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Abstract
We construct a connected, irreducible component of the moduli space of minimal

surfaces of general type withpg D q D 2 andK 2
D 5, which contains both examples

given by Chen–Hacon and the first author. This component is generically smooth
of dimension 4, and all its points parametrize surfaces whose Albanese map is a
generically finite triple cover.

0. Introduction

The classification of minimal, complex surfacesS of general type with small bi-
rational invariants is still far from being achieved; nevertheless, the study of such sur-
faces has produced in the last years a considerable amount ofresults, see for instance
the survey paper [9]. If we assume 1D �(OS) D 1 � q C pg, that is pg D q, and
S irregular, that is q > 0, then the inequalities of Bogomolov–Miyaoka–Yau and De-
barre imply 1� pg � 4. If pg D q D 4 then S is a product of curves of genus 2,
as shown by Beauville in the appendix to [18], while the casepg D q D 3 was un-
derstood through the work of several authors, see [14], [22], [35]. The classification
becomes more and more complicated as the value ofpg decreases; indeed already for
pg D 2 one has only a partial understanding of the situation.

Let us summarize what is known for surfaces withpg D q D 2 in terms ofK 2
S; in

this case the inequalities mentioned above yield 4� K 2
S � 9. The caseK 2

S D 4 was in-
vestigated by the first author, who constructed three families of surfaces which admit an
isotrivial fibration, see [32]. Previously, surfaces with these invariants were also studied
by Ciliberto and Mendes Lopes (in connection with the problemof birationality of the
bicanonical map, see [17]) and Manetti (in his work on the Severi conjecture, see [25]).
For K 2

S D 5 there were so far only two examples, see [16] and [32]. As thetitle sug-
gests, the present work deals with this case. ForK 2

S D 6 there is only one example,
see [32], [33], [34]. The study of the caseK 2

S D 8 was started by Zucconi in [45]
and continued by the first author in [32]. They produced a complete classification of

2000 Mathematics Subject Classification. 14J29, 14J10, 14J60.
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surfaces withpg D q D 2 and K 2
S D 8 which are isogenous to a product of curves; as

a by-product, they obtained the classification of all surfaces with these invariant which
are not of Albanese general type, i.e., such that the image ofthe Albanese map is a
curve. Finally, forK 2

S D 7 and K 2
S D 9 there are hitherto no examples known.

In this article we consider surfaces withpg D q D 2 andK 2
SD 5. Our work started

when we noticed that the surfaces constructed in [16] and [32] have many features in
common. More precisely, in both cases the Albanese map� W S! Alb(S) is a gener-
ically finite triple cover, and the Albanese variety Alb(S) is an abelian surface with
a polarization of type (1, 2). Moreover,S contains a (�3)-curve, which is obviously
contracted by�. We shall prove that Penegini’s and Chen–Hacon’s examples actually
belong to the same connected component of the moduli space ofsurfaces of general
type with pg D q D 2 and K 2

S D 5.
In order to formulate our results, let us introduce some terminology. Let S be a

minimal surface of general type withpg D q D 2 and K 2
S D 5, such that its Albanese

map� W S! Alb(S) is a generically finite morphism of degree 3. If one considers the
Stein factorization of�, i.e.,

S
p
�!

OX
Of
�! Alb(S),

then the map Of W OX ! Alb(S) is a flat triple cover, which can be studied by applying
the techniques developed in [27]. In particular,Of is determined by a rank 2 vector
bundle E on Alb(S), called theTschirnhausen bundleof the cover, and by a global
section� 2 H0

�

Alb(S), S3E_ 

V2

E
�

. In the examples of [16] and [32] the surface
OX is singular; nevertheless in both cases the numerical invariants of E are the same

predicted by the formulae of [27], as ifOX were smooth. This leads us to introduce the
definition of negligible singularityfor a triple cover, see Definition 1.5 and Remark 1.9.
Then, inspired by the construction in [16], we say thatS is a Chen–Hacon surfaceif

there exists a polarizationL of type (1, 2) on Pic0(S) D2Alb(S) such thatE_ is the
Fourier–Mukai transform of the line bundleL�1, see Definition 4.1.

Our first main result is the following characterization of Chen–Hacon surfaces, see
Proposition 4.11 and Theorem 5.1.

Theorem A. Let S be a minimal surface of general type with pg D q D 2 and
K 2

S D 5 such that the Albanese map� W S! Alb(S) is a generically finite morphism
of degree3. Let

S
p
�!

OX
Of
�! Alb(S)

be the Stein factorization of�. Then S is a Chen–Hacon surface if and only ifOX has
only negligible singularities.

Moreover, we can completely describe all the possibilities for the singular locus
of OX, see Proposition 4.9. It follows thatOX is never smooth, since it always con-
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tains a cyclic quotient singularity of type (1=3)(1, 1). ThereforeS always contains a
(�3)-curve, which turns out to be the fixed part of the canonicalsystemjKSj, see Prop-
osition 5.13.

Now let M be the moduli space of surfaces withpg D q D 2 and letMCH
�M

be the subset whose points parametrize (isomorphism classes of) Chen–Hacon surfaces.
Our second main result is the following, see Theorem 6.6.

Theorem B. MCH is an irreducible, connected, generically smooth component of
M of dimension4.

Since Chen and Hacon constructed in [16] only thegeneral surface inMCH, we
need considerable work in order to establish Theorem B. Our proof uses in an essen-
tial way the fact that the degree of the Albanese map is a topological invariant ofS,
see [13]. As a by-product, we obtain some results of independent interest about the
embedded deformations ofS in the projective bundleP (E_), see Proposition 6.2.

We believe that the interest of our paper is twofold. First ofall, it provides the
first construction of a connected component of the moduli space of surfaces of general
type with pg D q D 2, K 2

S D 5. Secondly, Theorem B shows that every small deform-
ation of a Chen–Hacon surface is still a Chen–Hacon surface;in particular, no small
deformation ofS makes the (�3)-curve disappear. Moreover, sinceMCH is generically
smooth, the same is true for the first-order deformations. Bycontrast, Burns and Wahl
proved in [10] that first-order deformations always smooth all the (�2)-curves, and
Catanese used this fact in [11] in order to produce examples of surfaces of general type
with everywhere non-reduced moduli spaces. Theorem B demonstrates rather strik-
ingly that the results of Burns–Wahl and Catanese cannot be extended to the case of
(�3)-curves and, as far as we know, provides the first explicit example of this situation.

Although Theorems A and B shed some light on the structure of surfaces with
pg D q D 2 and K 2

S D 5, many questions still remain unanswered. For instance:
• Are there surfaces with these invariants whose Albanese maphas degree different
from 3?
• Are there surfaces with these invariants whose Albanese maphas degree 3, but
which are not Chen–Hacon surfaces? Because of Theorem A, this is the same to ask
whether OX may have non-negligible singularities.
And, more generally:
• How many connected components of the moduli space of surfaces with pg D q D 2
and K 2

S D 5 are there?
In order to answer the last question, it would be desirable tofind an effective bound
for the degree of� W S! Alb(S), but so far we have not been able to do this.

Another problem that arises quite naturally and which is at present unsolved is
the following.
• What are the possible degenerations of Chen–Hacon surfaces?
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An answer to this question would be a major step toward a compactification of MCH.
In Proposition 5.11 we give a partial result, analyzing somedegenerations of the triple
cover Of W OX ! Alb(S) which provide reducible, non-normal surfaces.

Now let us describe how this paper is organized. In Section 1 we present some pre-
liminaries, and we set up notation and terminology. In particular we recall Miranda’s
theory of triple covers, introducing the definition of negligible singularity, and we dis-
cuss the geometry of (1, 2)-polarized abelian surfaces. Forthe reader’s convenience, we
recall the relevant material from [27] and [4] without proofs, thus making our exposition
self-contained.

In Section 2, which is the technical core of the paper, we describe all possibilities
for the Tschirnhausen bundle of the triple coverOf W OX !

OA. The analysis is particularly
subtle in the case where the (1, 2)-polarization is of product type; eventually, we are
able to rule out this case, showing that it gives rise to a surface OX which is not of
general type (see Corollaries 2.8 and 2.11).

In Section 3 we briefly explain the two examples from [16] and [32], which mo-
tivate our definition of Chen–Hacon surfaces. The properties of such surfaces are then
investigated in detail in Section 4.

Finally, in Section 5 we prove Theorem A, whereas Section 6 deals with the proof
of Theorem B.

Notation and conventions. We work over the fieldC of complex numbers.
If A is an abelian variety andOA WD Pic0(A) its dual, we denote byo and Oo the

zero point of A and OA, respectively.
If L is a line bundle onA we denote by�L the morphism�L W A ! OA given by

x 7! t�x L
 L�1. If c1(L) is non-degenerate then�L is an isogeny, and we denote by
K (L) its kernel.

A coherent sheafF on A is called aIT-sheaf of index iif

H j (A, F 
Q) D 0 for all Q 2 Pic0(A) and j ¤ i .

If F is an IT-sheaf of indexi andP it the normalized Poincaré bundle onA� OA, the
coherent sheaf

OF WD Ri
�

OA�(P 
 �

�

AF )

is a vector bundle of rankhi (A, F ), called theFourier–Mukai transformof F .
By “surface” we mean a projective, non-singular surfaceS, and for such a surface

!S D OS(KS) denotes the canonical class,pg(S) D h0(S, !S) is the geometric genus,
q(S)D h1(S,!S) is the irregularity and�(OS)D 1�q(S)C pg(S) is theEuler–Poincaré
characteristic. If q(S) > 0, we denote by� W S! Alb(S) the Albanese map ofS.

If jDj is any linear system of curves on a surface, its base locus will be denoted
by BsjDj. If D is any divisor,Dred stands for its support.
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If Z is a zero-dimensional scheme, we denote its length byl (Z).
If X is any scheme, by “first-order deformation” ofX we mean a deformation

over SpecC[�]=(�2), whereas by “small deformation” we mean a deformation overa
disk Br D {t 2 C j jt j < r }.

1. Preliminaries

1.1. Triple covers of surfaces. The theory of triple covers in algebraic geometry
was developed by R. Miranda in his paper [27], whose main result is the following.

Theorem 1.1 ([27, Theorem 1.1]). A triple cover fW X ! Y of an algebraic va-
riety Y is determined by a rank2 vector bundleE on Y and by a global section
� 2 H0

�

Y, S3E_ 

V2

E
�

, and conversely.

The vector bundleE is called theTschirnhausen bundleof the cover, and it satisfies

f
�

OX D OY � E .

In the case of smooth surfaces, one has the following formulae.

Proposition 1.2 ([27, Proposition 10.3]). Let f W S ! Y be a triple cover of
smooth surfaces with Tschirnhausen bundleE . Then
(i) hi (S, OS) D hi (Y, OY)C hi (Y, E) for all i � 0;
(ii) K 2

S D 3K 2
Y � 4c1(E)KY C 2c2

1(E) � 3c2(E).

Let f W X ! Y be a triple cover, and let us denote byD � Y and by R� X the
branch locus and the ramification locus off , respectively. By [27, Proposition 4.7],D
is a divisor whose associated line bundle is

V2
E_. If Y is smooth, thenf is smooth

over Y � D, in other words all the singularities ofX come from the singularities of
the branch locus. More precisely, we have

Proposition 1.3 ([30, Proposition 5.4]). Let y2 Sing(D). Then X is singular over
y if and only if one of the following conditions holds:
(i) f in not totally ramified over y;
(ii) f is totally ramified over y andmulty(D) � 3.

