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Abstract
In this paper we study and obtain some necessary and suffictgrditions on
the data for the existence, uniqueness of the strict soludiod maximal regularity
for some second-order differential equations with mixedrutary conditions whose
forcing term belongs to Hoélder continuous spaces. A fewsitative examples re-
lated to the interpolation theory are discussed.

1. Introduction

Let us consider, in a complex Banach spacethe second order abstract differen-
tial equation

Q) u’(x) + Au(x) = f(x), x€(0,1)

with the Dirichlet—Neumann boundary conditions

@ u() =dop, u(1)=ny.

Heredy and n; are given elements iXX and A is a closed linear operator of domain

D(A) not necessarily dense iX.
We assume throughout the paper the following ellipticitypithesis

C
3) Vi >0, IA-Al) e L(X): [(A=al) Y < o

Our study will show the existence, uniqueness and regylafithe solution under the
assumption above in the case

feC/(0,1]: X), 0<6 <1.

2000 Mathematics Subject Classification. 34G10, 34K10, 8542D03.



726 F.Z. MEZEGHRANI

In fact, we prove that there exists a strict unique solutibrpreblem (1)—(2), that is

u e C2([0, 1]; X) N C([0, 1]; D(A)),

if and only if
do € D(A), ni € D(\/—A),
Ady —f(0)e D(A) and +/—An; € D(A),
and that
(4) u”, Au e C([0, 1]; X)
if and only if

{do e D(A), n; e D(V-A),
Ado — f(0), v=Ang € (D(A), X)1-6/2,00-

where for allg € ]0,1[ and p € [1,00], (D(A), H)1-6,~ is the well known interpolation
space, see Lions—Peetre [13]. The property (4) is calledrthgimal regularity.

This work is based fundamentally on an explicit represérmabdf the solution us-
ing the square root of A and the Krein’s method. We then analyze carefully all the
components of the solution, by using the Sinestrari metad, the Lions’s reiteration
theorem [13], the semigroup theory and some techniquesealpl [6].

The square root of the operaterA will appear naturally in this paper. When we
have to study equation (1) just with Dirichlet's boundarynditions, the use of this
square root is not necessary, see Labbas [12]. In our casepuse carefully use this
square root since the density 8f(A) is not assumed. For this end, we use the paper
on fractional powers of non-densely defined operators by iNezt-Sanz [15].

In the last decades, many researchers have been interestie iresolution of
problem (1). Many of them studied (1) as an abstract probleneligftic type, i.e.
under assumption (3), with different boundary conditionsbbth casesf Hdélder con-
tinuous or f in LP(0, 1; X) by using fractional powers of operators or Dunford func-
tional calculus. We cite at first, the pioneer Da Prato andvard theory on the sum
of operators [4]. Such a method yields interesting resujtédbbas—Terreni [10], [11],
on more complicated situations, for instance, the case dable coefficients opera-
tors A(x). In [12] we find a complete study of (1) under Dirichlet's Imolary condi-
tions and in variable coefficients operators case, whereatitieor has used the Green'’s
kernels techniques.

Other researchers focused their attention to the resalufo

(5) u”(x) + BU(x) + Au(x) = f(x), x € (0, 1),
when X is any complex Banach space and

feC/0,1; X) or felLPO LX), 0<6<1, 1<p<oc.
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Very interesting approaches to (5), whekeis even substituted byA+ Al, with A
a complex parameter, are described in the paper by S. Yakabdwy. Yakubov [20].
They have worked in a Hilbert spadé, —A is supposed to be a positive operator in
H, D(A) being compactly embedded intd, and B is a closed operator it whose
domain is related to(A), H)1/2,1.

A recent work by Arendt [1] proved that the problem

u”’(x) + B(x)U'(x) + AX)u(x) = f(x), x € (0,8)
with boundary conditionsi(0) = x, u’(0) = y, has a unique solution such that
ue W2P(0,8; X) N LP(0,8;: D(A)) and u e LP(0,5; D(B)),

in the case wherd(A) and D(B) are Banach spaces which embed continuously and
densely intoX and f belongs toL P(0, §; X).

At last, a new approach, based on the semigroup techniqué&seiy [9] and frac-
tional powers of operators, has been developed by Favitibas, Maingot, Tanabe and
Yagi [5], [6] concerning the complete equation (5) underidbilet boundary conditions.

In our work we have been inspired by this last reference.

