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Abstract
The indicator function of the set ofk-th power free integers is naturally extended

to a random variableX(k)( � ) on (OZ, �), where OZ is the ring of finite integral adeles
and � is the Haar probability measure. In the previous paper, the first author noted
the strong law of large numbers for{X(k)( � C n)}1nD1, and showed the asymptotics:

E�[(Y(k)
N )2] � 1 as N ! 1, whereY(k)

N (x) WD N�1=2k
PN

nD1

�

X(k)(x C n) � 1=� (k)
�

.

In the present paper, we prove the convergence ofE�[(Y(k)
N )2]. For this, we present

a general proposition of analytic number theory, and give a proof to this.

1. Introduction

Let OZ be the ring of finite integral adeles;B the Borel� -field of OZ; � the Haar
probability measure on (OZ,B). In [4, 1], the triplet (OZ,B,�) is introduced in the follow-
ing way: For a prime numberp, the p-adic metricdp on Z is defined by

dp(x, y) WD inf{p�l
I pl

j (x � y)}, x, y 2 Z.

The completion ofZ by dp is denoted byZp. By extending the algebraic operations ‘C’
and ‘�’ in Z continuously to those inZp, the compact metric space (Zp, dp) becomes a
ring. In particular, (Zp,dp) is a compact abelian group with respect to ‘C’. Thus, there is
a unique Haar probability measure�p with respect to ‘C’ on (Zp,B(Zp)), whereB(Zp)
is the Borel� -field of Zp.

Putting pi D i -th prime number (i D 1, 2, : : :), we set

O

Z WD

1

Y

iD1

Zpi , � WD

1

Y

iD1

�pi .

For x D (xi ), y D (yi ) 2 O

Z, we define

d(x, y) WD
1

X

iD1

1

2i
dpi (xi , yi ),

x C y WD (xi C yi ), xy WD (xi yi ).

2010 Mathematics Subject Classification. Primary 60F25; Secondary 60B10, 60B15, 11N37,
11K41.
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By these definitions,OZ becomes a ring, which is just the ring of finite integral ade-
les stated above. (OZ, d) is again a compact metric space, and both ‘C’ and ‘�’ are
continuous. In particular, this is a compact abelian group with respect to ‘C’, and
its Haar probability measure is nothing but�. By identifying Z with the diagonal set
{(n, n, : : : ) 2 Z�Z� � � � I n 2 Z} � O

Z, it is seen thatZ is a dense subring ofOZ. Thus
O

Z is a compactification ofZ.
Let k be an integer,� 2. Let B(k) be the set of all elements inOZ having nok-th

power factors, i.e.,

B(k)
WD {x 2 O

ZI pk
­ x (8p: prime)},

whered j x , x 2 d OZ (, so d ­ x , x 2 O

Z n d OZ), and X(k)
WD 1B(k) (D the indicator

function of B(k)).
The following are results of Duy [1]:

Fact 1 (Strong law of large numbers). limN!1

(1=N)
PN

nD1 X(k)(xCn) D 1=� (k),
�-a.e. x. Here� ( � ) is the Riemann zeta function.

For eachN 2 N, we set

Y(k)
N (x) WD

1

N1=(2k)

N
X

nD1

�

X(k)(x C n) �
1

� (k)

�

.(1)

Fact 2. E�[(Y(k)
N )2] � 1 as N!1.

Fact 3. A sequence{Y(k)
N }1ND1 in L2( OZ, B, �) has no limit point. Namely, for any

subsequence{Ni }
1

iD1, {Y(k)
Ni

}1iD1 is not convergent in L2 as i !1.

Fact 1 follows at once from the ergodicity of the shiftx 7! x C 1 and E�[X(k)] D
1=� (k)1. From this fact, we have the following question:When

PN
nD1(X(k)(x C n) �

1=� (k)) is normalized appropriately, is its distribution weakly convergent as N! 1?
Fact 2 tells us that a normalizing constant must beN1=(2k), and that a sequence{�(Y(k)

N 2

�)}1ND1 of distributions onR is tight. Fact 3 is a functional analytical result and brings

no news for the behavior ofY(k)
N as N ! 1. But, for this, we expect to have a limit

theorem in probability theory. (Unfortunately, we still have no information on this limit
theorem.)

In this paper, we make some remark about Fact 2 and Fact 3.

1Cf. 1Æ in the proof of Claim 1.
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Theorem 1.

lim
N!1

E�[(Y(k)
N )2] D

 

Y

p

�

1�
1

p

��

1C
1

p
�

2

pk

�

!

� (2� 1=k)

(2�)1�1=k
0(1=k) sin(�=(2k))

.

Theorem 2. (i) lim N!1

limM!1

E�[(Y(k)
M �Y(k)

N )2] D 2
�

Q

p(1� 1=p)(1C 1=p�

2=pk)
�

� (2�1=k)=((2�)1�1=k
0(1=k)sin(�=2k))> 0. Fact 3above is a consequence of this.

(ii) But, a whole sequence{Y(k)
N }1ND1 in L2( OZ,B,�) is weakly convergent to0 as N!1.

Throughout this paper, the letterp denotes a prime number, and the symbols
Q

p

and
P

p are a product and a summation extended over all prime numbers, respectively.
Theorems above will be proved in Section 4. In Section 2, an another computation

of E�[Y(k)
M Y(k)

N ], which is different from one in Duy [1], is given. And, in Section 3, to
prove Theorem 1, we prepare Proposition 1. This is a general proposition of analytic
number theory, and will be proved in Section 5.

The authors would like to thank the referee for good advice which enabled us to
make proofs clear and considerably short.

2. Computation of E�[Y (k)
M Y (k)

N ]

By a different approach2 from Duy [1], we computeE�[Y(k)
M Y(k)

N ].

Claim 1. For M � N � 1,

E�[Y(k)
M Y(k)

N ]

D

1

M1=(2k)

1

N1=(2k)

1

X

cD1

j�(c)j

0

�

Y

p­c

�

1�
2

pk

�

1

A

�

M

ck

�

^

�

N

ck

��

1�

�

M

ck

�

_

�

N

ck

��

.

Here �( � ) is the Möbius function and{a} is the fractional part of the real number a.

