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Abstract
The indicator function of the set dth power free integers is naturally extended

to a random variable&X®(-) on (Z, 1), whereZ is the ring of finite integral adeles
and A is the Haar probability measure. In the previous paper, tis¢ diuthor noted
the strong law of large numbers f¢X®(- + n)}>2;, and showed the asymptotics:

EM(Y{)?] =< 1 asN — oo, where Y{(x) := N-VZ& SN (XO(x + n) — 1/¢(K)).

In the present paper, we prove the convergencE)d(Y,gk))z]. For this, we present
a general proposition of analytic number theory, and giveaofpto this.

1. Introduction

Let Z be the ring of finite integral adele®§ the Borelo-field of Z; A the Haar
probability measure onZ(, ). In [4, 1], the triplet £,1,2) is introduced in the follow-
ing way: For a prime numbep, the p-adic metricd, on Z is defined by

do(x, y):=inf{p™: p' | (x—=y)}, X y€Z.

The completion ofZ by d, is denoted byZ,. By extending the algebraic operations’*
and <’ in Z continuously to those i, the compact metric spacé {, d,) becomes a
ring. In particular, Z,,dp) is a compact abelian group with respect 4. ‘Thus, there is
a unique Haar probability measukg with respect to 4’ on (Z,, B(Z,)), whereB(Z )
is the Borelo-field of Z,,.

Putting pj = i-th prime numberi(=1, 2,...), we set
Z:=[]2zp, r:=]]nn
i=1 i=1

For x = (X)), y = (yi) € Z, we define

d(x, y) := Z z—lidpi(xi, Yi),
i—1

X+y:=&+Y), Xy:=XW).

2010 Mathematics Subject Classification. Primary 60F25;o08gary 60B10, 60B15, 11N37,
11K41.
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By these definitionsZ becomes a ring, which is just the ring of finite integral ade-
les stated above.Z( d) is again a compact metric space, and boti and ‘x’ are
continuous. In particular, this is a compact abelian groifh wespect to +’, and
its Haar probability measure is nothing but By identifying Z with the diagonal set
{(n,n,...)eZxZx---;neZ}CZ, itis seen thatZ is a dense subring df. Thus
7 is a compactification ofZ.

Let k be an integer> 2. Let B® be the set of all elements i having nok-th
power factors, i.e.,

B = (x € Z; p* 4 x (Vp: prime),

whered | x < x €dZ (, sod t x < x € Z\ dZ), and X® := 1gw (= the indicator
function of BX).
The following are results of Duy [1]:

Fact 1 (Strong law of large numbers) limy_(1/N) SN X®(x +n) = 1/¢(K),
r-a.e. X. Herez(-) is the Riemann zeta function.

For eachN € N, we set
1 1
(k) . (k) =
(1) YN (X) := NU@) Zl (X (x+n) g(k))'
n=

Fact 2. E*(Y¥)?] <1 as N— oo.

Fact 3. A sequence{Y,S,k)}‘,ifz1 in L2(Z, B, ) has no limit point. Namelyfor any
subsequenceN; }i° ,, {Y,E,'f)}fﬁl is not convergent in £as i — oo.

Fact 1 follows at once from the ergodicity of the shift> x + 1 and E*[X®] =
1/¢(K)L. From this fact, we have the following questioWhen Y N (X®(x + n) —
1/¢(k)) is normalized appropriatelyis its distribution weakly convergent as N co?
Fact 2 tells us that a normalizing constant must\Jé®), and that a sequenda(Y{ e
*)}_, Of distributions onR is tight. Fact 3 is a functional analytical result and brings
no news for the behavior oY,ﬂk) as N — oo. But, for this, we expect to have a limit
theorem in probability theory. (Unfortunately, we stillMeano information on this limit
theorem.)

In this paper, we make some remark about Fact 2 and Fact 3.

1Cf. 1° in the proof of Claim 1.
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Theorem 1.

; (K21 _ 21 1_3 ¢(2—-1/Kk)
Jm, BT = (1;[ (1 )( b pk)) (20 VKT (1K) sinGe/(2K)

Theorem 2. (i) liMn—o iMoo EXCYY — Y2 = 2([T,(1 - 1/p)(A +1/p—
2/p%))¢(2—1/K)/((2m)*=Y*T (1/K)sin(r/2k)) > 0. Fact 3above is a consequence of this.
(i) But, a whole sequence((k) g in L2(Z,B,2) is weakly convergent tBas N — co.

Throughout this paper, the lettgr denotes a prime number, and the symbﬂg
and Zp are a product and a summation extended over all prime numissgectively.

