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Abstract
We study entire solutions for a discrete diffusive equatidth bistable convolu-

tion type nonlinearity. We construct three different tymdsentire solutions. Each of
these entire solutions behaves as two traveling wavefrooitsecting two of those
three equilibria as time approaches minus infinity. Moreotee first and second
ones are solutions which behave as two traveling wavefrappsoaching each other
from both sides ofx-axis. The behavior of the second one is like the first one ex-
cept it connects two different wavefronts. The third one isofution which behaves
as two different traveling wavefronts and one chases andtbm the same side of
X-axis.

1. Introduction

In this paper, we study the following discrete diffusive atjon with convolution
type nonlinearity.

(1.2) Ut (X, t) = Dyu](x, t) — du(x, t) + Z J@i)b(u(x —i, t)), xeR,tekR,

ieZ
whered > 0, J(i) = J(-i) >0, Y., J() =1, and
Do[u](x, t) := D[u(x + 1,t) + u(x — 1,t) — 2u(x, t)]

for some positive constarid. Throughout this paper, we shall always assume that the
function b(-) is an increasing smooth function on [0, 1] such that

(P1) b(0) = b(a) —ad = b(1)—d = 0, where O< a < 1,

(P2)b(t) <dtfor0O<t <a, b(t)>dtfora<t <1,

(P3) maxb'(0),b'(1)} < d < b'(a) (bistable nonlinearity,

(P4) fol[b(u) —du] du > 0 (unbalanced cage
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When J(0) =1 and J(i) = O for all i # 0, (1.1) is reduced to the classical equation
ut(x, t) = Doful(x, t) + f(u(x, 1)), f(u) := b(u) —du,

which has been studied recently in [5, 6].
We also note that (1.1) is the continuum version of the foitgnlattice dynami-
cal system:

(1.2) Up(t) = D[Una(t) +Un-1(t) —2un(t)] —dun(t) + > I()b(un-i(t)), NeZ, teR.
ieZ

For (1.2), in ecologyu, represents the population density at siteD is the migra-
tion coefficient,d is the death rate and the nonlinear functions the birth function
of population density which is interacting with neighbong the nonnegative weighted
function J, if the habitat is divided into discrete regions and the pajon density is
measured at the representative point in each region. Inntbidel, we assume that the
migration only happens to the nearest neighbors and theagiten happens with finite
or infinite range.

We say that{un(t)} is a traveling wavefront solution of (1.2) connecting twd- di
ferent equilibria{u.} C {0, a, 1} with speedc, if up(t) = U(n + ct) for n € Z and
t € R for some functionU (called wave profilg¢ such thatU(+oc) = ui. Then €, U)
satisfies the following equation

1.3) cU'(y) = Do[UN(y) —dU(y) + ) J(bU(y —i)), yeR,

i€z
where (as before)
Dy[U](X) := D[U(x + 1) + U(x — 1) — 2U(X)].

Similarly, we can define the notion of traveling wavefrontusion of (1.1) by setting
u(x, t) = U(x + ct), thenU also satisfies the equation (1.3).

Recently, a more general version of (1.2) including timeageWas studied in
[11, 10]. In [11], they studied (1.2) with time delay for théstable case. They proved
that the problem admits a unique (up to a translation) strictonotone increasing
traveling wavefront solution connecting from 0 to 1 with aspiive wave speed when
D > Dg for a certain positive constaridg, under the following extra assumption

L 1
(1.4) 330 < max{zfolbl(u) —dudu 2fol[b(u)—du] du}.
iez Jo b(u)du f¥b(u)du—d
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More precisely, from [11, Theorem 1.1], under the above agpsioms, there exist a
unique speed > 0 and a unique (up to translations) wave profiléx) such that

{6U’(x):D2[U](x)—dU(x)+Z J@i)b(U(x—i)), xeR,

(1.5) 1€Z

U(—o0) =0, U(+o0) =1, O<U<1,U >0inR,
if D > Dg. Note that a propagation failure occurs whBnis small enough.

The monostable case for (1.2) with time delay was considémnefllO]. In the
present setting, it corresponding to the case for conrgedivo equilibria {a, 1} or
{0,a}. They obtained the existence of the asymptotic speed ofagaton, the ex-
istence and (partial) uniqueness of the traveling wavéfeord the minimal speed of
the traveling wavefront for the delayed lattice dynamicgstem under the following
extra condition at the unstable equilibriuap namely,

b'(a)(u — a) — M]u — a*** < b(u) — da

(1.6)

<b(@a(u—a)+ Mlu—a*** foruel0,1]
for some constant$! > 0 and« € (0, 1]. In fact, by [10, Theorem 1.2], there exist
two constants,, ¢* with ¢* > 0 > c, such that for any, ¢, (with ¢; > c*, ¢, <c,)
there existVi(x) and W,(x) satisfying the following equations:

. Vi) =DaAVI0—-dVA()+ Y I0BVa(x—1)),  X€R,
o) =a i(ro)=1, a<Vi<1,V{>0inR.

