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Abstract
In this paper we study and obtain some necessary and sufficient conditions on

the data for the existence, uniqueness of the strict solution and maximal regularity
for some second-order differential equations with mixed boundary conditions whose
forcing term belongs to Hölder continuous spaces. A few illustrative examples re-
lated to the interpolation theory are discussed.

1. Introduction

Let us consider, in a complex Banach spaceX, the second order abstract differen-
tial equation

(1) u00(x)C Au(x) D f (x), x 2 (0, 1)

with the Dirichlet–Neumann boundary conditions

(2) u(0)D d0, u0(1)D n1.

Here d0 and n1 are given elements inX and A is a closed linear operator of domain
D(A) not necessarily dense inX.

We assume throughout the paper the following ellipticity hypothesis

(3) 8� � 0, 9(A� �I )�1
2 L(X) W k(A� �I )�1

kL(X) 6
C

1C �

.

Our study will show the existence, uniqueness and regularity of the solution under the
assumption above in the case

f 2 C� ([0, 1]I X), 0< � < 1.

2000 Mathematics Subject Classification. 34G10, 34K10, 35J25, 47D03.
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In fact, we prove that there exists a strict unique solution of problem (1)–(2), that is

u 2 C2([0, 1]I X) \ C([0, 1]I D(A)),

if and only if
�

d0 2 D(A), n1 2 D(
p

�A),
Ad0 � f (0) 2 D(A) and

p

�An1 2 D(A),

and that

(4) u00, Au 2 C� ([0, 1]I X)

if and only if
�

d0 2 D(A), n1 2 D(
p

�A),
Ad0 � f (0),

p

�An1 2 (D(A), X)1��=2,1.

where for all� 2 ]0, 1[ and p 2 [1,1], (D(A), H )1�� ,1 is the well known interpolation
space, see Lions–Peetre [13]. The property (4) is called themaximal regularity.

This work is based fundamentally on an explicit representation of the solution us-
ing the square root of�A and the Krein’s method. We then analyze carefully all the
components of the solution, by using the Sinestrari method [17], the Lions’s reiteration
theorem [13], the semigroup theory and some techniques applied in [6].

The square root of the operator�A will appear naturally in this paper. When we
have to study equation (1) just with Dirichlet’s boundary conditions, the use of this
square root is not necessary, see Labbas [12]. In our case, wemust carefully use this
square root since the density ofD(A) is not assumed. For this end, we use the paper
on fractional powers of non-densely defined operators by Martinez–Sanz [15].

In the last decades, many researchers have been interested in the resolution of
problem (1). Many of them studied (1) as an abstract problem ofelliptic type, i.e.
under assumption (3), with different boundary conditions in both casesf Hölder con-
tinuous or f in L p(0, 1I X) by using fractional powers of operators or Dunford func-
tional calculus. We cite at first, the pioneer Da Prato and Grisvard theory on the sum
of operators [4]. Such a method yields interesting results by Labbas–Terreni [10], [11],
on more complicated situations, for instance, the case of variable coefficients opera-
tors A(x). In [12] we find a complete study of (1) under Dirichlet’s boundary condi-
tions and in variable coefficients operators case, where theauthor has used the Green’s
kernels techniques.

Other researchers focused their attention to the resolution of

(5) u00(x)C Bu0(x)C Au(x) D f (x), x 2 (0, 1),

when X is any complex Banach space and

f 2 C� ([0, 1]I X) or f 2 L p(0, 1I X), 0< � < 1, 1< p <1.
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Very interesting approaches to (5), whereA is even substituted byAC �I , with �
a complex parameter, are described in the paper by S. Yakubovand Y. Yakubov [20].
They have worked in a Hilbert spaceH , �A is supposed to be a positive operator in
H , D(A) being compactly embedded intoH , and B is a closed operator inH whose
domain is related to (D(A), H )1=2,1.

A recent work by Arendt [1] proved that the problem

u00(x)C B(x)u0(x)C A(x)u(x) D f (x), x 2 (0, Æ)

with boundary conditionsu(0)D x, u0(0)D y, has a unique solutionu such that

u 2 W2,p(0, ÆI X) \ L p(0, ÆI D(A)) and u0 2 L p(0, ÆI D(B)),

in the case whereD(A) and D(B) are Banach spaces which embed continuously and
densely intoX and f belongs toL p(0, ÆI X).

At last, a new approach, based on the semigroup techniques byKrein [9] and frac-
tional powers of operators, has been developed by Favini, Labbas, Maingot, Tanabe and
Yagi [5], [6] concerning the complete equation (5) under Dirichlet boundary conditions.
In our work we have been inspired by this last reference.

In this paper, we are interested in the resolution of problem(1) with Dirichlet–
Neumann boundary conditions. The latter conditions make our study difficult, espe-
cially when the operatorA is not densely defined. We then give, necessary and suffi-
cient conditions on the data to have existence, uniqueness and maximal regularity of the
strict solution. We also obtain some a priori estimates. Moreover, the cross-regularity
is proved i.e.:

Au( � ) � f ( � ) 2 B([0, 1]I (D(A), X)1��=2,1).

