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1. Introduction and results

Let M be a compact connected manifold of dim M =2 and g an Einstein
metric on M. If (M, g) is the standard sphere, then all Einstein metrics g’ on
M near g are of constant sectional curvature, and so (M, g’) are homothetic
with (M, g) (Berger [2] Proposition 6.4, Muto [23] p457 Theorem). Such an
Einstein metric g is said to be rigid. We know that some of Einstein metrics
with vanishing Ricci tensors are not rigid. For example, flat torus and the
K3-surfaces are not rigid (Bourguignon [6] 08). But we know few Einstein
metrics with negative definite Ricci tensors which are not rigid. In fact, in
this paper we prove the rigidity of Einstein metrics g such that the universal
riemannian covering manifold of (M, g) is a symmetric space of non-compact
type without 2-dimensional factors (Corollary 3.4). Furthermore, for irreduci-
ble locally symmetric spaces of compact type, we show the following.

Theorem 1.1. The following simply connected symmetric spaces are in-
finitesimally deformable. (For the definition of the infinitesimal deformability, see
Definition 2.4.)

SU(n+1) (n=2), SU(n)/SO(n) (n=3), SU(2n)/Sp(n) (n=3), E¢/F,.

Theorem 1.2. Let (M, g) be an irreducible locally symmetric space of com-
pact type. If the universal riemannian covering manifold of (M, g) is neither one of
the types in Theorem 1.1 nor of the type U(p+q)/U(p)X U(q) (p=q=2), then g
is rigid.

Moreover we study the stability of Einstein metrics. It is well-known
that Einstein metrics g are nothing but critical metrics with respect to the total
scalar curvature T (Hilbert [12]). In general, this critical point is neither
maximal nor minimal (Berger [1] p290, Muto [24] p 521 Theorem). But if we
consider only metrics of constant scalar curvature, then some cricical points
are maximal. That is, if we denote by C the set of all riemannian metrics on
M of constant scalar curvature and with volume 1, then some Einstein metrics
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are maximal in C. Such an Einstein metric g is said to be stable. For example,
all Einstein metrics of compact locally symmetric spaces of non-compact type
without 2-dimensional irreducible factors are stable (Koiso [19] Remark 2.6).
If an Einstein metric g is a saddle point of the total scalar curvature T in C,
then g is said to be unstable. We show ihe following theorems on the stability
of locally symmetric spaces of compact type.

Theorem 1.3. The following simply connected symmetric spaces are un-
stable.
Spin(S), Sp(n) (n=3), Sp(n)/U(n) (n=3).

Theorem 1.4. Let (M, g) be an irreducible locally symmetric space of com-
pact type but not the standard sphere. If the universal riemannian covering mani-
fold of (M, g) is neither one of the types in Theorem 1.3 nor ome of the following
types, then g is stable.

SU@+1) (n22), Up+a)/U(p)x U() (p2422), Sp(p+0)Sp(p)x Sp(a)
(p=2, q=1 or p=¢=2), F,/Spin(9), SUm)/SO(n) (n=3), SUQn)|Sp(n) (23),
E,/F,.

The above results are obtained from evaluations of infinitesimal Einstein
deformations and the second differential of T by means of the representation
theory, which are made from the tables at the end of this paper.

The author would like to express his sincere gratitude to the referee for
his kind suggestions.

2. Preliminaries

In this section, we recall some fundamental definitions and some known
facts concerning the space of riemannian metrics. Let M be a compact con-
nected C=-manifold with n=dmm M =2. Riemannian metrics on M, etc. are
all to be in C-category, unless otherwise stated. For a fibre bundle F over M,
we denote by H’(F) the set of all H'-cross sections of F. Here and throughout
in this paper H* means an object which has derivatives defined almost every-
where up to order s and such that each partial derivative is square integrable.
H'(F) becomes a Hilbert manifold. We denote by ', 9°, F° the Hilbert
manifold of all H*-riemannian metrics on M, the group of all H*-diffeomorphisms
of M, the Hilbert manifold of all positive H'-functions on M, respectively.
(Here, we assume that s is sufficiently large.)

Let g be a riemannian metric on M. We denote by (, ) the inner product
on tensors on M and by < , > the global inner product for tensor fields, i.e.,
<, >=Sul, )v,, where v, is the volume element of g.

Lemma 2.1 (Ebin [8] 8.20 Theorem). Let g be a riemannian metric on M
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and I, the isometry group of (M, g). If s>n[2+-2, then there is a canonically
defined submanifold Sy of M° containing g with the following properties.

S1) If y€l1,, then v¥(S;)=3S;.

S2) If ye D and v*(S;) NS;+ ¢, then vE1,.

S3) There is a C=-local section X: D°*'[I,—D°*! defined on an open neigh-
bourhood U of I, such that if F: UXS;— M is defined by F(u, g")=X(u)*g’
then F is a homeomorphism onto an open neighbourhood of g. Note here that the
quotient space 9***[1, is a Hilbert manifold.

Moreover the orbit (9°t')*g becomes a closed Hilbert submanifold of
M. The tangent space of M’ atgis decomposed into the sum of the tangent
space of (9***)*g at g and the tangent space of &; at g in the following way.

(2.1.1)  H(S*M) = *(H**(S'M))DKer & (orthogonal direct sum),
T (H) = H(S’M), T ((D")*g) = S*¥(H*(S'M)),
T,(S;)=Ker 3,

where S?M is the vector bundle of covariant symmetric p-tensors on M, &*
and & are differential operators defined by

28*E),, = VEAVE  for EEHY(S'M),
(o), = —V'h;  for e H*(S?M).

Denote by H; the space of all H'-riemannian metrics on M with volume
¢. Then M and S;N H; become a closed submanifold of 9° and a submani-
fold of M; respectively, and the above lemma holds also replacing #°, S; by
M, S;NM:. In this situation the above decomposition (2.1.1) turns out to

(2.1.2) Ker f=Im *®Ker §NKer / (orthogonal direct sum),

where /' is defined by [fh==<h, g> for heH'(S?M), and T, M:=Ker [,
T (S;NM)=Ker s NKer /.

