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1. Introduction and results

Let M be a compact connected manifold of d i m M ^ 2 and g an Einstein
metric on M. If (M, g) is the standard sphere, then all Einstein metrics £' on
M near g are of constant sectional curvature, and so (M, g') are homothetic
with (M, g) (Berger [2] Proposition 6.4, Muto [23] ρ457 Theorem). Such an
Einstein metric g is said to be rigid. We know that some of Einstein metrics
with vanishing Ricci tensors are not rigid. For example, flat torus and the
i£3-surfaces are not rigid (Bourguignon [6] 08). But we know few Einstein
metrics with negative definite Ricci tensors which are not rigid. In fact, in
this paper we prove the rigidity of Einstein metrics g such that the universal
riemannian covering manifold of (M, g) is a symmetric space of non-compact
type without 2-dimensional factors (Corollary 3.4). Furthermore, for irreduci-
ble locally symmetric spaces of compact type, we show the following.

Theorem 1.1. The following simply connected symmetric spaces are in-
finitesimally deformable. (For the definition of the infinitesimal deformability, see
Definition 2.4.)

SU(n+l) (w^2), SU(n)ISO(ή) (ιi^3), SU(2n)ISp(n) (n^3), £ β /F 4 .

Theorem 1.2. Let (M, g) be an irreducible locally symmetric space of com-
pact type. If the universal riemannian covering manifold of (M, g) is neither one of
the types in Theorem 1.1 nor of the type U(ρ+q)IU(p)x U(q) (p^q^2), then g
is rigid.

Moreover we study the stability of Einstein metrics. It is well-known
that Einstein metrics g are nothing but critical metrics with respect to the total
scalar curvature T (Hubert [12]). In general, this critical point is neither
maximal nor minimal (Berger [1] ρ290, Muto [24] p 521 Theorem). But if we
consider only metrics of constant scalar curvature, then some cricical points
are maximal. That is, if we denote by C the set of all riemannian metrics on
M of constant scalar curvature and with volume 1, then some Einstein metrics
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are maximal in C. Such an Einstein metric g is said to be stable. For example,
all Einstein metrics of compact locally symmetric spaces of non-compact type
without 2-dimensional irreducible factors are stable (Koiso [19] Remark 2.6).
If an Einstein metric g is a saddle point of the total scalar curvature T in C,
then g is said to be unstable. We show the following theorems on the stability
of locally symmetric spaces of compact type.

Theorem 1.3. The following simply connected symmetric spaces are un-
stable.

Spin(5), Sp{n) (n^3), Sp(ή)IU(n) («^3).

Theorem 1.4. Let (My g) be an irreducible locally symmetric space of com-
pact type but not the standard sphere. If the universal riemannian covering mani-
fold of (Myg) is neither one of the types in Theorem 1.3 nor one of the following
types, then g is stable.

SU(n+ί) (n^2), U(p+q)IU(p)xU(q) (p^q^2), Sp(p+q)ISp{p)xSp(q)
(p=2, q=ί or ρ^q^2), F4Spin{% SU{n)ISO(n) (n^3), SU{2n)\Sp{n) ( Λ ^

The above results are obtained from evaluations of infinitesimal Einstein
deformations and the second differential of T by means of the representation
theory, which are made from the tables at the end of this paper.

The author would like to express his sincere gratitude to the referee for
his kind suggestions.

2. Preliminaries

In this section, we recall some fundamental definitions and some known
facts concerning the space of riemannian metrics. Let M be a compact con-
nected C°°-manifold with w = d i m M ^ 2 . Riemannian metrics on M, etc. are
all to be in C°°-category, unless otherwise stated. For a fibre bundle F over M,
we denote by H\F) the set of all /Γ-cross sections of F. Here and throughout
in this paper Hs means an object which has derivatives defined almost every-
where up to order s and such that each partial derivative is square integrable.
H\F) becomes a Hubert manifold. We denote by JΛ\ S)\ £FS the Hubert
manifold of all i/s-riemannian metrics on M, the group of all ίΓ-diffeomorphisms
of M9 the Hubert manifold of all positive ϋΓ-functions on M, respectively.
(Here, we assume that s is sufficiently large.)

Let g be a riemannian metric on M. We denote by ( , ) the inner product
on tensors on M and by < , > the global inner product for tensor fields, i.e.,
< , > = / M ( > )Vg> where vg is the volume element of g.

Lemma 2.1 (Ebin [8] 8.20 Theorem). Let g be a riemannian metric on M
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and Ig the isometry group of (M, g). If s>nβ-\-2} then there is a canonically
defined submanίfold Ss

g of 3ίs containing g with the following properties.
S\) Ifj(Ξlg,theny*(Sg)=Sg.
52) / / γ e 3 ) s + ι and γ%SJ) ΠS s

gΦφ, then γGE/#.
53) There is a C°°-local section X: 3)s+ιIIg->3)s+ι defined on an open neigh-

bourhood U of Ig such that if F: UxSs

g-^3ίs is defined by F(uy g')=X(u)*g'
then F is a homeomorphism onto an open neighbourhood of g. Note here that the
quotient space S)s+λ\lg is a Hilbert manifold.

Moreover the orbit (iZ)s+1)*g becomes a closed Hilbert submanifold of
3ff. The tangent space of JΛS 2Xg is decomposed into the sum of the tangent
space of {βs+v)*g at g and the tangent space of S\ at g in the following way.

(2.1.1) H\S2M) = δ*(i/ s + 1(51M))0Ker δ (orthogonal direct sum) ,

Tg(3ί5) = H\S2M), Tg{(3)s+ι)*g) = δ*(Hs+\SιM)),

Tg(Si) = Ker δ ,

where SPM is the vector bundle of covariant symmetric ^-tensors on M, δ*
and δ are differential operators defined by

2(δ*£),v = V ^ + V ^ , for ξϊΞH>+\S'M),

(δ*), = -ψhH for h^H\S2M).