In this paper, we are interested in the resolution of prob{@nwith Dirichlet—
Neumann boundary conditions. The latter conditions make sbudy difficult, espe-
cially when the operatoA is not densely defined. We then give, necessary and suffi-
cient conditions on the data to have existence, uniquenessnaximal regularity of the
strict solution. We also obtain some a priori estimates. Meee the cross-regularity
is proved i.e.:

Au(-) — f(-) € B([0, 1]: (D(A), X)1-6/2,50)-

Some interpolation results come as applications to ourlteesu

Here is an outline of the paper. In Sections 2 and 3 of this wer& will re-
call some basic properties of analytic semigroups. We alge gome technical lem-
mas which are useful to give a precise analysis of the reptaten of the solutioru.
Section 4 is devoted to the existence, uniqueness and miaregalarity of the strict
solution. In Section 5 we give some a priori estimates.

Finally, Section 6 contains some new examples related &rpotation theory.

2. Technical results

REMARK 1. Hypothesis (3) implies that the operator+(—A) generates an
analytic semigroup denoted by‘c/j*x)xzo on X, see for instance Balakrishnan [2].
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We put throughout the paper

and

Proposition 2. Assume(3). The operator |- Z has a bounded inverse given by

1 e’
(1 —Z)—1=—./ — (21 + B)tdz+]1,
27i J,, 1—e%

where y4 is a suitable curve in the complex plane.

Proof. Since the imaginary axis is contained in the resalgeno(—B), we then
can adapt the Lunardi’s proof [14], p.59 by choosing an appate curvey; on ac-
count of the fact that-B generates an analytic semigroup. ]

Corollary 3. Under hypothesig3), the operator(l + Z) has a bounded inverse.

Proof. We have
(I—-e®®)( +e®)=1—-e*
then
(I +e2B) = (I —e2B)Y(1 —e*B),
Therefore,

(I + 8728)71 — (I _ e74B)7l(| _ 6728).

For dy € X, consider the following abstract function

10, 1] — X,
X = DO(Xy V _A)d01
where
Do(X, V=A)do = (I + Z)™1(I + e 2/~ AlX)e V=Axq.
We have the following result 0

Lemma 4. We have
1. Do(-, v=A)dy € C®(]0, 1]; D(AX)), k € N,
2. Vx €]0, 1], Dg(x, v—=A)dg + ADg(x, v—A)dy = 0,
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3. 3C >0, Vx €10, 1], [ Do(X, v—A)do|lx < C||do] x-
Proof. 1. Letx >0 anddg € X. It is not difficult to see that
(I £2) e B =B £ 2),
therefore

Do(x, B)do = & *X(I + e 2)(1 + Z)*do.

Hence we deduce the first statement using [17, Propositibh 1.
2. Forx €]0, 1], it holds that

Dy(X, B)do = (I + Z)Y[(2Be2BI)eBxdy — (1 + e728)BeB*dy],
Dy(x, B)do = (I + Z) Y[(4(—A)e 281 X)e BXd, — (2Be 2By Be BXdy]
— (I + 2) '[(2Be 1 )Be P*dy + (I + e 21 ) Ae B¥dg]

= —(I + 2)7(1 + e 2B A BXq,
Therefore

Dg(X, B)do + ADo(X, B)do

(I + 2)7Y1 + e BN Ae B dy + Al 4+ 2) (1 + e 2By BXg,
—(I + 2)7H(1 + e 2BA)Ae By — (I 4+ e 2B1-)AeBXqy] = 0.

3. ltis well known (see Tanabe [18, (3.27)]) that there exitconstanM > 0
such that for anyx > 0, dy € X,

|e®do|, < MIIdo]lx-
Thus,3C > 0:

IDo(x, B)dollx = [I(1 + Z)7*(1 + e722)e™®do|x
= ClidolIx-

Let us specify the behavior dDy(-, B) near O.
Lemma 5. 1. Let dye X. Then

Do(-, v—A)dg € C([0, 1]: X) if and only if d € D(A).
2. Let &y € D(A). Then

Do(-, vV=A)dg € C([0, 1]: D(A)) if and only if Ad € D(A).
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Proof. The result is obtained by the commutativity of4 Z)~* and A on D(A)
and [17, Proposition 1.2]. We also use the fact that

D(vV—A) = D(A),
see Haase [8, Corollary 3.1.11]. ]

Now, for n; € X, consider the following abstract function
[0, 1[ = X,
X = Nl(X, A/ —A)n]_,

where
Nl(X, /_A)nl — (l + Z)—l(l _ e—Z«/jX)e—«/jA(l—X)(_A)—l/an.