Proposition 1.4 ([42, Theorem 4.1]). Let fW X ! Y be a triple cover of a smooth
surface Y, with X normal. Then there are a finite number of blow-ups� W

QY ! Y of Y
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and a commutative diagram

(1)

QX

Qf
K

Q�

K X

f
K

QY
�

KY,

where QX is the normalization ofQY �Y X, such that Qf is a triple cover with smooth
branch locus. In particular, QX is a resolution of the singularities of X.

We shall call QX the canonical resolutionof the singularities off W X ! Y. In gen-
eral, it does not coincide with theminimal resolutionof the singularities ofX, which
will be denoted instead byS.

DEFINITION 1.5. Let f W X ! Y be a triple cover of a smooth algebraic surface
Y, with Tschirnhausen bundleE . We say thatX has onlynegligible (or non essential)
singularities if the invariants of the minimal resolutionS are given by the formulae in
Proposition 1.2.

In other words, negligible singularities have no effect on the computation of in-
variants. Let us give some examples.

EXAMPLE 1.6. Assume that the branch locusD D Dred contains an ordinary
quadruple pointp over which f is totally ramified. In this caseQY is the blow-up of
Y at p, and one sees that the exceptional divisor is not in the branch locus of Qf . We
have SD QX and the inverse image of the exceptional divisor onQX is a (�3)-curve.
Therefore X has a singular point of type (1=3)(1, 1) over p, and by straightforward
computations (see [42, Section 6]) one checks that it is a negligible singularity.

EXAMPLE 1.7. Assume that the branch locusD D Dred contains an ordinary
double pointp. A standard topological argument shows thatX cannot be smooth over
p, so Proposition 1.3 implies thatp is not a point of total ramification forf . Again,
QY is the blow-up ofY at p and the exceptional divisor is not in the branch locus of
Qf . The inverse image of the exceptional divisor onQX consists of the disjoint union of

a (�1)-curve and a (�2)-curve; then the canonical resolutionQX does not coincide with
the minimal resolutionS, which is obtained by contracting the (�1)-curve. It follows
that X has both a smooth point and a singular point of type (1=2)(1, 1) over p, and
as in the previous case one checks that this is a negligible singularity for X.

EXAMPLE 1.8. Assume thatD D 2Dred and suppose in addition thatDredD D1C

D2, where D1 and D2 are smooth curves intersecting transversally in preciselytwo
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points. We will provide examples wheref is totally ramified andnon-Galois, the singu-
larities of X are a point of type (1=3)(1,1) and a point of type (1=3)(1,2), and moreover
both of them are negligible.

REMARK 1.9. The definitions of canonical resolution for a triple cover is similar
to the corresponding definition for double covers, that can be found for instance in
[7, Chapter V]. However, in contrast with the double cover case, with our definition
negligible singularities for triple covers are not necessarily rational double points, see
for instance Example 1.6.

1.2. Abelian surfaces with (1,2) polarization. Let A be an abelian surface and
L an ample divisor inA with L2

D 4. Then L defines a polarizationL WD OA(L) of
type (1,2), in particularh0(A,L)D 2 so the linear systemjLj is a pencil. Such surfaces
have been investigated by several authors, see for instance[4], [24], [6, Chapter 10]
and [8]. Here we just recall the results we need.

Proposition 1.10 ([4, p. 46]). Let (A,L) be a(1,2)-polarized abelian surface, with
L D OA(L), and let C2 jLj. Then we are in one of the following cases:
(a) C is a smooth, connected curve of genus3I
(b) C is an irreducible curve of geometric genus2, with an ordinary double pointI
(c) C D E C F , where E and F are elliptic curves and E FD 2I
(d) C D E C F1 C F2, with E, F1, F2 elliptic curves such that E F1 D 1, E F2 D 1,
F1F2 D 0.
Moreover, in case(c) the surface A is isogenous to a product of two elliptic curves, and
the polarization of A is the pull-back of the principal product polarization, whereas in
case(d) the surface A itself is a product E� F andL D OA(E C 2F).

Let us denote byW(1,2) the moduli space of (1,2)-polarized abelian surfaces; then
there exists a Zariski dense open setU �W(1, 2) such that, given any (A, L) 2 U , all
divisors in jLj are irreducible, i.e., of type (a) or (b), see [8, Section 3].

DEFINITION 1.11. If (A,L) 2 U , we say thatL is a general(1,2)-polarization. If
jLj contains some divisor of type (c), we say thatL is a special(1, 2)-polarization. Fi-
nally, if the divisors injLj are of type (d), we say thatL is a product (1,2)-polarization.

If L is not a product polarization, thenjLj has four distinct base points{e0, e1, e2,
e3}, which form an orbit for the action ofK (L) � (Z=2Z)2 on A. Moreover all curves
in jLj are smooth at each of these base points, see [4, Section 1]. There is also a
natural action ofK (L) on jLj, given by translation.

Let us denote by (�1)A the involution x ! �x on A. Then we say that a divisor
C on A is symmetricif (�1)�AC D C. Analogously, we say that a vector bundleF on
A is symmetric if (�1)�AF D F .
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SinceL is ample, [6, Section 4.6] implies that, up to translation, it satisfies the
following

ASSUMPTION 1.12. L is symmetric and the base locus ofjLj coincides
with K (L).

In the sequel we will tacitly suppose that Assumption 1.12 issatisfied.

Proposition 1.13. The following holds:
(i) for all sections s2 H0(A, L) we have(�1)�As D s. In particular, all divisors in
jLj are symmetric;
(ii) we may assume e0 D o and that e1, e2, e3 are 2-division points, satisfying e1 C
e2 D e3.

Proof. The first part of the statement follows from [6, Corollary 4.6.6], whereas
the second part follows from Assumption 1.12.

Proposition 1.14. Let Q D OA(Q) 2 Pic0(A) be a non-trivial, degree0 line bun-
dle. Then we have o� BsjL C Qj, and moreover

h0(A, L
Q
 Io) D 1, h1(A, L
Q
 Io) D 0, h2(A, L
Q
 Io) D 0.

Proof. SinceL is ample, the line bundleL
Q is equal tot�x L for somex 2 A.
Then o 2 BsjL C Qj if and only if x 2 K (L), that isL
Q D L, which is impossible
since Q is non-trivial. The rest of the proof follows by tensoring with Q the short
exact sequence

0! L
 Io ! L! L
Oo ! 0

and by taking cohomology.

In the rest of this section we assume thatL is not a product polarization. We
denote bye4, : : : , e15 the twelve 2-division points ofA distinct from e0, e1, e2, e3.
Some of the following results are probably known to the experts; however, since we
have not been able to find a comprehensive reference, for the reader’s convenience we
give all the proofs.

Proposition 1.15. The following holds.
(a) Assume thatL is a general(1, 2)-polarization. ThenjLj contains exactly12 singu-
lar curves L5, : : : , L16. Every Li has an ordinary double point at ei , and the set
{L i }iD4,:::,15 consists of three orbits for the action of K(L) on jLj.
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Fig. 1. The reducible curvesE C F and E0

C F 0 in the linear
systemjLj.

(b) Assume thatL is a special(1, 2)-polarization, and let EC F 2 jLj be a reducible
divisor. Then the K(L)-orbit of EC F consists of two curves EC F , E0

C F 0 which
intersect as inFig. 1. Referring to this figure, the set{p,q,r,s} is contained in{e4, : : : ,
e15}, and it is an orbit for the action of K(L) on A.

Proof. (a) If a curve ofjLj contains any of the pointse4, : : : ,e15 then it must have
a node there, see [4, Section 1.7] and [44, Remark 11]. In order to prove that there are
no more singular curves, we blow-up the base points ofjLj obtaining a genus 3 fibration
� W

QA ! P

1. By the Zeuthen–Segre formula, see [5, Lemma 6.4], we have

(2) c2( QA) D e(P1)e(L)C
X

(e(Ls) � e(L)),

where the sum is taken on all the singular curvesLs of jLj. Sincee(Ls) D e(L)C 1
for a nodal curve, relation (2) implies thatjLj contains precisely 12 singular elements.
This proves our first statement. The second statement is clear since the twelve points
e4, : : : , e15 consist of three orbits for the action ofK (L) on A.

(b) Both curvesE and F are fixed by the involution (�1)A, so they must both
contain exactly four 2-division points. In particular the two intersection points ofE
and F must be 2-division points, sayE \ F D {p, q}. Since we have

t�e0
E D t�e1

E D E, t�e0
F D t�e1

F D F,

it follows that the orbit ofE C F contains exactly two elements, namelyE C F and
E0

C F 0 where

E0

WD t�e2
E D t�e3

E, F 0

WD t�e2
F D t�e3

F .

Setting E0

\ F 0

D {r, s}, it is straightforward to check that the set of 2-division points
{p, q, r, s} is an orbit for the action ofK (L) on A.

REMARK 1.16. In case (b) of Proposition 1.15, if one makes the further assump-
tion that A is not isomorphic to the product of two elliptic curves, it isnot difficult to
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see thatECF and E0

CF 0 are the unique reducible curves injLj, and that the singular
elements ofjLj distinct from EC F and E0

C F 0 are eight irreducible curvesL i which
have an ordinary double point at the 2-division points ofA distinct from e0, e1, e2, e3,
p, q, r , s. Moreover, these curves form two orbits for the action ofK (L) on jLj.

There exist examples of abelian surfaces which are isomorphic to the product of two
elliptic curves and which admit also a special (1, 2)-polarizationL besides the product
polarization, see [44]. For such surfaces, the linear system jLj could possibly contain
more than two reducible curves (hence, less than eight irreducible nodal curves).

The other special elements of the penciljLj are smooth hyperelliptic curves; let us
compute their number.

Proposition 1.17. The following holds.
(a) Assume thatL is a general(1, 2)-polarization. ThenjLj contains exactly six smooth
hyperelliptic curves.
(b) Assume thatL is a special (1, 2)-polarization. ThenjLj contains at most four
smooth hyperelliptic curves. More precisely, the number of such curves is given by
6� �, where� is the number of reducible curves injLj.
In any case, the set of hyperelliptic curves is union of orbits for the action of K(L)
on jLj, and each of these orbits has cardinality2.

Proof. (a) We borrow the following argument from [8, Proposition 3.3]. Let us
consider again the blow-upQA of A at the four base points ofjLj and the induced genus
3 fibration � W QA! P

1. By [37, Sections 3.2 and 3.3] there is an equality

(3) K 2
QA
D 3�(O

QA) � 10C degT ,

whereT is a torsion sheaf onP1 supported over the points corresponding to the hyper-
elliptic fibres of � . SinceL is a general polarization, we can have only smooth hyper-
elliptic fibres and the contribution of each of them to degT , which is usually called the
Horikawa number, is equal to 1. So (3) implies that� has exactly six smooth hyper-
elliptic fibres. On the other handK (L) acts on the set of hyperelliptic curves ofjLj,
so have three orbits of cardinality 2.