Denote by JMS

C the space of all i/s-riemannian metrics on M with volume
c. Then 3&\ and S\ (Ί JMS

C become a closed submanifold of 31s and a submani-
fold of 3ίs

c respectively, and the above lemma holds also replacing JM\ Ss

g by
<3lscy SgΓ\JHsc In this situation the above decomposition (2.1.1) turns out to

(2.1.2) Ker / = I m δ*0Ker 8 Π Ker / (orthogonal direct sum),

where/ is defined by /Λ=<A, g> for h^Hs(S2M)y and Tg3is

c=Ktr / ,

Tg(Sr

g Π <5β)=Ker δ Π Ker / .

DEFINITION 2.2. Let g be an Einstein metric on M with volume c. If
there is a iZ)s+1-invariant open set N of 3ls

c containing (i2)s+1)*£ such that every
£fs-Einstein metric in N is an element of (<3)s+v)*g, then g is said to be rigid.

REMARK (1). Let g be a rigid Einstein metric on M in the sense of the
above definition. Then g is rigid in the sense of the Introduction. In fact,
let <3ΐ7 and 3)°° be the space of C°°-riemannian metrics on M with volume c
and the group of C°°-diffeomorphisms of M with C°°-toρologies, respectively.
Then N Π JH7 is open in JM™ and invariant under the action of 2)°°. lϊg' is an
Einstein metric in ΛΓΠcJίΓ, then there is γ E 5 ) s + 1 such that γ*g=g'. Then
γG5)°° by Palais [26] and so g'^(Φ°°)*g. This implies the rigidity of g in the
sense of the Introduction.
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REMARK (2). Let g be an Einstein metric on M with volume c. If all
1-parameter families g(t) of iΓ-Einstein metrics in <3tts

c such that g(0)=g are
contained in {S)s+ι)*g, then g is said to be non-deformable. We easily see from
the closedness of {$)s+ι)*g in JMS

C that if g is rigid, then g is non-deformable.

Note that the defining equation of Einstein metric is given as follows:
If we define a C°°-map E: JHS^HS~\S2M) by

where Sg is the Ricci tensor of g, then g is Einstein if and only if E(g)=0.

Lemma 2.3. Let s be an integer > nβ-\-2 and g an Einstein metric on M
with volume c. We restrict the C°°-map E: <315->HS-\S2M) to Ss

gn<3H Then
the differential dE of E at g is given by

(dE)(h) = —(£+2L-Hess tr)A for AeKer δ ΠKer / .

Moreover, we have

Ker (dE) Π Ker δ Π Ker / = K e r (S+2L) Π Ker δ Π Ker tr .

where (SA)0 = — V'V/A0 ,

(Uήt^Rf/hu for h<ΞH*{S>M),

trh = gklhkl for heH°(S2M),

(Heββ/)0 = V,Vy/ forfeH*(M) = H\S°M),

and the sign of the curvature tensor R is given as Rφ^Q for the standard sphere.

Proof. Similar to Berger and Ebin [3] Lemma 7.1.

DEFINITION 2.4. Let g be an Einstein metric on M with volume c. If the
space Ker {dE) Π Tg{Ss

g Π <3ls

c) vanishes, then g is said to be infinitesimally non~
deformable. Otherwise g is said to be infinitesimally deformable.

For ί>w/2+4, we denote by Cs

c the space of all i7*-riemannian metrics g
on M with volume c and of constant scalar curvature.

Lemma 2.5 (Fischer and Marsden [9] Theorem 3, Koiso [18] Theorem
2.5, [19] Proposition 2.1). Let s be an integer >w/2+4 and g an Einstein metric
on M with volume c, but (M,g) is not the standard sphere. Then there is a neigh-
bourhood U of g in Ms such that UΓ\CS

C becomes a closed submanifold of U. If
we define a map X: S'x{U ΓiCs)->Ms by X(f,g')=f-g'9 then X is a dijfeomor-
phίsm onto an open set of 31s. Moreover the decomposition Tg3ίs=Tg(ΈFs g)®
Tg(Cs

c Π U) of the tengent space TgJHs=H2(S2M) is given by
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ft\H\M)-g,

Tg{Cs

c Π U) = Im δ*ΘKer α Π Ker δ Π Ker / .

Here a: H\S2M)^HS~\M) is a differential operator given by

a(h) = Δ(Δ-£) tr h for h<ΞHs(S2M),

where Δ is the Laplacian of (M, g) and S is the constant defined by S=£ g.

If we denote by T(g) the total scalar curvature of ίΓ-riemannian metric g
on My i.e., T(g)=ζτg, iy where τg is the scalar curvature of g> then a rieman-
nian metric g on M with volume c is an Einstein metric if and only if g is a
critical point of C°°-function T on 3i% (Hubert [12]). Therefore, for an Einstein
metric g, we see

(dT)g(Ktrf) = 0.

As for the Hessian (Hess T)g on (Ker /)χ(Ker / ) , we know the following

Lemma 2.6 (Koiso [19] Theorem 2.4, Theorem 2.5). Let g be an Ein-
stein metric on M. If {M, g) is not the standard sphere, then (Hess T)g \ (Ker / Π
H\M) g) x (Ker / Π H\M). g) is positive definite, (Hess T)g | Im δ* x Im δ*=0,
and (HessT)^|(KerαΠKerδnKer/)x(KerαnKerδnKer/) is ginven by

(Hess T)g(h, h)=-~<Άh+2Lh, A>.

DEFINITION 2.7. Let g be an Einstein metric on M but (M,g) be not the
standard sphere. If (Hess T)g \ (Ker a Π Ker δ Π Ker / ) X (Ker a Π Ker δ Π Ker / )
is negative definite, then the Einstein metric g is said to be stable. If there is
an element h of Ker a Π Ker δ Π Ker / such that (Hess T)g(h, h)>0, then g is
said to be unstable.