Proof. Fix M � N � 1. We divide the proof into three steps:
1Æ First

E�[Y(k)
M Y(k)

N ]

D E�

"

1

M1=(2k)

1

N1=(2k)

M
X

mD1

N
X

nD1

�

X(k)(x Cm) �
1

� (k)

��

X(k)(x C n) �
1

� (k)

�

#

2Duy’s method is originally due to [4]. The same kind of computation in the proof of Claim 1
appears in early study of [4]. So, a phrase ‘different approach’ may be too much to say.
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D

1

M1=(2k)

1

N1=(2k)

X

1�m�M,
1�n�N

�

E�[X(k)(x Cm)X(k)(x C n)]

�

1

� (k)
(E�[X(k)(x Cm)] C E�[X(k)(x C n)]) C

�

1

� (k)

�2�

.

Noting that

(2) X(k)(y) D
Y

p

(1� �pk (y)),

where, ford 2 N, �d(y) WD

�

1, d j y (, y 2 d OZ),
0, otherwise,

{�pk}p is independent,(3)

�(�d D 1)D
1

d
, �(�d D 0)D 1�

1

d
,(4)

we have

E�[X(k)(x Cm)] D E�[X(k)(x)] (by the shift invariance of�)

D

Y

p

�

1�
1

pk

�

D

1

� (k)
(by Euler’s product of� ( � )),

and thus

E�[Y(k)
M Y(k)

N ]

D

1

M1=(2k)

1

N1=(2k)

X

1�m�M,
1�n�N

 

E�[X(k)(x Cm)X(k)(x C n)] �

�

1

� (k)

�2
!

.

Since, by (2)

X(k)(x Cm)X(k)(x C n)

D

Y

p

(1� �pk (x Cm)) � (1� �pk (x C n))

D

Y

p

(1� �pk (x C n) � �pk (x Cm)C �pk (x Cm)�pk (x C n))

D

Y

p

(1� �pk (x C n) � �pk (x Cm)C �pk (m� n)�pk (x C n))

(by an identity:�d(x Cm)�d(x C n) D �d(m� n)�d(x C n)),
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we see from (3) and (4) that

E�[Y(k)
M Y(k)

N ]

D

1

M1=(2k)

1

N1=(2k)

X

1�m�M,
1�n�N

 

Y

p

�

1�
2

pk
C �pk (m� n)

1

pk

�

�

�

1

� (k)

�2
!

.

2Æ By Euler’s product of� ( � )

�

1

� (k)

�2

D

Y

p

�

1�
2

pk
C

1

p2k

�

D

Y

p

�

1C
1

pk

�

�2C
1

pk

��

D

X

d

j�(d)j

dk

Y

pjd

�

�2C
1

pk

�

D

X

d

j�(d)j

dk

X

cjd

(�2)!(d=c)
Y

pjc

1

pk

(where!(n) WD #{pI p j n} D the number of different prime factors ofn)

D

X

d

j�(d)j

dk

X

cjd

(�2)!(d=c) 1

ck

D

X

c1,d1

j�(c1d1)j

(c1d1)k
(�2)!(d1) 1

ck
1

(there exists a one-to-one correspondence between the set{(c, d)I d is square free and
c j d} and the set{(c1,d1)I c1d1 is square free}; a correspondence from the former to the
latter is (c, d) 7! (c, d=c) and one from the latter to the former is (c1, d1) 7! (c1, c1d1).
Here (c, d) and (c1, d1) denote a pair ofc andd, and that ofc1 andd1, respectively)

D

X

c1,d1

j�(c1d1)j

c2k
1

1(c1,d1)D1
(�2)!(d1)

dk
1

(where (c1, d1) is the greatest common divisor ofc1 and d1. Note that�(c1d1) D 0 if
(c1, d1) > 1)

D

X

c1,d1

j�(c1)j j�(d1)j

c2k
1

1(c1,d1)D1
(�2)!(d1)

dk
1



692 T.K. DUY AND S. TAKANOBU

(by the multiplicativity of�)

D

X

c1

j�(c1)j

c2k
1

X

d1

j�(d1)j

dk
1

1(c1,d1)D1(�2)!(d1)

D

X

c1

j�(c1)j

c2k
1

Y

p

�

1C
j�(p)j

pk
1(c1, p)D1(�2)!(p)

�

(by the multiplicativity of d1 7! j�(d1)j1(c1,d1)D1(�2)!(d1))

D

X

c1

j�(c1)j

c2k
1

Y

p­c1

�

1�
2

pk

�

.

Similarly, since

Y

p

�

1�
2

pk
C �pk (m� n)

1

pk

�

D

X

c1

j�(c1)j

ck
1

Y

p­c1

�

1�
2

pk

�

�ck
1
(m� n),

we have

Y

p

�

1�
2

pk
C �pk (m� n)

1

pk

�

�

�

1

� (k)

�2

D

X

c

j�(c)j

ck

Y

p­c

�

1�
2

pk

��

�ck (m� n) �
1

ck

�

.

Thus, by 1Æ and 3Æ below

E�[Y(k)
M Y(k)

N ]

D

1

M1=(2k)N1=(2k)

X

1�m�M,
1�n�N

X

c

j�(c)j

ck

Y

p­c

�

1�
2

pk

��

�ck (m� n) �
1

ck

�

D

1

M1=(2k)N1=(2k)

X

c

j�(c)j
Y

p­c

�

1�
2

pk

�

1

ck

M
X

mD1

N
X

nD1

�

�ck (m� n) �
1

ck

�

D

1

M1=(2k)N1=(2k)

X

c

j�(c)j
Y

p­c

�

1�
2

pk

��

M

ck

�

^

�

N

ck

��

1�

�

M

ck

�

_

�

N

ck

��

.

This is the assertion of the claim.
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3Æ Fix u 2 N. Let Q and s be a quotient and a remainder ofN divided by
u, respectively. ThusN D QuC s, where Q D bN=u
3, s D {N=u}u 2 {0, 1, : : : ,
u � 1}. Then

N
X

nD1

�u(m� n)

D

Q
X

qD1

u
X

jD1

�u(m� ((q � 1)uC j ))C
s
X

jD1

�u(m� (QuC j ))

D

Q
X

qD1

u
X

jD1

�u(m� j � (q � 1)u)C
s
X

jD1

�u(m� j � Qu)

D

Q
X

qD1

u
X

jD1

�u(m� j )C
s
X

jD1

�u(m� j ) (by an identity:�u(yC u) D �u(y))

D Q
u
X

jD1

�u(m� j )C
s
X

jD1

�u(m� j )

D QC

s
X

jD1

�u(m� j )

(first
Pu

jD1 �u(m � j ) D
P

0� j<u �u(m � j ) D
P

0� j<u �u(m mod u � j ), where
m mod u WD the remainder ofm divided byu. Secondly, noting that for 0� j < u,
�u(m modu� j )D 1, j �m modu (modu), j Dm (modu), we see

Pu
jD1 �u(m�

j )D 1)

D

�

N

u

�

C

s
X

jD1

�u(m� j ).

