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Abstract
The aim of this paper is to give families of Pisot and Salem elements � in

Fq((x�1)) with the curious property that the�-expansion of any rational series in
the unit diskD(0, 1) is purely periodic. In contrast, the only known familyof reals
with the last property are quadratic Pisot numbers� > 1 that satisfy�2

D n� C 1
for some integern � 1.

1. Introduction

�-expansions of real numbers were introduced by A. Rényi [12]. Since then, their
arithmetic, diophantine and ergodic properties have been extensively studied by sev-
eral authors.

Let � > 1 be a real number. The�-expansion of a real numberx 2 [0,1] is defined
as the sequence (xi )i�1 with values in{0, 1,: : : , [�]} produced by the�-transformation
T
�

W x ! �x (mod 1) as follows:

8i � 1, xi D [�T i�1
�

(x)], and thus x D
X

i�1

xi

�

i
.

An expansion is finite if (xi )i�1 is eventually 0. A�-expansion is periodic if there
exists p � 1 andm � 1 such thatxk D xkCp holds for all k � m; if xk D xkCp holds
for all k � 1, then it is purely periodic. We denote byPer(�) the numbers in [0,1) with
periodic�-expansions,Pur(�) the numbers in [0, 1) with purely periodic�-expansions
and Fin(�) the numbers in [0, 1) with finite�-expansions.

Let Q(�) be the smallest fields containingQ and�. An easy argument shows that
Per(�) � Q(�) \ [0, 1) for every real number� > 1. K. Schmidt [15] showed that if
� is a Pisot number (an algebraic integer whose conjugates have modulus< 1), then
Per(�) D Q(�) \ [0, 1).

The purely periodic�-expansions are also discussed by S. Ito and H. Rao in [7]
when they characterize all reals in [0,1[ having purely periodic �-expansions with Pisot
unit base. In [5], V. Berthé and A. Siegel completed the characterization in the Pisot
non unit base.
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Set

 (�) D sup{c 2 [0, 1)W 8r 2 Q \ [0, c], d
�

(r ) is purely periodic}.

S. Akiyama has proved in [3] that if� is a Pisot unit number satisfying the finiteness
property (Fin(�) D Z[��1] \ R

C

), then  (�) > 0.
In the quadratic case, K. Schmidt [15] has proved that if� satisfied�2

D n� C 1
for some integern � 1, then (�) D 1. Until now, it is the unique known family of
reals for which (�) D 1. In [1] the authors has proved that if� is not Pisot unit,
then (�) D 0, they also showed that if� is a cubic Pisot unit satisfying the finiteness
property such that the number fieldQ(�) is not totally real, then 0<  (�) < 1.

In this paper, we consider the analogue of this concept in thealgebraic function
over finite fields. We will show that the condition Pisot unit is not necessary to have
 (�) > 0. Especially, we give a sufficient condition for the conjugates of � to obtain
 (�) D 1.

2. �-expansions inFq((x�1))

Let Fq be a finite field ofq elements,Fq[x] the ring of polynomials with co-
efficient in Fq, Fq(x) the field of rational functions,Fq(x, �) the minimal extension of
Fq containingx and� andFq[x,�] the minimal ring containingx and�. Let Fq((x�1))
be the field of formal power series of the form:

f D
l
X

kD�1

fkxk, fk 2 Fq

where

l D deg f WD

�

max{k W fk ¤ 0} for f ¤ 0I
�1 for f D 0.

Define the absolute value

j f j D

�

qdeg f for f ¤ 0I
0 for f D 0.

Since j . j is not archimedean,j . j fulfills the strict triangle inequality

j f C gj � max(j f j, jgj) and

j f C gj D max(j f j, jgj) if j f j ¤ jgj.

Let f 2 Fq((x�1)), define the integer (polynomial) part [f ] D
Pl

kD0 fkxk where the
empty sum, as usual, is defined to be zero. Therefore [f ] 2 Fq[x] and (f � [ f ]) is in
the unit disk D(0, 1) for all f 2 Fq((x�1)).
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Proposition 2.1 ([11]). Let K be complete field with respect to(a non archime-
dean absolute valuej . j) and L=K (K � L) be an algebraic extension of degree m.
Then j . j has a unique extension to L defined by: jaj D m

p

jNL=K (a)j and L is complete
with respect to this extension.