We have the following result

Lemma 6. We have
1. Ni(-, vV/=A)ny € C=([0, 1[; D(A¥)), k € N,
vx € [0, 1[, Ny (x, v=A)n; + ANy(x, v—A)n; = 0,
3. 3C >0, Vx €0, 1], |INi(X, v=A)n1|x < C|n1| x.

n

Proof. The proof is not difficult. It suffices to replaceby 1— x. ]
Lemma 7. (1) Let ; € X. Then
Ni(-, vV=A)n; € C([0, 1]; X) if and only if n € D(A).
(2) Let iy € D(+/—A). Then
Ni(-, vV=A)n; € C([0, 1]; D(A)) if and only if +/—An, € D(A).
Proof. The proof of this lemma is the same as Lemma 5. ]

3. Representation of the solution

We assume here that (3) holds.
Let us suppose that problem (1)—(2) has a strict soluticend set

u(l) = us.
Thenu is the strict solution of the following problem

u’(x) — B2u(x) = f(x),
(6) {U(O) = do,

U(l) = Uj.
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Therefore,u is represented (see [5]) by

1 X
u(x) = e *Bgy + e 1798g, — 5 B! / e *9Bf(s)ds
0

1

1
--B*! / e 6B f(s)ds,
2

where
£o=(1 —2)Hdo— € Puy)
1- -1p-1 ! —sB ' —(2—s)B )
+2(| —Z)'B (/0 e f(s)ds—/0 e f(s)ds),
1= (1 —2)(—e do+uy)

1 1
+ %(I —Z)—ls—l(/ e‘(l‘S)Bf(s)ds—/ e—<1+S>Bf(s)ds).
0 0

We deduce that
ny = u'(1)
=-2(1-2)'BeBdy+ (I —2) (1 +Z)Bu,

1 1
1 ~B(I —Z)—l(/ e‘SBf(s)ds—/ e‘(Z‘S)Bf(s)ds)
2 0 0
1 1 1
+ é(| _Z)—l(_/ e 9B f(5)ds+ z/ e‘(l‘S)Bf(s)ds).
0 0
Then
up = (I +2)*(2e Bdy + (I —2)B ny)

7
“ +( + Z)—ls—l(— /1e‘(1‘S)Bf(s)ds+/le‘(1+s)Bf(s)ds).
0 0

Thereforeu is formally given by
u(x) = (I + 2) (e + e @®)dy + (e 98 — e (1+98)BIny]

1 1 1
+50+ Z)‘lB‘l[ [ e (9B f(s) ds + / e—<2—X+S>Bf(s)ds]
0 0

8) 1 ! !
+ 50+ 2)—15—1[ / e @98 f(s)ds— / e‘(Z‘X‘S)Bf(s)ds}
0 0

1

X 1 1
e / e *9Bf(s)ds— B / e CEf(s)ds
2 0 2 X

731
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4. Existence, uniqueness and maximal regularity

Now, consider problem (1)—(2). Its solution is given by (8).

Theorem 8. Under (3) let f € C([0, 1]; X), 0 < 6 < 1. Then the following as-
sertions are equivalent.
1. Problem(1)+2) has a unique strict solution,uhat is

u e C*([0, 1]; X) N C([0, 1]: D(A))

and u satisfieg1)+2).
2. For dyp € D(A), Ady — f(0) € D(A), let u be given by the formulé8). Then

n; € D(Vv—A) and +~—An; € D(A).
Proof. Suppose that statement 1 holds. Then

do = u(0) € D(A),
and
Ady —f(0) = —u”(0) € D(A),
Au(l) — f(1) = —u"(1) € D(A).
Now let us prove that the solution is necessarily represehte(8) for x € (0, 1). Put
L(F)(x)

1 L 1 1
= E(' +2)1 / B~ le *+9B f(s) ds + E(' +2)1 / B le @>+9Bf(s)ds
0 0

1 1 1 !
+ é(' +2)7t / B~le @ 9B f(s5) ds— E(' +2)7t / B~le @98 f(s)ds
0 0

1 (X 1t
- = / B~le 9B f(s)ds— = / B~le B f(s)ds.
2 0 2 X

Writing f(x) = Au(x) 4+ u”(x) we obtain

L(F)(x)
= L(AU)(X) + L(u")(x)