Therefore

1

u

M
X

mD1

N
X

nD1

�

�u(m� n) �
1

u

�

D

1

u

M
X

mD1

N
X

nD1

�u(m� n) �
M N

u2

D

1

u

M
X

mD1

0

�

�

N

u

�

C

s
X

jD1

�u(m� j )

1

A

�

M N

u2

3For a 2 R, ba
 WD max{n 2 ZI n � a} and dae WD min{n 2 ZI a � n}. We call b � 
 W R! Z and
d � eW R! Z the floor function and the ceiling function, respectively. Note that{a} D a� ba
 2 [0, 1).
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D

1

u

0

�M

�

N

u

�

C

s
X

jD1

M
X

mD1

�u( j �m)

1

A

�

M N

u2

D

1

u

0

�M

�

N

u

�

C

s
X

jD1

 

�

M

u

�

C

r
X

iD1

�u( j � i )

!

1

A

�

M N

u2
(where r D {M=u}u)

D

1

u

0

�M

�

N

u

�

C s

�

M

u

�

C

r
X

iD1

s
X

jD1

�u(i � j )

1

A

�

M N

u2

D

1

u

�

M

�

N

u

�

C s

�

M

u

�

C r ^ s

�

�

M N

u2

(for 0 < i , j < u, �u < i � j < u. Also �u(i � j ) D 1 , i � j � 0 (mod u). Thus
�u(i � j ) D 1, i D j )

D

r

u
^

s

u
�

�

M

u

N

u
�

M

u

�

N

u

�

�

s

u

�

M

u

��

D

r

u
^

s

u
�

r

u
�

s

u
(because{M=u} D r =u, {N=u} D s=u)

D

�

M

u

�

^

�

N

u

��

1�

�

M

u

�

_

�

N

u

��

(by an identity:abD (a ^ b)(a _ b)).

Claim 2. For each N2 N, limM!1

E�[Y(k)
M Y(k)

N ] D 0.

Proof. Let M � N � 1. Since 0� {M=ck}, {N=ck} < 1,

0�

�

M

ck

�

^

�

N

ck

��

1�

�

M

ck

�

_

�

N

ck

��

�

�

N

ck

��

1�

�

N

ck

��

.

Multiplying both sides by (1=M1=(2k))(1=N1=(2k))j�(c)j
Q

p­c(1�2=pk), and then adding
them overc 2 N yield that

0� E�[Y(k)
M Y(k)

N ]

�

1

M1=(2k)

1

N1=(2k)

1

X

cD1

j�(c)j

0

�

Y

p­c

�

1�
2

pk

�

1

A

�

N

ck

��

1�

�

N

ck

��

D

�

N

M

�1=(2k)

E�[(Y(k)
N )2].

From this, the assertion of the claim follows.
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3. Presentation of Proposition 1

By Claim 1

(5)

E�[(Y(k)
N )2] D

 

Y

p

�

1�
2

pk

�

!

1

N1=k

1

X

cD1

j�(c)j
Q

pjc(1� 2=pk)

�

N

ck

��

1�

�

N

ck

��

D

 

Y

p

�

1�
2

pk

�

!

1

N1=k

1

X

cD1

f (c)

�

N

ck

��

1�

�

N

ck

��

,

where

f (n) WD
j�(n)j

Q

pjn(1� 2=pk)
, n 2 N.(6)

To show the convergence ofE�[(Y(k)
N )2] as N !1 and to find the value of this

limit, we present a general proposition:

Proposition 1. Let an arithmetic function f, i.e., f W N! C satisfy the following
condition (7) or (8):

1

X

nD1

1

n

�

�

�

�

�

�

X

djn

�(d) f
�n

d

�

�

�

�

�

�

�

<1,(7)

8

<

:

• supn2N j f (n)j <1,
• f has the mean-value M( f ), i.e., limx!1

(1=x)
P

n�x f (n) is
convergent to a finite limit M( f ).

(8)

Then, it holds that for8k 2 (1,1)4 and 8h 2 C1[0, 1] with h(0)D 0

(9) lim
N!1

N�1=k
1

X

nD1

f (n)h

��

N

nk

��

D M( f )
1

k

Z

1

0

h({x})

x1=kC1
dx.

Before proving this proposition, we give some comments on the conditions (7)
and (8):

Claim 3. If f W N ! C satisfies the condition(7), then f has the mean-value

M( f ) D
1

X

nD1

1

n

X

djn

�(d) f
�n

d

�

.

4Here k may be a real number,> 1, thoughk was an integer,� 2 at the beginning of this paper.
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Proof. For simplicity, we definef 0 W N ! C by

(10) f 0(n) D
X

djn

�(d) f
�n

d

�

, n 2 N.

Since, by the Möbius inversion formula

(11) f (n) D
X

djn

f 0(d),

we have forx, y 2 [1, 1)

1

x

X

n�x

f (n) D
1

x

X

d�x

0

�

X

n�xIdjn

1

1

A f 0(d)

D

1

x

X

d�x

j x

d

k

f 0(d)

D

X

d�x

f 0(d)

d
�

1

x

X

d�x

{x

d

}

f 0(d)

D

1

X

dD1

f 0(d)

d
�

X

d>x

f 0(d)

d
�

X

d�x=y

1

x=d

{x

d

} f 0(d)

d

�

X

x=y<d�x

1

x=d

{x

d

} f 0(d)

d
.

Transposing the first term of the last right-hand side, and then taking the absolute value,
we see that

(12)

�

�

�

�

�

1

x

X

n�x

f (n) �
1

X

dD1

f 0(d)

d

�

�

�

�

�

�

X

d>x

j f 0(d)j

d
C

X

d�x=y

1

x=d

{x

d

}

j f 0(d)j

d
C

X

x=y<d�x

1

x=d

{x

d

}

j f 0(d)j

d

�

X

d>x

j f 0(d)j

d
C

1

y

X

d�x=y

j f 0(d)j

d
C

X

x=y<d�x

j f 0(d)j

d

� 2
X

d>x=y

j f 0(d)j

d
C

1

y

X

d�x=y

j f 0(d)j

d
.

By letting x !1 and y !1, the assertion of the claim follows.