We apply Proposition 2.1 to algebraic extensions ofFq((x�1)). Since Fq[x] �
Fq((x�1)), every algebraic element overFq[x] can be evaluated. However, since
Fq((x�1)) is not algebraically closed and uch an element do not necessarily expressed
as a power series overx�1. For a full characterization of the algebraic closure ofFq[x],
we refer to Kedlaya [8].

An element� D �1 2 Fq((x�1)) is called a Pisot (resp. Salem) element if it is
an algebraic integer overFq[x], j�j > 1 and j� j j < 1 for all Galois conjugates� j

(resp. j� j j � 1 and there exist at least one conjugate�k such thatj�kj D 1).
P. Bateman and A.L. Duquette [4] had characterized the Pisotand Salem element

in Fq((x�1)):

Theorem 2.1. Let � 2 Fq((x�1)) be an algebraic integer overFq[x] and

P(y) D yn
� A1yn�1

� � � � � An, Ai 2 Fq[x],

be its minimal polynomial. Then
(i) � is a Pisot element if and only ifjA1j > max2�i�njAi j,
(ii) � is a Salem element if and only ifjA1j D max2�i�njAi j.

Let �, f 2 Fq((x�1)) with j�j> 1. A representation in base� (or �-representation)
of f is an infinite sequence (di )i�1, di 2 Fq[x], such that

f D
X

i�1

di

�

i
.

A particular �-representation off is called the�-expansion of f in base�, noted
d
�

( f ), which is obtained by using the�-transformationT
�

in the unit disk which is
given by T

�

( f ) D � f � [� f ]. Then d
�

( f ) D (ai )i�1 whereai D [�T i�1
�

( f )].
An equivalent definition of the�-expansion can be obtained by a greedy algorithm.

This algorithm works as follows. Setr0 D f and letai D [�r i�1], r i D �r i�1 � ai for
all i � 1. The�-expansion of f will be noted asd

�

( f ) D (ai )i�1.
Note thatd

�

( f ) is finite if and only if there is ak � 0 such thatTk( f ) D 0, d
�

( f )
is ultimately periodic if and only if there is some smallestp� 0 (the pre-period length)
and s� 1 (the period length) for whichT pCs

�

( f ) D T p
�

( f ).

Now let f 2 Fq((x�1)) be an element withj f j � 1. Then there is a uniquek 2 N
such thatj�jk � j f j < j�jkC1. Hencej f =�kC1

j < 1 and we can representf by shifting
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d
�

( f =�kC1) by k digits to the left. Therefore, ifd
�

( f ) D 0.d1d2d3 � � � , then d
�

(� f ) D
d1.d2d3 � � � .

If we haved
�

( f )Ddl dl�1 � � �d0.d
�1 � � �dm, then we put deg

�

( f )D l and ord
�

( f )Dm.
In the sequal, we will use the following notations:

Fin(�) D { f 2 Fq((x�1)) W d
�

( f ) is finite},

Per(�) D { f 2 Fq((x�1)) W d
�

( f ) is eventually periodic},

Pur(�) D { f 2 Fq((x�1)) and j f j < 1W d
�

( f ) is purely periodic}.

REMARK 2.2. In contrast to the real case, there is no carry occurring, when we
add two digits. Therefore, ifz, w 2 Fq((x�1)), we haved

�

(zC w) D d
�

(z) C d
�

(w)
digitwise.

Theorem 2.2 ([6]). A �-representation(d j ) j�1 is the �-expansion of f in the
unit disk if and only ifjd j j < j�j for j � 1.

In the fields of formal series case, on the one hand, K. Scheicher, M. Jellali and
M. Mkaouar [14] have studied the characterization of purely periodic �-expansions in
the Pisot unit base. On the other hand, the following theorems are proved independ-
ently by Hbaib–Mkaouar and Scheicher.

Theorem 2.3 ([13]). � is Pisot or Salem element if and only if Per(�)D Fq(x,�).