Theorems above will be proved in Section 4. In Section 2, arthean computation
of E*[Y,f,'f)Y,ﬁ,k)], which is different from one in Duy [1], is given. And, in S&mn 3, to
prove Theorem 1, we prepare Proposition 1. This is a geneogogition of analytic
number theory, and will be proved in Section 5.

The authors would like to thank the referee for good advicéckvienabled us to
make proofs clear and considerably short.

2. Computation of EA[ Yy
By a different approachfrom Duy [1], we computeE*[Y}Y ().
Claim 1. For M > N>1,
EA Yy YAl
1 1 & 2 M N M N
- i o T1(1- 3) ) (4] - (3 (3))
c=1 ptc

Here n(-) is the Mobius function anda} is the fractional part of the real number a.

Proof. FixM > N > 1. We divide the proof into three steps:
1° First

= AR

M N 1 1
= E* |: M 1/(2K) Nl/(2k) Z Z (x(k)(x +m) - (k)) (X(k)(x - ;(k))]

m=1n=1

2Duy’s method is originally due to [4]. The same kind of corgiign in the proof of Claim 1
appears in early study of [4]. So, a phrase ‘different apghbanay be too much to say.
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_ @ﬁ 3 (E’\[X(k)(x + mXOx + n)]
N
_ L ey Ay (;Ly
;(k)(E [X¥(x +m)] + E*[X¥(x + n)]) + 0 )
Noting that
2) X®(y) = []@ - pp(y)),
p

1, d|y (& yedz),

where, ford € N, pq4(y) := {0 otherwise

3) {px}p is independent,

1 1
) Mpa=1)=75, Mpa=0)=1-7,
we have

EAX®(x +m)] = E*[X®(x)] (by the shift invariance of.)

1165)

1
= m (by Euler’s product ofz(-)),
and thus
K)\/ (K
E* Y Y]
N ary®) ® 1\*
= WWK;M <E [X®(x + mX®(x + n)] — ) )
i<n=N’
Since, by (2)

XO(x + m)X®(x + n)

= [T@ = pp(x + m)) - (L = pp(x + )
p

= [T = pp(x + 1) = pp(x + M) + ppie (X + M)ppe(x + )
p

= [T@ = pp(x + 1) = pp(x + M) + ppe(m — ) pe(x + 1))
p

(by an identity: pg(x + m)pa(X +N) = pa(M —n)pa(x 4 1)),
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we see from (3) and (4) that

EY Y]
1 1 2 1 1)\
= M@ N lstSM’ <1:[ (1_ R + ppe(m— ”)g) - (m) )
1<n=<N

2° By Euler’s product ofz(-)
1)\? 2 1
() =105+ %)
1 1
~T1( (2 )

—Z'“(d”l_[( p)

pld
Z |M(d)| Z( Z)w(d/c) 1—[ -
c|d plc P

(wherew(n) := #{p; p | n} = the number of different prime factors of

d

c|d

| (C10y)] ay L
2)(th) —
zd: C]_dl)k ( ) Cl

(there exists a one-to-one correspondence between thiécsel); d is square free and
c | d} and the sef(c;,d;); c1d; is square freg a correspondence from the former to the
latter is €, d) — (c, d/c) and one from the latter to the former is;(d;) — (cy1, C1dy).
Here ¢, d) and €, d;) denote a pair ot andd, and that ofc; andd;, respectively)

IM(Cldl)I (—2)~)
=> Lerdy=1———

k
cy,d; dl

(where €1, d;) is the greatest common divisor of and d;. Note thatu(cid;) = O if
(€, dy) > 1)

Iu(cl)l Iu(dl)l (—2)y~(@)
=) e Laaw- T
1

Cy,0p
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(by the multiplicativity of u)

(e n(d o(d
ZI (cy)| ZI ékl)l Lo oyt (—2)")
C1

_ Z |u(c1)| I (1 4 o 1(01’[,):1(_2)0@))
b p

(by the multiplicativity of dy — [z(dy)]1(cy,a=1(—2)"@)

_ Z |M(Cl)| I ( )

l ptc

Similarly, since

[ (1— & + pp(m— n)é)

p

_ Z m(cm I ( __)pck(m N

pter

we have

(5 rvonn) ()

p

—Z Iu(c)l 1—[( —%)(Pck(m—”)_c_lk)-

ptc

Thus, by 2 and 3 below

Ky (K
EFY RV
L | (c)] 2 1
~ MYGINT@9 Z Z Tk l_[ 1- o pe<(m —n) — &
1=m=M, ¢ ptc
i=n=N
1 N
M1/(2k)N1/(2k) ZW(C” l_[ ( _)g Z ( (M —n) — —)
ptc m=1 n=1

WZW(CNH( —){%},\{g}( _{%}V{N

ptc

This is the assertion of the claim.
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3 Fix ue N. Let Q and s be a quotient and a remainder &f divided by
u, respectively. ThusN = Qu + s, where Q = [N/ul3, s= {N/uju e {0, 1,...,
u—1}. Then