6 6
= Z H; +Z J.
i=1 i=1
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After integrating by parts we have

1
b=+ Z2)71B (e By (1) — e7*Bu'(0))
1
+ E(' + Z2) Y e 0By (1) — e *Bu(0))
1 -1 ' —(x+s)B
+ E(I + 2Z) Be u(s) ds,
0
1
B =5+ 2y 1B e TPu(1) — e @Pu(0)
1
+ 5( | + Z2) e ®By(1) — e @XBy(0))
1 -1 ' —(2-x+s)B
+ E(I + 2Z) Be u(s) ds,
0
1
3= 5(1 + 2y 1B e Pu() - e @Bu(0))
1
_ E(I + Z)fl(ef(l+X)Bu(1) _ 97(2+X)BU(0))
1 -1 ! —(2+x—s)B
+ E(I + 2Z) Be u(s) ds,
0
1
Jo==5(1 +2)"B (e T PU(1) — e @ Pu(0))
1
+ 5( | + Z) e 0By(1) — e @XBy(0))
1 -1 ' —(2—x—s)B
— E(l + 2Z) Be u(s) ds,
0

Js = 2B — e Pu(0) + S(u(x) — e **u(0)

l X
_5/ Be *9By(s)ds
0

s = 5B U ()~ u(x) — 5 u() — u(x)

1 1
-5 / Be By(s) ds.

X

The last integral is well defined sineee C([0, 1]; X).

733
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We obtain that

6 6
Z Hi + Z J
i=1 i=1
— _(I + Z)fl[(efxB + ef(fo)B)do + (ef(lfx)B _ e7(1+X)B) Bflnll
+ u(x)

from which we deduce formula (8). We obtain that
ud) = (I + 2)™'[2e7Bdy + (I — Z)B™ny]

1 1
+ (I + Z)—l[ / B~le(1*9B f(s) ds— / B‘le‘(l‘s)Bf(s)ds],
0 0

then
Blni=u@)—2(1+2)teBdy+(l +2)te?®BIn;
—(+2)te® /1 B leSBf(s)ds
) 0
+( + Z)‘lf0 B~le (9B f(s)ds
o) =u(l)—2e8(l +2)dy +e2B(l +2)71B7In;

1
—e B + Z)’lf B lesBf(s)ds
0

1
+(I+2)* / B le 9B f(s)ds
0

It is clear thata;, ap, as, a4 are in D(A). In addition, from
1
as=(l +2)'B? / e 9B f(s)ds

0

1
=-Al1+271 / Be 9B8(f(s) — f(1))ds
0
+ AN+ 27 —eB)f(1)

we haveas € D(A). Summing up we deduce that € D(B).
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Furthermore
Au(l)— f(1)
=2(1+2)eBAd—-(+2)(-2Bn

1 1
—( +Z)—1[e—8/ Be‘SBf(s)ds—/ Be 9B(f(s) — f(1))ds}
0 0

+(1+2)Y -eBfW-0+2) +2)f@)

= +2)2eBAd—(1 +Z—-22)Bn] —(I +2)te® /1 BeSBf(s)ds
0
+(1+2)™1 /l Be9B(f(s) — f(1))ds— (I + Z2)~ (e ® + e 2B)f(1)
0
=Bm +2(1 +2) e BAd +e?®Bm] - (1 +2) e ® fl Be SBf(s)ds
0

+(0+2)7 /1 Be U 9B(f(s)— f(1))ds— (I + 2) "} e ® + e 2B)f(1).
0

Then
By = [Au(1)— f(1)] - 2(1 + Z) [ ® Ady +e 2°Bny]

1
0+ Z)‘le‘B[ BesBf(s) ds
0

- +2)t /l Be W 9B(f(s)— f(1))ds+ (€ B+ e 2B)(I +2)1f(2)
0

6
=> b
i=1

Sinceby, by, bs, by, bs and bg are in D(A), it hods thatBn; € D(A).
Conversely, we assume that

do € D(A), ng € D(B),
Ady —f(0) e D(A) and Bn; € D(A).

