ2-ψί]{er+i\^oήdθlAdθ2
4-π J9Δ2cr) \π Js1χs1

JθΔ2(r)

By (4.14), (4.15) and the definition of ψa we obtain (4.9). Q.E.D.

Lemma 4 3. We have

(4.16) ί
JΔC>O 4TΓ Or L J θ Δ i C r ) JθΔ 2 Cr)

Proof. By Theorem 1 and Lemma 4.2, we have only to prove that

4τr JS1XS1

We define a mapping A: CZ->C2 by /?((#!, #2))=(#2, s^). Then (foh) satisfies
Conditions (A) and (B), and we have

and

Z . > | 2 + | < F , Z Λ > | 2 ] Λ / * P * ω

εψo



FIRST MAIN THEOREM OF HOLOMORPHIC MAPPINGS 439

On the other hand, we have from (4.1)

(4.17) (h*ψa) = ψ.oh ds2 Λ dθ2+ψ2oh ds2 Λ dθ^ψ.oh dsλ Λ dθ2

4oh ds, Λ dθ^ψsoh dθ2 Λ dθ.+ψ.oh ds2 Λ &

By Theorem 1, (4.14) and (4.15) in Lemma 4.2, comparing (4.1) with (4.17) we
have

(4.18) ( /*Ω 2 = ( A*/*Ω2 = »(Δ(r), α)
J ΔO) J ΔCr)

^°Ker+i\ er+'°ήdθ2 Λ dθt- [ψtoh(er+'\ e^'^dθ, Λ

s i χ S i J

+4^
4τΓ O

We see easily

^λohdθlh ds2 Adθ2=\ ψ.dθ, Λ dsx Λ ί^

= \ ^ ^ Λ dθ2

JθΔ2Cr)
\
JθΔ2C

and

\ ψ4oA dθ2 Λ &! Λ ^ i = \ ψβθλ Λ Λ2 Λ dθ2

JθΔ2Cr) JθΔiCr)

dθ2

(
JθΔi(r)

Therefore we have only to prove

= 0 (i = 1 , 4 )

For any a, /3e [0, 2τr], we have

Thus we obtain

Q.E.D.

For the holomorphic mapping/: C2-»5rt_!(C)(>i^3) satisfying Conditions
(A) and (B), we put

T(r) = Γ Λ ( /*Ω2 (order function)
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(4.19) N(r, a) = [ n(A(t)y a)dt (counting function)
Jo

We need the following lemma, which can be proved in a similar way as ([5] p.p.
502).

Lemma 4.4. For any a, m(ry a) is continuous with respect to r e [0, oo).

Theorem 2. We have

(4.20) T(r) = m(ry a)-m(0y a)+N(r, a) for any r>0 ,

and m{ry a) is non-negative.

Proof. Integrating the equation in Lemma 4.3 with respect to rE[r 2, r j ,
we have

ΓVΛ /*Ω2 = Γn(Δ(r), a)dr+m{r19 a)-m(r2y a).
J Y2 J ΔCr) J Y2

By Lemma 4.4 we obtain the equation (4.20). It follows from Lemma 4.1 and
Lemma 4.4 that the function m(r, a) is non-negative. Q.E.D.

Lemma 4.5. For any r, m(ry a) is continuous with respect to α

We also omit this proof by the same reason as in Lemma 4.4. (c.f. [5] p.p. 504).

Theorem 3. There exists a positive constant C satisfying

(4.21) T(r)+C>N(ry a) whenever r>0 and α s Q ^ C ) .

Proof. By Theorem 2 we have

T(r)+m(0y a)^N(r, a) for any r > 0 .

Therefore by Lemma 4.5 we have the equation (4.21). Q.E.D.

5. Induced form by f

We denote by (Xoy Xly -,Xn) an element of SO(n+l), where X/s(0<i<n)
are column vectors, and we put Xi=(xiQJ •••, xin)*. The left invariant forms θi5

w) on SO(n-{-ί) are defined by the following equation:

(5.1) ldX$\

dX[

\dX'n«/

X{

\Xil

(dX0> - , dXn) /o,
o,
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where θij=—θJi.

Therefore we have —<dXiy X>?=θμ i.e.,

(5.2) dX^JlθtjXj.