REMARK (1). Definition 2.4 (infinitesimal deformability) and Definition
2.7 (stability) are independent of the choice of s, since S + 2 L is an elliptic
operator and hence its eigentensor fields are C°°.

REMARK (2). If g is a stable Einstein metric, theng is infinitesimally non-
deformable. This follows from Ker (S+2L) Π Ker δ Π Ker tr c Ker a Π Ker δ Π
Ker / and the above formula for Hess T in Lemma 2.6.

REMARK (3). Let g be an Einstein metric on M and (M, g) a compact
riemannian covering manifold of (M, g). If g is stable then g is also stable.
In particular, the stability of an Einstein metric of a locally symmetric space of
compact type reduces to the stability of an Einstein metric of a simply connected
symmetric space of the same type.
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Lemma 2.8 (Koiso [19] Theorem 2.5). Let g be an Einstein metric on M.
Then the space Ker a Π Ker δ Π Ker / coίnsides with Ker δ Π Ker tr. Moreover,
ifh^Ker δ Π Ker tr and

^-<h,h> or

where Sg=£-g, then (Hess T)g(h, h)<0.

Corollary 2.9. Let g be an Einstein metric on M. If the universal ήemannίan

covering manifold of (M, g) is a symmetric space of non-compact type without 2-

dimensional factors, then g is stable.

Proof. In this case, the inequality (JJi, hy>8<Ji, K) holds for all non-zero
AeKertr (Koiso [19] Remark 2.6). Thus Lemma 2.8 implies our Corollary.

Q.E.D.

3. Infinitesimal non-deformability and rigidity

Lemma 3.1. Let s be an integer >/z/2+2 and g an Einstein metric on M

with volume c. If there is an open neighbourhood V of g in Ss

g Π <3tts

c such that g

is the only one Hs-Einstein metric in V, then g is rigid.

Proof. We use the notation in Lemma 2.1. We wee \$)s+ι)*(V) =
(£)s+1)*(F(Ux V)) and so (^)S+1)*(F) is a ^s+1-invariant open set of Ml If g'
is an /Γ-Einstein metric in (^)S+1)*(I/Γ), then^' is isometric with an ίΓ-Einstein
metric in V, which is nothing but g. Therefore ^ f / ^ ( ^ s + 1 ) * ^ r , which means
the rigidity of g. Q.E.D.

Lemma 3.2. Let g be an Einstein metric on M with S=£ g. We define
operators β: HS{S2M)^HS~\S2M) and γ: Hs{S2M)->Hs-\Sιm by

β(h)= (Δ+2L-Hesstr)A,

7(h)=(δ+±-dtr)h.

Then γ/3 = ( i - £ ) δ ,

where (Sε)t == - V7V7£, , for ξ e H\SιM).

Proof. Remark that ^kRι

k

m

i=0. In fact, by the second Bianchi identity,

VΉ'Λ = -VmRι

ki

k-ViR
ι

k

km=VmSι

i-ViS
hn = 0 .

Now,

[δ(Δ+2L-Hesstr)A] t
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V V, V,A*, - RιrFJΐk+V, V V,A\

= 6(itrA)#—(dΔtrA),-.

Hence δ ( i + 2 L - H e s s tr)A=(S—£)δA+J(£-Δ) tr A. On the other hand,

tr(S+2L—Hesstr)A

= 2Δ tr A—26 tr h .

Therefore — d tr (£+2L-Hess tτ)h=d(A-6) tr A. Thus

yβh = (£—S)δA . Q.E.D.

Proposition 3.3. Lei g έe arc Einstein metric on M. If g is infinitesimally
non-deformable, then g is rigid.

REMARK. Let g be an Einstein metric on M and (M, g) a compact rie-
mannian covering manifold of (M, g). This proposition implies that if g is
infinitesimally non-deformable, then g is rigid. In particular, the rigidity of
an Einstein metric of a locally symmetric space of compact type reduces to the
infinitesimal non-deformability of an Einstein metric of a simply connected
symmetric space of the same type.

Proof. First we show that β (Ker δ Π Ker / ) is closed in HS~2(S2M).
Lemma 3.2 implies that /3(Ker δ)cKer γ and so /3(Ker δ ) c l m β Π Ker γ, here
the space Im/3ΠKerγ is closed in H*~2(S2H), since β is an elliptic operator.
Let h^Hs(S2M) satisfies /3AeKerγ. Decompose h by the formula (2.1.1)
as h=ψ+δ*ξ; δΛjr=O. Then by Lemma 3.2,

0 = Ύβh = {Ά-S)8h = (£-£)δδ*f .

This equation implies that such ξ is an element of the vector space Ker(5 — £)δδ*,
which is finite deminsional since (5—£)δδ* is elliptic. Let c be the volume of
(M, £). Then 8 ( ψ - « ψ , ^>/«:) ^ ) = 0 and / ( ψ - « ψ , g>lnc)-g)=0. Thus

/3(Ker δ ΠKer /)+y8δ*(Ker(Δ-£)δδ*)+/J.όθlm /3ΠKer γ .
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Therefore /3(Ker δlΊKer / ) is a finite codimensional subspace of the closed
subspace ImKer/3ΠKerγ of Hs~2(S2M)y and so Palais [25] Chapter VII
Proof of Theorem 1 implies that /3(Ker δ Π Ker / ) is a closed subspace of
HS'2(S2M).

Next, we denote hyp the orthogonal projection: Hs~2(S2M)->β(Ktr δΠ
Ker / ) . Then we can apply the inverse function theorem to the C°°-maρ poE:
Ss

g Π Jϊfi->/8(Ker δ Π Ker / ) . In fact, Lemma 2.3 implies that d(j>oE \ Ss

g Π JUi)g

= —^>o/3|Ker δfΊKer / and the assumption implies that this differential is

bijective. Thus the assumption of Lemma 3.1 holds and hence we get our
assertion. Q.E.D.

