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Abstract
Akiyama et al. [2] proved an asymptotic formula for the distribution of CNS

polynomials with fixed constant term. The objective of the present paper is to im-
prove that result by providing an error term too.

1. Introduction

Let d � 1 be an integer. To eachr D (r1, : : : , rd) 2 Rd we associate a mapping
�r W Z

d
! Z

d by setting foraD (a1, : : : , ad) 2 Zd.

�r (a) D (a2, : : : , ad, �br � a
),

wherer �aD a1r1C� � �Cadrd denotes the inner product of the vectorsr anda. We call
�r a shift radix system (SRS for short) if for eacha 2 Zd there exists somek > 0 such
that � k

r (a) D 0. These systems were introduced in 2005 by Akiyama et al. [1]and they
turned out to be generalizations of several notions of well-known number systems. For
certain parametersr SRS are related to�-expansion having a certain finiteness property
(F) (cf. [8, 10, 13, 14]) or to canonical number systems (cf. [9, 11] and [1, 4] for the
connection with SRS).

In the present paper we will only concentrate on those elements r 2 Rd such that
�r is ultimately periodic for alla 2 Zd. Thus for d � 1 an integer let

Dd WD {r 2 Rd
W 8a 2 Zd the sequence (� k

r (a))k�0 is ultimately periodic}.

The elements ofDd are in strong relation with the set of contracting polynomials.
In particular, we defineEd(r ) to be the set of all monic polynomials having spectral
radius less thanr , i.e.,

Ed(r ) WD {(r1, : : : , rd) 2 Rd
W

Xd
C rd Xd�1

C � � � C r1 has only roots iny 2 C with jyj < r }.

If r D 1 then we setEd WD Ed(1) for short.
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The setEd D Ed(1) was characterized by Schur [15] as

Ed D {(r0, : : : , rd�1) 2 Rd
j

8k 2 {0, : : : , d � 1} we have det(Æk(r0, : : : , rd�1)) > 0},

whereÆk(r0, : : : , rd�1) is the 2(kC 1)� 2(kC 1)-matrix defined by

Æk(r0, : : : , rd�1) D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 � � � 0 r0 � � � � � � rk

rd�1
.. .

. ..
... 0

...
...

...
.. .

. .. 0
...

. ..
. ..

...
rd�k�1 � � � rd�1 1 0 � � � 0 r0

r0 0 � � � 0 1 rd�1 � � � rd�k�1
...

.. .
. ..

... 0
...

. ..
...

...
. .. 0

...
. ..

. .. rd�1

rk � � � � � � r0 0 � � � 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Furthermore Fam and Meditch [6] showed that the setEd is simply connected and for
d � 2 it is bounded by three hypersurfaces two of which are hyperplanes. Finally we
note thatEd�1(r ) is defined by similar means.

Now we want to link the setEd with the sets of Pisot, Salem and canonical poly-
nomials, respectively. We start with the relation to Pisot and Salem polynomials. To
this end letP(X)D Xd

�b1Xd�1
�� � ��bd 2 Z[X] be an irreducible polynomial overZ.

• If P has a real root greater than one and all other roots are located in the open unit
disk, thenP is called a Pisot polynomial.
• If P has a real root greater than one and all other roots are located in the closed unit
disk and at least one of them has modulus 1, thenP is called a Salem polynomial.
Then we define for eachd 2 N, d � 1 and eachM 2 N the sets

Bd WD {(b1, : : : , bd) 2 Zd
W Xd

� b1Xd�1
� � � � � bd is Pisot or Salem polynomial},

Bd(M) WD {(b2, : : : , bd) 2 Zd�1
W (M, b2, : : : , bd) 2 Bd}.

With these notations Akiyama et al. [3] were able to show the following

Theorem 1.1 ([3, Theorem 1.2]). Let d� 2. Then

�

�

�

�

jBd(M)j

Md�1
� �d�1(Dd�1)

�

�

�

�

� M�1=(d�1),

where�d�1 denotes the(d � 1)-dimensional Lebesgue measure.

Now we concentrate on the relation ofDd and canonical number systems. There-
fore let P(X) D Xd

C pd�1Xd�1
C � � � C p0 2 Z[X] be a monic polynomial of degree
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d with p0 � 2, and setN D {0, 1,: : : , p0�1}. Furthermore we denote byx the image
of X under the canonical epimorphism fromZ[X] to R WD Z[X]=(P(X)Z[X]). Since
P is monic it is clear that every elementA(X) of R has a unique representation of
degree at mostd � 1, say

A(X) D Ad�1Xd�1
C � � � C A1X C A0 (Ai 2 Z).

