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A fundamental approach for the measurement of solid-liquid 

interfacial energy 

Atsushi Fukuda, Takeshi Yoshikawa, Toshihiro Tanaka 

Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan 

atsushi.fukuda@mat.eng.osaka-u.ac.jp 

Abstract. Solid-liquid interfacial energies in alloys are important properties for the 

process design of materials production such as casting and crystal growth. Inadequate 

information exists on solid-liquid interfacial energies. Our aim for this study was thus 

to establish a method to measure solid-liquid interfacial energies in alloys from 

equilibrium interfacial shapes of solid-liquid-gas phases. Experiments were carried 

out on Cu-B and Ag-Bi systems where copper and silver were treated as solid phases, 

respectively. Since the determined values for solid-liquid interfacial tensions for both 

systems agreed with reported values or estimated values, it was clarified that 

solid-liquid interfacial energies can be measured by observing the interfacial shape. 

1.  Introduction 

Solid-liquid interfacial energies are fundamental properties of materials and play a key role in material 

processing at the coexistence of solid and liquid phases such as for the processes of casting and crystal 

growth. Since little information exists on solid-liquid interfacial energies, further research is required 

for the simulation of the materials process including the solid-to-liquid transformation in various 

systems. 

Solid-liquid interfacial energies have been measured based on the nucleation rate, maximum 

super-cooling, dihedral angles of grain boundary grooves and Young’s contact angle but these 

techniques show considerable discrepancies in experimental results. These discrepancies are caused by 

experimental conditions being unsuitable for adaptation to nucleation theory. Additionally, 

inaccuracies in reference values of surface tensions and grain boundary energies are responsible for 

these discrepancies. Recently, the measurement of solid-liquid interfacial energies has been done by 

measuring the equilibrium interfacial shape of the solid-liquid-gas phases for Al-Si, Al-Al2O3 and 

Fe-C systems [1-3]. This method allows for the determination of the solid surface energy and the 

solid-interfacial energy if the liquid surface tension is available. No reports, however, exist where the 

measurement of solid-liquid interfacial energies of metal-metal or metal-alloy systems was 

undertaken. 

In this work, to establish a method for the determination of both the solid-liquid interfacial energy 

and the solid surface energy in an alloy system, experiments measuring the equilibrium interfacial 

shape of solid-liquid-gas phases of Cu-B and Ag-Bi systems were carried out. The validity of this 

method was then verified through comparison of the experimental results with the reported or 

estimated values. 

2.  Experimental principle 
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2.1.  Dupre’s equation 

When a liquid droplet is placed on a soluble solid substrate its equilibrium shape may be illustrated as 

in Figure 1. At physical equilibrium the three interfacial energies, the liquid surface tension (σL), the 

solid surface energy (σS) and the solid-liquid interfacial energy (σSL) are balanced at the triple point 

where the sine theorem gives Dupre’s equation as expressed by equation (1). 
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If the value of the liquid surface tension is available we can determine the solid-liquid interfacial 

energy and the solid surface energy by measuring the equilibrium dihedral angles θV and θS. In this 

work, the liquid surface tensions of binary alloys were estimated using Butler’s equation. 

 

2.2.  Butler’s equation 

The surface tension of a liquid alloy σL can be estimated well by Butler’s equation as expressed in 

equation (2) with thermodynamic properties of the alloy [4]. 
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where σX and AX are the surface tension and the molar surface area of pure liquid X, respectively. 
SB

X	  is the mole fraction of component X of a bulk or a surface which is defined as the outermost 

monolayer. ( )SB

B

SBE

X 	TG ,
,

 is the partial excess Gibbs energy of component X in the surface as a 

function of T and SB

B	 . The partial excess Gibbs energy of the surface is obtained as equation (3) 

assuming it has a comparable composition dependence to that in the bulk. 

 ( ) ( )S

B

BE

X
B

S
S

B

SE

X 	TG
Z

Z
	TG ,,

,,

⋅=  (3) 

where 83.0=BS ZZ  which denotes the ratio of the coordination number in the surface to that in the 

bulk [5]. Liquid surface tensions of Cu-B and Ag-Bi systems were calculated from thermodynamic 

properties [6,7] at a given temperature and composition on the liquidus for each alloy system. 

3.  Experimental procedure 

A Cu-rich Cu-B droplet was melted on a copper substrate in the Cu-B system. A copper substrate of 3 

mm thickness (purity 99.96 %) into which a hole was bored to a depth of 1-2 mm in the centre was 

polished mechanically and chemically. Cu-B alloys for droplets were prepared by melting copper 

shots (purity 99.99 %) and a boron lump (purity 99.8 %) in an alumina crucible under an Ar-10%H2 

atmosphere at 1573 K. 