and

{czwg(x)=Dz[w2]<x)—dwz(x)+ZJ(i)b(wz(x—i)), X€R,
(1-8) i€Z
Ws(—00)=0, Wy(+00)=a, 0<W,<a, W;>0 inR,
wherec* (c,, resp.) is the minimal (maximal, resp.) speed of (1.7) {(lr8spectively).
The study of traveling wavefront solutions are importantniany applications. It
can describe certain dynamical behavior of the studiedlpnotsuch as (1.2). But, the
dynamics of reaction-diffusion equations or its discretalague is so rich that there
might be other interesting patterns. Recently it is founat tivo-front entire solutions
exist in many problems. Here an entire solution is meant bylatien defined for all
(x,t) € R?. In particular, traveling wavefront solutions are alsoirensolutions. For the
study of entire solutions, we refer the reader to, for instar{3, 5, 6, 7, 8, 9, 12, 13]
and reference therein.
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In a very interesting work by Morita and Ninomiya [12], theyvgathree differ-
ent types of entire solutions for a bistable reaction-giffn equation (see also [6] for
the discrete diffusive case). The purpose of this work isdostruct these three types
of entire solutions for (1.1). Although the main idea and thethods of proofs in
this paper are from [6, 12], there are certain difficultied&aling with (1.1) (or (1.2))
due to the convolution type nonlinearity. For example, ia ttonstruction of super/sub
solutions, we need to derive some estimations. In thesena&tstins, the compactness
(finite range interaction) assumption is needed in thisyst&b, from now on, besides
the assumptions (1.4) and (1.6), we shall assume that

(1.9) J@)=0 for |i|]>m for some meN.

We left the problem with infinite range interaction for theurte study.

In fact, to construct these two-front entire solutions itcisicial to have a pre-
cise information on the asymptotic behavior of wave tails. r¢precisely, we need
the following estimates for solutiond, Vi, W, of (1.5), (1.7), (1.8) respectively.

First, there exists a positive constaptsuch that

Uy . U

>

1.10 inf .
( ) 0 3|/zol—U(y)_77

y=0 U(y) —

Furthermore, there are positive constaKtsk, y, § such that
(1.11) ke <U(y) <KeY, vy<m; ye™ <1-U(y)<se ™, Vy > —m,

where A is the unique positive root of the characteristic equation

(1.12) er=D( +e*-2)—d+b(0) Y J(i)e"

i=—m

and p is the unique positive root of the equation

(1.13) —eu =D +e"-2)—d+b(1) Y Ji)"

i=—m

Next, for anyc; > c* andc, < c,, let (c;, Va(x)) and €,, Wx(x)) be solutions of
(1.7) and (1.8), respectively. Then there exist positivastantsii, ui, «i, ¥, | =1, 2,
such that the following inequalities hold:

(1.14)  Vi(y) —a>«k1€"Y on (~oo0,0; 1—Vi(y)=ye ™Y on [0,o0).
(1.15)  Wh(y) > k2€?Y on (—o0, 0], a—Ws(y) > »e ¥ on [0, c0).



TRAVELING WAVE 611

Furthermore, there exist positive constahts p such that

(1.16) p[Va(y) —a] < Vj(y) < Ne&*Y on (o0, 0],
(1.17) p[L—Vi(y)] = Vi(y) = Ne¥ on [0,00),
(1.18) pWa(y) < Wi(y) < N&?¥ on (—oo, 0],
(1.19) pla—Wy(y)] = Wy(y) = Ne™® on [0,00).

The above asymptotic behavior of wave tail at the unstablglibum can be
found in [4]. But, due to the technical difficulty arising frothe convolution type non-
linearity, we need to assume that= 2. As for the wave tail at the stable equilibrium,
the method developed in [2] is well applicable here for anytefim.

Based on these asymptotic behaviors, we prove the followlmegrems on two-
front entire solutions.

Theorem 1. Let (1.9) be in force with m= 2 and let (¢, U(x)) be a solution
of (1.5). Then for any real numbef there exists an entire solution(x; t) of (1.1)
such that

(1.20) t_IJ[r;o {sggju(x, t) —U(XX+Ct+0)| + sggu(x, t)—U(—x+¢et+ 9)|} =0.

Moreover u(x,t) - 1 as t — oo for any x.

Theorem 2. Let (1.9) be in force with m= 2. For any g > c* and ¢ < c,, let
(c1, V1(x)) and (c,, W»(X)) be solutions of(1.7) and (1.8) respectively. Then there exist
a constantw and an entire solution (x, t) of (1.1) such that

lim { sup  u(x, t) — Vi(x + cit + )|
(1.21) t==00 \x=—(c+ea)t/2

+ sup  |u(x,t) — Wa(X 4 cot — a))|} =0.

x<—(c1+C)t/2

Moreover there exist¥) € R such that

(1.22) lim {sunu(x, t)—U(x+Ct+ 9)|} =0.

t—o00 | xer

Theorem 3. Let (1.9) be in force with m= 2. For any ¢ < c, with —¢, < €, let
(€, U(x)) and (c, Wx(x)) be solutions of(1.5) and (1.8) respectively. Then there exist
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a constantw and an entire solution {x, t) of (1.1) such that

Iim{ sup Ju(x,t) —U(X + €t + w)|

1==00 | x> (c—0)t/2

+ sup |u(x,t)—W2(—x+c2t—a))|}:0.

x=(c—C)t/2

Moreover we have

lim {inf u(x, t)} =a, lim { sup|u(x, t) — 1|} =0, VC>0.
t—oo | xeR t—o0 x>—C

The above constructed entire solutions have some commaaathes. When-t >
1, they behave as two traveling wavefronts on the oppositessor on the same side
of x-axis. Note that, different from the previous works, we cd®dhe distinguishing
line of the initial conditions in the above theorems to be thiel-points of two front-
positions of traveling wavefronts. For example, in Theorgnx = —c;t and x = —ct
are front-positions for two traveling wavefrontg(x + cit) and Wx(x + c,t), respect-
ively. It is nature to choose the distinguishing line to Ye= —(c; + ¢)t/2 in (1.21).