From (8) we obtain
U'(x) = —(1 + Z2)7(1 + e 298 e B Ady +(1 + Z2)7H(1 —e>B)e BB

1 1 1 1
+ E(' + Z)’lB/ e x+9B f(s)ds+ E(' + Z)’lB/ e @98 f(s)ds
0 0

1 1
+ %a + Z)‘lB/ @98 £ (g) 4 %u + Z)‘lB/ @98 ¢ () ds
0 0

1_ X 1t
——B[ e*(X’S)Bf(s)ds——B/ e CBf(s)ds+ f(x).
2 0 2 X



736 F.Z. MEZEGHRANI

We write

(10)  u"(x) = N(x, B)ny + D(x, A)dy + F(x, B) + G(x, B) + H(x, B) + f(x),
where

N(x, B)ny = (1 + 2) e @ XBBn; — (I 4 2) te 1+9BBn,,
D(x, A)do = —(I + Z)"'e*B(Ado — (0)) — (I + 2)'e *® Ady,

1 1
F(x, B) = E(I + Z)‘le‘XB/O BeSB(f(s)— f(0))ds

1 1
+ E(I + Z)*le*(Z*X)B/ BeSBf(s)ds
0

1 1
+ E(' + Z2) g 1+xB / Be 19Bf(s)ds
0

— %u + Z)le 18 /0 ' Be 9B(f(s) — f(1))ds,

X 1
G(X, B):—%/ Be *=9B(f(s) — f(x))ds—;/ Be G™DB(f(s) — f(x))ds
0 X
and
1 -1,—(1+x)B 1 —1,—(2+x)B
H(x, B) = _E(I +2Z) e f(0)— E(I + Z) e f(0)
+ %u + Z2) e @B £(1) + ze 17DB £(1)]
1 1 —xB
+ Ee—<1—X>>B(f(x) - f@)+ e (F() = £(0)).
In view of Lemmas 5 and 7N( -, B)n; and D( -, A)dy are in C([0, 1]; X) and
F(-,B), G(-, B) and H(-, B) are continuous sincé < C?([0, 1]; X), from which we

deduce that” is in C([0, 1]; X). In the same way we prove thdtu is in C([0, 1]; X).
Note that

Aux) = (I + Z) e *B Ady +& @ 0B Ady —e 1 0BBn, 4+ e 10BBN]

1 1 1
—§(| +Z)1[exB/ Be sBf(s)ds+ e*@*X)B/ Best(s)ds]
0 0

1 1
— é(| + Z)te1+xB / Be (™98 f(s)ds
0

1 1
— é(| + Z) le"@—08B / Be 9B f(s)ds
0

1 (X 1t
+§/ Be’(X’S)Bf(s)ds+§/ Be B f(s)ds.
0

X
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Then
u’(x) + Au(x) = f(x). []
Finally we obtain the following maximal regularity theorem

Theorem 9. Under (3) let f € CY([0, 1]; X), 0 < @ < 1. Then the following as-
sertions are equivalent.
(1) The unique solution u of Probleifi)—«2) has the maximal regularity property

u”, Au € C/([0, 1]; X).
(2) The elementsdand ny satisfy the conditions

do € D(A), Ny € D(V—=A), Adg—Tf(0) € (D(A), X)1-6/2,0
and \/:Anl € (D(A), X)lfg/zyoo.

Proof. Assume that there exists a strict solutiolf Problem (1)—(2) having the
maximal regularity property. From the previous theorem, hage

do € D(A), ni D(B)

Also the first and the second terms in formula (10) areCit{[0, 1]; X) and hence

e B(Ady — f (0)) € CY([0, 1]; X),
elBBn, e C/([0, 1]; X).

Using [17, Remark], we have

Adg —f(0) € (D(B), X)1-6,00,
By € (D(B), X)1-6,50-

We finish the proof of (1= (2) if we note that
(D(B), X)1-9,00 = (D(A), X)1-6/2,00-
Conversely assume that

dO € D(A)! np € D(B)1 AdO —f(O) € (D(A)! X)l*H/Z,oo
and Bn; € (D(A), X)]_,@/g'oo.
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Using [3, Theorem 1.4] we have
eV"M(Ad —f(0)) € C°([0, 1]: X),
e-IV=ABn, e CY([0, 1]; X),

/l Be SB(f(s) — f(0))ds e C/([0, 1]; X),
0

/1 Be (9B(f(s) — f(1))dse C’([0, 1]; X),
0
and thus

u”, Au e CY([0, 1]; X). O

Proposition 10. Under (3) let f € C/([0, 1]; X), 0 < # < 1, and assume that
do € D(A), n; € D(V—=A), Ady—Tf(0) € (D(A), X)1-6/2,00
and v—An € (D(A), X)1-6/2,c0-