(b) The Horikawa number of a reducible curve injLj is equal to 1, see [1], so (3)
implies thatjLj contains precisely 6� � smooth hyperelliptic curves. In particular, by
Remark 1.16,jLj contains exactly six hyperelliptic curves ifA is not isomorphic to the
product of two elliptic curves. Since the hyperelliptic curves have non-trivial stabilizer
for the action ofK (L) on jLj whenL is a general polarization (see part (a)), by a limit
argument we deduce that this is also true whenL is a special polarization. It follows
that the orbit of each hyperelliptic curve consists again ofexactly two curves.
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Proposition 1.18. Let (A,L) be a (1,2)-polarized abelian surface and let C2 jLj.
Then the stabilizer of C for the action of K(L) on jLj is non-trivial if and only if
either C is a smooth hyperelliptic curve or C is a reducible curve (in the latter case,
L is necessarily a special polarization).

Proof. The action ofK (L) on jLj � P

1 induces a (Z=2Z)2-coverP1
! P

1, which
is branched in three points by the Riemann–Hurwitz formula.This implies that there
are exactly six elements ofjLj having non-trivial stabilizer. Our claim is now an im-
mediate consequence of Proposition 1.17 and Proposition 1.15, part (b).

Let us consider the line bundleL2
D OA(2L). It is a polarization of type (2, 4) on

A, henceh0(A,L2) D 8. Moreover, sinceL satisfies Assumption 1.12, the same is true
for L2. Let H0(A,L2)C and H0(A,L2)� be the subspaces of invariant and anti-invariant
sections for (�1)A, respectively. One proves that

dim H0(A, L2)C D 6, dim H0(A, L2)� D 2,

see [4, Section 2].

Proposition 1.19 ([4, Section 5]). The pencilPH0(A,L2)� of anti-invariant sec-
tions has precisely16 distinct base points, namely e0, e1, : : : , e15. Moreover all the
corresponding divisors are smooth at these base points.

The 12 pointse4, : : : , e15 form three orbits for the action ofK (L) on A; without
loss of generality, we may assume that these orbits are

{e4, e5, e6, e7}, {e8, e9, e10, e11}, {e12, e13, e14, e15}.

Now let us take the 2-torsion line bundlesQi WD OA(Qi ), i D 1, 2, 3 such that

(4) t�e4
L D L
Q1, t�e8

L D L
Q2, t�e12
L D L
Q3.

Then

BsjL C Q1j D {e4, e5, e6, e7},

BsjL C Q2j D {e8, e9, e10, e11},

BsjL C Q3j D {e12, e13, e14, e15}.

Moreover, for all i D 1, 2, 3,

(5) h0( OA, L
Q
 Io) D h0( OA, L
Q
 I2
o) D 1.

Let us call Ni , i D 1, 2, 3, the unique curve in the penciljL C Qi j containingo (and
having a node there, see (5)). IfL is a general (1, 2)-polarization then theNi are all
irreducible, in particular they are smooth outsideo.
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DEFINITION 1.20. We denote byD the linear systemPH0(A, L2

 I4

o). Geo-
metrically speaking,D consists of the curves inj2Lj having a point of multiplicity at
least 4 ato.

Proposition 1.21. The linear systemD � j2Lj is a pencil whose general element
is irreducible, with an ordinary quadruple point at o and no other singularities.

Proof. Since the sections corresponding to the three curves2Ni obviously belongs
to H0(A, L2


 I4
o), by Bertini theorem it follows that the general element ofD is

irreducible, and smooth outsideo. On the other hand, (2L)2
D 16, so the singularity at

o is actually an ordinary quadruple point. Blowing up this point, the strict transform
of the general curve inD has self-intersection 0, soD is a pencil.

The following classification of the curves inD will be needed in the proof of The-
orem 6.6.

Proposition 1.22. Let (A,L) be a (1,2)-polarized abelian surface, and let C2D.
Then we are in one of the following cases:
(a) C is an irreducible curve of geometric genus3, with an ordinary quadruple point;
(b) C is an irreducible curve of geometric genus2, with an ordinary quadruple point
and an ordinary double point;
(c) C D 2C0, where C0 is an irreducible curve of geometric genus2 with an ordinary
double point;
(d) L is a special(1,2)-polarization and CD 2C0, where C0 is the union of two elliptic
curves intersecting in two points.

Proof. By Proposition 1.21 the general element ofD is as in case (a). Now as-
sume first thatL is a general polarization. ThenD contains the following distinguished
elements:
• three reduced, irreducible curvesB1, B2, B3 such thatBi has an ordinary quadru-
ple point ato, an ordinary double point atei and no other singularities (see [6, Corol-
lary 4.7.6]). These curves are as in case (b);
• three non-reduced elements, namely 2N1, 2N2, 2N3. These curves are as in case (c).
Moreover, all the other elements ofD are smooth outsideo; one can see this by blowing-
up o and applying Zeuthen–Segre formula as in the proof of Proposition 1.15.

Finally, assume thatL is a special polarization. Then there is just one more pos-
sibility, namely C D 2C0, whereC0 is the translate of a reducible curveE C F 2 jLj
by a suitable 2-division point. This yields case (d).

Proposition 1.23. Every s2 H0(A, L2

 I4

o) satisfies(�1)�AsD s.
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Proof. Letv1 2 H0(A,L
Q1), v2 2 H0(A,L
Q2) be sections corresponding to
the curvesN1 and N2, respectively. SinceN1 and N2 are invariant divisors, it follows
(�1)�Av1 D �v1 and (�1)�Av2 D �v2. Therefore (�1)�Av

2
1 D v

2
1 and (�1)�Av

2
2 D v

2
2. But

v

2
1, v2

2 form a basis forH0(A, L2

 I4

0), so we are done.

Proposition 1.24. We have

h0(A, L2

 I3

o) D h0(A, L2

 I4

o) D 2.

Geometrically speaking, every curve inj2Lj, having multiplicity at least3 at o, actu-
ally has multiplicity4.

Proof. By contradiction, suppose thatH0(A, L2

 I4

o) is strictly contained in
H0(A, L2


 I3
o). Then there existsw 2 H0(A, L2


 I3
o), w � H0(A, L2


 I4
o) such

that the three sectionsv2
1, v2

2, w 2 H0(A, L2) are linearly independent; let us write

w D w

C

C w

�, where w

C

2 H0(A, L2)C and w

�

2 H0(A, L2)�.

Consider the sum

sD v

2
1 C v

2
2 C w D v

2
1 C v

2
2 C w

C

C w

�

2 H0(A, L2

 I3

o)I

then Proposition 1.23 implies

(�1)�AsD v

2
1 C v

2
2 C w

C

� w

�.

On the other hand, (�1)A fixes the tangent cone ato of the curve corresponding tos;
hence (�1)�As also vanishes of order at least 3 ino, that is (�1)�As 2 H0(A, L2


 I3
o).

This implies

w

C, w�

2 H0(A, L2

 I3

o).

Since by assumptionw D w

C

C w

�

� H0(A, L2

 I4

o), it follows that eitherwC

�

H0(A,L2

I4

o) or w�

� H0(A,L2

I4

o). In the former case, the curveWC

WD div(wC)
is an evendivisor (i.e., corresponding to an invariant section) inj2Lj which has multi-
plicity exactly 3 ato; but this is impossible, since every even divisor inj2Lj has even
multiplicity at the 2-division points ofA, see [6, Corollary 4.7.6]. In the latter case,
the curveW�

WD div(w�) is anodd divisor (i.e., corresponding to an anti-invariant sec-
tion) in j2Lj which has multiplicity exactly 3 ato; but this is again a contradiction,
since all the odd divisors inj2Lj are smooth at the 2-division points ofA, see Prop-
osition 1.19.
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2. Computations on vector bundles

Let (A, L) be a (1, 2)-polarized abelian surface. Throughout this section, F will
denote a rank 2 vector bundle onA such that

(6) h0(A, F ) D 1, h1(A, F ) D 0, h2(A, F ) D 0, detF D LI

note that (6) together with Hirzebruch–Riemann–Roch implies c2(F ) D 1. These re-
sults will be needed in Section 5.

Proposition 2.1. If F is the direct sum of two line bundles, then it cannot be
strictly L-semistable.

Proof. SetF D OA(C1)�OA(C2), whereC1, C2 are divisors inA, and suppose
by contradiction thatF is L-semistable. SinceL D C1 C C2, we obtain

C1(C1 C C2) D C2(C1 C C2) D 2.

On the other hand 1D c2(F ) D C1C2 and soC2
1 D C2

2 D 1, which is absurd.

From now on, we assume thatF is indecomposable. We divide the rest of the
section into three subsections according to the propertiesof L andF .

2.1. The case whereL is not a product polarization.

Proposition 2.2. If L is not a product polarization, thenF is isomorphic to the
unique locally free extension

0! OA ! F ! L
 Ix ! 0,

with x 2 K (L). Moreover, F is H-stable for any ample line bundleH on A.

Proof. Sinceh0(A,F )D 1, there exists an injective morphism of sheavesOA ,! F .
By [19, Proposition 5 p. 33] we can find an effective divisorC and a zero-dimensional
subschemeZ such thatF fits into a short exact sequence

(7) 0! OA(C) ! F ! IZ(L � C) ! 0.

Then h0(A, OA(C)) D 1 and

(8) 1D c2(F ) D C(L � C)C l (Z).

Now there are three possibilities:
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(i) C is an elliptic curve;
(ii) C is a principal polarization;
(iii) C D 0.

In case (i) we haveC2
D 0, then by (8) we obtainC L D 1 and l (Z) D 0. Thus

[6, Lemma 10.4.6] implies thatL is a product polarization, contradiction.
In case (ii), the index theorem yields (C L)2

� C2L2
D 8, so using (8) we deduce

C L D 3, l (Z) D 0. SettingC WD OA(C), sequence (7) becomes

0! C ! F ! C�1

 L! 0.

Being F indecomposable by assumption, we have

(9) H1(A, C2

 L�1) D Ext1(C�1


 L, C) ¤ 0.

Moreover, since (�2C C L)L D �2, the divisor�2C C L is not effective, that is

(10) H2(A, C2

 L�1) D H0(A, C�2


 L) D 0.

On the other hand, by Riemann–Roch we have

�(A, C2

 L�1) D

1

2
(2C � L)2

D 0,

so (9) and (10) yieldH0(A,C2

L�1) ¤ 0. This implies that 2C� L is effective, so by

using [4, Lemma 1.1] and the equality (2C � L)C D 1 one concludes that there exists
an elliptic curve E on A such that 2C � L D E. Thus [6, Lemma 10.4.6] implies
that A is a product of elliptic curves and thatC is a principal product polarization.
In other wordsA D E � F and C is algebraically equivalent toE C F . But then L
is algebraically equivalent toE C 2F , contradicting the fact thatL is not a product
polarization.

Therefore the only possibility is (iii), namelyC D 0. It follows that Z consists
of a single pointx 2 A and, sinceF is locally free, x is a base point ofjLj, i.e.,
x 2 K (L).

Therefore (7) becomes

(11) 0! OA ! F ! L
 Ix ! 0.

Tensoring (11) withF_ and taking cohomology, we obtain

1� h0(A, F 
 F_) D h0(A, F_


 L
 Ix) D h0

 

A, F_




2̂

F 
 Ix

!