Corollary 3.4. Let g be an Einstein metric on M but not the standard sphere.
If g is stable, then g is rigid. In particular, if the inequality of Lemma 2.8 holds
for all non-zero λeKer δ Π Ker tr, then g is rigid. Moreover, any Einstein metric
of a locally symmetric space of non-compact type without 2-dimensional factors
is rigid.

Proof. This is easily seen by Remark (2) following Definition 2.7, Lemma
2.8 and Corollary 2.9.

REMARK. The author does not know whether the converse of Proposi-
tion 3.3 holds or not.

4. Fundamental formulae

In this section we assume that (M,g) is a locally symmetric Einstein
manifold.

Lemma 4.1. If S=ε g, then the following formulae hold.

(4.1.1) (Ά+2L)L = L(Ά+2L) on C~(S2M),

(4.1.2) Lg=-S gy

(4.1.3) δ(S+2L) = (Δ-2S)δ on C~(S2M),

(4.1.4) ( i+2L)δ* = δ*(Δ-2£) on C°°(SιM),

(4.1.5) 2δδ* = A-2S+dS on C~{SιM) .

Proof. These are easily seen, by Vi?=0 and computations similar to
Proof of Lemma 3.2.

Lemma 4.2. Let (M, g) be a compact locally symmetric Einstein manifold.
Let h<ZΞHs{S2M) satisfy Άh+2Lh=-\h (λ^O). Decompose h by (2.1.1) as

h=δ*ξ+ψ; δψ=0. If tr δ*£=0, then δh=O.

Proof. Note that Sξ=~tv 8*ξ=0 and δ* is the formal adjoint of δ.
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<(Δ-26)£, ( Δ -

= <(Δ-26)g, 2δδ*£> (by (4.1.5))

= <(i+2L)δ*£, 2δ*f> (by (4.1.4)) .

Here the decomposition Im δ*©Ker δ is invariant under S + 2 L by (4.1.3) and

(4.1.4), and hence (a+2L)δ*f=-λδ*f . Thus

<(Δ-26)£, (A-2S)ξ> = -2λ<δ*£, δ*f>^0. (by λ^O)

Therefore (Δ—26)ξ=0, and

<δ*£, δ*ξ> = <δδ*f, f> == l < ( Δ - 2 6 ) 5 , e> (by (4.1.5))

= 0.

Thus δ*£=0 and so A=ψ. Hence Sh=O. Q.E.D.

5. Lichnerowicz operator and Casimir operator

In this section, we assume that (M, g) is a compact symmetric space GjKy

where G is a compact connected Lie group and (G, i£) is a symmetric pair. As
usual, let g be the Lie algebra of G, ϊ the Lie algebra of Ky g=ϊ-j-m the
canonical decomposition. Then the tangent space T0M of M at the origin
o is identified with tπ. The metric of M is always induced by a G-invariant
inner product B on g with B(ΐ, m)=0. We fix such an inner product B once
and for all. We extend B C-bilinearly on g c x g c and often write as B(X, Y)=
(X,Y).

Since K acts on the complexification m c of tn by the adjoint action Ad,
the tensor space (g^m*0 of degree p of the dual space m*c of mc is a i£-module.
Then the complex covariant />-tensor bundle TPMC of M is identified with the
homogeneous vector bundle Gxκ®

pm*c associated to the principal bundle
π: G->G\Ky in the following way. Let α b e a point in M and s an element
of T*MC. For χζΞπ-\a) we get (x, ( Λ j J m ^ - x m ^ G G x ^ m ^ , where
we regard X^mc as a left invariant vector field on G, and ^ t n * * 7 the space of
C-multilinear forms on m c. We identify s with the element [(#, (π*s)x\mcχ •••
Xxncyi^Gxκ®

pm*c, where we denote by [*] the equivalence class of *
Generally, for a finite dimensional (complex) i£-module U, a cross section

s of the homogeneous vector bundle GxκU over M may be identified with a
[/-valued function s on G such that s(xy)=y"1s(x) for all ΛIGG and y^K. Let
C°°(G, J7)jf be the space of all such s. Then C°°{G> U)κ becomes a G-module
by the G-action (xs)(y)=s(x~1y) for Λ I J G G . In particular, the vector space
C°°(TPMC) of all complex covariant ^-tensor fields on M is identified with
C~(G, ®pm*c)κ as G-module. For a (differential) operator ζ: C°°(TpM)->
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C°°(TqM), we extend ζ C-linearly to the operator: C°°(TpMc)->Coo(TqMc) and
denote it by the same symbol ζ.

Now, we define a linear map D: C°°(Gy ®
pm*c)κ->C°°(Gy φ ^ m * ^ * by

(DS)(x)(X09 ...,X,) = {XJftXu - , X,)])(*) ( * e G )

where s^C°°(G, φ'm**7)* and Z . Gm. It is easy to see that Ds^C°°(G,
®ί+1m*c)jf and D is a G-homomorphism.

Lemma 5.1. Tλe /tniαr map Z) regarded as a linear map from C°°(TPMC)

to Coo(Γ ί+1ikίc) coincides with the covariant derivative V of the symmetric space

(M,g).

Proof. Since V and D are G-homomorphism, it is sufficient to prove that
the equation holds at the identity e<=G. Let ίeC~(TW c)=:C~(G,
Then for X09 —, p

(Vs)(e)(X0,

Here we extend each X^TJiG)0 to the right invariant vector field X{. Then
each π*Xi defines a vector field on M, and we get

—, π*Xp)}0.
ί = l

Since Xo, JSf, e m c and (M,^) is symmetric, we have (V1t^χ0π^i)o=09 and the
right hand sidc==X0[(π*s)(Xl9 " ,j£p)\. Moreover, if we regard Xt as left
invariant vector fields on G, this is equal to

-..,J: > ). Q.E.D.