Some interpolation results come as applications to our results.
Here is an outline of the paper. In Sections 2 and 3 of this work, we will re-

call some basic properties of analytic semigroups. We also give some technical lem-
mas which are useful to give a precise analysis of the representation of the solutionu.
Section 4 is devoted to the existence, uniqueness and maximal regularity of the strict
solution. In Section 5 we give some a priori estimates.

Finally, Section 6 contains some new examples related to interpolation theory.

2. Technical results

REMARK 1. Hypothesis (3) implies that the operator (�

p

�A) generates an

analytic semigroup denoted by (e�
p

�Ax)x�0 on X, see for instance Balakrishnan [2].
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We put throughout the paper

B D

p

�A

and

Z D e�2B.

Proposition 2. Assume(3). The operator I� Z has a bounded inverse given by

(I � Z)�1
D

1

2� i

Z


#

e2z

1� e2z
(z I C B)�1 dzC I ,

where
# is a suitable curve in the complex plane.

Proof. Since the imaginary axis is contained in the resolvent set�(�B), we then
can adapt the Lunardi’s proof [14], p.59 by choosing an appropriate curve
# on ac-
count of the fact that�B generates an analytic semigroup.

Corollary 3. Under hypothesis(3), the operator(I C Z) has a bounded inverse.

Proof. We have

(I � e�2B)(I C e�2B) D I � e�4B

then

(I C e�2B) D (I � e�2B)�1(I � e�4B).

Therefore,

(I C e�2B)�1
D (I � e�4B)�1(I � e�2B).

For d0 2 X, consider the following abstract function

]0, 1] ! X,

x 7! D0(x,
p

�A)d0,

where

D0(x,
p

�A)d0 D (I C Z)�1(I C e�2
p

�A(1�x))e�
p

�Axd0.

We have the following result

Lemma 4. We have:
1. D0( � ,

p

�A)d0 2 C1(]0, 1]I D(Ak)), k 2 N,
2. 8x 2 ]0, 1], D00

0(x,
p

�A)d0 C AD0(x,
p

�A)d0 D 0,
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3. 9C > 0, 8x 2 ]0, 1], kD0(x,
p

�A)d0kX � Ckd0kX.

Proof. 1. Letx > 0 andd0 2 X. It is not difficult to see that

(I � Z)�1e�Bx
D e�Bx(I � Z)�1,

therefore

D0(x, B)d0 D e�Bx(I C e�2B(1�x))(I C Z)�1d0.

Hence we deduce the first statement using [17, Proposition 1.1].
2. For x 2 ]0, 1], it holds that

D0

0(x, B)d0 D (I C Z)�1[(2Be�2B(1�x))e�Bxd0 � (I C e�2B(1�x))Be�Bxd0],

D00

0(x, B)d0 D (I C Z)�1[(4(�A)e�2B(1�x))e�Bxd0 � (2Be�2B(1�x))Be�Bxd0]

� (I C Z)�1[(2Be�2B(1�x))Be�Bxd0 C (I C e�2B(1�x))Ae�Bxd0]

D �(I C Z)�1(I C e�2B(1�x))Ae�Bxd0.

Therefore

D00

0(x, B)d0 C AD0(x, B)d0

D �(I C Z)�1(I C e�2B(1�x))Ae�Bxd0 C A(I C Z)�1(I C e�2B(1�x))e�Bxd0

D �(I C Z)�1[( I C e�2B(1�x))Ae�Bxd0 � (I C e�2B(1�x))Ae�Bxd0] D 0.

3. It is well known (see Tanabe [18, (3.27)]) that there exists a constantM > 0
such that for anyx > 0, d0 2 X,





e�Bxd0







X � Mkd0kX.

Thus,9C > 0:

kD0(x, B)d0kX D k(I C Z)�1(I C e�2B(1�x))e�Bxd0kX

� Ckd0kX.

Let us specify the behavior ofD0( � , B) near 0.

Lemma 5. 1. Let d0 2 X. Then

D0( � ,
p

�A)d0 2 C([0, 1]I X) if and only if d0 2 D(A).

2. Let d0 2 D(A). Then

D0( � ,
p

�A)d0 2 C([0, 1]I D(A)) if and only if Ad0 2 D(A).
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Proof. The result is obtained by the commutativity of (I C Z)�1 and A on D(A)
and [17, Proposition 1.2]. We also use the fact that

D(
p

�A) D D(A),

see Haase [8, Corollary 3.1.11].

Now, for n1 2 X, consider the following abstract function

[0, 1[ ! X,

x 7! N1(x,
p

�A)n1,

where

N1(x,
p

�A)n1 D (I C Z)�1(I � e�2
p

�Ax)e�
p

�A(1�x)(�A)�1=2n1.

We have the following result

Lemma 6. We have:
1. N1( � ,

p

�A)n1 2 C1([0, 1[I D(Ak)), k 2 N,
2. 8x 2 [0, 1[, N 00

1 (x,
p

�A)n1 C AN1(x,
p

�A)n1 D 0,

3. 9C > 0, 8x 2 [0, 1[, kN1(x,
p

�A)n1kX � Ckn1kX.