Taking its exterior derivative, we see

(5.3) dθ01 = ΣA? θok Λ θkl = — Σ

We remark that dθ01 is a 2-form on SO(n+ί)ISO(n~ 1). Furthermore it is a lift

of a 2-form on Q^C) by Πi I n fact, let U be an open neighborhood of Qn^

(C), and (X0) Xλ) be a local cross-section of U into SO(n+l)ISO(n-l): Πi

, JΓ1))=identity on U. We have

(5.4) Π^ILC^o, Xi)) = {(Xo, JΓO/cos (9, - s in 0\:

Vsin θ, cos 0/

Then we have on Ul\U)9

(5.5) J0O1 = rf<J(cos 0 Xo+sin β JfJ, (-sin 0.

= d<dx0, x,y.

Let σ b e a local holomorphic cross-section on U into Cn+1—{0} with respect to

the Hopf fibring: Πtf"^identity on U. We can write σ in the form σ=%X+iY

for orthogonal real vectors X and Y at each point of U. Then we see

(5.6) Ω = ddiogUσW = --±-d<d(XI\\X\\), YI\\Y\\>.
Zπ

Thus, dθ01 is the lift of -2τrΩ by Πf i.e.,

(5.7) ^
2ττ

In the equation (5.1) we defined 0̂ o/s and 0 iy's ( O ^ j ^ n ) as 1-forms on

Λ + 1 ) . They are also regarded as 1-forms on 5O(n+l)/5O(n—1). To

prove this fact we shall identify SO(n+l)ISO(n-l) with 5 2 Λ + 1 n Π"1(βι.-i(ί?)).

We take a local coordinate ^ = ( ^ \ •••, x2n~Ύ) on a small open set U in S2W+1 fl Π 1

(Qn-i(C)) and write a point Z(x) of C/ in the form (X0(#)+zX1(#))/v

/T, where

<X0, Xoy(x)=ζX19 Xiy(x)=ί and <j?o, J5C1>(Λ;)=0. For each x, extending X0(x)

and X^x), we take a real orthonormal basis X0(x), •••, Xw(#) in Cw + 1 such that

(Xo, -,XH) (x)^SO(n+l). Then the tangent space TZCxiS
2n+1Π JlΛQn^C)))

has a basis (iX^X^x), X2(χ), ..., X;ί(^), ΪZ2(Λ), •-, ̂ ( Λ ) (c.f. [3] p.p. 279).

In the equation dZ^Y^—dx^ we see — = Z # ( — V l < i < 2 n — 1 ) and hence
« 9Λ " 9Λ»" VΘΛ?'/

- ^ 's are tangent vectors of TZCx^(S2n+1 Π U~\Qn-i{C))). Thus there exists 1̂
ox



442 Y. SUYAMA

forms 0 / s ( l < j^n) and θ/s (2<y<n) on U such that dZ=θ1(iX0—X1)+

Σ (θj+iffj)Xj. Comparing this form with (5.2), we have θ1=ΘJ\/~2'9 θ~θojj

\ / T ( 2 < j < n ) and θ—ΘJs/'ΐ (2<;</z). Thus we have from (5.2), (5.3)
and (5.7)

(5.8) ^

where (Xo, Z x , •••, Xn)^SO(n+ί). For the volume form fl*"1 on ^ ^ ( C ) , we
have

(5.9) (Π?Ω"-Vo.χp = ( ^ - ) (n-l)\<dX0,

/ A' "V "V \ / J V V \

We shall obtain a formula for/*Ω2 on C2. Let ί1 be a holomorphic lift of/
on a neighborhood U in C2 by Π Set (X.+iX,)/^^ =FI\\F\\, where Z z

(/=0, 1) are the orthonormal real vectors. With the coordinate system (x!-\-iy19

on C2, we can write:

dX0 =

dXx = ω2X0-\-\3B3dx1-\'\2B2dy1-\-\5B5dx2-
sr\4B4dy2,

where 5/s (2</<5) are differentiable vectors satisfying <£,., -Bt >— 1, λ/s
(2</<5) are differentiable functions and ω/s( l</<2) are 1-forms on U.
Then we take differentiable orthonormal vectors J9, (2<e<5) such that B2=B2>

B3=a2B2+a3B3y B4=β2B2+β3B3+ββA and B5=J2B2+Ύ,BZ+ <y4£4+ γ 5β 5, where
αz , /3f and j { are differentiable functions satisfying Σ # ί — 1 , Σ i ^ ? = l and
= 1. We choose differentiable vectors B6, •••, .BΛ on E/such that (Xo, X1? J52,
Bn)(=SO(n+l) at each point of U. By (5.8) we have