We organize this paper as follows. In Section 2, we give sornefp of the asymp-
totic behaviors of the traveling wavefronts stated abowt some useful functions. Next,
in Section 3, we offer the proofs of Theorem 1, Theorem 2 angbfém 3 by construct-
ing suitable super/sub solutions.

2. Preliminaries

In this section, we first study the asymptotic behaviors oblation U (y) of (1.5)
asy — +oo. Since the behavior near = oo is similar to the one neay = —oo, we
shall only give the details foy = —co. For this, we use the following notation

NujI(t) := uj(t) — Duj1a(t) + uj_a(t) — 2u;(t)]
m
+duj(t)— > J@b(uj—i(t), jE€Z teR.
i=—m
First, we have the following strong comparison principle.
Lemma 2.1. Let ce R, jo € Z and € R. Assume that ((t) and v;(t) are
bounded and continuous in the 4€§,t) e ZxR | j < jo—ct, t € [tg, o)} and satisfy
Nujl(t) = M vj](t) when j< jo—ct, t>to,
Uj(to) = vj(to)) when j< jo—cto,

uj(t) > vj(t) when p—ct=<j=<jo—ct+m, t=>tp
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Then y(t) > v;(t) for all j < jo—ct, t > to. In addition if uj,(to) > vj,(to) for some
j1 =< jo—cto, then y(t) > v;(t) for all j < jo—ct, t > to.

Since the proof is exactly the same as the one for [2, Lemmavé]omit it here.
Using this comparison principle (Lemma 2.1), we can folldwe proof of [2, The-
orem 2] to prove the following theorem on the asymptotic baira

Theorem 4. Assume tha{c, {u;j(t)}) is a traveling wave solution of1.2) con-
necting fromO to 1 with positive speed c. Then there exists two positive cotsiad;,
C, such that

(T
u; (1) <Ch Vj4ct<-m,t>0

2.1 C1 = e =

where A is the positive root of the following characteristic equati

P(c,2):=cA—D( +e’—2)+d-b(0) > ()" =0.

i=-—m

By the definition of A, the functiony/(x) := e** is a solution of the following
equation

cy'(X) = DY (X + 1) + ¥ (x — 1) = 2y (x)] + dyr(x) — b/(O)'Z JOy(x—i) =0.

In the construction of sub/supersolutiong;(x) play an important role. Indeed,
we define

uf(t:ex, 0, €3) 1= a1 (0) + Oy (A)e U+ — ez (2A)e? 0¥, j € Z, t €R,

wheree; > 0, €3 > 0, O € R. Hereafter the functiorb is suitably defined so that it is
smooth withb, b’, b” bounded inR. Since P(c, 0) > P(c, A) = 0 > P(c, 2A) (due to
the fact thatb’(0) < d), we have

Nuf1(t)=0 when j+ct<-m teR,

0<e; <E;, e=E0? [0]=<E,
where

P(c, 0) _BLy(a)%em v

YT olp0) T TR 20)p@h) 2T Eav(2a)’

L := maxb”(u)|.
ueR
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Similarly, by defining
Uj (t: €1, 0, €3) 1= —e19(0) + 09 (A)e U+ + eqyr (2A)e*A U+,

we also get

NU7](t) <0 when j+ct<-m, teR.

Then Theorem 4 can be proved by using the comparison praeiplgiven in the proof
of [2, Theorem 2]. We omit the details here.
Now, for a solutionU of (1.5), usingu,(t) = U(n + €t) we obtain from (2.1) that

Cie? <U(y) <Cpe"Y, Vy<-m,

where is the unique positive root of the equation (1.12). Hencefitlse part of (1.11)
follows. We remark that this process can be carried out ag Emthe equilibrium is
stable. Therefore, all of the exponential tail behaviorsUgf V;, W, near the stable
equilibria {0, 1} in (1.11), (1.14) and (1.15) can be derived similarly.

As for the exponential tail behavior near the unstable dmuilm a, we refer to
[4, Theorem 5]. There it is assumed that= 2. Therefore, we have the exponential
tail behaviors ofVi, W, near the equilibriuma in (1.14) and (1.15) forc; > ¢* and
C, < ¢, whenm = 2.