D h0(A, F 
 Ix) � h0(A, F ) D 1.
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ThereforeH0(A,F
F_) D C, that isF is simple. Sincec2
1(F )�4c2(F ) D 0, by [40,

Proposition 5.1] and [41, Proposition 2.1] it follows thatF is H-ample for any ample
line bundleH on A.

It remains to show that (11) defines a unique locally free extension. By applying
the functor Hom(�, OA) to

(12) 0! L
 Ix ! L! L
Ox ! 0

and using Serre duality, we get

0! Ext1(L
 Ix, OA) ! Ext2(L
Ox, OA) � H0(A, L
Ox)_

'

�! Ext2(L, OA) � H0(A, L)_.

Being x 2 BsjLj, it follows that ' is the zero map (see [12, Theorem 1.4]), so

(13) Ext1(L
 Ix, OA) D C.

This completes the proof.

REMARK 2.3. Up to replacingL by t�x L, which is still a symmetric (1, 2)-
polarization, we may assumex D o. So F will be isomorphic to the unique locally
free extension

(14) 0! OA ! F ! L
 Io ! 0.

Proposition 2.4. If L is not a product polarization, F is a symmetricIT-sheaf
of index0.

Proof. SinceL is a symmetric polarization, by applying (�1)�A to (14) we get

0! OA ! (�1)�AF ! L
 Io ! 0.

But (13) implies thatF is the unique locally free extension ofL
 Io by OA, so we
obtain (�1)�AF D F , that isF is symmetric.

In order to prove thatF satisfies IT of index 0, we must show that

(15)
V1(A, F ) WD {Q 2 Pic0(A) j h1(A, F 
Q) > 0} D ;,

V2(A, F ) WD {Q 2 Pic0(A) j h2(A, F 
Q) > 0} D ;.

First, notice thatOA � V1(A, F ) andOA � V2(A, F ), sinceh1(A, F ) D h2(A, F ) D 0.
Now takeQ 2 Pic0(A) such thatQ ¤ OA. Tensoring (14) withQ and using Propos-
ition 1.14, we obtain

h0(A, F 
Q) D 1, h1(A, F 
Q) D 0, h2(A, F 
Q) D 0.
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Hence (15) is satisfied, and the proof is complete.

SinceF is simple and�(A, F 
 F_) D 0, we have

(16) h0(A, F 
 F_) D 1, h1(A, F 
 F_) D 2, h2(A, F 
 F_) D 1.

On the other hand, the Clebsch–Gordan formula for the tensorproduct ([3, p. 438])
gives an isomorphism

OA �

 

S2F 


2̂

F_

!

D F 
 F_,

so by using (16) we obtain

(17)

h0

 

A, S2F 


2̂

F_

!

D 0, h1

 

A, S2F 


2̂

F_

!

D 0,

h2

 

A, S2F 


2̂

F_

!

D 0.

Proposition 2.5. If L is not a product polarization, we have

(18) h0

 

A, S3F 


2̂

F_

!

D h0(A, L2

 I3

o) D 2.

Proof. The Eagon–Northcott complex applied to (14) yields

0! S2F 


2̂

F_

! S3F 


2̂

F_

! L2

 I3

o ! 0,

so our assertion is an immediate consequence of (17) and Proposition 1.24.

2.2. The case whereL is a product polarization and F is not simple. Now
let us assume thatL is a product (1, 2)-polarization. ThenAD E� F , whereE and F
are two elliptic curves, whose zero elements are both denoted by o. Let �EW E�F ! E
and �F W E � F ! F be the natural projections. For anyp 2 F and q 2 E, we will
write Ep and Fq instead of��1

F (p) and��1
E (q).

Furthermore, up to translations we may assumeL D OA(Eo C 2Fo).
Following the terminology of [29], we say thatF is of Schwarzenberger typeif it

is indecomposable but not simple.
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Proposition 2.6. Suppose thatL is a product (1, 2)-polarization. ThenF is of
Schwarzenberger type if and only if it is a non-trivial extension of the form

(19) 0! C ! F ! L
 C�1
! 0,

whereC WD OA(Ep C Fq), with p 2 F different from o and q2 E a 2-division point.

Proof. If F is a non-trivial extension of type (19), then [29, Lemma p. 251] shows
thatF is indecomposable buth0(A, F 
 F_) D 2, soF is not simple.

Conversely, assume thatF is of Schwarzenberger type. BeingF not simple, it is
not H-stable with respect to any ample line bundleH on A. In particular,F is not
L-stable. An argument similar to the one used in the proof of Proposition 2.1 shows
that F is not strictly L-semistable, so it must beL-unstable. This implies that there
exists a unique sub-line bundleC WD OA(C) of F with torsion-free quotient such that

(20) 2C L > L2
D 4.

Now let us write

(21) 0! OA(C) ! F ! IZ(L � C) ! 0,

where Z � A is a zero-dimensional subscheme. Then by using (20) we obtain

(22) 1D c2(F ) D C(L � C)C l (Z) > 2� C2
C l (Z),

that is C2
> 1C l (Z). On the other hand, sinceh0(A, C) D 1, the only possibility is

l (Z) D 0 and C2
D 2, in particularC is a principal polarization. But (22) also gives

3D C L D C(EoC 2Fo), so C is numerically equivalent toEoC Fo. Therefore we can
write C D Ep C Fq for some p 2 F , q 2 E and (21) becomes

(23) 0! OA(Ep C Fq) ! F ! OA(Eo � Ep C 2Fo � Fq) ! 0.

Since h0(A, F ) D 1, we havep ¤ o. On the other hand, sinceF is indecomposable,
(23) must be non-split, so

H1(A, OA(2Ep � Eo C 2Fq � 2Fo)) ¤ 0.

This implies that 2Fq is linearly equivalent to 2Fo, that isq 2 E is a 2-division point.

Proposition 2.7. If L is a product polarization andF is of Schwarzenberger type,
we have

h0

 

A, S3F 


2̂

F_

!

D h0

 

A, S2F 


2̂

F_


 C

!

D h0

 

A, F 


2̂

F_


 C2

!

D 3.
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Proof. The Eagon–Northcott complex applied to (19) gives

0! F 


2̂

F_


 C2
! S2F 


2̂

F_


 C ! L
 C�1
! 0,

0! S2F 


2̂

F_


 C ! S3F 


2̂

F_

! L2

 C�3

! 0.

On the other hand, we have

H0(A, L
 C�1) D H0(A, OA(Eo � Ep C Fq)) D 0,

H0(A, L2

 C�3) D H0(A, OA(2Eo � 3Ep C Fq)) D 0.

Tensoring (19) with
V2

F_


 C2 we obtainh0
�

A,F 


V2
F_


 C2
�

D 3, so the claim
follows.

Corollary 2.8. If L is a product polarization andF is of Schwarzenberger type,
then the natural product map

H0

 

A, F 


2̂

F_


 C2

!


 H0(A, F 
 C�1)
2
! H0

 

A, S3F 


2̂

F_

!

is bijective. Therefore, if f W X ! A is the triple cover corresponding to a non-zero
section� 2 H0

�

A, S3F 


V2
F_

�

, the surface X is reducible and non-reduced.

Proof. The first statement follows from Proposition 2.7 and from H0(A,F
C�1)D
C. The second statement is an immediate consequence of the first one, since� can be
written as� D �1�

2
2, where�1 2 H0

�

A, F 


V2
F_


 C2
�

and �2 is a generator of
H0(A, F 
 C�1).

2.3. The case whereL is a product polarization and F is simple.

Proposition 2.9. Suppose thatL is a product(1,2)-polarization. Then the follow-
ing are equivalent:
(i) F is simple;
(ii) F is H-stable for any ample line bundleH on A;
(iii) there exists a2-division point q2 E such thatF is isomorphic to the unique non-
trivial extension

0! OA(Fq) ! F ! OA(Eo C Fq) ! 0I

(iv) there exists a2-division point q2 E such thatF (�Fq) D �

�

FG, where G is the
unique non-trivial extension

0! OF ! G ! OF (o) ! 0.
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Proof. (i)) (ii) See [40, Proposition 5.1] and [41, Proposition 2.1].
(ii) ) (iii) If F is H-stable, then it is simple. By [29, Corollary p. 249], there

exists an abelian surfaceB, a degree 2 isogeny' W B ! A and a line bundleN WD

OB(N) on B such that

(24) '

�

N D F .

Let Q WD OA(Q) 2 Pic(A) be the 2-torsion line bundle defining the double cover';
then the following equality holds in Pic(A):

OA(Eo C 2Fo) D c1(F ) D OA('
�

N C Q),

see [19, Proposition 27 p. 47]. This implies
• B D E � QF and

' D id � Q' W E � QF ! E � F,

where Q' W QF ! F is a degree 2 isogeny. Note thatQ D Ep � Eo, where p 2 F is a
2-division point.
• N is a principal product polarization of the formN D Ea C QFq, wherea 2 QF is
such thatQ'(a) D p and q 2 E is a 2-division point.
Since QFq D '

�Fq, by using (24) and projection formula we obtain

'

�

OB(Ea) D '

�

(N (� QFq)) D F (�Fq).

Thus h0(A, F (�Fq)) D 1, and so there exists an injective morphism of sheaves
OA(Fq) ,! F . Then we can find an effective divisorD on A and a zero-dimensional
subschemeZ � A such thatF fits into a short exact sequence

0! OA(Fq C D) ! F ! IZ(Eo C Fq � D) ! 0.

Sinceh0(A,OA(FqCD))D H0(A,F )D 1, eitherD D 0 or FqCD is a principal product
polarization. The latter possibility cannot occur, otherwise F would be of Schwarzen-
berger type (Proposition 2.6). ThenD D 0 and l (Z) D c2(F )� (EoC Fq)Fq D 0, so Z
is empty and we are done.

(iii) ) (iv) We haveOA(Eo)D �

�

FOF (o). By [29, Footnote���, p. 257] the map

Ext1(OF (o), OF ) ! Ext1(OA(Eo), OA)

is an isomorphism. Since the unique not-trivial extension of OF (o) with OF is G, we
get (iv).

(iv) ) (i) Again, [29, p. 257] gives End(F ) D End(G) D C.
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Proposition 2.10. If L is a product polarization andF is simple, we have

h0

 

A, S3F 


2̂

F_


OA(�Fq)

!

D h0

 

A, S3F 


2̂

F_

!

D 2.

Proof. By Proposition 2.9, we haveF (�Fq) D �

�

FG, whereG is the unique non-
trivial extension ofOF (o) by OF . Therefore

(25) h0(A, F (�Fq)) D h0(F, �F�F (�Fq)) D h0(F, G) D 1.

By [3, pp. 438–439] we have

S2G(�o)�OA D G 
 G_

D OA �Q1 �Q2 �Q3

where theQi are the non trivial 2-torsion line bundles onA. Since the decomposition
of a vector bundle in indecomposable summands is unique ([2]) we get

S2G D Q1(o)�Q2(o)�Q3(o),

hence

S3G � G(o) D S2G 
 G D G 
Q1(o)� G 
Q2(o)� G 
Q3(o)

D G(o)� G(o)� G(o).