Theorem 2.4 ([6]). � is Pisot or Salem element if and only if d
�

(1) is periodic.

In the papers [9] and [10], metric results are established and the relation to con-
tinued fractions is studied.

3. Results

By analogy with the real case, we define for each� such thatj�j > 1 the quantity

 (�) D sup{c 2 [0, 1)W 8 f 2 Fq(x) \ D(0, c), d
�

( f ) is purely periodic}.

In order to prove that (�) > 0 if � is a Pisot or Salem unit series, we need to intro-
duce some basic notions: Let� be a Pisot or Salem unit series of minimal polynomial
�

d
C Ad�1�

n�1
C � � � C A0 where Ai 2 Fq[x] for i 2 {1, : : : , d � 1} and A0 2 F

�

q . Let

�

(2),:::,�(d) be the conjugates of� and we denote by� the vector conjugate of� given

by � D

 

�

(2)
...
�

(d)

!

. For f D r0 C r1� C r2�
2
C � � � C rd�1�

d�1 with r i 2 Fq(x), the j -th

conjugate of f in Fq(x,�) is given by f ( j )
D r0Cr1�

( j )
Cr2(�( j ))2

C� � �Crd�1(�( j ))d�1.
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We define f , the vector conjugate off by f D

 

f (2)
...

f (d)

!

andk f k D sup2�k�dj f
(k)
j.

We begin with two lemmas which are essential for the development of the proof
of Theorem 3.3.

Lemma 3.1 (Lemma 1, 2). Let � be an algebraic unit of degree n, and M be a
positive number. Put

X(p) D { f 2 Fin(�) W j f j � M, ord
�

( f ) D �p}.

Then

lim
p!1

min
f 2X(p)

k f k D 1.

Proof. Assume that there exist a constantB and an infinite sequencefi (i D
1, 2, : : :) so that both

j f ( j )
i j � B for j D 2, 3, : : : , d and lim

i!1

ord
�

( fi ) D �1

holds. As� is a unit, all fi are in Fq[x, �] and j fi j � M, then thesefi ’s are finite.
On the other hand, by the hypothesis limi!1

ord
�

( fi ) D �1, the set{ fi , i � 1} is
infinite. This is absurd, which proves the lemma.

Lemma 3.2. Let � be a Pisot or Salem unit series. Then there exists r> 0 such
that for every series h inFq(x, �) satisfyingord

�

(h) � �1, we havekhk > r .

Proof. According to Lemma 3.1, there existss > 0 such that for every series
f in Fq(x, �) satisfying j f j < 1 and ord

�

( f ) � �s, we havek f k > j�j. Put r D
inf j2{2,:::,d}j(�( j ))s�1

j j�j, where�(2), : : : , �(d) are the conjuguates of�.
Now, let h be a series inFq(x, �) with ord

�

(h) � �1. Then h D �

s�1g where
ord

�

(g) � �s. Moreoverh can be written such thathD �

s�1(g1Cg2) where ord
�

(g1) �
0, ord

�

(g2) D ord
�

(g) � �s and jg2j < 1. Sinceh D �

s�1(g1 C g2),

h D

0

B

B

B

B

�

(�(2))s�1(g(2)
1 C g(2)

2 )

(�(3))s�1(g(3)
1 C g(3)

2 )
...

(�(d))s�1(g(d)
1 C g(d)

2 )

1

C

C

C

C

A

.

As � is a Pisot or Salem series andg1 D c0 C c1� C � � � C cd�1�
d�1 with ci 2 Fq[x]

and jci j < j�j, we have

jg(2)
1 j D jc0 C c1�

(2)
C � � � C cd�1(�(2))d�1

j � j�j,



812 F. ABBES AND M. HBAIB

jg(3)
1 j D jc0 C c1�

(3)
C � � � C cd�1(�(3))d�1

j � j�j,

...

jg(d)
1 j D jc0 C c1�

(d)
C � � � C cd�1(�(d))d�1

j � j�j.

Since ord
�

(g2) � �s and jg2j< 1, we havekg2k> j�j. Thus, there existsj0 2 {2,:::,n}

with jg( j0)
2 j > j�j. So jg( j0)

1 C g( j0)
2 j > j�j, which implies thatj(�( j0))s�1

j jg( j0)
1 C g( j0)

2 j >

inf j2{2,:::,d}j(�( j ))s�1
j j�j D r . Then we obtainkhk > r .