Then the unique strict solution u of Problefd)—<(2) with the maximal regularity
property.
u”, Au e C([0, 1]; X)

has also the cross-regularity
Au(-) — f(-) € B([0, 1]; (D(A), X)1-9/2,00)-

Proof. We recall that
Au(x) — f(x)
= (I + 2) e *B(Ady — f(0)) + e T 0BBn; + e @B Ady —e +9BBNy]

1
- %u + Z)‘l[e‘XB / BeSB(f(s) — f(0))ds+ e‘(2+X)Bf(O)—e‘(l“)Bf(O)}
0
_1‘ -1] ,—(2—x)B ' —sB —(1+x)B ! —(1-s)B ]
2(I + 2) [e /0 Be>"f(s)ds+ e [O Be f(s)ds
1
+ 3(| + 2)—1[e—<l—X>B / Be 98(f(s) — f(l))ds—e‘(Z‘X)Bf(l)]
2 0
1 15 (1-x)B [ T
+ 2(| +2)'ze f(1)+ 2/0 Be (f(s)— f(x))ds
1 —xB 1 1
- 5e (f(x)— f(0))+§[ Be CB(f(s) — f(x))ds

— SR 00 — £(1)

16
= > k(x).
i=1
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Note that
(D(A), X)1-9/2,00 = (D(B), X)1-9,00-

So in order to prove thatAu(x) — f(x)) € (D(A), X)1-9/2.« it suffices to show that

suplt=(e7*® — NIAUK) — ]l < K.
t>0
As Ady— T (0) € (D(A), X)1-6/2.00 and v/—Ang € (D(A), X)1-4/2,00, it follows thatk(x)
and kx(x) are in O(A), X)1-9/2,-
It is clear that fori = 3,4,6,7,8,9,11 and 1X%;(x) are in D(B) and hence in
(D(B), X)1-6,00-
Concerningky3, we have

l€7 Bkaa(x) — kaa(X) I x

_ %[e_tB/O Be “~9B(f(s) — f(x))dS—/o Be *-9B(f(s) — f(x))ds:|

X

= %/X[Be("“S)B — Be *P](f(s) - f(x))ds
0

X
X+t—s

_ 1‘ X 2,—0B _ o
— Z/O/X B2eB(f(s) — f(x)) do ds

-S

X

X pX+t—s
< C// o 2| f(s)— f(X)||x do ds
0 Jx-s
X pX+t—s
< C/ / O'_Z(X — S)HH f ”C”(X) do ds
0 Jx-—s
X py+t - xy@ 1 1
<C Y f|lcoxy do dy < C — — —— || flleoyxy d
< /o/y o Y| fllcoxy do dy = /0 [y y+t:|” llcoxy dy
oL 1
<C ) = — —— || fllcoxot d
<c| (u)[ut t(u+1)}” oot du

X/t 00l 1 1 ¢ d o
< ( u't’| — — 0 u<=cCt 0(X)-
= ](; |:U u 1]|| ”C (X) = ” ”C (X)

For ki4 we have

lle”*Bkaa(X) — kua(X)l|x

_ H% /XH Be"B(f(x) = (0))do

X

X+t X+t
e / o ()~ f(O)llxdo = C / o x| fllerxy do
X X

X+t
<C / 0'710'9” f ”C“(X) do < CtH” f ||CU(X).
X
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For ks(x) we can write

1 X !
B / e X8 f()ds=B / g 9BeBf(g)ds+ e BB / e 6B f(s)ds,
0 0

X

In this way all the terms are seen to be D(B), X)1-4,00- ]
5. A priori estimates
Proposition 11. Under (3) let f € C/([0, 1]; X), 0 < # < 1, and assume that

do € D(A), ny € D(vV=A), Ady —f(0) € (D(A), X)1-0/2.00
and v—An; € (D(A), X)16/2,00-

Then3C > 0:

U llcexy + IIAUllcxy < CIll fllcoxy + 1Ado — F(0)Ix + [Iv/—Ang||x]
and

lu”llcoxy + I1AUllcocx)
< C[ll fllcoexy + 1Ado — F(O)l (DA, X)1 /20 F IV =AML (D(A), X)1-0/200)-

Proof. Writing u” as in formula (10) we get

maxju”(x)llx = Clll Fllerpg + Ado = (O)llx + B llx].