Figure 1. The equilibrium shape of a 

liquid droplet on a solid substrate. 
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The Cu-B alloy was placed in the hole of the copper substrate in a horizontal electric resistance 

furnace. It was heated to 1273 K within 120 min under an Ar-10%H2 atmosphere. Water and oxygen 

in the atmospheric gas were removed by passing it through magnesium perchlorate and magnesium 

chips then heated to around 773 K. The temperature was then raised to 1348 K at a rate of 5 K/min and 

kept there for 5-30 min. The apparent contact angle (θ1 in Figure 1) was measured using a CCD 

camera. The sample was cooled down at a rate of 6 K/min. The vertical cross-section was observed by 

optical microscope and the hidden angle (θ2 in Figure 1) was determined. 

Liquid bismuth was reacted with a solid silver substrate to form Ag-Bi melt for the Ag-Bi system. 

A silver substrate of 1-2 mm thickness (purity 99.99 %) with a hole in the centre, was polished 

mechanically and chemically. Bismuth shot (purity 99.999 %) was placed in the hole of the silver 

substrate in a horizontal infrared furnace. It was heated to 773 K at a rate of 2.5 K/min under vacuum 

and kept at that temperature for 5-60 min. The apparent contact angle and the hidden angle were 

determined as for the Cu-B system. 

4.  Result and discussion 

4.1.  Experimental results for the Cu-B system 

A Cu- 10.0 mol% B alloy was melted on a copper substrate at 1348 K and kept there for 5 min. Figure 

2(a) shows the liquid alloy on the copper substrate after being kept at that temperature for 5 min. The 

apparent contact angle θ1 became constant within 5 min and was determined to be 6.8 ± 0.7°. The 

cross-section of the sample after quenching is shown in Figure 2(b). The liquid alloy dissolved the 

substrate and gave a hidden angle θ2 of 62.4 ± 2.5°. Here, the volume of the liquid alloy is estimated to 

be 5 times the initial volume of the alloy that was placed on the substrate which indicates that the 

liquid composition became the Cu-liquidus (Cu- 1.9 mol% B) by taking into account the lever rule for 

the alloy composition. The liquid surface tension was thus estimated for the corresponding alloy 

composition to be 1366 mN/m using equation (2). The solid-liquid interfacial energy between solid 

copper and liquid Cu-B alloy and the solid surface energy of copper were determined to be 182 ± 23 

mN/m and 1440 ± 17 mN/m using equation (1), respectively. 

   The determined interfacial energy between solid copper and liquid Cu-B alloy was in good 

agreement with reported values between solid and liquid copper of 177-232 mN/m [9-11]. In addition, 

the obtained solid surface energy of copper agrees fairly well with the reported value of 1478 mN/m 

[12] although it seems to be slightly smaller because of the effect of adsorption of boron on the copper 

surface. Hence, the possibility exists to determine the solid-liquid interfacial energy by observing the 

equilibrium shape of the three phase interface in the copper-based system. 

 

4.2.  Experimental results for the Ag-Bi system 

A bismuth shot was melted on a silver substrate at 773 K and kept there for 60 min. Figure 3(a) shows 

the liquid alloy on the silver substrate after being kept at that temperature for 60 min. The apparent 

contact angle θ1 became constant within 10 min and was determined to be 21.8 ± 0.3°. The 

cross-section of the sample after quenching is shown in Figure 3(b). The liquid alloy dissolved the 

substrate and gave a hidden angle θ2 of 55.5 ± 1.7°. Here, the liquid size is estimated to be 3 times that 

Figure 2. The liquid Cu-B droplet 

on the solid Cu substrate (a) at 

1348 K and (b) the cross-section 

after the experiment. 
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of the initial size of the bismuth granule that was placed on the silver substrate which indicates that the 

liquid composition was the Ag-liquidus (Ag- 38.8 mol% Bi). The liquid surface tension was thus 

estimated for the corresponding alloy composition to be 416 mN/m using equation (2). The 

solid-liquid interfacial energy between solid silver and liquid Ag-Bi alloy, and the solid surface energy 

of silver were determined to be 187 ± 6 mN/m and 493 ± 8 mN/m using equation (1). 

   The determined interfacial energy between solid silver and liquid Ag-Bi alloy was in good 

agreement with the estimated value of the solid-liquid interfacial energy through the prediction 

proposed by Eustathopoulos [8,9] for the corresponding solid silver and liquid alloy of 178 mN/m. On 

the other hand, the solid surface energy of silver was much smaller than the reported value for pure 

silver of 1339 mN/m at 773K [12]. This might be influenced by the absorption of bismuth onto the 

silver surface although this should be confirmed by further investigation. 

The applicability of this new method for the determination of the solid-liquid interfacial energy by 

observing the equilibrium interfacial shape of the three phases was also confirmed for the silver-based 

system. 

 

5.  Conclusions 

A measurement method was established for interfacial energies in alloy systems by observing the 

equilibrium shape of the solid-liquid-gas interface of an alloy system. Experiments were conducted on 

Cu-B and Ag-Bi systems. The determined interfacial energies from the observed interfacial shapes 

were in accordance with reported or estimated values. Hence, it is possible to measure the solid-liquid 

interfacial energies in alloy systems from the interfacial shape of the three phases. 
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Figure 3. The liquid Ag-Bi droplet 

on the solid Ag substrate (a) at 773 

K and (b) the cross-section after the 

experiment. 
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