Proof. The proof is not difficult. It suffices to replacex by 1� x.

Lemma 7. (1) Let n1 2 X. Then

N1( � ,
p

�A)n1 2 C([0, 1]I X) if and only if n1 2 D(A).

(2) Let n1 2 D(
p

�A). Then

N1( � ,
p

�A)n1 2 C([0, 1]I D(A)) if and only if
p

�An1 2 D(A).

Proof. The proof of this lemma is the same as Lemma 5.

3. Representation of the solution

We assume here that (3) holds.
Let us suppose that problem (1)–(2) has a strict solutionu and set

u(1)D u1.

Then u is the strict solution of the following problem

(6)

8

<

:

u00(x) � B2u(x) D f (x),
u(0)D d0,
u(1)D u1.
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Therefore,u is represented (see [5]) by

u(x) D e�x B
�0 C e�(1�x)B

�1 �
1

2
B�1

Z x

0
e�(x�s)B f (s) ds

�

1

2
B�1

Z 1

x
e�(s�x)B f (s) ds,

where

�0 D (I � Z)�1(d0 � e�Bu1)

C

1

2
(I � Z)�1B�1

�

Z 1

0
e�sB f (s)ds�

Z 1

0
e�(2�s)B f (s) ds

�

,

�1 D (I � Z)�1(�e
�B

d0 C u1)

C

1

2
(I � Z)�1B�1

�

Z 1

0
e�(1�s)B f (s) ds�

Z 1

0
e�(1Cs)B f (s) ds

�

.

We deduce that

n1 D u0(1)

D �2(I � Z)�1Be�Bd0 C (I � Z)�1(I C Z)Bu1

�

1

2
e�B(I � Z)�1

�

Z 1

0
e�sB f (s) ds�

Z 1

0
e�(2�s)B f (s) ds

�

C

1

2
(I � Z)�1

�

�

Z 1

0
e�(1Cs)B f (s) dsC Z

Z 1

0
e�(1�s)B f (s) ds

�

.

Then

(7)

u1 D (I C Z)�1(2e�Bd0 C (I � Z)B�1n1)

C (I C Z)�1B�1

�

�

Z 1

0
e�(1�s)B f (s) dsC

Z 1

0
e�(1Cs)B f (s) ds

�

.

Thereforeu is formally given by

(8)

u(x) D (I C Z)�1[(e�x B
C e�(2�x)B)d0 C (e�(1�x)B

� e�(1Cx)B)B�1n1]

C

1

2
(I C Z)�1B�1

�

Z 1

0
e�(xCs)B f (s) dsC

Z 1

0
e�(2�xCs)B f (s) ds

�

C

1

2
(I C Z)�1B�1

�

Z 1

0
e�(2Cx�s)B f (s) ds�

Z 1

0
e�(2�x�s)B f (s) ds

�

�

1

2
B�1

Z x

0
e�(x�s)B f (s) ds�

1

2
B�1

Z 1

x
e�(s�x))B f (s) ds.
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4. Existence, uniqueness and maximal regularity

Now, consider problem (1)–(2). Its solution is given by (8).

Theorem 8. Under (3) let f 2 C� ([0, 1]I X), 0< � < 1. Then the following as-
sertions are equivalent.
1. Problem (1)–(2) has a unique strict solution u, that is

u 2 C2([0, 1]I X) \ C([0, 1]I D(A))

and u satisfies(1)–(2).
2. For d0 2 D(A), Ad0 � f (0) 2 D(A), let u be given by the formula(8). Then

n1 2 D(
p

�A) and
p

�An1 2 D(A).

Proof. Suppose that statement 1 holds. Then

d0 D u(0) 2 D(A),

and

Ad0 � f (0)D �u00(0) 2 D(A),

Au(1)� f (1)D �u00(1) 2 D(A).

Now let us prove that the solution is necessarily represented by (8) for x 2 (0, 1). Put

L( f )(x)

D

1

2
(I C Z)�1

Z 1

0
B�1e�(xCs)B f (s) dsC

1

2
(I C Z)�1

Z 1

0
B�1e�(2�xCs)B f (s) ds

C

1

2
(I C Z)�1

Z 1

0
B�1e�(2Cx�s)B f (s) ds�

1

2
(I C Z)�1

Z 1

0
B�1e�(2�x�s)B f (s) ds

�

1

2

Z x

0
B�1e�(x�s)B f (s) ds�

1

2

Z 1

x
B�1e�(s�x))B f (s) ds.