Theorem 3.3. Let � be a Pisot or Salem unit series. Then (�) > 0.

Proof. We will show that there exists a positive constantc such that every ra-
tional f with j f j < c has a purely periodic�-expansion. Letf 2 Fq(x, �) \ D(0, 1)
and assume thatf does not have a purely periodic�-expansion. Since� is a Pisot
or Salem series, we know thatd

�

( f ) is periodic (by Theorem 2.3) and letm be the
length of the period. Sod

�

( f (�m
�1)) is finite because the�-expansion is closed under

addition i.e.,

d
�

( f (�m
� 1))D d

�

( f �m) � d
�

( f ).

As d
�

( f ) is not purely periodic, then ord
�

(�m f � f ) < 0. By Lemma 3.2, there exists
r > 0 such thatk�m f � f k > r .

Since� is a Pisot or Salem series, we havek f k � k�m f � f k � r , with

�

m f � f D

0

B

B

B

�

(�(2))m f (2)
� f (2)

(�(3))m f (3)
� f (3)

...
(�(d))m f (d)

� f (d)

1

C

C

C

A

.

However f 2 Fq(x), then for all j 2 {2, : : : , d}; j f ( j )
j D j f j and for this, we conclude

that j f j � r .

Theorem 3.4. Let � be a Pisot or Salem element inFq((x�1)) which has a con-

jugate Q

� satisfyingj Q�j � 1=j�j. Then (�) D 1.

Proof. Assume that� is a Pisot or Salem series, by Theorem 2.3 we can de-
duce thatd

�

( f ) is periodic. Let’s suppose thatf does not have a purely periodic
�-expansion, sod

�

( f ) D 0.a1 � � � apapC1 � � � apCs and ap ¤ apCs. Hence

f D
a1

�

C � � � C

ap

�

p
C

apC1

�

pC1
C � � � C

apCs

�

pCs
C

1

�

s

�

f �
a1

�

� � � � �

ap

�

p

�

.
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Sincea1, : : : , apCs 2 Fq[x] and f 2 Fq(x),

f D
a1

Q

�

C � � � C

ap

Q

�

p
C

apC1

Q

�

pC1
C � � � C

apCs

Q

�

pCs
C

1
Q

�

s

�

f �
a1

Q

�

� � � � �

ap

Q

�

p

�

.

We get

f

�

1�
1
Q

�

s

�

D

a1

Q

�

C � � � C

ap

Q

�

p
C

apC1

Q

�

pC1
C � � � C

apCs

Q

�

pCs
C

1
Q

�

s

�

�

a1

Q

�

� � � � �

ap

Q

�

p

�

.

Therefore

f ( Q�sCp
�

Q

�

p) D a1 Q�
sCp�1

C � � � C apCs � a1 Q�
p�1

� � � � � ap.

Since j Q�j � 1=j�j, then we get

j f j j Q� p
j D japCs � apj.

So
j f j

j�j

p
� japCs � apj.

SinceapCs � ap ¤ 0, j f j � j�jp. which is absurd becausef is in the unit disk.

Proposition 3.1. If � is a Pisot or Salem series which has a conjugateQ� satis-
fying j Q�j � 1=j�j, then � is unit.

Proof. Let � be a Salem series of degreed satisfying �d
C Ad�1�

d�1
C � � � C

A1� C A0 D 0 where Ai 2 Fq[x] ( A0 ¤ 0) and let�1 D �, : : : , �d be the conjugates
of �. So

jA0j D j��2 � � � �dj.

If we have for examplej�2j � 1=j�j, so we get

jA0j � j�3 � � � �dj.

Therefore

j�3j D j�4j D � � � D j�dj D 1 and jA0j D 1,

what gives thatA0 2 F
�

q .

The “unit” condition is necessary in the Theorem 3.3. In fact, in the non unit base,
we get  (�) D 0. For that we will give the following result in an analogous way to
the real case [3].
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Proposition 3.2. Let � be a series which is not a unit. Then (�) D 0.