N
Zpu(m—n)

—Zzpu(m ((a- 1)u+1))+2pu(m (Qu+ )

g=1j=1 j=1

Q
ZZpu(m— j—(q—1u) +Zpu(m— j —Qu)
a=1]

=1 j=1

Q
S e )+ 3 pulm ) (by an identity: pu(y + ) = puly)
=1 j—l

=Q u(m_J)+Zpu(m_J)

i= j=1

12}

=Q+ ) pu(m—j)
j=1

(first Z‘j’zl pu(M = j) = D ocjupu(M = j) = 3oy pu(m mod u — j), where
m mod u := the remainder ofn divided byu. Secondly, noting that for & | < u,

pu(mmodu—j)=1<%« j =mmodu (modu) < j =m (modu), we seeZ‘j‘:l pu(m—

=1

- {%J +ilpu(m—j).
-

Therefore

SForaeR, |a] :=maxneZ;n<a}and[a] :=minfne Z;:a<n}. Wecall |- |: R — Z and
[-]: R — Z the floor function and the ceiling function, respectivelyotdl that{a} = a— |a| € [0, 1).
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c|lz

1 Sy M N
=-|M +Y D pu(i—m) | - —
u - - j=1m=1 u

c|lz

+ Z ({%J + ;pu(j _i))> - % (wherer = {M/u}u)

L - J:l

1 N M LS MN
M U_*{UJ*ZZPUG‘”)‘?

- i=1j=1
(Tl re)
=—\M|—|+Ss| —|+rAS)——
u u u u
(forO<i,j<u, —u<i—j<u Alsop(i—]j)=1<«1i—-]j=0 (modu). Thus

pui—j)=1ei=])

:LAE_(ME_MPJ_EMMD
u u uu ujpu up u

.

u

S r s
= /\a—a-a (becausegM/u} =r/u, {N/u} = s/u)
M N M N o
= {U} A {U}(l_ {U} \ {U}) (by an identity:ab = (a A b)(a Vv b)). [

Claim 2. For each Ne N, limy_., E*[Y®Y¥] = o,

Proof. LetM > N > 1. Since 0< {M/cX}, {N/c¥} < 1,
0< M N 1 M N
SVE M E TS &
N N
<{sl(-{&)

Multiplying both sides by (IM*@)(1/N¥@9)|.(c)| TT,;.(1—2/p*), and then adding
them overc € N yield that

0 < YY)

< Sk (H (1— é)) {g}(l_ {g})

c=1 ptc
N 1/(2k)
- (%) Eeen

From this, the assertion of the claim follows. O
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3. Presentation of Proposition 1

By Claim 1

N2 _ 2\ 1§ [n(©)] N1, IN
EA[(YN )2] = < ; (1 pk)> Nk g: npc(l_z/pk){ck}(l {Ck})

Q)

([ ) S o) 2D
where
(6) f(n):= & neN

l_[ p|n(1 2/ pk)

To show the convergence (ﬁk[(Y,E‘k))z] as N — oo and to find the value of this
limit, we present a general proposition:

Proposition 1. Let an arithmetic function fi.e, f: N — C satisfy the following
condition (7) or (8):

@ Z%ZM(d)f(g) < 00
n=1 din

® SURn| T(N)] < oo,
(8)

e f has the mean-value M), i.e., limy_.(1/x)> .-, f(n)is
convergent to a finite limit Nif).

Then it holds that forVk € (1, o0)* and Yh € C*[0, 1] with h(0) =0

. —_1/k > N h({X})

9) Nll_r:noo N-Y Z f(n)h({m M(f)k 1/k+1
n=1

Before proving this proposition, we give some comments om ¢bnditions (7)
and (8):

Claim 3. If f: N — C satisfies the conditioi{7), then f has the mean-value

M(f) = i%Zu(d)f(g).

n=1 din

“Herek may be a real numbeg 1, thoughk was an integer> 2 at the beginning of this paper.
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Proof. For simplicity, we define’: N — C by

(10) £/(n) = Zu(d)f(g), neN.

din

Since, by the Mdbius inversion formula

(11) f(n) =Y f'(d),

din

we have forx, y € [1, o0)

%Zf(n)

1 l4
- > 1)f(d)

n=<x d=x \n=x:d|n
1 X 1.,
@ 1 X1 .,
=X 5 —xLlate
ISR UCINC SN W EARAC)
"X d X0 L walal
1 (x) f'(d)
e L R
X/y<d§xx/d{d} d