Now we want to analyze if every element has a representation to baseX having digits
in N . Therefore letG WD {A(X) 2 Z[X] W degA < d} be the set of all elements of
degree less thand and

TP(A) D
d�1
X

iD0

(AiC1 � qpiC1)Xi ,

where Ad D 0 andq D bA0=p0
, be the “division map”. Then clearlyTp W G ! G and

A(x) D (A0 � qp0)C xTP(A),

where A0� qp0 2 N . Thus this provides our desired representation. If for eachA 2 G

there is ak 2 N such thatTk
P(A) D 0, then we callP a canonical number system

polynomial (CNS polynomial for short).
In order to draw the connection of CNS polynomials and SRS we define for each

d � 1 and M � 2 integers the sets

Cd WD {(p0, : : : , pd�1) 2 Zd
W jp0j � 2 and TXd

Cpd�1Xd�1
C���Cp0

has only finite orbits},

Cd(M) WD {(p1, : : : , pd�1 W (M, p1, : : : , pd�1) 2 Cd}.

The connection betweenCd and Dd was proven in the first part of a series of papers
by Akiyama et al. [1]. In particular, they proved that

(p0, p1, : : : , pd�1) 2 Cd if and only if

�

1

p0
,

pd�1

p0
, : : : ,

p1

p0

�

2 Dd.

In the third part of that series of papers Akiyama et al. [2] provided an asymptotic
formula for the cardinality ofCd(M). More precisely they proved

Theorem 1.2 ([2, Theorem 5.1]). Let d� 2 be a positive integer. Then

lim
M!1

jCd(M)j

Md�1
D �d�1(Dd�1).

The objective of the present paper is to improve this result.Combining methods
originating from the proofs of Theorems 1.1 and 1.2 we are able to estimate the speed
of convergence too. More precisely we prove
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Theorem 1.3. Let d� 2 be a positive integer. Then

�

�

�

�

jCd(M)j

Md�1
� �d�1(Dd�1)

�

�

�

�

� M�1=(d�1).

In [1, Lemmas 4.1, 4.2 and 4.3] it was proved that

int(Dd) D Ed.

The structure ofEd and its Lebesgue measure has been analyzed by Kirschenhofer
et al. [12]. Using a result by Fam [7] together with BarnesG-function they calcu-
lated that1

�d(Dd) D �d(Ed) D

8

�

�

�

<

�

�

�

:

22n2
Cn
0(nC 1)G(nC 1)4

G(2nC 2)
if d D 2n,

22n2
C3nC1G(nC 2)4

0(nC 1)0(2nC 2)G(2nC 2)
if d D 2nC 1.

We note that for positive integers the BarnesG-function equals the superfactorials, i.e.,
G(nC 2)D

Qn
jD1 j ! for n 2 N.

2. Auxiliary lemmata

Let d � 1 be a positive integer. Then forr D (r1, : : : , rd) 2 Rd we denote by�(r )
the spectral radius of the polynomialP(X) D Xd

C rd Xd�1
C � � � C r2X C r1, i.e.,

�(r ) WD �(P) D max{j�j W P(�) D 0}.

Our first tool deals with the relation of the spectral radius if we change the co-
efficients of the polynomial a little bit.

Lemma 2.1 ([3, Lemma 4.1]). Let d2 N and �, " > 0. Then there exists a con-
stant c> 0 depending only on d and� with the following property: if all roots � 2 C
of the polynomial P(X) D Xd

C pd�1Xd�1
C � � � C p0 2 R[X] satisfy j�j < � and

Q(X) D Xd
C qd�1Xd�1

C � � � C q0 2 R[X] is chosen such thatjpi � qi j < ", i D
0, : : : , d � 1 then for each root� of Q(X) there exists a root� of P(X) satisfying

j� � �j < c"1=d.

In particular, all roots � of Q(X) satisfy j�j < � C c"1=d.

1For oddd the factor0(2nC 2) failed in their formula.
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In the proof we will approximateDd by polynomials having larger and smaller
spectral radius. Therefore we need estimates of the Lebesgue measure of the differ-
ence sets.

Lemma 2.2 ([3, Lemma 4.2]). Let 0< � < 1. Then we have

�d(Ed(1C �) nDd) � 2d(dC1)=2
�d(Ed)�

and

�d(Dd n Ed(1� �)) � 2d(dC1)=2
�d(Ed)�.

The central tool is an estimation of the integral points in a bounded region which
is due to H. Davenport.

Lemma 2.3 ([5, Theorem]). Let R be a closed bounded region in the n dimen-
sional spaceRn and let N(R) and V(R) denote the number of points with integral
coordinates inR and the volume ofR, respectively. Suppose that:
• Any line parallel to one of the n coordinate axes intersectsR in a set of points
which, if not empty, consists of at most h intervals.
• The same is true(with m in place of n) for any of the m dimensional regions obtained
by projectingR on one of the coordinate spaces defined by equating a selection of n�m
of the coordinates to zero; and this condition is satisfied for all m from1 to n� 1.
Then

jN(R) � V(R)j �
n�1
X

mD0

hn�mVm,

where Vm is the sum of the m dimensional volumes of the projections ofR on the
various coordinate spaces obtained by equating any n� m coordinates to zero, and
V0 D 1 by convention.