Writing f (x) D Au(x)C u00(x) we obtain

L( f )(x)

D L(Au)(x)C L(u00)(x)

D

6
X

iD1

Hi C

6
X

iD1

Ji .
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After integrating by parts we have

J1 D
1

2
(I C Z)�1B�1(e�(1Cx)Bu0(1)� e�x Bu0(0))

C

1

2
(I C Z)�1(e�(1Cx)Bu(1)� e�x Bu(0))

C

1

2
(I C Z)�1

Z 1

0
Be�(xCs)Bu(s) ds,

J2 D
1

2
(I C Z)�1B�1(e�(3�x)Bu0(1)� e�(2�x)Bu0(0))

C

1

2
(I C Z)�1(e�(3�x)Bu(1)� e�(2�x)Bu(0))

C

1

2
(I C Z)�1

Z 1

0
Be�(2�xCs)Bu(s) ds,

J3 D
1

2
(I C Z)�1B�1(e�(1Cx)Bu0(1)� e�(2Cx)Bu0(0))

�

1

2
(I C Z)�1(e�(1Cx)Bu(1)� e�(2Cx)Bu(0))

C

1

2
(I C Z)�1

Z 1

0
Be�(2Cx�s)Bu(s) ds,

J4 D �

1

2
(I C Z)�1B�1(e�(1�x)Bu0(1)� e�(2�x)Bu0(0))

C

1

2
(I C Z)�1(e�(1�x)Bu(1)� e�(2�x)Bu(0))

�

1

2
(I C Z)�1

Z 1

0
Be�(2�x�s)Bu(s) ds,

J5 D �

1

2
B�1(u0(x) � e�x Bu0(0))C

1

2
(u(x) � e�x Bu(0))

�

1

2

Z x

0
Be�(x�s)Bu(s) ds

and

J6 D �

1

2
B�1(e�(1�x)u0(1)� u0(x)) �

1

2
(e�(1�x)u(1)� u(x))

�

1

2

Z 1

x
Be�(s�x)Bu(s) ds.

The last integral is well defined sinceu 2 C1([0, 1]I X).
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We obtain that

6
X

iD1

Hi C

6
X

iD1

Ji

D �(I C Z)�1[(e�x B
C e�(2�x)B)d0 C (e�(1�x)B

� e�(1Cx)B)B�1n1]

C u(x)

from which we deduce formula (8). We obtain that

u(1)D (I C Z)�1[2e�Bd0 C (I � Z)B�1n1]

C (I C Z)�1

�

Z 1

0
B�1e�(1Cs)B f (s) ds�

Z 1

0
B�1e�(1�s)B f (s) ds

�

,

then

(9)

B�1n1 D u(1)� 2(I C Z)�1e�Bd0 C (I C Z)�1e�2B B�1n1

� (I C Z)�1e�B
Z 1

0
B�1e�sB f (s) ds

C (I C Z)�1
Z 1

0
B�1e�(1�s)B f (s) ds

D u(1)� 2e�B(I C Z)�1d0 C e�2B(I C Z)�1B�1n1

� e�B(I C Z)�1
Z 1

0
B�1e�sB f (s) ds

C (I C Z)�1
Z 1

0
B�1e�(1�s)B f (s) ds

D

5
X

iD1

ai .

It is clear thata1, a2, a3, a4 are in D(A). In addition, from

a5 D (I C Z)�1B�1
Z 1

0
e�(1�s)B f (s) ds

D �A�1(I C Z)�1
Z 1

0
Be�(1�s)B( f (s) � f (1)) ds

C A�1(I C Z)�1(I � e�B) f (1)

we havea5 2 D(A). Summing up we deduce thatn1 2 D(B).
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Furthermore

Au(1)� f (1)

D 2(I C Z)�1e�B Ad0 �(I C Z)�1(I � Z)Bn1

� (I C Z)�1

�

e�B
Z 1

0
Be�sB f (s) ds�

Z 1

0
Be�(1�s)B( f (s) � f (1)) ds

�

C (I C Z)�1(I � e�B) f (1)� (I C Z)�1(I C Z) f (1)

D (I C Z)�1[2e�B Ad0 �(I C Z � 2Z)Bn1] � (I C Z)�1e�B
Z 1

0
Be�sB f (s) ds

C (I C Z)�1
Z 1

0
Be�(1�s)B( f (s) � f (1)) ds� (I C Z)�1(e�B

C e�2B) f (1)

D Bn1 C 2(I C Z)�1[e�B Ad0 Ce�2B Bn1] � (I C Z)�1e�B
Z 1

0
Be�sB f (s) ds

C (I C Z)�1
Z 1

0
Be�(1�s)B( f (s) � f (1)) ds� (I C Z)�1(e�B

C e�2B) f (1).

Then

Bn1 D [ Au(1)� f (1)] � 2(I C Z)�1[e�B Ad0 Ce�2B Bn1]

C (I C Z)�1e�B
Z 1

0
Be�sB f (s) ds

� (I C Z)�1
Z 1

0
Be�(1�s)B( f (s) � f (1)) dsC (e�B

C e�2B)(I C Z)�1 f (1)

D

6
X

iD1

bi .

Sinceb1, b2, b3, b4, b5 and b6 are in D(A), it hods thatBn1 2 D(A).
Conversely, we assume that

d0 2 D(A), n1 2 D(B),

Ad0 � f (0) 2 D(A) and Bn1 2 D(A).