This gives the proof of statement 1. For statement 2 it suficeprove that

max [[u”(x) — u"(t)|Ix
0=x,t=<1
XF#t

< CIx =tI[I fllcrxy + Ao — F O)lD(A) X)1 s/ + IV =AMLl (D(AYX)1 072 ]-

In formula (10) we define
17
we) =Y hi(x).
i—1

Then
[Iha(x) — ha®)llx = I|[—(1 + Z) e *B(l — e ©0B)(Ady — f (0))]x
< €781 — e B)(Ady — £ (0))]x
< Clt — x|”|Ado — f (Ol (D(A), X)102. -
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Similarly
lIh2(x) — ha(t)Ix < Clt — x| [IBNLll(p(A) X)s0/2 -
For hs we write
ha(x) = —(1 + 2)"'e @™® Adg
= —(1 + 2) e @B(Ady —f(0)) — (I + 2)"te @B ¢ (0).

As above, the first term is seen to be @i([0, 1]; X) and the second is the same. As
for hi3 we have

h13(X) - h13(t)
- % /X Be 9B(f(s) — f(x))ds+ % /t /X_S B%e7B(f(s) - f(t)) do ds
t 0 Jt—s
n %(e—xB — e DBY(£ (1) — £(x)).

The first and last terms are clearly estimated ®ly — x|?|| f [|ce(x). For the second
term, we estimate

H%/t /X_S B2e7B(f(s) — (1)) do ds
0 Jt—s

t X—S
scufnco(X)/ |s—t|9/ o2 do ds
0 t

—S

X

t

< C| fllerpo(x —1t) [ (t—9)x—-s)tds

0

t/x—t

<Cllfllopoc=t) [ v+ v = Clx =t Flego.
0

Moreover, we have
[1h14(X) — h1a(t) |l x

%e’“‘(f(x) — f@) + % /x BeSB(f(t) — f(0))ds

t

X

X
C
<Clt=xI flowg + [ <t 88l Fllerpo
t
X
<Clt —x?|| fllcoexy + Es9ds||f|| 1) < Clt = X7 f llcocxy-
= Co(X) S ci(x) = Co(X)
t

In this way, we finally prove that

"0 = U@l = Clt = X111 Flleroo + [1Aco =T (Ol 0, 020
+ [V =AN (D(A), X)10/2.5)-
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Hence we complete the proof. [l

6. Concrete applications

6.1. An anisotropic interpolation result. Set

{a, = {u e CZ([0, 1]; X) N CY([0, 1]: D(A)): u”(0) € (D(A), X)1-6/2.00}.
Ts = D(A) x D /(6 + 1, o0),

where
D/=a(@ +1,00) = {§ € D j=x: V=A% € (D(A), X)1-0/2,00}-

Proposition 12. The mapping J

J: 59 — 75,
U~ (u(0), u'(1))

is well-defined linear, continuous and bijective.
Proof. The mapping] is obviously linear. Letu € &, then

u”, Au e C([0, 1]; X)

and hence
u”(x) + Au(x) = u”(x) + Au(x) := g(x),
u(0) = do in D(A),
U/(l) =N in X,
furthermore

u e C#([0, 1]; X) N CY([0, 1]; D(A)).
From Theorem 9, we obtain that

do € D(A), n1 € D(v—=A)
and
Ado —g(0) € (D(A), X)1 62000 vV —Ang € (D(A), X)1_0/2,00,

thus @o, n1) € Ty. In order to prove the surjection, letly n1) € 7. Then Prob-
lem (1)—(2) has a unique strict solutiansuch that

u e C*([0, 1]: X) N C’([0, 1]; D(A)),
where

u”(0) = — Ado +9(0) € (D(A), X)1 9/2,00
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so 3lu € & such thatJ(u) = (do, 1), then J is bijective. Let €y, N1) € Ty, then

[3W7 = 11(do, N1)llpayxD x@+1,000 = SUR[|doll oy, IN1llD —5(6+1.00)}

< suf|[doll oeay, IV —=AMl(DA), X)1 5250} -
We have on one hand

[dollocay < [|Ado]|x
< ||Ady —u"(0) + u”(0)|Ix
< u"(O)llx + |Ado —u"(0)|Ix

< C|:||u”(o)”(D(A),X)1n/z,oo + sup [[Au(x)|Ix + sup IIU”(X)le}
x€[0,1] xe[0,1]