REMARK 1. Schwarz–Spilker [3] calls Claim 3 Wintner’s theorem.
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We give an example off satisfying the condition (7):

EXAMPLE 1. Let f W N! C be multiplicative, i.e.,f ¤ 0 and f (mn)D f (m) f (n)
provided that (m, n) D 1. If, in addition,

(13)
X

p

j f (p) � 1j

p
<1,

X

p

X

l�2

j f (pl )j

pl
<1,

then f satisfies the condition (7).

Proof. Multiplicativity of � and f is inherited to f 0, and soj f 0j. In general,
multiplicativity of an arithmetic function implies a product representation of Dirichlet
series associated with the function. Thus

1

X

nD1

1

n
j f 0(n)j D

Y

p

�

1C
j f 0(p)j

p
C

j f 0(p2)j

p2
C � � �

�

� exp

(

X

p

j f 0(p)j

p
C

X

p

X

l�2

j f 0(pl )j

pl

)

(by an inequality: 1C x � ex (8x 2 R)).

Since, by (10)

f 0(p) D �(1) f (p)C �(p) f (1) f
� p

d

�

D f (p) � 1 (note that f (1)D 1),
(14)

f 0(pl ) D �(1) f (pl )C �(p) f (pl�1) (note that�(p j ) D 0 ( j � 2))

D f (pl ) � f (pl�1) (l � 2),
(15)

we have

X

p

j f 0(p)j

p
C

X

p

X

l�2

j f 0(pl )j

pl

D

X

p

j f (p) � 1j

p
C

X

p

X

l�2

j f (pl ) � f (pl�1)j

pl

�

X

p

j f (p) � 1j

p
C

X

p

X

l�2

j f (pl )j

pl
C

X

p

X

l�2

j f (pl )j

plC1
C

X

p

j f (p)j

p2

�

X

p

�

1C
1

p

�

j f (p) � 1j

p
C

X

p

1

p2
C

X

p

X

l�2

�

1C
1

p

�

j f (pl )j

pl
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�

3

2

 

X

p

j f (p) � 1j

p
C

X

p

X

l�2

j f (pl )j

pl

!

C

X

p

1

p2

<1 (by (13)).

Therefore f satisfies the condition (7).

The condition (7) does not always imply the condition (8).

EXAMPLE 2. Let f W N ! C be multiplicative, and satisfy

f (p) D 1C
1

p�
, f (pl ) D 0 (l � 2)

for each primep, where� 2 (0,1). Since

X

p

j f (p) � 1j

p
D

X

p

1

p�C1
<1,

f ( � ) satisfies the condition (7) from Example 1. Also, since

f (p1 � � � pm) D f (p1) � � � f (pm)

D

m
Y

iD1

�

1C
1

p�i

�

8

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

:

�

m
Y

iD1

e1=p�i
D e

Pm
iD1 1=p�i ,

�

m
Y

iD1

e(1=p�i )=(1C1=p�i )

(by an inequality: log(1C x) � x=(1C x) (x � 0))
D e

Pm
iD1(1=p�i )=(1C1=p�i )

� e(2�=(2�C1))
Pm

iD1 1=p�i ,

we see that

lim
m!1

f (p1 � � � pm)

�

<1 if � > 1,
D1 if 0 < � � 1.

This implies that

sup
n�1
j f (n)j

�

<1 if � > 1,
D1 if 0 < � � 1.
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4. Proof of two theorems

Proof of Theorem 1. f W N ! C, defined by (6), is clearly multiplicative, and
satisfies

X

p

j f (p) � 1j

p
D

X

p

1

pkC1

2

1� 2=pk

�

2k

2k�1
� 1

X

p

1

pkC1
<1,

X

p

X

l�2

j f (pl )j

pl
D 0<1.

Also, note that

0� f (n) � e
P

p 4=pk
(n 2 N)

(because, by 1=(1�2=pk) � 1C4=pk,
Q

pjn 1=(1�2=pk) �
Q

pjn(1C4=pk) �
Q

pjn e4=pk
D

e
P

pjn 4=pk
� e
P

p 4=pk
). Hence, thisf (�) satisfies both the condition (7) and the condition

(8), so that applying Proposition 1, we see

lim
N!1

1

N1=k

1

X

cD1

f (c)

�

N

ck

��

1�

�

N

ck

��

D M( f )
1

k

Z

1

0

{x}(1� {x})

x1=kC1
dx.(16)

Let f 0 be a multiplicative function defined by (10). By (14) and (15)

f 0(p) D
2=pk

1� 2=pk
,

f 0(pl ) D

8

<

:

�

1

1� 2=pk
, l D 2,

0, l � 3

for prime p and integerl , � 2. Claim 3 then implies that

M( f ) D
1

X

nD1

f 0(n)

n

D

Y

p

 

1C
f 0(p)

p
C

X

l�2

f 0(pl )

pl

!

D

Y

p

�

1C
1

p

2=pk

1� 2=pk
�

1

p2

1

1� 2=pk

�

D

Y

p

�

1�
1

p

��

1C
1

p

1

1� 2=pk

�

.
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Collecting (5), (16) and this, we have

lim
N!1

E�[(Y(k)
N )2] D

 

Y

p

�

1�
1

p

��

1�
2

pk
C

1

p

�

!

1

k

Z

1

0

{x}(1� {x})

x1=kC1
dx.

Let us find the value of an integral on the right-hand side. TheFourier expansion
of a function{x}(1� {x}) is as follows:

{x}(1� {x}) D
1

6
�

1

�

2

1

X

nD1

cos 2n�x

n2

D

1

�

2

1

X

nD1

1� cos 2n�x

n2
(because

P

1

nD1 1=n2
D �

2
=6)

D

2

�

2

1

X

nD1

sin2 n�x

n2
.

Termwise integration yields that

1

k

Z

1

0

{x}(1� {x})

x1=kC1
dx D

1

k

2

�

2

1

X

nD1

1

n2

Z

1

0

sin2 n�x

x1=kC1
dx

D

1

k

2

�

2

1

X

nD1

1

n2

Z

1

0

sin2 y

(y=n�)1=kC1

dy

n�

D

1

k

2

�

2�1=k

 

1

X

nD1

1

n2�1=k

!

Z

1

0

sin2 y

y1=kC1
dy

D

2

�

2�1=k

�

1

k

Z

1

0

sin2 y

y1=kC1
dy

�

�

�

2�
1

k

�

.