DerINITION 2.2. Let g be an Einstein metric on M with volume ¢. If
there is a 9°*'-invariant open set IV of ¥ containing (9**')*g such that every
H*-Einstein metric in N is an element of (£**!)*g, then g is said to be rigid.

RemMark (1). Let g be a rigid Einstein metric on M in the sense of the
above definition. Then g is rigid in the sense of the Introduction. In fact,
let M7 and 9> be the space of C*-riemannian metrics on M with volume ¢
and the group of C~-diffeomorphisms of M with C=-topologies, respectively.
Then N N M7 is open in 7 and invariant under the action of 9~. Ifg’is an
Einstein metric in N N.H;, then there is y& 9" such that y*g=g’. Then
v &€ 9= by Palais [26] and so g'€(D~)*g. This implies the rigidity of g in the
sense of the Introduction.
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ReMARK (2). Let g be an Einstein metric on M with volume ¢. If all
1-parameter families g(f) of H°-Einstein metrics in JH; such that g(0)=g are
contained in (9**)*g, then g is said to be non-deformable. We easily see from
the closedness of (D*+")*g in M that if g is rigid, then g is non-deformable.

Note that the defining equation of Einstein metric is given as follows:
If we define a C*-map E: JH*—H*"*(S’M) by

E(g) = S,—(KS,, g>/n-Vol (M, g))-g  forgelM’,
where S, is the Ricci tensor of g, then g is Einstein if and only if E(g)=0.

Lemma 2.3. Let s be an integer > n/2+-2 and g an Einstein metric on M
with volume c. We restrict the C=-map E: JH°—H*"*(S*M) to S;NM;. Then
the differential dE of E at g is given by

(dE)(h) = %(K-}-ZL—Hess t)h  for heKer SNKer f.

Moreover, we have

Ker (dE) N Ker 8 NKer S=Ker (A+2L) NKer § NKer tr.
where  (Bh);; = —V'Vihy;,

(Lh);; = Rt j'hy, for he H'(S’M) ,

trh=g'h,  for heH(S*M),

(Hess f);; = V.V;f  for feH (M) = H*(S°M),

and the sign of the curvature tensor R is given as R;;;;<0 for the standard sphere.
Proof. Similar to Berger and Ebin [3] Lemma 7.1.

DrFINITION 2.4. Let g be an Einstein metric on M with volume ¢. If the
space Ker (dE) N T (S; N HZ) vanishes, then g is said to be infinitesimally non-
deformable. Otherwise g is said to be infinitesimally deformable.

For s>n/2+4, we denote by C; the space of all H*-riemannian metrics g
on M with volume ¢ and of constant scalar curvature.

Lemma 2.5 (Fischer and Marsden [9] Theorem 3, Koiso [18] Theorem
2.5, [19] Proposition 2.1). Let s be an integer >n/2-+4 and g an Einstein metric
on M with volume c, but (M,g) is not the standard sphere. Then there is a neigh-
bourhood U of g in M* such that U N\C; becomes a closed submanifold of U. If
we define a map X: F*'X(UNC)—M’ by X(f, g")=f-g’, then X is a diffeomor-
phism onto an open set of H’. Moreover the decomposition T , =T (F*-g)D
T(C:NU) of the tengent space T , M =H?*S*M) is given by
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T(F°-g) = R-gPKer fNH(M)-g,
T(C:NU)=Im §*PKer a NKer sNKer /.

Here a: H(S?M)— H*~%(M) is a differential operator given by
ah) = A(A—&trh  for he H(S’M),
where A is the Laplacian of (M, g) and & is the constant defined by S=¢&- g.

If we denote by T(g) the total scalar curvature of H’-riemannian metric g
on M, i.e., T(g)=<7,, 1> where 7, is the scalar curvature of g, then a rieman-
nian metric g on M with volume ¢ is an Einstein metric if and only if g is a

critical point of C~-function T on ¥ (Hilbert [12]). Therefore, for an Einstein
metric g, we see

dT),(Ker S)=0.
As for the Hessian (Hess T'), on (Ker S)Xx(Ker f), we know the following

Lemma 2.6 (Koiso [19] Theorem 2.4, Theorem 2.5). Let g be an Ein-
stein metric on M. If (M, g) is not the standard sphere, then (Hess T),|(Ker /' N
H’(M)- g)x (Ker S/ NH*(M)- g) is positive definite, (Hess T'),|Im &6* X Im §*=0,
and (Hess T),|(Ker a NKer 8 NKer /)X (Ker a NKer 8 NKer [) s ginven by

(Hess T),(h, h)=-%<§h+2Lh, k).

DeriNiTION 2.7. Let g be an Einstein metric on M but (M, g) be not the
standard sphere. If (Hess T),|(Ker a NKer 8 NKer J) X (Ker @ NKer 6§ NKer f)
is negative definite, then the Einstein metric g is said to be stable. If there is

an element / of Ker o NKer 8 NKer /" such that (Hess T'),(h, £)>0, then g is
said to be unstable.

ReMark (1). Definition 2.4 (infinitesimal deformability) and Definition
2.7 (stability) are independent of the choice of s, since A-+2L is an elliptic
operator and hence its eigentensor fields are C~.

ReMARK (2). If g is a stable Einstein metric, then g is infinitesimally non-
deformable. 'This follows from Ker (A-++2L) NKer 8 NKer trCKeraNKerdN
Ker f and the above formula for Hess T in Lemma 2.6.

ReMARK (3). Let g be an Einstein metric on M and (M, §) a compact
riemannian covering manifold of (M, g). If g is stable then g is also stable.
In particular, the stability of an Einstein metric of a locally symmetric space of
compact type reduces to the stability of an Einstein metric of a simply connected
symmetric space of the same type.
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Lemma 2.8 (Koiso [19] Theorem 2.5). Let g be an Einstein metric on M.
Then the space Ker a NKer 8 NKer f coinsides with Ker 8 NKer tr. Moreover,
if heKer 8 N Ker tr and

<Lk, h>>—%<h, B or <Lh B>>&Mh B,

where S,=¢&- g, then (Hess T)(h, h)<0.