= c[llu"(O)l(D(a). )1 42 T+ IAUllc(0,11,%) + V" llcqo,11.30]

< c[lIu"(O)l (D). X)1s2 T IAUllco(0,21,%) + I1U" llco(0,11,%)]

= c|ulle,-
On the other hand, from formula (9) we have

”nl” D /=a(+1.%)

= |~ _Anl“(D(A),x)l,o/zOo

= (I = 2)7X(1 + Z)Au() + 2(1 — Z)"2eY"" Adoll(D(a) X)1 0o

+ H(| -7y W-A / le’(”s)ﬂg(s)ds
0

+ H(I - 2)yW=-A / le*<1*~°Wj\g(s)ds
0

<100 = 27X + Z) AUl (DAY X102

(D(A), X)1-0/2,00

(D(A), X)1-0/2,00

+ 1120 — 2)"%e V=2 Adollo(a), )1 oz + ClIGllcro,110

= [ Au(D)ll(p(a), X1 020 t IIADll(DA), X1 0/200]
+ [l Aullcso,11,%) + U llcr 0,13, %)]

= c[IAU)ll(A), %) 072 + 1ADo +U"(0) — U” (O DAY X)1-02.

+ | Aullcoo,2,x) + I1U” ller(o, 13,301
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Then
N1/l —@+1.00)

< C[Sunlxg(exﬂ — DAUD)IIx + suflx " (€Y A = 1)(Ado +U"(0)) ]
x>0

x>0

+ [IU"O)l((A), X102 + | AUllco(0,21.5) + ||U”||c“([o,1],X)}

= C[Suldlf’w(x)llX + supu”(X)llx + ”u”(O)H(D(A),Xhn/z,oo]
x>0 x>0

+ cllAullcogo,11,%) + W lcoqo, 11, %)
< c[[|Aullcrqo,21,%) + U lcoqo,11,%) + 1U” (Ol DAY, X)1-0/20)

= cllulle,-
Finally we deduce that

dc > 0/Vu e &, [IWIr =cluleg,. O

Corollary 13. Let ue & and f e CY([0, 1]; X) then
Au(-) — f(-) € B([0, 1]: (D(A), X)1-6/2,00)-
Proof. The proof is a direct consequence of Propositions D 1. ]
6.2. Example 1. Let X = L?(R) and let
{D(A) = H*[R),
Au=U".

It is well-known thatD(A) is dense inX. Set

{ge = {u e C?*7([0, 1]; LA(R)) N C’([0, 1]; HA(R)): u”(0) € (H?(R), L2(R))1 6,200},
Ny = HA(R) x Hy,

and

Hy = (& € D(V=A): V=At € (HX(R), LA(R))1-6/2,00 = B L (R)}.
The following result is a consequence of Proposition 12:
Proposition 14. The mapping M

M: Gy — N,
u > (u(0), u'(1))

is well-defined linear, continuous and bijective.
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6.3. Example 2. Let X = C([0, 1]) and let

D(A) = {u € C¥([0, 1]): u(0) = u(1) = 0},
{Au =u".

Here D(A) is not dense inX since
D(A) = {u € C([0, 1]): u(0) = u(1) = 0O}

The characterization ob(+/—A) is difficult, however we know that

D(v=A) C (D(A), X)1/2.00 = {U € CX([0, 1]): u(0) = u(1) = 0},

where

IX =yl

ci(o, 1)) = {u eC([0,1]:  sup
X, Y, (x+y)/2€[0,1]

(|u(x) - u(y) — 2u((x + y)/2)|) 3 OO}.

Note that

(D(A), C([0, 1]))1-6/2,00
= {u € (C*([0, 1]), C([0, 1]))1-p/2.00: U(0) = u(1) = 0}
= {u e C”([0, 1]): u(0) = u(1) = 0},

see [19, 2.7.2]. Let

u”(0) € (D(A), C([0, 1])1-6/2,00}

{CQ = {u e CZ*([0, 1]; C([0, 1])) N CY([0, 1]; D(A)):
To = D(A) x Ky

where

Ko = {§ € H'(R): vV—Ag € (D(A), C(10, 1]))1-0/200}-
We can apply Proposition 12 to obtain

Proposition 15. The mapping N

N: Cg — 7?;,
u = (u(0), u'(1))

is well-defined linear, continuous and bijective.
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