We here note that from a formula:
R

1

0 (sinvx)=xu dx D �v

u�1
=(20(u) sin(u�=2)) (0<

u < 2, v > 0)

1

k

Z

1

0

sin2 y

y1=kC1
dyD

Z

1

0
(�y�1=k)0 sin2 y dy

D [�y�1=k sin2 y]10 �

Z

1

0
(�y�1=k)2 siny cosy dy

D

Z

1

0

sin 2y

y1=k
dy
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(because limy!0 y�1=k sin2 y D limy!0 y2�1=k((sin y)=y)2
D 0, limy!1

y�1=k sin2 y D
limy!1

sin2 y=y1=k
D 0)

D

�21=k�1

20(1=k) sin(�=2k)
.

Substituting this into the above, we have

1

k

Z

1

0

{x}(1� {x})

x1=kC1
dx D

2

�

2�1=k

�21=k�1

20(1=k) sin(�=2k)
�

�

2�
1

k

�

D

� (2� 1=k)

(2�)1�1=k
0(1=k) sin(�=2k)

.

Consequently, the assertion of the theorem follows at once.

REMARK 2. Since, by the functional equation

� (s) D 20(1� s) sin

�

�

2
s

�

(2�)s�1
� (1� s)

of the Riemann zeta function,

�

�

2�
1

k

�

D 20

�

1

k
� 1

�

�

sin
�

2k

�

(2�)1�1=k
�

�

1

k
� 1

�

,

we see

� (2� 1=k)

(2�)1�1=k
0(1=k) sin(�=(2k))

D

20(1=k � 1)(sin(�=(2k)))(2�)1�1=k
� (1=k � 1)

(2�)1�1=k
0(1=k) sin(�=(2k))

D 2
� (1=k � 1)

1=k � 1
.

Then the appearance of Theorem 1 becomes good as

lim
N!1

E�[(Y(k)
N )2] D

 

Y

p

�

1�
1

p

��

1C
1

p
�

2

pk

�

!

2
� (1=k � 1)

1=k � 1
.

Proof of Theorem 2. (i) ForM � N � 1

E�[(Y(k)
M � Y(k)

N )2] D E�[(Y(k)
M )2] � 2E�[Y(k)

M Y(k)
N ] C E�[(Y(k)

N )2].

The assertion of (i) is obvious from Claim 2 and Theorem 1.
(ii) By Theorem 1,{Y(k)

N }1ND1 is L2-bounded, and thus for any subsequence{Ni }
1

iD1

9{im}1mD1: subsequence,9Y 2 L2( OZ, B, �) s.t. w-limm!1

Y(k)
Nim

D Y.
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Then

lim
m!1

E�[Y(k)
Nim

Y(k)
Nin

] D E�[Y Y(k)
Nin

], 8n 2 N.

But, by Claim 2

E�[Y Y(k)
Nin

] D 0 (8n 2 N).

Letting n !1 yields thatE�[Y2] D 0. This implies that w-limN!1

Y(k)
N D 0.

5. Proof of Proposition 1

We now take up the proof of Proposition 1.
Suppose f ( � ) satisfies the condition (7) or (8). Fixk 2 (1,1) and h 2 C1[0, 1]

with h(0)D 0. We divide N�1=k P1

nD1 f (n)h({N=nk}) into three terms as

(17)

N�1=k
1

X

nD1

f (n)h

��

N

nk

��

D M( f )N�1=k
X

n�N1=k

h

��

N

nk

��

C N�1=k
X

n�N1=k

( f (n) � M( f ))h

��

N

nk

��

C N�1=k
X

n>N1=k

f (n)h

�

N

nk

�

.

To find a limit of each term asN !1, we present the following lemma:

Lemma 1. Let 1� a < b <1 and ' 2 C1[a, b].
(i) Given a sequence{an}

1

nD1, set S(t)D
P

n�t an (t 2 R). Then, for a � 8x < 8y � b

X

x<n�y

an'(n) D �

Z y

x
S(t)'0(t) dt C S(y)'(y) � S(x)'(x).

(ii) For a � 8x < 8y � b

X

x<n�y

'(n) D
Z y

x
'(t) dt

�

��

{y} �
1

2

�

'(y) �

�

{x} �
1

2

�

'(x)

�

C

Z y

x

�

{t} �
1

2

�

'

0(t) dt.

Proof. Let 1� a < b <1, ' 2 C1[a, b] and a � x < y � b.
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(i) In casebx
 < by
, noting thata � x < bx
 C 1� by
 � y � b, we have

the left-hand side

D

X

bx
<n�by


an'(n)

D

X

bx
<n�by


(S(n) � S(n� 1))'(n)

D

X

bx
<n�by


S(n)'(n) �
X

bx
�n�by
�1

S(n)'(nC 1)

D

X

bx
<n�by
�1

S(n)('(n) � '(nC 1))C S(by
)'(by
) � S(bx
)'(bx
 C 1)

D �

X

bx
<n�by
�1

Z nC1

n
S(n)'0(t) dt C S(by
)'(by
) � S(bx
)'(bx
 C 1)

D �

X

bx
<n�by
�1

Z nC1

n
S(t)'0(t) dt C S(by
)'(by
) � S(bx
)'(bx
 C 1)

(becauseS(t) D S(bt
))

D �

Z

by


bx
C1
S(t)'0(t) dt C S(by
)'(by
) � S(bx
)'(bx
 C 1)

D �

Z y

x
S(t)'0(t) dt C

Z

bx
C1

x
S(t)'0(t) dt C

Z y

by

S(t)'0(t) dt

C S(by
)'(by
) � S(bx
)'(bx
 C 1)

D �

Z y

x
S(t)'0(t) dt C S(y)'(y) � S(x)'(x)

D the right-hand side.

In casebx
 D by
, sincebx
 � x < y < by
 C 1D bx
 C 1,

the left-hand sideD
X

bx
<n�bx


an'(n) D 0,

the right-hand sideD �S(bx
)('(y) � '(x))C S(bx
)('(y) � '(x)) D 0.

Thus, we obtain the assertion of (i).
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(ii) Let an D 1 (n 2 N). In this case,S(t) D bt
 (t � 0), so by (i)

X

x<n�y

'(n) D �

Z y

x
bt
'0(t) dt C by
'(y) � bx
'(x)

D �

Z y

x
t'0(t) dt C

Z y

x
{t}'0(t) dt

C y'(y) � x'(x) � {y}'(y)C {x}'(x)

D �[t'(t)]y
x C

Z y

x
'(t) dt C

Z y

x

�

{t} �
1

2

�

'

0(t) dt

C

1

2
('(y) � '(x))C [t'(t)]y

x � {y}'(y)C {x}'(x)

D

Z y

x
'(t) dt �

��

{y} �
1

2

�

'(y) �

�

{x} �
1

2

�

'(x)

�

C

Z y

x

�

{t} �
1

2

�

'

0(t) dt.