Let F be a g-module. We define an operator on V which is called the
Casimir operator, by

c = -'Σzι.zt,
i

where {Zt } are orthonomal basis of g (with respect to the fixed inner product
B). Note that if V is a finite dimensional G-module, then V is a g-module in
the natural way, and so the Casimir operator on V is defined. If U is a finite
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dimensional ^-module, then g acts on C°°(G, U)κ via the differentiation by left
invariant vector fields, i.e.,

s(x exp tX)

for i G g , s(=C°°(G, U)κ, Λ G G . Thus the Casimir operator C on C°°(G, U)κ is
defined.

DEFINITION 5.2. We define the operator Q, L, 5 and the Lichenerowicz
operator Δ on the vector space COO(TPMC) as follows.

V

REMARK. This definition does not contradict the previous definitions
and the ordinary Laplace-Bertrami operator (Lichnerowicz [20] 10). But we
shall not use these notations except in the following proposition.

Proposition 5.3. The Lichnerowicz operator Δ regarded as an endomorphism

of C°°(G, ®pm*c)κ coinsides with the Casimir operator C.

Proof. Let Sit Ts be orthonormal basis of ί, tn, respectively. It is
sufficient to prove that the equation holds at the identity e e G . For s^C°°
(G, (g^m*0) and Xu •• ,Xpemc, which are regarded as left invariant vector
fields on G, we have

= ΣSrSfoXu ».,XP)]+J1 TrT,{s{Xlt - , X P ) Ϊ .J1

= Tj[(Dή(Tj,Xu ..,Xt)]

= Tj[(Vs)(Tj,Xu...,Xp)]

= (DVs)(Tj,Tj,Xu..;Tp)

= (Ws){TJ,TJ,X1,. ;X,).

Therefore 2 ; TJ TJ[S\=—'SLS at e. Moreover in virture of the equality s(xy)
y'hζx) for x G G j G i C , w e have

= ΈSi[s(X1, ..,[Si,Xk],.~,Xp)]
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X1( - , [Sh Xk],.... [S. , X,], -,XP)

On the other hand, regarding an element of m c as a tangent vector of G at £, we
have

(Ls)0(π*Xu -~,π*Xp)

h π*Tb)s(π*Xly ---yπ*Tay •••, π*Tby •••, 72:*^)

(At) (/)

, Tb], S ^ X T

Σ ( [ , > Xkl Tβ)([Si9

ί5ί

Σ(
k>a,b

a, π*Tb)s(π*Xlf —,

- , »*£ - , π*Xp)

= Σ ([^*, τtι s,)([τn τb], s
k,a,b,i

= Σ ([s, , ^*),
k,a,b,i

= Έ.([Si, x,l [Sh TJMX τ
k,a,i

- , **[S,, [Sh XJ\, " ,

Thus Σ SrS,[s]=-(2Ls+pQs) at e Q.E.D.

Corollary 5.4. If (M,g) is a symmetric Einstein manifold such that S=S gy

then for p=2 we have Ά+2L=C—2ε.

L e m m a 5.5 (Frobenius reciprocity, c.f. Wallach [29] Theorem 8.2).
Let V be a finite dimensional G-module and U a finite dimensional K-module. For
a G'homomorphism φ: F—>C°°(Gy U)Ky we define a K-homomorphism φ: V-+U
by $(^)=φ(^)(^) Then the correspondance: φ-+<j!> is an isomorphism as vector
space from HomG(F, C~(Gy U)κ) to Hom^(F, U).

REMARK. Let V be a finite dimensional G-submodule of C°°(Gy U)κ.
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Then C leaves V invariant and coinsides with the Casimir operator of the G-
module V on V. This follows from Σ 2 V ^ i = Σ ^Γ^» and that for the inclu-
sion φ: V-+C°°(Gy U)κ we have φX=—Xφ on Vfor all X<=g.

Corollary 5.6. Let VaC^^M0) be a finite dimensional G-submodule
of the eigenspace of 5 + 2 L with a non-positive eigenvalue. If HomiΓ(P

/Γ, C)=0
or Hom*(F, m ' ^ O , then δ(F)=0.

Proof. If Hom^F, m* c )=0, then HomG(F, C°°(Gy m*°)κ)= 0 and so
δ(V)=0. If Hom^F, C)=0, then HomG(F, C°°(Gy C)κ)=0 and so the as-
sumption of Lemma 4.2 holds for each h^ V. Thus δ(F)=0. Q.E.D.

REMARK. The results in this section are true for any (not necessarily com-
pact) symmetric space (M,g)y except Lemma 5.5 and Corollary 5.6. This is
pointed out by M. Takeuchi.

6. Fundamental lemmas for root systems

Let (g, ϊ) be an effective symmetric pair of compact type with the inner
product B fixed in 5. Then g is semi-simple. We introduce the following
ordinary notation.

g = ϊ + m : the canonical decomposition,
θ: the involution of g defined by 0|ϊ=idf, 0 | τ n = — idm,
α: a Cartan subalgebra of ϊ,
t : a Cartan subalgebra of g containing α,
b=tnm,

*: the root system of g with respect to J5,
: the root system of I with respect to B\tχΐ, so that there are

root vectors {AΓαegc; α ^ Σ ( 3 ) } such that

[H, XΛ] = v/ZθB(α, H)X for all H <Ξt ,

[XΛy X. J = x / ^ ΐ α ,

B(XΛ, X_Λ) = 1,

[XΛ, Xβ] = V=ΐN*tβXa+β (NΛ β e / 2 ) ,

where {β+na'y n^Zy —p^n^q} is the maximal α-series containing β.
Moreover XΛ and X_Λ are conjugate with respect to the complex conjugation
of Qc with respect to g with one another. Let be the orthogonal projection:
t-*α. Let > be a linear order of t such that if H>0 then ΘH>0 or i ϊ e b .
Let 95 be the base with respect to the order > , i.e., S3 is the set of all simple
roots with respect to > . Let > be the order defined by the base 95, i.e., x>y
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if and only if x—y=^2ci^za^a+0 and z*7^0 for all
hQ: the highest root of Σ(β)>
2δg: the sum of positive roots of g,

): the set of all dominant weights of Σ(fl)

Lemma 6.1 (Murakami [21] (33)). Σ ( 9 ) = Σ i U Σ 2 U Σ 3 (disjoint union)
where

Σ i = {c^Σ(9); θa = a, X
Σ2 = { « G Σ ( 9 ) ; θa = α, I Λ E Π I } ,

Lemma 6.2 (Murakami [21] Lemma 6).