For the estimates related the first derivativedJoi;, Ws, we recall from [4, The-
orem 2] that the limits

A W,
ymmeo Vi(y) —a  y=oo a—Wa(y)
exist and are positive. Here we need to assume rthat 2. This result is based on

[4, Theorem 1] and is applicable to the case of stable edquilib Therefore, we also
have the limits

- U(y) : u'(y) . Vi(y) - Wa(y)
ATH) TS0 RIS vy v W)

exist and are positive. Then the estimates (1.10) and (&(16)9) can be derived.
Next, we give some useful functions which were constructefb]. Given positive
constantsx, ¢, M and considemp(t) and q(t) solutions of

(2.2) p'(t) =c+ Me*PV, g'(t)=c—Me* 9V, t <0,

(2.3) p(0) <0, q(0) < min{O, @} e 240 _ g=p0) - ZTM
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Indeed, p(t) and q(t) can be solved explicitly by

In[1 + Me*PO(1 — e*t)/c]
" ,

In[1 — Me*9O)(1 — e /c]
- .

p(t) = p(0) + ct —

q(t) = q(0) + ct —

Furthermore, there exists a positive constarguch that

Cat Cart
24 - ) —ct—w<0<plt)—ct—w< "ez L if t<o,
where
In(1 + Me*PO/¢ In(1— Me*9© /¢

(2.5) w := p(0)— ( /9 _ q(0)—¥.

[07 o
Hence,
(2.6) 0< p(t) —q(t) <ke™ (<«), if t<O.

Finally, we give the following definitions about a superdimo and a subsolution.

DEFINITION 2.1. A functionl(x,t) is called a supersolution (subsolution, resp.)
of (1.1) on &, t) € R x (—oo, —T] for someT € R, if L[U](x,t) >0 (L[u](x,t) =0,
resp.) for all &, t) € R x (—oo, —T], where

L{v](x, t) 1= ve(x, 1) = Do[v](x, 1) + dv(x, t) = > I@)bu(x i, 1)).

i=—m
The following useful lemma can be found in [1, 3, 5].
Lemma 2.2. Suppose thati(x,t) and G(x,t) are a subsolution and a supersolution
of (1.1)on (x,t) € Rx(—o0,—T] for some Te R, respectively and satisfy tha(x,t) <

ax, t) on (x,t) € R x (—oo, —T]. Then there exists an entire solutiofxut) of (1.1)
such that

u(x,t) <u(x,t) <a(x,t) forall (x,t)eRx(—o0, =TI

With this lemma, the construction of entire solutions isugell to finding a suit-
able pair of super/sub solutions.

3. Entire solutions

This section is devoted to the proofs of main theorems statetie introduction.
Since the proofs work as long as the asymptotic behaviod®)1(1.11), (1.14)—(1.19)
hold, we shall present the proof for genemale N here.
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3.1. Proof of Theorem 1. Let p(t) andq(t) be the solutions of (2.2)—(2.3) with
c=¢, o =X and a constanM to be determined later. We divide our discussion into
two casesb'(0) < b/'(1) andb’(0) > b'(2).

First, we consider the case thal{0) < b'(1). In this case, we have > u, where
A and u are positive roots of (1.12) and (1.13), respectively. aujdet

F(y):=D(e'+e”-2)—d+ b’(l)zmj J(i)eY.
Then we have
F'(y) =D —e?Y) +b(1) Zm: iJ(i)EY—e™)>0
i1
for all y > 0. Moreover, usingy(0) < b’(1) we have
F()) =D(" +e"—-2)—d+ b/(1)zm: J(i)e*

>D(E +e"—2)—d+b(0) ) Ji)e

i=-m

=& > 0> —Cu = F(n).

This implies thath > u.

Define
(3.1) {U(X' t):=U(x+ p(t)) + U(~x + p(t)), X€R, t =<0,
u(x, t) :=U(x+q(t) + U(—x+q(t)), xeR,t=<0.
Then
L[T](x, t)

= POV (x+ p(t)) + U (=x + p(t))] + (2D + d)[U (x + p(t)) + U (=x + p(t))]
— DIU(X+ 1+ p(t)) + U(=x — 1+ p(t)) + U(x — 1+ p(t)) + U(—x + 1+ p(1))]

— Y Ji)bUX—i + pt)) + U(=x +i + p(t))).

i=—m
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By using (1.5), we obtain

L[T](x, ) = (P'(t) = O[U'(x + p(t)) + U'(=x + PN = Y IHG(X, t, 1)

= [U'(x + p(t)) + U'(—x + p(t))]{Me“’(t) - > I0OPxt, i)},
where
G(x, t,i):=bUX —i + p(t)) + U(—x +i + p(t)))
—bUX =i + p(t)) —bU(=x + i + p(t)),
B G(x, t,i)
POCL )= G p) + Ux 1 p)
From

[b(u + v) —b(u) — b(v)| < Luv if u,ve(0,1),

it follows that

L[a](x, t) = [U'(x + p(1)) + U'(—x + D(t))]{M@p(t) —L > JHPux t, i)},

i=—m
where
. UX—i+ pt)U(=x +i + p(t))
Pi(x, t, 1) := .
{008 T p) + UTex + p0)
For anyi € {—m, ..., -1,0,1,...,m}, by using (1.10) and (1.11), we obtain
(3.2) —U (x=1+ p) e"“ UmIXgl PO i x < p(t),

Pu(x, t,0) <
U'(=x+p(t)) —
K 2 (x=i+p(t) g (— x+|+p(t)) K2

(83) Pux t,i) = nk[e*x+p) @ (-x+pM)] —

34) Pyxt,i) < ZEXTTEPO) K giguingorind, iy s —p().

U’(x + p(t)) ny
By using the facts. > u and p(t) < 0, it follows from (3.2) and (3.4) that

Pi(x, t,i) < e"p(‘) if x<op(t) or x> —p(t).