Transposing the first term of the last right-hand side, aed tlaking the absolute value,
we see that

n=x d=1
| £'(d)| 1 xqlf'(d) 1 xqlf'(d)
< _ - _ -
_dZ d +d< x/d{d} d i Zd; x/d{d} d
(12) >X =<X/y X/y<d=x
[f'@d) 1 | '(d)| | £'(d)|
d>x d=<x/y X/y<d=x
') 1 | £/(d)]
<2y += ) :
d>x/y d y d=x/y d
By letting x — oo andy — oo, the assertion of the claim follows. O

REMARK 1. Schwarz—Spilker [3] calls Claim 3 Wintner's theorem.
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We give an example of satisfying the condition (7):

ExampLE 1. Letf: N — C be multiplicative, i.e.,f £ 0 and f(mn) = f(m) f(n)
provided that ifh, n) = 1. If, in addition,

(13) Z”(p;_l' Zz|f(p)|
p

p 1=2

then f satisfies the condition (7).

Proof. Multiplicativity of © and f is inherited to f’, and so|f’|. In general,
multiplicativity of an arithmetic function implies a produrepresentation of Dirichlet
series associated with the function. Thus

1., AQILCFIN
3 (e

n=1 p

son(p 10, 35 10}

p p =2
(by an inequality: H+ x < e* (Vx € R)).

Since, by (10)

£(p) = (1) (p) + u(p) F Q) f (ap)

(14)
= f(p)—1 (note thatf(1l) = 1),
(15) f'(p") = n(D)f(p") + w(p) (") (note thatu(p) =0 (j = 2))
=f(e)-f(PH (22),
we have
| f(p)l |£(p)
> +ZZ |
b p > P
If(p) 1| |f(p")— f(p' )
- HE L Dy R
p >
If(p) 1| If(p)l |f(p)l If(p)l
S HE L e s P R R e R
pI= poI= p

<Z(1+ )|f(p|)O 1|+Z +ZZ( )'fgf)'

p 1=2
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3 |f(p) — If(p )| 1
SS(p ety ) L
p
P 1=2 p
< oo (by (13)).
Therefore f satisfies the condition (7).

The condition (7) does not always imply the condition (8).

ExAmPLE 2. Let f: N — C be multiplicative, and satisfy
1 |
f(p)=1+5, f(p)=0 (=2

for each primep, wherea € (0, o0). Since

Z|f(p)—1| ZZ 1+l<oo,
p > p*

p

f(-) satisfies the condition (7) from Example 1. Also, since

f(pL--- pm) = f(p1)--- f(pPm)

el/P = X /P,

IA
.:IB

||
aN

e1/PO)/(A+1/p)

||:|3

1
T3
=t "7 (oy an inequality: log(+ %) = x/(1 + %) (x > 0))

— e/ P/ (A )

> @@ /@ +1) Xty 1/

we see that

lim £ (py - )<oo if « >1,
m— 00 Pr-- Pm o if0<a=<1.

This implies that

sug f (n)|

n>1

<oo if a>1,
=0 if0<a=<1.
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4. Proof of two theorems

Proof of Theorem 1. f: N — C, defined by (6), is clearly multiplicative, and
satisfies

If(p) 1 1 2
Z Zpk+11 2/pk

- 24 Z 1
< 00,
— 2k-1_1 - pk+1

Z —O<oo.
p

1>2

Also, note that
0< f(n)<er¥” (neN)

(because, by A1-2/p%) < 1+4/p%, [Ty 1/(1-2/P) < [T pn(1+4/05) < Tpp eP —
eXen /P < X 4Py Hence, thisf (-) satisfies both the condition (7) and the condition
(8), so that applying Proposition 1, we see

_ 1 N % x}(1
(16) Nlinoo Nk Z f(C){g}(l— { }) M(f)k / {X})((l/k+{lx}) dx.
c=1

Let f’ be a multiplicative function defined by (10). By (14) and (15)

2/p*

f'(p) = l——Z/pk'

1
, — =2
f'(p)y=1 1-2/p*
0, | >3

for prime p and integed, > 2. Claim 3 then implies that

~ 1o2pf 1 1
‘H(”_pl 2/ P p21—2/pk)

1 1 1
1- =1+ =——).
p)( p1—2/p")
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Collecting (5), (16) and this, we have

. 1 2 1\\1 [ {x}H1—{x})
dm, BRI = (H (1-5) (-5 B))E Jo P o

p

Let us find the value of an integral on the right-hand side. Fbarier expansion
of a function {x}(1 — {x}) is as follows:

1 7y
X1—-{x}) = __; COSn_27TX
n=1

1 < 1—cos irx - s
= Z — (becaused -, 1/n° = 7¢/6)
n=1

2 sifnmx
T r2 Z n2
n=1
Termwise integration yields that

12
_E_Z

/°° XA —{xh
K

sir? _ sify dy

1 [ sir? nTx
_2 TxL/k+L

Wll—‘

2 1
72 Z n2
n=1
1 2 > 1 > sirf y
= K72 1K <; n21/k> /0 yUkrl dy

2 (1 [®sify 1
= g1k (E/O y/kt1 dy);(Z— E)'

We here note that from a formulgfy(sinvx)/x" dx = 7v"~*/(2I'(u) sin(ur/2)) (0 <
u<2,v>0)

1 [ sirfy O
R/ Ykl dy /0 (—y~ ") sinf y dy
= [y V¥ sir? y]& — / (—y Y92 siny cosy dy
0

* sin 2y
:/(; yi/k dy
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(because limo y V€sir?y = limy_q y2"YX((siny)/y)? = 0, limy_ y V¥sirfy =
limy_, sir? y/y¥k = 0)

7.[21/k—1
= 2 (1/K) sin(z/2k)’

Substituting this into the above, we have

1 [ {x}(l—{x})d 2 r2l/k-1 ) 1
E/O kit O T UK or (k) sin(n/2k)§( _E)
_ ¢(2-1/k)
= (2m) VKT (1/K) singr/2k)

Consequently, the assertion of the theorem follows at once. [

REMARK 2. Since, by the functional equation

£(s) = 2r'(1—s) sin(%s) @r) (@1 —s)

of the Riemann zeta function,

§(2 - %) —2r (% - )(sin %)(zn)l—l/k; (% - 1),

we see
(2= 1/ _ 20k — fsingr/@))(m)t Hee(1/k— 1)
(@0 RO/ sinGe/(29) (@0)" K1/ singe /(29)
_sWk-1
1/k—1 '

Then the appearance of Theorem 1 becomes good as

. 1 1 2 c(1/k—1)
Ay (N2 _ = Z_ oA
'\lll_rgo EM(YN)] = <|p| (1 p)(1+ 0 pk))Z k=1
Proof of Theorem 2. (i) FoM >N >1

EL(YS — Y9y = MY — 2B YWY + EM(Y).

The assertion of (i) is obvious from Claim 2 and Theorem 1.
(i) By Theorem 1,{Y¥}>__ is L2-bounded, and thus for any subsequefidg™,

Him}p_,: subsequence]Y e LZ(Z, B,A) st w-limys o Y,E,'I‘l =Y.
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Then

lim EMNYO Y] = EFY Y], ¥neN.
But, by Claim 2

E'YYP]=0 (YneN)
Letting n — oo yields thatE*[Y?] = 0. This implies that w-lirq_« Y,ﬁlk) = 0. 0J

5. Proof of Proposition 1

We now take up the proof of Proposition 1.
Supposef (-) satisfies the condition (7) or (8). Fik € (1, c0) andh € CY[0, 1]
with h(0) = 0. We divide N~k 3> f(n)h({N/n¥}) into three terms as

s e (3]) o 2 (2

n<Nk
(17) + NV (F(n) - M(f))h({%})
n<NZ/k
_ N
4 Nk n>ZN;/k f(n)h(m).

To find a limit of each term a®\ — oo, we present the following lemma:

Lemma 1. Letl<a<b < oo andg € C'[a, b].
(i) Given a sequencéan}p2,, set §t) =) _a, (t €R). Thenfora<Vx <Vy<b

y
Y ane(n) = —/ St)e'(t) dt + S(y)e(y) — S(X)e(X).

X<n<y

(i) Fora<=Vx<Vy=h

y
> o= [ e

X<n<y X

(-2 (- o) -2

Proof. Let1<a<b<oo, ¢ eClablanda<x<y<h.
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(i) In case|x]| < |y, noting thata < X < |[x] +1 =< |y] <y < Db, we have

the left-hand side

= > ae(n)

[x]<n=ly]

= ) (S -Sn-1)pn)

[x]<n=ly]

= > Smem-— > Sme(+1)
[x]<n=<ly] [x]<n<ly]-1

= D S - e+ 1)+ SLyDe(Ly)) - S(xDe(lx] + 1)

[x]<n=ly|-1
n+1
=— > S)e'(t) dt + S(LyDe(ly)) — S(IxDe((1x] + 1)
[xJ<n=ly)-17"
n+

1
=— > S(t)¢'(t) dt + Ly De(Ly)) — S(xDe(1x] + 1)

[xJ<n<ly]-17"

(becauseS(t) = X([t]))

Lyl
= —/L S(t)e' (1) dt + S(LyDe(Ly]) — S(IxDe(1x] + 1)

x]+1
y [x]+1 y

= [ sowwdir [ swe@dts [ soemd
X X Lyl

+ S(LyDe(ly]) — S(IxDe([x] + 1)

y

=~ [ swo'® dt+ S - S0

= the right-hand side.