Corollary 2.9. Let g be an Einstein metric on M. If the universal riemannian
covering manifold of (M, g) is a symmetric space of mon-compact type without 2-
dimensional factors, then g is stable.

Proof. In this case, the inequality <Lk, k>> &SR, k) holds for all non-zero
heKer tr (Koiso [19] Remark 2.6). Thus Lemma 2.8 implies our Corollary.
Q.E.D.

3. Infinitesimal non-deformability and rigidity

Lemma 3.1. Let s be an integer >n|2+2 and g an Einstein metric on M
with volume c. If there is an open neighbourhood V of g in SN\ M such that g
is the only one H’-Einstein metric in V, then g is rigid.

Proof. We use the notation in Lemma 2.1. We wee (D)*(V)=
(DY*FUxV)) and so (DH)*(V) is a D '-invariant open set of M. If g’
is an H’-Einstein metric in (D*)*(V), then g’ is isometric with an H*-Einstein
metric in V, which is nothing but g. Therefore g'e(Q**)*g, which means
the rigidity of g. Q.E.D.

Lemma 3.2. Let g be an Einstein metric on M with S=&-g. We define
operators 3: H*(S*M)— H*"*(S*M) and v: H*(S’M)—H*"(S'M) bv
B(h) = (A+2L—Hess tr)h ,
. 1
(k) = (8+Edtr)h.
Then ¥R = (A—&)3,
where  (AE);, = —V'Vi§;, for EeH(S'M).
Proof. Remark that V*R!,";=0. In fact, by the second Bianchi identity,
VkR’km,- — _VmRIkik—Vilekmz V"‘S’;—V,S"" — 0 .
Now,
[6(A+2L—Hess tr)k];

= —V(—=V*Vi+ 2R} "l —V V 1Y)
= V’V”V,,hl,-—ZV’(R:ki'”hkm)"l“ Vlvivlhkk >
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Vlvkvkhu = lemkvmhli+R1kmlvkhmi+leminhlm+Vkvlvkhli
= _Slmvmh1i+Skmvkhmi+leminh1m
+VHR i+ R+ YV V)
= RV i+ Sy Vil +-R " NV i+ (B8R);
= 2R\ V*h,,—&(Sk),+(Ash);,
V’(Rzkimhm) = leimvlhkm = lemivkhlm s
V'V, Vh, = RN RV VIV RE,
= S/V,hh—(dA tr h);
= &(d tr b);,—(dA tr h); .
Hence 8(A+2L—Hess tr)h=(A—E&)dh+d(E—A) tr k. On the other hand,
tr (A+2L—Hess tr)h
= — V'V 4 2R — V'V
=2Atrh—2Etrh.

Therefore %d tr (A+2L—Hess tr)h=d(A—¢&) tr h. Thus

vBh = (A—E)Sh . Q.E.D.

Proposition 3.3. Let g be an Einstein metric on M. If g is infinitesimally
ron-deformable, then g is rigid.

ReMARK. Let g be an Einstein metric on M and (M, §) a compact rie-
mannian covering manifold of (M, g). This proposition implies that if g is
infinitesimally non-deformable, then g is rigid. In particular, the rigidity of
an Einstein metric of a locally symmetric space of compact type reduces to the
infinitesimal non-deformability of an Einstein metric of a simply connected
symmetric space of the same type.

Proof. First we show that B(Ker §NKer f) is closed in H*2(S?M).
Lemma 3.2 implies that B(Ker §)CKer v and so B(Ker §)CIm 8N Ker v, here
the space Im BN Ker v is closed in H*"*(S?H), since B is an elliptic operator.
Let he H(S*M) satisfies Bhe Ker v. Decompose % by the formula (2.1.1)
as A=+ 6*E; 3y»=0. Then by Lemma 3.2,

0 = vBh = (B—&)oh = (A—E)S5*E .

This equation implies that such £ is an element of the vector space Ker(A —&£)35*,
which is finite deminsional since (A—¢&)36* is elliptic. Let ¢ be the volume of

(M, g). Then 8(— (<, g>fnc)- §)=0 and S (4 — (b, fnc)-)=0. Thus
B(Ker §NKer )+ B*(Ker(A—€)86*)+R-gDIm BNKervy.
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Therefore B(Ker §NKer f) is a finite codimensional subspace of the closed
subspace Im Ker BNKer v of H*%S?M), and so Palais [25] Chapter VII
Proof of Theorem 1 implies that B(Ker 8NKer f) is a closed subspace of
He(S2M).

Next, we denote by p the orthogonal projection: H* ?(S?M)— B (Ker 6N
Ker /). Then we can apply the inverse function theorem to the C*-map poE:
S; N M;—B(Ker SNKer f). In fact, Lemma 2.3 implies that d(poE | S; N IHe),

=%po,8|Ker 3NKer f and the assumption implies that this differential is

bijective. Thus the assumption of Lemma 3.1 holds and hence we get our
assertion. Q.E.D.

Corollary 3.4. Let g be an Einstein metric on M but not the standard sphere.
If g is stable, then g is rigid. In particular, if the inequality of Lemma 2.8 holds
for all non-zero heKer 8 NKer tr, then g is rigid. Moreover, any Einstein metric
of a locally symmetric space of nom-compact type without 2-dimensional factors
is rigid.

Proof. This is easily seen by Remark (2) following Definition 2.7, Lemma
2.8 and Corollary 2.9.

ReMARK. The author does not know whether the converse of Proposi-
tion 3.3 holds or not.

4. Fundamental formulae

In this section we assume that (A, g) is a locally symmetric Einstein
manifold.

Lemma 4.1. If S=¢&-g, then the following formulae hold.

(4.1.1) (A+42L)L=L(A+2L) on C~(S*M),
412) Lg= —e&-g,
(4.1.3)  8(AH42L) = (A—28)8  on C=(S*M),
(4.14) (A42L)6* = 8*(A—28)  on C=(S'M),
(4.1.5)  288* = A—2&+ds  on C=(S'M).
Proof. These are easily seen, by VR=0 and computations similar to
Proof of Lemma 3.2.