3. Proof of Theorem 1.3

The proof consists of mainly two steps. First we coverDd by hypercubes. At this
step we have to show that the intersection of two such hypercubes does not have big
measure. Then, in the second step, we will count the number ofhypercubes inRd by
providing a covering for the border ofDd.

Since we are only interested in an asymptotic, throughout the proof we will de-
note by c an arbitrary constant. This constant might not be the same indifferent oc-
currences. However, if the reader is awake, there will be no problem.

Thus we start with the embedding ofCd in R

d�1:

 W Cd ! R

d�1, (p0, : : : , pd�1) 7!

�

pd�1

p0
, : : : ,

p1

p0

�

.
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Then we define one such hypercube centered inx having length of edges by

W(x, s) WD
{

y 2 Rd�1
W kx � yk

1

�

s

2

}

.

Finally we collect all those hypercubes that correspond toCd(M).

Wd�1(M) WD
[

x2Cd(M)

W( (x), M�1).

As indicated above we have to show, that the intersection of two such hypercubes
is not too large. Letx,y 2 Cd(M) with x�y D ej for some j 2 {2,: : : ,d}. Then clearly

j (x)k �  (y)kj D

8

<

:

0 if k ¤ d � j C 1,
1

M
if k D d � j C 1,

where  (x)k denotes thek-th coordinate of the vector (x). Since for u 2

W( (x),M�1)\W( (y),M�1) we have thatk (x)�uk
1

� (2M)�1 andk (y)�uk
1

�

(2M)�1 this implies that

k (x) � uk
1

D k (y) � uk
1

D

1

2M
.

Thereforeu lies at the border of the hypercube and, since the border has Lebesgue
measure zero, we get that

�d�1(W( (x), M�1) \ W( (y), M�1)) D 0.(3.1)

Now we compare the number of elements inCd(M) with the Lebesgue measure of
Wd�1(M). We clearly have

jCd(M)j

Md�1
D �d�1(Wd�1(M)).

The proof continues in two steps where we provide a lower and an upper bound for
the number on the right side.

We start with the lower bound. To this end letx 2 Cd(M) such that (x) 2 Ed�1(1�
c(2M)�1=(d�1)) � Dd�1. For y 2 W( (x), M�1) we have thatk (x) � yk

1

� 1=(2M).
Thus an application of Lemma 2.1 implies�(y) < 1 and thereforey 2 Dd�1. Now we
have that

(3.2)
[

x2Cd(M)
�( (x))<1�c(2M)�1=(d�1)

W( (x), M�1) � Dd�1.
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Putting � D c(2M)�1=(d�1) together with an application of Lemma 2.2 yields

�d�1(Dd�1 n Ed�1(1� �)) � M�1=(d�1).

Now we concentrate on those polynomialsx 2 Cd(M) whose spectral radius�(x)
is between 1� � and 1. To this end we define

L WD {x 2 Cd(M) W 1� � � �( (x)) � 1}.

Since the setsDd�1 and Ed�1(r ) are defined by algebraic boundaries, the conditions of
Lemma 2.3 are satisfied forDd�1nEd�1(1��). Thus an application of Lemma 2.3 yields

j jLj � Md�1
�d�1(Dd�1 n Ed�1(1� �))j � Md�2.

Combining this with (3.1) and (3.2) we obtain the lower bound

�d�1(Dd�1) �
jCd(M)j

Md�1
(1� cMd�1�1=(d�1)).(3.3)

In order to provide an upper bound we construct an inverse function of  . In
particular, for M 2 N let �M W R

d�1
! Z

d be such that

�M (rd�1, : : : , r1) D

�

M,

�

Mr1 C
1

2

�

, : : : ,

�

Mrd�1 C
1

2

��

.

Then we have for anyx 2 Cd(M) that �M ( (x)) D x.
Now for an arbitraryy 2 Dd�1 we setx WD �M (y). We clearly have that

k (x) � yk
1

�

1

2M
.

Thus an application of Lemma 2.1 yields

�( (x)) � �(y)C c(2M)�1=(d�1)
� 1C c(2M)�1=(d�1).

Sincey 2 Dd�1 was arbitrary we get

Dd�1 �
[

x2Zd

�( (x))<1Cc(2M)�1=(d�1)

W( (x), M�1)

�

[

x2Cd(M)

W( (x), M�1) [
[

x2Zd

1��( (x))<1Cc(2M)�1=(d�1)

W( (x), M�1).

Again we apply Lemma 2.2 with� D c(2M)�1=(d�1) and get

�d�1(Ed�1(1C �) nDd�1) � M�1=(d�1).
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Since forEd�1(1C �) nDd�1 the conditions of Lemma 2.3 are again satisfied we get that
the number ofx 2 Zd such that (x) lies inEd�1(1C�)nDd�1 is at mostO(Md�1�1=(d�1)).
Thus

�d�1(Dd�1) �
jCd(M)j

Md�1
(1C cMd�1�1=(d�1)).

Together with the lower bound in (3.3) this proves the theorem.
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