(5.11) f*a = J -
Lπ

= -7Γ- {[λ2λ572 — X3\4a2β2— λ3λ4yS3α3] (rf̂  Λ </x2+^i Λ

Λ έfy1+[λϊ+λ|]έ&2 Λ dy2

3] (dx1 Λ dy2—dy1 Λ

Furthermore we obtain

(5.12)

— [λ2λ4/52+λ3λ5α272+λ3λ5or3γ3]
2

λ/5] 2 } ί/^ Λ ̂ Vι Λ dx2 Λ
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6. Crofton formula

In §3 we have defined n(A(r), a) for a holomorphic mapping/: C2->Qn-x{C)
^>3) satisfying Conditions (A) and (B). Then we have:

Theorem 4 (Crofton formula). Let D be an open set in C2 with compact

closure. Then we have

(6.1) f n(D9ξ)dξ = 2[ /*Ω 2 ,
jQn-\<LCϊ JD

where dξ=dξ<A=da=Ωn-1.

Proof. First we assume that D is so small that there exists a differentiable

lift σ=(X0, X^j of/ on D: J\ϊσ=f. Let q be a point in D and set f(q)^ξa. For

any real orthonormal vectors Yo, Y1 such that Πi((^o> ^ι))=tf> w e n a v e

, Fo> = , Fo> = 0.(6.2)

We set

(6.3)

and

(6.4)

For a=(A2, A3, •••, An)^SO(n— 1) we write its column vector At as ^4, =

(β, 2, •••, «,„)'. Then we define a mapping ί: Z ) " ^ 5 0 ( « + l ) by

" = {(q, a):q^D,a = (A2, At,

(6.5) t((qy a)) = (2?2, 5 3 , Z o , Xx, 5 4 , ..., Bn) (q)

ja22 a32 0 0 fl42 ••• an2\

X

a 2 3
0 0 aά.

u
0

« 2 4

0

0

« 3 <

1

0

ϋ
1

0

0

0

« 4 4

0

0

••• a

\a2na3n 0 0 Λ4Λ ... annj ,

where (Xo, X1? 5 2 , -.., 5M) (̂ ) is the one given in §5. Let Π r be the projection

Dχ(SO(n-l)ISO(n-3))->DxQr_3(C) defined by Π % , (AΛf A3)))=(q, J\"

((A2, A3)))> where J[" is the projection with respect to the Hopf fibring

(n— l)/SO(n—3)-> Qn_3(C). We consider the following diagram;
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t'
Dx(SO(n-ί)/SO(n-3)) > D'cSO(n+l)ISO(n-l)

(6 6) In' In,
DxQn.3(C) ^

where t'((q, (A2, Λ W M Σ ^ A t e ) . Σ*-i««B<(ί)) and t" is defined by IL°
—t'ΌJl'. Then, in the above diagram, we remark that t"((q, Qn^3(C)))=Qn

ίθΐ e a c h ?eD. Putting t((q, a))=(X0', X/, —, Xn'), we obtain

(6.7)

! x -JΪ

1), Xΰ'-iX1'>A<d(X0-iXι),

Λ - Λ <<M» 4-> Λ

A<dA2, An>

We put C={β^f(D)Λ-: there exists β*^(t")-\β) such that {dt"){β') is singular}.
From Sard's Theorem the set C has measure zero. If we take a^ifiD^XC),
the set (t")~\a) consists of finite elements because of the compactness of D and
Condition (B). We denote by na the number of elements {t")~\a). Then, for
each αe(/(D)J"\C) there exists a connected neighborhood V of a in {f(Dγ\C)
such that (ί") X^) h a s w« connected components and t" maps each component
onto V diffeomorphically. Let {V;} be a locally finite covering of/(Z))J"\C by
such open sets and {φ, } be a partition of unity subordinated to {F, }. Now we
have

(6.8) l^nja = ^ = Σ

= Σ S^(Φ,(α)^) = Σ

= \ -{t")*da=\ -(t")*da,
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where C" is the set of critical points of t". If

*"((?> ctj)) = ot and <9F/3^, ZΛ>, <9F/9#2, ZΛ> (j)

which is equal to

445

ζ\2B2+i\3B3, zay, (xft+tXB,, zay

<X2B2+i\3B3, Za>, < λ A + » λ A Z»>
(?)) = o

for Π(^Λ)=«> then dt"((q, cίj)) is singular because of (6.7). By Lemma 3.2 we

have n(D, a)=na on f(D)^\C. Therefore we have

(6.9) ( n(D, a)da = \ -1) (n-2) ( Λ 1

 Λ rfy1

 Λ ώ* Λ df

X
JQn-3(f(.q) )