Lemma 4.2. Let (M, g) be a compact locally symmetric Einstein manifold.
Let he H¥(S*M) satisfy Ah+2Lh=—\h (A=0). Decompose h by (2.1.1) as
h=38%E+r; Sy=0. If tr §*£=0, then Sh=0.

Proof. Note that §&=—tr §*¢=0 and 8* is the formal adjoint of &.
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(A—20)E, (A—26)>
= {(A—26)%, 288*E>  (by (4.1.5))
= (BHA—26)E, 25%E>
= (B+2L)S*E, 25%8>  (by (4.1.4)) .

Here the decomposition Im §*@Ker 8 is invariant under A+42L by (4.1.3) and
(4.1.4), and hence (A+42L)6*E=—n8*E. Thus

(A—26)E, (A—20)E> = —208%E, *=0.  (by A 20)
Therefore (A—2€)E=0, and

B*E, T = OO B = _(A-295, 8 (by (4.15))
=0.
Thus 8*£=0 and so A=+. Hence 5h=0. Q.E.D.

5. Lichnerowicz operator and Casimir operator

In this section, we assume that (M, g)is a compact symmetric space G/K,
where G is a compact connected Lie group and (G, K) is a symmetric pair. As
usual, let g be the Lie algebra of G, t the Lie algebra of K, g=t+m the
canonical decomposition. Then the tangent space T,M of M at the origin
o is identified with m. The metric of M is always induced by a G-invariant
inner product B on g with B(t, m)=0. We fix such an inner product B once
and for all. We extend B C-bilinearly on g¢X g€ and often write as B(X, Y)=
(X, V).

Since K acts on the complexification m¢ of m by the adjoint action Ad,
the tensor space @?m*C of degree p of the dual space m*¢ of m¢ is a K-module.
Then the complex covariant p-tensor bundle T?M¢ of M is identified with the
homogeneous vector bundle G X x@Q?m*C associated to the principal bundle
7: G—G|K, in the following way. Let a be a point in M and s an element
of TtMC. For xen~Y(a) we get (x, (m*s),|mCX -+ xmO)EG X Q*m*C, where
we regard X €m¢ as a left invariant vector field on G, and @?m*¢ the space of
C-multilinear forms on m¢. We identify s with the element [(x, (z*s),|mC®X ---
XmC)|EG X x@?m*C, where we denote by [¥] the equivalence class of *

Generally, for a finite dimensional (complex) K-module U, a cross section
s of the homogeneous vector bundle GX xU over M may be identified with a
U-valued function s on G such that s(xy)=y"'s(x) for all x*&G and yeK. Let
C=(G, U)k be the space of all such 5. Then C~(G, U)x becomes a G-module
by the G-action (xs)(y)=s(x"'y) for x, yEG. In particular, the vector space
C=(T?MF€) of all complex covariant p-tensor fields on M is identified with
C~(G, @'m*C), as G-module. For a (differential) operator §: C=(T?M)—
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C=(T*M), we extend ¢ C-linearly to the operator: C=(T?M¢)— C=(T*MC) and
denote it by the same symbol {.
Now, we define a linear map D: C=(G, Q*m*C),—C=(G, Q*"'m*C), by
(DS)(*)(Xoy =+, X)) = (X[s(Xy, -+, X)D(x)  (x€6)
where seC=(G, @"m*C), and X;em. It is easy to see that DseC=(G,
®?*'m*C), and D is a G-homomorphism.

Lemma 5.1. The linear map D regarded as a linear map from C=(T?MFC)
to C=(T?*'MFC) coincides with the covariant derivative V of the symmetric space

(M) g)'

Proof. Since V and D are G-homomorphism, it is sufficient to prove that
the equation holds at the identity eeG. Let s&eC~(T?M°)=C>(G, @'m*°),.
Then for X, -+, X,EmS,

(Vs)(€)(Xoy *++5 X,) = (V8)o(mx Xy -+, mxX})
= (meos)a(”*Xl, ) ”*Xp) .
Here we extend each X;&T,(G)¢ to the right invariant vector field X;. Then
each 74X, defines a vector field on M, and we get
(Vs)(e)( X, +++5 X,)
= (Vm:?{os)n(”*Xh °*% ”*Xp)
- 5 o
= {n*XO[S(”*XI’ °*% ”*Xp)]"‘gs(”*Xh °*% V,,,*?(oﬂ'*x, % ”*X;)}a .
Since X, X;€m¢ and (M, g) is symmetric, we have (V,z7+X;),=0, and the
right hand side=X[(z*s)(X,, ---, X,)]. Moreover, if we regard X; as left
invariant vector fields on G, this is equal to
?
(IXO(”*S))e(XD ) -Yp)_}'; (”*s)e(Xl’ -y [Xo, X]’ ) Xﬁ)
= (-fxo(”*s))e(Xl’ oy Xp)
b
= (X[(m*s)(Xy, -+, X)(€) =23 (¥5) (X, -+, [ Xy X, -+, X))
= (Ds)(e)(X,, =+, X,) . Q.E.D.

Let V be a g-module. We define an operator on ¥ which is called the

Casimir operator, by
C == —2 Z"'Z,' Py
where {Z;} are orthonomal basis of g (with respect to the fixed inner product

B). Note that if V' is a finite dimensional G-module, then V is a g-module in
the natural way, and so the Casimir operator on V is defined. If Uis a finite
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dimensional K-module, then g acts on C*(G, U)y via the differentiation by left
invariant vector fields, i.e.,

(Xs)(x) = % 0s(.ac exp tX)

for X g, s&€C~(G, U)g, xG. Thus the Casimir operator C on C=(G, U)g is
defined.