From (8) we obtain

u00(x) D �(I C Z)�1(I C e�2(1�x)B)e�x B Ad0 C(I C Z)�1(I � e�2x B)e�(1�x)B Bn1

C

1

2
(I C Z)�1B

Z 1

0
e�(xCs)B f (s) dsC

1

2
(I C Z)�1B

Z 1

0
e�(2�xCs)B f (s) ds

C

1

2
(I C Z)�1B

Z 1

0
e�(2Cx�s)B f (s) ds�

1

2
(I C Z)�1B

Z 1

0
e�(2�x�s)B f (s) ds

�

1

2
B
Z x

0
e�(x�s)B f (s) ds�

1

2
B
Z 1

x
e�(s�x))B f (s) dsC f (x).
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We write

(10) u00(x) D N(x, B)n1 C D(x, A)d0 C F(x, B)C G(x, B)C H (x, B)C f (x),

where

N(x, B)n1 D (I C Z)�1e�(1�x)B Bn1 � (I C Z)�1e�(1Cx)B Bn1,

D(x, A)d0 D �(I C Z)�1e�x B(Ad0 � f (0))� (I C Z)�1e�(2�x)B Ad0,

F(x, B) D
1

2
(I C Z)�1e�x B

Z 1

0
Be�sB( f (s) � f (0)) ds

C

1

2
(I C Z)�1e�(2�x)B

Z 1

0
Be�sB f (s) ds

C

1

2
(I C Z)�1e�(1Cx)B

Z 1

0
Be�(1�s)B f (s) ds

�

1

2
(I C Z)�1e�(1�x)B

Z 1

0
Be�(1�s)B( f (s) � f (1)) ds,

G(x, B) D �

1

2

Z x

0
Be�(x�s)B( f (s) � f (x)) ds�

1

2

Z 1

x
Be�(s�x))B( f (s) � f (x)) ds

and

H (x, B) D �

1

2
(I C Z)�1e�(1Cx)B f (0)�

1

2
(I C Z)�1e�(2Cx)B f (0)

C

1

2
(I C Z)�1[e�(2�x)B f (1)C Ze�(1�x))B f (1)]

C

1

2
e�(1�x))B( f (x) � f (1))C

1

2
e
�x B

( f (x) � f (0)).

In view of Lemmas 5 and 7,N( � , B)n1 and D( � , A)d0 are in C([0, 1]I X) and
F( � , B), G( � , B) and H ( � , B) are continuous sincef 2 C� ([0, 1]I X), from which we
deduce thatu00 is in C([0, 1]I X). In the same way we prove thatAu is in C([0, 1]I X).

Note that

Au(x) D (I C Z)�1[e�x B Ad0 Ce�(2�x)B Ad0 �e�(1�x)B Bn1 C e�(1Cx)B Bn1]

�

1

2
(I C Z)�1

�

e�x B
Z 1

0
Be�sB f (s) dsC e�(2�x)B

Z 1

0
Be�sB f (s) ds

�

�

1

2
(I C Z)�1e�(1Cx)B

Z 1

0
Be�(1�s)B f (s) ds

�

1

2
(I C Z)�1e�(1�x)B

Z 1

0
Be�(1�s)B f (s) ds

C

1

2

Z x

0
Be�(x�s)B f (s) dsC

1

2

Z 1

x
Be�(s�x))B f (s) ds.
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Then

u00(x)C Au(x) D f (x).

Finally we obtain the following maximal regularity theorem:

Theorem 9. Under (3) let f 2 C� ([0, 1]I X), 0< � < 1. Then the following as-
sertions are equivalent.
(1) The unique solution u of Problem(1)–(2) has the maximal regularity property:

u00, Au 2 C� ([0, 1]I X).

(2) The elements d0 and n1 satisfy the conditions

d0 2 D(A), n1 2 D(
p

�A), Ad0 � f (0) 2 (D(A), X)1��=2,1

and
p

�An1 2 (D(A), X)1��=2,1.

Proof. Assume that there exists a strict solutionu of Problem (1)–(2) having the
maximal regularity property. From the previous theorem, wehave

d0 2 D(A), n1 2 D(B).

Also the first and the second terms in formula (10) are inC� ([0, 1]I X) and hence

e�B�(Ad0 � f (0)) 2 C� ([0, 1]I X),

e(1��)B Bn1 2 C� ([0, 1]I X).

Using [17, Remark], we have

Ad0 � f (0) 2 (D(B), X)1�� ,1,

Bn1 2 (D(B), X)1�� ,1.

We finish the proof of (1)H) (2) if we note that

(D(B), X)1�� ,1 D (D(A), X)1��=2,1.

Conversely assume that

d0 2 D(A), n1 2 D(B), Ad0 � f (0) 2 (D(A), X)1��=2,1

and Bn1 2 (D(A), X)1��=2,1.
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Using [3, Theorem 1.4] we have

e�
p

�A�(Ad0 � f (0)) 2 C� ([0, 1]I X),

e(1��)
p

�ABn1 2 C� ([0, 1]I X),
Z 1

0
Be�sB( f (s) � f (0)) ds2 C� ([0, 1]I X),

Z 1

0
Be�(1�s)B( f (s) � f (1)) ds2 C� ([0, 1]I X),

and thus

u00, Au 2 C� ([0, 1]I X).