Lemma 6.3 (c.f. Bourbaki [5] pl48 Theoreme 1). // α,
/Sφ±α, ffcii α—sign (α, /8) /9eΣ(β)

Corollary 6.4. Le* α, ySeΣ(a) tf cί=fi, then β=a or β=θa.

Proof. Assume that /3Φα, (9α. If (α, /3)>0, then ySφ— a and Lemma
6.3 implies that a—/3^Σ(9) which contradicts Lemma 6.2. Thus (α, /3)^0.
Similarly (a, θβ)^0. Then ((9α, (9/3)^0, (θa, β)^0 and

0^(α, σ) - (a, β)= ~(a+θa, β+θβ)^0,

and so #=0, which contradicts Lemma 6.2. Q.E.D.

Corollary 6.5. (Σ1UΣ2) ΠΣi=Φ

Proposition 6.6. Let Σ ( m ) be the set of all weights relative to α, with
multiplicity counted, of the K-module nf. Then Σ(™)\{0) =Σ(fl)\Σ(I) and the

multiplicity of a non-zero weight in Σ ( m ) w one. The multiplicity of 0 in Σ ( m )
is dim b.

Proof. Σ(m)\{0} = {cr; αGΣ(g), ΘXa*Xa} by Lemma 6.2. Thus the
proof reduces to Corollary 6.5.

Lemma 6.7 (c.f. Bourbaki [5] p 168 Proposition 29). // λ > 0 , then
(δg, λ)>0.

Proposition 6.8. Let λ, μeD(g). If\>μ, then (λ+2δg, X)>(μ+2δQy μ).

Proof. We see \-μ>0 and hence (\+μ, λ-/χ)^0, (2δg, \-μ)>0 by
Lemma 6.7. Thus we get the assertion. Q.E.D.
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7. Procedure of calculation

In this section we assume that (M, g) is a simply connected irreducible
symmetric space G/K of compact type, with G compact simply connected
and K connected. Thus (M, g) is an Einstein manifold and B is unique up to
constant factor. We denote by C0O(S2Mσ) the space of complex symmetric
covariant 2-tensors on M. An element s^C^^M0) is said to be G-finite if
the smallest G-invariant subspace of Cfβ^M0) containing s is of finite dimension.
The space of all G-finite elements of C^M0) is denoted by C^M0). It
is a G-submodule of C°°(S2MC) containing all finite dimensional G-submodule
of COO(52MC), Since S + 2 L is an elliptic G-invariant differential operator on
C^SPM*), each eigenspace of Ά+2L is contained in Cy(S2Mc). Moreover,
the self-adjointness of S + 2 L and L and (4.1.1) imply that the G-module
Cy(S2Mc) is decomposed into G-invariant simultaneous eigenspaces for S + 2 L
and L. We denote by 5 2m* c and £otn*c the second symmetric tensor product
of m* and the subspace of S2m*c consisting of all ί e S 2 m * c with trBs=0,
respectively. Let

be an irreducible decomposition of S2m*c as /^-module. In this decompo-
sition we may assume that V0—C B and Σ ί - i F,—S2m*c, and that L is a scalar
operator /, on F,. The homogeneous vector bundle GxκS

2τn*c=S2Mc is
decomposed into ®UoGxKV{ and the G-module C°°(Gy S2m:¥c)κ=Coo(S2Mc)
is decomposed into 0J . O C°°(Gy F,)*. Therefore the s-eigenspace Es of the
operator S-f 2L=C—2£ (cf. Corollary 5.4) is decomposed as G-module in the
following way.

Es = &E.J where Es>i = Es Π C~(Gh V)κ .

Note that L is the scalar operator lt on C°°(G, V>jκ.
Let Vc be a finite dimensional G-module such that the Casimir operator

of Ve is the scalar operator c. If we apply Lemma 5.4 and Lemma 5.5 and
Remark following Lemma 5.5 to Vcy we see that φ(F f)ci? c_ 2 g f for the element
φ of HomG(Vc, C°°{Gy Vt)κ) corresponding to a non-zero φ^Homκ(Vcy Vt).

Now, let us recall some facts on (finite dimensional) G-modules of a general
compact connected Lie group G. In the same way as in previous section, we
define an inner product B on g, a linear order > on a Cartan subalgebra t, the
order > defined by the base, D(Q)y δg and so on. For λeD(g) we denote by
VG(X) the irreducible G-module whose highest weight relative to t is λ, more
precisely, the isomorphism class of such a G-module. For a G-module W we
denote by AG(W) the set of all weights relative to t, with multiplicity counted.
If Wis an irreducible G-module, we denote by XG(W) its highest weight.
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Lemma 7.1 (Freudenthal [10] 43.1.9). The Cassimir operator on the G-

module VG(X) is the scalar operator (λ+2δ g, λ).