DEerFINITION 5.2. We define the operator Q, L, A and the Lichenerowicz
operator A on the vector space C*(T?M¢) as follows.

b
P(08)iyi, = Z}lsga”s;r.‘.i?..,-p ,
(L8)iyip = ERiak;b's, AP,
(Be)yosy = — V'V
As = As+2Ls+pOs .
ReMARK. This definition does not contradict the previous definitions

and the ordinary Laplace-Bertrami operator (Lichnerowicz [20] 10). But we
shall not use these notations except in the following proposition.

Proposition 5.3. The Lichnerowicz operator A regarded as an endomorphism
of C=(G, @'m*C), coinsides with the Casimir operator C.

Proof. Let S; T; be orthonormal basis of ¥, m, respectively. It is
sufficient to prove that the equation holds at the identity e G. For s&€C*
(G, @'m*C) and X, :-+, X,emC, which are regarded as left invariant vector
fields on G, we have

—(Cs)(Xy, -+, X,)
= 2 S Si[s(X,, ++, X,)]—}—‘j‘] T T;[s(Xy, =y Xp) -
T T[s(Xy, =+, X,)]
= T[(Ds)(T;, Xy, -+, X,)]
= T;[(Vs)(T;, X,, -+, X))]
== (DVS)(TJ, Tj’ Xl) *cy Tp)
= (VVS)(TJ, Tj, Xl) ooy Xp) .
Therefore 3); T, T;[s]|=—A2As at e. Moreover in virture of the equality s(xy)=
y~%s(x) for x€G, ye K, we have
S,"S,'[S(Xl, ey Xp)]
= 23 Si[s(Xy, -+, [Siy Xi], ++, X))
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=2 ES(XI’ ) [Sis Xk]) ) [Sx" Xl]) ) Xp)
+? S(Xh "':[Si: [Sl'i Xh]]’ ) Xﬁ) .

On the other hand, regarding an element of m¢ as a tangent vector of G at e, we
have

(LS),,(?Z'*X], ooy ”*Xp)
)

(k)
= 2 (R(”*X/n wx T )X, ”*Tb)s(”*Xn 5 Tgy ooy Ty, oy ”*Xp)
(k) )
= _1,2 ([Xk) T] [Xla Tb])s(”*Xh ”*Ta’ °t% ”*Tb) R 7t’kx'p)

(k) Q)]
= _lz‘j_ll‘ ([Xlu a]: Si)([Xl: Tb]r Si)s(”*Xlr ) ”*Ta) °*y ”*Tb: R ”*Xp)

a,b,t (k) )
= _kg ([Si’ XI:]) Ta)([Sb X!]) Tb)s(”*Xl’ °*% ”*Ta’ °*% ”*Tb) M) ”*Xp)

- —2213}(7:*)(1, oy 4 Sy X, o 7x[Sty X, +ory 73X, -
DOV (s X, =, ma X))

= 31 S(maXiy mTIS(m Xy oy Ty ot 11X,
= —k§b(R(7t*Xk) wx T o)ws Loy maTy)s(ws Xy, o, ”*¥:) e, wx X p)
= 3%,y T, [T, Ts(m X, -, wx Ty ey w3 X,)
=, 5 (X T, SY(T0 T, SH(msXa, o m Lo vy X,
=, 5 (S0 X0, TISi Ty TOs(mXa, v ey oy maX)
= 1 (1Si X1, [Si, TlmsXi, - m Ll -+, miX,)
= (IS, [Si Xl TslmsXs, -+, maly o+ X))
= —% S(x X1, +*0y e[Sy [Siy Xill, +++, w5 X,) -

Thus 2'} S;+Si[s]=—(2Ls+pQs) at e Q.E.D.

Corollafy 5.4. If (M, g) is a symmetric Einstein manifold such that S=&- g,
then for p=2 we have A+2L=C—2€.

Lemma 5.5 (Frobenius reciprocity, c.f. Wallach [29] Theorem 8.2).
Let V be a finite dimensional G-module and U a finite dimensional K-module. For
a G-homomorphism ¢: V—C=(G, U)g, we define a K-homomorphism ¢: V—U
by §(v)=e¢p(v)(e). Then the correspondance: ¢— is an isomorphism as vector
space from Homg(V, C=(G, U)x) to Homg (V, U).

ReMARK. Let V be a finite dimensional G-submodule of C=(G, U)y.
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Then C leaves V invariant and coinsides with the Casimir operator of the G-
module ¥V on V. This follows from 3 Z;-Z,=31Z,-Z, and that for the inclu-
sion ¢: V— C=(G, U)x we have $X=—X¢ on V for all X g.

Corollary 5.6. Let V CC~(S*MC) be a finite dimensional G-submodule
of the eigenspace of A+2L with a non-positive eigenvalue. If Homg(V, C)=0
or Homg(V, m*€)=0, then 8(V)=0.

Proof. If Homg(V, m*¢)=0, then Homg(V, C=(G, m*C))=0 and so
8(V)=0. If Homg(V, C)=0, then Homg(V, C=(G, C)x)=0 and so the as-
sumption of Lemma 4.2 holds for each kz€V. Thus 8(V)=0. Q.E.D.

ReEMARK. The results in this section are true for any (not necessarily com-
pact) symmetric space (M, g), except Lemma 5.5 and Corollary 5.6. This is
pointed out by M. Takeuchi.

6. Fundamental lemmas for root systems

Let (g, ) be an effective symmetric pair of compact type with the inner
product B fixed in 5. Then g is semi-simple. We introduce the following
ordinary notation.

g=Ff-+m: the canonical decomposition,

0: the involution of g defined by |f=idy, 6 |m=—id

a: a Cartan subalgebra of f,

t: a Cartan subalgebra of g containing a,

b=tNm,

2(g)Ct: the root system of g with respect to B,

2(k)Ca: the root system of ¥ with respect to B|Ex?®, so that there are
root vectors {X,Eq°; a=>)(g)} such that

ml

[H, Xo] =/ —1B(a, H)X forall Het,
[Xm X-m] = \/_——la ,

B(Xas X_p)=1,

[Xa, Xp] = \/—_le,an+ﬂ (NssER),
N—d.-ﬂ = —iVap)

(Nap) = 9(1+2)B(a; a)/2,

where {B+na; n€Z, —p<n=gq} is the maximal q-series containing A.
Moreover X, and X_, are conjugate with respect to the complex conjugation
of g¢ with respect to g with one another. Let™ be the orthogonal projection:
t—a. Let > be a linear order of t such that if H>0 then 6H>0 or HeEb.
Let B be the base with respect to the order >, i.e., B is the set of all simple
roots with respect to >. Let 3> be the order defined by the base %B, i.e., x>y
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if and only if x—y=>)4cpz® a0 and 2”20 for all aEB.
hg: the highest root of >3(g),
23;: the sum of positive roots of g,
D(g): the set of all dominant weights of X3(g).