Proof. Let P( f ) D An f n
C An�1 f n�1

C � � � C A0 be the minimal polynomial of
� with Ai 2 Fq[x] for all i 2 {1, : : : , n} and A0 2 Fq[x] n F�q . Let fn D 1=An

0 with
n 2 N�, we will prove that fn does not have purely periodic�-expansion. We see

fn D
a1

�

C � � � C

ak

�

k
C

f

�

k

D

�

a1

�

C � � � C

ak

�

k

��

1C
1

�

k
C

1

�

2k
C � � �

�

D

 

k
X

iD1

ai�
�i

! 

X

i�0

1

�

ik

!

D

Pk
iD1 ai�

�i

1� ��k

D

Pk�1
iD0 ak�i�

i

�

k
� 1

.

So we havefn(1��k) D
Pk�1

iD0(�ak�i )� i
D (1��k)=An

0 2 Fq[x,�], then (1��k)=An
0 D

cn�1�
n�1

C cn�2�
n�2

C � � � C c0 with cn�1, : : : , c0 2 Fq[x]. Consequently,

1� �k
D A0

n(cn�1�
n�1

C � � � C c0)

D (�An�
n
� An�1�

n�1
� � � � � A1�)n(cn�1�

n�1
C � � � C c0).

As a result 1D �(zt�
t
C� � �Cz0) and this contradicts the hypothesis that� is not unit.

Theorem 3.5. Let � be a quadratic Pisot unit series. Then (�) D 1.

Proof. In this case� satisfies�2
C A� C c D 0, wherejAj > 1 and c 2 F�q so,

the unique conjugate of� is Q

� such that

�

Q

� D c, which j

Q

�j D

1

j�j

.

By Theorem 3.4, we obtain the result.

REMARK 3.3. We remark that if� is a Pisot or Salem not unit series then� has
not a conjugateQ� such thatj Q�j D 1=j�j and the quadratic case is the only case where
a Pisot unit series� has a conjugateQ� such thatj Q�j D 1=j�j.

However, if � is an algebraic integer of degreed > 2 over Fq[x] and �2, : : : , �d

their (d�1) conjugates, then we havej��2 � � ��dj D 1. If we suppose that for a certain
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i with j�i j D 1=j�j, then
�

�

�

�

�

�

Y

j¤i

�i

�

�

�

�

�

�

D 1,

which is absurd becausej�i j < 1 for all i in {2, : : : , d}.

Theorem 3.6. Let � be a Salem unit satisfying�d
C Ad�1�

d�1
C� � �C A1�CbD

0, where b2 F�q and jA1j D jAd�1j. Then (�) D 1.

Proof. Let �2, : : : , �d be thed � 1 conjugates of� and let’s note that�1 D �,
so we have

�

�

�

�

�

Y

1�i�d

�i

�

�

�

�

�

D jbj D 1.

This implies that there exists at least one conjugate of absolute value less than 1.
In the other hand we have:

j�1 C �2 C � � � C �dj D j�j D jAd�1j.

By the symmetrical relations between the roots, we get

�

�

�

�

�

�

X

1�i1<i2<���<id�1�d

�i1�i2 � � � �id�1

�

�

�

�

�

�

D jA1j.

So if we suppose that� has more then 2 conjugates of absolute value lower to 1 and
the other of equal absolute value 1, then we obtain in this case jA1j < j�j which con-
tradicts the hypothesis thatj�j D jAd�1j D jA1j.

Finally we conclude that� has a unique conjugateQ� such thatj Q�j < 1 and the
other conjugates of equal absolute value 1. So,j

Q

�j D 1=j�j and by Theorem 3.4 every
rational series in the unit disk have a purely periodic�-expansion.

Corollary 3.7. Let � be a cubic Salem unit series. Then (�) D 1.

Proof. Let� be a cubic Salem unit series. In in this case the minimal polynomial
of � is

P(y) D y3
C A2y2

C A1yC b where b 2 F�q ,

and by Theorem 2.1, we havejA2j D jA1j. According to Theorem 3.4, we deduce that
every rational series in the unit disk have a purely periodic�-expansion.
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