Proposition 10. Under (3) let f 2 C� ([0, 1]I X), 0< � < 1, and assume that

d0 2 D(A), n1 2 D(
p

�A), Ad0 � f (0) 2 (D(A), X)1��=2,1

and
p

�An1 2 (D(A), X)1��=2,1.

Then the unique strict solution u of Problem(1)–(2) with the maximal regularity
property:

u00, Au 2 C� ([0, 1]I X)

has also the cross-regularity

Au( � ) � f ( � ) 2 B([0, 1]I (D(A), X)1��=2,1).

Proof. We recall that

Au(x) � f (x)

D (I C Z)�1[e�x B(Ad0 � f (0))C e�(1�x)B Bn1 C e�(2�x)B Ad0 �e�(1Cx)B Bn1]

�

1

2
(I C Z)�1

�

e�x B
Z 1

0
Be�sB( f (s) � f (0)) dsC e�(2Cx)B f (0)� e�(1Cx)B f (0)

�

�

1

2
(I C Z)�1

�

e�(2�x)B
Z 1

0
Be�sB f (s) dsC e�(1Cx)B

Z 1

0
Be�(1�s)B f (s) ds

�

C

1

2
(I C Z)�1

�

e�(1�x)B
Z 1

0
Be�(1�s)B( f (s) � f (1)) ds� e�(2�x)B f (1)

�

C

1

2
(I C Z)�1Ze�(1�x))B f (1)C

1

2

Z x

0
Be�(x�s)B( f (s) � f (x)) ds

�

1

2
e
�x B

( f (x) � f (0))C
1

2

Z 1

x
Be�(s�x))B( f (s) � f (x)) ds

�

1

2
e�(1�x))B( f (x) � f (1))

D

16
X

iD1

ki (x).
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Note that

(D(A), X)1��=2,1 D (D(B), X)1�� ,1.

So in order to prove that (Au(x) � f (x)) 2 (D(A), X)1��=2,1 it suffices to show that

sup
t>0
kt�� (e�t B

� I )[ Au(x) � f (x)]kX � K .

As Ad0� f (0)2 (D(A), X)1��=2,1 and
p

�An1 2 (D(A), X)1��=2,1, it follows that k1(x)
and k2(x) are in (D(A), X)1��=2,1.

It is clear that fori D 3, 4, 6, 7, 8, 9, 11 and 12,ki (x) are in D(B) and hence in
(D(B), X)1�� ,1.

Concerningk13, we have

ke�t Bk13(x) � k13(x)kX

D













1

2

�

e�t B
Z x

0
Be�(x�s)B( f (s) � f (x)) ds�

Z x

0
Be�(x�s)B( f (s) � f (x)) ds

�













X

D













1

2

Z x

0
[Be�(xCt�s)B

� Be�(x�s)B]( f (s) � f (x)) ds













X

D













1

2

Z x

0

Z xCt�s

x�s
B2e�� B( f (s) � f (x)) d� ds













X

� C
Z x

0

Z xCt�s

x�s
�

�2
k f (s) � f (x)kX d� ds

� C
Z x

0

Z xCt�s

x�s
�

�2(x � s)�k f kC� (X) d� ds

� C
Z x

0

Z yCt

y
�

�2y�k f kC� (X) d� dy� C
Z x

0
y�
�

1

y
�

1

yC t

�

k f kC� (X) dy

� C
Z x=t

0
(ut)�

�

1

ut
�

1

t(uC 1)

�

k f kC� (X)t du

� C
Z x=t

0
u� t�

�

1

u
�

1

uC 1

�

k f kC� (X) du� Ct�k f kC� (X).

For k14 we have

ke�t Bk14(x) � k14(x)kX

D













1

2

Z xCt

x
Be��B( f (x) � f (0)) d�













X

� C
Z xCt

x
�

�1
k f (x) � f (0)kX d� � C

Z xCt

x
�

�1x�k f kC� (X) d�

� C
Z xCt

x
�

�1
�

�

k f kC� (X) d� � Ct�k f kC� (X).
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For k5(x) we can write

B
Z 1

0
e�(xCs)B f (s) dsD B

Z x

0
e�(x�s)Be�2sB f (s) dsC e�2x BB

Z 1

x
e�(s�x)B f (s) ds.

In this way all the terms are seen to be in (D(B), X)1�� ,1.

5. A priori estimates

Proposition 11. Under (3) let f 2 C� ([0, 1]I X), 0< � < 1, and assume that

d0 2 D(A), n1 2 D(
p

�A), Ad0 � f (0) 2 (D(A), X)1��=2,1

and
p

�An1 2 (D(A), X)1��=2,1.

Then9C > 0:

ku00kC(X) C kAukC(X) � C[k f kC� (X) C kAd0 � f (0)kX C k

p

�An1kX]

and

ku00kC� (X) C kAukC� (X)

� C[k f kC� (X) C kAd0 � f (0)k(D(A),X)1��=2,1 C k

p

�An1k(D(A),X)1��=2,1 ].