Lemma 6.1 (Murakami [21] (33)). 23(g)=201U2%U 2 (disjoint union)
where

M= {a€3)(g); o = a, X, <1},
v = {ae3)(9); ba = a, X,em},
2% = {a€3)(g); da+al .
Lemma 6.2 (Murakami [21] Lemma 6). >3(g) Nb=4¢.

Lemma 6.3 (c.f. Bourbaki [5] pl48 Theoreme 1). If a, BE21(9),
B+ +ta, then a—sign (a, B)- BE ().

Corollary 6.4. Let a, BE3\(g). If a=p, then B=a or B=0a.

Proof. Assume that B=+a, 0. If (a, 8)>0, then 8% —a and Lemma
6.3 implies that «— B 3)(g) which contradicts Lemma 6.2. Thus (a, 8)=0.
Similarly («, §8)<0. Then (6a, 8)<0, (fcr, B)<0 and

0=(a, a) = (@, B)= }(awa, B+68)=0,

and so @=0, which contradicts Lemma 6.2. Q.E.D.

Corollary 6.5. (3L UYL NIH=4¢.

Proposition 6.6. Let SY(m) be the set of all weights relative to a, with
multiplicity counted, of the K-module mC. Then >(m)\ {0} =>2(a)\23(F) and the
multiplicity of a non-zero weight in >\(m) is one. The multiplicity of 0 in 33(m)
s dim b.

Proof. Y(m)\{0}={@; a=2](g), 6 Xs+X,} by Lemma 6.2. Thus the
proof reduces to Corollary 6.5.

Lemma 6.7 (c.f. Bourbaki [5] p168 Proposition 29). If A >0, then
(85, 2)>0.

Proposition 6.8. Let\, p=D(g). If A> p, then (A+285, X)> (u-+28;, p)-

Proof. We see A—p >0 and hence (A+p, A—pu)=0, (285, A—u)>0 by
Lemma 6.7. Thus we get the assertion. Q.E.D.
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7. Procedure of calculation

In this section we assume that (M, g) is a simply connected irreducible
symmetric space G/K of compact type, with G compact simply connected
and K connected. Thus (M, g) 1s an Einstern manifold and B is unique up to
constant factor. We denote by C=(S?MC) the space of complex symmetric
covariant 2-tensors on M. An element s&€C>(S?MC) is said to be G-finite if
the smallest G-invariant subspace of C*(S?M¢) containing s is of finite dimension.
The space of all G-finite elements of C~(S2M€) is denoted by C7(S°MF€). It
is a G-submodule of C=(S*M¢) containing all finite dimensional G-submodule
of C=(S?M°). Since A+42L is an elliptic G-invariant differential operator on
C~=(S2MFC), each eigenspace of A+2L is contained in C7(S?M¢). Moreover,
the self-adjointness of A+2L and L and (4.1.1) imply that the G-module
C7(S*M°) is decomposed into G-invariant simultaneous eigenspaces for A-2L
and L. We denote by S?m*¢ and Sim*C the second symmetric tensor product
of m* and the subspace of S?m*C consisting of all s&€S’m*C with trzs=0,
respectively. Let

S2m*C — Vo@Vl@"' @V'

be an irreducible decomposition of S?*m*C as K-module. In this decompo-
sition we may assume that V;=C-B and >Y%., V;=Sim*C, and that L is a scalar
operator /; on V,. The homogeneous vector bundle G X xS?m*¢=S2M¢C is
decomposed into @i..GXV; and the G-module C*(G, S*m*C),=C=(S*MC°)
is decomposed into @D}., C=(G, V,)x. Therefore the s-eigenspace E, of the
operator A+2L=C—2¢ (cf. Corollary 5.4) is decomposed as G-module in the
following way.

E,=E,; whereE,;=ENCG, V).

Note that L is the scalar operator I; on C(G, V)x.

Let V, be a finite dimensional G-module such that the Casimir operator
of V., is the scalar operator ¢. If we apply Lemma 5.4 and Lemma 5.5 and
Remark following Lemma 5.5 to V,, we see that ¢(V,)CE,_,, ; for the element
¢ of Homy(V,, C~(G, V,)x) corresponding to a non-zero $&Hom(V,, V).

Now, let us recall some facts on (finite dimensional) G-modules of a general
compact connected Lie group G. In the same way as in previous section, we
define an inner product B on g, a linear order > on a Cartan subalgebra t, the
order > defined by the base, D(g), 3; and so on. For A&D(g) we denote by
Vs(\) the irreducible G-module whose highest weight relative to t is A, more
precisely, the isomorphism class of such a G-module. For a G-module W we
denote by Ag(W) the set of all weights relative to t, with multiplicity counted.
If Wis an irreducible G-module, we denote by Ag(W) its highest weight.
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Lemma 7.1 (Freudenthal [10] 43.1.9). The Cassimir operator on the G-
module V ¢(\) is the scalar operator (A+234, ).

Lemma 7.2 (Freudenthal [10] 48.3). If p&D(g), then the multiplicity
m(p) of p in V() is given recursively by the formula;

(M-8gs M-8 — (1485, p+8m(p) = 3 2m{ptia)(ptie, a).
aeEi(g)l,a>O

ReMArk. For the multiplicities m(x) for small A of the type Ey, F,, G,,
see also Freudenthal [11] Table E, Veldkamp [28] Table I, Humphreys [13]

p124 Table 2, respectively.