Lemma 7.2 (Freudenthal [10] 48.3). // μ^D(g)y then the multiplicity
m(μ) of μ in VG(X) is given recursively by the formula;

, μ+8Δ)m(μ) = Σ 2m(μ+ia)(μ+ia, a).
αeΣ(g)«»0

REMARK. For the multiplicities m(μ) for small λ of the type E8y F4y G2y

see also Freudenthal [11] Table E, Veldkamp [28] Table I, Humphreys [13]
ρl24 Table 2, respectively.

Let W be a G-module such that AG{W) is given concretely. Let λ be a
>-maximal element of AG(W). We get ΛG(FG(λ)) concretely, using Lemma 7.2.
Then W is decomposed as W=W'@Vy where AG(W')=AG(W)\AG(VG{\))
and AG(V)=AG(VG(\)). Thus, inducitvely, we get concretely the set of highest
weights of irreducible components of Wy with multiplicity counted. This set
will be denoted by HG{W).

Now, we come back to our symmetric space GjK and give a procedure of
calculation. The results are in the Table. We use Bourbaki [5] Planche
I-IX, where all concrete tables of Σ(fl) a r e given. We use also the inner
product B given in the tables.

I. Murakami [22] p 297 and p 305 shows the relation between the basis
of g and I. Combining Planche I-IX in Bourbaki [5], we get Aκ{mσ)=^{m)
by Proposition 6.6.

II. We decompose the jSΓ-module *Sr2m*c' into irreducible components.
The weights ΛiΓ(S2ttΐ*c) is given as {a+β; {α, j8}c2(m)}. Thus we get
H^S2™*^ in the above way. Let Hκ(S2m*c)={μ0=0y μly — yμr}. As the
result of calculation we know that μ, are distinct each other (cf. Kaneyuki and
Nagano [14], Takeuchi [27]). So we shall order them, in such way that μo<
μi< </V Denoting by V{ the irreducible jfiΓ-submodule of 6ί2τn*c with
the highest weight μh we get a decomposition of S2τn*c as in the beginning of
this section.

III. We compute the eigenvalue /# of L on V{. Let 5J3 be a subset of
2 i with the following property; for each a^Σ&> either one and only one of
a or θa belongs to 2J3 Set

Choose orthonormal basis {#,} of b. Then {Tay 7>, i/,; α<=Σ2, β e Σ s } are
basis of mc. Let {ΓΛ*, 7>*, #,*} be the dual basis of m*c. Then
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B= Σ TΛ* T-m*+ 22 Γp*.Γ

By the formula B(R(X, Y)Z,E7)=—.B([X, Y], [Z, £/]) for symmetric spaces (c.f.
Kobayashi and Nomizu [16] p 231 Theorem 3.2), we can easily check that the
ΓΛ Γβ-coefficient of L(TyTs) is zero if α + / 3 φ γ + δ , where we write To for
H{. Therefore, for / i G Λ ^ m * ^ , the subspace Wμ of *S2nt*c generated by
{TΛ* T β ; α+/3=μ} is invariant by the operator L. We denote by Tr(μ) the
trace of L on Wμ, Then

) Σ
where m^μ) is the multiplicity of μ{ in F, (cf. Kaneyuki and Nagano [14] (2.1)).
Thus if we know the value of Tr(^), then we get the value of l} inductively.
In particular, we know the value of £ by (4.1.2): S=—l0.

Now, we give the TΛ ^-coefficient Laβ of L(Ta-Tβ). These will enable
us to compute Tr(μ,) and to compute /, by the above formula.

a) Group type. See Kaneyuki and Nagano [14] Lemma 2.2.
b) Inner type (that is, b=0). Laa=(a, a) and Laβ=(a, β)+(NΛ^β)

2 if

c) Exterior type (that is, bΦO). We assume that a—0/?ΦΣ(fl) f°Γ

Σ(m)\{0} and /Q^5J3 This assumption is satisfied in each case. In the
following table, the symbol cί is used only if α

LaΛ = (a9 a),

Uβ = (α, β)+(Nat.β)
2

( {&> β)+(N<Λt.βfl2 if a-

a,B) if a—β^a and a—

REMARK. This method is developed by Borel [4], Kaneyuki and Nagano
[14,15]. See also Calabi and Vesentini [7].

IV. Let D ~ {λ e D(Q) μ{ ^ X} for 1 ̂  i ^ r and put J9= U t L i £>;. Then
Lemma 5.5 implies that if VG(X) is a G-submodule of C°°(G, Vt)κ then λGU { .
Thus if FG(λ) is a G-submodule of Ker tr then λ e / λ

Put L,:=min{(λ+2δg, λ); λGD,} for 1^/^r. In order to findλGΰ,- which
attains the minimum L,, we have only to check >-minimal weights in Di9 by
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virture of Proposition 6.8. Note that if L t>2£, then Lemma 7.1 implies Esi=0
for s^O.

Now assume thai for each 1 ̂  ί ̂  r, /,• > /0/2 or L{ > 2£. Then Es Π Ker δ Π
Ker t r = 0 for ί^O, which implies that this symmetric space is stable, unless it
is the standard sphere. In fact, suppose that there exists a non-zero
Ker δ Π Ker tr. Decompose h as

Then from the above we have

and hence the orthogonality (Vh Vj)=O(iφj) implies <LA, λ>> — £<& A>/2.
This contradicts Lemma 2.8. See Table.

V. Now, we consider a weight λ G D such that (λ+2δ g , X)^2β. If
t # c )nίί jr(^c(λ))=φ, then VG(X) is not a G-submodule of Ker tr. If
**7) ni/*(FG(λ))Φφ and if #*(V c(λ))$0 or Am, where hm is the highest

weight of Σ ( m ) > then Corollary 5.6 implies that VG(X) is a G-submodule of
Ker tr such that Άh+2Lh= {(λ+2δg, X)-2β}h and Sh=O for all A(Ξ VG(X).