REMARK 3. This identity is called the Euler summation formula (cf. [3, The-
orem 1.2 in Chapter I]) or the Euler–Maclaurin summation formula (cf. [2, Lemma 2.1]).

Proof of Proposition 1 under the condition (7).
1Æ The first term of (17).
1Æ-1 For L 2 N with L C 1� N,

X

(N=(LC1))1=k<n�N1=k

h

��

N

nk

��

D

L
X

lD1

X

nIbN=nk

Dl

h

��

N

nk

��

(note that (N=(L C 1))1=k < n � N1=k
, 1� bN=nk


 � L)

D

L
X

lD1

X

l�N=nk
<lC1

h

�

N

nk
� l

�

(when bN=nk

 D l , {N=nk} D N=nk

� l . Also bN=nk

 D l , l � N=nk

< l C 1)

D

L
X

lD1

X

(N=(lC1))1=k<n�(N=l )1=k

h

�

N

nk
� l

�
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D

L
X

lD1

 

Z (N=l )1=k

(N=(lC1))1=k
h

�

N

tk
� l

�

dt C h(1)

 (

�

N

l C 1

�1=k
)

�

1

2

!

� k
Z (N=l )1=k

(N=(lC1))1=k
h0
�

N

tk
� l

�

{t} � 1=2

tkC1
N dt

!

(apply Lemma 1 (ii) for'(t) D h(N=tk
� l ) ((N=(l C 1))1=k � t � (N=l )1=k))

D

L
X

lD1

 

Z (N=l )1=k

(N=(lC1))1=k
h

��

N

tk

��

dt C h(1)

 (

�

N

l C 1

�1=k
)

�

1

2

!

� k
Z (N=l )1=k

(N=(lC1))1=k
h0
��

N

tk

��

{t} � 1=2

tkC1
N dt

!

(note that (N=(l C 1))1=k < t � (N=l )1=k
, bN=tk


 D l )

D

Z N1=k

(N=(LC1))1=k
h

��

N

tk

��

dt C h(1)
L
X

lD1

 (

�

N

l C 1

�1=k
)

�

1

2

!

� k
Z N1=k

(N=(LC1))1=k
h0
��

N

tk

��

{t} � 1=2

tkC1
N dt

D N1=k 1

k

Z LC1

1

h({x})

x1=kC1
dxC h(1)

L
X

lD1

 (

�

N

l C 1

�1=k
)

�

1

2

!

�

Z LC1

1
h0({x})

 (

�

N

x

�1=k
)

�

1

2

!

dx (by change of variable:x D N=tk).

1Æ-2 Let N � 1 andL D L(N)D bN1=(kC1)

. Then L(N) � N1=(kC1)

< L(N)C1,
and soL(N)C 1< N, 1=(L(N)C 1)< (1=N)1=(kC1). Since, by 1Æ-1

N�1=k
X

n�N1=k

h

��

N

nk

��

D N�1=k
X

n�(N=(L(N)C1))1=k

h

��

N

nk

��

C N�1=k
X

(N=(L(N)C1))1=k<n�N1=k

h

��

N

nk

��

D N�1=k
X

n�(N=(L(N)C1))1=k

h

��

N

nk

��

C

1

k

Z L(N)C1

1

h({x})

x1=kC1
dxC h(1)N�1=k

L(N)
X

lD1

 (

�

N

l C 1

�1=k
)

�

1

2

!

� N�1=k
Z L(N)C1

1
h0({x})

 (

�

N

x

�1=k
)

�

1

2

!

dx,
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we see
�

�

�

�

�

�

N�1=k
X

n�N1=k

h

��

N

nk

��

�

1

k

Z L(N)C1

1

h({x})

x1=kC1
dx

�

�

�

�

�

�

� N�1=k
X

n�(N=(L(N)C1))1=k

�

�

�

�

h

��

N

nk

��

�

�

�

�

C jh(1)jN�1=k
L(N)
X

lD1

�

�

�

�

�

(

�

N

l C 1

�1=k
)

�

1

2

�

�

�

�

�

C N�1=k
Z L(N)C1

1
jh0({x})j

�

�

�

�

�

(

�

N

x

�1=k
)

�

1

2

�

�

�

�

�

dx

� N�1=k

�

N

L(N)C 1

�1=k�

max
0�x�1

jh(x)j

�

C jh(1)jN�1=kL(N) �
1

2

C N�1=kL(N)

�

max
0�x�1

jh0(x)j

�

�

1

2

�

 

�

1

L(N)C 1

�1=k

C

�

1

N

�1=k

L(N)

!

�

max
0�x�1

jh0(x)j

�

(note that max0�x�1jh(x)j � max0�x�1jh0(x)j)

�

 

�

1

N

�(1=k)�(1=(kC1))

C

�

1

N

�1=k�1=(kC1)
!

�

max
0�x�1

jh0(x)j

�

D 2

�

1

N

�1=(k(kC1))�

max
0�x�1

jh0(x)j

�

! 0 as N !1.

This shows that

(18) the first term of (17)! M( f )
1

k

Z

1

1

h({x})

x1=kC1
dx as N !1.

2Æ The second term of (17).
For simplicity, setan D f (n) � M( f ), S(x) D

P

n�x an.
2Æ-1 First

1

y
jS(y)j D

1

y

�

�

�

�

�

X

n�y

f (n) � by
M( f )

�

�

�

�

�

D

�

�

�

�

�

1

y

X

n�y

f (n) � M( f )C
{y}

y
M( f )

�

�

�

�

�
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�

�

�

�

�

�

1

y

X

n�y

f (n) � M( f )

�

�

�

�

�

C

1

y
jM( f )j

! 0 as y !1.

2Æ-2 In the same way as in 1Æ-1, we have that forL 2 N with L C 1� N

X

(N=(LC1))1=k<n�N1=k

anh

��

N

nk

��

D

L
X

lD1

X

(N=(lC1))1=k<n�(N=l )1=k

anh

�

N

nk
� l

�

D

L
X

lD1

 

k
Z (N=l )1=k

(N=(lC1))1=k
h0
�

N

tk
� l

�

S(t)

tkC1
N dt� h(1)S

 

�

N

l C 1

�1=k
!!