<(X2B2-\-i\3B3, Xo

f—

Next we have the following equation:

(6.10) f
JQ

3—λ 3λ 4α 3/5 2) 2] (?)

x
<B2, xo'-ix/y, <B3, xo'-ix/y

+(λM-λ5αD(λJ/85+λ!<yϊ)(ί)J (

<B2, Xo'-ix/y,

n-z'-f-n

<B2, Xo'+L

<(B2, X0'—i.

<β3, Λo iX^y, <Bt,

+(λiαSλl7!) (?)ί
Jθn_3(

<B3, Xo'+iX^y, <B5, X0'+iX/y

In fact, the integral of the other terms which appear at the right hand side of

(6.10) turns out to be zero. For example we consider the following integral:
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7 _ _ <B2(q), XJ+iX^, <B3(q),

Xo'-iX/y, <B3(q),

Ω"

We have

HSOC»-O/SOC«-3)
(a22—ia32)f (a23—ia33)

(a22+ia32), (a23+ia33)

(a22—ia32\ (a24—ia34)

(a22+ia32), (a24+ia34)

where 0 < ^ < 2 τ r . For each vector A~{a^ ai3, ai4y ••-, α^)^ we set A{ by ̂ 4Z =
(α ί2, — ai3y ai4J

 mm,ainy. This induces a diffeomorphism ^ SO(n— ί)^>SO(n— 1)
by A((i4a> ^ 3 , i44, A5y ..., i ί Λ ) ) = ( i ϊ 2 , iϊ 8, iϊB, A> - , iϊ») Then we have

!-ί.SOCn-Ό/SOCn-3)
(a22—ia32), (a23—ia33)

(a22+ia32), (a23+ia33)

(a22—ta32), (a24—ia34)

{a22+ia32), {a24+ίa34)

X \n-3)! dθ Λ

•β/Ά " Λ

Λ

Since we have <dAiy A>>=<dAiy A^ (2</<3, 4 < j<n), we obtain /=0. In
the equation (6.10), the integrals

and

L
L
L

L

/T> y / i ; γ / \ /τ> "V f i Λ*v/\ I 2/ΛM-3

<;iί2, Ao +/Aj >, <±f3, Λo +tΛ1 } I 12

/"D V f I »V / \ /D V^ I *Vt\ I 2/̂ w —3

/ T> V / I 2 V / \ / D V" ' I * ~\7" / \ I 2 /*Λ M — 3

/D y/ I yΛ /r> y/ ι ;y/\ i2πw-3

\£>3, Λo -\-lΛ1 /, \-o4, Ao -\-zΛ.1 / I 12

<£3, Xo'-ixϊ>, <Bt, xj-ix y

3, xj+ix/y, <B5, xj+ix/y

3, Xo'-iχ/y, <B5, χo'-iχ/y

2Ω"

are all equal and furthermore its value is independent of q. We denote by Co its
common value. Then by (5.12), (6.9) and (6.10) we have
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(6.11)
Qn-lCC)

n(D, a)da = ~(n-l)(n-2)cS /*Ω2.
Q JD

We shall calculate the value Co. Let SO(n-l)ISO(n-3)->Qn.3(C) be the Hopf
fibring. For arbitrary fixed pair (C2, C3) of SO(n—\)j SO(n—3) we have

(6.12)
J

<C2, A2+iA3>, <C3,

<C2, A2-iA3>, <C3, Λ -

We take an orthonormal pair (D4y D5) of SO(n—l)/SO(n—3) such that <Cf , Z)y

= 0 (2</<3, 4 < j < 5 ) and set real orthonormal vectors A2y A3y A4 and A5 by

A2 = sinφ(sinθ C2—cosθ C3)-\-cosφ(sina D4—cosa D5)