In case|x] = |y], since|x] <x<y<|y]+1=[x]+1,

the left-hand side= > anp(n) =0,

[x]<n=|x]

the right-hand side= —([x])(¢(y) — ¢(X)) + S([x])(¢(Y) — ¢(X)) = 0.

Thus, we obtain the assertion of (i).
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(i) Let ay =1 (n € N). In this case S(t) = |t] (t = 0), so by (i)

y
Y e = —/ [t]e'(t) dt + [yle(y) — [x]e(x)

X<n<y
= - /y te'(t) dt + /y{t}(p/(t) dt
+ Yo(y) = xo(X) — {yte(y) + {x}e(x)
y y
——tol+ [ oder [ (10 -3 )0 ar

X

1
+5(e(y) —e(x) + [te®IX — {Yle(y) + {x}e(x)

= [Cotyai= (191 3ot - (1013 Jot0)
+ fxy ({t} - %)w’(t)dt- =

REMARK 3. This identity is called the Euler summation formula (c3, [The-
orem 1.2 in Chapter I]) or the Euler—Maclaurin summation fola(cf. [2, Lemma 2.1]).

Proof of Proposition 1 under the condition (7).
1° The first term of (17).
1°-1 ForL e N with L +1<N,

> ()

(N/(L+1)Yk<n=N¥/k

()

I=1 n:[N/nk|=I
(note that N/(L + 1)) <n < NYV* & 1< [N/nk] <L)
- N
> 2 E)
I=11<N/nk<l+1
(when [N/nk| =1, {N/n¥} = N/nK—1. Also [N/n¥| =1 & | < N/nk <| +1)

ZXL: Z h(%—l)

I=1 (N/(I+1)<n<(N/I)Vk
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(N/hYK N N 1/k 1
h{ — —=1)dt+ h(1 — - =
</<N/(I+1»1/k (tk ) ot )<{(' t 1) } 2)
N/ N {t) —1/2
—k hW{——-1)]————Ndt
/(N EE ( tk ) thrt
(apply Lemma 1 (i) forp(t) = h(N/tk—1) (N/( + 1)Y* <t < (N/D)Y¥)
(N N N 1/k 1
h{{—¢)dt+h(1 — - =
</<N/(I+1>)l/k ({tk}) o )<{(' + 1) } 2)
N/ N {t) —1/2
—k hW({{—"¢)————Ndt
/(N/(I+1))1/k ({tk }) thtl
(note that N/( + 1) <t < (N/)Y* & [N/t<] =1)
NIk N L N\ MK 1
/(N/(L+1))1/k ({tk}) i )E <{(| T 1) } 2)
N N (t) —1/2
—k h{{—7 ] ————Ndt
(N/(L+ D)k ({tk }) thtl

1 [+ h((x) N \Y¢] 1
Nl/k/ St dx +h(1)2<{(|+—1) -3

M-

Il
N

M-

Il
N

705

L+1 1/k
—/; : h’({x})({(g) } — %) dx (by change of variablex = N/tX).

1°-2 Let N> 1 andL = L(N) = [NY&+D| ThenL(N) < NY&+D < [ (N)+1,

and soL(N) +1 < N, 1/(L(N) + 1) < (1/N)Y&+D_ Since, by 1-1

2 (i)

n< N1k

P (IS (-

n=(N/(L(N)+1))¥¥

N
— Nk 2 :
n=(N/(L(N)+1)*

1 ,LN+L h({X}) ~ L(N) N 1/k 1
+E/ D) dx + (N 1/k2 (+1) -

Nk flL(N)H h’({ﬂ)({(%)m} — %) dx,

(N/(L(N)4+1))/k<n<N2/k
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we see

- 1O R
Nk XN;/k ({nk})_E/l Xl/k+1
N
({))
L(N) N\ YK L
-1/k N 1
F N Y {(|+1) } !
N 1/k 1
[ONE
< nk( )" h h(LIN-YEL(N) - &
Ny 7a) () + e

1

+ Nl/kL(N)(Ognxas)gh’(xﬂ) 5

() () o) (parin)

(note that mayx<1|h(X)| = Max<x<1/N'(X)])

1\ @R+ g\ Yk=1/(k+D)
< - - h'
(&) ) ()
1\ Ylk(k1)
= 2(—) (max|h’(x)|) —0 as N — oo
N 0=x<1

This shows that

< N7k h

n<(N/(L(N)+1))1/k

L(N)+1
+ N~V /1 [ ({x})| dx

. 1 (> h({x})
(18) the first term of (17} M(f)E/l VI dx as N — oo.
2° The second term of (17).