(apply Lemma 1 (i) for'(t) D h(N=tk
� l ) ((N=(l C 1))1=k � t � (N=l )1=k))

D k
Z N1=k

(N=(LC1))1=k
h0
��

N

tk

��

S(t)

tkC1
N dt�

L
X

lD1

h(1)S

 

�

N

l C 1

�1=k
!

D

Z LC1

1
h0({x})S

 

�

N

x

�1=k
!

dx�
L
X

lD1

Z lC1

l
h(1)S

 

�

N

l C 1

�1=k
!

dx

D

Z LC1

1

 

h0({x})S

 

�

N

x

�1=k
!

� h(1)S

 

�

N

dxe

�1=k
!!

dx.

2Æ-3 Fix L 2 N with L C 1� N. By 2Æ-2
�

�

�

�

�

�

N�1=k
X

(N=(LC1))1=k<n�N1=k

anh

��

N

nk

��

�

�

�

�

�

�

�N�1=k
Z LC1

1

 

jh0({x})j

�

�

�

�

�

S

 

�

N

x

�1=k
!

�

�

�

�

�

Cjh(1)j

�

�

�

�

�

S

 

�

N

dxe

�1=k
!

�

�

�

�

�

!

dx

�

�

max
0�x�1

jh0(x)j

�

N�1=k
Z LC1

1

 

jS((N=x)1=k)j

(N=x)1=k

�

N

x

�1=k

C

jS((N=dxe)1=k)j

(N=dxe)1=k

�

N

dxe

�1=k
!

dx

�

�

max
0�x�1

jh0(x)j

�

N�1=k
Z LC1

1

�

jS((N=x)1=k)j

(N=x)1=k
C

jS((N=dxe)1=k)j

(N=dxe)1=k

��

N

x

�1=k

dx

(note that 1�x� LC1)1�x�dxe�LC1) (N=(LC1))1=k� (N=dxe)1=k
� (N=x)1=k)

�

�

max
0�x�1

jh0(x)j

�

 

2 sup
y�(N=(LC1))1=k

jS(y)j

y

!

Z LC1

1
x�1=k dx
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D

�

max
0�x�1

jh0(x)j

�

 

2 sup
y�(N=(LC1))1=k

jS(y)j

y

!

�

x1�1=k

1�1=k

�LC1

1

�

�

max
0�x�1

jh0(x)j

�

k

k�1

 

2 sup
y�(N=(LC1))1=k

jS(y)j

y

!

(LC1)1�1=k

�

��

max
0�x�1

jh0(x)j

�

2k

k�1
C1

�

 

sup
y�(N=(LC1))1=k

jS(y)j

y

!

(LC1)1�1=k.

Also
�

�

�

�

�

�

N�1=k
X

n�(N=(LC1))1=k

anh

��

N

nk

��

�

�

�

�

�

�

D

�

�

�

�

�

�

N�1=k
X

n�(N=(LC1))1=k

f (n)h

��

N

nk

��

� M( f )N�1=k
X

n�(N=(LC1))1=k

h

��

N

nk

��

�

�

�

�

�

�

�

�

max
0�x�1

jh(x)j

�

0

�N�1=k
X

n�(N=(LC1))1=k

j f (n)j C jM( f )jN�1=k
X

n�(N=(LC1))1=k

1

1

A

�

�

max
0�x�1

jh(x)j

�

0

�N�1=k
X

n�(N=(LC1))1=k

X

djn

j f 0(d)j C jM( f )jN�1=k

�

N

L C 1

�1=k
1

A

D

�

max
0�x�1

jh(x)j

�

 

N�1=k
X

d�(N=(LC1))1=k

$

1

d

�

N

L C 1

�1=k
%

j f 0(d)j

C jM( f )j

�

1

L C 1

�1=k
!

�

�

max
0�x�1

jh(x)j

�

 

N�1=k

�

N

L C 1

�1=k
X

d�(N=(LC1))1=k

j f 0(d)j

d

C jM( f )j

�

1

L C 1

�1=k
!

�

�

max
0�x�1

jh(x)j

��

1

L C 1

�1=k

2
1

X

dD1

j f 0(d)j

d

�

 

2

�

max
0�x�1

jh(x)j

�

1

X

dD1

j f 0(d)j

d
C 1

!

(L C 1)�1=k.
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Combining two estimates above, we have

(19)

�

�

�

�

�

�

N�1=k
X

n�N1=k

anh

��

N

nk

��

�

�

�

�

�

�

�

��

max
0�x�1

jh0(x)j

�

2k

k � 1
C 1

�

 

sup
y�(N=(LC1))1=k

jS(y)j

y

!

(L C 1)1�1=k

C

 

2

�

max
0�x�1

jh(x)j

�

1

X

dD1

j f 0(d)j

d
C 1

!

(L C 1)�1=k

DW A

 

sup
y�(N=(LC1))1=k

jS(y)j

y

!

(L C 1)1�1=k
C B(L C 1)�1=k.

2Æ-4 Take " > 0 so thatB=((k � 1)A") > 2. By 2Æ-1

9y0 > 1 s.t.
jS(y)j

y
< " (8y � y0).

Let L D bB=((k � 1)A")
 � 1 2 N. For N � yk
0 B=((k � 1)A"),

N

yk
0

�

�

N

yk
0

�

�

�

B

(k � 1)A"

�

D L C 1.

Since (N=(L C 1))1=k � y0, supy�(N=(LC1))1=k jS(y)j=y � ". Using this in (19), we have

�

�

�

�

�

�

N�1=k
X

n�N1=k

anh

��

N

nk

��

�

�

�

�

�

�

� A"(L C 1)1�1=k
C B(L C 1)�1=k

D A"

�

B

(k � 1)A"

�1�1=k

C B

�

B

(k � 1)A"

�

�1=k

� A"

�

B

(k � 1)A"

�1�1=k

C B

�

B

(k � 1)A"
� 1

�

�1=k

� A"

�

B

(k � 1)A"

�1�1=k

C B

�

1

2

B

(k � 1)A"

�

�1=k

D (k � 1)1=k�1A1=k B1�1=k
"

1=k
C 21=k(k � 1)1=k A1=k B1�1=k

"

1=k

D ((k � 1)1=k�1
C 21=k(k � 1)1=k)A1=k B1�1=k

"

1=k.