ThereforeS3G D G(o)� G(o) and by straightforward computations one obtains

(26) S3F 


2̂

F_

D F � F .

Now the claim follows from (25) and (26).

Corollary 2.11. Assume thatL is a product polarization and thatF is simple,
and let f W X ! A be the triple cover defined by a general section� 2 H0

�

A, S3F 


V2
F_

�

. Then the variety X is non-normal, and its normalization X� is a properly
elliptic surface with pg(X�) D 2, q(X�) D 3.

Proof. Proposition 2.10 shows that every section ofS3F 


V2
F_ vanishes along

the curve Fq; this implies thatX is singular along f �1(Fq), in particular X is non-
normal. The composition off W X ! A with the normalization map is a triple cover
f �W X�

! A, whose Tschirnhausen bundle isE� WD F (�Fq)_. Since
V2

E� DOA(�Eo),
the morphismf � is branched over a divisor belonging to the linear systemj2Eoj, hence
X� contains an elliptic fibration. Moreoverc2

1(E�)D 0, c2(E�)D 0 and a straightforward
computation usingF (�Fq) D �

�

FG and Leray spectral sequence yields

h0(A, E�) D 0, h1(A, E�) D 1, h2(A, E�) D 1.
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Therefore Proposition 1.2 impliespg(X�) D 2, q(X�) D 3 and K 2
X�

D 0, henceX� is
a properly elliptic surface.

3. Surfaces with pg D q D 2, K2
S D 5 and Albanese map of degree 3

3.1. The triple cover construction. The first example of a surfaceS of general
type with pg D q D 2 and K 2

S D 5 was given by Chen and Hacon in [16], as a triple
cover of an abelian surface. In order to fix our notation, let us recall their construction.

Let (A, L) be a (1, 2)-polarized abelian surface, and assume thatL is a general,
symmetric polarization. Since

h0(A, L
Q) D 2, h1(A, L
Q) D 0, h2(A, L
Q) D 0

for all Q 2 Pic0(A), the line bundleL�1 satisfies IT of index 2. Then its Fourier–Mukai

transformF WD

bL�1 is a rank 2 vector bundle onOA which satisfies IT of index 0, see
[6, Theorem 14.2.2]. Let us consider the isogeny

� WD �L�1
W A! OA,

whose kernel isK (L�1) D K (L); then by [28, Proposition 3.11] we have

(27) �

�F D L� L.

Proposition 3.1. The vector bundle S3F 


V2
F_ satisfies

h0

 

OA, S3F 


2̂

F_

!

D 2, h1

 

OA, S3F 


2̂

F_

!

D 0,

h2

 

OA, S3F 


2̂

F_

!

D 0.

Proof. We could use Proposition 2.5, but we prefer a different argument exploit-
ing the isogeny�. Since �

�

OA, S3F 


V2
F_

�

D 2, it is sufficient to show that

h1
�

OA, S3F 


V2
F_

�

D h2
�

OA, S3F 


V2
F_

�

D 0. Since� is a finite map, we obtain

H i

 

OA, S3F 


2̂

F_

!

� �

�H i

 

OA, S3F 


2̂

F_

!

� H i

 

A, ��
 

S3F 


2̂

F_

!!

for all i D 0, 1, 2. On the other hand, (27) yields

H i

 

A, ��
 

S3F 


2̂

F_

!!

D H i (A, L)�4,

so the claim follows.
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By Theorem 1.1 there is a 2-dimensional family of triple covers Of W OX !

OA with
Tschirnhausen bundleE D F_. We have the commutative diagram

(28)

X D A�
OA X

f
K

 

K

OX

Of
K

A
�

K

OA

where W X !

OX is a quadruple étale cover andf W X ! A is a triple cover determined
by a section of

�

�H0

 

OA, S3F 


2̂

F_

!

� H0

 

A, ��
 

S3F 


2̂

F_

!!

D H0(A, L)�4.

By [6, Chapter 6] there exists a canonical Schrödinger representation of the Heisenberg
groupH2 on H0(A,L), where the latter space is identified with the vector spaceC(Z=2Z)
of all complex valued function on the finite groupZ=2Z.

Following [16, Section 2] we can identify the 2-dimensionalsubspace of
H0
�

A, ��
�

S3F 


V2
F_

��

corresponding to��H0
�

OA, S3F 


V2
F_

�

with

(29) {(sx, ty, �t x, �sy) j s, t 2 C} � H0(A, L)�4,

wherex, y 2 H0(A,L) form the canonical basis induced by the characteristic functions
of 0 and 1 inC(Z=2Z). By [27], we can construct the triple coverf W X ! A using
the data

(30) a D sx, bD ty, cD �t x, d D �sy.

Over an affine open subsetU of A the surfaceX is defined inU � A

2 by the deter-
minantal equations

(31) rank

�

zC a w � 2d c
b z� 2a w C d

�

� 1,

wherew, z are coordinates inA2. Moreover, the branch locusD of f W X ! A is
given by

(32) D D (t2
� s2)2x2y2

� 4(s2x2
C sty2)(s2y2

C stx2) 2 H0(A, L4).

This corresponds to a divisorD1 C D2 C D3 C D4 with Di 2 jLj; moreover the set
{D1, : : : , D4} is an orbit for the action ofK (L) on jLj. For a general choice ofs, t , the
Di are all smooth, so the singularity ofD are four ordinary quadruple points ate0, e1,
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e2, e3. Over these pointsf W X ! A is totally ramified andX has four singularities of
type (1=3)(1,1). Blowing up these points and the base points ofjLj we obtain a smooth
triple cover Qf W QX !

QA, which is actually the canonical resolution of singularities of X,
see Proposition 1.4. Let{Ei }iD1,:::,4 be the exceptional divisor inQX and {Ri }iD1,:::,4 be
the proper transform of theDi in QX. Then E2

i D �3, Ei E j D 0 for i ¤ j , Ri Rj D 0
and Ri E j D 1 for all i , j . Since

K
QX D

4
X

iD1

Ri C

4
X

iD1

Ei ,

we obtain K 2
QX
D 20. MoreoverX has only rational singularities, so ifQ� W QX ! X is

the resolution map we haveR1
Q�

�

O
QX D OX ; therefore

pg( QX) D h2( QX, O
QX) D h2(X, OX) D h2(A, OA)C 2h2(A, L�1) D 5,

q( QX) D h1( QX, O
QX) D h1(X, OX) D h1(A, OA)C 2h1(A, L�1) D 2.

This shows that�( QX,O
QX)D 4. Now let S be the canonical resolution of singularities of

OX; then KS is ample and OAD Alb(S). Since there is a quadruple, étale coverQ W QX !

S induced by W X !

OX, the invariants ofS are

pg(S) D q(S) D 2, K 2
S D 5.

REMARK 3.2. Both X and OX only contain singular points of type (1=3)(1, 1),
which are negligible singularities, see Example 1.6. Hencewe could compute the in-
variants of both QX and S by directly using Proposition 1.2.

3.2. The product-quotient construction. In [32] it is shown that there exists
precisely one family of surfaces withpg D q D 2 andK 2

SD 5 which contain an isotriv-
ial fibration. Now we briefly explain how this family is obtained, referring the reader
to [32] for further details.

By using the Riemann existence theorem, one can construct two smooth curves
C1, C2 of genus 3 which admit an action of the finite groupS3, such that the 2-cycles
act without fixed points, whereas the cyclic subgroup generated by the 3-cycles has ex-
actly two fixed points. ThenEi WD Ci =S3 is a smooth elliptic curve and the Galois
cover Ci ! Ei is branched in exactly one point with branching number 3. Nowlet us
consider the quotientOX WD (C1�C2)=S3, whereS3 acts diagonally on the product. Then
OX contains precisely two cyclic quotient singularities and,since the 3-cycles are conju-

gated inS3, it is not difficult to show that one singularity is of type (1=3)(1,1) whereas
the other is of type (1=3)(1, 2). Let S! OX be the minimal resolution of singularities
of OX; then S is a minimal surface of general type withpg D q D 2 andK 2

SD 5; notice
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Fig. 2. The product-quotient construction.

that KS is not ample. The surfaceS admits two isotrivial fibrationsS! Ei , which are
induced by the two natural projections ofC1 � C2.

The Albanese varietyOA of S is an étale double cover ofE1 � E2; it is actually a
(1, 2)-polarized abelian variety, whose polarizationL is of special type. The Albanese
map � W S! OA is totally ramified, and its reduced branch locus1red D E C F is a
curve of type (c) in Proposition 1.10, having one of its nodesin Oo. It is clear that
the two singular points ofOX lie precisely over the two nodes of1red. In particular OX
has only negligible singularities, see Example 1.8. This construction is summarized in
Fig. 2.

There� W C1 � C2 ! OX is induced by the the diagonal action ofS3 on C1 � C2,
while Of W OX !

OA is the Stein factorization of the Albanese map� W S! OA. Since the
diagonal subgroup is not normal inS3 � S3, it follows that Of is not a Galois cover;
let h W Z !

OA be its Galois closure, which has Galois groupS3. The surfaceZ is
isomorphic to the diagonal quotient (C1 � C2)=(Z=3Z), whereZ=3Z is the subgroup
of S3 generated by the 3-cycles; thereforeZ has four singular points coming from the
four points with non-trivial stabilizer onC1 � C2. More precisely,

Sing(Z) D 2�
1

3
(1, 1)C 2�

1

3
(1, 2).

In addition, the coverCi ! Ei factors through the coverCi ! E0

i WD Ci =(Z=3Z),
where E0

i is an elliptic curve isogenous toEi ; this induces the coverC1�C2 ! (C1�

C2)=(Z=3Z)2
D E0

1 � E0

2, which clearly factors throughZ. Observe that also the cover

� W C1�C2 ! OX factors throughZ. Finally the composition� Æ  W E1� E2 ! E0

1� E0

2

is a (Z=2Z)2-cover, which factors throughOA. Using the commutativity of the diagrams
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in Fig. 2 and the theory of abelian covers developed in [31], one can check, looking
at the building data of� W Z ! E0

1 � E0

2 and  W E0

1 � E0

2 !
OA, that the Tschirnhausen

bundleE of f W OX !

OA satisfies
V2

E_ D L
Q, whereQ is a non-trivial, 2-torsion
line bundle. This is a particular case of a more general situation, see Proposition 5.8.

4. Chen–Hacon surfaces

In this section we will generalize the triple cover construction described in Sub-
section 3.1. In fact, since we want to be able to “take the limit” of a 1-parameter
family of surfaces obtained in that way, we shall drop the assumptions thatL is a gen-
eral polarization and thats and t are general complex numbers. Among other results,
we will show that the product-quotient surface described inSubsection 3.2 can be also
obtained as a specialization of Chen–Hacon’s example, see Corollary 5.6.

Let us start with the following

DEFINITION 4.1. Let S be a minimal surface of general type withpg D q D 2

such that its Albanese map� W S! OA WD Alb(S) is a generically finite morphism of
degree 3 onto an abelian surfaceOA. Let

(33) S
p
�!

OX
Of
�!

OA

be the Stein factorization of�, andF_ be the Tschirnhausen bundle associated with
the triple cover Of . We say thatS a Chen–Hacon surfaceif there exist a polarization

L of type (1, 2) onA D Pic0( OA) such thatF D

bL�1.