Therefore if (λ+2δQ, X)=2£ for one of such λ, then g is inίinitesimally
deformable (An(n^2)f AIι{n^l),AI2{n^2\ All(n^3),EIV). If (λ+2δfi,λ)
<2£ for one such λ, then g is unstable provided M is not the standard sphere

If fl^Sgm**) ίW*(FG(λ))=φ for all λe£> such that (λ+2δ g , λ)=2£, then
^ is infinitesimally non-deformable, and so it is rigid (B2y Cn (w^3), CII (p=2
or ? ^ 3 ) , F//).

VI. Let M=G/K be of Hermitian type but not the standard sphere.
Assume that λ=A g is the only one element of D such that (λ+2δ g , λ)=2£
and Hκ(S2

orn*c)nHκ(VG(X))Φφf and that H^Slm**) f]Hκ(VG(hq)) consistes of
exactly one element. Then Eo Γl Ker tr is the unique G-submodule of Ker tr
which is isomorphic to VG(h^) as G-module. We denote by/the almost complex
structure of M acting on C^^M0). For a (complex) Killing vector field ξ on
M9 we define an element h of Ker tr by A = δ*/f — ((tr δ*Jξ)lή) g regarded as
ζtΞC~(SιM)c. If h=0, then '8*JξeΊmδ*nC~(M)c'g Tt follows from
Lemma 2.5 that δ * / | = 0 and so/ίf is also a Killing vector field. Thus we have
ξ=0. Therefore the correspondence (--»A is injective. Moreover we see that
if δλ=O, then h e Ker a Π Ker δ Π Ker / , and hence h=0 by Lemma 2.5. Thus
the space P of all h defined by Killing vector fields ξ is a non-trivial G-sub-
module of Ker tr such that Ker δ f)P=0. On the other hand, since the opera-
tors δ*, /, tr are G-homomorphisms, P is isomorphic with FG(Ag) as G-module.
Thus Eo Π Ker t r = P . Therefore Eo Π Ker δ Π Ker tr=O and hence M is rigid
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i-T, CI (n^3)). If, moreover, there is no element λ G D such that
(λ+2δβ, λ)<2£ and i / ^ m η n f f ^ F c ^ Φ φ , then we see G/K is stable

Table: Values of U and Li

Type

G

K

condition

Li ( t^ l )

condition for
existence of #,- (i

condition
for stability (*)

(*) O : stable.
X I the data do not lead the stability only by procedure I^IV.

In this table we omit μ} when /,=/, and L~Li for some i<j.

An

Bn

Cn

Dn

E6

E7

Ea

FA

G2

AnxAn

An

BnxBH

Bn

CHXCH

Cn

n>3

DnxDn

Dn

n^A

E6xEδ

E6

Ej XEj

E7

EB

F4XF4

F4

G2XG2

G2

-(n+1)

2n{n -|- 2) j(it ~f~ 1)

tι^2

-2

4(2n-3)

-(w+2)
4w-l

- 2

8w-18

- 3

34

- 4

54

- 6

94

- 1

4(«-l)(«+2)/(«+l)

-(n-3/2)

An

- 1

Sn

1

4(2w-l)

2

8(w+1)

- ( Λ - 2 )

2(2«-l)

1

8(11-1)

1

48

1

72

1

120

-5/2

24

- 5

24

1

36

3

48

1

40. + 1)

n+ί

n=l

2n-\

2(n+l)

X

2(w-l)

O

12

O

18

O

30

0

9

O

12

O
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AIII

BI

BII

CI

CII

Dh

Dill

Ell

EIΠ

EV

EVI

EVII

EVIII

EIX

A A /7"1

Bp + q

Bp-Dq

Cn

Cp + q

Cp'Cq

Dp+q
Dp-Dq

Dn

E6

E6

D5 T

E7

A7

E7

De-A,

E7

Es

E7 AX

-p —fl
2(/+l)

-2

4(2l-3)(n)

-(n+2)

An

0

4/

- 2

4/

2(2/+1)

0

4/

2

-(2j>-l)
2(2/+1)

- 2

2 ( 2 Λ + 1 )

4/

- 2

-(n-2)

4(«-l)

- 2

36

- 4

24

- 4

56

- 2

56

- 6

36

- 6

96

- 2

96

A

36

0

36

2

76

- 6

56

0

56

o

4/

0

8(ιι-2)

2

8

4

2

4(2/+1)

-2(p-l)

4/

- 4

8(fi-2)

2

2

4(2*-1)

2

52

- 6

36

2

52

2

76

- 8

56

2

76

2

124

-10

96

2

124

/+1

2/-1

or

2(ιι+1)

X

2(/+l)

or

2(/-D

O

2(ιι-l)

o
12

O

12

o
18

Ό
18

O

18

o
30

o
30

o
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FI

FII

G

Ah

AI2

AH

DI2

DII

El

EIV

F4

Cz Ai

FA

B4

G2

Aι-Aχ

A2n

Bn

n^\

A2a-ι
Dn

n^2

A2n-i

Cn

n^2

Dp+q+l

Bp'Bq

P \~Q—3

E6

ct

F4

-2

26

- 5

12

- 6

28

- 3

26

1

24

- 4

28

-(n+1/2)
2(/+l)

— n

2(1+1)

—n

2(1+1)

n ^ 3

2

«^i ( 3 )

- 3

36

- 6

52/3

2

52

1

36

2

40

6

60

- 1

4/

n^2

- 1

4/

- 2

4/

n ^ 4

2

4(/+2)

2

4(/+2)

1

4/

4/ 4/

2

9

o
9

X

12

o
/+1

X

l+l

X

/+1

n=2

2(/-D

o
12

o
1 1 2

X

(*1) This holds when £, g^2. The value is 6(/-l) if >̂ = 1,
and 4 if p=q = l.

(*2) This holds when #^2. The value is 4(/—1) if g = l .
(*3) This holds when q^2. The value is 3(2/—3) if q = l.

, 2(2/-l) if p^2,
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