710 T.K. DUY AND S. TAKANOBU

Letting N !1 yields

lim
N!1

�

�

�

�

�

�

N�1=k
X

n�N1=k

anh

��

N

nk

��

�

�

�

�

�

�

� ((k � 1)1=k�1
C 21=k(k � 1)1=k)A1=k B1�1=k

"

1=k
! 0 as "& 0.

This shows that

(20) the second term of (17)! 0 as N !1.

3Æ The third term of (17).
3Æ-1 First, we check the convergence of a series

P

n>N1=k f (n)h(N=nk). Let L ,M 2

N, N � L < M. Lemma 1 (i) for'(t) D h(N=tk) (L1=k
� t � M1=k) tells us that

X

L1=k
<n�M1=k

f (n)h

�

N

nk

�

D

Z M1=k

L1=k

 

1

t

X

n�t

f (n)

!

h0
�

N

tk

�

Nk

tk
dt

C

0

�

1

M1=k

X

n�M1=k

f (n)

1

A

h(N=M)

N=M

N

M1�1=k
�

0

�

1

L1=k

X

n�L1=k

f (n)

1

A

h(N=L)

N=L

N

L1�1=k
.

Here, noting that sincek > 1,
R

1

1 dt=tk
<1, limM!1

1=M1�1=k
D limL!1

1=L1�1=k
D

0 and sinceh(0)D 0, limx!0 h(x)=x D h0(0), we see the convergence of this series.
3Æ-2 Next, letting L D N and M !1 in the above yields that

X

n>N1=k

f (n)h

�

N

nk

�

D

Z

1

N1=k

 

1

t

X

n�t

f (n)

!

h0
�

N

tk

�

Nk

tk
dt � N1=k

0

�

1

N1=k

X

n�N1=k

f (n)

1

Ah(1)

D

Z

1

1

0

�

1

N1=k
�

X

n�N1=k
�

f (n)

1

Ah0(��k)
k

�

k
N1=k d�

� N1=k

0

�

1

N1=k

X

n�N1=k

f (n)

1

Ah(1) (by change of variable:� D t=N1=k).
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By multiplying both sides byN�1=k, it turns out that

the third term of (17)

D

Z

1

1

0

�

1

N1=k
�

X

n�N1=k
�

f (n)

1

Ah0(��k)
k

�

k
d� �

0

�

1

N1=k

X

n�N1=k

f (n)

1

Ah(1).

Thus, by the Lebesgue convergence theorem,

the third term of (17)!
Z

1

1
M( f )h0(��k)k��k d� � M( f )h(1)

D M( f )

�

Z

1

1
(h0(��k)k��k�1)� d� � h(1)

�

D M( f )

�

Z

1

1
(�h(��k))0� d� � h(1)

�

D M( f )

�

[�h(��k)� ]11 C

Z

1

1
h(��k) d� � h(1)

�

D M( f )
Z

1

1
h(��k) d�

(becauseh(��k)� D (h(��k)=��k)(1=� k�1) ! 0 as� !1)

D M( f )
1

k

Z 1

0

h(x)

x1=kC1
dx

(by change of variable:x D �

�k)

D M( f )
1

k

Z 1

0

h({x})

x1=kC1
dx as N !1.

(21)

4Æ Collecting (18), (20) and (20), we have

lim
N!1

N�1=k
1

X

nD1

f (n)h

��

N

nk

��

D M( f )
1

k

Z

1

1

h({x})

x1=kC1
dxC M( f )

1

k

Z 1

0

h({x})

x1=kC1
dx

D M( f )
1

k

Z

1

0

h({x})

x1=kC1
dx.

Proof of Proposition 1 under the condition (8). The argumentof 1Æ and 3Æ in the
previous proof is also valid in this case. Thus we have the convergences (18) and (21).
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In the following, we slightly modify the argument of 2Æ in the previous proof. Let
an D f (n) � M( f ), S(x) D

P

n�x an.
2Æ-1 First

1

y
jS(y)j ! 0 as y !1.

2Æ-2 For L 2 N with L C 1� N

X

(N=(LC1))1=k<n�N1=k

anh

��

N

nk

��

D

Z LC1

1

 

h0({x})S

 

�

N

x

�1=k
!

� h(1)S

 

�

N

dxe

�1=k
!!

dx.

2Æ-3 Fix L 2 N with L C 1� N. By 2Æ-2
�

�

�

�

�

�

N�1=k
X

(N=(LC1))1=k<n�N1=k

anh

��

N

nk

��

�

�

�

�

�

�

�

��

max
0�x�1

jh0(x)j

�

2k

k � 1
C 1

�

 

sup
y�(N=(LC1))1=k

jS(y)j

y

!

(L C 1)1�1=k.

Clearly
�

�

�

�

�

�

N�1=k
X

n�(N=(LC1))1=k

anh

��

N

nk

��

�

�

�

�

�

�

� N�1=k
X

n�(N=(LC1))1=k

janj

�

�

�

�

h

��

N

nk

��

�

�

�

�

�

�

sup
n�1
janj

��

max
0�x�1

jh(x)j

�

(L C 1)�1=k

�

��

sup
n�1
janj

��

max
0�x�1

jh(x)j

�

C 1

�

(L C 1)�1=k.

Combining these estimates, we have

(22)

�

�

�

�

�

�

N�1=k
X

n�N1=k

anh

��

N

nk

��

�

�

�

�

�

�

�

��

max
0�x�1

jh0(x)j

�

2k

k � 1
C 1

�

 

sup
y�(N=(LC1))1=k

jS(y)j

y

!

(L C 1)1�1=k

C

��

sup
n�1
janj

��

max
0�x�1

jh(x)j

�

C 1

�

(L C 1)�1=k

DW A

 

sup
y�(N=(LC1))1=k

jS(y)j

y

!

(L C 1)1�1=k
C C(L C 1)�1=k.
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2Æ-4 Take " > 0 so that C=((k � 1)A") > 2 and choosey0 > 1 such that
jS(y)j=y < " (8y � y0). Let L D bC=((k� 1)A")
 � 1 2 N. For N � yk

0C=((k� 1)A"),
supy�(N=(LC1))1=k jS(y)j=y � ". Using this in (22)

�

�

�

�

�

�

N�1=k
X

n�N1=k

anh

��

N

nk

��

�

�

�

�

�

�

� A"(L C 1)1�1=k
C C(L C 1)�1=k

� ((k � 1)1=k�1
C 21=k(k � 1)1=k)A1=kC1�1=k

"

1=k.

Letting N !1, and then"& 0, we have the convergence (20).
Consequently, the assertion of Proposition 1 under the condition (8) follows.
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