For simplicity, seta, = f(n) — M(f), S(x) = >, @
221 First

§|S(y)| = 55t - LyIm(h)

n<y

‘ > fm) - M(f)+mM(f)

n=<y
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< ;112 f(n) — M(f)

n=y

1
=IM(f
+y||V|( )|

—0 as y— oo.

2°-2 In the same way as in°4l, we have that fol. e N with L +1 < N

N
> ()
(N/(L+1))Yk<n< Nk
L
N
Z > anh(m - |)

1 (N/(1+1))Yk<n<(N/I)YK

_ L (N/1)YX (N S(t) N 1/k
= <k /(N/<|+1))1/k " (t_“ - l)t"“ Mt h(1)8<(l + 1) ))
(apply Lemma 1 (i) forg(t) = h(N/t“ —1) (N/( + )Yk <t < (N/1)VK))
" S N\
=k h' Ndt—Y h@s|(—
(N/(L+ D)k ({t"})t"+l t Z . ((l )
L+1 1/k I+1 1/k
=/1 h’({x})S((g) )dx Z/ h(1)S <( )
L+1 ) N 1/k 1/k
= /1 (h ({M)S((;) ) - h(1)S< ))

2°-3 Fix LeN with L +1<N. By 2°-2

N
N7k Z anh({ k})
(NJ/(L+1)Yk<n< Nk n

L+1 1/k 1/k
<Nk /1 (Ih’({x})l s((g) ) s((%) ))dx

, Lok [P ISUAN)Y] NN TSN TV N R
<(ag e )n | ( i (x) e (5) ) o

, LA SN TSN/ TXDM) Y (N
(T"’lxl'h(x)') “J ( (NSOTE T (N TR )(?) ax

+[h(D)l

(note that EXx<L+1=1<x<[x]<L+1=(N/(L+1)Y<<(N/[x])Y*<(N/x)¥¥

L+1
E(maxlh’(x)l) 2 sup 1N / X~/ dx
0<x<1 y=(N/(L+1)k Y 1
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1-1/k L+1
= ( max|h/(x)|) 2 sup 1Sl [ X }
0=<x=<1 y=(N/(L+1))vk y 1—1/k 1
(max|h/(x)|) k 2 Sup |S(y)| (L+l)1 1/k
< K=1\ y=v/spn Y

((max|h(x)|)2—k 1) sup ) gy
= 1 =N/ Y

Also
SR

n=(N/(L+1)¥%

I (L) e h({ﬁ})‘
B nk nk
n<(N/(L+1)) n<(N/(L+1))
max|h(x)|) NTVE T [t 4+ IM(F)INTYRE Y

n=(N/(L+1))¥* n=(N/(L+1))¥%

IA

n<(N/(L+1)¥¢ djn

—1/k 1/ N\
maxhoo) (N S [ir@
d=<(N/(L+1))¥*

1\ Wk

SOl g) )
N\ /@)
(o’l""’lx'“‘x)'x'“ o) X

d=(N/(L+1))k

1 1/k
() )
L\ 1)
= (maxnea) (51) 22
< <2(0r11>?<>§|h(x)|) > 'f;gd)' + 1)(L + 1)K,

=
( 1Ih(x)l)(Nl/" S DA+ IM(F)INT 1/k(L'j'r1)1/k>
(
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Combining two estimates above, we have

v 3 ()
n<Nwk n

y=(N/(L+1)vk Ty

+ < (max|h(x)|) Z éd)l )(L + 1)

d=1

(19)

=: A< sup —|S(y)|>(L + DR B(L 4+ 1)K

y=(N/(L+nwx Y
2°-4 Takee > 0 so thatB/((k — 1)As) > 2. By 2°-1
Ayy > 1st@<s (VY = o).
Let L = [B/((k —1)Ae)] —1 e N. For N > y&B/((k — 1)Ae),
N N B
—>|—=|>|—— | =L+1.
v L/SJ {(k—l)AsJ

Since (N/(L + 1))V > yo, SUR>(n /L2y S(Y)I/Y < &. Using this in (19), we have

v 2 ()

< As(L + )Y YR 4 B(L 4+ 1)V

B 1-1/k B —1/k
= A{mJ * B[mJ

B 1-1/k B —1/k
<a(ion)  Baoa Y

B 1-1/k 1 B —1/k
= Ag((k— 1)As) + B(E(k— 1)As)

— (k _ 1)l/kflAl/k Blfl/kgl/k + 21/k(k _ 1)l/kAl/k Blfl/kgl/k
— ((k _ 1)l/k—1 + 21/k(k _ 1)1/k)A1/k Bl_l/k{;‘l/k.
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Letting N — oo yields

()

[im
N—o0
n=<N7/k

< ((k — DY 4 2YK(k — 1)YVYAVKBL VKUK 5 0 as & N\, 0.
This shows that
(20) the second term of (1A 0 as N — .