REMARK 4.2. Since OA is an abelian variety andOf is a finite map, it follows that
p contracts all rational curves inS. The surfaceS is the minimal resolution of singu-
larities of OX but it is, in general, different from the canonical resolution QX described
in Proposition 1.4. For instance, in Example 1.7 the surfaceQX contains a (�1)-curve.

The line bundleL is a IT-sheaf of index 0, so by [6, Theorem 14.2.2] and [6,
Proposition 14.4.3] we have

(34) h0( OA, F ) D 1, h1( OA, F ) D 0, h2( OA, F ) D 0, detF D L
Æ

,

whereL
Æ

WD O
OA(L

Æ

) is the dual polarization ofL. ThereforeF belongs to the family
of bundles studied in Section 2.

Proposition 4.3. Let S be a Chen–Hacon surface. ThenF is indecomposable.

Proof. SinceL is a non-degenerate line bundle, by [6, Corollary 14.3.10] it follows
thatF is H-semistable with respect to any polarizationH. Now the claim follows from
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Proposition 2.1. Alternatively, one could also remark thatsinceL�1 is indecomposable
the same must be true for its Fourier–Mukai transformF .

Proposition 4.4. Let S be a Chen–Hacon surface. ThenL is not a product
polarization.

Proof. L is a product polarization if and only ifL
Æ

is a product polarization. If
L
Æ

were of product type, thenOX would not be a surface of general type (see Corol-
laries 2.8 and 2.11), contradiction.

SinceL is not a product polarization, we may use the results of Subsection 1.2.
Moreover, for any Chen–Hacon surfaceS we can consider its associated diagram (28).
Being the morphism étale, X is nonsingular in codimension one if and only if the
same holds forOX. Similarly, f is totally ramified if and only if Of is totally ramified.

Proposition 4.5. The following holds:
(i) X has only isolated singularities unless tD 0 or t2

� 9s2
D 0.

(ii) If t D 0 or t2
� 9s2

D 0, then X has non-isolated singularities. Moreover, if
� W X�

! X is the normalization map, then the composition fÆ � W X�

! A is an étale
triple cover. Therefore, in this case X is not a surface of general type.

Proof. (i) A local computation as in [16, Claim 2] shows that,if t ¤ 0 and
t2
¤ 9s2, above a neighborhood of any of the base points ofjLj the equations (31)

define a cone over a twisted cubic, hence an isolated singularity of type (1=3)(1, 1).
(ii) We can assumet D 0, since the proof in the other cases is the same. Looking

at (31), we see that in a neighborhood of any of the base pointse0,e1,e2,e3, the surface
X is defined inA4 by

(x C z)(2x � z) D 0, (2yC w)(y � w) D 0, (x C z)(y� w) D 0,

and it is straightforward to see that these equations define the union of three 2-planes
intersecting along two lines. This shows thatX contains non-isolated singularities. The
normalization map� W X�

! X can be computed by using the computer algebra system
Singular, see [39]. It turns out thatX� is locally given by three mutually disjoint
2-planes inA5; moreover, for each of these planes the projection onto the first two co-
ordinates ofA5 is an isomorphism. In the global picture this means thatX� is smooth
and f Æ � W X�

! A is an étale triple cover.

REMARK 4.6. In Proposition 5.11 we will show that ift D 0 or t2
� 9s2

D 0
then OX (and henceX) is a reducible surface.

Proposition 4.7. Assume that X has only isolated singularities. Then the follow-
ing holds:
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(i) f W X ! A is totally ramified if and only if sD t , sD �t or sD 0.
(ii) f W X ! A is totally ramified if and only if

(iia) either DD 2D1C 2D2, where D1, D2 2 jLj are distinct, smooth hyperelliptic
curves belonging to the same K(L)-orbit, or
(iib) L is a special polarization and DD 2(E C F) C 2(E0

C F 0), where EC F
and E0 C F 0 are as inProposition 1.15 (b).

Proof. (i) The triple coverf W X ! A is totally ramified if and only if the dis-
criminant of the polynomial definingD in (32) vanishes. This happens exactly for
s D 0, t D 0, s D t , s D �t , t D 3s, t D �3s. Since we are assuming thatX has
isolated singularities, the only acceptable values ares D t , s D �t and s D 0 (see
Proposition 4.5).

(ii) The triple cover f W X ! A is totally ramified if and only if D D 2D0 for
some effective divisorD0. Since the four curvesDi form an orbit for the action of
K (L) on jLj, this is equivalent to say that theDi have non-trivial stabilizer. Now the
assertion follows from Proposition 1.18.

Proposition 4.8. Assume thatOX has only isolated singularities. ThenOX always
contains a singular point of type(1=3)(1, 1), lying over Oo 2 OA. Moreover, this point is
the unique singular point ofOX, unless:
(i) one of the Di is an irreducible, nodal curve; in this case OX also contains a singu-
lar point of type(1=2)(1, 1);
(ii) L is a special polarization and we are in case(iib) of Proposition 4.7. Then
Of W OX !

OA is totally ramified over the image inOA of the divisor EC F C E0

C F 0,
which is a curve isomorphic to EC F and having a node atOo. In this case OX also
contains a singular point of type(1=3)(1, 2).

Proof. Since there exists an étale morphism W X !

OX, it is sufficient to analyze
the triple cover f W X ! A. If all divisors Di are smooth, then the only singularities
of X are the four points of type (1=3)(1, 1) lying over the base points ofjLj. If one
of the Di is an irreducible, nodal curve, then all theDi are so, because they form a
single K (L)-orbit, see Proposition 1.15 and Remark 1.16. In this caseX also contains
four points of type (1=2)(1, 1), which are identified by to a unique point of type
(1=2)(1, 1) in OX; this yields (i). Finally, ifL is a special polarization andD D 2(E C
F)C2(E0

CF 0), then locally around any of the four pointsp, q, r , s the equation ofX
can be written asz3

D xy, so they give singularities of type (1=3)(1, 2). The morphism
 identifies E with E0 and F with F 0. Then Of W OX !

OA is totally ramified and its
reduced branch locus is isomorphic toE C F , in particular it has two nodes. One of
these nodes is atOo and it gives the singular point of type (1=3)(1, 1); the second one
gives instead a singular point of type (1=3)(1, 2). This is case (ii).
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In the sequel we will denote by1 the branch locus ofOf W OX !

OA. By construction,
it is precisely the image ofD via � W A! OA. It follows that1 always has a point of
multiplicity 4 at Oo 2 OA. More precisely, we have the following

Proposition 4.9. The branch locus1 belongs precisely to one of the following
types:
(a) 1 is reduced and its only singularity is an ordinary quadruplepoint at OoI in this
caseSing( OX) D (1=3)(1, 1).
(b) 1 is reduced and its only singularities are an ordinary quadruple point at Oo and
an ordinary double point; in this caseSing( OX) D (1=3)(1, 1)C (1=2)(1, 1).
(c) 1 D 21red, where1red is an irreducible curve whose unique singularity is an or-
dinary double point atOo; in this caseSing( OX) D (1=3)(1, 1).
(d) 1 D 21red and 1redD E C F , where E, F are elliptic curves such that E FD 2
and Oo 2 E \ F ; in this caseSing( OX) D (1=3)(1, 1)C (1=3)(1, 2).
The canonical divisor KS is ample if and only if we are either in case(a) or in case(c).

Proof. Case (a) corresponds to the general situation. Case (b) corresponds to Prop-
osition 4.8, (i). Case (c) corresponds to Proposition 4.7, (iia). Finally, Case (d) corres-
ponds to Proposition 4.8, (ii) or, equivalently, to Proposition 4.7, (iib).

REMARK 4.10. The equation of1 is given by a non-zero element inH0( OA,L2
Æ




I4
Oo), whereL

Æ

is a (1, 2)-polarization onOA which coincides, up to translations, with
the dual polarization ofL, see [6, Chapter 14] (we cannot denote the dual polarization

by bL, since this is the Fourier–Mukai transform ofL). Notice that the four cases in
Proposition 4.9 correspond exactly to the ones in Proposition 1.22.

Summarizing the results obtained in this section, we have

Proposition 4.11. If S is a Chen–Hacon surface, then it is a minimal surface of
general type with pg D q D 2, K 2

S D 5. Moreover OX contains at least one and at
most two isolated, negligible singularities, which belong to the the types described in
Examples 1.6, 1.7, 1.8. In particular, OX is never smooth.

5. Characterization of Chen–Hacon surfaces

In this section we prove one of the key results of the paper, namely the following
converse of Proposition 4.11.
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Theorem 5.1. Let S be a minimal surface of general type with pg D q D 2, K 2
S D

5 such that the Albanese map� W S! OA WD Alb(S) is a generically finite morphism of
degree3. Let

S
p
�!

OX
Of
�!

OA

be the Stein factorization of�. If OX has at most negligible singularities, then S is a
Chen–Hacon surface.

The proof will be a consequence of Propositions 5.2 and 5.4 below. Let E be the
Tschirnhausen bundle of the triple coverOf W OX !

OA. Since by assumptionOX has at
most negligible singularities, Proposition 1.2 implies

(35)
h0( OA, E) D 0, h1( OA, E) D 0, h2( OA, E) D 1I

c2
1(E) D 4, c2(E) D 1.

In particular,
V2

E_ yields a polarization of type (1, 2) onOA; let us denote it byL
Æ

D

OA(L
Æ

). SettingF WD E_, we have

h0( OA, F ) D 1, h1( OA, F ) D 0, h2( OA, F ) D 0, detF D L
Æ

,

that isF belongs to the family of vector bundles studied in Section 2.

Proposition 5.2. F is an indecomposable vector bundle.

Proof. Assume thatF is decomposable. Then there exists a line bundleC D

O
OA(C) such that

F D C � (C�1

 L

Æ

).

Following [27, Section 6], we can constructOf W OX !

OA by using the data

a 2 H0( OA, C),

b 2 H0( OA, C3

 L�1

Æ

),

c 2 H0( OA, C�3

 L2

Æ

),

d 2 H0( OA, C�1

 L

Æ

).

Moreover, being OX irreducible,b and c are both non-zero.
Sinceh0( OA,F )D 1, we may assumeh0( OA,C)D 1 andh0( OA,C�1


L
Æ

) D 0. There-
fore there are two possibilities:
(i) C is an elliptic curve;
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(ii) C is a principal polarization.
In case (i), we have 1D C(L

Æ

�C) D C L
Æ

. Then (3C � L
Æ

)L
Æ

D �1, so 3C � L
Æ

cannot be effective. This impliesbD 0, contradiction.
In case (ii), the index theorem yields 8D C2L2

Æ

� (C L
Æ

)2, so C L
Æ

� 3. It follows

(�3C C 2L
Æ

)L
Æ

D �3C L
Æ

C 8� �1,

hencec D 0, contradiction.

Proposition 5.3. L
Æ

is not a product polarization.

Proof. By the results of Section 2, especially Corollaries 2.8 and 2.11, ifL
Æ

were
a product polarization thenOX would be either a reducible surface or a non-normal sur-
face birational to a properly elliptic surface, in particular it would not be a surface of
general type.

Proposition 5.4. There exists a symmetric(1, 2)-polarizationL on A such that

bL�1
D F .