Therefore, if we choose

{LKe*m LK2}
M > max

ny = 2nk )’

_ek PO if  p(t) < x < —p(t),

617
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then L[0] > 0 on R x (—oc, 0]. By a similar estimation, we gdk[u] < 0 on R X
(=00, 0].

It follows from Lemma 2.2 that there exists an entire solutia(x, t) of (1.1)
such that

u(x, t) <u(x,t) <a(x,t), V(x,t)eRx(—oo,0].

Now, we derive the initial condition (1.20). By translatjowe may only check
6 = w. For x > 0, by the mean-value theorem, (2.4) and (2.6), we get

[u(x, t) — U(X + Ct + w)]

< [u(x, t) —u(x, )] + U(—=x + q(t)) + |[U(Xx + q(t)) — U (X + Et + w)|
< [a(x, t) — u(x, t)] + KeM>+a0) 4 % supgU’( - )pet

< KeMO 4 Ket

for some constank;. The case foix < 0 is similar. Hence (1.20) holds.
Secondly, we consider the case th&tl) < b’(0). In this case, we define

a(x, t) ;= U(X + p(t)) + U(=x + p(t)), XeR, t <0,

(3.5) {u(x, t):=max{U(x + €t + w), U(—x + et +w)}, xeR, t <0.

Note that the definition ofi(x, t) is the same as the former case in (3.1). Also, (3.3)
holds, since we do not need the fact that © whenx € [p(t), —p(t)]. Therefore, we
focus on the other two ranges. Sind€l) < b’(0), by extending the definition di(-)
and taking a suitable translation bf(-), we may find§; > 0 such that

(3.6) b'(uy<b'@©) if u>1-6; U@ =1-6 if z>-m.
First, we consider the case=< p(t). From the equality
1
b(u + v) — b(u) —b(v) = v / [b'(u + sv) — b'(sv)] ds
0
and (3.6), it follows that
1
G(x, t,i)=UX—i+ p(t))[ [b'(0)—b'(sU(x —i + p(t)))] ds
0

<L[U(X—i+ p(t)]>

Therefore,

L[T](x, t) = [U'(x + p(t)) + U'(—x + p(t))]{Me’\p(t) —L > I0)Pax, t, i)},

i=—m
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where
N [U(x =i + p(t))]?
PO = G @) + Ut + )
For anyi € {—m, ..., —-1,0,1,..., m}, by (1.10) and (1.11), we have

U(x+ p(t) Ux—i+ p(t)

Py(x, t,i) < Ut o) UKT b)) “U(x—i+ p(t)
o KT ey < K2 gy
nk nk

for x < p(t). So if we chooseM > LK2e?™/(yk), then we have.[d] > 0 for x < p(t).
The case whex > —p(t) can be treated similarly. By the definition gfx,t) in (3.5),
we can easily check that it is a subsolution. Hence, by Lemi@a there exists an
entire solutionu(x, t) such that

u(x, t) <u(x,t) <a(x,t), V(x,t) eR x(—oc,0].

Finally, we study the asymptotic behavior ofneart = —oco. For x > 0, by the
definition of u(x, t), we obtainu(x,t) = U(x + ¢t + w). So, by the estimation of
Lemma 2.2 and (2.4),

O<u(X,t) —UX+¢Ct+w) <0(X,t)—UX+ et + w)
SUX+ p(t)) —UX+ €t + w) + U(=x + p(t))
< supU’(-)}(p(t) — &t — w) + Ke>*+PM)

eékt
<k sup[U/(-)}T + KePW,

This implies that
lim sugu(x,t)—U(X + €t + w)] = 0.

t—— OOX>O

The case fok < 0 is similar. Hence (1.20) holds and the proof of Theorem biagleted.

3.2. Proof of Theorem 2. Let (c1, Va(x)) and €2, Wx(x)) be solutions of (1.7)
and (1.8) respectively. Set
Ci+C C1—C

(3.7) c > G 3

Note thatcy > 0. We define

f(u(x, t)) := Z J(@)[b(u(x —1i, t)) —du(x, t)],

i=—m
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fue)) := Y I0)bu(x —i)) — du(x)],

i=—m

fue) := > IMbux — i) — du(x — i)].

i=—m

By a simple computation, it is easy to see thiét, t) = R(x + Ct, t) is a solution of
(1.1) if and only if R(x, t) is a solution of

(3.8)  F[RI(x, 1) := R(xX, t) + ER(X, t) — D[ R](X, t) — f(R(x, 1)) = O.

Also, Vi(X + cot) and Ws(x — cot) are solutions of (3.8).
Let p(t), q(t) be solutions of (2.2)—(2.3) with

a = min{A1, up}, €=Co, M > 0 (to be determined later).
Consider
{F_e(x, t) := H(Va(x + p(t)), Wo(x — q(t))), X eR, t <0,
R(X, t) := H(Va(x +q(t)), Wo(Xx — p(t))), X €R, t =0,
where
(1—-a)gh
NN =gy rat-9

We shall claim that R, R)(x, t) is a pair of supersolution and subsolution of (3.8).
For this, we denote

b oH o _9%H H _9°H _ PH
g - -— ag ’ h.— 8h ’ gg -— agz ’ hh .= ahz ’ gh L ahaga
H(b, ¢) := H(Vi(y + b), Wa(z + €)), Hg(b, €) := Hg(Va(y + b), Wa(z + 0)),
Hh(b, €) := Hn(Va(y + b), Wa(z + ©)), Hgg(b, ©) := Hgg(Va(y + b), Wa(z + ©)),
Hgn(b, €) := Hgn(Va(y + b), Wa(z 4 €)), Hnn(b, €) := Hnn(Va(y + b), Wa(z + ©))
for b, c € R. Hereafter we denotg := x + p(t) andz:= x — q(t).
By a simple computation, we have
a(l—a)h(1—h) a(l-ajg(l—o9)

WO = hg-arai-or """ hg-a)+at-or

Also, we have

(-2)a(l—ah(@—hh-a) .
hg—a) rad_gp - aHhan.