Proof. Writing u00 as in formula (10) we get

max
0�x�1

ku00(x)kX � C[k f kC� (X) C kAd0 � f (0)kX C kBn1kX].

This gives the proof of statement 1. For statement 2 it suffices to prove that

max
0�x,t�1

x¤t

ku00(x) � u00(t)kX

� Cjx � t j� [k f kC� (X) C kAd0 � f (0)k(D(A),X)1��=2,1 C k

p

�An1k(D(A),X)1��=2,1 ].

In formula (10) we define

u00(x) D
17
X

iD1

hi (x).

Then

kh1(x) � h1(t)kX D k�(I C Z)�1e�x B(I � e�(t�x)B)(Ad0 � f (0))kX

� ke�x B(I � e�(t�x)B)(Ad0 � f (0))kX

� Cjt � xj�kAd0 � f (0)k(D(A),X)1��=2,1 .
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Similarly

kh2(x) � h2(t)kX � Cjt � xj�kBn1k(D(A),X)1��=2,1 .

For h3 we write

h3(x) D �(I C Z)�1e�(2�x)B Ad0

D �(I C Z)�1e�(2�x)B(Ad0 � f (0))� (I C Z)�1e�(2�x)B f (0).

As above, the first term is seen to be inC� ([0, 1]I X) and the second is the same. As
for h13 we have

h13(x) � h13(t)

D

1

2

Z x

t
Be�(x�s)B( f (s) � f (x)) dsC

1

2

Z t

0

Z x�s

t�s
B2e��B( f (s) � f (t)) d� ds

C

1

2
(e�x B

� e�(x�t)B)( f (t) � f (x)).

The first and last terms are clearly estimated byCjt � xj�k f kC� (X). For the second
term, we estimate













1

2

Z t

0

Z x�s

t�s
B2e��B( f (s) � f (t)) d� ds













X

� Ck f kC� (X)

Z t

0
js� t j�

Z x�s

t�s
�

�2 d� ds

� Ck f kC� (X)(x � t)
Z t

0
(t � s)��1(x � s)�1 ds

� Ck f kC� (X)(x � t)�
Z t=x�t

0
�

��1(1C �)�1 d� � Cjx � t j�k f kC� (X).

Moreover, we have

kh14(x) � h14(t)kX

D













1

2
e
�x B

( f (x) � f (t))C
1

2

Z x

t
Be�sB( f (t) � f (0)) ds













X

� Cjt � xj�k f kC� (X) C

Z x

t

C

s
t� dsk f kC� (X)

� Cjt � xj�k f kC� (X) C

Z x

t

C

s
s� dsk f kC� (X) � Cjt � xj�k f kC� (X).

In this way, we finally prove that

ku00(x) � u00(t)kX � Cjt � xj� [k f kC� (X) C kAd0 � f (0)k(D(A),X)1��=2,1

C k

p

�An1k(D(A),X)1��=2,1 ].
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Hence we complete the proof.

6. Concrete applications

6.1. An anisotropic interpolation result. Set

�

E
�

D {u 2 C2C� ([0, 1]I X) \ C� ([0, 1]I D(A)) W u00(0) 2 (D(A), X)1��=2,1},
T
�

D D(A) � Dp

�A(� C 1,1),

where

Dp

�A(� C 1,1) D {� 2 Dp

�A W
p

�A� 2 (D(A), X)1��=2,1}.

Proposition 12. The mapping J

J W E
�

! T
�

,

u 7! (u(0), u0(1))

is well-defined, linear, continuous and bijective.

Proof. The mappingJ is obviously linear. Letu 2 E
�

, then

u00, Au 2 C� ([0, 1]I X)

and hence
8

<

:

u00(x)C Au(x) D u00(x)C Au(x) WD g(x),
u(0)D d0 in D(A),
u0(1)D n1 in X,

furthermore

u 2 C2C� ([0, 1]I X) \ C� ([0, 1]I D(A)).

From Theorem 9, we obtain that

d0 2 D(A), n1 2 D(
p

�A)

and

Ad0 �g(0) 2 (D(A), X)1��=2,1,
p

�An1 2 (D(A), X)1��=2,1,

thus (d0, n1) 2 T
�

. In order to prove the surjection, let (d0, n1) 2 T
�

. Then Prob-
lem (1)–(2) has a unique strict solutionu such that

u 2 C2C� ([0, 1]I X) \ C� ([0, 1]I D(A)),

where

u00(0)D � Ad0 Cg(0) 2 (D(A), X)1��=2,1
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so 9!u 2 E
�

such thatJ(u) D (d0, n1), then J is bijective. Let (d0, n1) 2 T
�

, then

kJ(u)kT
�

D k(d0, n1)kD(A)�Dp

�A(�C1,1) D sup{kd0kD(A), kn1kDp

�A(�C1,1)}

� sup{kd0kD(A), k
p

�An1k(D(A),X)1��=2,1}.