(6.13)
A3 =

A5 = —

where 0<#, a<π> —π/2<φ, η<π/2. By extending A2, A39 A4 and A5 to an
ordered real orthonormal basis A29 A3y •••, ̂ 4n in C"*"1 we get (A2y A3y •••, ^fw)G
SO(fi—1). Take an open set UczQn.5(C), where gM_5(C) is a set {β^Qn,3(C):
1/5, Π ^ Q , C 3 )) | 2 +|/9, Π"((C2, - C 3 ) ) | 2 - 0 } in ρΛ_3(C), and a local cross-
section σ=(D4,D5) of C/into SO(n—3)/SO(n—5) with respect to the Hopf
fibring: SO(n-3)/SO(n—5)^Qn_5(C). Then we see easily the set {(A2, A3)<=Ξ
SO(n-l)/SO(n-3): (A2, A3) is defined at (6.13) for σ=(D4y D5)} is a double
covering of an open set in Qn_3(C). We have

<Λ4 a f ^ 4 > = -rf^>, <dA3y A5y = -

(6.14)

<rf 2̂, ^4, > = cosφ(sma<dD4y At

<dA9, A,} = cosV(cosa<dD4y At

By (6.14) we get

(6.15) <dA2y A4y Λ <dA3y A4y Λ .- Λ

4, Z)5)>

9 A£y)

Any
Λ

<dD4y A,y Λ

and

(6.16) I <C2) 2

\ C 2 , -ci2 ^

Thus we obtain

<C3, A2+tA3y
/Γ1 Δ ί Δ \
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(6.12y Co = (n—3) (w—4)11 sin^sin^ |21 sin^cos2^—si

I COŜ COS?? I n-5dφdη X I Ω * ' 5

= 2(n—3) (Λ—4)11 sin^sin^ |21 sin2τ?cos2<p—

X I cos<pcos?7 I n~5dφdη

16

because of \ Ω* = 2 and I (sinφsin?7)2(sin29?cos2^—sin2??cos2<p)
J Qf (C) J £

χ(cosφcosV)
n-5dφdv = — — -— — , where

(n-l)(n-2)(n-3)(n-4)

E={(τ]y φ): 0<95<zr/2 and O<77^:^)}. Thus we have proved the equation (6.1)
for a sufficiently small D. Now let D be an arbitrary open set in C2 with compact
closure. We take a finite covering {£),,}£=1 of D such that each Ds has a differen-
t iate local cross-section of/into SO{n-\-\)jSO(n— 1). Let {gs} be a partition
of unity subordinated to {Ds}. Taking a mapping Ps: DsxQn_3(C)^Ds defined
by P,((?, α))=« for (q, a)£ΞDsxQn_3(C)y we put τz'(D5, α ) = Σ « ( ? * , « )
Then we obtain

(6.17) ( fi(A α)dα = Σ (

= 2 ί /*Ω2,
J D

where ts" is a mapping of DsxQn_3(C) onto f(Dsy defined by (6.6). Q.E.D.

7. Equίdistribution theorem

We define the defect δ(α) of ξΛ by

(7.1) δ(α) = lim inf ^ ? α ^ .

Since m(r, a) is non-negative, δ(α) is non-negative for any a^Qn-x{C). We see
clearly that 8(a)=8(a) for any αEj3»-i(C). By Theorem 2, Lemma 4.5 and the
fact that T(r)-+ oo if y-^ oo, we have

(7.2) 8(a) = lim ir
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Then we have the following equidistribution theorem.

Theorem 5. S(a) is equal to zero for almost all a^Qn-^C) with respect to

the volume Ω*'1.

Proof. By the Fatou's preparation theorem we have

0< [ S(a)da< [ (lim inf (1-^%-^M da

< lim inf f (l - ΐ ^ ± ψ ) d a = lim inff2- - U N(r,ά)da

= lim inf ( 2 - - U { Γn(Δ(ί), a)dt\da)

= lim inf ( 2 - ^pXdt \ n(A(t), a)da)

= lim inf (2-2) - 0 (by Theorem 4).
r o o

Thus we obtain δ(α)=0 for almost all a^Qn-^C). Q.E.D.
If the image/(C2) does not intersect with ξay we have δ(α)=l . So we have

Corollary. Let f be a holomorphic mapping of C2 into 0W_1(C) (n^3) satisfy-

ing Conditions (A) and (B). We put W= {a GΞ Q^C): f(C2) nξa=φ}. Then the

set W has measure zero with respect to volume Ω n - 1 .

REMARK 3. In the case of holomorphic curves (/: C-+Pn(C) holomorphic

mapping), it is known that 0<δ(£)<l for each hyperplane ξ (c.f. [1], [5] and

[6]). But in our case we can not prove that δ(α)< 1.
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