(=2)a(l-a)g(1-9)(g—4a)
[h(g—a) +a(l-9g)®

Hgg(g, h) =

Hhh(gv h) =

= (9—1)(@ —a)Hz(a, h),
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a(l—a)(2a—1)gh+a(l—g—h)]
[h(g—a)+a(l-g)?

Because O< W(-) <a < V(-) <1, we have

Hgn(g, h) =

(3.9) Hg(b, ©) > 0, Hn(b,c) >0, V b,ceR.
Now we are in a position to computé[R]. First, we have
FIRI(X, t) = R(x, t) + CRy(X, t) — Do[R](X, t) — f(R(X, t))
= Hg(0, O)V;(y)[P'(t) + €] + Hin(0, OW5(2)[C — q'(t)]
— > JOIHVAlY = 1), Wa(z —1)) = H(Va(y), Wa(2))]

i=-—m

— > IMIH VAl — i), Wa(z = 1)) = dH(Va(y — 1), Wa(z —1))],

i=-m

where J(i) :=d J(i), if i| #1, I(i):=dJ@)+ D, if |i| = 1.
Recall (1.7), (1.8), (3.7) and that(t),q(t) are solutions of (2.2)—(2.3) with = cg.
Then we have

FIRI(x, t)

= Hg(0, O\V{(Y)[P'(t) — Co] + Hn(0, O (2)[co — q'(t)]
+ DHg(0, 0)Va(y + 1) + Va(y — 1) — 2Vi(y)] + Hg(0, 0)f (Va(y))
+ DHK(0, 0)Wa(z + 1) + Wa(z — 1) — 2Wa(2)] + Hn(0, 0)f (Wa(2))
= > JOIHVA(Y = 1), Wa(z — i) = H(Va(y), Wa(2))]

i=—m

— > IMIHVA(Y = i), Wa(z=1))) = dH(Va(y =), Wa(z = 1))]

i=—m

= MHqg(0, 0)\V(y)e*P® + M Fin(0, O)Wj(2)e"®

+ Hg(0,0) D J@)IValy —i) = Va(W] + Hn(0, 0) D J()[Wa(z — i) — Wa(2)]

i=-m i=-m

— Y JOMHNValy — i), Wa(z—1)) = H(Va(y), Wa(2))]

i=—m

+ Hg(0, 0)f (Va(y)) + Hn(0, 0)f (Wa(2))

— > IMHVAY — i), Wa(z—1))) = dH(Va(y —1), Wa(z—1))].

i=-m
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Recall thatVy(-) and W,(-) are strictly increasing. It then follows from (2.6), (3.9)
and the mean-value theorem that

FIRI(x, 1)
> Me*9U[Hy (0, 0)V;(y) + Hn(0, OWj(2)]
+ Hg(0,0) Y JM)IVa(y —i) = Va(y)] + Hn(0,0) Y J()[Wa(z— i) — Wa(2)]

i=—m i=—m

— Y IO Hg(Va(y + ), Wa(z + 02)[Va(y — i) — Va(y)]

+ Hr(Vi(y + 601i), Wa(z + 62))[Wa(z — i) — Wa(2)]}
+ Hg(0, 0)f (Va(y)) + Hn(0, 0)f (W2 (2))
— 3" IOIBH(VAly — i), Wa(z—i))) — dH(Va(y — i), Wa(z —1))]

i=—m

> Me* IO A(x, t) — B(x, t) — G(x, t),
where
A(x, t) := Hg(0, OV;(y) + Hin(0, O\W5(2),

B(x,t) := Y J(){[Hg(6u, 62) — Hg(0, O)][Va(y — i) — Va(y)]

i=—m

+ [Hn(01i, 621) — Hr(0, 0)][Wa(z — i) — Wa(2)]}

+ D JO[Hg(=i, =) = Hg(0, 0)F (Valy — )

i=-m

+ [Hn(=i, =) = Hn(0, 0)] (Wa(z — i))}

= J@)Bux, i)+ > I()BaAX, 1),
G(x, 1) := AZ J@IH VY =), Wa(z = 1)) — Hg(=i, =) (Va(y — 1))

— Hy (=i, =) (Wa(z —))]

=3 ID6 i),

i=—m

with 6y, 65 are between 0 anéti, andl(s) := b(s) —ds.
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By (3.9), we haveA(x, t) > 0 for all (x,t) € R x (—o0o, 0]. So in order to obtain
F[R](x, t) > 0, we must estimate

Bix, t,i)  Bo(x,t,i) G(x i)
AxD . AxD MY A

First, we consideA(x,t). Sincep(—oo) = q(—o0) = —oo andWs(o0) = Vi (—o0) =
a, we can choosd > 0 such that

l1+a
Vil + p(t) +1) £ =22, if x=0,t=-T, [l =m,
(3.10) a2
W2(X—Q(t)+|z)25, if x>0,t<-T, |l <m.