Proof. SinceL
Æ

is not a product polarization (Proposition 5.3), it followsthat F
is the unique non-trivial extension

(36) 0! O
OA ! F ! L

Æ


 I
Oo ! 0,

see Proposition 2.2. Moreover, (�1)�
OA
F D F and F satisfies IT of index 0 (Propos-

ition 2.4). Thus OF is a line bundle onA that we denote byL�1; the sheafL satisfies
IT of index 0 too, see [6, Theorem 14.2.2]. Therefore by [28] we get

bL�1
D

b( OF ) D (�1)�
OA
F D F .

Sinceh0(A, L) D rank(F ) D 2, it follows thatL is a (1, 2)-polarization. Notice thatL
coincides with the dual polarization ofL

Æ

, in particular it is not a product polarization
(see also Remark 4.10).

This completes the proof of Theorem 5.1.

REMARK 5.5. It is interesting to compare Proposition 2.5 with Proposition 1.24.

In fact, an explicit isomorphismH0( OA, L2
Æ


 I3
Oo)

�

�! H0( OA, L2
Æ


 I4
Oo) can be given by

associating to every section� 2 H0( OA, L2
Æ


 I3
Oo) � H0

�

OA, S3F 


V2
F_

�

the equation
defining the branch locus1 of the triple cover given by�, see again Remark 4.10.
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An immediate consequence of Theorem 5.1 is

Corollary 5.6. The isotrivially fibred surface constructed in[32], i.e., the product-
quotient surface ofSubsection 3.2,is a Chen–Hacon surface. More precisely, it corres-
ponds to case(ii) of Proposition 4.8or, equivalently, to case(d) of Proposition 4.9.

Proof. The product-quotient surface contains only negligible singularities, see Ex-
ample 1.8, so Theorem 5.1 implies that it is a Chen–Hacon surface. SinceOX has one
singularity of type (1=3)(1, 1) and one singularity of type (1=3)(1, 2), looking at Prop-
osition 4.8 we see that it corresponds to case (ii).

The remainder of this section deals with some further properties of Chen–Hacon
surfaces.

Proposition 5.7. Let S be a Chen–Hacon surface. Then� W S! OA is never a
finite morphism.

Proof. By Proposition 4.9,S always contains a (�3)-curve, which is contracted
by �.

Proposition 5.8. Let S be a Chen–Hacon surface, and assume thatOf W OX !

OA is
totally ramified. Then1red is linearly equivalent to L

Æ

C Q, where Q is a non-trivial,
2-torsion divisor.

Proof. By [27, Proposition 4.7] the divisor1 D 21red is linearly equivalent to
2L

Æ

, hence1red is linearly equivalent toL
Æ

C Q, where Q is a 2-torsion divisor. On
the other hand,1red is singular atOo (Proposition 4.9), soQ is not trivial.

Proposition 5.9. Let S be a Chen–Hacon surface. ThenOf W OX !

OA is never a
Galois cover.

Proof. By [43, Theorem 5.5] it follows thatOf is a Galois cover if and only if it is
totally ramified and the line bundle

V2
F is isomorphic toO

OA(1red). Since
V2

F D L
Æ

,
this is excluded by Proposition 5.8.

Proposition 5.10. Let S be a Chen–Hacon surface, and assume that A is a sim-
ple abelian surface. Then S does not contain any pencil pW S! B over a curve B
with g(B) � 1.

Proof. SinceA is simple, the same is true forOA. Then the setV1(S) WD {Q 2

Pic0(S) j h1(S, Q_) > 0} cannot contain any component of positive dimension, andS
does not admit any pencil over a curveB with g(B) � 2, see [22, Theorem 2.6]. If
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insteadg(B) D 1, the universal property of the Albanese map yields a surjective mor-
phism OA! B, contradicting again the fact thatOA is simple. This concludes the proof.

It would be very interesting to classify the possible degenerations of Chen–Hacon
surfaces; however, this problem is at present far from beingsolved. The following re-
sult describes some natural degenerations obtained by taking reducible triple covers.

Proposition 5.11. Let Of W OX !

OA be the non-normal triple cover corresponding
to either tD 0 or t2

D 9s2 (seeProposition 4.5). Then OX is a reducible surface. More
precisely, there exists i2 {1, 2, 3} such that the section definingOf is in the image of
the multiplication map

H0

 

OA, S2F 


2̂

F_


Qi

!


 H0( OA, F 
Qi ) ! H0

 

OA, S3F 


2̂

F_

!

,

where theQi are the non-trivial, 2-torsion line bundles onOA defined as in(4).

Proof. It is sufficient to show that

h0

 

OA, S2F 


2̂

F_


Qi

!

¤ 0 and h0( OA, F 
Qi ) ¤ 0

for i D 1, 2, 3. Tensoring (14) withQi and using (5) we obtain

h0( OA, F 
Qi ) D h0( OA, L
Æ


Qi 
 I
Oo) D 1.

On the other hand, Eagon–Northcott complex applied to (36) gives

0! F ! S2F ! L2
Æ


 I2
Oo ! 0,

hence we obtain

(37) 0! F 


2̂

F_


Qi ! S2F 


2̂

F_


Qi ! L
Æ


Qi 
 I2
Oo ! 0.

Using F 


V2
F_

D F_, Serre duality and (15) we deduce

h0

 

OA, F 


2̂

F_


Qi

!

D h0( OA, F_


Qi ) D h2( OA, F 
Qi ) D 0,

h1

 

OA, F 


2̂

F_


Qi

!

D h1( OA, F_


Qi ) D h1( OA, F 
Qi ) D 0,
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so by (5) we have

h0

 

OA, S2F 


2̂

F_


Qi

!

D h0( OA, L
Æ


Qi 
 I2
Oo) D 1.

This completes the proof.

REMARK 5.12. Further degenerations of Chen–Hacon surfaces could be obtained
by looking at the case whereL

Æ

becomes a product polarization, see Corollaries 2.8
and 2.11.

We will now describe the canonical systemjKSj of a Chen–Hacon surfaceS, show-
ing that it is composed with a rational pencil of curves of genus 3.

For the sake of simplicity, we will assume thatA is a simple abelian surface. Let
� W S! OA be the Albanese map ofS, let � W OA℄ ! OA be the blow-up of OA at Oo, and
let 3 �

OA be the exceptional divisor. Then there is an induced map� W S! OA℄, which
is a flat triple cover. The branch locus of� coincides with the strict transform of the
branch locus1 of Of , so it belongs to the strict transform of the pencilD

Æ

� j2L
Æ

j

given by PH0( OA, L2
Æ


 I4
Oo). The general element in this pencil is a smooth curve of

genus 3 and self-intersection 0, meeting3 in precisely four distinct points; so we have
a base-point free pencilO' W OA℄ ! P

1. The exceptional divisor3 is not in the branch
locus of � and4 WD �

�(3) is the unique (�3)-curve in S. Considering the Stein fac-

torization of the composed mapS
�

�!

OA℄
O'

�! P

1, and using Proposition 5.10, we obtain
a commutative diagram

(38)

S

'

K

�

K

OA℄

O'

K

P

1 b
KP

1,

wherebW P1
! P

1 is a triple cover simply branched on four points, corresponding to
the branch curve of� and to the three double curves inD

Æ

, see Proposition 1.22.

Proposition 5.13. Let S be a Chen–Hacon surface. ThenjKSj D 4C j8j, where
8 is a smooth curve of genus3 which satisfies h0(S, OS(8)) D 2, 82

D 0, 48 D 4.
It follows that ' W S! P

1 coincides with the canonical map'
jKSj of S.

Proof. The canonical divisor ofS is given by

KS D �

�K
OA℄ C RD 4C R,
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where R is the ramification divisor of�. By diagram (38) it follows thatR 2 j8j,
where j8j is the pencil induced by'. The general element ofj8j is a smooth curve
of genus 3, isomorphic to the strict transform of the generalelement ofD

Æ

. Since

2D h0(S, OS(KS)) D h0(S, OS(8)) D h0(S, OS(KS�4)),

it follows that4 is contained in the fixed part ofjKSj. The rest of the proof is now clear.

6. The moduli space

The aim of this section is to investigate the deformations ofChen–Hacon surfaces.
The first step is to embedS in the projective bundleP (F ) as a divisorcontaining
a fibre.

Proposition 6.1. Let S be a Chen–Hacon surface with ample canonical class;
then there is an embedding iW S ,! P (F ) whose image is a smooth divisor in the linear
systemj3� � ��L

Æ

j, where � is the divisor class ofO
P

(1) and � W P ! OA is the nat-
ural projection. Moreover i(S) contains the fibre��1(Oo) of P ; more precisely, ��1(Oo)
coincides with the unique(�3)-curve4 of S.

Proof. Let us consider again the blow-up� W OA℄ ! OA, with exceptional divisor
3 �

OA℄, and the flat triple cover� W S ! OA℄ described in the previous section. A
straightforward calculation shows that the Tschirnhausenbundle associated to� is

F ℄

D �

�F 
O
OA℄(�3)

and that we have a commutative diagram

(39)

P (F ℄)

�

℄

K

�

KP (F )

�

K

OA℄
�

K

OA.

Since S is smooth and� is flat, by [15] there is an embeddingi ℄ W S ,! P (F ℄). Its
image is a divisor in the linear systemj3� ℄�(� ℄)�detF ℄

j, where� ℄ is the divisor class
of O

P (F ℄)(1) and� ℄ W P (F ℄) ! OA℄ is the projection. We have natural identifications

H0(P (F ℄), 3� ℄ � (� ℄)� detF ℄) � H0

 

OA℄, S3F ℄




2̂

(F ℄)_
!

� H0

 

OA℄, � �
 

S3F 


2̂

F_

!


O
OA℄(�3)

!
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� H0

 

OA, �
�

 

�

�

 

S3F 


2̂

F_

!


O
OA℄(�3)

!!

� H0

 

OA, S3F 


2̂

F_


 I
Oo

!

,

hencei D � Æ i ℄ W S ,! P (F ) provides an embedding ofS as a divisor in the linear
systemj3� � ��L

Æ

j containing the fibre��1(Oo). Such a fibre must coincide with4,
because4 is the unique rational curve inS.

Given the embeddingi W S ,! P , the Albanese map� W S ! OA of S factors as
� D � Æ i , as in the following diagram:

(40)

S,
i
K

�

K

P

�

K

OA.

Since K
P

D �2� C �

�L
Æ

, the adjunction formula implies that the canonical line
bundle of S is the restriction ofO

P

(1) to S, that is

(41) !S D OS(� ).

In the sequel we shall exploit the following short exact sequences:
• the normal bundle sequence ofi W S ,! P , i.e.,

(42) 0! O
P

! O
P

(S) ! NS=P ! 0I

• the tangent bundle sequence ofi W S ,! P , i.e.,

(43) 0! TS ! T
P


OS ! NS=P ! 0I

• the tangent bundle sequence of� W P ! OA, i.e.

(44) 0! T
P=

OA ! T
P

! �

�T
OA ! 0.