Let W be a G-module such that A;(W) is given concretely. Let A\ be a
>-maximal element of A;(W). We get Ag(Vs(\)) concretely, using Lemma 7.2.
Then W is decomposed as W=W'@V, where Ag(W')=Ac(W)\As(Vs(N))
and Ag(V)=As(Ve(N)). Thus, inducitvely, we get concretely the set of highest
weights of irreducible components of W, with multiplicity counted. This set
will be denoted by Hg(W).

Now, we come back to our symmetric space G/K and give a procedure of
calculation. The results are in the Table. We use Bourbak:i [5] Planche
I-IX, where all concrete tables of >3(g) are given. We use also the inner
product B given in the tables.

I. Murakami [22] p 297 and p 305 shows the relation between the basis
of g and £. Combining Planche I-IX in Bourbaki [5], we get Ax(m®)=237(m)
by Proposition 6.6.

II. We decompose the K-module S?’m*C into irreducible components.
The weights Ag(S'm*C) is given as {a+B; {a, B} CX}(m)}. Thus we get
Hy(S*m*C) in the above way. Let Hg(S*m*C)= {p,;=0, p;, -+, p,}. As the
result of calculation we know that yu, are distinct each other (cf. Kaneyuki and
Nagano [14], Takeuchi [27]). So we shall order them, in such way that p,<
m<-+<p, Denoting by V; the irreducible K-submodule of S*m*¢ with
the highest weight p;, we get a decomposition of S’m*¢ as in the beginning of
this section.

ITII. We compute the eigenvalue /; of L on V,. Let 25 be a subset of
>Y% with the following property; for each a2, either one and only one of
a or Oa belongs to 3.  Set

T‘. = Xa if 0{622 Y
T, — V%(Xw—ex,) faey.

Choose orthonormal basis {H,;} of b. Then {T,, Ts H;; a€>),, BED %} are
basis of m€. Let {T,*, T5*, H,;*} be the dual basis of m*¢, Then
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B= 3 Tu*Tg*+ 3 T5*- Tg*+ ST H*-H* -
sz, BEX i

By the formula B(R(X, Y)Z,U)=—B([X, Y], [Z, U]) for symmetric spaces (c.f.
Kobayashi and Nomizu [16] p 231 Theorem 3.2), we can easily check that the
T4 Tg-coeflicient of L(Ty+T;) is zero if a+B=+v+38, where we write T, for
H,;. TTherefore, for peAg(S*m*c), the subspace W, of S’m*C generated by
{T4*+Tg; a+B=p} is invariant by the operator L. We denote by Tr(u) the
trace of L on W,. Then

Tr(p;) = ,21 Lism(ps),

where m () is the multiplicity of p; in V; (cf. Kaneyuki and Nagano [14] (2.1)).
Thus if we know the value of Tr(p,), then we get the value of /; inductively.
In particular, we know the value of & by (4.1.2): é&=—1,.

Now, we give the T4 Tg-coefficient Lng of L(T,+Tg). These will enable
us to compute Tr(p;) and to compute /; by the above formula.

a) Group type. See Kaneyuki and Nagano [14] Lemma 2.2.

b) Inner type (thatis, b=0). Lse=(a, @) and Lag=(a, B)+(Na,-g) if
a=+p. ‘

c) Exterior type (that is, b#0). We assume that a—@08e¢>(g) for
ac>(m)\{0} and B35 This assumption is satisfied in each case. In the
following table, the symbol & is used only if a€>.

Lyw = (C{, C() ’
Lag = (a, B)+(Na,-p)* ifa*g,
L= (a, a),

j (@ B)+(Na-g)2 ifa—Bea,
Ligla+8) =+ (@ B) ifa—Bcaand a—BE2(Y),
( @ B)+(Na,-p)  ifa—BEaand a—Le&Si(m),
Laz=(Na,-5)’/2,
2:’ Ldi = (a7 a) >
2 L5 = (o, a)—(a, @),
lo = - {Zmezz(a, Ol)-l-zpeza’(ﬁ, E)}/Z .

RemARK. This method is developed by Borel [4], Kaneyuki and Nagano
[14,15]. See also Calabi and Vesentini [7].

IV. Let D;={\&€D(g); p;=A} for 1<i<r and put D=U;L,; D;. Then
Lemma 5.5 implies that if V;(\) is a G-submodule of C=(G, V)¢ then AED,.
Thus if V¢(\) is a G-submodule of Ker tr then A€ D.

Put L;=min{(A+28;, \); AED;} for I<i<r. Inorder to find AED, which
attains the minimum L;, we have only to check »-minimal weights in D;, by
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virture of Proposition 6.8. Note that if L;>2¢, then Lemma 7.1 implies E, ;=0
for s<0.

Now assume that for each 1=<:¢<r, ;> /2 or L;>2€. Then E,NKer N
Ker tr=0 for s<0, which implies that this symmetric space is stable, unless it
is the standard sphere. In fact, suppose that there exists a non-zero hEE,N
Ker § NKer tr. Decompose % as '

h=Xh, KeEE,;.
i=0
Then from the above we have

h= 3k
1;>710/2
and hence the orthogonality (V;, V;)=0 (%) implies <Lk, k> —&<h, h>[2.
This contradicts Lemma 2.8. See Table.

V. Now, we consider a weight AED such that (A 4233, A)<2¢. If
Hy(Sim* )N Hy(Vs(\))=¢, then V(\) is not a G-submodule of Ker tr. If
Hg(Sim*C) N Hg(Vs(N)) %= and if Hg(V(N))$O0 or k,, where k is the highest
weight of X)(m), then Corollary 5.6 implies that V;(\) is a G-submodule of
Ker tr such that Ah+2Lh= {(A+28;, A)—2€}k and 8h=0 for all k€ V(N).

Therefore if (A428;, A)=2& for one of such A, then g is infinitesimally
deformable (4, (n=2), AL, (n21), AL, (n=2), AII (n=3), EIV). If (A+234,)\)
<2¢ for one such A, then g is unstable provided M is not the standard sphere
(By, C, (n=3), CI (n=3)).