We have on one hand

kd0kD(A) � kAd0kX

� kAd0 �u00(0)C u00(0)kX

� ku00(0)kX C kAd0 �u00(0)kX

� c

"

ku00(0)k(D(A),X)1��=2,1 C sup
x2[0,1]

kAu(x)kX C sup
x2[0,1]

ku00(x)kX

#

� c[ku00(0)k(D(A),X)1��=2,1 C kAukC([0,1],X) C ku00kC([0,1],X)]

� c[ku00(0)k(D(A),X)1��=2,1 C kAukC� ([0,1],X) C ku00kC� ([0,1],X)]

� ckukE
�

.

On the other hand, from formula (9) we have

kn1kDp
�A

(�C1,1)

D k

p

�An1k(D(A), X)1��=2,1

D k(I � Z)�1(I C Z)Au(1)C 2(I � Z)�1e�
p

�A Ad0k(D(A),X)1��=2,1

C













(I � Z)�1
p

�A
Z 1

0
e�(1Cs)

p

�Ag(s) ds













(D(A),X)1��=2,1

C













(I � Z)�1
p

�A
Z 1

0
e�(1�s)

p

�Ag(s) ds













(D(A),X)1��=2,1

� k(I � Z)�1(I C Z)Au(1)k(D(A),X)1��=2,1

C k2(I � Z)�1e�
p

�A Ad0k(D(A),X)1��=2,1 C ckgkC� ([0,1]IX)

� c[kAu(1)k(D(A),X)1��=2,1 C kAd0k(D(A),X)1��=2,1 ]

C c[kAukC� ([0,1],X) C ku00kC� ([0,1],X)]

� c[kAu(1)k(D(A),X)1��=2,1 C kAd0 Cu00(0)� u00(0)k(D(A),X)1��=2,1

C kAukC� ([0,1],X) C ku00kC� ([0,1],X)].
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Then

kn1kDp

�A(�C1,1)

� c

�

sup
x>0
kx�� (e�x

p

�A
� 1)Au(1)kX C sup

x>0
kx�� (e�x

p

�A
� 1)(Ad0 Cu00(0))kX

C ku00(0)k(D(A),X)1��=2,1 C kAukC� ([0,1],X) C ku00kC� ([0,1],X)

�

� c

�

sup
x>0
kAu(x)kX C sup

x>0
ku00(x)kX C ku00(0)k(D(A),X)1��=2,1

�

C ckAukC� ([0,1],X) C ku00kC� ([0,1],X)

� c[kAukC� ([0,1],X) C ku00kC� ([0,1],X) C ku00(0)k(D(A),X)1��=2,1 ]

� ckukE
�

.

Finally we deduce that

9c > 0=8u 2 E
�

, kJ(u)kT
�

� ckukE
�

.

Corollary 13. Let u2 E
�

and f 2 C� ([0, 1]I X) then

Au( � ) � f ( � ) 2 B([0, 1]I (D(A), X)1��=2,1).

Proof. The proof is a direct consequence of Propositions 10 and 12.

6.2. Example 1. Let X D L2(R) and let

�

D(A) D H2(R),
AuD u00.

It is well-known that D(A) is dense inX. Set

�

G
�

D {u 2 C2C� ([0, 1]I L2(R)) \ C� ([0, 1]I H2(R)) W u00(0) 2 (H2(R), L2(R))1��=2,1},
N
�

D H2(R) �H
�

,

and

H
�

D {� 2 D(
p

�A) W
p

�A� 2 (H2(R), L2(R))1��=2,1 D B�2,1(R)}.

The following result is a consequence of Proposition 12:

Proposition 14. The mapping M

M W G
�

! N
�

,

u 7! (u(0), u0(1))

is well-defined, linear, continuous and bijective.
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6.3. Example 2. Let X D C([0, 1]) and let

�

D(A) D {u 2 C2([0, 1]) W u(0)D u(1)D 0},
AuD u00.

Here D(A) is not dense inX since

D(A) D {u 2 C([0, 1]) W u(0)D u(1)D 0}.

The characterization ofD(
p

�A) is difficult, however we know that

D(
p

�A) � (D(A), X)1=2,1 D {u 2 C1
�

([0, 1]) W u(0)D u(1)D 0},

where

C1
�

([0, 1]) D

(

u 2 C([0, 1] W sup
x,y,(xCy)=22[0,1]

�

ju(x)C u(y) � 2u((x C y)=2)j

jx � yj

�

<1

)

.

Note that

(D(A), C([0, 1]))1��=2,1

D {u 2 (C2([0, 1]), C([0, 1]))1��=2,1 W u(0)D u(1)D 0}

D {u 2 C� ([0, 1]) W u(0)D u(1)D 0},

see [19, 2.7.2]. Let

8

<

:

C
�

D {u 2 C2C� ([0, 1]I C([0, 1]))\ C� ([0, 1]I D(A)) W
u00(0) 2 (D(A), C([0, 1]))1��=2,1},

T
�

D D(A) �K
�

where

K
�

D {� 2 H1(R) W
p

�A� 2 (D(A), C([0, 1]))1��=2,1}.

We can apply Proposition 12 to obtain

Proposition 15. The mapping N

N W C
�

! T
�

,

u 7! (u(0), u0(1))

is well-defined, linear, continuous and bijective.
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