3° The third term of (17).
3-1 First, we check the convergence of a sefes. yux f (N)h(N/n¥). LetL,M €
N, N <L < M. Lemma 1 (i) forg(t) = h(N/t%) (LYK <t < MYX) tells us that

> f(n)h(%)

Lk<n<M/k

fLM< Y i ))h/(tk)N"

n=t

h(N/M) N h(N/L) N
(Ml/k Z ()) N/M M1- 1/k (Ll/k Z ()> N/L L1- 1/k

n<muk n<Lk

Here, noting that sinck > 1, [~ dt/t* < oo, My 1/MY YK =1lim o 1/LY VK =
0 and sinceh(0) = 0, limy_o h(x)/x = h’(0), we see the convergence of this series.
3°-2 Next, lettingL = N and M — oo in the above yields that

> f(n)h( )

n>N/k

/Nl/k ( Z fn ))h/(_),:l_kkdt_ Nl/k(Nl/k Z f(n))h(l)

n<t n<Nk

:/OO (ﬁ ) f(n))h(r‘k) NV de
1

anl/k

_ Nk (ﬁ > f(n)) h(1) (by change of variabler = t/NY¥).

n< N1/k
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By multiplying both sides byN~¥, it turns out that

the third term of (17)

Y F) | X f(n) |h
=/1 e 2 T N dr- Nl/k 3 () |he).
n<NZkg n<NZ/k
Thus, by the Lebesgue convergence theorem,
(21)
the third term of (17)—> f M ()N (z ¥k * dr — M(f)h(2)
1

M(f)( /1 Oo(h/(r_k)kr_k_l)r dr — h(1))
M(f)( /1 oo(—h(r_k))’r dr — h(l))

lvl(f)([—h(fk)r];o + /100 h(z ) dr — h(l))

M) [ h ) d
(0 [ e
(becausen(t™)t = (h(z¥)/t7)(1/7% ) — 0 ast — o)
h(x)
g [ 59
(by change of variablex = )

_M(f)k/ h(tx }) as N — oo.

1/k+1

4°  Collecting (18), (20) and (20), we have

: = N
e o2
1 (> h({x}) h(x) 4
- M(f)Efl /k+1 dx+ M(f)k/ 1/k+1

=M(f)%/0 A g O

x1/k+1

Proof of Proposition 1 under the condition (8). The argunwdrit® and 3 in the
previous proof is also valid in this case. Thus we have thevegences (18) and (21).
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In the following, we slightly modify the argument of 2n the previous proof. Let

an = T(n) = M(f), S(X) = Yoy 0.
2°-1 First

%|S{y)|—» 0 as y— oo

2°-2 ForLeNwithL+1<N

N
> ()
(N/(L+1))Yk<n<N¥k

- /1 - <h’({x})S((g)l/k> - h(1)s<([')\('—])l/k>) dx.

2°-3 Fix L e N with L +1 < N. By 2°-2

N
LRI (C)
(N/(L+1)Vk<n<N¥k n

< (( maxineor) 25 +1 sup )4y
0<x<1 k—1 y>(N/(L+1))¥k Yy

Clearly

v % an({G))
n=(N/(L+1)Yk :

_ N
v 3 ()
n=(N/(L+1)vk

< (suﬂan|) ( max|h(x)|)(|_ + 1)k
n=1 0=x=1
= ((surian|) ( max|h(x)|) + 1)(|_ + 1)k,
n>1 0=x=1

Combining these estimates, we have

N
—1/k
N-Y Z a"h({ﬁ})‘
n<NVk
((maX“']/(X)l)z_k + 1) sup |S(y)| (L + 1)1,1/k
(22) 0=x=1 k-1 y=(N/L+Dk Y

’ ((ﬁ“;ﬁ a“') (oTﬂ’i'h(X)|) * 1)(L + 1y

=: A( sup M)(L + 1)1—1/k +CL + 1)_1/k‘

IA

y=(N/(L+nyk Y
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2°-4 Take ¢ > 0 so thatC/((k — 1)As) > 2 and choosey, > 1 such that
IS(Y)|/Y < & (YY = Yo). Let L = [C/((k—1)Ae)] —1 e N. For N > y§C/((k — 1)As),
SUR,> L1k S(Y)I/Y < e. Using this in (22)

N~VE Y anh({%}) < As(L + 1) YR L Cc(L 4+ 1)k

n<Nk

< ((k = D)YR1 4 2Kk — 1)) ALK kg bK,

Letting N — oo, and thens N\ 0, we have the convergence (20).
Consequently, the assertion of Proposition 1 under theitond8) follows. [
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