By the form of Hy, H, and the estimation above, we have

Hg(0, 0) = Hg(Va(x + p(t)), Wa(x —q(t))) = =, if x >0,t < T,

1
8!
3.11
(3.11) .

Hn(0, 0) = Hn(Vi(x + p(t)), Wa(x — q(t))) = if x<0,t<-T.

81
Secondly, we consideB;(x, t, i), Ba(x, t, i) and G(x, t, i). For this, we define
S(X, t, 11, 12) := Wa(x — q(t) + [2)[Va(x + p(t) +11) —a]
+a[l — Vi(x + p(t) + 17)].
By (3.10), if x > 0,t < —T, |l1] <m, |l2] <m, then

S0 11, 12) = STVA(K+ p(t) +12) — &l +a[L = Vi(x + p(t) + 1)
a(l—a)

>

- 2

On the other hand, ik <0,t < —T, |l <m, |lz] <m, then

SR AN 1%‘[wz(x —qt) + 1) —al + all — Wa(x — q(t) + 1)]

a(l-—a)
7

>

Therefore,

a(l—a .
S, t, 1, 12) > (2 ), if XeR,t<-T, |li<m,|lo]<m.

This implies that there exists a constaff such that

(3.12) |(H1, Hz, Hgn)(Va(x + p(t) + 11), Wa(x — q(t) + [2))] = Ku,



624 J.-S. @O AND Y.-C. LIN

forall xeR, t < =T, |ls] <m, |l] <m.
Now, we are ready to estimaB (x,t,i)/A(x,t). Consider the first term dB,(x,t,i,),
by the mean-value theorem, we have

[Hg(0xi, 021) — Hg(0, O)][Va(y — i) — Va(y)]
= [Hg(Va(y + 61i), Wa(z + 621)) — Hg(Va(y), Wa(2)]V{(y + 6ai)
= [0 Hog(Vi(y + 64i), Wa(Z + 65i))V{ (Y + i)
+ 02 Hgn(V1(Y + 04i), Wa(Z + 65))Wy(z + 67)] V(Y + 6ai)
= [61i Hgg(Bai, 05 )V1 (Y + O6i) + 02 Hgn(Bai, 05 )W5(z + 07)]V(y + 03),
where 03, 04, 05, 06, 67 are between 0 anei. Therefore,
Bi(X, t,1) = [01i Hog(0ai, 05 )V{(Y + Oei) + 02 Hgn(0ai, 05 )W5(z + 67)IV{(y + 05i)
+ [64 Fng(ai, 751 )V1(Y + 061) + 02 Hnn(tai, t5)Ws(Z 4 67)]Wa(zZ + t31),

where g, 14, 75 are between 0 andi. Forx <0,t < —T, by (3.11), we have
1 U
A(X, t) > §W2(x —q(t)).

Moreover, from (1.14)—(1.19) and (3.12), there exists a oK, such that

Hog(St, S)Vi(Y + S)V;(y + 1)

<K e)ulp(t),
Wy (2) -

Hgn(S1, S2)W5(z + S3)Vi(y + s4)

< K e)nlp(t),
Wj(2) -

Hin(S1, S2)Wy(Z + Ss)Ws(z + Sa)

<K e)\lp(t),
Wj(2) -2

for all |s1], |s2], Is3], Is4] < m. Hence, there exists a constakt such that

B LD < oo, it x<0,t<—T, i <m.
A |~ - .

Using the same method to consider the case xhatO, t < —T, we have

‘M < Kqe290, if x>0,t<-T,|i|<m,

A(x, t)

for some constanK,. Using the fact that’(-) is bounded over [0, 1], we can choose
a constantKg such that

IVAC) = KeVi(-),  [H(W2(-)) < KeWy(-).
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By the same estimation dB;(x, t, i) for By(x, t, i), we have

B(X, t, i) _ :

2 < KeMPOif x <0, t<-T, li| <m,
‘ Ax, t) |~ oxX=Rts =
B(x, t, i) . :
—2 2l < K20 x>0, t < T, [i| <m,
‘ Ax, t) |~ oxX=Rts =

for some constank.
Next, we estimates(x, t, i)/A(X, t). We define

G(g, h) :=1(H(g, h)) — Hg(g, h)I(g) — Hn(g, h)I (h).
By a simple computation, we get
(3.13)  G(g,0)=G(g,a) = G(a, h)=G(1,h) =0, Vge(a 1),he(0,a).
For x < q(t), t <0, by (3.13), we may write

G(x, t,1) = G(Va(x + p(t) — i), Wa(x —q(t) — 1))
= Wao(x —q(t) —)[Va(x + p(t) —1) —a]Gu(x, t, i).

for some bounded functio®Gy(x, t,i). Whenx < q(t), t < -T, |i| <m, by (3.11),
we have

Aoy | = Gt Wi(x — q(0)

< Mle)ul P(t),

‘G(X,t, i) Wo(X —q(t) —)[Vai(x 4 p(t) —i) —a]

for some constanM; (independent ok, t andi). Similarly, for q(t) < x < —p(t), we
may write