If Hy(S3m*C) N Hy(V(\))=¢ for all AED such that (A4-28;, A)=2¢€, then
g is infinitesimally non-deformable, and so it is rigid (B, C, (n=3), CII (p=2
or ¢=3), FII).

VI. Let M=G/K be of Hermitian type but not the standard sphere.
Assume that A=A, is the only one element of D such that (A+23;, A)=2¢
and H (Sim*C) N H(V o(\)) *= ¢, and that H(Sm*€) N H x(V o(ky)) consistes of
exactly one element. Then E N Ker tr is the unique G-submodule of Ker tr
which is isomorphic to Vg(kg) as G-module. We denote by J the almost complex
structure of M acting on C=(S'M¢). For a (complex) Killing vector field £ on
M, we define an element % of Ker tr by A=238% J&—((tr §*]&)/n)- g regarded as
EeC~(S'M)¢. If h=0, then §*JEc€Ims*NC~(M)°-g. It follows from
Lemma 2.5 that 8* J€=0 and so J£ is also a Killing vector field. Thus we have
£=0. Therefore the correspondence £—# is injective. Moreover we see that
if 8h=0, then h&Ker a N Ker § N Ker f, and hence 2=0 by Lemma 2.5. Thus
the space P of all 4 defined by Killing vector fields £ is a non-trivial G-sub-
module of Ker tr such that Ker §NP=0. On the other hand, since the opera-
tors 8%, J, tr are G-homomorphisms, P is isomorphic with V¢(/,) as G-module.
Thus E,NKer tr=P. Therefore E,NKer §NKer tr=0 and hence M is rigid
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If, moreover, there is no element A € D such that

(AM+285, X)<2€ and Hg(Sim*C) N He(V¢(\))+ ¢, then we see G/K is stable

(By/A4z-T).
Table: Values of /; and L;
G i (1=1)
condition condition for condition
existence of y; ( =1) for stability (*)
(*) O : stable.

X : the data do not lead the stability only by procedure I~1V.

In this table we omit px; when /;=/; and L;=L; for some i<j.

A, xA, —(n+1) -1 1 n+1
A, A4, 2n(n+2)[(n+1) | 4n—1)(n+2)/(n+1) | 4n+1)
n=1 n=2 n=3 n=1
B, X B, -2 —(n—3/2) |1 2n—1
B, B, 4(2n—3) 4n 4(2n—1)
n=2 n=3
CuXCy —(n+2)| —1 |2 2(n+1)
Ca Ch 4n—1 8n | 8(n+1)
n=3 X
DyxD, -2 —(n—2) 1 2(n—-1)
D, D, 8n—18| 2(2n—1) 8(n—1)
n=4 @)
E¢XEg -3 |1 12
Eg Eg 34 | 48
O
E; X E; —4 11 18
E, E, 54 |72
O
EgxXEg -6 |1 30
Eq Es 94 | 120
O
F, X F, —5/2 1 9
F, F, 24 36
@]
G X G, -5 13 12
G, G: 24 | 48
@]
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Apra_y —p —q 0 -2 |2 I+1
AHI || Ap_yAerT| 20+1) |20+1) |4 |4 | 40+2)
p=g=1 g=2 | p=2  |gqz2|¢x=2 g=1
Byiq —2 —2(g—1) —(2p—1) |2 2/—1
BI p*1
By+Dq 4(21—3)(*1) 2(21+1) 2(21+1) 8 or
BII | 4>0,¢21 | p=1 »21 »21 a2
Ch —(n+2) |0 -2 4 2(n+1)
CI Ay 1+ T 4n 2(2n+1) 2(2n+-1) 8(n+2)
n=3 . X
Cpra —2(g+1) | —206+1) | —2 2 23+1)
CII | C,Cq 41 4 8(—1) | 4QI+1) p=1
p=q=1 | p22 q=2 722 q=1,p23
Dyiq —2 —2(g—1) —2(p—1) |2 2(1—-1)
pr, | Pr 802y |4 41 421—1)
p+g24 @)
D, —(n—2) |0 —4 2 2n—1)
DII | Ay_yoT | 4(n—1) 8(n—2) |8(n—2) |4@n—1)
n=3 n=4 n=4 O
E; -2 | —4 |2 12
EIT Ay As 36 36 |52
@)
Eg —4 0 —6 |2 12
EIIT Ds-T 24 36 36 |52
@)
E; —4 2 18
EV A, 56 76
O
E; -2 —6 |2 18
@)
E; —6 0 —8 |2 18
EVII || E¢-T 36 56 56 | 76
@)
Es —6 2 30
EVIII | Dg 96 124
O
Eg —2 —10 | 2 30
EIX E;- A, 96 9 | 124
@)
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F, -2 | -3 |2 9
FI Cs- 4, 26 26 | 40
O
F, -5 1 9
FII B, 12 24
X
G, —6 | —4 |6 12
G A+ 4, 28 28 | 60
O
Ay —(n+1/2) -1 (2 I+1
Al B, 2(14+1) 4/ 4(1+2)
n=1 n=2 X
Azn_1 —n -1 |2 I+1
Al, D, 2(1+1) 41 4(1+2)
n=2 X
Az,,_l —n -2 1 l+1
All Cy 2(1+1) 4l 4l
n=2 n=3 n=4 n=2
DI, gp;a-éi-l -2 —(2¢—1) | —2(p—1) |2 2(l—-1)
Ludd 8(1—2) (x 4l 4l 4(21-1)
DII b=2920 (*3)
p+g=3 q=1 q=1 q=1 O
Es -3 2 12
EI C, 36 52
O
Es —6 1 12
EIV F, 52/3 | 36
X

(*1) This holds when p, g=2. The value is 6(I—1) if p=1, ¢=2, 2(2I—1) if p=2, g=1
and 4 if p=g=1.

(*2) This holds when ¢=2. The value is 4(/—1) if ¢g=1.

(*3) This holds when ¢=2. The value is 3(2/-3) if g=1.
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