Recalling thatS2 j3� � ��L
Æ

j, we get

�

�

O
P

D O
OA, R1

�

�

O
P

D 0, �

�

O
P

(S) D S3F 


2̂

F_, R1
�

�

O
P

(S) D 0,

so by the Leray spectral sequence we obtain

H i (P , O
P

) D H i ( OA, O
OA), H i (P , O

P

(S)) D H i ( OA, S3F 
3

2F_), i � 0.
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Hence, considering the long exact sequence associated with(42) and using Propos-
ition 3.1, we deduce

(45) h0(S, NS=P ) D 3, h1(S, NS=P ) D 1, h2(S, NS=P ) D 0.

Let us denote byHP

S the complex analytic space representing the functor of embedded
deformations ofS insideP (with P fixed), see [38, p. 123]. An immediate consequence
of (45) is

Proposition 6.2. HP

S is generically smooth, of dimension3.

Proof. Sinceh0(S, NS=P ) D 3, the dimension of the tangent space ofHP

S at the
point corresponding toS is 3. On the other hand, the family of embedded deformations
of S in P is at least 3-dimensional: indeed, we can moveS into the 1-dimensional
linear systemjO

P

(S)j and we can translate it by using the 2-dimensional family of
translations of OA. ThereforeHP

S is smooth atS, hence generically smooth of dimension
3. In particular, the obstructions inH1(S, NS=P ) D C actually vanish.

Now let us consider the long cohomology sequence associatedwith (43). SinceS
is a surface of general type, we haveH0(S, TS) D 0 and we get

(46)
0! H0(S, T

P


OS) ! H0(S, NS=P )
Æ

0

�! H1(S, TS)

! H1(S, T
P


OS) ! H1(S, NS=P )
Æ

1

�! H2(S, TS) ! H2(S, T
P


OS) ! 0.

By standard deformation theory, see for instance [38, p. 132], the mapÆ0
W H0(S,NS=P )!

H1(S, TS) is precisely the map induced on tangent spaces by the “forgetful morphism”
HP

S ! Def(S), where Def(S) is the base of the Kuranishi family ofS.
Now we look at (44). SinceT

OA is trivial, we obtain

T
P=

OA D O
P

(�K
P

) D O
P

(2� � ��L
Æ

).

Then R1
�

�

T
P=

OA D 0, and Leray spectral sequence together with (17) yields

(47) H i (P , T
P=

OA) D H i

 

OA, S2F 


2̂

F_

!

D 0, i � 0.

Therefore Ext1(��T
OA, T

P=

OA) D H1(P , T
P=

OA)�2
D 0, so (44) actually splits and we have

(48) T
P

D T
P=

OA � �

�T
OA D O

P

(2� � ��L
Æ

)� �

�T
OA.

Since NS=P D OS(3� � ��L
Æ

), by restricting (48) toS and using (41), we obtain

(49) T
P


OS D (T
P=

OA 
OS)� (��T
OA 
OS) D (NS=P 
 !

�1
S )� �

�T
OA.
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Let us now compute the cohomology groups ofNS=P 
 !

�1
S D OS(2� � ��L

Æ

).

Lemma 6.3. We have

h0(S, NS=P 
 !

�1
S ) D 0, h1(S, NS=P 
 !

�1
S ) D 0, h2(S, NS=P 
 !

�1
S ) D 0.

Proof. Let us consider the short exact sequence

0! O
P

(�� ) ! O
P

(2� � ��L
Æ

) ! OS(2� � ��L
Æ

) ! 0.

By [20, p. 253] we have�
�

O
P

(�� )D R1
�

�

O
P

(�� )D 0, so by Leray spectral sequence
we deduceH0(P , O

P

(�� )) D H1(P , O
P

(�� )) D 0. It follows

H i (S, NS=P 
 !

�1
S ) D H i (P , O

P

(2� � ��L
Æ

)) D H i

 

OA, S2F 


2̂

F_

!

D 0

for i D 0, 1, 2, see (17).

By using (46), (49) and Lemma 6.3 we obtain the exact sequence

(50)
0! H0(S, ��T

OA) ! H0(S, NS=P )
Æ

0

�! H1(S, TS)



�! H1(S, ��T
OA) ! H1(S, NS=P )

Æ

1

�! H2(S, TS) ! H2(S, ��T
OA) ! 0.

The key remark is now contained in the following

Proposition 6.4. The image of W H1(S, TS) ! H1(S, ��T
OA) has dimension3.

Proof. SinceT
OA is trivial and there is a natural isomorphism

H1(S, OS) � H1( OA, O
OA),

we can see the map as a map

 W H1(S, TS) ! H1( OA, T
OA).

Take a positive integerm � 2 such that there exists a smooth pluricanonical divisor
C 2 jmKSj and letC0 be the image ofC in OA; then we have a commutative diagram

H1(S, TShCi)

�

K



0

K H1( OA, T
OAhC

0

i)

�

0

K

H1(S, TS)


K H1( OA, T
OA).
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Here, following [38, Section 3.4.4 p. 177], for each closed subschemeX of a projective
schemeY we denote byTYhX i the sheaf of germs of tangent vectors toY which are
tangent toX . When Y is smooth, the vector spaceH1(Y, TYhX i) parameterizes the
first-order deformations of the pair (Y, X ). Notice thatTYhX i is usually denoted by
TY (� logX ) whenX is a normal crossing divisor with smooth components.

Let us observe now the following facts.
• Since S is smooth, the line bundle!m

S extends along any first-order deformation
of S, because the relative dualizing sheaf is locally free for any smooth morphism
of schemes, see [26, p. 182]. Moreover, sinceS is minimal of general type, we have
h1(S, !m

S ) D 0, so every section of!m
S extends as well, see [38, Section 3.3.4]. This

means that no first-order deformation ofS makesC disappear, in other words� is
surjective. Thereforeim  � im �

0.
• Since (C0)2

> 0, the line bundleO
OA(C0) is ample on OA; therefore it deforms along

a subspace ofH1( OA, T
OA) of dimension 3, see [38, p. 152]. Since every first-order de-

formation of the pair (OA, C0) induces a first-order deformation of the pair (OA, O
OA(C0)),

it follows that the image of�0 is at most 3-dimensional.
According to the above remarks, we obtain

dim(im  ) � dim(im �

0) � 3.

On the other hand, given any abelian surfaceOA with a (1, 2)-polarization which is not
of product type we may construct a Chen–Hacon surfaceS such that Alb(S) D OA.
Hence the dimension ofim  is exactly 3.

Corollary 6.5. We have

h1(S, TS) D 4, h2(S, TS) D 4.

Proof. By Riemann–Roch theorem we obtainh1(S, TS)� h2(S, TS) D 10�(OS)�
2K 2

S D 0. On the other hand, Proposition 6.4 together with (45) implies h1(S, TS) D 4,
so we are done.

Now let us denote byM the moduli space of minimal surfaces of general type
with pg D q D 2, K 2

SD 5 and byMCH the subset ofM given by isomorphism classes
of Chen–Hacon surfaces.

Theorem 6.6. MCH is a connected, irreducible, generically smooth component
of M of dimension4.

Proof. The construction of Chen–Hacon surfaces depends on four parameters: in
fact, the moduli spaceW(1, 2) of (1, 2)-polarized abelian surfaces has dimension 3,
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whereasPH0
�

OA, S3F 


V2
F_

�

is 1-dimensional (note thatF does not give any con-
tribution to the number of parameters because of (13)). Thisargument also shows that
one has a generically finite, dominant map

P !MCH,

whereP is a suitableP1-bundle overW(1, 2). ThereforeMCH is an irreducible, algebraic
subset ofM and dimMCH

D 4. On the other hand, ifKS is ample Corollary 6.5 implies

dim T[S]M
CH
D H1(S, TS) D 4,

so MCH is generically smooth.
It remains to show thatMCH is a connected component ofM, i.e. that it is both

open and closed therein.
MCH is open inM.

Let S
�

�! B be a deformation over a small disk such thatS0 WD �

�1(0) is a Chen–
Hacon surface. We want to show that the same is true forSt WD �

�1(t). By Ehresmann’s
theorem,St is diffeomorphic toS0, so it is a minimal surface of general type withpg D

q D 2, K 2
St
D 5. Moreover, by [13, p. 267], the differentiable structure ofthe general

fibre of the Albanese map ofSt is completely determined by the differentiable structure
of St ; it follows that the Albanese map�t W St ! Alb(St ) is a generically finite triple
cover. Let

St
pt
�! Xt

ft
�! Alb(St )

be the Stein factorization of�t , and letEt be the Tschirnhausen bundle associated with
the flat triple cover ft W Xt ! Alb(St ), that is

(51) ft�OXt D OAlb(St ) � Et .

By Proposition 4.9,X0 has only rational singularities, so the same holds forXt if B

is small enough.
The branch locus1t of �t is a deformation of10, in particularpa(1t ) D pa(10) D

9; moreover, by [27, Proposition 4.7] the class of1t must be 2-divisible in the Picard
group of Alb(St ). It follows that Alb(St ) is a (1, 2)-polarized abelian surface and1t 2

j2L t j. Moreover
V2

E_t is numerically equivalent toLt , in particularc2
1(Et ) D 4. Since

ft is a finite map andXt has only rational singularities, we obtain

h1(Alb(St ), ft�OXt ) D h1(Xt , OXt ) D h1(St , OSt ) D 2,

h2(Alb(St ), ft�OXt ) D h2(Xt , OXt ) D h2(St , OSt ) D 2,

so by using (51) we deduce

h0(Alb(St ), Et ) D 0, h1(Alb(St ), Et ) D 0, h2(Alb(St ), Et ) D 1.
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Now Hirzebruch–Riemann–Roch theorem yields

1D �(Alb(St ), Et ) D
1

2
c2

1(Et ) � c2(Et ),

hencec2(Et ) D 1. It follows that the invariant ofSt are computed by formulae in Prop-
osition 1.2, in other wordsXt contains only negligible singularities. By Theorem 5.1,
St is a Chen–Hacon surface.

MCH is closed inM.
Let S

�

�! B be a small deformation and assume that, fort ¤ 0, St is a Chen–
Hacon surface. We want to show thatS0 is a Chen–Hacon surface. Arguing as before,
we see that�0 W S0 ! Alb(S0) is a generically finite triple cover, and that Alb(S0) is a
(1,2)-polarized abelian surface. LetDt � j2L t j be the linear systemPH0(Alb(St ),L2

t 


I4
o). Since1t 2 Dt for all t ¤ 0, we have10 2 D0. The possible curves injD0j are

classified in Proposition 1.22; in all cases the corresponding triple cover contains only
negligible singularities (see Examples 1.6, 1.7, 1.8), soS0 is a Chen–Hacon surface
and we are done.

This concludes the proof of Theorem 6.6.

Theorem 6.6 shows that every small deformation of a Chen–Hacon surface is still
a Chen–Hacon surface; in particular, no small deformation of S makes the (�3)-curve
disappear. Moreover, sinceMCH is generically smooth, the same is true for the first-
order deformations. By contrast, Burns and Wahl proved in [10] that first-order defor-
mations always smooth all the (�2)-curves, and Catanese used this fact in [11] in order
to produce examples of surfaces of general type with everywhere non-reduced moduli
spaces. Theorem 6.6 demonstrates rather strikingly that the results of Burns–Wahl and
Catanese cannot be extended to the case of (�3)-curves and, as far as we know, it also
provides the first explicit example of this situation.
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