G(x, t,1) = [a—Wa(x —q(t) = DI[Va(x + p(t) — i) —a]Ga(x, t, ),
for some bounded functio,(x, t,i). Whenq(t) <x <0,t <-T, |i| <m, we have

‘G(x.t, i) [a — Wa(x —q(t) —)][Va(x + p(t) —i) —a]
A(X, t) W, (x —q(t))

< 8|Ga(x, t, )|

S Mze)hlp(t),
for some constanMM; (independent ofx, t andi). When 0< x < —p(t), t < -T,
[i| <m, we have

G(x, t, 1)
‘ A(x, 1)

[a — Wo(x —q(t) —)I[Va(x + p(t) —i) —a]
Vi(x + p(t))

< 8|Ga(x, t, i)

< M3euzq(t),
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for some constaniz (independent ok, t andi). For x > —p(t), t <0, we may write
G(x, t,1) = [a—=Wa(x —q(t) —i)l[1 — Va(x + p(t) —)]IGs(x, t, i),

for some bounded functios(x, t,i). Whenx > —p(t), t < -T, |i| <m, we have

[a—Wa(x —q(t) —DI[1 — Va(x + p(t) —i)]

< 8|Gs(x, t, )] V/(x + p(t))
1

G(x, t,1)
A(x, t)
< M4e#2(3|(t),

for some constanM, (independent ok, t andi).
Becausex = min{iq, uz} and (2.6), we may choose

M > max{ Ke™, M1e™, M,e™, Mz, My}.

And then we obtainF[R] > 0. Similarly, we can obtairfF[R] < 0.
Hence, by (2.6) and the identity

R(X, t)— R(x, 1)
=r() /Ol[Hg(Vl(X +a(t) +sr(t)), Wao(x — p(t) +sr(t)Vi(x +a(t) +sr(t))
+ Hn(Va(x +q(t) +sr(t)), Wa(x — p(t) +sr(t))) Wa(x — p(t) + sr(t))] ds,
wherer (t) := p(t) — q(t), we obtain that
0 < R(X, t) — R(X, 1) < Ms€%*!,  V(x,t) € R x (—o0, 0],

for some constanMs.
Define
(x,t) := R(x + €t, 1), xeR, t <0,
u(x,t):= R(x+¢Ct,t), xeR,t<0.

BecauseF[R] > 0 and F[R] < 0, G(x, t) and u(x, t) are a supersolution and a sub-
solution of (1.1) for k, t) € R x (—oo, —T] respectively and

(3.14) O< G(x, t) — u(x, t) < Mse™!,  V(x,t) € R x (—o0, 0],
By Lemma 2.2, there exists an entire solutiofx, t) of (1.1) such that

u(x, t) <u(x, t) <ax,t), V(xt)eRx(—o0, —T].
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Next, we consider (1.21) and recall is defined on (2.5). Ifx > —Ct andt <
—T, then
[u(x, t) = Vi(x + cit + )]
< u(x, t) —u(x, t)] + Ju(x, t) — Vi(x + cit + w)]
= [U(x, ) —u(x, )] + [g(x, t) — Vi(x + c1t + o)
h(x, t)(g(x, t) —a) + a(1l —g(x, 1)) |

whereg(x, t) := Vi(x + €t + q(t)), h(x, t) := Wa(x + €t — p(t)).
By the mean-value theorem and (2.4),

+

l9(x, t) — Va(X + cit + w)| < supV;(-)|q(t) —ct —w| -0 as t — —oo.

This implies

(3.15) I|m [ suplg(x, t) — Va(x + ¢t + w)q =

X=—Ct
On the other hand, becaugze> —ct, we have
a > h(x, t) = Wyo(x + Ct — p(t)) = Wo(—p(t)) >a as t — —oo.
This implies

I|m [ supla — h(x, t)q =

X>—Ct
and
h(x, t)(9(x, t) —a) +a(l—g(x, t))

has a positive low-bound ik > —Ct, —t < 1. So

(a—h(x, ) ) - DIt ) ||
(3.16) "f'o‘o{i“'?t hex, (G0, 1) — &) + all - glx, t))‘}

By (3.14), (3.15) and (3.16), we have

lim suplu(x, t) — Vi(X + cit + w)| = 0.

t—>—00 4> ¢t

Similarly, we get
I|m supu(x, t) — Wao(X + cot —w)| = 0.

09 x<—¢t

So (1.21) holds. Finally, from Zinner [14], the asymptotiehlavior (1.22) follows. We
have thus completed the proof of Theorem 2.
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3.3. Proof of Theorem 3. Following the methods of [6, 12]), we consider the

functions

H(U (X + ¢t + p(t)), Wa(—x — Ct —q(t))),
H(U (X + ¢t + q(t)), Wa(—x — ct — p(t))),

{G(X, t):
u(x, t) :

whereC := (€—cy)/2, p(t) andq(t) are the solutions of (2.2) and (2.3) with= ¢y :=
(€ + c2)/2 and suitablex, M, and

a(g+ h)—(1+a)gh

H(g, h) := P

Then, by using a similar process as that of the proof of ThmoBe we obtain the
conclusion of Theorem 3. We safely omit the details here @se [12, 6]).
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